WorldWideScience

Sample records for breast x-ray ct

  1. Evaluation of phase-contrast CT of breast tissue at conventional X-ray sources - presentation of selected findings.

    Science.gov (United States)

    Grandl, Susanne; Willner, Marian; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Hipp, Alexander; Pfeiffer, Franz; Reiser, Maximilian; Hellerhoff, Karin

    2013-09-01

    Grating-based phase contrast computed tomography (PC-CT) at synchrotron radiation sources has been shown to provide improved visualization of breast tumors. However, broad clinical application of phase-contrast imaging will likely depend on transferring the technology to standard polychromatic X-ray sources. On the basis of selected findings, we demonstrate the potential of grating-based PC-CT using a conventional X-ray source. Grating-based PC-CT of two ex-vivo formalin fixed breast specimens containing lobular carcinoma was conducted using a Talbot Lau interferometer run at a polychromatic X-ray source of 40kVp. Phase-contrast and absorption-based 3D-datasets of both specimens were simultaneously recorded. Radiological images were manually matched with corresponding histological sections. The visualization of selected histological findings in phase contrast was compared to absorption contrast. Grating-based PC-CT was able to depict the 3-dimensional structure of dilated ducts and high phase contrast was found as a correlate to thickened fibrous ductal walls. Differences in contrast between fibrous and less fibrous breast tissue were observed in phase- but not in absorption-contrast images. Furthermore, regions of low phase contrast correlated with the extension of compact tumor components. On the basis of selected findings, we show that grating-based PC-CT at a polychromatic X-ray source provides complementary information to conventional absorption contrast; albeit at lower spatial resolution than synchrotron-based imaging. Copyright © 2013. Published by Elsevier GmbH.

  2. Ensuring convergence in total-variation-based reconstruction for accurate microcalcification imaging in breast X-ray CT

    CERN Document Server

    Jørgensen, Jakob H; Pan, Xiaochuan

    2011-01-01

    Breast X-ray CT imaging is being considered in screening as an extension to mammography. As a large fraction of the population will be exposed to radiation, low-dose imaging is essential. Iterative image reconstruction based on solving an optimization problem, such as Total-Variation minimization, shows potential for reconstruction from sparse-view data. For iterative methods it is important to ensure convergence to an accurate solution, since important image features, such as presence of microcalcifications indicating breast cancer, may not be visible in a non-converged reconstruction, and this can have clinical significance. To prevent excessively long computational times, which is a practical concern for the large image arrays in CT, it is desirable to keep the number of iterations low, while still ensuring a sufficiently accurate reconstruction for the specific imaging task. This motivates the study of accurate convergence criteria for iterative image reconstruction. In simulation studies with a realistic...

  3. Ensuring convergence in total-variation-based reconstruction for accurate microcalcification imaging in breast X-ray CT

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Sidky, Emil Y.; Pan, Xiaochuan

    2011-01-01

    , shows potential for reconstruction from sparse-view data. For iterative methods it is important to ensure convergence to an accurate solution, since important diagnostic image features, such as presence of microcalcifications indicating breast cancer, may not be visible in a non-converged reconstruction....... This motivates the study of accurate convergence criteria for iterative image reconstruction. In simulation studies with a realistic breast phantom with microcalcifications we investigate the issue of ensuring sufficiently converged solution for reliable reconstruction. Our results show that it can......Breast X-ray CT imaging is being considered in screening as an extension to mammography. As a large fraction of the population will be exposed to radiation, low·dose imaging is essential. Iterative image reconstruction based on solving an optimization problem, such as Total-Variation minimization...

  4. Reconstructing misaligned x-ray CT data

    Energy Technology Data Exchange (ETDEWEB)

    Divin, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-24

    Misalignment errors for x-ray computed tomography (CT) systems can manifest as artifacts and a loss of spatial and contrast resolution. To mitigate artifacts, significant effort is taken to determine the system geometry and minimizing any residual error in the system alignment. This project improved our ability to post-correct data which was acquired on a misaligned CT system.

  5. Visibility of microcalcification in cone beam breast CT − Effects of x-ray tube voltage and radiation dose

    Science.gov (United States)

    Lai, Chao-Jen; Shaw, Chris C.; Chen, Lingyun; Altunbas, Mustafa C.; Liu, Xinming; Han, Tao; Wang, Tianpeng; Yang, Wei T.; Whitman, Gary J.; Tu, Shu-Ju

    2010-01-01

    Mammography is the only technique currently used for detecting microcalcification (MC) clusters, an early indicator of breast cancer. However, mammographic images superimpose a three-dimensional compressed breast image onto two-dimensional projection views, resulting in overlapped anatomical breast structures that may obscure the detection and visualization of MCs. One possible solution to this problem is the use of cone beam computed tomography (CBCT) with a flat-panel (FP) digital detector. Although feasibility studies of CBCT techniques for breast imaging have yielded promising results, they have not shown how radiation dose and x-ray tube voltage affect the accuracy with which MCs are detected by CBCT experimentally. We therefore conducted a phantom study using FP-based CBCT system with various mean glandular doses and kVp values. An experimental CBCT scanner was constructed with a data-acquisition rate of 7.5 frames/s. 10.5- and 14.5cm-diameter breast phantoms made of gelatin were used to simulate uncompressed breasts consisting of 100% glandular tissue. Eight different MC sizes of calcium carbonate grains, ranging from 180–200 µm to 355–425 µm, were used to simulate MCs. MCs of the same size were arranged to form a 5×5 MC cluster and embedded in the breast phantoms. These MC clusters were positioned at 2.8 cm away from the center of the breast phantoms. The phantoms were imaged at 60, 80, and 100 kVp. With a single scan (360 degrees), 300 projection images were acquired with 0.5×, 1×, and 2× mean glandular dose limit for 10.5-cm phantom and with 1×, 2×, and 4× for 14.5-cm phantom. Feldkamp algorithm with a pure ramp filter was used for image reconstruction. The normalized noise level was calculated for each x-ray tube voltage and dose level. The image quality of CBCT images was evaluated by counting the number of visible MCs for each MC cluster for various conditions. The average percentage of the visible MCs were computed and plotted as a

  6. Dual Energy X-Ray CT by Compton Scattering Hard X-Ray Source

    CERN Document Server

    Uesaka, Mitsuru; Kaneyasu, Tatsuo; Torikoshi, Masami

    2005-01-01

    We have developed a compact Compton scattering hard X-ray source at Nuclear Engineering Research Laboratory, University of Tokyo. The compact hard X-ray source can produce tunable monochromatic hard X-rays. The monochromatic hard X-rays are required in large field of medical and biological applications. We are planning to perform dual-energy X-ray CT, which enables us to measure atomic number Z distribution and electron density re distribution in a material. The hard X-ray source has an advantage to perform dual-energy X-ray CT. The X-ray energy can be changed quickly by introducing a fundamental frequency and a second harmonic frequency lasers. This quick energy change is indispensable to medical imaging and very difficult in a large SR light source and others. The information on the atomic number and electron density will be used for treatment plan in radiotherapy as well as for identification of materials in a nondestructive test. We examined applicability of the dual-energy X-ray CT for atomic number meas...

  7. Radiation Exposure in X-Ray and CT Examinations

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiation Dose in X-Ray and CT Exams What ... page for more information. top of page Measuring radiation dosage The scientific unit of measurement for radiation ...

  8. Lab-based x-ray nanoCT imaging

    Science.gov (United States)

    Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz

    2017-03-01

    Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.

  9. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    NARCIS (Netherlands)

    Ramamurthy, S.; D'Orsi, C.J.; Sechopoulos, I.

    2016-01-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360 degrees with a

  10. Interferometric X-Ray Imaging of Breast Cancer Specimens at 51 keV X-Ray Energy

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet Thet; Aiyoshi, Yuji; Zeniya, Tsutomu; Hyodo, Kazuyuki; Ueno, Ei

    2004-08-01

    The feasibility of the interferometric X-ray imaging technique is examined for revealing the features of breast cancer specimens. The interferometric X-ray imaging system consisted of an asymmetrically cut silicon crystal, a monolithic X-ray interferometer, a phase-shifter, an object cell, and an X-ray CCD camera. Ten 10-mm-thick formalin-fixed breast cancer specimens were imaged at 51 keV, and these images were compared with absorption-contrast X-ray images obtained at 18 keV monochromatic synchrotron X-ray. The interferometric X-ray images clearly depicted the essential features of the breast cancer such as microcalcification down to a size of 0.036 mm, spiculation, and detailed inner soft tissue structures closely matched with histopathological morphology, while the absorption-contrast X-ray images obtained using nearly the same X-ray dose only resolved microcalcification down to a size of 0.108 mm and spiculation. The interferometric X-ray imaging technique can be considered to be an innovative technique for the early and accurate diagnosis of breast cancer using an extremely low X-ray dose.

  11. SEGMENTATION AND CORRELATION OF OPTICAL COHERENCE TOMOGRAPHY AND X-RAY IMAGES FOR BREAST CANCER DIAGNOSTICS

    Directory of Open Access Journals (Sweden)

    JONATHAN G. SUN

    2013-04-01

    Full Text Available Pre-operative X-ray mammography and intraoperative X-ray specimen radiography are routinely used to identify breast cancer pathology. Recent advances in optical coherence tomography (OCT have enabled its use for the intraoperative assessment of surgical margins during breast cancer surgery. While each modality offers distinct contrast of normal and pathological features, there is an essential need to correlate image-based features between the two modalities to take advantage of the diagnostic capabilities of each technique. We compare OCT to X-ray images of resected human breast tissue and correlate different tissue features between modalities for future use in real-time intraoperative OCT imaging. X-ray imaging (specimen radiography is currently used during surgical breast cancer procedures to verify tumor margins, but cannot image tissue in situ. OCT has the potential to solve this problem by providing intraoperative imaging of the resected specimen as well as the in situ tumor cavity. OCT and micro-CT (X-ray images are automatically segmented using different computational approaches, and quantitatively compared to determine the ability of these algorithms to automatically differentiate regions of adipose tissue from tumor. Furthermore, two-dimensional (2D and three-dimensional (3D results are compared. These correlations, combined with real-time intraoperative OCT, have the potential to identify possible regions of tumor within breast tissue which correlate to tumor regions identified previously on X-ray imaging (mammography or specimen radiography.

  12. X-Ray Phase Imaging for Breast Cancer Detection

    Science.gov (United States)

    2012-09-01

    a contrast -detail phantom, an acrylic step- edge, and a breast tissue-equivalent phantom. As current breast imaging ( mammography and breast... contrast enhancement of x-ray mam- mography: A design study,” Phys. Med. Biol. 44, 2853–2866 (1999). 6F. Arfelli et al., “ Mammography with synchrotron...breast tissue produces very low attenuation contrast [5–7], which presents a considerable challenge for cancer detection in mammography . Unfortunately

  13. Proton-induced x-ray fluorescence CT imaging.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Matsuo, Yuto; Fahrig, Rebecca; Shirato, Hiroki; Umegaki, Kikuo; Xing, Lei

    2015-02-01

    To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%-5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm(2) CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%-5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R(2) > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Proton-induced x-ray fluorescence CT imaging of 3%-5% gold solutions in a small animal sized water phantom has been demonstrated

  14. High resolution X-ray CT for advanced electronics packaging

    Science.gov (United States)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  15. Sparse reconstruction methods in x-ray CT

    Science.gov (United States)

    Abascal, J. F. P. J.; Abella, M.; Mory, C.; Ducros, N.; de Molina, C.; Marinetto, E.; Peyrin, F.; Desco, M.

    2017-10-01

    Recent progress in X-ray CT is contributing to the advent of new clinical applications. A common challenge for these applications is the need for new image reconstruction methods that meet tight constraints in radiation dose and geometrical limitations in the acquisition. The recent developments in sparse reconstruction methods provide a framework that permits obtaining good quality images from drastically reduced signal-to-noise-ratio and limited-view data. In this work, we present our contributions in this field. For dynamic studies (3D+Time), we explored the possibility of extending the exploitation of sparsity to the temporal dimension: a temporal operator based on modelling motion between consecutive temporal points in gated-CT and based on experimental time curves in contrast-enhanced CT. In these cases, we also exploited sparsity by using a prior image estimated from the complete acquired dataset and assessed the effect on image quality of using different sparsity operators. For limited-view CT, we evaluated total-variation regularization in different simulated limited-data scenarios from a real small animal acquisition with a cone-beam microCT scanner, considering different angular span and number of projections. For other emerging imaging modalities, such as spectral CT, the image reconstruction problem is nonlinear, so we explored new efficient approaches to exploit sparsity for multi-energy CT data. In conclusion, we review our approaches to challenging CT data reconstruction problems and show results that support the feasibility for new clinical applications.

  16. X-ray CT geometrical calibration via locally linear embedding.

    Science.gov (United States)

    Chen, Mianyi; Xi, Yan; Cong, Wenxiang; Liu, Baodong; Wei, Biao; Wang, Ge

    2016-01-01

    For X-ray computed tomography (CT), geometric calibration and rigid patient motion compensation are inter-related issues for optimization of image reconstruction quality. Non-calibrated system geometry and patient movement during a CT scan will result in streak-like, blurring and other artifacts in reconstructed images. In this paper, we propose a locally linear embedding based calibration approach to address this challenge under a rigid 2D object assumption and a more general way than what has been reported before. In this method, projections are linearly represented by up-sampled neighbors via locally linear embedding, and CT system parameters are iteratively estimated from projection data themselves. Numerical and experimental studies show that images reconstructed with calibrated parameters are in excellent agreement with the counterparts reconstructed with the true parameters.

  17. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions.

    Science.gov (United States)

    Glick, Stephen J; Didier, Clay

    2013-10-14

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5-3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion

  18. Dosimetry in x-ray-based breast imaging

    NARCIS (Netherlands)

    Dance, D.R.; Sechopoulos, I.

    2016-01-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for

  19. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging.

    Science.gov (United States)

    Baran, P; Pacile, S; Nesterets, Y I; Mayo, S C; Dullin, C; Dreossi, D; Arfelli, F; Thompson, D; Lockie, D; McCormack, M; Taba, S T; Brun, F; Pinamonti, M; Nickson, C; Hall, C; Dimmock, M; Zanconati, F; Cholewa, M; Quiney, H; Brennan, P C; Tromba, G; Gureyev, T E

    2017-03-21

    The aim of this study was to optimise the experimental protocol and data analysis for in-vivo breast cancer x-ray imaging. Results are presented of the experiment at the SYRMEP beamline of Elettra Synchrotron using the propagation-based phase-contrast mammographic tomography method, which incorporates not only absorption, but also x-ray phase information. In this study the images of breast tissue samples, of a size corresponding to a full human breast, with radiologically acceptable x-ray doses were obtained, and the degree of improvement of the image quality (from the diagnostic point of view) achievable using propagation-based phase-contrast image acquisition protocols with proper incorporation of x-ray phase retrieval into the reconstruction pipeline was investigated. Parameters such as the x-ray energy, sample-to-detector distance and data processing methods were tested, evaluated and optimized with respect to the estimated diagnostic value using a mastectomy sample with a malignant lesion. The results of quantitative evaluation of images were obtained by means of radiological assessment carried out by 13 experienced specialists. A comparative analysis was performed between the x-ray and the histological images of the specimen. The results of the analysis indicate that, within the investigated range of parameters, both the objective image quality characteristics and the subjective radiological scores of propagation-based phase-contrast images of breast tissues monotonically increase with the strength of phase contrast which in turn is directly proportional to the product of the radiation wavelength and the sample-to-detector distance. The outcomes of this study serve to define the practical imaging conditions and the CT reconstruction procedures appropriate for low-dose phase-contrast mammographic imaging of live patients at specially designed synchrotron beamlines.

  20. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging

    Science.gov (United States)

    Baran, P.; Pacile, S.; Nesterets, Y. I.; Mayo, S. C.; Dullin, C.; Dreossi, D.; Arfelli, F.; Thompson, D.; Lockie, D.; McCormack, M.; Taba, S. T.; Brun, F.; Pinamonti, M.; Nickson, C.; Hall, C.; Dimmock, M.; Zanconati, F.; Cholewa, M.; Quiney, H.; Brennan, P. C.; Tromba, G.; Gureyev, T. E.

    2017-03-01

    The aim of this study was to optimise the experimental protocol and data analysis for in-vivo breast cancer x-ray imaging. Results are presented of the experiment at the SYRMEP beamline of Elettra Synchrotron using the propagation-based phase-contrast mammographic tomography method, which incorporates not only absorption, but also x-ray phase information. In this study the images of breast tissue samples, of a size corresponding to a full human breast, with radiologically acceptable x-ray doses were obtained, and the degree of improvement of the image quality (from the diagnostic point of view) achievable using propagation-based phase-contrast image acquisition protocols with proper incorporation of x-ray phase retrieval into the reconstruction pipeline was investigated. Parameters such as the x-ray energy, sample-to-detector distance and data processing methods were tested, evaluated and optimized with respect to the estimated diagnostic value using a mastectomy sample with a malignant lesion. The results of quantitative evaluation of images were obtained by means of radiological assessment carried out by 13 experienced specialists. A comparative analysis was performed between the x-ray and the histological images of the specimen. The results of the analysis indicate that, within the investigated range of parameters, both the objective image quality characteristics and the subjective radiological scores of propagation-based phase-contrast images of breast tissues monotonically increase with the strength of phase contrast which in turn is directly proportional to the product of the radiation wavelength and the sample-to-detector distance. The outcomes of this study serve to define the practical imaging conditions and the CT reconstruction procedures appropriate for low-dose phase-contrast mammographic imaging of live patients at specially designed synchrotron beamlines.

  1. Experimental micro-CT system for x-ray NDT

    Science.gov (United States)

    Rossi, Massimo; Casali, Franco; Bettuzzi, Matteo; Morigi, MariaPia; Romani, Davide; Golovkin, Sergei V.; Govorun, Vladimir N.

    2002-01-01

    This work describes the setup of an experimental system for microtomography developed in the framework of a collaboration between the Physics Department of the University of Bologna (Italy; the Geosphaera Research Center of Moscow, Russia). The main goal of this inspection system is to carry out high-resolution analysis in vitro of biomedical samples as well as nondestructive testing (NDT) of industrial components. The detection system consists of a 30x15 mm2 rectangular fiberoptic taper (ratio 2:1) optically coupled to a cooled 12-bit CCD camera (1024x512 pixels). On the entrance window of the taper is deposited a thin layer of Gd2O2S:Tb phosphor which provides the X-light conversion. The image readout is carried out by means of a commercial frame grabber installed on a personal computer and specific software is used for data acquisition and control of the tomographic process. The object under investigation is arranged on a 3-degree micro-positioning system (x-y translation and rotation) and irradiated by an X-ray microfocus beam (up to 200 kVp). The sample can be positioned easily along the source-detector axis in order to obtain a large magnification of details of interest. The X-ray detector has been intensively tested in order to determine its performance in terms of MTF, NPS, and DQE. Moreover, preliminary tests have been carried out on several samples in order to evaluate the performance of the micro-CT system.

  2. X-ray CT analysis of pore structure in sand

    Science.gov (United States)

    Mukunoki, Toshifumi; Miyata, Yoshihisa; Mikami, Kazuaki; Shiota, Erika

    2016-06-01

    The development of microfocused X-ray computed tomography (CT) devices enables digital imaging analysis at the pore scale. The applications of these devices are diverse in soil mechanics, geotechnical and geoenvironmental engineering, petroleum engineering, and agricultural engineering. In particular, the imaging of the pore space in porous media has contributed to numerical simulations for single-phase and multiphase flows or contaminant transport through the pore structure as three-dimensional image data. These obtained results are affected by the pore diameter; therefore, it is necessary to verify the image preprocessing for the image analysis and to validate the pore diameters obtained from the CT image data. Moreover, it is meaningful to produce the physical parameters in a representative element volume (REV) and significant to define the dimension of the REV. This paper describes the underlying method of image processing and analysis and discusses the physical properties of Toyoura sand for the verification of the image analysis based on the definition of the REV. On the basis of the obtained verification results, a pore-diameter analysis can be conducted and validated by a comparison with the experimental work and image analysis. The pore diameter is deduced from Young-Laplace's law and a water retention test for the drainage process. The results from previous study and perforated-pore diameter originally proposed in this study, called the voxel-percolation method (VPM), are compared in this paper. In addition, the limitations of the REV, the definition of the pore diameter, and the effectiveness of the VPM for an assessment of the pore diameter are discussed.

  3. Assessing the registration of CT-scan data to intraoperative x rays by fusing x rays and preoperative information

    Science.gov (United States)

    Gueziec, Andre P.

    1999-05-01

    This paper addresses a key issue of providing clinicians with visual feedback to validate a computer-generated registration of pre-operative and intra-operative data. With this feedback information, the clinician may decide to proceed with a computer-assisted intervention, revert to a manual intervention, or potentially provide information to the computer system to improve the registration. The paper focuses on total hip replacement (THR) surgery, but similar techniques could be applied to other types of interventions or therapy, including orthopedics, neurosurgery, and radiation therapy. Pre-operative CT data is used to plane the surgery (select an implant type, size and precise position), and is registered to intra-operative X-ray images, allowing to execute the plan: mill a cavity with the implant's shape. (Intra-operative X-ray images must be calibrated with respect to the surgical device executing the plan). One novel technique presented in this paper consists of simulating a post-operative X-ray image of the tissue of interest before doing the procedure, by projecting the registered implant onto an intra-operative X- ray image (corrected for distortion or not), providing clinicians with familiar and easy to interpret images. As an additional benefit, this method provides new means for comparing various strategies for registering pre-operative data to the physical space of the operating room.

  4. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  5. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing.

    Science.gov (United States)

    Ramamurthy, Senthil; D'Orsi, Carl J; Sechopoulos, Ioannis

    2016-02-07

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360° with a perforated tungsten plate in the path of the x-ray beam. To make patient testing feasible, a wirelessly controlled electronic positioner for the tungsten plate was designed and added to a breast CT system. Other improvements to the algorithm were implemented, including automated exclusion of non-valid primary estimate points and the use of a different approximation method to estimate the full scatter signal. To evaluate the effectiveness of the algorithm, evaluation of the resulting image quality was performed with a breast phantom and with nine patient images. The improvements in the algorithm resulted in the avoidance of introduction of artifacts, especially at the object borders, which was an issue in the previous implementation in some cases. Both contrast, in terms of signal difference and signal difference-to-noise ratio were improved with the proposed method, as opposed to with the correction algorithm incorporated in the system, which does not recover contrast. Patient image evaluation also showed enhanced contrast, better cupping correction, and more consistent voxel values for the different tissues. The algorithm also reduces artifacts present in reconstructions of non-regularly shaped breasts. With the implemented hardware and software improvements, the proposed method can be reliably used during patient breast CT imaging, resulting in improvement of image quality, no introduction of artifacts, and in some cases reduction of artifacts already present. The impact of the algorithm on actual clinical performance for detection, diagnosis and other clinical tasks in breast imaging remains to be evaluated.

  6. X-ray characterisation of normal and neoplastic breast tissues

    Energy Technology Data Exchange (ETDEWEB)

    Johns, P.C.; Yaffe, M.J.

    1987-06-01

    Normal and neoplastic breast tissues have been characterised in terms of x-ray attenuation. A high-purity germanium spectroscopy system and a beam of 120 kV constant potential x-rays were used to determine the linear attenuation coefficient from 18 to 110 keV. Densities were determined from buoyancy measurements and used to obtain mass attenuation coefficients. For photon energies used for film-screen mammography, infiltrating duct carcinomas are more attenuating than fibrous tissue. Above 31 keV, the ranges of attenuation of the two tissue types overlap. Attenuation coefficients of tissues have been concisely represented by equivalent thicknesses of lucite and aluminium. Analysis based on the average attenuation properties of tissues indicates that dual-energy mammography, using an ideal imaging system, would require 0.06 cGy to provide images in which 1 cm infiltrating duct carcinomas are displayed with a signal to noise ratio of 5 against a background over which the fat/fibrous contrast has been suppressed.

  7. Clinical evaluation of chest x-rays, gallium-67 scans and CT scans in sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Maeda, T. (Kochi Medical School (Japan)); Itoh, K.; Yamamoto, Y.; Machida, K.

    1981-10-01

    A comparative study of the accuracy of chest X-rays, Gallium-67 scans and CT scans for mediastinal lymphadenopathy of pulmonary sarcoidosis was performed. The ability of each examination to detect the lymphadenopathy of following 5 lymph node groups was evaluated, such as paratracheal, aorto-pulmonic window, subcarinal and both hilar lymph nodes. The results on 5 patients indicated that in the detection of right paratracheal and subcarinal lymphadenopathy, Gallium scans and CT scans were more sensitive than chest x-rays. Chest x-rays and Gallium scans were superior than CT in detecting bilateral hilar lymphadenopathy. In the involvement of aorto-pulmonic window nodes, Gallium scans and chest x-rays were more informative than CT. Combination of these three examination is effective in the detection of the above described lymphadenopathy.

  8. 3D Forward and Back-Projection for X-Ray CT Using Separable Footprints

    OpenAIRE

    Long, Yong; Fessler, Jeffrey A.; Balter, James M.

    2010-01-01

    Iterative methods for 3D image reconstruction have the potential to improve image quality over conventional filtered back projection (FBP) in X-ray computed tomography (CT). However, the computation burden of 3D cone-beam forward and back-projectors is one of the greatest challenges facing practical adoption of iterative methods for X-ray CT. Moreover, projector accuracy is also important for iterative methods. This paper describes two new separable footprint (SF) projector methods that appro...

  9. Estimation of effective dose from limited cone beam X-ray CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazuo; Arai, Yoshinori; Hashimoto, Koji [Nihon Univ., Tokyo (Japan). School of Dentistry; Nishizawa, Kanae

    2000-12-01

    The limited cone beam X-ray CT (Ortho-CT) was developed on the basis of multi-functional panoramic apparatus, SCANORA (Soredex Co. Helsinki Finland). The imaging intensifier (I.I.) was built in this apparatus as a X-ray detection device instead of X-ray film. The signal provided from I.I. was converted from analog into digital by an analog-digital converter and image reconstitution was done as a three-directional image of the dimensions 3.8 cm of width, 3.0 cm height and 3.8 cm depth with the personal computer. The 3DX Multi image micro CT'' (3DX) was developed along similar lines by MORITA Co., Ltd. (Kyoto, JAPAN). In this study, the stochastic effect on organ and tissue caused by examinations using Ortho-CT and 3DX was measured. The effective dose was estimated according to the recommendation of ICRP60 and was compared with those of panoramic radiography and computed tomography. The irradiation conditions were as follows: 85 kV, 10 mA with the filtration of 3 mmAl and added 1 mmCu for Ortho-CT, and 80 kV, 2 mA and the filtration of 3.1 mmAL for 3DX. The measurement of organ and tissue dose was performed using an anthropomorphic Rando woman phantom (Alderson Research Laboratories Co., Stanfora, CN), as well as by using two different type of thermoluminescent dosimeter (TLD); Panasonic UD-170A (BeO) and UD-110S (CaSO{sub 4}: Tm). The UD-170A was for dose measurement of the inner useful X-ray beams, while the UD-110S was for outer beams. The measured organ and tissue were those recommended with ICRP60 (gonad, breast, bone marrow, lung, thyroid gland, esophagus, stomach, colon, liver, bladder, skin, brain, thymus, adrenal, kidney, spleen, pancrease, upper large intestine, uterus, eyes and major salivary gland). The imaging by Orhto-CT was made in the left maxillary 1st molar, left mandibular 1st molar and temporomandibular joint. 3DX measurement was made in the maxillary incisor region and middle ear regions other than the regions mentioned above. The skin

  10. X-ray scatter correction method for dedicated breast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis [Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University School of Medicine, 1701 Upper Gate Drive NE, Suite 5018, Atlanta, Georgia 30322 (United States)

    2012-05-15

    Purpose: To improve image quality and accuracy in dedicated breast computed tomography (BCT) by removing the x-ray scatter signal included in the BCT projections. Methods: The previously characterized magnitude and distribution of x-ray scatter in BCT results in both cupping artifacts and reduction of contrast and accuracy in the reconstructions. In this study, an image processing method is proposed that estimates and subtracts the low-frequency x-ray scatter signal included in each BCT projection postacquisition and prereconstruction. The estimation of this signal is performed using simple additional hardware, one additional BCT projection acquisition with negligible radiation dose, and simple image processing software algorithms. The high frequency quantum noise due to the scatter signal is reduced using a noise filter postreconstruction. The dosimetric consequences and validity of the assumptions of this algorithm were determined using Monte Carlo simulations. The feasibility of this method was determined by imaging a breast phantom on a BCT clinical prototype and comparing the corrected reconstructions to the unprocessed reconstructions and to reconstructions obtained from fan-beam acquisitions as a reference standard. One-dimensional profiles of the reconstructions and objective image quality metrics were used to determine the impact of the algorithm. Results: The proposed additional acquisition results in negligible additional radiation dose to the imaged breast ({approx}0.4% of the standard BCT acquisition). The processed phantom reconstruction showed substantially reduced cupping artifacts, increased contrast between adipose and glandular tissue equivalents, higher voxel value accuracy, and no discernible blurring of high frequency features. Conclusions: The proposed scatter correction method for dedicated breast CT is feasible and can result in highly improved image quality. Further optimization and testing, especially with patient images, is necessary to

  11. Image noise in X-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hilts, M [Medical Physics, BC Cancer Agency, Vancouver Centre (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC (Canada); Duzenli, C [Medical Physics, BC Cancer Agency, Vancouver Centre (Canada)

    2004-01-01

    This work investigates factors which affect image noise in CT polymer gel dosimetry, discusses techniques that can be used to further improve image noise and provides overall recommendations for the CT imaging of polymer gels.

  12. X-ray phase-shifts-based method of volumetric breast density measurement

    OpenAIRE

    Wu, Xizeng; Yan, Aimin; Liu, Hong

    2012-01-01

    Purpose: The high breast density is one of the biggest risk factors for breast cancer. Identifying patient having persistent high breast density is important for breast cancer screening and prevention. In this work the authors propose for the first time an x-ray phase-shifts-based method of breast density measurement.

  13. Physics-based modeling of X-ray CT measurements with energy-integrating detectors

    Science.gov (United States)

    Long, Yong; Gao, Hewei; Wu, Mingye; Pack, Jed D.; Xu, Hao; Tao, Kun; Fitzgerald, Paul F.; De Man, Bruno

    2014-03-01

    Computer simulation tools for X-ray CT are important for research efforts in developing reconstructionmethods, designing new CT architectures, and improving X-ray source and detector technologies. In this paper, we propose a physics-based modeling method for X-ray CT measurements with energy-integrating detectors. It accurately accounts for the dependence characteristics on energy, depth and spatial location of the X-ray detection process, which is either ignored or over simplified in most existing CT simulation methods. Compared with methods based on Monte Carlo simulations, it is computationally much more efficient due to the use of a look-up table for optical collection efficiency. To model the CT measurments, the proposed model considers five separate effects: energy- and location-dependent absorption of the incident X-rays, conversion of the absorbed X-rays into the optical photons emitted by the scintillator, location-dependent collection of the emitted optical photons, quantumefficiency of converting fromoptical photons to electrons, and electronic noise. We evaluated the proposed method by comparing the noise levels in the reconstructed images from measured data and simulations of a GE LightSpeed VCT system. Using the results of a 20 cm water phantom and a 35 cm polyethylene (PE) disk at various X-ray tube voltages (kVp) and currents (mA), we demonstrated that the proposed method produces realistic CT simulations. The difference in noise standard deviation between measurements and simulations is approximately 2% for the water phantom and 10% for the PE phantom.

  14. 3D Prior Image Constrained Projection Completion for X-ray CT Metal Artifact Reduction

    NARCIS (Netherlands)

    Mehranian, Abolfazl; Ay, Mohammad Reza; Rahmim, Arman; Zaidi, Habib

    2013-01-01

    The presence of metallic implants in the body of patients undergoing X-ray computed tomography (CT) examinations often results insevere streaking artifacts that degrade image quality. In this work, we propose a new metal artifact reduction (MAR) algorithm for 2D fan-beam and 3D cone-beam CT based on

  15. Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection

    Science.gov (United States)

    Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.

    2017-01-01

    During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.

  16. A framework for breast cancer visualization using augmented reality x-ray vision technique in mobile technology

    Science.gov (United States)

    Rahman, Hameedur; Arshad, Haslina; Mahmud, Rozi; Mahayuddin, Zainal Rasyid

    2017-10-01

    Breast Cancer patients who require breast biopsy has increased over the past years. Augmented Reality guided core biopsy of breast has become the method of choice for researchers. However, this cancer visualization has limitations to the extent of superimposing the 3D imaging data only. In this paper, we are introducing an Augmented Reality visualization framework that enables breast cancer biopsy image guidance by using X-Ray vision technique on a mobile display. This framework consists of 4 phases where it initially acquires the image from CT/MRI and process the medical images into 3D slices, secondly it will purify these 3D grayscale slices into 3D breast tumor model using 3D modeling reconstruction technique. Further, in visualization processing this virtual 3D breast tumor model has been enhanced using X-ray vision technique to see through the skin of the phantom and the final composition of it is displayed on handheld device to optimize the accuracy of the visualization in six degree of freedom. The framework is perceived as an improved visualization experience because the Augmented Reality x-ray vision allowed direct understanding of the breast tumor beyond the visible surface and direct guidance towards accurate biopsy targets.

  17. New approach to breast tumor detection based on fluorescence x-ray analysis

    Directory of Open Access Journals (Sweden)

    Okuyama, Fumio

    2010-01-01

    Full Text Available A new technical approach to breast-tumor detection is proposed. The technique is based on fluorescence x-ray analysis, and can identify a miniature malignant tumor within the breast. The primary beam intensity needed in fluorescence x-ray analysis is on a lower order of magnitude than that used in mammography. Thus, the newly-proposed technique would enable detection of a still tiny breast cancer while dramatically lowering the radiation dose. Field-emission x-ray sources might be a key for translating this concept into a medical technique.

  18. Technical considerations for implementation of x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hilts, M [Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, BC V8R 6V5 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Duzenli, C [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, BC V6R 2B6 (Canada)

    2005-04-21

    Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.

  19. Technical considerations for implementation of x-ray CT polymer gel dosimetry.

    Science.gov (United States)

    Hilts, M; Jirasek, A; Duzenli, C

    2005-04-21

    Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.

  20. Region-Based 4D Tomographic Image Reconstruction: Application to Cardiac X-ray CT

    NARCIS (Netherlands)

    G. Van Eyndhoven (Geert); K.J. Batenburg (Joost); J. Sijbers (Jan)

    2015-01-01

    htmlabstractX-ray computed tomography (CT) is a powerful tool for noninvasive cardiac imaging. However, radiation dose is a major issue. In this paper, we propose an iterative reconstruction method that reduces the radiation dose without compromising image quality. This is achieved by exploiting

  1. A realistic projection simulator for laboratory based X-ray micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Dhaene, Jelle, E-mail: jelle.dhaene@ugent.be; Pauwels, Elin, E-mail: elin.pauwels@ugent.be; De Schryver, Thomas; De Muynck, Amelie; Dierick, Manuel; Van Hoorebeke, Luc

    2015-01-01

    In X-ray computed tomography (CT) each voxel of the reconstructed image contains a calculated grey value which represents the linear attenuation coefficient for the materials in that voxel. Conventional laboratory based CT scanners use polychromatic X-ray sources and integrating detectors with an energy dependent efficiency. Consequently the reconstructed attenuation coefficients will depend on the spectrum of the source and the spectral sensitivity of the detector. Beam hardening will alter the spectrum significantly as the beam propagates through the sample. Therefore, sample composition and shape will affect the reconstructed attenuation coefficients as well. A polychromatic projection simulator has been developed at the “Centre for X-ray Tomography” of the Ghent University (UGCT) which takes into account the aforementioned variables, allowing for complete and realistic simulations of CT scans for a wide range of geometrical setups. Monte Carlo simulations of the X-ray tubes and detectors were performed to model their spectral behaviour. In this paper, the implementation and features of the program are discussed. Simulated and real CT scans are compared to demonstrate the quantitative correctness of the simulations. Experiments performed at two different UGCT scanners yield a maximum deviation of 3.9% and 6.5% respectively, between the measured and simulated reconstructed attenuation coefficients.

  2. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    Science.gov (United States)

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge

    2017-12-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.

  3. X-ray CT Metal Artifact Reduction Using Wavelet Domain L-0 Sparse Regularization

    NARCIS (Netherlands)

    Mehranian, Abolfazl; Ay, Mohammad Reza; Rahmim, Arman; Zaidi, Habib

    X-ray computed tomography (CT) imaging of patients with metallic implants usually suffers from streaking metal artifacts. In this paper, we propose a new projection completion metal artifact reduction (MAR) algorithm by formulating the completion of missing projections as a regularized inverse

  4. Evaluation of x-ray detectors for dual-modality CT-SPECT animal imaging

    Science.gov (United States)

    MacDonald, Lawrence R.; Iwata, Koji; Patt, Bradley E.; Iwanczyk, Jan S.; Hwang, Andrew B.; Wu, Max C.; Hasegawa, Bruce H.

    2002-11-01

    We are developing a bench-top animal scanner that will acquire both functional SPECT images and anatomical CT images with sub-millimeter spatial resolution for both imaging modalities. This paper presents preliminary results from the evaluation of two x-ray detectors for the CT application, and dual SPECT-CT images using one of these detectors. Two phosphor-CMOS x-ray detectors, one with 48 m pixels and 5 cm x 5 cm area and the other with 50 μm pixels and 12 cm x 12 cm area, were evaluated for linearity and dynamic range. Each detector showed linearity over ~ 3 orders of magnitude, which is sufficient for mouse CT imaging. The smaller detector was mounted to an A-SPECT system, along with a custom 50 W x-ray source with focal spot size of ~ 150 μm. Phantoms and mice were scanned sequentially, SPECT followed by CT, and the resulting reconstructed images fused into a single SPECT-CT image. These preliminary results show that the two detectors evaluated for this application can successfully achieve high contrast CT images of mice and similar sized objects.

  5. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, Anton du, E-mail: anton2@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Physics Department, Stellenbosch University, Stellenbosch (South Africa); Roux, Stephan Gerhard le, E-mail: lerouxsg@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Guelpa, Anina, E-mail: aninag@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa)

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory’s first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  6. Targeted Silver Nanoparticles for Dual-Energy Breast X-Ray Imaging

    Science.gov (United States)

    2013-03-01

    the applicability of AgNP as contrast agents for use in DE-CE digital breast tomosynthesis and digital mammography . Three objectives have been...silver (Ag) nanoparticle (NP) contrast agent optimized for dual- energy (DE) contrast -enhanced (CE) breast x-ray imaging. CE digital breast imaging...provides an accurate method for decomposition of images into distinct breast tissue and contrast agent signals. At present, DE-CE breast imaging is

  7. Classification of the micromorphology of breast calcifications in x-ray dark-field mammography

    Science.gov (United States)

    Willer, Konstantin; Scherer, Kai; Braig, Eva; Ehn, Sebastian; Schock, Jonathan; Wolf, Johannes; Birnbacher, Lorenz; Chabior, Michael; Mayr, Doris; Grandl, Susanne; Sztrókay-Gaul, Aniko; Hellerhof, Karin; Reiser, Maximilian; Pfeiffer, Franz; Herzen, Julia

    2017-03-01

    The distant goal of this investigation is to reduce the number of invasive procedures associated with breast micro calcification biopsies, by improving and refining conventional BIRADS micro calcification assessments with x-ray dark-field mammography. The study was institutional review board (IRB) approved. A dedicated grating-based radiography setup (Mo-target, 40 keV, 70 mA) was used to investigate one breast mastectomy and 31 biopsies with dark-field mammography. Comparing the absorption and scattering properties of micro calcifications clusters enables accessing information on the interior morphology on the micron-scale retrieved in a non-invasive manner. Insights underlying the micro morphological nature of breast calcifications were verified by comprehensive high-resolution micro-CT measurements. It was found that Dark-field mammography allows a micro-structural classification of breast micro calcification as ultra-fine, fine, pleomorphic and coarse textured using conventional detectors. Dark-field mammography is thereby highly sensitive to minor structural deviations. Finally, the determined micro-texture of the investigated micro calcifications was correlated with findings obtained from histopathological work up. The presented results demonstrate that dark-field mammography yields the potential to enhance diagnostic validity of current micro calcification analysis - which is yet limited to the exterior appearance of micro calcification clusters - and thereby reduce the number of invasive procedures.

  8. TU-EF-207-03: Advances in Stationary Breast Tomosynthesis Using Distributed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, O. [The University of North Carolina at Chapel Hill (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  9. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  10. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Sorapong Aootaphao

    2016-01-01

    Full Text Available Soft tissue images from portable cone beam computed tomography (CBCT scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  11. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data.

    Science.gov (United States)

    van der Bom, M J; Pluim, J P W; Gounis, M J; van de Kraats, E B; Sprinkhuizen, S M; Timmer, J; Homan, R; Bartels, L W

    2011-02-21

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  12. A software platform for phase contrast x-ray breast imaging research.

    Science.gov (United States)

    Bliznakova, K; Russo, P; Mettivier, G; Requardt, H; Popov, P; Bravin, A; Buliev, I

    2015-06-01

    To present and validate a computer-based simulation platform dedicated for phase contrast x-ray breast imaging research. The software platform, developed at the Technical University of Varna on the basis of a previously validated x-ray imaging software simulator, comprises modules for object creation and for x-ray image formation. These modules were updated to take into account the refractive index for phase contrast imaging as well as implementation of the Fresnel-Kirchhoff diffraction theory of the propagating x-ray waves. Projection images are generated in an in-line acquisition geometry. To test and validate the platform, several phantoms differing in their complexity were constructed and imaged at 25 keV and 60 keV at the beamline ID17 of the European Synchrotron Radiation Facility. The software platform was used to design computational phantoms that mimic those used in the experimental study and to generate x-ray images in absorption and phase contrast modes. The visual and quantitative results of the validation process showed an overall good correlation between simulated and experimental images and show the potential of this platform for research in phase contrast x-ray imaging of the breast. The application of the platform is demonstrated in a feasibility study for phase contrast images of complex inhomogeneous and anthropomorphic breast phantoms, compared to x-ray images generated in absorption mode. The improved visibility of mammographic structures suggests further investigation and optimisation of phase contrast x-ray breast imaging, especially when abnormalities are present. The software platform can be exploited also for educational purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herppich, Werner B. [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V., Potsdam (Germany). Abt. Technik im Gartenbau; Matsushima, Uzuki [Iwate Univ., Morioka (Japan). Faculty of Agriculture; Graf, Wolfgang [Association for Technology and Structures in Agriculture (KTBL), Darmstadt (Germany); Zabler, Simon [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Wuerzburg (Germany). Project group NanoCT Systems (NCTS); Dawson, Martin [Salford Univ., Greater Manchester (United Kingdom); Choinka, Gerard; Manke, Ingo [Helmholtz Center Berlin for Materials and Energy (HZB), Berlin (Germany)

    2015-02-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  14. MRI of atlantoaxial subluxation; Correlating with plain X-ray films and CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Saikawa, Yuko; Nishi, Naoko; Saitoh, Yoko; Akimura, Rumiko; Sasaki, Taisuke; Yodono, Hiraku; Takekawa, Shoichi; Harata, Seikou; Sannohe, Akio (Hirosaki Univ., Aomori (Japan). School of Medicine)

    1991-04-01

    Twenty-three patients with atlantoaxial subluxation (14 with rheumatoid arthritis, one each with rheumatoid arthritis and Arnold-Chiari malformation, os odontoideum, Klippel-Feil syndrome, trauma, and 5 with unknown causes) were evaluated with MRI. We used 0.5 T MRI unit (RESONA; Yokogawa Medical Systems, Japan) and 1.5 T MRI unit (SMT 150; Shimazu, Japan) with head or flexible coils. We compared the usefulness of MRI with those of plain X-ray films and CT regarding several points. MRI provided better image of the soft tissue mass around the odontoid process, compression of cord or subarachnoid space than plain X-ray films and CT. Atlanto-odontoid distance on MRI is nearer to that on plain X-ray films than CT. MRI is useful in analyzing the anatomic details such as transverse ligament, alar ligament, tectorial membrane and thickened synovium. Both MRI and CT provided detailed bony changes. High correlation was observed between MRI grading of cord compression and the degree of myelopathy. (author).

  15. Diagnosis of mitral valve prolapse by X-ray CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Yoshiaki; Inagaki, Yoshiaki

    1986-12-01

    To evaluate the usefulness of enhanced X-ray CT and gating magnetic resonance imaging (MRI) for diagnosing mitral valve prolapse, three patients with this abnormality and several controls were examined by these two methods. The mitral valve was not recognized by X-ray CT except a few cases with thickened mitral valve. However, MRI could demonstrate clearly the mitral leaflets and annulus in many subjects. In transverse MR imaging of the subjects without valvular disease, the closed mitral valve showed V-shaped appearance in the left ventricle during systole. In a patient with marked mitral valve prolapse, MRI revealed buckling of the posterior mitral leaflet into the left atrium, and in two other patients with mild mitral valve prolapse, MRI demonstrated displacement of coaptation of the anterior leaflet toward the left atrium. These results suggest MRI is a useful method for diagnosing mitral valve prolapse.

  16. Breast lesion co-localisation between X-ray and MR images using finite element modelling.

    Science.gov (United States)

    Lee, Angela W C; Rajagopal, Vijayaraghavan; Babarenda Gamage, Thiranja P; Doyle, Anthony J; Nielsen, Poul M F; Nash, Martyn P

    2013-12-01

    This paper presents a novel X-ray and MR image registration technique based on individual-specific biomechanical finite element (FE) models of the breasts. Information from 3D magnetic resonance (MR) images was registered to X-ray mammographic images using non-linear FE models subject to contact mechanics constraints to simulate the large compressive deformations between the two imaging modalities. A physics-based perspective ray-casting algorithm was used to generate 2D pseudo-X-ray projections of the FE-warped 3D MR images. Unknown input parameters to the FE models, such as the location and orientation of the compression plates, were optimised to provide the best match between the pseudo and clinical X-ray images. The methods were validated using images taken before and during compression of a breast-shaped phantom, for which 12 inclusions were tracked between imaging modalities. These methods were then applied to X-ray and MR images from six breast cancer patients. Error measures (such as centroid and surface distances) of segmented tumours in simulated and actual X-ray mammograms were used to assess the accuracy of the methods. Sensitivity analysis of the lesion co-localisation accuracy to rotation about the anterior-posterior axis was then performed. For 10 of the 12 X-ray mammograms, lesion localisation accuracies of 14 mm and less were achieved. This analysis on the rotation about the anterior-posterior axis indicated that, in cases where the lesion lies in the plane parallel to the mammographic compression plates, that cuts through the nipple, such rotations have relatively minor effects.This has important implications for clinical applicability of this multi-modality lesion registration technique, which will aid in the diagnosis and treatment of breast cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Fatigue damage observed non-destructively in fibre composite coupon test specimens by X-ray CT

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2016-01-01

    This study presents a method for monitoring the 3D fatigue damage progression on a micro-structural level in a glass fibre/polymer coupon test specimen by means of laboratory X-ray Computed Tomography (CT). A modified mount and holder made for the standard test samples to fit into the X-ray CT...... scanner along with a tension clamp solution is presented. Initially, the same location of the test specimen is inspected by ex-situ X-ray CT during the fatigue loading history, which shows the damage progression on a micro-structural level. The openings of individual uni-directional (UD) fibre fractures...

  18. Reference factor F{sub (CT)Q} and X ray tube ionization yield R{sub (TUBE)Q}

    Energy Technology Data Exchange (ETDEWEB)

    Quaresma, D.S. [Observatorio Nacional, Rio de Janeiro, RJ (Brazil); Cardoso, R.S.; Peixoto, J.G.P., E-mail: dansq@on.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The operational facility procedures in diagnostic radiology standardization and calibration, through the relation between the X ray tube current and the ionization chamber current in a radiation quality Q, shown the reference factor F{sub (CT)Q} as the reality estimate to the X ray tube ionization yield, R{sub (TUBE)Q} . (author)

  19. Three Dimensional Breast Cancer Models for X-Ray Imaging Research

    OpenAIRE

    Bliznakov, Zhivko; Chernogorova, Yanita; Bliznakova, Kristina

    2016-01-01

    Nowadays, the development of realistic 3D physical and computational models of breast tumours with irregular shapes is an urgent requirement. The availability of such models is a powerful tool for the development of new technologies for precise definition of the boundaries of these cancers. Biomedical engineering unit at the Technical University of Varna (TUV) is present in this area both at modelling and simulation of computational breast phantoms and x-ray breast imaging techniques. To adva...

  20. X-ray characterization of breast phantom materials

    Energy Technology Data Exchange (ETDEWEB)

    Byng, J.W.; Mainprize, J.G.; Yaffe, M.J. [Department of Medical Biophysics and Radiology, University of Toronto and Imaging Research, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    1998-05-01

    A pulse-height spectroscopic technique is used to measure the linear attenuation coefficients of commercially available composite phantom materials designed to simulate the attenuation characteristics of breast fat and breast glandular tissue. The manufacturers have specified the composition of these materials with the goal of matching the linear attenuation coefficients of breast tissues, calculated using the mixture rule. Over the energy range 18 to 100 keV, measurements from these materials are in close agreement with manufacturers' predictions and with previously measured linear attenuation coefficients of breast tissue samples. (author)

  1. Model-based x-ray energy spectrum estimation algorithm from CT scanning data with spectrum filter

    Science.gov (United States)

    Li, Lei; Wang, Lin-Yuan; Yan, Bin

    2016-10-01

    With the development of technology, the traditional X-ray CT can't meet the modern medical and industry needs for component distinguish and identification. This is due to the inconsistency of X-ray imaging system and reconstruction algorithm. In the current CT systems, X-ray spectrum produced by X-ray source is continuous in energy range determined by tube voltage and energy filter, and the attenuation coefficient of object is varied with the X-ray energy. So the distribution of X-ray energy spectrum plays an important role for beam-hardening correction, dual energy CT image reconstruction or dose calculation. However, due to high ill-condition and ill-posed feature of system equations of transmission measurement data, statistical fluctuations of X ray quantum and noise pollution, it is very hard to get stable and accurate spectrum estimation using existing methods. In this paper, a model-based X-ray energy spectrum estimation method from CT scanning data with energy spectrum filter is proposed. First, transmission measurement data were accurately acquired by CT scan and measurement using phantoms with different energy spectrum filter. Second, a physical meaningful X-ray tube spectrum model was established with weighted gaussian functions and priori information such as continuity of bremsstrahlung and specificity of characteristic emission and estimation information of average attenuation coefficient. The parameter in model was optimized to get the best estimation result for filtered spectrum. Finally, the original energy spectrum was reconstructed from filtered spectrum estimation with filter priori information. Experimental results demonstrate that the stability and accuracy of X ray energy spectrum estimation using the proposed method are improved significantly.

  2. Phase-contrast X-ray CT imaging of esophagus and esophageal carcinoma.

    Science.gov (United States)

    Zhang, Jianfa; Tian, Dongping; Lin, Runhua; Zhou, Guangzhao; Peng, Guanyun; Su, Min

    2014-06-18

    The electron density resolution is 1000 times higher for synchrotron-radiation phase-contrast CT imaging than conventional X-ray absorption imaging in light elements, with which high-resolution X-ray imaging of biological soft tissue can be achieved. In the present study, we used phase-contrast X-ray CT to investigate human resected esophagus and esophageal carcinoma specimens. This technology revealed the three-layer structure of the esophageal wall-- mucous, submucosa and muscular layers. The mucous and muscular layers were clearly separated by a loose submucosa layer with a honeycomb appearance. The surface of the mucous layer was smooth. In esophageal carcinoma, because of tumor tissue infiltration, the submucosa layer was absent, which indicated destruction of the submucosa. The boundary between normal tissue and tumor was comparatively fuzzy, the three-layer structure of the esophageal wall was indistinct. The surface of the mucous layer was rugose. The technology might be helpful in tumor staging of esophageal carcinoma.

  3. Visual C++ Implementation of Sinogram-based Adaptive Iterative Reconstruction for Sparse View X-Ray CT

    CERN Document Server

    Trinca, D; Wang, Y; Mamyrbayev, T; Libin, E

    2016-01-01

    With the availability of more powerful computing processors, iterative reconstruction algorithms have recently been successfully implemented as an approach to achieving significant dose reduction in X-ray CT. In this report, we describe our proposal of an adaptive iterative reconstruction algorithm for X-ray CT, that is shown to provide results comparable to those obtained by proprietary algorithms, both in terms of reconstruction accuracy and execution time. Implementation code in the C language is provided, along with example of user interface.

  4. Visual C++ Implementation of Sinogram-based Adaptive Iterative Reconstruction for Sparse View X-Ray CT

    OpenAIRE

    Trinca, D.; Zhong, Y.; Wang, Y.; Mamyrbayev, T.; Libin, E.

    2016-01-01

    With the availability of more powerful computing processors, iterative reconstruction algorithms have recently been successfully implemented as an approach to achieving significant dose reduction in X-ray CT. In this report, we describe our proposal of an adaptive iterative reconstruction algorithm for X-ray CT, that is shown to provide results comparable to those obtained by proprietary algorithms, both in terms of reconstruction accuracy and execution time. Implementation code in the C lang...

  5. Imaging Molecular Signatures of Breast Cancer With X-ray Activated Nano-Phosphors

    Science.gov (United States)

    2011-09-01

    again after the grant was accepted, but before it was funded). 1 patent application. Oral Presentations: • Carpenter, CM., et al...outcomes, and increased treatment efficacy.1 X-ray radiography and computed tomog- raphy !CT" are commonly used anatomical imaging modali- ties; however

  6. Imaging Molecular Signatures of Breast Cancer with X-ray-Activated Nanophosphors

    Science.gov (United States)

    2014-01-01

    publications, including 5 first author (2 under consideration), 12 conference abstracts, and 8 oral presentations. BODY 1.1. Nanophosphor...increased treatment efficacy.1 X-ray radiography and computed tomog- raphy !CT" are commonly used anatomical imaging modali- ties; however, although

  7. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2012-01-01

    X-ray computed tomography (CT) scanning technology has, in recent decades, been shown to be a very powerful technique to visualize and quantify soil structure. The objective of this project was to quantify soilporecharacteristics, on undisturbed field moist soil, using a high resolution X-ray...... averaged 298, 117 and 198 per cm3, respectively. We found significant and strong correlations between the soilporecharacteristicsassessed on the whole soil cores and the characteristics of the air-filled pores determined using high-resolution X-ray computer tomography (CT). Our study confirmed...

  8. Breast tissue segmentation from x-ray radiographs

    NARCIS (Netherlands)

    Chen, C.; Nielsen, M.; Karssemeijer, N.; Brandt, S.S.

    2014-01-01

    In this paper, we propose a robust and accurate method that segments mammograms to three distinct regions: breast tissue, pectoral muscle and background. Our approach is built around a neural, two-layer committee machine. On the first layer, individual experts, each formed by a feature vector and a

  9. Automated segmentation of recuts abdominis muscle using shape model in X-ray CT images.

    Science.gov (United States)

    Kamiya, N; Zhou, X; Chen, H; Muramatsu, C; Hara, T; Yokoyama, R; Kanematsu, M; Hoshi, H; Fujita, H

    2011-01-01

    Our purpose in this study is to segment the rectus abdominis muscle region in X-ray CT images, and we propose a novel recognition method based on the shape model. In this method, three steps are included in the segmentation process. The first is to generate a shape model for the rectus abdominis muscle. The second is to recognize anatomical feature points corresponding to the origin and insertion of the muscle, and the third is to segment the rectus abdominis muscles based on the shape model. We generated the shape model from 20 CT cases and tested the model to recognize the muscle in 20 other CT cases. The average values for the Jaccard similarity coefficient (JSC) and true segmentation coefficient (TSC) were 0.841 and 0.863, respectively. The results suggest the validity of the model-based segmentation for the rectus abdominis muscle.

  10. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology

    Science.gov (United States)

    Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek; Polansky, Stepan; Jakubek, Jan; Mrzilkova, Jana; Patzelt, Matej; Trnka, Jan

    2015-02-01

    We describe a newly developed compact micro-CT scanner with rotating gantry equipped with a Timepix Quad hybrid pixel semiconductor detector and a micro-focus X-ray tube providing spatial resolution down to 30 μm. The resolving power of the device in relation to soft tissue sensitivity is demonstrated using a tissue-equivalent phantom and different types of biological samples. The results demonstrate that the use of noiseless particle counting detectors is a promising way to achieve sufficient soft tissue contrast even without any contrast agents.

  11. Study on Compression Induced Contrast in X-ray Mammograms Using Breast Mimicking Phantoms

    Directory of Open Access Journals (Sweden)

    A. B. M. Aowlad Hossain

    2015-09-01

    Full Text Available X-ray mammography is commonly used to scan cancer or tumors in breast using low dose x-rays. But mammograms suffer from low contrast problem. The breast is compressed in mammography to reduce x-ray scattering effects. As tumors are stiffer than normal tissues, they undergo smaller deformation under compression. Therefore, image intensity at tumor region may change less than the background tissues. In this study, we try to find out compression induced contrast from multiple mammographic images of tumorous breast phantoms taken with different compressions. This is an extended work of our previous simulation study with experiment and more analysis. We have used FEM models for synthetic phantom and constructed a phantom using agar and n-propanol for simulation and experiment. The x-ray images of deformed phantoms have been obtained under three compression steps and a non-rigid registration technique has been applied to register these images. It is noticeably observed that the image intensity changes at tumor are less than those at surrounding which induce a detectable contrast. Addition of this compression induced contrast to the simulated and experimental images has improved their original contrast by a factor of about 1.4

  12. X-Ray

    Science.gov (United States)

    ... show up on chest X-rays. Breast cancer. Mammography is a special type of X-ray test used to examine breast tissue. Enlarged heart. This sign of congestive heart failure shows up clearly on X-rays. Blocked blood vessels. Injecting a contrast material that contains iodine can help highlight sections ...

  13. Breast tissue segmentation from x-ray radiographs

    Science.gov (United States)

    Chen, Chen; Nielsen, Mads; Karssemeijer, Nico; Brandt, Sami S.

    2014-05-01

    In this paper, we propose a robust and accurate method that segments mammograms to three distinct regions: breast tissue, pectoral muscle and background. Our approach is built around a neural, two-layer committee machine. On the first layer, individual experts, each formed by a feature vector and a classifier, vote the local class label of the mammogram. The votes are given as an input, together with a prior map, to the second layer of the committee machine, which combines the inputs by a gating network. As the first layer features, we use effective, well-known local features based on image intensity, intensity histograms, local binary patterns, and histograms of oriented gradient. As with the first-layer classifiers and the gating network, we use support vector machines. Our experiments on a database of 495 mammograms, divided into independent training, validations and test subsets, show that our method is able to segment the breast tissue without failure, and it challenges the manual expert segmentation in the level of accuracy.

  14. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    Science.gov (United States)

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  15. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    Science.gov (United States)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  16. Using X-Ray Mammograms to Assist in Microwave Breast Image Interpretation

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    Full Text Available Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.

  17. X-ray CT high-density artefact suppression in the presence of bones

    Energy Technology Data Exchange (ETDEWEB)

    Wei Jikun [School of Health Sciences, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Chen Laigao [BioImaging Center of Emphasis, Pfizer Global Research and Development, 2800 Plymouth RD, Ann Arbor, MI 48105 (United States); Sandison, George A [School of Health Sciences, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Liang Yun [Department of Radiology, Indiana University Medical School, Indianapolis, IN 46202 (United States); Xu, Lisa X [School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907-2040 (United States)

    2004-12-21

    This paper presents a novel method of reducing x-ray CT high-density artefacts generated by metal objects when abundant bone structures are present in the region of interest. This method has an advantage over previously proposed methods since it heavily suppresses the metal artefacts without introducing extra bone artefacts. The method of suppression requires that bone pixels are isolated and segmented by thresholding. Then artificial CT numbers are assigned to the bone pixels so that their projection profiles are smooth and thus can be properly simulated by a polynomial interpolation. The projection profile of the metal object is then removed to fully suppress the artefacts. The resulting processed profile is fed to a reconstruction routine and the previously preserved bone pixels added back. The new method utilizes two important features of the CT image with metal artefacts: (a) metal and bone pixels are not severely affected by the high-density artefacts and (b) the high-density artefacts can be located in specific projection channels in the profile domain, although they are spread out in the image domain. This suppression method solves the problem of CT image artefacts arising from metal objects in the body. It has the potential to greatly improve diagnostic CT imaging in the presence of these objects and treatment planning that utilizes CT for patients with metal applicators (e.g., brachytherapy for cervix cancer and prostate cryotherapy)

  18. Influence of voxel size settings in X-Ray CT Imagery of soil in scaling properties

    Science.gov (United States)

    Heck, R.; Scaiff, N. T.; Andina, D.; Tarquis, A. M.

    2012-04-01

    Fundamental to the interpretation and comparison of X-ray CT imagery of soil is recognition of the objectivity and consistency of procedures used to generate the 3D models. Notably, there has been a lack of consistency in the size of voxels used for diverse interpretations of soils features and processes; in part, this is due to the ongoing evolution of instrumentation and computerized image processing capacity. Moreover, there is still need for discussion on whether standard voxels sizes should be recommended, and what those would be. Regardless of any eventual adoption of such standards, there is a need to also consider the manner in which voxel size is set in the 3D imagery. In the typical approaches to X-ray CT imaging, voxel size may be set at three stages: image acquisition (involving the position of the sample relative to the tube and detector), image reconstruction (where binning of pixels in the acquired images may occur), as well as post-reconstruction re-sampling (which may involve algorithms such as tri-cubic convolution). This research evaluates and compares the spatial distribution of intra-aggregate voids in 3D imagery as well as their scaling properties, of equivalent voxel size, generated using various combinations of the afore-mentioned approaches. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  19. X-ray micro-computed tomography (μCT): an emerging opportunity in parasite imaging.

    Science.gov (United States)

    O'Sullivan, James D B; Behnsen, Julia; Starborg, Tobias; MacDonald, Andrew S; Phythian-Adams, Alexander T; Else, Kathryn J; Cruickshank, Sheena M; Withers, Philip J

    2017-11-28

    X-ray micro-computed tomography (μCT) is a technique which can obtain three-dimensional images of a sample, including its internal structure, without the need for destructive sectioning. Here, we review the capability of the technique and examine its potential to provide novel insights into the lifestyles of parasites embedded within host tissue. The current capabilities and limitations of the technology in producing contrast in soft tissues are discussed, as well as the potential solutions for parasitologists looking to apply this technique. We present example images of the mouse whipworm Trichuris muris and discuss the application of μCT to provide unique insights into parasite behaviour and pathology, which are inaccessible to other imaging modalities.

  20. Empirical average-case relation between undersampling and sparsity in X-ray CT

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer; Sidky, Emil Y.; Hansen, Per Christian

    2015-01-01

    In X-ray computed tomography (CT) it is generally acknowledged that reconstruction methods exploiting image sparsity allow reconstruction from a significantly reduced number of projections. The use of such reconstruction methods is inspired by recent progress in compressed sensing (CS). However...... obtained using a standard CT fan-beam sampling pattern. In empirical simulation studies we establish quantitatively a relation between the image sparsity and the sufficient number of measurements for recovery within image classes motivated by tomographic applications. We show empirically that the specific...... relation depends on the image class and in many cases exhibits a sharp phase transition as seen in CS, i.e., same-sparsity images require the same number of projections for recovery. Finally we demonstrate that the relation holds independently of image size and is robust to small amounts of additive...

  1. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Dudak, Jan, E-mail: jan.dudak@utef.cvut.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, 272 00 Kladno (Czech Republic); Zemlicka, Jan; Krejci, Frantisek; Polansky, Stepan; Jakubek, Jan [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Mrzilkova, Jana; Patzelt, Matej; Trnka, Jan [Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague (Czech Republic)

    2015-02-11

    We describe a newly developed compact micro-CT scanner with rotating gantry equipped with a Timepix Quad hybrid pixel semiconductor detector and a micro-focus X-ray tube providing spatial resolution down to 30 µm. The resolving power of the device in relation to soft tissue sensitivity is demonstrated using a tissue-equivalent phantom and different types of biological samples. The results demonstrate that the use of noiseless particle counting detectors is a promising way to achieve sufficient soft tissue contrast even without any contrast agents. - Highlights: • We developed a new micro-CT scanner for small animal imaging. • Application of Timepix technology to obtain enhanced soft tissue contrast. • Spatial resolution below 30 µm achieved. • Performance demonstrated using a tissue equivalent phantom and biological samples.

  2. Application of 3D X-ray CT data sets to finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.

    1995-08-31

    Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here.

  3. Dosimetric comparison of (192)Ir high-dose-rate brachytherapy vs. 50 kV x-rays as techniques for breast intraoperative radiation therapy: conceptual development of image-guided intraoperative brachytherapy using a multilumen balloon applicator and in-room CT imaging.

    Science.gov (United States)

    Jones, Ryan; Libby, Bruce; Showalter, Shayna L; Brenin, David R; Wilson, David D; Schroen, Anneke; Morris, Monica; Reardon, Kelli A; Morrison, John; Showalter, Timothy N

    2014-01-01

    At our institution, the availability of a shielded procedure room with in-room CT-on-rails imaging allows for the exploration of a high-dose-rate (HDR) brachytherapy approach for breast intraoperative radiation therapy (IORT). We hypothesize that HDR brachytherapy will permit a higher prescription dose without increasing toxicity. In this study, we compare the dosimetry of intraoperative HDR brachytherapy, using multilumen balloon applicator, to IORT with a 50 kV source and then select a prescription dose for a subsequent clinical trial. The CT scans of 14 patients who had previously received multilumen balloon-based breast brachytherapy were replanned to a standard prescription to the target volume. The same 14 cases were planned to the specifications of a 50 kV x-ray system. Uniform volume optimization and prescription doses were used to permit direct comparisons. All plans were evaluated for the dose homogeneity index, tumor coverage, and dose to normal tissues, including skin, ribs, and heart (for left breast plans). The HDR brachytherapy plans were superior to 50 kV superficial photon plans for IORT in all dosimetric parameters except for the heart and rib dosimetric parameters. Prescription dose of 12.5 Gy to the planning target volume for evaluation yielded a dose to 95 percent of the balloon surface of 19.7 Gy. Image-guided HDR intraoperative brachytherapy with a multilumen balloon applicator provides superior target volume coverage compared with 50 kV photons, while maintaining doses within tolerance limits for normal tissues. An ongoing prospective clinical trial will evaluate the safety and feasibility of this technique. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    Czech Academy of Sciences Publication Activity Database

    Fíla, T.; Kumpová, Ivana; Koudelka_ml., P.; Zlámal, P.; Vavřík, Daniel; Jiroušek, O.; Jung, A.

    2016-01-01

    Roč. 11, č. 1 (2016), C01005 ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors (IWORID2015) /17./. Hamburg, 28.06.2015-02.07.2015] Institutional support: RVO:68378297 Keywords : computerized tomography (CT) * computed radiography (CR) * X-ray radiography and digital radiography (DR) * inspection with x-rays Subject RIV: JJ - Other Materials Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/11/01/C01005/pdf

  5. X-ray micro-CT measurement of large parts at very low temperature

    Science.gov (United States)

    Koutecký, T.; Zikmund, T.; Glittová, D.; Paloušek, D.; Živčák, J.; Kaiser, J.

    2017-03-01

    At present, the automotive industry, along with other industries, has increasing demands on accuracy of produced parts and assemblies. Besides the regular dimensional and geometrical inspection, in some cases, also a verification at very low temperatures is required. X-ray computed tomography (CT), as a tool for non-destructive testing, is able to examine samples and then determine dimensions for strictly stable temperature conditions necessary for the stability of the CT system. Until now, no system that allows scanning of samples larger than a few millimeters at temperatures much below 0 °C has been presented. This paper presents a cooling system for CT imaging of parts with length up to 300 mm at the extreme temperature conditions of -40 °C, which are based on automotive industry requests. It describes the equipment and conditions under which it is possible to achieve a temperature stability of samples at low temperatures, while keeping an independent temperature regulation of the CT system. The presented system uses a standard industrial CT device and a newly designed cooling stage with passive cooling based on phase-change material. The system is demonstrated on the measurement of plastic part (car door handle) at temperatures of -40 °C and 20 °C. The paper also presents the method of how to interpret the thermal changes using tools of the commercial software VGStudio MAX (Volume Graphics GmbH, Germany).

  6. Low-dose 4D myocardial perfusion with x-ray micro-CT

    Science.gov (United States)

    Clark, D. P.; Badea, C. T.

    2017-03-01

    X-ray CT is widely used, both clinically and pre-clinically, for fast, high-resolution, anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, temporally-resolved CT data can detail cardiac motion and blood flow dynamics for one-stop cardiovascular CT imaging procedures. In previous work, we demonstrated efficient, low-dose projection acquisition and reconstruction strategies for cardiac micro-CT imaging and for multiple-injection micro-CT perfusion imaging. Here, we extend this previous work with regularization based on rank-sparse kernel regression and on filtration with the Karhunen-Loeve transform. Using a dual source, prospectively gated sampling strategy which produces an approximately uniform distribution of projections, we apply this revised algorithm to the assessment of both myocardial perfusion and cardiac functional metrics from the same set of projection data. We test the algorithm in simulations using a modified version of the MOBY mouse phantom which contains realistic perfusion and cardiac dynamics. The proposed algorithm reduces the reconstruction error by 81% relative to unregularized, algebraic reconstruction. The results confirm our ability to simultaneously solve for cardiac temporal motion and perfusion dynamics. In future work, we will apply the algorithm and sampling protocol to small animal cardiac studies.

  7. Visualization of soil particulate organic matter by means of X-ray CT?

    Science.gov (United States)

    Sleutel, Steven; Van Loo, Denis; Maenhout, Peter; Van Hoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan

    2014-05-01

    The role of soil structure in organic matter (OM) stabilization has been primarily investigated through physical fractionation studies operative at the scale of aggregates and smaller organo-mineral particles. By narrowing down soil structure to an arrangement of mineral and organic particles, the majority of studies did not explore the spatial organization of the soil pore network, the actual habitat of microorganisms. The pore structure of soil can have a significant impact on soil processes like OM decomposition by excluding OM from micro-organisms in small pores, by regulating the diffusion of substrates and metabolites and by regulating aeration and presence of moisture. Because of its ability to visualize the 3D architecture of soil non-destructively, X-ray Computed Tomography (CT) is becoming a widespread tool for studying soil pore network structure. However, phase determination of pore space, soil OM, soil mineral matter (MM) and water is often limited even with the latest technological and software advances, allowing high resolution and better quality imaging. Contrast agents commonly used in histology enable enhancement of X-ray attenuation of targeted structures or compounds. Here we report on the first systematic investigation of the use of such X-ray contrast agents for soil research. An evaluation procedure as well as a method to apply the agents to soil samples was developed and applied on reference soil samples. The effectiveness and selectivity of the contrast agents was evaluated for soil organic matter (SOM), MM and water. Several products were found to selectively increase the attenuation of water or SOM. The four agents with the best OM-staining capabilities (Phosphomolybdenic acid (PMA), silver nitrate, lead nitrate and lead acetate) were further tested on an OM-MM mixture. Observed differences in reactivity of the staining agents with MM components were apparent, suggesting that contrasting agents may have to be selected for the specific

  8. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    Science.gov (United States)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.

  9. How many x-ray photons can be scattered from a SPECT/CT room to an adjacent gamma camera?

    Science.gov (United States)

    Cao, Zongjian

    2009-02-01

    The upper limit of the amount of x-rays that are scattered from a SPECT/CT room and are acquired by an adjacent gamma camera is estimated using physical principles and approximations. Methods: We first estimated the amount of xrays scattered from the patient to the ceiling of the SPECT/CT room, then the amount scattered from the ceiling through the gap between the ceiling and the top of lead walls to reach outside of the room, and finally the amount acquired by an adjacent gamma camera into the Tl-201 data. Results: The counts of scattered x-ray photons acquired in the Tl-201 energy window can reach 0.12% of the CT primary counts when the standard 2.13 m high lead walls are used for the SPECT/CT room. Due to the high CT counts, contamination to the Tl-201 data cannot be ignored. It is not effective to reduce the contamination by increase the lead height or change the floor plan because the scattered x-rays reduce moderately with increasing lead height or different floor plans. When the lead height increases from 2.13 m to 2.74 m, for example, the amount of scattered x-rays only decreases by 20%. With the same 2.13 m lead height, there is little difference in the amount of scattered x-rays for three different floor plans. Conclusions: The standard lead walls for a SPECT/CT room cannot prevent scattered x-rays from severe contamination to the Tl-201 data acquired by an adjacent gamma camera. Since dramatic increase of lead height is costly and often prohibitive due to the heavy load, we recommend that Tl-201 studies be stopped when an adjacent CT scanner is in operation.

  10. Structural changes of green roof growing substrate layer studied by X-ray CT

    Science.gov (United States)

    Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal

    2017-04-01

    Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique  X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within

  11. Microstructural analysis using X-ray computed tomography (CT) in flax/epoxy composites

    Science.gov (United States)

    Kersani, M.; Lomov, SV; Van Vuure, AW; Bouabdallah, A.; Verpoest, I.

    2016-07-01

    Among natural fibres which have recently become attractive to researchers, flax is probably the most commonly used bast-type fibre today. Due to its properties and availability, flax fibre has potential to substitute glass in polymer composites. A flax fibre has a complex structure; it can be classified into elementary fibres, which are grouped into so-called technical fibres. These technical fibres themselves are actually composite structures. Several works [1, 2, 3] were focussed on the study of damage behaviour in unidirectional flax fibres reinforced composites, where materials were subjected to tensile loading. At the microscopic level and at low stress, microcracks arise within the material and by growing they may lead to other forms of damage such as delamination, fibre breakage, interfacial debonding...etc. In order to better understand the damage phenomena and to better control the parameters which lead to the failure, several methods and techniques have been developed on natural fibre reinforced composites [2, 3]. In the present work, X-ray computed tomography (CT) technique has been used to observe damage in flax/epoxy quasi-unidirectional woven laminates, loaded in uniaxial tension. The tensile tests show that these composites offer good mechanical properties. X-ray computed tomography technique allowed us, on the one hand to determine the microstructure parameters of the studied composites and to observe the damage occurring during loading, on the other. The inspection of the several tomography images showed cracks on interface of the yarns and technical fibres.

  12. Including the effect of molecular interference in the coherent x-ray scattering modeling in MC-GPU and PENELOPE for the study of novel breast imaging modalities

    Science.gov (United States)

    Ghammraoui, B.; Peng, R.; Suarez, I.; Bettolo, C.; Badal, A.

    2014-03-01

    Purpose: To present upgraded versions of MC-GPU and PenEASY Imaging, two open-source Monte Carlo codes for the simulation of radiographic projections and CT. The codes have been extended with the aim of studying breast imaging modalities that rely on the accurate modeling of coherent x-ray scatter. Methods: The simulation codes were extended to account for the effect of molecular interference in coherent scattering using experimentally measured molecular interference functions. The validity of the new model was tested experimentally using the Energy Dispersive X-Ray Diffraction (EDXRD) technique with a polychromatic x-ray source and an energy-resolved Germanium detector at a fixed scattering angle. Experiments and simulations of a full field digital mammography system with and without a 1D focused antiscatter grid were conducted for additional validation. The modified MC-GPU code was also used to examine the possibility of characterizing breast cancer within a mathematical breast phantom using the EDXRD technique. Results: The measured EDXRD spectra were correctly reproduced by the simulation with the modified code while the previous code using the Independent Atomic Approximation led to large errors in the predicted diffraction spectra. There was good agreement between the simulated and measured rejection factor for the 1D focused antiscatter grid with both models. The simulation study in a whole breast showed that the x-ray scattering profiles of adipose, fibrosis, cancer and benign tissues are differentiable. Conclusion: MC-GPU and PENELOPE were successfully extended and validated for accurate modeling of coherent x-ray scatter. The EDXRD technique with pencil-cone geometry in a whole breast was investigated by a simulation study and it was concluded that this technique has potential to characterize breast cancer lesions.

  13. Phase-contrast x-ray imaging of the breast: recent developments towards clinics

    Science.gov (United States)

    Coan, P.; Bravin, A.; Tromba, G.

    2013-12-01

    Breast imaging is one of the most demanding and delicate radiological applications. Mammography is the primary diagnosis tool in breast cancer detection and national screening programmes. Recognition of breast cancer depends on the detection of subtle architectural distortion, masses showing near normal breast tissue density, skin thickening and microcalcifications. The small differences in attenuation of x-rays between normal and malignant tissue result in low contrast and make cancer detection difficult in conventional x-ray absorption mammography. Because of these challenging aspects, breast imaging has been the first and most explored diagnostic field in phase-contrast imaging research. This novel imaging method has been extensively used and has demonstrated a unique capability in producing high-contrast and sensitive images at quasi-histological resolution. The most recent and significant technical developments are introduced and results obtained by the application of various phase-contrast imaging techniques for breast imaging are reported. The first phase-contrast mammography clinical trials project is also presented and the short- and long-term future perspectives of the method are discussed.

  14. Matching methods evaluation framework for stereoscopic breast x-ray images.

    Science.gov (United States)

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps.

  15. 3d Finite Element Modelling of Non-Crimp Fabric Based Fibre Composite Based on X-Ray Ct Data

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Asp, Leif; Mikkelsen, Lars Pilgaard

    2017-01-01

    initiation and progression in the material. In the current study, the real bundle structure inside a non-crimp fabric based fibre composite is extracted from 3D X-ray CT images and imported into ABAQUS for numerical modelling.The local stress concentrations when loaded in tension caused by the fibre bundle...... parts of wind turbine blades. Existing modelling attempts generally consider the fibre bundle structure as a perfect pattern, however recent experimental X-ray CT studies [1,2] have shown that the local variations in the fibre bundle structure have a large influence on the observed fatigue damage...... structure are examined and compared to experimental observations of the fatigue damage. In the current study the bundle structure is manually segmented, however the possibility of automatic segmentation in the future is also discussed. The study shows the potential of X-ray CT based modelling for increased...

  16. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    Science.gov (United States)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  17. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    Science.gov (United States)

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 m

  18. Registration of pencil beam proton radiography data with X-ray CT.

    Science.gov (United States)

    Deffet, Sylvain; Macq, Benoît; Righetto, Roberto; Vander Stappen, François; Farace, Paolo

    2017-10-01

    Proton radiography seems to be a promising tool for assessing the quality of the stopping power computation in proton therapy. However, range error maps obtained on the basis of proton radiographs are very sensitive to small misalignment between the planning CT and the proton radiography acquisitions. In order to be able to mitigate misalignment in postprocessing, the authors implemented a fast method for registration between pencil proton radiography data obtained with a multilayer ionization chamber (MLIC) and an X-ray CT acquired on a head phantom. The registration was performed by optimizing a cost function which performs a comparison between the acquired data and simulated integral depth-dose curves. Two methodologies were considered, one based on dual orthogonal projections and the other one on a single projection. For each methodology, the robustness of the registration algorithm with respect to three confounding factors (measurement noise, CT calibration errors, and spot spacing) was investigated by testing the accuracy of the method through simulations based on a CT scan of a head phantom. The present registration method showed robust convergence towards the optimal solution. For the level of measurement noise and the uncertainty in the stopping power computation expected in proton radiography using a MLIC, the accuracy appeared to be better than 0.3° for angles and 0.3 mm for translations by use of the appropriate cost function. The spot spacing analysis showed that a spacing larger than the 5 mm used by other authors for the investigation of a MLIC for proton radiography led to results with absolute accuracy better than 0.3° for angles and 1 mm for translations when orthogonal proton radiographs were fed into the algorithm. In the case of a single projection, 6 mm was the largest spot spacing presenting an acceptable registration accuracy. For registration of proton radiography data with X-ray CT, the use of a direct ray-tracing algorithm to compute

  19. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Sandison, G.A.; Loye, M.P.; Rewcastle, J.C. [Departments of Oncology and Medical Physics, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Hahn, L.J. [Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Saliken, J.C. [Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); McKinnon, J.G. [Department of Surgery, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Donnelly, B.J. [Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada)

    1998-11-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue. (author)

  20. Patient Alignment Estimation in Six Degrees of Freedom Using a CT-scan and a Single X-ray Image

    Science.gov (United States)

    Selby, B. P.; Sakas, G.; Walter, S.; Groch, W.-D.; Stilla, U.

    Particle beam treatment allows accurate dose delivery onto carcinogen tissue. The reachable accuracy is limited by patient alignment errors relative to the beam source. Errors can be corrected manually or by automatic comparison of two X-ray images to a CT-scan but correction mostly does not cover all degrees of freedom (DoF). In this contribution we present a solution that makes use of one X-ray image and computes full 6 DoF alignment correction by gray value based comparison to a CT. By using regions of interest, we are able to increase performance and reliability.

  1. Morphological and quantitative analyses on features of asymmetric mandible with X-ray CT images

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masaki; Isshiki, Yasushige; Nishikawa, Keiichi [Tokyo Dental Coll., Chiba (Japan)

    2001-09-01

    Biomechanical disproportion of the mandible causes morphological and quantitative changes in the bone and induces jaw deformities. The purpose of this study was to clarify the influence of the biomechanical disproportion on the structure and quality of the mandible, using spiral X-ray CT images. Subjects were 11 patients with mandibular asymmetry requiring orthognathic surgery. Lateral and vertical shift angles of the mandible against the maxilla were determined mathematically from the coordinates of structural reference points in 3-dimensional orthogonal coordinate systems as indices of the deformity degree. Several properties concerning thickness and CT value of mandibular cortical bone were measured as indices of the morphological and quantitative changes in mandibular cortical bone. Occlusal force was also measured using a pressure sensitive film as an index of biomechanical disproportion. Asymmetric indices of them were calculated from data of the left and right sides. The Pearson's correlation coefficients were obtained for these data. As a result, the mandible tended to shift laterally toward the side where the occlusal force at the second molar region was stronger and also to shift upward on that side. At the central incisor region of the laterally shifted side, CT values were relatively decreased. At the lateral incisor region, cortical bone density was relatively increased. At the first bicuspid region and the posterior tooth regions, cortical bone thickness was relatively decreased. (author)

  2. X-ray scattering for the characterization of lyophilized breast tissue samples

    Science.gov (United States)

    Elshemey, Wael M.; Mohamed, Fayrouz S.; Khater, Ibrahim M.

    2013-09-01

    This work investigates the possibility of characterizing breast cancer by measuring the X-ray scattering profiles of lyophilized excised breast tissue samples. Since X-ray scattering from water-rich tissue is dominated by scattering from water, the removal of water by lyophilization would enhance the characterization process. In the present study, X-ray scattering profiles of 22 normal, 22 malignant and 10 benign breast tissue samples are measured. The cut-offs of scatter diagrams, sensitivity, specificity and diagnostic accuracy of three characterization parameters (full width at half maximum (FWHM) for the peak at 1.1 nm-1, area under curve (AUC), and ratio of 1st to 2nd scattering peak intensities (I1/I2%)) are calculated and compared to the data from non-lyophilized samples. Results show increased sensitivity (up to 100%) of the present data on lyophilized breast tissue samples compared to previously reported data for non-lyophilized samples while the specificity (up to 95.4%), diagnostic accuracy (up to 95.4%) and receiver operating characteristic (ROC) curve values (up to 0.9979) for both sets of data are comparable. The present study shows significant differences between normal samples and each of malignant and benign samples. Only subtle differences exist between malignant and benign lyophilized breast tissue samples where FWHM=0.7±0.1 and 0.8±0.3, AUC=1.3±0.2 and 1.4±0.2 and I1/I2%=44.9±11.0 and 52.4±7.6 for malignant and benign samples respectively.

  3. CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis

    Science.gov (United States)

    Zheng, Xiaoming; Kim, Ted M.; Davidson, Rob; Lee, Seongju; Shin, Cheongil; Yang, Sook

    2014-03-01

    The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer's VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.

  4. Reliability analysis of Cobb angle measurements of congenital scoliosis using X-ray and 3D-CT images.

    Science.gov (United States)

    Tauchi, Ryoji; Tsuji, Taichi; Cahill, Patrick J; Flynn, John M; Flynn, John M; Glotzbecker, Michael; El-Hawary, Ron; Heflin, John A; Imagama, Shiro; Joshi, Ajeya P; Nohara, Ayato; Ramirez, Norman; Roye, David P; Saito, Toshiki; Sawyer, Jeffrey R; Smith, John T; Kawakami, Noriaki

    2016-01-01

    Therapeutic decisions for congenital scoliosis rely on Cobb angle measurements on consecutive radiographs. There have been no studies documenting the variability of measuring the Cobb angle using 3D-CT images in children with congenital scoliosis. The purpose of this study was to compare the reliability and measurement errors using X-ray images and those utilizing 3D-CT images. The X-ray and 3D-CT images of 20 patients diagnosed with congenital scoliosis were used to assess the reliability of the digital 3D-CT images for the measurement of the Cobb angle. Thirteen observers performed the measurements, and each image was analyzed by each observer twice with a minimum interval of 1 week between measurements. The analysis of intraobserver variation was expressed as the mean absolute difference (MAD) and standard deviation (SD) between measurements and the intraclass correlation coefficient (IaCC) of the measurements. In addition, the interobserver variation was expressed as the MAD and interclass correlation coefficient (IeCC). The average MAD and SD was 4.5° and 3.2° by the X-ray method and 3.7° and 2.6° by the 3D-CT method. The intraobserver and interobserver intraclass ICCs were excellent in both methods (X-ray: IaCC 0.835-0.994 IeCC 0.847, 3D-CT: IaCC 0.819-0.996 IeCC 0.893). There was no significant MAD difference between X-ray and 3D-CT images in measuring each type of congenital scoliosis by each observer. Results of Cobb angle measurements in patients with congenital scoliosis using X-ray images in the frontal plane could be reproduced with almost the same measurement variance (3°-4° measurement error) using 3D-CT images. This suggests that X-ray images are clinically useful for assessing any type of congenital scoliosis about measuring the Cobb angle alone. However, since 3D-CT can provide more detailed images of the anterior and posterior components of malformed vertebrae, the volume of information that can be obtained by evaluating them has

  5. Development of high spatial resolution X-ray CT system at BL47XU in SPring-8

    CERN Document Server

    Uesugi, K; Yagi, N; Tsuchiyama, A; Nakano, T

    2001-01-01

    High spatial resolution, micrometer range, X-ray CT system has been developed at SPring-8. The experiments were performed at the undulator beam line BL47XU. An 'in-vacuum type' undulator is employed as an X-ray source, and the X-rays are monochromatized with a liquid nitrogen cooled Si(1 1 1) double crystal monochromator. High precision rotation stage with air bearing was used for sample rotation. The transmitted images were obtained with a two-dimensional image detector, which consists of a single crystal phosphor screen (Lu sub 2 SiO sub 5 : Ce), an objective lens and a cooled CCD camera. In this system the smallest effective pixel size was set to 0.5 mu mx0.5 mu m. As a result of the experiments, three-dimensional images of a few micrometer-order texture has been successfully obtained with the developed CT system.

  6. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements.

    Science.gov (United States)

    Lin, Yuan; Ramirez-Giraldo, Juan Carlos; Gauthier, Daniel J; Stierstorfer, Karl; Samei, Ehsan

    2014-06-01

    Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. The proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to measure spectra from the

  7. Low-Dose CT of the Paranasal Sinuses: Minimizing X-Ray Exposure with Spectral Shaping.

    Science.gov (United States)

    Wuest, Wolfgang; May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael

    2016-11-01

    Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192x0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 × 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDIvol 1.2 mGy vs. 4.4 mGy, p image quality at a very low radiation exposure. • Spectral optimization (tin filtration) is beneficial to low-dose parasinus CT • Tin filtration at 100 kV yields sufficient image quality for pre-operative planning • Diagnostic parasinus CT can be performed with an effective dose <0.05 mSv.

  8. Forward-Projection Architecture for Fast Iterative Image Reconstruction in X-ray CT.

    Science.gov (United States)

    Kim, Jung Kuk; Fessler, Jeffrey A; Zhang, Zhengya

    2012-10-01

    Iterative image reconstruction can dramatically improve the image quality in X-ray computed tomography (CT), but the computation involves iterative steps of 3D forward- and back-projection, which impedes routine clinical use. To accelerate forward-projection, we analyze the CT geometry to identify the intrinsic parallelism and data access sequence for a highly parallel hardware architecture. To improve the efficiency of this architecture, we propose a water-filling buffer to remove pipeline stalls, and an out-of-order sectored processing to reduce the off-chip memory access by up to three orders of magnitude. We make a floating-point to fixed-point conversion based on numerical simulations and demonstrate comparable image quality at a much lower implementation cost. As a proof of concept, a 5-stage fully pipelined, 55-way parallel separable-footprint forward-projector is prototyped on a Xilinx Virtex-5 FPGA for a throughput of 925.8 million voxel projections/s at 200 MHz clock frequency, 4.6 times higher than an optimized 16-threaded program running on an 8-core 2.8-GHz CPU. A similar architecture can be applied to back-projection for a complete iterative image reconstruction system. The proposed algorithm and architecture can also be applied to hardware platforms such as graphics processing unit and digital signal processor to achieve significant accelerations.

  9. Low-dose CT of the paranasal sinuses. Minimizing X-ray exposure with spectral shaping

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Wolfgang [Friedrich-Alexander-University Erlangen-Nuremberg, Radiological Institute, Erlangen (Germany); Radiological Institute, Erlangen (Germany); May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael [Friedrich-Alexander-University Erlangen-Nuremberg, Radiological Institute, Erlangen (Germany)

    2016-11-15

    Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192 x 0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 x 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI{sub vol} 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. (orig.)

  10. [Adaptive Wiener filter based on Gaussian mixture distribution model for denoising chest X-ray CT image].

    Science.gov (United States)

    Tabuchi, Motohiro; Yamane, Nobumoto; Morikawa, Yoshitaka

    2008-05-20

    In recent decades, X-ray CT imaging has become more important as a result of its high-resolution performance. However, it is well known that the X-ray dose is insufficient in the techniques that use low-dose imaging in health screening or thin-slice imaging in work-up. Therefore, the degradation of CT images caused by the streak artifact frequently becomes problematic. In this study, we applied a Wiener filter (WF) using the universal Gaussian mixture distribution model (UNI-GMM) as a statistical model to remove streak artifact. In designing the WF, it is necessary to estimate the statistical model and the precise co-variances of the original image. In the proposed method, we obtained a variety of chest X-ray CT images using a phantom simulating a chest organ, and we estimated the statistical information using the images for training. The results of simulation showed that it is possible to fit the UNI-GMM to the chest X-ray CT images and reduce the specific noise.

  11. Impact of miscentering on patient dose and image noise in x-ray CT imaging : Phantom and clinical studies

    NARCIS (Netherlands)

    Habibzadeh, M. A.; Ay, M. R.; Asl, A. R. Kamali; Ghadiri, H.; Zaidi, H.

    The operation of the bowtie filter in x-ray CT is correct if the object being scanned is properly centered in the scanner's field-of-view. Otherwise, the dose delivered to the patient and image noise will deviate from optimal setting. We investigate the effect of miscentering on image noise and

  12. Suppression of high-density artefacts in x-ray CT images using temporal digital subtraction with application to cryotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baissalov, R.; Sandison, G.A.; Rewcastle, J.C. [Department of Medical Physics, Tom Baker Cancer Center, Calgary, Canada, T2N 4N2 2 Department of Physics and Astronomy, University of Calgary, Calgary T2N 2N4 (Canada); Donnelly, B.J. [Department of Surgery, Tom Baker Cancer Center, Calgary, Canada, T2N 4N2 4 Department of Surgery, Foothills Hospital, Calgary T2N 2T7 (Canada); Saliken, J.C. [Department of Surgery, Tom Baker Cancer Center, Calgary T2N 4N2 (Canada); Department of Diagnostic Imaging, Foothills Hospital, Calgary T2N 2T7 (Canada); McKinnon, J.G. [Department of Surgery, Foothills Hospital, Calgary T2N 2T7 (Canada); Muldrew, K. [Department of Surgery, Faculty of Medicine, University of Calgary, Calgary T2N 2T7 (Canada)

    2000-05-01

    Image guidance in cryotherapy is usually performed using ultrasound. Although not currently in routine clinical use, x-ray CT imaging is an alternative means of guidance that can display the full 3D structure of the iceball, including frozen and unfrozen regions. However, the quality of x-ray CT images is compromised by the presence of high-density streak artefacts. To suppress these artefacts we applied temporal digital subtraction (TDS). This TDS method has the added advantage of improving the grey-scale contrast between frozen and unfrozen tissue in the CT images. Two sets of CT images were taken of a phantom material, cryoprobes and a urethral warmer (UW) before and during the cryoprobe freeze cycle. The high-density artefacts persisted in both image sets. TDS was performed on these two image sets using the corresponding mask image of unfrozen material and the same geometrical configuration of the cryoprobes and the UW. The resultant difference image had a significantly reduced artefact content. Thus TDS can be used to significantly suppress or eliminate high-density CT streak artefacts without reducing the metallic content of the cryoprobes. In vivo study needs to be conducted to establish the utility of this TDS procedure for CT assisted prostate or liver cryotherapy. Applying TDS in x-ray CT guided cryotherapy will facilitate estimation of the number and location of all frozen and unfrozen regions, potentially making cryotherapy safer and less operator dependent. (author)

  13. Improved Diagnostics by Assessing the Micromorphology of Breast Calcifications via X-Ray Dark-Field Radiography

    Science.gov (United States)

    Scherer, Kai; Braig, Eva; Ehn, Sebastian; Schock, Jonathan; Wolf, Johannes; Birnbacher, Lorenz; Chabior, Michael; Herzen, Julia; Mayr, Doris; Grandl, Susanne; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz

    2016-11-01

    Breast microcalcifications play an essential role in the detection and evaluation of early breast cancer in clinical diagnostics. However, in digital mammography, microcalcifications are merely graded with respect to their global appearance within the mammogram, while their interior microstructure remains spatially unresolved and therefore not considered in cancer risk stratification. In this article, we exploit the sub-pixel resolution sensitivity of X-ray dark-field contrast for clinical microcalcification assessment. We demonstrate that the micromorphology, rather than chemical composition of microcalcification clusters (as hypothesised by recent literature), determines their absorption and small-angle scattering characteristics. We show that a quantitative classification of the inherent microstructure as ultra-fine, fine, pleomorphic and coarse textured is possible. Insights underlying the micromorphological nature of breast calcifications are verified by comprehensive high-resolution micro-CT measurements. We test the determined microtexture of microcalcifications as an indicator for malignancy and demonstrate its potential to improve breast cancer diagnosis, by providing a non-invasive tool for sub-resolution microcalcification assessment. Our results indicate that dark-field imaging of microcalcifications may enhance the diagnostic validity of current microcalcification analysis and reduce the number of invasive procedures.

  14. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    Science.gov (United States)

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    Science.gov (United States)

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from

  16. Radiation exposure to foetus and breasts from dental X-ray examinations: effect of lead shields

    Science.gov (United States)

    Ekholm, Marja; Toroi, Paula; Kortesniemi, Mika

    2016-01-01

    Objectives: Dental radiography may involve situations where the patient is known to be pregnant or the pregnancy is noticed after the X-ray procedure. In such cases, the radiation dose to the foetus, though low, needs to be estimated. Uniform and widely used guidance on dental X-ray procedures during pregnancy are presently lacking, the usefulness of lead shields is unclear and practices vary. Methods: Upper estimates of radiation doses to the foetus and breasts of the pregnant patient were estimated with an anthropomorphic female phantom in intraoral, panoramic, cephalometric and CBCT dental modalities with and without lead shields. Results: The upper estimates of foetal doses varied from 0.009 to 6.9 μGy, and doses at the breast level varied from 0.602 to 75.4 μGy. With lead shields, the foetal doses varied from 0.005 to 2.1 μGy, and breast doses varied from 0.002 to 10.4 μGy. Conclusions: The foetal dose levels without lead shielding were <1% of the annual dose limit of 1 mSv for a member of the public. Albeit the relative shielding effect, the exposure-induced increase in the risk of breast cancer death for the pregnant patient (based on the breast dose only) and the exposure-induced increase in the risk of childhood cancer death for the unborn child are minimal, and therefore, need for foetal and breast lead shielding was considered irrelevant. Most important is that pregnancy is never a reason to avoid or to postpone a clinically justified dental radiographic examination. PMID:26313308

  17. Semi-automated scoring of pulmonary emphysema from X-ray CT: Trainee reproducibility and accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Owrangi, Amir M., E-mail: aowrangi@robarts.ca [Imaging Research Laboratories, Robarts Research Institute, London (Canada); Entwistle, Brandon, E-mail: Brandon.Entwistle@londonhospitals.ca; Lu, Andrew, E-mail: Andrew.Lu@londonhospitals.ca; Chiu, Jack, E-mail: Jack.Chiu@londonhospitals.ca; Hussain, Nabil, E-mail: Nabil.Hussain@londonhospitals.ca; Etemad-Rezai, Roya, E-mail: Roya.EtemadRezai@lhsc.on.ca; Parraga, Grace, E-mail: gparraga@robarts.ca [Imaging Research Laboratories, Robarts Research Institute, London (Canada); Graduate Program in Biomedical Engineering, Department of Medical Imaging, Department of Medical Biophysics, The University of Western Ontario, London (Canada)

    2013-11-01

    Objective: We developed a semi-automated tool to quantify emphysema from thoracic X-ray multi-detector (64-slice) computed tomography (CT) for training purposes and multi-reader studies. Materials and Methods: Thoracic X-ray CT was acquired in 93 ex-smokers, who were evaluated by six trainees with little or no expertise (trainees) and a single experienced thoracic radiologist (expert). A graphic user interface (GUI) was developed for emphysema quantification based on the percentile of lung where a score of 0 = no abnormalities, 1 = 1–25%, 2 = 26–50%, 3 = 51–75% and 4 = 76–100% for each lung side/slice. Trainees blinded to subject characteristics scored randomized images twice; accuracy was determined by comparison to expert scores, density histogram 15th percentile (HU{sub 15}), relative area at −950 HU (RA{sub 950}), low attenuation clusters at −950 HU (LAC{sub 950}), −856 HU (LAC{sub 856}) and the diffusing capacity for carbon monoxide (DL{sub CO%pred}). Intra- and inter-observer reproducibility was evaluated using coefficients-of-variation (COV), intra-class (ICC) and Pearson correlations. Results: Trainee–expert correlations were significant (r = 0.85–0.97, p < 0.0001) and a significant trainee bias (0.15 ± 0.22) was observed. Emphysema score was correlated with RA{sub 950} (r = 0.88, p < 0.0001), HU{sub 15} (r = −0.77, p < 0.0001), LAC{sub 950} (r = 0.76, p < 0.0001), LAC{sub 856} (r = 0.74, p = 0.0001) and DL{sub CO%pred} (r = −0.71, p < 0.0001). Intra-observer reproducibility (COV = 4–27%; ICC = 0.75–0.94) was moderate to high for trainees; intra- and inter-observer COV were negatively and non-linearly correlated with emphysema score. Conclusion: We developed a GUI for rapid and interactive emphysema scoring that allows for comparison of multiple readers with clinical and radiological standards.

  18. X-ray CT for quantitative food microstructure engineering: The apple case

    Energy Technology Data Exchange (ETDEWEB)

    Herremans, Els, E-mail: els.herremans@biw.kuleuven.be [BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven (Belgium); Verboven, Pieter; Defraeye, Thijs; Rogge, Seppe; Ho, Quang Tri; Hertog, Maarten L.A.T.M. [BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven (Belgium); Verlinden, Bert E. [VCBT, Flanders Centre of Postharvest Technology, Willem de Croylaan 42, 3001 Leuven (Belgium); Bongaers, Evi [Bruker microCT, Kartuizersweg 3B, 2550 Kontich (Belgium); Wevers, Martine [MTM, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Nicolai, Bart M. [BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Leuven (Belgium); VCBT, Flanders Centre of Postharvest Technology, Willem de Croylaan 42, 3001 Leuven (Belgium)

    2014-04-01

    Highlights: • Diffusivity of O{sub 2} and CO{sub 2} in Braeburn tissue were computed from X-ray micro-CT data. • Diffusivities were different for the distinct stages of ‘Braeburn’ browning disorder. • Microstructural gas transport constants were implemented in models of intact fruit. • We simulated internal O{sub 2} concentrations for longterm storage treatments of Braeburn. • This engineering approach can optimize internal quality of apple during CA storage. - Abstract: Apple fruit is a major crop that can be supplied year-round due to low temperature storage in a controlled atmosphere with a reduced oxygen concentration and an increased carbon dioxide concentration. The low temperature and dedicated gas concentration levels are designed to provide optimal conditions that prevent ripening while maintaining the fundamental respiratory metabolism necessary for energy supply in the cells that ensures cell and tissue integrity during storage of the fruit. If the concentration of oxygen is too low or that of carbon dioxide too high, a fermentation metabolism is induced that causes the production of off-flavours, results in insufficient energy supply, leading to cell collapse and consequent tissue browning and cavity formation. The microstructural arrangement of cells and intercellular spaces in the apple create specific pathways for transport of the respiratory gasses oxygen and carbon dioxide. We used X-ray CT to characterise the changes in the microstructure of ‘Braeburn’ apple during the development of internal storage disorders. Multiscale modeling was applied to understand the changes in oxygen and carbon dioxide concentrations and respiration and fermentation rates in the apple during the disorder development in controlled atmosphere storage of ‘Braeburn’ apple fruit. The 3D microstructure geometries of healthy, brown tissue and tissue with cavities were created to solve the micro-scale gas-exchange model for O{sub 2} and CO{sub 2} using the

  19. Quantifying Admissible Undersampling for Sparsity-Exploiting Iterative Image Reconstruction in X-Ray CT

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Sidky, Emil Y.; Pan, Xiaochuan

    2013-01-01

    Iterative image reconstruction with sparsity-exploiting methods, such as total variation (TV) minimization, investigated in compressive sensing claim potentially large reductions in sampling requirements. Quantifying this claim for computed tomography (CT) is nontrivial, because both full sampling...... of a linear imaging model and address invertibility and stability. In the example application of breast CT, the SSCs are used as reference points of full sampling for quantifying the undersampling admitted by reconstruction through TV-minimization. In numerical simulations, factors affecting admissible...... undersampling are studied. Differences between few-view and few-detector bin reconstruction as well as a relation between object sparsity and admitted undersampling are quantified....

  20. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    Science.gov (United States)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this

  1. Analogue experiment of the crustal deformation by X-ray CT; X sen CT wo mochiita chikaku no henkei no analogue jikken

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y.; Shi, B; Murakami, Y. [Geological Survey of Japan, Tsukuba (Japan)

    1997-05-27

    This paper reports a predictive result on a deformation experiment on sand beds using an X-ray computerized tomography (CT) equipment. The X-ray CT is a method to perform the following processes: X-rays are irradiated on a sample; decayed intensity data are measured along ray paths of the permeated X-rays; the data are inverted by using the Fourier transform; and spatial distribution of the coefficient of X-ray absorption inside the sample is acquired as a gray scale image. The deformation experiment was carried by putting sand into an acrylic container to a depth of 2 cm and manually pressing a plate in the horizontal direction. Sand blocks make a relative motion along a specific plane when they are deformed, but it was not possible to recognize faults clearly by naked eyes. Upon completion of the deformation, the experimental device was placed on the CT equipment to acquire images of the two-dimensional cross section. The higher the X-ray absorption coefficient, the brighter the picture elements. It can be seen that three inversed faults have been imaged clearly. Therefore, this equipment was verified usable as an effective observation equipment for an analogue deformation experiment. 4 refs., 2 figs.

  2. Morphological study of lateral pterygoid muscle using axial X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Manabu [Nihon Univ., Matsudo, Chiba (Japan). School of Dentistry at Matsudo

    1995-06-01

    The normal morphology of the lateral pterygoid muscle (LPM) and changes in its length and width with aging were investigated by axial X-ray CT. The materials were taken from 145 patients with no evidence of occlusion and temporomandibular disorders. The following findings were shown with aging: (1) the length of lateral side of LPM tended to increase; (2) the length of medial side of LPM tended to decrease; (3) the width of the condylar area tended to increase; (4) there was no change in the attachment width of LPM at the pterygoid process of the sphenoid bone or at the condylar area; (5) the width of LMP at the level of the largest cross-sectioned area of the muscle tended to decrease; (6) the angle between condylar axis and LPM tended to decrease, and this was significantly noticeable in females than males. Three principal components were found to be (1) general size, except for the medial distance of LPM and the angle of LPM to the axis of the condylar area, (2) medial distance of LPM, and (3) width of LPM at the pterygoid process. (N.K.).

  3. An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Li

    Full Text Available Statistical iterative reconstruction (SIR for X-ray computed tomography (CT under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, most exiting algorithms related to the SIR unavoidably suffer from heavy computation load and slow convergence rate, especially when an edge-preserving or sparsity-based penalty or regularization is incorporated. In this work, to address abovementioned issues of the general algorithms related to the SIR, we propose an adaptive nonmonotone alternating direction algorithm in the framework of augmented Lagrangian multiplier method, which is termed as "ALM-ANAD". The algorithm effectively combines an alternating direction technique with an adaptive nonmonotone line search to minimize the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD algorithm, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present ALM-ANAD algorithm can achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio, convergence rate, and universal quality index metrics.

  4. X-ray CT Scanning Reveals Long-Term Copper Pollution Effects on Functional Soil Structure

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Homstrup, Martin

    factors such as soil type, land use, and soil contamination. In this study, we quantified the soil structure using X-ray CT scanning and revealed the effect of a long history of Copper (Cu) pollution on it. A fallow field at Hygum Denmark provides this opportunity as it had a long history of Copper...... sulphate contamination in a gradient with Cu content varies from 21 mg kg-1 to 3837 mg kg-1. Total 20 intact soil columns (diameter of 10 cm and height of 8 cm) were sampled at five locations along the Cu-gradient from a depth of 5 to 15 cm below surface level. The soil columns were scanned at a voxel...... resolution of 0.21 mm x 0.21 mm x 0.21 mm. Images were analyzed using the Image-J software. Three-dimensional visualization of macropores showed that biopores (pores formed by organisms and plant roots) are present in abundance in this field at a Cu level of 21 mg kg-1 and decreased as the Cu content...

  5. Liquid tissue surrogates for X-ray and CT phantom studies.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Bonitatibus, Peter J; Yeh, Benjamin M

    2017-10-07

    To develop a simple method for producing liquid-tissue-surrogate (LTS) materials that accurately represent human soft tissues in terms of density and X-ray attenuation coefficient. We evaluated hypothetical mixtures of water, glycerol, butanol, methanol, sodium chloride, and potassium nitrate; these mixtures were intended to emulate human adipose, blood, brain, kidney, liver, muscle, pancreas, and skin. We compared the hypothetical densities, effective atomic numbers (Zeff ), and calculated discrete-energy CT attenuation [Hounsfield Units (HU)] of the proposed materials with those of human tissue elemental composition as specified in International Commission on Radiation Units (ICRU) Report 46. We then physically produced the proposed LTS materials for adipose, liver, and pancreas tissue, and we measured the polyenergetic CT attenuation (also expressed as HU) of these materials within a 32 cm phantom using a 64-slice clinical CT scanner at 80 kVp, 100 kVp, 120 kVp, and 140 kVp. The predicted densities, Zeff , and calculated discrete-energy CT attenuation of our proposed formulations generally agreed with those of ICRU within densities of our hypothetical materials agreed precisely with ICRU's reported values and were 0.95 g/mL for adipose tissue, 1.04 g/mL for pancreatic tissue, and 1.06 g/mL for liver tissue; the discrete-energy CT attenuation at 60 keV of our hypothetical materials (and ICRU-specified compositions) were -107 HU (-113 HU) for adipose #3, -89 HU (-90 HU) for adipose #2, 56 HU (55 HU) for liver tissue, and 31 HU (31 HU) for pancreatic tissue. The densities of our physically produced materials (compared to ICRU-specified compositions) were 0.947 g/mL (0.0%) for adipose #2, 1.061 g/mL (+2.0%) for pancreatic tissue, and 1.074 g/mL (+1.3%) for liver tissue. The empirical polyenergetic CT attenuation measurements of our LTS materials (and the discrete-energy HU of the ICRU compositions at the mean energy of each spectrum) at 80

  6. A comparison of x-ray detectors for mouse CT imaging

    Science.gov (United States)

    Goertzen, Andrew L.; Nagarkar, Vivek; Street, Robert A.; Paulus, Michael J.; Boone, John M.; Cherry, Simon R.

    2004-12-01

    There is significant interest in using computed tomography (CT) for in vivo imaging applications in mouse models of disease. Most commercially available mouse x-ray CT scanners utilize a charge-coupled device (CCD) detector coupled via fibre optic taper to a phosphor screen. However, there has been little research to determine if this is the optimum detector for the specific task of in vivo mouse imaging. To investigate this issue, we have evaluated four detectors, including an amorphous selenium (a-Se) detector, an amorphous silicon (a-Si) detector with a gadolinium oxysulphide (GOS) screen, a CCD with a 3:1 fibre taper and a GOS screen, and a CCD with a 2:1 fibre taper and both GOS and thallium-doped caesium iodide (CsI:Tl) screens. The detectors were evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), stability over multiple exposures, and noise in reconstructed CT images. The a-Se detector had the best MTF and the highest DQE (0.6 at 0 lp mm-1) but had the worst stability (45% reduction after 2000 exposure frames). The a-Si detector and the CCD with the 3:1 fibre, both of which used the GOS screen, had very similar performance with a DQE of approximately 0.30 at 0 lp mm-1. For the CCD with the 2:1 fibre, the CsI:Tl screen resulted in a nearly two-fold improvement in DQE over the GOS screen (0.4 versus 0.24 at 0 lp mm-1). The CCDs both had the best stability, with less than a 1% change in pixel values over multiple exposures. The pixel values of the a-Si detector increased 5% over multiple exposures due to the effects of image lag. Despite the higher DQE of the a-Se detector, the reconstructed CT images acquired with the a-Si detector had lower noise levels, likely due to the blurring effects from the phosphor screen.

  7. A comparison of x-ray detectors for mouse CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, Andrew L [Department of Biomedical Engineering, University of California, Davis, Davis, CA (United States); Nagarkar, Vivek [Radiation Monitoring Devices Inc., Watertown, MA (United States); Street, Robert A [Palo Alto Research Center, Palo Alto, CA (United States); Paulus, Michael J [Imtek Inc., Knoxville, TN (United States); Boone, John M [Department of Biomedical Engineering, University of California, Davis, Davis, CA (United States); Cherry, Simon R [Department of Biomedical Engineering, University of California, Davis, Davis, CA (United States)

    2004-12-07

    There is significant interest in using computed tomography (CT) for in vivo imaging applications in mouse models of disease. Most commercially available mouse x-ray CT scanners utilize a charge-coupled device (CCD) detector coupled via fibre optic taper to a phosphor screen. However, there has been little research to determine if this is the optimum detector for the specific task of in vivo mouse imaging. To investigate this issue, we have evaluated four detectors, including an amorphous selenium (a-Se) detector, an amorphous silicon (a-Si) detector with a gadolinium oxysulphide (GOS) screen, a CCD with a 3:1 fibre taper and a GOS screen, and a CCD with a 2:1 fibre taper and both GOS and thallium-doped caesium iodide (CsI:Tl) screens. The detectors were evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), stability over multiple exposures, and noise in reconstructed CT images. The a-Se detector had the best MTF and the highest DQE (0.6 at 0 lp mm{sup -1}) but had the worst stability (45% reduction after 2000 exposure frames). The a-Si detector and the CCD with the 3:1 fibre, both of which used the GOS screen, had very similar performance with a DQE of approximately 0.30 at 0 lp mm{sup -1}. For the CCD with the 2:1 fibre, the CsI:Tl screen resulted in a nearly two-fold improvement in DQE over the GOS screen (0.4 versus 0.24 at 0 lp mm{sup -1}). The CCDs both had the best stability, with less than a 1% change in pixel values over multiple exposures. The pixel values of the a-Si detector increased 5% over multiple exposures due to the effects of image lag. Despite the higher DQE of the a-Se detector, the reconstructed CT images acquired with the a-Si detector had lower noise levels, likely due to the blurring effects from the phosphor screen.

  8. Mammotome breast cancer biopsy: combined guided with X-ray stereotaxis and imaging probe

    Science.gov (United States)

    Soluri, A.; Scafè, R.; Falcini, F.; Sala, R.; Burgio, N.; Fiorentini, G.; Giorgetti, G.; Stella, S.; Chiarini, S.; Scopinaro, F.

    2003-01-01

    Since 1999 our group started with practical experience on diagnostic use of small, transportable prototypes of high-resolution gamma cameras (patented) for radioguided surgery: the Imaging Probe (IP). First experiences allowed us to develop dedicated prototypes for specific applications. At the moment the most intriguing field is guiding biopsy. Dedicated detectors, characterized by low cost and weight, allow to transfer imaging where the biopsy has to be done. In this paper, a new combined application for breast cancer detection is described. In present system IP is put inside a Fisher digital stereotactic device prepared for Mammotome biopsy: so biopsy can contemporaneously be driven by X-ray stereotaxis and 99mTc-Sestamibi (MIBI) images from IP. The Field Of View (FOV) is about 2×2 cm 2 and 0.8 kg weight. This novel scintillation camera is based upon the compact Hamamatsu R7600-00-C8 Position Sensitive Photomultiplier Tube (PSPMT), coupled to scintillating arrays. The PSPMT can be arranged as array when larger FOV is needed. Present application was provided with off line software for image fusion running on the IP dedicated PC. It was matched with the Fisher digital stereotactic X-ray device dedicated to address Mammotome (Ethicon Endo-surgery by Johnson and Johnson) towards breast opacities. Spatial resolution of the IP was 2.5 mm Full-Width Half-Maximum (FWHM) at laboratory tests. A preliminary IP-X-ray digital system inter-calibration was performed using a Perspex-lead phantom. 99mTc MIBI was injected at the dose of 740 MBq 1 h before biopsy to three patients with breast opacities of respectively 0.6, 0.8 and 1.5 cm, scheduled for Mammotome biopsy. Sixty-four pixel scintigraphic images were acquired before and after biopsy in each patient. Operator was allowed to slightly correct the direction of the Mammotome needle taking into account stereotactic X-ray, scintigraphic and fused images. Bioptic samples were also counted with IP before sending them to

  9. Dual-modality imaging of a compressible breast phantom with realistic optical and x-ray properties

    Science.gov (United States)

    Price, B. D.; Gibson, A. P.; Royle, G. J.

    2010-04-01

    Medical imaging equipment is routinely characterised and tested using tissue equivalent phantoms. Combined x-ray and optical mammography could provide increased screening specificity over either system alone. The ongoing evaluation of this approach depends upon the development of phantoms with simultaneously breast tissue equivalent optical and x-ray properties. Furthermore deformation models used in the registration of optical and x-ray images, which are acquired at differing levels of breast compression, require validation through phantoms which are also mechanically tissue equivalent. As well as static imaging, dynamic optical imaging of blood flow whilst breast compression is applied has been proposed as a method of enhancing screening specificity. The effect of changes in blood flow and volume on optical tomography still need to be established. A novel phantom material created by freezing and thawing a solution of polyvinyl alcohol (PVAL) in ethanol to create a solid yet elastically compressible gel is described. These gels have x-ray attenuation coefficients equivalent to those of breast tissues whilst their optical and mechanical properties are readily modified. Titanium dioxide is added to the optically non-scattering and colourless gels to obtain the transport scattering coefficient required. Cancerous tissues are often many times stiffer than healthy. Similar differences in stiffness are achieved between gels by varying PVAL concentration. The first x-ray and optical images of an anthropomorphically shaped breast phantom made from this gel are presented. This contains a lesion filled with blood equivalent dye whose volume changes upon compression of the phantom.

  10. Medical CT image reconstruction accuracy in the presence of metal objects using x-rays up to 1 MeV with x-ray targets of beryllium, carbon, aluminum, copper, and tungsten

    Science.gov (United States)

    Clayton, James; Ganguly, Arundhuti; Virshup, Gary

    2012-04-01

    Flat panels imagers based on amorphous silicon technology (a-Si) for digital radiography have been accepted by the medical community as having several advantages over film-based systems. Radiotherapy treatment planning systems employ computed tomographic (CT) data sets and projection images to delineate tumor targets and normal structures that are to be spared from radiation treatment. The accuracy of CT numbers is crucial for radiotherapy dose calculations. Conventional CT scanners operating at kilovoltage X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. Megavoltage X-ray energies have problems maintaining contrast sensitivity for the same dose as kV X-ray systems. We intend to demonstrate significant improvement in metal artifact reductions and electron density measurements using an amorphous silicon a-Si imager obtained with an X-ray source that can operate at energies up to 1 MeV. We will investigate the ability to maintain contrast sensitivity at this higher X-ray energy by using targets with lower atomic numbers and appropriate amounts of Xray filtration than are typically used as X-ray production targets and filters.

  11. FMT-PCCT: hybrid fluorescence molecular tomography-x-ray phase-contrast CT imaging of mouse models.

    Science.gov (United States)

    Mohajerani, Pouyan; Hipp, Alexander; Willner, Marian; Marschner, Mathias; Trajkovic-Arsic, Marija; Ma, Xiaopeng; Burton, Neal C; Klemm, Uwe; Radrich, Karin; Ermolayev, Vladimir; Tzoumas, Stratis; Siveke, Jens T; Bech, Martin; Pfeiffer, Franz; Ntziachristos, Vasilis

    2014-07-01

    The implementation of hybrid fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) has been shown to be a necessary development, not only for combining anatomical with functional and molecular contrast, but also for generating optical images of high accuracy. FMT affords highly sensitive 3-D imaging of fluorescence bio-distribution, but in stand-alone form it offers images of low resolution. It was shown that FMT accuracy significantly improves by considering anatomical priors from CT. Conversely, CT generally suffers from low soft tissue contrast. Therefore utilization of CT data as prior information in FMT inversion is challenging when different internal organs are not clearly differentiated. Instead, we combined herein FMT with emerging X-ray phase-contrast CT (PCCT). PCCT relies on phase shift differences in tissue to achieve soft tissue contrast superior to conventional CT. We demonstrate for the first time FMT-PCCT imaging of different animal models, where FMT and PCCT scans were performed in vivo and ex vivo, respectively. The results show that FMT-PCCT expands the potential of FMT in imaging lesions with otherwise low or no CT contrast, while retaining the cost benefits of CT and simplicity of hybrid device realizations. The results point to the most accurate FMT performance to date.

  12. X-ray CT-Derived Soil Characteristics Explain Varying Air, Water, and Solute Transport Properties across a Loamy Field

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per

    2016-01-01

    The characterization of soil pore space geometry is important for explaining fluxes of air, water, and solutes through soil and understanding soil hydrogeochemical functions. X-ray computed tomography (CT) can be applied for this characterization, and in this study CT-derived parameters were used...... to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements...... of air permeability (Ka) and saturated hydraulic conductivity (Ksat). The CT number of the matrix (CTmatrix), which represents the moist bulk density of the soil matrix, was obtained from the CT scans as the average CT number of the voxels in the grayscale image excluding macropores and stones...

  13. Non-invasive classification of breast microcalcifications using x-ray coherent scatter computed tomography

    Science.gov (United States)

    Ghammraoui, Bahaa; Popescu, Lucretiu M.

    2017-02-01

    We investigate the use of energy dispersive x-ray coherent scatter computed tomography (ED-CSCT) as a non-invasive diagnostic method to differentiate between type I and type II breast calcifications. This approach is sensitive to the differences of composition and internal crystal structure of different types of microcalcifications. The study is carried out by simulating a CSCT system with a scanning pencil beam, considering a polychromatic x-ray source and an energy-resolving photon counting detector. In a first step, the multidimensional angle and energy distributed CSCT data is reduced to the projection-space distributions of only a few components, corresponding to the expected target composition: adipose, glandular tissue, weddellite (calcium oxalate) for type I calcifications, and hydroxyapatite for type II calcifications. The maximum-likelihood estimation of scatter components algorithm used, operating in the projection space, takes into account the polychromatic source, the detector response function and the energy dependent attenuation. In the second step, component images are reconstructed from the corresponding estimated component projections using filtered backprojection. In a preliminary step the coherent scatter differential cross sections for hydroxyapatite and weddellite minerals were determined experimentally. The classification of type I or II calcifications is done using the relative contrasts of their components as the criterion. Simulation tests were carried out for different doses and energy resolutions for multiple realizations. The results were analyzed using relative/receiver operating characteristic methodology and show good discrimination ability at medium and higher doses. The noninvasive CSCT technique shows potential to further improve the breast diagnostic accuracy and reduce the number of breast biopsies.

  14. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures

    DEFF Research Database (Denmark)

    Müller, Karin; Katuwal, Sheela; Young, Iain

    2017-01-01

    with X-ray CT. Kunsat was significantly higher in the Andosol than in the Gleysol at all water potentials, and decreased significantly with depth in both soils. The in situ measurements guided the definition of new macroporosity parameters from the X-ray CT reconstructions. For the Andosol, Kunsat......Soils deliver the regulating ecosystem services of water infiltration and distribution, which can be controlled by macropores. Parameterizing macropore hydraulic properties is challenging due to the lack of direct measurement methods. With tension-disc infiltrometry hydraulic properties near...... saturation can be measured. Differentiating between hydrologically active and non-active pores, at a given water potential, indirectly assesses macropore continuity. Water flow through macropores is controlled by macropore size distribution, tortuosity, and connectivity, which can be directly derived by X...

  15. Prediction of biopore- and matrix-dominated flow from X-ray CT-derived macropore network characteristics

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Schaap, Marcel G

    2016-01-01

    Prediction and modeling of localized flow processes in macropores is of crucial importance for sustaining both soil and water quality. However, currently there are no reliable means to predict preferential flow due to its inherently large spatial variability. The aim of this study...... was to investigate the predictive performance of previously developed empirical models for both water and air flow and to explore the potential applicability of X-ray computed tomography (CT)-derived macropore network characteristics. For this purpose, 65 cylindrical soil columns (6 cm diameter and 3.5 cm height......) were extracted from the topsoil (5 cm to 8.5 cm depth) in a 15m15m grid from an agricultural field located in Silstrup, Denmark. All soil columns were scanned with an industrial X-ray CT scanner (129 μm resolution) and later employed for measurement of saturated hydraulic conductivity, air permeability...

  16. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures

    DEFF Research Database (Denmark)

    Müller, Karin; Katuwal, Sheela; Young, Iain

    2018-01-01

    with X-ray CT. Kunsat was significantly higher in the Andosol than in the Gleysol at all water potentials, and decreased significantly with depth in both soils. The in situ measurements guided the definition of new macroporosity parameters from the X-ray CT reconstructions. For the Andosol, Kunsat......Soils deliver the regulating ecosystem services of water infiltration and distribution, which can be controlled by macropores. Parameterizing macropore hydraulic properties is challenging due to the lack of direct measurement methods. With tension-disc infiltrometry hydraulic properties near...... saturation can be measured. Differentiating between hydrologically active and non-active pores, at a given water potential, indirectly assesses macropore continuity. Water flow through macropores is controlled by macropore size distribution, tortuosity, and connectivity, which can be directly derived by X...

  17. X-ray micro-CT and neutron CT as complementary imaging tools for non-destructive 3D imaging of rare silicified fossil plants

    Science.gov (United States)

    Karch, J.; Dudák, J.; Žemlička, J.; Vavřík, D.; Kumpová, I.; Kvaček, J.; Heřmanová, Z.; Šoltés, J.; Viererbl, L.; Morgano, M.; Kaestner, A.; Trtík, P.

    2017-12-01

    Computed tomography provides 3D information of inner structures of investigated objects. The obtained information is, however, strongly dependent on the used radiation type. It is known that as X-rays interact with electron cloud and neutrons with atomic nucleus, the obtained data often provide different contrast of sample structures. In this work we present a set of comparative radiographic and CT measurements of rare fossil plant samples using X-rays and thermal neutrons. The X-ray measurements were performed using large area photon counting detectors Timepix at IEAP CTU in Prague and Perkin Elmer flat-panel detector at Center of Excellence Telč. The neutron CT measurement was carried out at Paul Scherrer Institute using BOA beam-line. Furthermore, neutron radiography of fossil samples, provided by National Museum, were performed using a large-area Timepix detector with a neutron-sensitive converting 6LiF layer at Research Centre Rez, Czech Republic. The obtained results show different capabilities of both imaging approaches. While X-ray micro-CT provides very high resolution and enables visualization of fine cracks or small cavities in the samples neutron imaging provides high contrast of morphological structures of fossil plant samples, where X-ray imaging provides insufficient contrast.

  18. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  19. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Y.C. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Jan, M.L. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Chen, K.W. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Cheng, Y.D. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Chuang, K.S. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Fu, Y.K. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China)]. E-mail: fufrank@iner.gov.tw

    2006-12-20

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET'' (registered) R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of 'cupping' in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  20. Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging

    Science.gov (United States)

    O'Connor, J. Michael; Das, Mini; Didier, Clay; Mah'D, Mufeed; Glick, Stephen J.

    2008-03-01

    Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.

  1. Fatigue damage observed non-destructively in fibre composite coupon test specimens by X-ray CT

    Science.gov (United States)

    Jespersen, K. M.; Mikkelsen, L. P.

    2016-07-01

    This study presents a method for monitoring the 3D fatigue damage progression on a micro-structural level in a glass fibre/polymer coupon test specimen by means of laboratory X-ray Computed Tomography (CT). A modified mount and holder made for the standard test samples to fit into the X-ray CT scanner along with a tension clamp solution is presented. Initially, the same location of the test specimen is inspected by ex-situ X-ray CT during the fatigue loading history, which shows the damage progression on a micro-structural level. The openings of individual uni-directional (UD) fibre fractures are seen to generally increase with the number of cycles, and new regions of UD fibre fractures also appear. There are some UD fibre fractures that are difficult to detect since their opening is small. Therefore, the effect of tension on the crack visibility is examined afterwards using a tension clamp solution. With applied tension some additional cracks become visible and the openings of fibre fractures increases, which shows the importance of applied tension during the scan.

  2. In-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jefferson A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hazeli, Kavan [Univ. of Alabama, Huntsville, AL (United States); Ramesh, K. T. [Johns Hopkins Univ., Baltimore, MD (United States). Hopkins Extreme Materials Inst.; Martz, Harry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Nondestructive Characterization Inst.

    2016-06-17

    These are slides about in-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites. The following topics are covered: mechanical and thermal damage characterization, list of Grosvenor Mountain (GRO) meteorite samples, in-situ x-ray compression test setup, GRO-chipped reference at 0 N - existing cracks, GRO-chipped loaded at 1580 N, in-situ x-ray thermal fatigue test setup, GRO-B14 room temperature reference, GRO-B14 Cycle 47 at 200°C, GRO-B14 Cycle 47 at room temperature, conclusions from qualitative analysis, future work and next steps. Conclusions are the following: Both GRO-Chipped and GRO-B14 had existing voids and cracks within the volume. These sites with existing damage were selected for CT images from mechanically and thermally loaded scans since they are prone to damage initiation. The GRO-Chipped sample was loaded to 1580 N which resulted in a 14% compressive engineering strain, calculated using LVDT. Based on the CT cross sectional images, the GRO-B14 sample at 200°C has a thermal expansion of approximately 96 μm in height (i.e. ~1.6% engineering strain).

  3. Prediction of biopore- and matrix-dominated flow from X-ray CT-derived macropore network characteristics

    Directory of Open Access Journals (Sweden)

    M. Naveed

    2016-10-01

    Full Text Available Prediction and modeling of localized flow processes in macropores is of crucial importance for sustaining both soil and water quality. However, currently there are no reliable means to predict preferential flow due to its inherently large spatial variability. The aim of this study was to investigate the predictive performance of previously developed empirical models for both water and air flow and to explore the potential applicability of X-ray computed tomography (CT-derived macropore network characteristics. For this purpose, 65 cylindrical soil columns (6 cm diameter and 3.5 cm height were extracted from the topsoil (5 cm to 8.5 cm depth in a 15 m  ×  15 m grid from an agricultural field located in Silstrup, Denmark. All soil columns were scanned with an industrial X-ray CT scanner (129 µm resolution and later employed for measurement of saturated hydraulic conductivity, air permeability at −30 and −100 cm matric potential, and gas diffusivity at −30 and −100 cm matric potential. Distribution maps for saturated hydraulic conductivity, air permeability, and gas diffusivity reflected no autocorrelation irrespective of soil texture and organic matter content. Existing empirical predictive models for saturated hydraulic conductivity and air permeability showed poor performance, as they were not able to realistically capture macropore flow. The tested empirical model for gas diffusivity predicted measurements at −100 cm matric potential reasonably well, but failed at −30 cm matric potential, particularly for soil columns with biopore-dominated flow. X-ray CT-derived macroporosity matched the measured air-filled porosity at −30 cm matric potential well. Many of the CT-derived macropore network characteristics were strongly interrelated. Most of the macropore network characteristics were also significantly correlated with saturated hydraulic conductivity, air permeability, and gas diffusivity. The

  4. [Assessment of the diagnostic value of CT and X-ray enterography for small intestinal Crohn disease].

    Science.gov (United States)

    Zhu, Qing-Qiang; Wang, Zhong-Qiu; Wu, Jing-Tao; Wang, Shou-An

    2013-05-01

    To investigate the value of CT and X-ray enterography in the diagnosis of small intestinal Crohn disease(CD). Data of 39 CD cases confirmed by surgery and pathology who underwent CT and X-ray enterography were analyzed retrospectively. All the patients had complete CT data, 28 cases had X-ray intestinal barium meal data, and 18 had sinus tract enterography. CT enterography showed mural thickening(>4 mm) in 34(87.2%) patients, mural gas in 7(17.9%), mural edema in 7(17.9%), mural fat in 4(10.3%), increased enhancement of bowel wall(>10 HU) in 37(94.9%), multiple segmental lesions in 33(84.6%), single segmental lesions in 6(15.4%), mesenteric lymphadenopathy(>5 mm) in 13(33.3%), vascular bundle thickening in 9(23.1%), cellulitis in 12(30.8%), peritoneal abscess in 10(25.6%), phlegmon in 8(20.5%), incomplete intestinal obstruction in 14(35.9%), seroperitoneum in 22(56.4%), and fistulization in 4(10.3%). CT enterography did not demonstrate the change of mucosa such as strip ulcer or cobblestone. Among the 28 cases of small bowel X-ray enterography, 23 cases(82.1%) presented with multiple segmental lesions, 5(17.9%) with single segmental lesions, 18(64.3%) with strip ulcer, 16(57.1%) with cobblestones, 4(14.3%) with intestinal fistula, while no bowel wall and extraintestinal complication of CD disease was observed. Among the 18 cases of sinus tract enterography, 13 cases (72.2%) presented with intestinal fistula, 12(66.7%) with peritoneal abscess, 8(44.4%) with sinus tract. CT enterography can demonstrate exactly the diseased bowel wall and extraintestinal complication of CD disease, which is important to evaluate the extent of CD and guide the treatment, however strip ulcer and cobblestone sign cannot be demonstrated. The X-ray enterography is available to demonstrate the characteristic changes of CD such as trip ulcers and cobblestones, but is difficult to show the bowel wall and extraintestinal inflammatory mass and abscesses. The sinus tract enterography is easy to

  5. Simulation study of an X-ray diffraction system for breast tumor detection

    Science.gov (United States)

    Marticke, F.; Montémont, G.; Paulus, C.; Michel, O.; Mars, J. I.; Verger, L.

    2017-09-01

    X-ray diffraction (XRD) is a powerful technique used to determine the molecular structure of biological tissues. In breast tissues for example, the scattering signatures of dense fibroglandular tissue and carcinoma have been shown to be significantly different. In this study, XRD was used as a second control level when conventional mammography results were unclear, for instance because of overly high breast density. A system optimized for this issue, called multifocal XRD, was developed combining energy dispersive spectral information at different scattering angles. This system allows depth-imaging in one go but needs an x,y-direction scan to image the region conventional mammography identified as suspect. The scan-time for about 10 cm3 with an incident flux of about 4.8·107 photons per second would be around 2 s. For this study, breast phantoms with and without cancerous nodule were simulated to assess the separation power of the method and to determine the radiation dose required to obtain nearly ideal separation. For tumors situated in the center of the breast, the required dose was only about 0.3 mGy, even for breasts with high density. The tumor position was shown to have a low impact on detectability provided it remained in a zone where the system was sufficiently sensitive. The influence of incident spectrum maximum energy was also studied. The required dose remained very low with any of the incident spectra tested. Finally, an image slice was reconstructed in the x-direction and showed that the system can detect the presence of a small tumor (4 mm). Hence, XRD is a very promising tool to reduce the number of unnecessary invasive breast biopsies.

  6. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners

    NARCIS (Netherlands)

    Ay, Mohammad Reza; Mehranian, Abolfazi; Maleki, Asghar; Ghadiri, Hossien; Ghafarian, Pardis; Zaidi, Habib

    Beam hardening filters have long been employed in X-ray Computed Tomography (CT) to preferentially absorb soft and low-energy X-rays having no or little contribution to image formation, thus allowing the reduction of patient dose and beam hardening artefacts. In this work, we studied the influence

  7. A software-based x-ray scatter correction method for breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jia Feng, Steve Si; Sechopoulos, Ioannis [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, and Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Department of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States)

    2011-12-15

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients. Methods: A Monte Carlo (MC) simulation of x-ray scatter, with geometry matching that of the cranio-caudal (CC) view of a DBT clinical prototype, was developed using the Geant4 toolkit and used to generate maps of the scatter-to-primary ratio (SPR) of a number of homogeneous standard-shaped breasts of varying sizes. Dimension-matched SPR maps were then deformed and registered to DBT acquisition projections, allowing for the estimation of the primary x-ray signal acquired by the imaging system. Noise filtering of the estimated projections was then performed to reduce the impact of the quantum noise of the x-ray scatter. Three dimensional (3D) reconstruction was then performed using the maximum likelihood-expectation maximization (MLEM) method. This process was tested on acquisitions of a heterogeneous 50/50 adipose/glandular tomosynthesis phantom with embedded masses, fibers, and microcalcifications and on acquisitions of patients. The image quality of the reconstructions of the scatter-corrected and uncorrected projections was analyzed by studying the signal-difference-to-noise ratio (SDNR), the integral of the signal in each mass lesion (integrated mass signal, IMS), and the modulation transfer function (MTF). Results: The reconstructions of the scatter-corrected projections demonstrated superior image quality. The SDNR of masses embedded in a 5 cm thick tomosynthesis phantom improved 60%-66%, while the SDNR of the smallest mass in an 8 cm thick phantom improved by 59% (p < 0.01). The IMS of the masses in the 5 cm thick phantom also improved by 15%-29%, while the IMS of the masses in the 8 cm thick phantom improved by 26%-62% (p < 0.01). Some embedded microcalcifications in the tomosynthesis phantoms were visible only in the scatter

  8. Volumetric soft tissue brain imaging on xCAT, a mobile flat-panel x-ray CT system

    Science.gov (United States)

    Zbijewski, Wojciech; Stayman, J. Webster

    2009-02-01

    We discuss the ongoing development of soft-tissue imaging capabilities on xCAT, a highly portable, flat-panel based cone-beam X-ray CT platform. By providing the ability to rapidly detect intra-cranial bleeds and other symptoms of stroke directly at the patient's bedside, our new system can potentially significantly improve the management of neurological emergency and intensive care patients. The paper reports on the design of our system, as well as on the methods used to combat artifacts due to scatter, non-linear detector response and scintillator glare. Images of cadaveric head samples are also presented and compared with conventional CT scans.

  9. The evaluation of breast tissues removed during reductive mammaplasty with dual energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, Antonino [Division of Human Nutrition, University of Tor Vergata in Rome (Italy); Gravante, Gianpiero [Division of Human Nutrition, University of Tor Vergata in Rome (Italy); Department of Surgery, Whipps Cross University Hospital, London (United Kingdom)], E-mail: ggravante@hotmail.com; Sorge, Roberto [Laboratory of Biometry, University of Tor Vergata in Rome (Italy); Nicoli, Fabio; Caruso, Riccardo; Araco, Antonino [Department of Plastic Surgery, University of Tor Vergata in Rome (Italy); Servidio, Michele [Division of Human Nutrition, University of Tor Vergata in Rome (Italy); Orlandi, Augusto [Department of Biopathology, Anatomic Pathology Institute, University of Tor Vergata in Rome (Italy); Cervelli, Valerio [Department of Plastic Surgery, University of Tor Vergata in Rome (Italy)

    2009-06-15

    Purpose: We conducted a case-control study in which patients were evaluated with dual energy X-ray absorptiometry (DEXA) before and after breast reduction surgery, and results were correlated with the histological examination. Our goal was to confirm the DEXA as a precise technique for the measurement of breast composition, in order to propose it for the preoperative evaluation of plastic surgery patients. Materials and methods: We prospectively recruited all women that underwent reduction mammaplasty and excluded patients with contraindications to the operation or those that previously underwent bariatric surgery to reduce their weight. Patients were evaluated with DEXA 1 week before and after surgery. Results: From February to October 2006 we recruited 25 patients. The statistical analysis found a significant reduction of weight, BMI, regional fat free mass and fat mass after the operation. The comparison between DEXA and the histological analysis produced a correlation r = 0.989 (r{sup 2} = 0.978), with a predictivity of 98% and a percentage of error 8.3% (95% confidence intervals -252.6, 273.7; 95% limits of agreements of Bland and Altman -436.0, 457.1). Similar results were obtained with the analysis of fat. Conclusions: Our study demonstrated that conventional segmental DEXA is a very precise technique to measure the amount of tissue removed in breast reductions and could open future application in the preoperative assessment of patients undergoing such operations.

  10. Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Kullberg, J; Brandberg, J; Angelhed, J-E

    2009-01-01

    The aim of this study was to validate a recently proposed MRI-based T(1)-mapping method for analysis of whole-body adipose tissue (AT) using an established CT protocol as reference and to include results from dual energy X-ray absorptiometry (DEXA). 10 subjects, drawn from the Swedish Obese Subje......-processing of whole-body MRI data, allowing longitudinal whole-body studies that are also applicable for children and adolescents.......The aim of this study was to validate a recently proposed MRI-based T(1)-mapping method for analysis of whole-body adipose tissue (AT) using an established CT protocol as reference and to include results from dual energy X-ray absorptiometry (DEXA). 10 subjects, drawn from the Swedish Obese...... Subjects Sibling-pairs study, were examined using CT, MRI and DEXA. The CT analysis was based on 28 imaged slices. T(1) maps were calculated using contiguous MRI data from two different gradient echo sequences acquired using different flip angles. CT and MRI comparison was performed slice...

  11. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging

    Science.gov (United States)

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis. PMID:26609232

  12. X-ray absorptiometry of the breast using mammographic exposure factors: application to units featuring automatic beam quality selection.

    Science.gov (United States)

    Kotre, C J

    2010-06-01

    A number of studies have identified the relationship between the visual appearance of high breast density at mammography and an increased risk of breast cancer. Approaches to quantify the amount of glandular tissue within the breast from mammography have so far concentrated on image-based methods. Here, it is proposed that the X-ray parameters automatically selected by the mammography unit can be used to estimate the thickness of glandular tissue overlying the automatic exposure sensor area, provided that the unit can be appropriately calibrated. This is a non-trivial task for modern mammography units that feature automatic beam quality selection, as the number of tube potential and X-ray target/filter combinations used to cover the range of breast sizes and compositions can be large, leading to a potentially unworkable number of curve fits and interpolations. Using appropriate models for the attenuation of the glandular breast in conjunction with a constrained set of physical phantom measurements, it is demonstrated that calibration for X-ray absorptiometry can be achieved despite the large number of possible exposure factor combinations employed by modern mammography units. The main source of error on the estimated glandular tissue thickness using this method is shown to be uncertainty in the measured compressed breast thickness. An additional correction for this source of error is investigated and applied. Initial surveys of glandular thickness for a cohort of women undergoing breast screening are presented.

  13. Multispectral x-ray CT: multivariate statistical analysis for efficient reconstruction

    DEFF Research Database (Denmark)

    Kheirabadi, Mina; Mustafa, Wail; Lyksborg, Mark

    2017-01-01

    Recent developments in multispectral X-ray detectors allow for an efficient identification of materials based on their chemical composition. This has a range of applications including security inspection, which is our motivation. In this paper, we analyze data from a tomographic setup employing t...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight October is National Breast Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  15. Characterization of a Test for Invasive Breast Cancer Using X-ray Diffraction of Hair - Results of a Clinical Trial

    Directory of Open Access Journals (Sweden)

    Gary L. Corino

    2009-11-01

    Full Text Available Objective: To assess the performance of a test for breast cancer utilizing synchrotron x-ray diffraction analysis of scalp hair from women undergoing diagnostic radiology assessment. Design and Setting: A double-blinded clinical trial of women who attended diagnostic radiology clinics in Australia. Patients: 1796 women referred for diagnostic radiology, with no previous history of cancer. Main Outcome Measures: Sensitivity, specificity and accuracy of the hair test analysis compared to the gold standard of imaging followed by biopsy where indicated. Results: The hair-based assay had an overall accuracy of >77% and a negative predictive value of 99%. For all women, the sensitivity of both mammography and x-ray diffraction alone was 64%, but when used together the sensitivity rose to 86%. The sensitivity of the hair test for women under the age of 70 was 74%. Conclusion: In this large population trial the association between the presence of breast cancer and an altered hair fibre X-ray diffraction pattern previously reported has been confirmed. It appears that mammography and X-ray diffraction of hair detect different populations of breast cancers, and are synergistic when used together.

  16. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Schleede, Simone, E-mail: Schleede@tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Bech, Martin, E-mail: martin.bech@tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Medical Radiation Physics, Lund University, 22185 Lund (Sweden); Grandl, Susanne, E-mail: Susanne.Grandl@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 München (Germany); Sztrókay, Aniko, E-mail: Aniko.Sztrokay@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 München (Germany); Herzen, Julia, E-mail: julia.herzen@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Mayr, Doris, E-mail: doris.mayr@med.uni-muenchen.de [Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337 Munich (Germany); Stockmar, Marco, E-mail: marco.stockmar@ph.tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Potdevin, Guillaume, E-mail: potdevinguillaume@gmail.com [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); and others

    2014-03-15

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase

  17. Quantitative X-ray CT analysis of calcification of the abdominal aorta and its relationship to obesity

    Energy Technology Data Exchange (ETDEWEB)

    Shinagawa, Toshio; Hiraiwa, Yoshio; Mizuno, Seio; Kusunoki, Norio; Nitta, Yu; Matsubara, Takao; Iwainaka, Yoichi; Konishi, Hideo (Toyama Red Cross Hospital (Japan))

    1992-04-01

    Quantitative analysis of abdominal aorta calcification by X-ray CT is useful method for non-invasive diagnosis of atherosclerosis. We recently examined the relationship between the X-ray CT measurement of abdominal aorta calcification and the degree of obesity. For this purpose, the body mass index (BMI) and the subcutaneous fat thickness (determined by X-ray CT at the umbilical level) were analyzed in relation to the abdominal aorta calcification index (ACI) in 845 patients (453 males and 392 females aged 40-79 years). Patients with BMI under 20 were classified as 'lean', those with BMI between 20-26 as 'normal' and those with BMI over 26 as 'obese'. 1. Among males, the ACI was highest in lean individuals and lowest in obese individuals. The difference in ACI between lean and obese males was significant in the middle aged group (40-65 years). Among females, no relationship was observed between the degree of obesity and ACI. 2. Among males, ACI was higher in individuals with low subcutaneous fat thickness and lower in individuals with greater subcutaneous fat thickness. The difference was significant in the middle aged group. Among females, no relationship was observed between the two parameters. 3. When the visceral fat to subcutaneous fat ratio (V/S) in 85 males and females aged 60-69 years was analyzed in relation to ACI, ACI tended to decrease as the V/S increased, in both males and females. 4. Relationships between BMI and subcutaneous fat thickness, between BMI and lipids and between lipids and ACI were also analyzed. (author).

  18. Synchrotron radiation phase-contrast X-ray CT imaging of acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongming; Yan, Xiaohui; Zhang, Xinyi [Fudan University, Synchrotron Radiation Research Center, State Key Laboratory of Surface Physics and Department of Physics, Shanghai (China); Liu, Chenglin [Physics Department of Yancheng Teachers' College, Yancheng (China); Dang, Ruishan [The Second Military Medical University, Shanghai (China); Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Shanghai (China); Zhu, Peiping [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China)

    2011-08-15

    Three-dimensional (3D) topographic structures of acupuncture points were investigated by using synchrotron radiation in-line X-ray phase contrast computerized tomography. Two acupuncture points, named Zhongji (RN3) and Zusanli (ST36), were studied. We found an accumulation of microvessels at each acupuncture point region. Images of the tissues surrounding the acupuncture points do not show such kinds of structure. This is the first time that 3D images have revealed the specific structures of acupuncture points. (orig.)

  19. High-resolution x-ray CT screening of mutant mouse models

    Science.gov (United States)

    Paulus, Michael J.; Gleason, Shaun S.; Sari-Sarraf, Hamed; Johnson, Dabney K.; Foltz, Charmaine J.; Austin, Derek W.; Easterly, M. E.; Michaud, Edward J.; Dhar, Madhu S.; Hunsicker, Patricia R.; Wall, J. W.; Schell, M.

    2000-04-01

    A dedicated small animal x-ray computed tomography system has been developed to screen mutagenized mice for anatomical phenotypes. The key components of the data acquisition instrumentation are described along with the system performance parameters. Image reconstruction, visualization and segmentation software algorithms are described. Two contrast media regimens are described and representative studies of mice with adipose, soft and skeletal tissue abnormalities are presented.

  20. Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Qian Xin; Rajaram, Ramya; Calderon-Colon, Xiomara; Yang Guang; Phan, Tuyen; Lalush, David S.; Lu Jianping; Zhou, Otto [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States) and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27659 (United States); Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States) and Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States) and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2009-10-15

    Digital breast tomosynthesis (DBT) is a limited angle computed tomography technique that can distinguish tumors from its overlying breast tissues and has potentials for detection of cancers at a smaller size and earlier stage. Current prototype DBT scanners are based on the regular full-field digital mammography systems and require partial isocentric motion of an x-ray tube over certain angular range to record the projection views. This prolongs the scanning time and, in turn, degrades the imaging quality due to motion blur. To mitigate the above limitations, the concept of a stationary DBT (s-DBT) scanner has been recently proposed based on the newly developed spatially distributed multibeam field emission x-ray (MBFEX) source technique using the carbon nanotube. The purpose of this article is to evaluate the performance of the 25-beam MBFEX source array that has been designed and fabricated for the s-DBT system. The s-DBT system records all the projection images by electronically activating the multiple x-ray beams from different viewing angles without any mechanical motion. The configuration of the MBFEX source is close to the published values from the Siemens Mammomat system. The key issues including the x-ray flux, focal spot size, spatial resolution, scanning time, beam-to-beam consistency, and reliability are evaluated using the standard procedures. In this article, the authors describe the design and performance of a distributed x-ray source array specifically designed for the s-DBT system. They evaluate the emission current, current variation, lifetime, and focal spot sizes of the source array. An emission current of up to 18 mA was obtained at 0.5x0.3 mm effective focal spot size. The experimentally measured focal spot sizes are comparable to that of a typical commercial mammography tube without motion blurring. Trade-off between the system spatial resolution, x-ray flux, and scanning time are also discussed. Projection images of a breast phantom were

  1. Comparison of similarity measures for rigid-body CT/Dual X-ray image registrations.

    Science.gov (United States)

    Kim, Jinkoo; Li, Shidong; Pradhan, Deepak; Hammoud, Rabih; Chen, Qing; Yin, Fang-Fang; Zhao, Yang; Kim, Jae Ho; Movsas, Benjamin

    2007-08-01

    A set of experiments were conducted to evaluate six similarity measures for intensity-based rigid-body 3D/2D image registration. Similarity measure is an index that measures the similarity between a digitally reconstructed radiograph (DRR) and an x-ray planar image. The registration is accomplished by maximizing the sum of the similarity measures between biplane x-ray images and the corresponding DRRs in an iterative fashion. We have evaluated the accuracy and attraction ranges of the registrations using six different similarity measures on phantom experiments for head, thorax, and pelvis. The images were acquired using Varian Medial System On-Board Imager. Our results indicated that normalized cross correlation and entropy of difference showed a wide attraction range (62 deg and 83 mm mean attraction range, omega(mean)), but the worst accuracy (4.2 mm maximum error, e(max)). The gradient-based similarity measures, gradient correlation and gradient difference, and the pattern intensity showed sub-millimeter accuracy, but narrow attraction ranges (omega(mean)=29 deg, 31 mm). Mutual information was in-between of these two groups (e(max)=2.5 mm, omega(mean)= 48 deg, 52 mm). On the data of 120 x-ray pairs from eight IRB approved prostate patients, the gradient difference showed the best accuracy. In the clinical applications, registrations starting with the mutual information followed by the gradient difference may provide the best accuracy and the most robustness.

  2. Three-dimensional modeling and simulation of asphalt concrete mixtures based on X-ray CT microstructure images

    Directory of Open Access Journals (Sweden)

    Hainian Wang

    2014-02-01

    Full Text Available X-ray CT (computed tomography was used to scan asphalt mixture specimen to obtain high resolution continuous cross-section images and the meso-structure. According to the theory of three-dimensional (3D reconstruction, the 3D reconstruction algorithm was investigated in this paper. The key to the reconstruction technique is the acquisition of the voxel positions and the relationship between the pixel element and node. Three-dimensional numerical model of asphalt mixture specimen was created by a self-developed program. A splitting test was conducted to predict the stress distributions of the asphalt mixture and verify the rationality of the 3D model.

  3. Tillage effects on topsoil structural quality assessed using X-ray CT, soil cores and visual soil evaluation

    DEFF Research Database (Denmark)

    Garbout, Amin; Munkholm, Lars Juhl; Hansen, Søren Baarsgaard

    2013-01-01

    Soil structure plays a key role in the ability of soil to fulfil essential functions and services in relation to, e.g., root growth, gas and water transport and organic matter turnover. The objective of this paper was: (1) To quantify tillage effects on soil structural quality in the entire topsoil...... tillage and natural consolidation, and aggravated by a poor structural stability due to a low organic matter content. The visual soil evaluation scores were negatively correlated to soil porosity and number of pore networks estimated from X-ray CT imaging and positively correlated to the macropore...

  4. Quantitative Study of Porosity and Pore Features in Moldavites by Means of X-ray Micro-CT

    Directory of Open Access Journals (Sweden)

    Giovanni Pratesi

    2014-04-01

    Full Text Available X-ray micro-computer aided tomography (μ-CT, together with optical microscopy and imaging, have been applied to the study of six moldavite samples. These techniques enabled a complete characterization to be made of the textural features of both Muong Nong-type and common splashform moldavites. A detailed study of the size and distribution of pores or bubbles confirmed the marked variability in pore size among the samples, as well as within each sample, and indicated in the Muong Nong-type moldavites the presence of at least two deformation stages which occurred before and after pore formation.

  5. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    Science.gov (United States)

    Rodrigues, M. J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-11-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  6. Monte Carlo performance on the x-ray converter thickness in digital mammography using software breast models

    Energy Technology Data Exchange (ETDEWEB)

    Liaparinos, P.; Bliznakova, K. [Department of Medical Instruments Technology, Technological Educational Institute, 12210 Athens (Greece); Department of Medical Physics, School of Medicine, University of Patras, 26500 Rio, Patras (Greece)

    2012-11-15

    Purpose: In x-ray mammography, some of the components that play significant role to early diagnosis are the x-ray source, the breast composition as well as the composition of the x-ray converter. Various studies have previously investigated separately the influence of breast characteristics and detector configuration on the optimization of mammographic imaging systems. However, it is important to examine the combined effect of both components in improving the signal transfer properties in mammography systems of the mammograms. In the present study, the authors compared and evaluated x-ray converters using software breast models and realistic mammographic spectra in terms of: (a) zero-frequency detective quantum efficiency (DQE) and (b) sensitivity. The impact of x-ray converter thickness on contrast threshold (C{sub TH}) for observer assessment, based on the Rose model, was demonstrated as well. Methods: Monte Carlo techniques were applied to simulate the x-ray interactions within the software breast phantoms and thereafter within the detective medium. Simulations involved: (a) two mammographic x-ray spectra: 28 kV Mo, 0.030 mm Mo, and 32 kV W, 0.050 mm Rh of different entrance surface air kerma (ESAK: 3-7 mGy), (b) realistic breast models (dense and fatty) and (c) x-ray converter materials most frequently considered in investigations on energy integrating digital mammography detectors: the Gd{sub 2}O{sub 2}S:Tb granular phosphor, the CsI:Tl structured phosphor, and the a-Se photoconductive layer. Detector material thickness was considered to vary in the range from 50 mg/cm{sup 2} up to 150 mg/cm{sup 2}. Results: The Monte Carlo study showed that: (a) the x-ray beam becomes less penetrating after passing through dense breasts leading to higher values of zero-frequency DQE of the x-ray imaging converters and improved C{sub TH} values in all cases considered, (b) W/Rh target/filter combination results in improved C{sub TH} values at higher ESAK values, and (c) a

  7. A correlation of breast cancer and calcium levels in hair analyzed by X-ray fluorescence.

    Science.gov (United States)

    Chikawa, Jun-ichi; Mouri, Yoshitaka; Shima, Hiroki; Yamada, Kousaku; Yamamoto, Hitoshi; Yamamoto, Shingo

    2014-01-01

    Time variations of elemental concentrations and their abnormalities due to breast cancer have been observed along single hair strands by X-ray fluorescence excited by synchrotron radiation. The renal-controlled elements Ca, Sr, S, K, Cl, Br and P have upper and lower levels associated with gating and closing of ion channels in the hair-making cells. The Ca lower level is normal. In cases of Ca deficiency, with a decrease from the normal, store-operated Ca channel gating occurs so as to keep the hair Ca at the normal, and paradoxically high Ca levels near or at the upper level are produced by PTH-operated channel gating of the cells. Chronic Ca deficiency shows a temporal pattern along the hair consisting of a long-term duration of the upper [Ca] level, 10-month long decay to the lower level and abrupt increase to the upper level. The observation for hair from breast-cancer patients also shows the upper Ca level for the time period well before detection, and suggests that cancer is always generated at the long-lasting [Ca] upper level and the hair [Ca] decreases gradually toward the lower level with the cancer growth. This decay of [Ca] is accompanied by those of [Sr] and [K]. Their different decay forms can be explained by parathyroid hormone related peptide (PTHrP) in serum secreted from the cancer having 150 times longer dwell time on the PTH receptors than that of PTH. Patient hair has a memory for the entire cancer process from the state before cancer generation, and the pattern can be distinguished from concentration variation due to the chronic Ca deficiency without cancer, leading to a criterion for cancer detection by the ratio of [Sr]/[Ca]. The hair analysis is useful for early detection of cancer.

  8. Assessment of fluid distribution and flow properties in two phase fluid flow using X-ray CT technology

    Science.gov (United States)

    Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi

    2017-11-01

    To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.

  9. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    Science.gov (United States)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-04-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  10. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    Science.gov (United States)

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  11. Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-ray Phase CT

    Science.gov (United States)

    2016-08-01

    12 10. References…………………………………………………………… 13 1 1. INTRODUCTION: As the elderly population increases, dementia due to Alzheimer’s...termed in the literature) and image presentation or display.20, 27, 28 Such a separation is straightforward in digital imaging modal- ities, e.g., the...optional imaging method may degrade with decreasing detector cell dimension. Inclusively , all the imaging mech- anisms existing in the x-ray phase contrast

  12. Methane Hydrate Distribution from Prolonged and Repeated Formation in Natural and Compacted Sand Samples: X-Ray CT Observations

    Directory of Open Access Journals (Sweden)

    Emily V. L. Rees

    2011-01-01

    Full Text Available To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  13. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  14. Archaeometric studies by neutron, x-ray radiography and microCT

    Science.gov (United States)

    Latini, R. M.; Bellido, A. V. B.; Vinagre Filho, U. M.; Souza, M. I. S.; Lima, I.; Oliveira, D. F.; Lopes, R. T.

    2013-05-01

    The aim of this study is to investigate manufacturing techniques used in prehistoric Brazilian pottery from Acre state and Araruama, Rio de Janeiro state, Brazil, using Neutron and X-Ray Radiography. For the neutrongraphy different fragments of pottery were submitted to a neutron flux of the order of 105n.cm-2.s-1 for 3 minutes at the Argonauta research reactor of the Instituto de Engenharia Nuclear (IEN)/CNEN. Digital processing techniques using imaging plate were applied to process the image of the selected sample. For the radiography the sample were exposed to an X-Rays in the Feinfocus Model FX100 and the image was obtained by Flat Panel GE IT Model DXR 250V at the Laboratório de Instrumentação Nuclear (LIN) - COPPE/UFRJ. The Neutrongraphy and radiography shows two different manufacturing details: palette and rollers and the microtomography shows cavities in the clay body and different temper applied in the pottery production. The preliminary results shows promising techniques applied for the pottery manufacturing information and as complement for better understanding the ceramics classification and precedence.

  15. Pin-photodiode array for the measurement of fan-beam energy and air kerma distributions of X-ray CT scanners.

    Science.gov (United States)

    Haba, Tomonobu; Koyama, Shuji; Aoyama, Takahiko; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao; Kameyama, Hiroshi; Tsutsumi, Yoshinori

    2016-07-01

    Patient dose estimation in X-ray computed tomography (CT) is generally performed by Monte Carlo simulation of photon interactions within anthropomorphic or cylindrical phantoms. An accurate Monte Carlo simulation requires an understanding of the effects of the bow-tie filter equipped in a CT scanner, i.e. the change of X-ray energy and air kerma along the fan-beam arc of the CT scanner. To measure the effective energy and air kerma distributions, we devised a pin-photodiode array utilizing eight channels of X-ray sensors arranged at regular intervals along the fan-beam arc of the CT scanner. Each X-ray sensor consisted of two plate type of pin silicon photodiodes in tandem - front and rear photodiodes - and of a lead collimator, which only allowed X-rays to impinge vertically to the silicon surface of the photodiodes. The effective energy of the X-rays was calculated from the ratio of the output voltages of the photodiodes and the dose was calculated from the output voltage of the front photodiode using the energy and dose calibration curves respectively. The pin-photodiode array allowed the calculation of X-ray effective energies and relative doses, at eight points simultaneously along the fan-beam arc of a CT scanner during a single rotation of the scanner. The fan-beam energy and air kerma distributions of CT scanners can be effectively measured using this pin-photodiode array. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of a breast software model for 2D and 3D X-ray imaging studies of the breast.

    Science.gov (United States)

    Baneva, Yanka; Bliznakova, Kristina; Cockmartin, Lesley; Marinov, Stoyko; Buliev, Ivan; Mettivier, Giovanni; Bosmans, Hilde; Russo, Paolo; Marshall, Nicholas; Bliznakov, Zhivko

    2017-09-01

    In X-ray imaging, test objects reproducing breast anatomy characteristics are realized to optimize issues such as image processing or reconstruction, lesion detection performance, image quality and radiation induced detriment. Recently, a physical phantom with a structured background has been introduced for both 2D mammography and breast tomosynthesis. A software version of this phantom and a few related versions are now available and a comparison between these 3D software phantoms and the physical phantom will be presented. The software breast phantom simulates a semi-cylindrical container filled with spherical beads of different diameters. Four computational breast phantoms were generated with a dedicated software application and for two of these, physical phantoms are also available and they are used for the side by side comparison. Planar projections in mammography and tomosynthesis were simulated under identical incident air kerma conditions. Tomosynthesis slices were reconstructed with an in-house developed reconstruction software. In addition to a visual comparison, parameters like fractal dimension, power law exponent β and second order statistics (skewness, kurtosis) of planar projections and tomosynthesis reconstructed images were compared. Visually, an excellent agreement between simulated and real planar and tomosynthesis images is observed. The comparison shows also an overall very good agreement between parameters evaluated from simulated and experimental images. The computational breast phantoms showed a close match with their physical versions. The detailed mathematical analysis of the images confirms the agreement between real and simulated 2D mammography and tomosynthesis images. The software phantom is ready for optimization purpose and extrapolation of the phantom to other breast imaging techniques. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Optimizing configuration parameters of a stationary digital breast tomosynthesis system based on carbon nanotube x-ray sources

    Science.gov (United States)

    Tucker, Andrew; Qian, Xin; Gidcumb, Emily; Spronk, Derrek; Sprenger, Frank; Kuo, Johnny; Ng, Susan; Lu, Jianping; Zhou, Otto

    2012-03-01

    The stationary Digital Breast Tomosynthesis System (s-DBT) has the advantage over the conventional DBT systems as there is no motion blurring in the projection images associated with the x-ray source motion. We have developed a prototype s-DBT system by retrofitting a Hologic Selenia Dimensions rotating gantry tomosynthesis system with a distributed carbon nanotube (CNT) x-ray source array. The linear array consists of 31 x-ray generating focal spots distributed over a 30 degree angle. Each x-ray beam can be electronically activated allowing the flexibility and easy implementation of novel tomosynthesis scanning with different scanning parameters and configurations. Here we report the initial results of investigation on the imaging quality of the s-DBT system and its dependence on the acquisition parameters including the number of projections views, the total angular span of the projection views, the dose distribution between different projections, and the total dose. A mammography phantom is used to visually assess image quality. The modulation transfer function (MTF) of a line wire phantom is used to evaluate the system spatial resolution. For s-DBT the in-plan system resolution, as measured by the MTF, does not change for different configurations. This is in contrast to rotating gantry DBT systems, where the MTF degrades for increased angular span due to increased focal spot blurring associated with the x-ray source motion. The overall image quality factor, a composite measure of the signal difference to noise ratio (SdNR) for mass detection and the z-axis artifact spread function for microcalcification detection, is best for the configuration with a large angular span, an intermediate number of projection views, and an even dose distribution. These results suggest possible directions for further improvement of s-DBT systems for high quality breast cancer imaging.

  18. CT-guided brachytherapy of prostate cancer: reduction of effective dose from X-ray examination

    Science.gov (United States)

    Sanin, Dmitriy B.; Biryukov, Vitaliy A.; Rusetskiy, Sergey S.; Sviridov, Pavel V.; Volodina, Tatiana V.

    2014-03-01

    Computed tomography (CT) is one of the most effective and informative diagnostic method. Though the number of CT scans among all radiographic procedures in the USA and European countries is 11% and 4% respectively, CT makes the highest contribution to the collective effective dose from all radiographic procedures, it is 67% in the USA and 40% in European countries [1-5]. Therefore it is necessary to understand the significance of dose value from CT imaging to a patient . Though CT dose from multiple scans and potential risk is of great concern in pediatric patients, this applies to adults as well. In this connection it is very important to develop optimal approaches to dose reduction and optimization of CT examination. International Commission on Radiological Protection (ICRP) in its publications recommends radiologists to be aware that often CT image quality is higher than it is necessary for diagnostic confidence[6], and there is a potential to reduce the dose which patient gets from CT examination [7]. In recent years many procedures, such as minimally invasive surgery, biopsy, brachytherapy and different types of ablation are carried out under guidance of computed tomography [6;7], and during a procedures multiple CT scans focusing on a specific anatomic region are performed. At the Clinics of MRRC different types of treatment for patients with prostate cancer are used, incuding conformal CT-guided brachytherapy, implantation of microsources of I into the gland under guidance of spiral CT [8]. So, the purpose of the study is to choose optimal method to reduce radiation dose from CT during CT-guided prostate brachytherapy and to obtain the image of desired quality.

  19. Chest X-ray Artifact Caused by Bilateral 99mTc-Antimony Trisulfite Injection for Sentinel Node Imaging in a Patient With Breast Cancer.

    Science.gov (United States)

    Makis, William; Robinson, Don; McEwan, Alexander J B; Riauka, Terence A

    2016-04-01

    A 52-year-old woman diagnosed with invasive ductal carcinoma of both breasts had a chest x-ray for preoperative assessment. A striking artifact was noted by the x-ray technologist, who, as a result, became very concerned about radiation exposure from the patient. The patient had undergone bilateral sentinel lymph node injections in the nuclear medicine department with Tc-antimony trisulfite colloid just 2 hours before the chest x-ray. Radiation exposure to the x-ray technologist was determined to be similar to 8 hours of naturally occurring background radiation (∼2.96 μSv).

  20. Validation of the 4D NCAT simulation tools for use in high-resolution x-ray CT research

    Science.gov (United States)

    Segars, W. P.; Mahesh, Mahadevappa; Beck, T.; Frey, E. C.; Tsui, B. M. W.

    2005-04-01

    We validate the computer-based simulation tools developed in our laboratory for use in high-resolution CT research. The 4D NURBS-based cardiac-torso (NCAT) phantom was developed to provide a realistic and flexible model of the human anatomy and physiology. Unlike current phantoms in CT, the 4D NCAT has the advantage, due to its design, that its organ shapes can be changed to realistically model anatomical variations and patient motion. To efficiently simulate high-resolution CT images, we developed a unique analytic projection algorithm (including scatter and quantum noise) to accurately calculate projections directly from the surface definition of the phantom given parameters defining the CT scanner and geometry. The projection data are reconstructed into CT images using algorithms developed in our laboratory. The 4D NCAT phantom contains a level of detail that is close to impossible to produce in a physical test object. We, therefore, validate our CT simulation tools and methods through a series of direct comparisons with data obtained experimentally using existing, simple physical phantoms at different doses and using different x-ray energy spectra. In each case, the first-order simulations were found to produce comparable results (<12%). We reason that since the simulations produced equivalent results using simple test objects, they should be able to do the same in more anatomically realistic conditions. We conclude that, with the ability to provide realistic simulated CT image data close to that from actual patients, the simulation tools developed in this work will have applications in a broad range of CT imaging research.

  1. Understanding transport phenomena in electrochemical energy devices via X-ray nano CT

    Science.gov (United States)

    Tjaden, B.; Lane, J.; Brett, D. J. L.; Shearing, P. R.

    2017-06-01

    Porous support layers in electrochemical devices ensure mechanical stability of membrane assemblies such as solid oxide fuel cells and oxygen transport membranes (OTMs). At the same time, porous layers affect diffusive mass transport of gaseous reactants and contribute to performance losses at high fuel utilisation and conversion ratios. Microstructural characteristics are vital to calculate mass transport phenomena, where tortuosity remains notoriously difficult to determine. Here, the tortuosity of tubular porous support layers of OTMs is evaluated via high resolution X-ray nano computed tomography. The high resolution reveals the complex microstructure of the samples to then execute a selection of image-based tortuosity calculation algorithms. Visible differences between geometric and flux-based algorithms are observed and have thus to be applied with caution.

  2. X-Ray CT of Highly-Attenuating Objects: 9- or 15- MV Spectra?

    Energy Technology Data Exchange (ETDEWEB)

    Stone, G; Trebes, J; Perry, R; Schneberk, D; Logan, C

    2005-08-29

    We imaged-highly attenuating test objects in three dimensions with 9-MV (at LLNL) and 15-MV (at Hill Air Force Base) x-ray spectra. While we used the same detector and motion control, there were differences that we could not control in the two radiography bays and in the sources. The results show better spatial resolution for the 9-MV spectrum and better contrast for the 15-MV spectrum. The 15-MV data contains a noise pattern that obfuscates the data. It is our judgment that if sufficient attention were given to design of the bay, beam dump, collimation, filtration and linac spot size; a 15-MV imaging system using a flat panel could be developed with spatial resolution of 5 lp/mm and contrastive performance better than we have demonstrated using a 9-MV spectrum.

  3. Comparative dimensional study between panoramic X-ray (OPG and cone beam CT (CBCT

    Directory of Open Access Journals (Sweden)

    Tonea Marinela

    2016-08-01

    Full Text Available During daily practice, we find various situations in which the 1/1 correspondence between panoramic x-ray (OPG and reality seems not to be respected. In the studied literature, there are articles on this subject, but our study was made based on cases in a highly frequented dental imaging clinic in Bucharest. The study was carried out on a number of 24 patients selected from the radiology department. Using Romexis Viewer software, with soft’s specific feature, measurements have been made (in approximately horizontal and approximately vertical axis in three different areas: anterior, bicuspid and molar. Various results have been obtained, depending on the studied area. CBCT measured length of anterior teeth was higher than that measured on OPG, in the majority of cases. Molar width (mesio-distal distance parameter variation was very small between OPG and CBCT.

  4. Comparative aspects of occult intrasacral meningocele with conventional X-ray, myelography and CT

    Energy Technology Data Exchange (ETDEWEB)

    Grivegnee, A.; Delince, P.; Ectors, P.

    1981-09-01

    A case of occult intrasacral meningocele is reported and the diagnostic reliability of conventional roentgenography, myelography and CT for the management of this rare lesions are evaluated. Probably, CT with the use of an intrathecal contrast agent could yield the most complete information about the precise nature of this cystic congenital dysraphism.

  5. X-ray high resolution micro-CT of thin sections: A new calibration approach between classical "2D

    Science.gov (United States)

    Long, H.; Foubert, A.; Dewit, J.; Pauwels, B.; Swennen, R.

    2009-04-01

    phases; - Khuff carbonates, yielding a high oomoldic porosity with different degrees of dolomitisation and anhydrite cementation/replacement; - hydrothermal dolomites, where an attempt is made to calculate the amount of post -hydrothermal pore occluding calcite to define the original pore distribution before calcite cementation. The possibility to extrapolate the interpreted 2D thin-section CT image to the 3D rock volume represents a new revolutionary calibration method for CT results. This approach allows a more accurate segmentation of the 3D micro-CT results, which enables to work out a more consistent quantification of rock constituents (detrital and diagenetic mineral phases and porosity). Obviously the resolution of classical thin section microscopy or polished surface microscopic analysis is higher then the resolution acquired by present-day micro-CT. So, this approach can be seen as an important step in the development of an adequate "up-scale" methodology bridging the gap between 2D and 3D petrography each characterized by different scales and resolutions. Additionally, by geostatistical analysis and based on the calibrated 3D results of the scanned samples (after the proposed 2D thin section calibration method), comparison with and up-scaling to medical CT scans (at lower resolution) and finally core log analysis is possible. Keyword: high resolution micro-CT, thin section, calibration References Kerckhofs, G., Schrooten, J., Van Cleynenbreugel, T., Lomov, S.V., and Wevers, M., 2008. Validation of x-ray microfocus computed tomography as an imaging tool for porous structure. Review of Scientific Instruments 79, 013711 Van Geet, M., Swennen, R., David, P., 2001. Quantitative coal characterization by means of microfocus X-ray computer tomography, colour image analysis and back-scattered scanning electron microscopy. International Journal of Coal Geology 46, 11-25.

  6. An elastically compressible phantom material with mechanical and x-ray attenuation properties equivalent to breast tissue

    Science.gov (United States)

    Price, B. D.; Gibson, A. P.; Tan, L. T.; Royle, G. J.

    2010-02-01

    We have developed a novel phantom material: a solution of polyvinyl alcohol (PVAL) in ethanol and water, freeze-thawed to produce a solid yet elastically compressible gel. The x-ray attenuation and mechanical properties of these gels are compared with published measurements of breast tissue. Gels with PVAL concentrations from 5 to 20% w/v were produced. The linear x-ray attenuation coefficients of these gels range from 0.76 to 0.86 cm-1 at 17.5 keV, increasing with PVAL concentration. These values are very similar to the published values of breast tissue at this energy, 0.8-0.9 cm-1. Under compression cancerous breast tissue is approximately ten times stiffer than healthy breast tissue. The Young's moduli of the gels increase with PVAL concentration. Varying the PVAL concentration from 7.5 to 20% w/v produces gels with Young's moduli from 20 to 220 kPa at 15% strain. These values are characteristic of normal and cancerous breast tissue, respectively.

  7. Regional cerebral blood flow measurement by N-isopropyl-p-(/sup 123/I) iodoamphetamine. A comparison with X-ray CT findings in hemiplegic patients

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y.; Kuriyama, M.; Sudo, M.; Maeda, N.; Ishii, Y.; Konishi, K.; Nakamura, K.

    1987-05-01

    Eight patients with hemiplegia in chronic stages were studied with N-isopropyl-p-(/sup 123/I) iodoamphetamine (IMP) and single-photon emission computed tomography (SPECT) comparing with X-ray CT findings. In three patients, focal decreases of IMP were observed and these areas were larger than the abnormal areas found by X-ray CT. In the other five patients, hemispherical low perfusion of IMP was observed by SPECT, but X-ray CT showed severe atrophy with normal density. In two patients, cerebral angiography showed no abnormalities in the arterial phase. Regional cerebral blood flow measurement using IMP would be of great value in evaluating abnormal cerebral functions in the chronic state of acute infantile hemiplegia and cerebral palsy.

  8. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for X-ray computed tomography (CT) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of X-ray computed tomography (CT) imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitio...

  9. X-ray CT image reconstruction from few-views via total generalized p-variation minimization.

    Science.gov (United States)

    Hanming Zhang; Xiaoqi Xi; Bin Yan; Yu Han; Lei Li; Jianlin Chen; Ailong Cai

    2015-08-01

    Total variation (TV)-based CT image reconstruction, employing the image gradient sparsity, has shown to be experimentally capable of reducing the X-ray sampling rate and removing the unwanted artifacts, yet may cause unfavorable over-smoothing and staircase effects by the piecewise constant assumption. In this paper, we present a total generalized p-variation (TGpV) regularization model to adaptively preserve the edge information while avoiding the staircase effect. The new model is solved by splitting variables with an efficient alternating minimization scheme. With the utilization of generalized p-shrinkage mappings and partial Fourier transform, all the subproblems have closed solutions. The proposed method shows excellent properties of edge preserving as well as the smoothness features by the consideration of high order derivatives. Experimental results indicate that the proposed method could avoid the mentioned effects and reconstruct more accurately than both the TV and TGV minimization algorithms when applied to a few-view problem.

  10. Assessment of Brain absorbed X-ray dose during CT- Scan using ImPACT software in Tehran Univeristy hospitals

    Directory of Open Access Journals (Sweden)

    Khalilpour M

    2009-07-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: CT scan was first introduced into clinical practice in 1972, and since then has grown into one of the predominant diagnostic procedures. In 1998, the UK National Radiological Protection Board reported that 20% of the national collective dose from medical X-ray examinations derived from CT-scans, although it represented only 2% of all X- ray examinations the aim of this study was to determine the X-ray dosage received by patients in brain CT scan."n"n Methods: In this work, we have estimated patient dose arising from CT examination of brain in five hospitals in Tehran. Organ and effective doses were estimated for 150 patients who underwent CT examination of brain. "ImPACT" version 0.99v was used to estimate organ and effective dose. Brain examinations were performed with fixed Kvp, mAs and T (slice thickness for each scanner. "n"n Results: Patients, who were scanned by CT of emam Khomeini center (Toshiba Xvision /EX Scanner, received maximum organ dose (brain and minimum organ dose was delivered to patients who were scanned by CT of amir alam center (Toshiba Xvision /EX Scanner. Maximum effective dose was 1.7 mSv acquired in this study for emam Khomeini haspital, smaller than

  11. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    Science.gov (United States)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  12. A neural network-based method for spectral distortion correction in photon counting x-ray CT

    Science.gov (United States)

    Touch, Mengheng; Clark, Darin P.; Barber, William; Badea, Cristian T.

    2016-08-01

    Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables both 4 energy bins acquisition, as well as full-spectrum mode in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical effects in the detector and can be very noisy due to photon starvation in narrow energy bins. To address spectral distortions, we propose and demonstrate a novel artificial neural network (ANN)-based spectral distortion correction mechanism, which learns to undo the distortion in spectral CT, resulting in improved material decomposition accuracy. To address noise, post-reconstruction denoising based on bilateral filtration, which jointly enforces intensity gradient sparsity between spectral samples, is used to further improve the robustness of ANN training and material decomposition accuracy. Our ANN-based distortion correction method is calibrated using 3D-printed phantoms and a model of our spectral CT system. To enable realistic simulations and validation of our method, we first modeled the spectral distortions using experimental data acquired from 109Cd and 133Ba radioactive sources measured with our PCXD. Next, we trained an ANN to learn the relationship between the distorted spectral CT projections and the ideal, distortion-free projections in a calibration step. This required knowledge of the ground truth, distortion-free spectral CT projections, which were obtained by simulating a spectral CT scan of the digital version of a 3D-printed phantom. Once the training was completed, the trained ANN was used to perform

  13. Prediction of Permeability of Realistic and Virtual Layered Nonwovens using Combined Application of X-ray μCT and Computer Simulation

    OpenAIRE

    Soltani, P.; Zarrebini, M; Laghaei, R; Hassanpour, A.

    2017-01-01

    Fundamental understanding of transport properties of fibrous porous media is contingent upon in depth knowledge of their internal structure at the micro-scale. In this work computer simulations are explicitly coupled with X-ray micro-computed tomography (μCT) to investigate the effect of micro-structure on permeability of fibrous media. In order to reach this aim, samples of layered nonwoven fabrics were produced and realistic 3D images of their structure were prepared using X-ray μCT. A seri...

  14. Real-time fusion of coronary CT angiography with X-ray fluoroscopy during chronic total occlusion PCI

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshhajra, Brian B.; Takx, Richard A.P. [Harvard Medical School, Cardiac MR PET CT Program, Massachusetts General Hospital, Department of Radiology and Division of Cardiology, Boston, MA (United States); Stone, Luke L.; Yeh, Robert W.; Jaffer, Farouc A. [Harvard Medical School, Cardiac Cathetrization Laboratory, Cardiology Division, Massachusetts General Hospital, Boston, MA (United States); Girard, Erin E. [Siemens Healthcare, Princeton, NJ (United States); Brilakis, Emmanouil S. [Cardiology Division, Dallas VA Medical Center and UT Southwestern Medical Center, Dallas, TX (United States); Lombardi, William L. [University of Washington, Cardiology Division, Seattle, WA (United States)

    2017-06-15

    The purpose of this study was to demonstrate the feasibility of real-time fusion of coronary computed tomography angiography (CTA) centreline and arterial wall calcification with X-ray fluoroscopy during chronic total occlusion (CTO) percutaneous coronary intervention (PCI). Patients undergoing CTO PCI were prospectively enrolled. Pre-procedural CT scans were integrated with conventional coronary fluoroscopy using prototype software. We enrolled 24 patients who underwent CTO PCI using the prototype CT fusion software, and 24 consecutive CTO PCI patients without CT guidance served as a control group. Mean age was 66 ± 11 years, and 43/48 patients were men. Real-time CTA fusion during CTO PCI provided additional information regarding coronary arterial calcification and tortuosity that generated new insights into antegrade wiring, antegrade dissection/reentry, and retrograde wiring during CTO PCI. Overall CTO success rates and procedural outcomes remained similar between the two groups, despite a trend toward higher complexity in the fusion CTA group. This study demonstrates that real-time automated co-registration of coronary CTA centreline and calcification onto live fluoroscopic images is feasible and provides new insights into CTO PCI, and in particular, antegrade dissection reentry-based CTO PCI. (orig.)

  15. A new method for x-ray scatter correction: first assessment on a cone-beam CT experimental setup

    Energy Technology Data Exchange (ETDEWEB)

    Rinkel, J [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Gerfault, L [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Esteve, F [INSERM U647-RSRM, ESRF, BP200, 38043 Grenoble Cedex 09 (France); Dinten, J-M [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France)

    2007-08-07

    Cone-beam computed tomography (CBCT) enables three-dimensional imaging with isotropic resolution and a shorter acquisition time compared to a helical CT scanner. Because a larger object volume is exposed for each projection, scatter levels are much higher than in collimated fan-beam systems, resulting in cupping artifacts, streaks and quantification inaccuracies. In this paper, a general method to correct for scatter in CBCT, without supplementary on-line acquisition, is presented. This method is based on scatter calibration through off-line acquisition combined with on-line analytical transformation based on physical equations, to adapt calibration to the object observed. The method was tested on a PMMA phantom and on an anthropomorphic thorax phantom. The results were validated by comparison to simulation for the PMMA phantom and by comparison to scans obtained on a commercial multi-slice CT scanner for the thorax phantom. Finally, the improvements achieved with the new method were compared to those obtained using a standard beam-stop method. The new method provided results that closely agreed with the simulation and with the conventional CT scanner, eliminating cupping artifacts and significantly improving quantification. Compared to the beam-stop method, lower x-ray doses and shorter acquisition times were needed, both divided by a factor of 9 for the same scatter estimation accuracy.

  16. First-order convex feasibility algorithms for x-ray CT

    DEFF Research Database (Denmark)

    Sidky, Emil Y.; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2013-01-01

    . In this paper, we develop IIR algorithms which solve a certain type of optimization called convex feasibility. The convex feasibility approach can provide alternatives to unconstrained optimization approaches and at the same time allow for rapidly convergent algorithms for their solution—thereby facilitating...... problems. Conclusions: Formulation of convex feasibility problems can provide a useful alternative to unconstrained optimization when designing IIR algorithms for CT. The approach is amenable to recent methods for accelerating first-order algorithms which may be particularly useful for CT with limited......Purpose: Iterative image reconstruction (IIR) algorithms in computed tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times...

  17. X-ray CT and Laboratory Measurements on Glacial Till Subsoil Cores

    DEFF Research Database (Denmark)

    Lamande, Mathieu André Maurice; Wildenschild, Dorthe; Berisso, Feto Esimo

    2013-01-01

    The aim of this study was to articulate the potential of medical computed tomographic (CT) scanning for analyzing soil structure (macroporosity, soil matrix density, number of macropores) and how these estimates compare with, and complement, traditional laboratory measurements (bulk density, total...... was significant at the bottom of the same columns. This was not detectable by classical laboratory measurements. Variations in air permeability could be related to the CT-estimated number of pores but not to the CT-estimated air-filled macroporosity. Despite using a coarse resolution, the combination...... of visualization and traditional laboratory measurements proved valuable in identifying the persistent effects of subsoil compaction and the differences in soil structure among the two investigated subsoil layers. However, we recommend to systematically perform a sensitivity analysis to the segmentation threshold...

  18. MR Image Based Approach for Metal Artifact Reduction in X-Ray CT

    Directory of Open Access Journals (Sweden)

    Andras Anderla

    2013-01-01

    Full Text Available For decades, computed tomography (CT images have been widely used to discover valuable anatomical information. Metallic implants such as dental fillings cause severe streaking artifacts which significantly degrade the quality of CT images. In this paper, we propose a new method for metal-artifact reduction using complementary magnetic resonance (MR images. The method exploits the possibilities which arise from the use of emergent trimodality systems. The proposed algorithm corrects reconstructed CT images. The projected data which is affected by dental fillings is detected and the missing projections are replaced with data obtained from a corresponding MR image. A simulation study was conducted in order to compare the reconstructed images with images reconstructed through linear interpolation, which is a common metal-artifact reduction technique. The results show that the proposed method is successful in reducing severe metal artifacts without introducing significant amount of secondary artifacts.

  19. Correction for human head motion in helical x-ray CT

    Science.gov (United States)

    Kim, J.-H.; Sun, T.; Alcheikh, A. R.; Kuncic, Z.; Nuyts, J.; Fulton, R.

    2016-02-01

    Correction for rigid object motion in helical CT can be achieved by reconstructing from a modified source-detector orbit, determined by the object motion during the scan. This ensures that all projections are consistent, but it does not guarantee that the projections are complete in the sense of being sufficient for exact reconstruction. We have previously shown with phantom measurements that motion-corrected helical CT scans can suffer from data-insufficiency, in particular for severe motions and at high pitch. To study whether such data-insufficiency artefacts could also affect the motion-corrected CT images of patients undergoing head CT scans, we used an optical motion tracking system to record the head movements of 10 healthy volunteers while they executed each of the 4 different types of motion (‘no’, slight, moderate and severe) for 60 s. From these data we simulated 354 motion-affected CT scans of a voxelized human head phantom and reconstructed them with and without motion correction. For each simulation, motion-corrected (MC) images were compared with the motion-free reference, by visual inspection and with quantitative similarity metrics. Motion correction improved similarity metrics in all simulations. Of the 270 simulations performed with moderate or less motion, only 2 resulted in visible residual artefacts in the MC images. The maximum range of motion in these simulations would encompass that encountered in the vast majority of clinical scans. With severe motion, residual artefacts were observed in about 60% of the simulations. We also evaluated a new method of mapping local data sufficiency based on the degree to which Tuy’s condition is locally satisfied, and observed that areas with high Tuy values corresponded to the locations of residual artefacts in the MC images. We conclude that our method can provide accurate and artefact-free MC images with most types of head motion likely to be encountered in CT imaging, provided that the motion can

  20. Correction for human head motion in helical x-ray CT.

    Science.gov (United States)

    Kim, J-H; Sun, T; Alcheikh, A R; Kuncic, Z; Nuyts, J; Fulton, R

    2016-02-21

    Correction for rigid object motion in helical CT can be achieved by reconstructing from a modified source-detector orbit, determined by the object motion during the scan. This ensures that all projections are consistent, but it does not guarantee that the projections are complete in the sense of being sufficient for exact reconstruction. We have previously shown with phantom measurements that motion-corrected helical CT scans can suffer from data-insufficiency, in particular for severe motions and at high pitch. To study whether such data-insufficiency artefacts could also affect the motion-corrected CT images of patients undergoing head CT scans, we used an optical motion tracking system to record the head movements of 10 healthy volunteers while they executed each of the 4 different types of motion ('no', slight, moderate and severe) for 60 s. From these data we simulated 354 motion-affected CT scans of a voxelized human head phantom and reconstructed them with and without motion correction. For each simulation, motion-corrected (MC) images were compared with the motion-free reference, by visual inspection and with quantitative similarity metrics. Motion correction improved similarity metrics in all simulations. Of the 270 simulations performed with moderate or less motion, only 2 resulted in visible residual artefacts in the MC images. The maximum range of motion in these simulations would encompass that encountered in the vast majority of clinical scans. With severe motion, residual artefacts were observed in about 60% of the simulations. We also evaluated a new method of mapping local data sufficiency based on the degree to which Tuy's condition is locally satisfied, and observed that areas with high Tuy values corresponded to the locations of residual artefacts in the MC images. We conclude that our method can provide accurate and artefact-free MC images with most types of head motion likely to be encountered in CT imaging, provided that the motion can be

  1. Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.

    Science.gov (United States)

    Peng, Chengtao; Qiu, Bensheng; Li, Ming; Guan, Yihui; Zhang, Cheng; Wu, Zhongyi; Zheng, Jian

    2017-01-05

    Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands. In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets. By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality. No matter for the simulated datasets or the clinical datasets, the

  2. Macropore flow at the field scale: predictive performance of empirical models and X-ray CT analyzed macropore characteristics

    Science.gov (United States)

    Naveed, M.; Moldrup, P.; Schaap, M.; Tuller, M.; Kulkarni, R.; Vögel, H.-J.; Wollesen de Jonge, L.

    2015-11-01

    Predictions of macropore flow is important for maintaining both soil and water quality as it governs key related soil processes e.g. soil erosion and subsurface transport of pollutants. However, macropore flow currently cannot be reliably predicted at the field scale because of inherently large spatial variability. The aim of this study was to perform field scale characterization of macropore flow and investigate the predictive performance of (1) current empirical models for both water and air flow, and (2) X-ray CT derived macropore network characteristics. For this purpose, 65 cylindrical soil columns (6 cm diameter and 3.5 cm height) were extracted from the topsoil (5 to 8.5 cm depth) in a 15 m × 15 m grid from an agricultural loamy field located in Silstrup, Denmark. All soil columns were scanned with an industrial CT scanner (129 μm resolution) and later used for measurements of saturated water permeability, air permeability and gas diffusivity at -30 and -100 cm matric potentials. Distribution maps for both water and air permeabilities and gas diffusivity reflected no spatial correlation irrespective of the soil texture and organic matter maps. Empirical predictive models for both water and air permeabilities showed poor performance as they were not able to realistically capture macropore flow because of poor correlations with soil texture and bulk density. The tested empirical model predicted well gas diffusivity at -100 cm matric potential, but relatively failed at -30 cm matric potential particularly for samples with biopore flow. Image segmentation output of the four employed methods was nearly the same, and matched well with measured air-filled porosity at -30 cm matric potential. Many of the CT derived macropore network characteristics were strongly interrelated. Most of the macropore network characteristics were also strongly correlated with saturated water permeability, air permeability, and gas diffusivity. The correlations between macropore

  3. Investigation on the influence of image quality in X-ray CT metrology

    DEFF Research Database (Denmark)

    Müller, Pavel; Hiller, Jochen; Cantatore, Angela

    This paper presents a method for evaluating measuring errors in a CT system using information from quality of reconstruction images. In particular, spatial resolution and pixel noise are considered in this work. Both factors can be theoretically described using formulas, and can be expressed as a...

  4. Multimodality correlations of patellar height measurement on X-ray, CT, and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Pearlene P.; Chalian, Majid; Carrino, John A.; Eng, John; Chhabra, Avneesh [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2012-10-15

    To investigate whether the universally accepted range of normal patellar height ratios derived from radiography for the Insall-Salvati (IS) and Blackburne-Peel (BP) methods could be similarly applied to both CT and MRI. Institutional review board approval was obtained with waiver of informed consent for this HIPPA-compliant study. A total of 45 knees in 42 patients (15 men, 27 women; age range 11 to 75 years, mean age 39 {+-} 20 years) who underwent tri-modality (radiograph, CT, and MRI) examinations were selected. All patients had knee imaging obtained for a variety of reasons and measurements were performed by two independent readers who were blinded to each other's measurements or the respective measurements derived from each of the methods. Paired t test was used to compare the mean values among the modalities. Inter-observer and inter-method agreements were assessed using intra-class correlation coefficients. Statistically significant, but small quantitative differences are noted between tri-modality patellar height ratios. For comparable results, the small addition of 0.13 and 0.10 are needed for the Insall-Salvati measurements on MRI and CT respectively, compared with radiographs. For the Blackburne-Peel ratio, an additional adjustment of 0.09 is needed between radiographs and MRI, but not between radiographs and CT. These adjustments are independent of gender. The interobserver reproducibility was excellent (ICC {>=} 0.94) for both the Insall-Salvati and Blackburne-Peel methods for all modalities. The results indicate that cut-off values for patella alta and baja derived from radiographs should not be directly transposed to CT and MRI; however, the adjustments are relatively minor. These measurements show excellent reproducibility for all modalities currently used for patellar height measurements. (orig.)

  5. A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems.

    Science.gov (United States)

    Freed, Melanie; Park, Subok; Badano, Aldo

    2010-06-01

    Accurate models of detector blur are crucial for performing meaningful optimizations of three-dimensional (3D) x-ray breast imaging systems as well as for developing reconstruction algorithms that faithfully reproduce the imaged object anatomy. So far, x-ray detector blur has either been ignored or modeled as a shift-invariant symmetric function for these applications. The recent development of a Monte Carlo simulation package called MANTIS has allowed detailed modeling of these detector blur functions and demonstrated the magnitude of the anisotropy for both tomosynthesis and breast CT imaging systems. Despite the detailed results that MANTIS produces, the long simulation times required make inclusion of these results impractical in rigorous optimization and reconstruction algorithms. As a result, there is a need for detector blur models that can be rapidly generated. In this study, the authors have derived an analytical model for deterministic detector blur functions, referred to here as point response functions (PRFs), of columnar CsI phosphor screens. The analytical model is x-ray energy and incidence angle dependent and draws on results from MANTIS to indirectly include complicated interactions that are not explicitly included in the mathematical model. Once the mathematical expression is derived, values of the coefficients are determined by a two-dimensional (2D) fit to MANTIS-generated results based on a figure-of-merit (FOM) that measures the normalized differences between the MANTIS and analytical model results averaged over a region of interest. A smaller FOM indicates a better fit. This analysis was performed for a monochromatic x-ray energy of 25 keV, a CsI scintillator thickness of 150 microm, and four incidence angles (0 degrees, 15 degrees, 30 degrees, and 45 degrees). The FOMs comparing the analytical model to MANTIS for these parameters were 0.1951 +/- 0.0011, 0.1915 +/- 0.0014, 0.2266 +/- 0.0021, and 0.2416 +/- 0.0074 for 0 degrees, 15 degrees, 30

  6. Metasomatic Diamond Formation revealed by X-Ray CT Scanning of Diamondiferous Eclogites from Southern Africa

    Science.gov (United States)

    Richardson, S. H.; Kahle, R. L.; Shaw-Kahle, B.; Gurney, J. J.; du Plessis, A.

    2014-12-01

    In this study, a private collection of diamondiferous eclogite xenoliths has been made available for non-destructive investigation. All samples have at least one diamond visible. The samples are predominantly sourced from the Excelsior and Newlands mines (South Africa), with additional samples from Roberts Victor mine (South Africa) and Orapa (Botswana). 3D volume models of the samples were created using X-ray tomography. The 3D images reveal abundant secondary veining that is clearly younger than the eclogite. Diamonds are located in fluid pathways and occur in both altered garnet and altered clinopyroxene. Most of the veining is unrelated to the spatial positioning of diamond in the samples. In some instances, early veining has annealed or partially annealed, suggesting a range in timing of at least some of the several metasomatic events that have affected the rock. Importantly, in the most graphic examples, a clear distinction can be seen between diamond-bearing and non-diamond-bearing veins, even where sulphide is present in abundance in the non-diamond-bearing veins. The amount of diamond detected in the xenoliths varies from a single crystal to well over 50 diamonds forming more than 9% of the rock. This extreme value contrasts with the diamond recovery from currently viable diamond mines of less than 2ppm or 0.0002%. The morphology of the diamonds includes step-faced flat-faced octahedra, single crystals and aggregates. This is particularly a feature of diamonds in the Excelsior specimens. In the samples from Newlands and Orapa, in contrast, diamond surfaces reflect resorption processes such as rounding and corrosion of the diamonds. The following conclusions can be drawn from this study: Diamonds in this collection, sourced from within the Kalahari craton, appear to have formed by a metasomatic process during which fluids infiltrated pre-existing mantle-derived eclogite; Several metasomatic events have occurred during the residence of the eclogite in the

  7. X-ray phase-contrast CT imaging of the acupoints based on synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chenglin, Liu, E-mail: lclyctc@163.com [Physics Department of Yancheng Teachers’ College, Yancheng 224051 (China); Xiaohua, Wang; Hua, Xu [Physics Department of Yancheng Teachers’ College, Yancheng 224051 (China); Fang, Liu; Ruishan, Dang [Anatomy Department of Second Military Medical University, Shanghai 200433 (China); Dongming, Zhang; Xinyi, Zhang [Synchrotron Radiation Research Center of Fudan University, Shanghai 200433 (China); Honglan, Xie; Tiqiao, Xiao [Shanghai Synchrotron Radiation Facility of Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)

    2014-10-15

    In this paper, the morphology of the acupuncture point (abbreviated as acupoint hereafter) or tissue where there were no acupoints in the fractional rabbit hind limb was studied by in-line phase contrast CT imaging (PCI-CT) methods based on synchrotron radiation. The density of micro-vessels was calculated for tissues with acupoints or without acupoints. Differences between acupoints area and non-acupoint areas determined by the density of the micro-vessels propose a strong evidence of the existence of acupoints. Our results showed that there were two significantly higher densities of the micro-vessels, where two acupoints were located, respectively. In addition, there were large numbers of involutedly microvascular structure in the acupoint areas. Nevertheless, in non-acupoints area, the microvascular structure was relatively simple and flat.

  8. The development of an x-ray computerized tomography (CT) experimental system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G.N.; Kijek, M.M.; Millar, J.J. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    This paper describes a prototype experimental CT system that has been recently developed at Applied Physics, RMIT/ Physics, La Trobe UCNV. The system incorporates the scanning mode of the first generation CAT-scanner and is designed to perform the scanning of small objects. A microcomputer is used to control the scanning motions and data collection. The performance of the system was examined by scanning a ball-point pen. 8 refs., 4 figs.

  9. Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner

    KAUST Repository

    Wang, B

    2017-02-15

    The use of digital volume correlation (DVC) in combination with a laboratory x-ray computed tomography (CT) for full-field internal 3D deformation measurement of opaque materials has flourished in recent years. During x-ray tomographic imaging, the heat generated by the x-ray tube changes the imaging geometry of x-ray scanner, and further introduces noticeable errors in DVC measurements. In this work, to provide practical guidance high-accuracy DVC measurement, the errors in displacements and strains measured by DVC due to the self-heating for effect of a commercially available x-ray scanner were experimentally investigated. The errors were characterized by performing simple rescan tests with different scan durations. The results indicate that the maximum strain errors associated with the self-heating of the x-ray scanner exceed 400 µε. Possible approaches for minimizing or correcting these displacement and strain errors are discussed. Finally, a series of translation and uniaxial compression tests were performed, in which strain errors were detected and then removed using pre-established artificial dilatational strain-time curve. Experimental results demonstrate the efficacy and accuracy of the proposed strain error correction approach.

  10. Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner

    Science.gov (United States)

    Wang, B.; Pan, B.; Tao, R.; Lubineau, G.

    2017-04-01

    The use of digital volume correlation (DVC) in combination with a laboratory x-ray computed tomography (CT) for full-field internal 3D deformation measurement of opaque materials has flourished in recent years. During x-ray tomographic imaging, the heat generated by the x-ray tube changes the imaging geometry of x-ray scanner, and further introduces noticeable errors in DVC measurements. In this work, to provide practical guidance high-accuracy DVC measurement, the errors in displacements and strains measured by DVC due to the self-heating for effect of a commercially available x-ray scanner were experimentally investigated. The errors were characterized by performing simple rescan tests with different scan durations. The results indicate that the maximum strain errors associated with the self-heating of the x-ray scanner exceed 400 µε. Possible approaches for minimizing or correcting these displacement and strain errors are discussed. Finally, a series of translation and uniaxial compression tests were performed, in which strain errors were detected and then removed using pre-established artificial dilatational strain-time curve. Experimental results demonstrate the efficacy and accuracy of the proposed strain error correction approach.

  11. Evaluation of Microstructure and Transport Properties of Deteriorated Cementitious Materials from Their X-ray Computed Tomography (CT) Images.

    Science.gov (United States)

    Promentilla, Michael Angelo B; Cortez, Shermaine M; Papel, Regina Anne Dc; Tablada, Bernadette M; Sugiyama, Takafumi

    2016-05-19

    Pore structure, tortuosity and permeability are considered key properties of porous materials such as cement pastes to understand their long-term durability performance. Three-dimensional image analysis techniques were used in this study to quantify pore size, effective porosity, tortuosity, and permeability from the X-ray computed tomography (CT) images of deteriorated pastes that were subjected to accelerated leaching test. X-ray microtomography is a noninvasive three-dimensional (3D) imaging technique which has been recently gaining attention for material characterization. Coupled with 3D image analysis, the digitized pore can be extracted and computational simulation can be applied to the pore network to measure relevant microstructure and transport properties. At a spatial resolution of 0.50 μm, the effective porosity (ψ e ) was found to be in the range of 0.04 to 0.33. The characteristic pore size ( d ) using a local thickness algorithm was found to be in the range of 3 to 7 μm. The geometric tortuosity (τ g ) based on a 3D random walk simulation in the percolating pore space was found to be in the range of 2.00 to 7.45. The water permeability values ( K ) using US NIST Permeability Stokes Solver range from an order of magnitudes of 10 -14 to 10 -17 m². Indications suggest that as effective porosity increases, the geometric tortuosity increases and the permeability decreases. Correlation among these microstructure and transport parameters is also presented in this study.

  12. Evaluation of Microstructure and Transport Properties of Deteriorated Cementitious Materials from Their X-ray Computed Tomography (CT Images

    Directory of Open Access Journals (Sweden)

    Michael Angelo B. Promentilla

    2016-05-01

    Full Text Available Pore structure, tortuosity and permeability are considered key properties of porous materials such as cement pastes to understand their long-term durability performance. Three-dimensional image analysis techniques were used in this study to quantify pore size, effective porosity, tortuosity, and permeability from the X-ray computed tomography (CT images of deteriorated pastes that were subjected to accelerated leaching test. X-ray microtomography is a noninvasive three-dimensional (3D imaging technique which has been recently gaining attention for material characterization. Coupled with 3D image analysis, the digitized pore can be extracted and computational simulation can be applied to the pore network to measure relevant microstructure and transport properties. At a spatial resolution of 0.50 μm, the effective porosity (ψe was found to be in the range of 0.04 to 0.33. The characteristic pore size (d using a local thickness algorithm was found to be in the range of 3 to 7 μm. The geometric tortuosity (τg based on a 3D random walk simulation in the percolating pore space was found to be in the range of 2.00 to 7.45. The water permeability values (K using US NIST Permeability Stokes Solver range from an order of magnitudes of 10−14 to 10−17 m2. Indications suggest that as effective porosity increases, the geometric tortuosity increases and the permeability decreases. Correlation among these microstructure and transport parameters is also presented in this study.

  13. Pre-treatment patient-specific stopping power by combining list-mode proton radiography and x-ray CT

    Science.gov (United States)

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Hansen, David C.; Beaulieu, Luc; Seco, Joao

    2017-09-01

    The relative stopping power (RSP) uncertainty is the largest contributor to the range uncertainty in proton therapy. The purpose of this work was to develop a systematic method that yields accurate and patient-specific RSPs by combining (1) pre-treatment x-ray CT and (2) daily proton radiography of the patient. The method was formulated as a penalized least squares optimization problem (argmin(\\Vert {A}{x}-{b}\\Vert _22 )). The parameter A represents the cumulative path-length crossed by the proton in each material, separated by thresholding on the HU. The material RSPs (water equivalent thickness/physical thickness) are denoted by x. The parameter b is the list-mode proton radiography produced using Geant4 simulations. The problem was solved using a non-negative linear-solver with {x}≥slant0 . A was computed by superposing proton trajectories calculated with a cubic or linear spline approach to the CT. The material’s RSP assigned in Geant4 were used for reference while the clinical HU-RSP calibration curve was used for comparison. The Gammex RMI-467 phantom was first investigated. The standard deviation between the estimated material RSP and the calculated RSP is 0.45%. The robustness of the techniques was then assessed as a function of the number of projections and initial proton energy. Optimization with two initial projections yields precise RSP (⩽1.0%) for 330 MeV protons. 250 MeV protons have shown higher uncertainty (⩽2.0%) due to the loss of precision in the path estimate. Anthropomorphic phantoms of the head, pelvis, and lung were subsequently evaluated. Accurate RSP has been obtained for the head (μ =0.21+/-1.63% ), the lung (μ=0.06+/-0.99% ) and the pelvis (μ=0.90+/-3.87% ). The range precision has been optimized using the calibration curves obtained with the algorithm, yielding a mean R80 difference to the reference of 0.11  ±0.09%, 0.28  ±  0.34% and 0.05 +/- 0.06% in the same order. The solution’s accuracy is limited by the

  14. The challenge of imaging dense breast parenchyma: is magnetic resonance mammography the technique of choice? A comparative study with x-ray mammography and whole-breast ultrasound.

    Science.gov (United States)

    Pediconi, Federica; Catalano, Carlo; Roselli, Antonella; Dominelli, Valeria; Cagioli, Sabrina; Karatasiou, Angeliki; Pronio, AnnaMaria; Kirchin, Miles A; Passariello, Roberto

    2009-07-01

    To establish the value of magnetic resonance imaging (MRI) of the breast in comparison to x-ray mammography and ultrasound for breast cancer evaluation in women with dense breast parenchyma. Two hundred thirty-eight women with dense breast parenchyma who were suspicious for breast cancer or inconclusive for the presence of breast lesions based on clinical examination, ultrasound or x-ray mammography, and who underwent breast MRI at 1.5 T before and after administration of 0.1 mmol/kg gadobenate dimeglumine were evaluated. Lesions considered malignant (Breast Imaging Reporting and Data System (BI-RADS) 4 or 5) on x-ray mammography and/or ultrasound and as BI-RADS 3, 4, or 5 on MRI were evaluated histologically. Other lesions were followed up at 6 and/or 18 months. The diagnostic performance (sensitivity, specificity, accuracy, and positive and negative predictive values) of each technique was determined and compared using a general linear mixed model with appropriate correction for multiplicity. At final diagnosis 121 of 238 (50.8%) women had one or more confirmed malignant lesions, whereas 117 (49.2%) had benign lesions or no lesions. Among 97 women who underwent all 3 techniques more lesions (malignant and benign) were detected with breast MRI (n = 135) than with x-ray mammography (n = 85) or ultrasound (n = 107) and diagnostic confidence was greater. In terms of patient-based diagnostic accuracy breast MRI was significantly (P[r] ultrasound (96.9% accuracy for MRI vs. 60.8% for mammography and 66.0% for US). Malignant lesions were histologically confirmed in 55 of 97 women who underwent all 3 techniques. Breast MRI detected more cases of multifocal, multicentric, and contralateral disease and fewer misdiagnoses occurred. Overall, breast MRI led to a modification of the surgical approach for 28 (23.1%) of the 121 women with diagnosed malignant disease. Breast MRI should be considered for routine breast cancer evaluation in women with dense breast parenchyma.

  15. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    Science.gov (United States)

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.

  16. Microcapsules with Intrinsic Barium Radiopacity for Immunoprotection and X-ray/CT imaging of Pancreatic Islet Cells

    Science.gov (United States)

    Arifin, D.R.; Manek, S.; Call, E.; Arepally, A.; Bulte, J.W.M.

    2012-01-01

    Microencapsulation is a commonly used technique for immunoprotection of engrafted therapeutic cells. We investigated a library of capsule formulations to determine the most optimal formulation for pancreatic beta islet cell transplantation, using barium as the gelating ion and clinical-grade protamine sulfate (PS) as a new cationic capsule cross-linker. Barium-gelated alginate/PS/alginate microcapsules (APSA, diameter = 444±21 μm) proved to be mechanically stronger and supported a higher cell viability as compared to conventional alginate/poly-L-lysine/alginate (APLLA) capsules. Human pancreatic islets encapsulated inside APSA capsules, gelated with 20 mM barium as optimal concentration, exhibited a sustained morphological integrity, viability, and functionality for at least 3–4 weeks in vitro, with secreted human C-peptide levels of 0.2–160 pg/ml/islet. Unlike APLLA capsules that are gelled with calcium, barium-APSA capsules are intrinsically radiopaque and, when engrafted into mice, could be readily imaged in vivo with micro-computed tomography (CT). Without the need of adding contrast agents, these capsules offer a clinically applicable alternative for simultaneous immunoprotection and real-time, non-invasive X-ray/CT monitoring of engrafted cells during and after in vivo administration. PMID:22444642

  17. Microcapsules with intrinsic barium radiopacity for immunoprotection and X-ray/CT imaging of pancreatic islet cells.

    Science.gov (United States)

    Arifin, Dian R; Manek, Sameer; Call, Emma; Arepally, Aravind; Bulte, Jeff W M

    2012-06-01

    Microencapsulation is a commonly used technique for immunoprotection of engrafted therapeutic cells. We investigated a library of capsule formulations to determine the most optimal formulation for pancreatic beta islet cell transplantation, using barium as the gelating ion and clinical-grade protamine sulfate (PS) as a new cationic capsule cross-linker. Barium-gelated alginate/PS/alginate microcapsules (APSA, diameter = 444 ± 21 μm) proved to be mechanically stronger and supported a higher cell viability as compared to conventional alginate/poly-l-lysine/alginate (APLLA) capsules. Human pancreatic islets encapsulated inside APSA capsules, gelated with 20 mm barium as optimal concentration, exhibited a sustained morphological integrity, viability, and functionality for at least 3-4 weeks in vitro, with secreted human C-peptide levels of 0.2-160 pg/ml/islet. Unlike APLLA capsules that are gelled with calcium, barium-APSA capsules are intrinsically radiopaque and, when engrafted into mice, could be readily imaged in vivo with micro-computed tomography (CT). Without the need of adding contrast agents, these capsules offer a clinically applicable alternative for simultaneous immunoprotection and real-time, non-invasive X-ray/CT monitoring of engrafted cells during and after in vivo administration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Automated measurement of bone-mineral-density (BMD) values of vertebral bones based on X-ray torso CT images.

    Science.gov (United States)

    Zhou, X; Hayashi, T; Chen, H; Hara, T; Yokoyama, R; Kanematsu, M; Hoshi, H; Fujita, H

    2009-01-01

    Bone is one of the most important anatomical structures in humans and osteoporosis is one of the major public health concerns in the world. Osteoporosis is a main target disease of bone, which can be detected by medical image techniques. The purpose of this study is to develop a fully automated computer scheme to measure bone-mineral-density (BMD) values for vertebral trabecular bones. This scheme will aid osteoporosis diagnosis performed using computer tomography (CT) images. This scheme includes the following processing steps: segmentation of the bone region, recognition of the skeletal structures and measurement of the BMD value in vertebral trabecular bone of each vertebral body. The proposed scheme was applied to 20 X-ray torso CT cases to measure the BMD values for vertebral trabecular bones. The experimental results show that the mean and standard deviation of the difference between the BMD values measured by using the proposed method and those measured using a manual segmentation method were 6.93 mg/cm(3) and 6.82 mg/cm(3) respectively. The accuracy of the proposed scheme satisfied the requirement for a computer-aided system used in osteoporosis diagnosis.

  19. Model-Based Iterative Reconstruction for Dual-Energy X-Ray CT Using a Joint Quadratic Likelihood Model.

    Science.gov (United States)

    Zhang, Ruoqiao; Thibault, Jean-Baptiste; Bouman, Charles A; Sauer, Ken D; Hsieh, Jiang

    2014-01-01

    Dual-energy X-ray CT (DECT) has the potential to improve contrast and reduce artifacts as compared to traditional CT. Moreover, by applying model-based iterative reconstruction (MBIR) to dual-energy data, one might also expect to reduce noise and improve resolution. However, the direct implementation of dual-energy MBIR requires the use of a nonlinear forward model, which increases both complexity and computation. Alternatively, simplified forward models have been used which treat the material-decomposed channels separately, but these approaches do not fully account for the statistical dependencies in the channels. In this paper, we present a method for joint dual-energy MBIR (JDE-MBIR), which simplifies the forward model while still accounting for the complete statistical dependency in the material-decomposed sinogram components. The JDE-MBIR approach works by using a quadratic approximation to the polychromatic log-likelihood and a simple but exact nonnegativity constraint in the image domain. We demonstrate that our method is particularly effective when the DECT system uses fast kVp switching, since in this case the model accounts for the inaccuracy of interpolated sinogram entries. Both phantom and clinical results show that the proposed model produces images that compare favorably in quality to previous decomposition-based methods, including FBP and other statistical iterative approaches.

  20. Ex-situ time-lapse x-ray CT study of 3D micro-structural fatigue damage evolution in uni-directional composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Wang, Ying; Zangenberg Hansen, Jens

    2016-01-01

    In this study, the progress of damage under tension-tension fatigue of a uni-directional (UD) glass fibre composite made from a non-crimp fabric is studied using transilluminated white light imaging (TWLI) and X-ray computed tomography (CT). TWLI images are automatically captured throughout...

  1. A physical breast phantom for 2D and 3D x-ray imaging made through inkjet printing

    Science.gov (United States)

    Ikejimba, Lynda C.; Graff, Christian G.; Rosenthal, Shani; Badal, Andreu; Ghammraoui, Bahaa; Lo, Joseph Y.; Glick, Stephen J.

    2017-03-01

    Physical breast phantoms are used for imaging evaluation studies with 2D and 3D breast x-ray systems, serving as surrogates for human patients. However, there is a presently a limited selection of available phantoms that are realistic, in terms of containing the complex tissue architecture of the human breast. In addition, not all phantoms can be successfully utilized for both 2D and 3D breast imaging. Additionally, many of the phantoms are uniform or unrealistic in appearance, expensive, or difficult to obtain. The purpose of this work was to develop a new method to generate realistic physical breast phantoms using easy to obtain and inexpensive materials. First, analytical modeling was used to design a virtual model, which was then compressed using finite element modeling. Next, the physical phantom was realized through inkjet printing with a standard inkjet printer using parchment paper and specialized inks, formulated using silver nanoparticles and a bismuth salt. The printed phantom sheets were then aligned and held together using a custom designed support plate made of PMMA, and imaged on clinical FFDM and DBT systems. Objects of interest were also placed within the phantom to simulate microcalcifications, pathologies that often occur in the breast. The linear attenuation coefficients of the inks and parchment were compared against tissue equivalent samples and found to be similar to breast tissue. The phantom is promising for use in imaging studies and developing QC protocols.

  2. Polyenergetic known-component CT reconstruction with unknown material compositions and unknown x-ray spectra

    Science.gov (United States)

    Xu, S.; Uneri, A.; Khanna, A. Jay; Siewerdsen, J. H.; Stayman, J. W.

    2017-04-01

    Metal artifacts can cause substantial image quality issues in computed tomography. This is particularly true in interventional imaging where surgical tools or metal implants are in the field-of-view. Moreover, the region-of-interest is often near such devices which is exactly where image quality degradations are largest. Previous work on known-component reconstruction (KCR) has shown the incorporation of a physical model (e.g. shape, material composition, etc) of the metal component into the reconstruction algorithm can significantly reduce artifacts even near the edge of a metal component. However, for such approaches to be effective, they must have an accurate model of the component that include energy-dependent properties of both the metal device and the CT scanner, placing a burden on system characterization and component material knowledge. In this work, we propose a modified KCR approach that adopts a mixed forward model with a polyenergetic model for the component and a monoenergetic model for the background anatomy. This new approach called Poly-KCR jointly estimates a spectral transfer function associated with known components in addition to the background attenuation values. Thus, this approach eliminates both the need to know component material composition a prior as well as the requirement for an energy-dependent characterization of the CT scanner. We demonstrate the efficacy of this novel approach and illustrate its improved performance over traditional and model-based iterative reconstruction methods in both simulation studies and in physical data including an implanted cadaver sample.

  3. Performance of a carbon nanotube field emission X-ray source array for stationary digital breast tomosynthesis

    Science.gov (United States)

    Gidcumb, Emily Morgan

    This work describes the performance of a stationary digital breast tomosynthesis (s-DBT) X-ray tube based on carbon nanotube (CNT) cathodes, and the imaging system developed around it. The s-DBT system has the potential to improve the detection and diagnosis of breast cancer over commercially available digital breast tomosynthesis (DBT) systems. DBT is growing in popularity in the United States, and around the world, as a potential replacement for traditional 2D mammography. The main advantage of DBT over 2D mammography lies in the pseudo-3D nature of the technique allowing the removal of overlapping breast tissue within the image. s-DBT builds on this advantage by removing blur from focal spot motion. Introductions to breast imaging techniques and the DBT modality are given, followed by an introduction to carbon nanotube field emission, the foundation of the s-DBT technology. Details of the s-DBT X-ray tube design and system integration are discussed including specific design parameters, system requirements, and the development process. Also included are summaries of the X-ray tube and system performance over time, and results from characterization measurements. Specific focus is given to the development and completion of a fabrication procedure for tungsten gate mesh, characterization of the CNT cathodes, and improving the system's spatial resolution with use of the focusing electrodes. The tungsten gate mesh is an essential component for extracting electrons from CNTs. A successful deep reactive ion etching fabrication procedure was developed, and the improved gate mesh allowed for higher cathode current and longer pulse widths to be employed in the s-DBT system. Characterization of the CNT cathodes revealed their high-current capacity and the ability to produce relatively long pulse widths, mimicking a 2D imaging modality. This work confirmed that the cathodes are well suited for the task of breast imaging, and explored possible improvements. Lastly, it was

  4. Characterization of breast calcification types using dual energy x-ray method

    Science.gov (United States)

    Martini, N.; Koukou, V.; Fountos, G.; Michail, C.; Bakas, A.; Kandarakis, I.; Speller, R.; Nikiforidis, G.

    2017-10-01

    Calcifications are products of mineralization whose presence is usually associated with pathological conditions. The minerals mostly seen in several diseases are calcium oxalate (CaC2O4), calcium carbonate (CaCO3) and hydroxyapatite (HAp). Up to date, there is no in vivo method that could discriminate between minerals. To this aim, a dual energy x-ray method was developed in the present study. An analytical model was implemented for the determination of the Calcium/Phosphorus mass ratio ({{{m}Ca}}/{{{m}P}} ). The simulation was carried out using monoenergetic and polyenergetic x-rays and various calcification thicknesses (100-1000 μ m ) and types (CaC2O4, CaCO3, HAp). The experimental evaluation of the method was performed using the optimized irradiation conditions obtained from the simulation study. X-ray tubes, combined with energy dispersive and energy integrating (imaging) detectors, were used for the determination of the {{{m}Ca}}/{{{m}P}} in phantoms of different mineral types and thicknesses. Based on the results of the experimental procedure, statistical significant difference was observed between the different types of minerals when calcification thicknesses were 300 μ m or higher.

  5. Explaining Air and Water Transport in Undisturbed Soils By X-Ray CT Derived Macroporosity and CT- Number-Derived Matrix Density

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per

    The characterization of soil pore space geometry is important to predict the fluxes of air, water and solutes through soil and understand soil hydrogeochemical functions. X-ray computed tomography (CT) -derived parameters were evaluated as predictors of water, air and solute transport through soil...... CTmatrix and limiting macroporosity, while the best model for t0.05 used only CTmatrix. The resolution of the scanning and the time for soil structure development after mechanical activities can be factors that increased the uncertainty of the proposed models. Nevertheless, the results confirmed....... Forty five soil columns (20-cm × 20-cm) were collected at an agricultural field in Estrup, Denmark. The soil columns were scanned in a medical CT-scanner. Subsequent to this, non-reactive tracer leaching experiments were performed in the laboratory together with measurements of air permeability (Ka...

  6. Evolution of spatial resolution in breast CT at UC Davis

    Energy Technology Data Exchange (ETDEWEB)

    Gazi, Peymon M. [Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616 (United States); Yang, Kai [Department of Radiological Sciences, University of Oklahoma Health Sciences Center, 940 N.E. 13th Street, Nicholson Tower, Oklahoma City, Oklahoma 73104 (United States); Burkett, George W.; Aminololama-Shakeri, Shadi [Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States); Anthony Seibert, J.; Boone, John M., E-mail: john.boone@ucdmc.ucdavis.edu [Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616 and Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States)

    2015-04-15

    Purpose: Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. Methods: Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). Results: Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 × 2 to 1 × 1. Conclusions: These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image

  7. A constrained, total-variation minimization algorithm for low-intensity X-ray CT

    CERN Document Server

    Sidky, Emil Y; Ullberg, Christer; Pan, Xiaochuan

    2010-01-01

    Purpose: We develop an iterative image-reconstruction algorithm for application to low-intensity computed tomography (CT) projection data, which is based on constrained, total-variation (TV) minimization. The algorithm design focuses on recovering structure on length scales comparable to a detector-bin width. Method: Recovering the resolution on the scale of a detector bin, requires that pixel size be much smaller than the bin width. The resulting image array contains many more pixels than data, and this undersampling is overcome with a combination of Fourier upsampling of each projection and the use of constrained, TV-minimization, as suggested by compressive sensing. The presented pseudo-code for solving constrained, TV-minimization is designed to yield an accurate solution to this optimization problem within 100 iterations. Results: The proposed image-reconstruction algorithm is applied to a low-intensity scan of a rabbit with a thin wire, to test resolution. The proposed algorithm is compared with filtere...

  8. Anatomy-based registration of CT-scan and x-ray fluoroscopy data for intraoperative guidance of a surgical robot

    Science.gov (United States)

    Gueziec, Andre P.; Kazanzides, Peter; Williamson, Bill; Taylor, Russell H.; Lord, D.

    1998-06-01

    We describe a new method for rigid registration of a pre- operative CT-scan image to a set of intra-operative x-ray fluoroscopic images, for guiding a surgical robot to its trajectory planned from CT. Our goal is to perform the registration, i.e. compute a rotation and translation of one data set with respect to the other to within a prescribed accuracy, based upon bony anatomy only, without external fiducial markers.

  9. On the prediction of X-ray dose deviations and the influence of CT scan protocols

    Science.gov (United States)

    Du Plessis, Freek CP

    2017-09-01

    Patients undergoing computerized tomography (CT) scans for tumor localization and treatment planning are frequently scanned using pre-set customized exposure protocols for optimal imaging of different anatomical sites. The question arises if these scanning protocols will produce a deviation in the Hounsfield number for a given tissue that can afterwards be used to predict the resulting dose calculation deviation due to this. The question is also if the deviation in the Hounsfield number of a tissue is large enough to affect dose calculation clinically significant. A study was devised in which a RMI phantom was scanned with five different scanning protocols and two CT beam energies at 120 and 135 kV. To assess the effect of insert configuration, Hounsfield number measurements were repeated for high density RMI inserts in the center and outer rings in the phantom. For each material insert the standard deviation of the Hounsfield number was calculated. To assist in dose prediction a series of DOSXYZnrc Monte Carlo calculations were carried out for beam qualities between 6 and 16 MV for a range of Hounsfield numbers calculated for bone and water. This provided information on how the depth dose varied as a function of Hounsfield number variation. Lastly, a series of treatment plans were setup for absorbed dose calculation using the RMI insert electron densities vs Hounsfield relations measured above. The absorbed dose of corresponding plans with the largest Hounsfield number variation were subtracted to find the dose discrepancies. It was found that the dose discrepancies in tissue types could be indicated by the deviation of the Hounsfield number due to different scanning protocols. The calculated dose difference were in all cases within 3%.

  10. Computational tools and methods for objective assessment of image quality in x-ray CT and SPECT

    Science.gov (United States)

    Palit, Robin

    Computational tools of use in the objective assessment of image quality for tomography systems were developed for computer processing units (CPU) and graphics processing units (GPU) in the image quality lab at the University of Arizona. Fast analytic x-ray projection code called IQCT was created to compute the mean projection image for cone beam multi-slice helical computed tomography (CT) scanners. IQCT was optimized to take advantage of the massively parallel architecture of GPUs. CPU code for computing single photon emission computed tomography (SPECT) projection images was written calling upon previous research in the image quality lab. IQCT and the SPECT modeling code were used to simulate data for multi-modality SPECT/CT observer studies. The purpose of these observer studies was to assess the benefit in image quality of using attenuation information from a CT measurement in myocardial SPECT imaging. The observer chosen for these studies was the scanning linear observer. The tasks for the observer were localization of a signal and estimation of the signal radius. For the localization study, area under the localization receiver operating characteristic curve (A LROC) was computed as AMeasLROC = 0.89332 ± 0.00474 and ANoLROC = 0.89408 ± 0.00475, where "Meas" implies the use of attenuation information from the CT measurement, and "No" indicates the absence of attenuation information. For the estimation study, area under the estimation receiver operating characteristic curve (AEROC) was quantified as AMeasEROC = 0.55926 ± 0.00731 and ANoEROC = 0.56167 ± 0.00731. Based on these results, it was concluded that the use of CT information did not improve the scanning linear observer's ability to perform the stated myocardial SPECT tasks. The risk to the patient of the CT measurement was quantified in terms of excess effective dose as 2.37 mSv for males and 3.38 mSv for females. Another image quality tool generated within this body of work was a singular value

  11. Two and three-dimensional morphometric analysis of trabecular bone using X-ray microtomography (μCT)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandro Marcio Hakme da; Silva, Orivaldo Lopes da; Silva Junior, Nelson Ferreira da, E-mail: alhakme@sc.usp.br [Universidade de Sao Paulo (EESC/FMRP/IQSC/USP), Sao Carlos, SP (Brazil); Alves, Jose Marcos [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Departamento de Engenharia Eletrica e Computacao

    2014-07-01

    Introduction: trabecular bones have a porous microstructure and can be modeled as linear elastic solids, heterogeneous and anisotropic. In the literature, few investigations have compared the two- dimensional (2D) and three-dimensional (3D) morphometric analyses of cancellous bone. Methods: In this investigation eighteen cylindrical samples of cancellous bone (10 mm of diameter and 20 mm of height) were obtained from six bovine head femurs, with similar values for the weight and age, of the same race and gender. The samples were harvested and freeze at - 20 °C before carrying out the micro CT analysis. The CT-Analyzer software was used to measure in three directions (superior-inferior, lateral-medial and anterior-posterior) parameters such as trabecular thickness, trabecular separation, trabecular number and the eigenvalues of the fabric tensor (M). Results: the Comparison of 2D and 3D analyses for the parameters: 2D (plate model) trabecular thickness, trabecular separation and trabecular number were statistically different (p = 0) showing that measurements are not similar to the 3D ones. However, 2D (rod model) trabecular thickness and 3D trabecular thickness measurements presented no significant difference (p = 0.26). The eigenvalues show that the bovine trabecular microstructure has a tendency to transversally isotropic symmetry. Discussion: The method proved to be quite interesting for the characterization of the bone structure through 3D measurements of trabecular bone morphometric parameters in the three possible directions of loading. The results show that x-ray microtomography (μCT) is a technique of great potential for characterization and generating bone quality parameters for the diagnosis of bone metabolism diseases. (author)

  12. Effects of infrared laser on the bone repair assessed by x-ray microtomography (μct) and histomorphometry

    Science.gov (United States)

    Paolillo, Alessandra Rossi; Paolillo, Fernanda Rossi; da Silva, Alessandro M. Hakme; Reiff, Rodrigo Bezerra de Menezes; Bagnato, Vanderlei Salvador; Alves, José Marcos

    2015-06-01

    The bone fracture is important public health problems. The lasertherapy is used to accelerate tissue healing. Regarding diagnosis, few methods are validated to follow the evolution of bone microarchitecture. The aim of this study was to evaluate the effects of lasertherapy on bone repair with x-ray microtomography (μCT) and histomorphometry. A transverse rat tibia osteotomy with a Kirchner wire and a 2mm width polymeric spacer beads were used to produce a delayed bone union. Twelve rats were divided into two groups: (i) Control Group: untreated fracture and; (ii) Laser Group: fracture treated with laser. Twelve sessions of treatment (808nm laser, 100mW, 125J/cm2, 50seconds) were performed. The μCT scanner parameters were: 100kV, 100μA, Al+Cu filter and 9.92μm resolution. A volume of interest (VOI) was chosen with 300 sections above and below the central region of the fracture, totaling 601sections with a 5.96mm. The softwares CT-Analyzer, NRecon and Mimics were used for 2D and 3D analysis. A histomorphometry analysis was also performed. The connectivity (Conn) showed significant increase for Laser Group than Control Group (32371+/-20689 vs 17216+/-9467, p<0.05). There was no significant difference for bone volume (59+/-19mm3 vs 47+/- 8mm3) and histomorfometric data [Laser and Control Groups showed greater amount of cartilaginous (0.19+/-0.05% vs 0.11+/-0.09%) and fibrotic (0.21+/-0.12% vs 0.09+/-0.11%) tissues]. The negative effect was presence of the cartilaginous and fibrotic tissues which may be related to the Kirchner wire and the non-absorption of the polymeric that may have influenced negatively the light distribution through the bone. However, the positive effect was greater bone connectivity, indicating improvement in bone microarchitecture.

  13. Analysis of cracks induced by elevated temperature in rock using micro-focus X-ray CT

    Science.gov (United States)

    Cheon, D. S.; Park, E. S.

    2016-12-01

    Thermal energy storage facilities and deep borehole nuclear waste disposal in the underground are repeatedly applied by heat. The thermal stress induced by heat can generate micro-cracks and extend the existing micro-cracks of rocks. For long-term stabilities of the above facilities, the features of thermal induced cracks should be investigated. In this paper, we investigated occurred the features of thermal cracks using micro-focus X-ray CT before and after thermal experiments. Two different kinds of rock core specimens (limestone, granite) were heated within the furnace with the elevated temperatures of 250 °C, 400 °C and 550 °C. In thermal experiments, we heated rocks with the speed of 1.5 ºC /min to avoid thermal shock. Total 16 cases were subjected to X-ray imaging and post-processing to observe thermally induced fractures. Micro-cracks induced by thermal loading may not be extractable by a thresholding method such that the manual tracking within the ROI (Region of Interest) was implemented by using the VG Studio Software. Identified fractures were grouped by each object whose orientation was fitted by 3D plane. And then, its normal vector was computed and visualized. Nominal fractures (less than 10 voxel size) were excluded. Each fracture was projected on the 3D sphere and its volume was represented by color map. Thermal induced cracks in the limestone observed on CT images were very small. On the other hand, they could be more clearly observed in the granite. In case of limestone, the number of cracks is only 4 after heating up 550 °C and most of them occurred within the mineral. In case of granite, 157 cracks are detected both at the boundaries of minerals and within the mineral. In both rocks, the development of thermal cracks within a certain mineral was superior to them that occurred along the interface between minerals. After heating up to 550 °C the occurred cracks significantly increased. Crack volume was also similar pattern to the number of

  14. Feasibility of using single photon counting X-ray for lung tumor position estimation based on 4D-CT

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbrenner, Katharina P.; Hesser, Juergen W. [Heidelberg Univ., Mannheim (Germany). Dept. of Experimental Radiation Oncology; Heidelberg Univ. (Germany). IWR; Guthier, Christian V. [Heidelberg Univ., Mannheim (Germany). Dept. of Experimental Radiation Oncology; Lyatskaya, Yulia [Brigham and Women' s Center, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Boda-Heggemann, Judit; Wenz, Frederik [Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology

    2017-10-01

    In stereotactic body radiation therapy of lung tumors, reliable position estimation of the tumor is necessary in order to minimize normal tissue complication rate. While kV X-ray imaging is frequently used, continuous application during radiotherapy sessions is often not possible due to concerns about the additional dose. Thus, ultra low-dose (ULD) kV X-ray imaging based on a single photon counting detector is suggested. This paper addresses the lower limit of photons to locate the tumor reliably with an accuracy in the range of state-of-the-art methods, i.e. a few millimeters. 18 patient cases with four dimensional CT (4D-CT), which serves as a-priori information, are included in the study. ULD cone beam projections are simulated from the 4D-CTs including Poisson noise. The projections from the breathing phases which correspond to different tumor positions are compared to the ULD projection by means of Poisson log-likelihood (PML) and correlation coefficient (CC), and template matching under these metrics. The results indicate that in full thorax imaging five photons per pixel suffice for a standard deviation in tumor positions of less than half a breathing phase. Around 50 photons per pixel are needed to achieve this accuracy with the field of view restricted to the tumor region. Compared to CC, PML tends to perform better for low photon counts and shifts in patient setup. Template matching only improves the position estimation in high photon counts. The quality of the reconstruction is independent of the projection angle. The accuracy of the proposed ULD single photon counting system is in the range of a few millimeters and therefore comparable to state-of-the-art tumor tracking methods. At the same time, a reduction in photons per pixel by three to four orders of magnitude relative to commercial systems with flatpanel detectors can be achieved. This enables continuous kV image-based position estimation during all fractions since the additional dose to the

  15. Smoothed l0 Norm Regularization for Sparse-View X-Ray CT Reconstruction

    Directory of Open Access Journals (Sweden)

    Ming Li

    2016-01-01

    Full Text Available Low-dose computed tomography (CT reconstruction is a challenging problem in medical imaging. To complement the standard filtered back-projection (FBP reconstruction, sparse regularization reconstruction gains more and more research attention, as it promises to reduce radiation dose, suppress artifacts, and improve noise properties. In this work, we present an iterative reconstruction approach using improved smoothed l0 (SL0 norm regularization which is used to approximate l0 norm by a family of continuous functions to fully exploit the sparseness of the image gradient. Due to the excellent sparse representation of the reconstruction signal, the desired tissue details are preserved in the resulting images. To evaluate the performance of the proposed SL0 regularization method, we reconstruct the simulated dataset acquired from the Shepp-Logan phantom and clinical head slice image. Additional experimental verification is also performed with two real datasets from scanned animal experiment. Compared to the referenced FBP reconstruction and the total variation (TV regularization reconstruction, the results clearly reveal that the presented method has characteristic strengths. In particular, it improves reconstruction quality via reducing noise while preserving anatomical features.

  16. Sparse-view x-ray CT reconstruction via total generalized variation regularization.

    Science.gov (United States)

    Niu, Shanzhou; Gao, Yang; Bian, Zhaoying; Huang, Jing; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua

    2014-06-21

    Sparse-view CT reconstruction algorithms via total variation (TV) optimize the data iteratively on the basis of a noise- and artifact-reducing model, resulting in significant radiation dose reduction while maintaining image quality. However, the piecewise constant assumption of TV minimization often leads to the appearance of noticeable patchy artifacts in reconstructed images. To obviate this drawback, we present a penalized weighted least-squares (PWLS) scheme to retain the image quality by incorporating the new concept of total generalized variation (TGV) regularization. We refer to the proposed scheme as 'PWLS-TGV' for simplicity. Specifically, TGV regularization utilizes higher order derivatives of the objective image, and the weighted least-squares term considers data-dependent variance estimation, which fully contribute to improving the image quality with sparse-view projection measurement. Subsequently, an alternating optimization algorithm was adopted to minimize the associative objective function. To evaluate the PWLS-TGV method, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present PWLS-TGV method can achieve images with several noticeable gains over the original TV-based method in terms of accuracy and resolution properties.

  17. Sparse-view x-ray CT reconstruction via total generalized variation regularization

    Science.gov (United States)

    Niu, Shanzhou; Gao, Yang; Bian, Zhaoying; Huang, Jing; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua

    2014-06-01

    Sparse-view CT reconstruction algorithms via total variation (TV) optimize the data iteratively on the basis of a noise- and artifact-reducing model, resulting in significant radiation dose reduction while maintaining image quality. However, the piecewise constant assumption of TV minimization often leads to the appearance of noticeable patchy artifacts in reconstructed images. To obviate this drawback, we present a penalized weighted least-squares (PWLS) scheme to retain the image quality by incorporating the new concept of total generalized variation (TGV) regularization. We refer to the proposed scheme as ‘PWLS-TGV’ for simplicity. Specifically, TGV regularization utilizes higher order derivatives of the objective image, and the weighted least-squares term considers data-dependent variance estimation, which fully contribute to improving the image quality with sparse-view projection measurement. Subsequently, an alternating optimization algorithm was adopted to minimize the associative objective function. To evaluate the PWLS-TGV method, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present PWLS-TGV method can achieve images with several noticeable gains over the original TV-based method in terms of accuracy and resolution properties.

  18. Lanthanide-based nanocrystals as dual-modal probes for SPECT and X-ray CT imaging.

    Science.gov (United States)

    Wu, Yongquan; Sun, Yun; Zhu, Xingjun; Liu, Qian; Cao, Tianye; Peng, Juanjuan; Yang, Yang; Feng, Wei; Li, Fuyou

    2014-05-01

    Applications of lanthanide-based nanoparticles for bioimaging have attracted increasing attention. Herein, small size PEG-EuOF:(153)Sm nanocrystals (∼5 nm) (PEG = poly(ethylene glycol)bis(carboxymethyl)ether) combined with the radioactive and X-ray absorption properties were synthesized. The distribution of the PEG-EuOF nanocrystals in living animals was studied by ex vivo radioassay, inductively coupled plasma-atomic emission spectrum (ICP-AES) analysis and in vivo SPECT imaging, which indicated that the small size PEG-EuOF:(153)Sm had long blood retention time (blood half-life (t1/2) reach to 4.65 h) and were eliminated significantly through biliary/gastrointestinal pathway in vivo. Meanwhile, benefiting from the high attenuation ability of Eu, the small size PEG-EuOF was successfully applied for lymph node CT imaging, extending the bio-applications of these small nanocrystals. The results of cytotoxicity and in vivo toxicity also showed that the PEG-EuOF nanocrystals have relatively low toxicity, which suggest their safety for in vivo imaging. The studies provide preliminary validation for the use of PEG-EuOF nanocrystals for in vivo bioimaging applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Automated segmentation of psoas major muscle in X-ray CT images by use of a shape model: preliminary study.

    Science.gov (United States)

    Kamiya, Naoki; Zhou, Xiangrong; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2012-01-01

    Our motivation was to provide an automatic tool for radiologists and orthopedic surgeons for improving the quality of life of an aging population. We propose a method for generating a shape model and a fully automated segmenting scheme for the psoas major muscle in X-ray CT images by using the shape model. Our approach consists of two steps: (1) The generation of a shape model and its application to muscle segmentation. The shape model describes the muscle's outer shape and has two parameters, an outer shape parameter and a fitting parameter. The former was determined by approximating of the outer shape of the muscle region in training cases. The latter was determined for each test case in the recognition process. (2) Finally, the psoas major muscle was segmented by use of the shape model. To evaluate the performance of the method, we applied it to CT images for constructing the shape models by using 20 cases as training samples; 80 cases were used for testing. The accuracy of this method was measured by comparison of the extracted muscle regions with regions that were identified manually by an expert radiologist. The experimental results of the segmentation of the psoas major muscle gave a mean Jaccard similarity coefficient of 72.3%. The mean true segmentation coefficient was 76.2%. The proposed method can be used for the analysis of cross-sectional area and muscular thickness in a transverse section, offering radiologists an alternative to manual measurement for saving their time and improving the reproducibility of segmentation.

  20. Iterative reconstruction for sparse-view x-ray CT using alpha-divergence constrained total generalized variation minimization.

    Science.gov (United States)

    Niu, Shanzhou; Huang, Jing; Bian, Zhaoying; Zeng, Dong; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua

    2017-04-05

    Accurate statistical model of the measured projection data is essential for computed tomography (CT) image reconstruction. The transmission data can be described by a compound Poisson distribution upon an electronic noise background. However, such a statistical distribution is numerically intractable for image reconstruction. Although the sinogram data is easily manipulated, it lacks a statistical description for image reconstruction. To address this problem, we present an alpha-divergence constrained total generalized variation (AD-TGV) method for sparse-view x-ray CT image reconstruction. The AD-TGV method is formulated as an optimization problem, which balances the alpha-divergence (AD) fidelity and total generalized variation (TGV) regularization in one framework. The alpha-divergence is used to measure the discrepancy between the measured and estimated projection data. The TGV regularization can effectively eliminate the staircase and patchy artifacts which is often observed in total variation (TV) regularization. A modified proximal forward-backward splitting algorithm was proposed to minimize the associated objective function. Qualitative and quantitative evaluations were carried out on both phantom and patient data. Compared with the original TV-based method, the evaluations clearly demonstrate that the AD-TGV method achieves higher accuracy and lower noise, while preserving structural details. The experimental results show that the presented AD-TGV method can achieve more gains over the AD-TV method in preserving structural details and suppressing image noise and undesired patchy artifacts. The authors can draw the conclusion that the presented AD-TGV method is potential for radiation dose reduction by lowering the milliampere-seconds (mAs) and/or reducing the number of projection views.

  1. Lung cancer screening with thoracic X-ray and CT. Current situation; Lungenkarzinomscreening mit Roentgenthorax oder CT. Aktuelle Datenlage

    Energy Technology Data Exchange (ETDEWEB)

    Stackelberg, O. von; Kauczor, H.U. [Universitaetsklinikum Heidelberg, Diagnostische und Interventionelle Radiologe, Heidelberg (Germany); Translationales Lungen Forschungszentrum Heidelberg (TLRC), Mitglied des Deutschen Zentrums fuer Lungenforschung (DZL), Heidelberg (Germany)

    2016-09-15

    Attempts at the early detection of lung cancer using imaging methods began as far back as the 1950s. Several studies attempted to demonstrate a reduction of lung cancer mortality by chest radiography screening but all were unsuccessful. Even the first small screening studies using computed tomography (CT) could not demonstrate a reduction in lung cancer-specific mortality until in 2011 the results of the largest randomized controlled low-dose CT screening study in the USA (NLST) were published. The NLST results could show a significant 20 % reduction of lung cancer mortality in elderly and heavy smokers using CT. Confirmation of the NLST results are urgently needed so that the data of the largest European study (NELSON) are eagerly awaited. Pooled with the data from several smaller European studies these results will provide important information and evidence for the establishment of future CT screening programs in Europe. Randomized controlled trials are the basis of evidence-based medicine; therefore, the positive results of the methodologically very good NLST study cannot be ignored, even if it is the only such study completed so far with highly convincing conclusions. The NLST results clearly demonstrate that positive effects for the health of the population can only be expected if the processes are clearly defined and the quality is assured. (orig.) [German] Bestrebungen zur Frueherkennung von Lungenkrebs mit bildgebenden Methoden gibt es schon lange. Alle Studien, die eine Reduktion der Lungenkrebsmortalitaet mittels Roentgenthoraxscreening nachzuweisen versuchten, scheiterten. Auch die ersten kleineren Screeningstudien mit der CT konnten keine Reduktion der Lungenkrebssterblichkeit nachweisen, bis 2011 die Ergebnisse der bisher groessten randomisierten kontrollierten Niedrigdosis-CT-Screeningstudie (NLST) aus den USA veroeffentlicht wurden. Diese konnten eine signifikante 20 %ige Reduktion der Lungenkrebssterblichkeit bei Personen, die aelter und starke

  2. X-ray and ultrasound semiotics of mucinous carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    K. A. Lesko

    2013-01-01

    Full Text Available The article describes the main epidemiological, clinical and morphological diagnostic features of one of the rare breast cancer form – mucinous carcinoma of the breast. Current scientific data are followed by the results of own research the 9-year period of research.Authors draw attention to the very complex radiology peculiarities of the mucinous carcinoma of the breast.

  3. Trace elements as tumor biomarkers and prognostic factors in breast cancer: a study through energy dispersive x-ray fluorescence

    Science.gov (United States)

    2012-01-01

    Background The application and better understanding of traditional and new breast tumor biomarkers and prognostic factors are increasing due to the fact that they are able to identify individuals at high risk of breast cancer, who may benefit from preventive interventions. Also, biomarkers can make possible for physicians to design an individualized treatment for each patient. Previous studies showed that trace elements (TEs) determined by X-Ray Fluorescence (XRF) techniques are found in significantly higher concentrations in neoplastic breast tissues (malignant and benign) when compared with normal tissues. The aim of this work was to evaluate the potential of TEs, determined by the use of the Energy Dispersive X-Ray Fluorescence (EDXRF) technique, as biomarkers and prognostic factors in breast cancer. Methods By using EDXRF, we determined Ca, Fe, Cu, and Zn trace elements concentrations in 106 samples of normal and breast cancer tissues. Cut-off values for each TE were determined through Receiver Operating Characteristic (ROC) analysis from the TEs distributions. These values were used to set the positive or negative expression. This expression was subsequently correlated with clinical prognostic factors through Fisher’s exact test and chi-square test. Kaplan Meier survival curves were also evaluated to assess the effect of the expression of TEs in the overall patient survival. Results Concentrations of TEs are higher in neoplastic tissues (malignant and benign) when compared with normal tissues. Results from ROC analysis showed that TEs can be considered a tumor biomarker because, after establishing a cut-off value, it was possible to classify different tissues as normal or neoplastic, as well as different types of cancer. The expression of TEs was found statistically correlated with age and menstrual status. The survival curves estimated by the Kaplan-Meier method showed that patients with positive expression for Cu presented a poor overall survival (p

  4. Artefact on CT brain images caused by the presence of air bubbles in the cooling oil of the X-ray tube.

    Science.gov (United States)

    Trieu, Nelson; Xia, Ryan; Loneragan, Robert; Ridley, Lloyd; Trieu, Joseph

    2017-04-01

    We report a series of patients who had computed tomography (CT) of their brains which showed an uncommon artefact caused by excess air bubbles in the cooling oil around the X-ray tube. In November and December 2015, it was recognised that artefacts appearing on CT brain images acquired at our department were caused by a scanner fault. The test images were reviewed and the service engineer for the CT scanner was questioned about the artefact cause. A retrospective audit was then performed of images acquired on the CT scanner from December 2015 back to the date that the CT scanner was last serviced in September 2015 to identify any other scans affected by the artefact. Seven patients were identified whose CT brain scans showed the artefact. The artefact manifested in the form of an ill-defined low density area in varying locations. The artefact also appeared on CT phantom test images. It was discovered to be caused by the presence of excess air bubbles within the cooling oil of the X-ray tube. The fault was then rectified. The artefact described may not be easily recognised and could lead to misinterpretation and unnecessary investigation. We aim to promote awareness of this artefact and to reinforce the importance of frequent quality control testing of CT systems. © 2016 The Royal Australian and New Zealand College of Radiologists.

  5. [FDG-PET/CT in staging of breast carcinoma: use in tumour stage III and locoregional recurrent breast carcinoma].

    NARCIS (Netherlands)

    Bulten, B.F.; Haas, M.J. de; Rodenburg, C.J.; Ooijen, B. van; Baas, I.O.; Klerk, J.M. de

    2014-01-01

    In stage III breast carcinoma, metastasized disease needs to be determined. In the past, conventional imaging by liver ultrasound, chest X-ray and bone scintigraphy was the work-up of choice. Recently, FDG-PET/CT was found to have additional value, but clinicians are hesitant to introduce this

  6. Optimization of phosphor-based detector design for oblique x-ray incidence in digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Acciavatti, Raymond J.; Maidment, Andrew D. A. [Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2011-11-15

    Purpose: In digital breast tomosynthesis (DBT), a volumetric reconstruction of the breast is generated from a limited range of x-ray projections. One trade-off of DBT is resolution loss in the projections due to non-normal (i.e., oblique) x-ray incidence. Although degradation in image quality due to oblique incidence has been studied using empirical data and Monte Carlo simulations, a theoretical treatment has been lacking. The purpose of this work is to extend Swank's calculations of the transfer functions of turbid granular phosphors to oblique incidence. The model is ultimately used as a tool for optimizing the design of DBT detectors. Methods: A quantum-limited system and 20 keV x-rays are considered. Under these assumptions, the modulation transfer function (MTF) and noise power spectra (NPS) are derived using the diffusion approximation to the Boltzmann equation to model optical scatter within the phosphor. This approach is applicable to a nonstructured scintillator such as gadolinium oxysulfide doped with terbium (Gd{sub 2}O{sub 2}S:Tb), which is commonly used in breast imaging and which can reasonably approximate other detector materials. The detective quantum efficiency (DQE) is then determined from the Nishikawa formulation, where it is written as the product of the x-ray quantum detection efficiency, the Swank factor, and the Lubberts fraction. Transfer functions are calculated for both front- and back-screen configurations, which differ by positioning the photocathode at the exit or entrance point of the x-ray beam, respectively. Results: In the front-screen configuration, MTF and DQE are found to have considerable angular dependence, while NPS is shown to vary minimally with projection angle. As expected, the high frequency MTF and DQE are degraded substantially at large angles. By contrast, all transfer functions for the back-screen configuration have the advantage of significantly less angular dependence. Using these models, we investigated the

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology ...

  8. Quantification of Soil Physical Properties by Using X-Ray Computerized Tomography (CT) and Standard Laboratory (STD) Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Maria Ambert [Iowa State Univ., Ames, IA (United States)

    2003-12-12

    The implementation of x-ray computerized tomography (CT) on agricultural soils has been used in this research to quantify soil physical properties to be compared with standard laboratory (STD) methods. The overall research objective was to more accurately quantify soil physical properties for long-term management systems. Two field studies were conducted at Iowa State University's Northeast Research and Demonstration Farm near Nashua, IA using two different soil management strategies. The first field study was conducted in 1999 using continuous corn crop rotation for soil under chisel plow with no-till treatments. The second study was conducted in 2001 and on soybean crop rotation for the same soil but under chisel plow and no-till practices with wheel track and no-wheel track compaction treatments induced by a tractor-manure wagon. In addition, saturated hydraulic (K{sub s}) conductivity and the convection-dispersion (CDE) model were also applied using long-term soil management systems only during 2001. The results obtained for the 1999 field study revealed no significant differences between treatments and laboratory methods, but significant differences were found at deeper depths of the soil column for tillage treatments. The results for standard laboratory procedure versus CT method showed significant differences at deeper depths for the chisel plow treatment and at the second lower depth for no-till treatment for both laboratory methods. The macroporosity distribution experiment showed significant differences at the two lower depths between tillage practices. Bulk density and percent porosity had significant differences at the two lower depths of the soil column. The results obtained for the 2001 field study showed no significant differences between tillage practices and compaction practices for both laboratory methods, but significant differences between tillage practices with wheel track and no-wheel compaction treatments were found along the soil

  9. Dynamic contrast-enhanced x-ray CT measurement of cerebral blood volume in a rabbit tumor model

    Science.gov (United States)

    Cenic, Aleksa; Lee, Ting-Yim; Craen, Rosemary A.; Gelb, Adrian W.

    1998-07-01

    Cerebral blood volume (CBV) is a major determinant of intracranial pressure (ICP). Hyperventilation is commonly employed to reduce raised ICP (e.g. in brain tumour patients) presumably through its effect on CBV. With the advent of slip- ring CT scanners, dynamic contrast-enhanced imaging allows for the measurement of CBV with high spatial resolution. Using a two-compartment model to characterize the distribution of X- ray contrast agent in the brain, we have developed a non- equilibrium CT method to measure CBV in normal and pathological regions. We used our method to investigate the effect of hyperventilation on CBV during propofol anaesthesia in rabbits with implanted brain tumours. Eight New Zealand White rabbits with implanted VX2 carcinoma brain tumours were studied. For each rabbit, regional CBV measurements were initially made at normocapnia (PaCO2 40 mmHg) and then at hyperventilation (PaCO2 25 mmHg) during propofol anaesthesia. The head was positioned such that a coronal image through the brain incorporated a significant cross-section of the brain tumour as well as a radial artery in a forelimb. Images at the rate of 1 per second were acquired for 2 minutes as Omnipaque 300 (1.5 ml/kg rabbit weight) was injected via a peripheral vein. In these CT images, regions of interest in the brain tissue (e.g. tumour, contra-lateral normal, and peri-tumoural) and the radial artery were drawn. For each region, the mean CT number in pre-contrast images was subtracted from the mean CT number in post-contrast images to produce either the tissue contrast concentration curve, or the arterial contrast concentration curve. Using our non- equilibrium analysis method based on a two-compartment model, regional CBV values were determined from the measured contrast concentration curves. From our study, the mean CBV values [+/- SD] in the tumour, peri-tumoural, and contra-lateral normal regions during normocapnia were: 5.47 plus or minus 1.97, 3.28 plus or minus 1.01, and 1

  10. Feasibility of CT-based 3D anatomic mapping with a scanning-beam digital x-ray (SBDX) system

    Science.gov (United States)

    Slagowski, Jordan M.; Tomkowiak, Michael T.; Dunkerley, David A. P.; Speidel, Michael A.

    2015-03-01

    This study investigates the feasibility of obtaining CT-derived 3D surfaces from data provided by the scanning-beam digital x-ray (SBDX) system. Simulated SBDX short-scan acquisitions of a Shepp-Logan and a thorax phantom containing a high contrast spherical volume were generated. 3D reconstructions were performed using a penalized weighted least squares method with total variation regularization (PWLS-TV), as well as a more efficient variant employing gridding of projection data to parallel rays (gPWLS-TV). Voxel noise, edge blurring, and surface accuracy were compared to gridded filtered back projection (gFBP). PWLS reconstruction of a noise-free reduced-size Shepp-Logan phantom had 1.4% rRMSE. In noisy gPWLS-TV reconstructions of a reduced-size thorax phantom, 99% of points on the segmented sphere perimeter were within 0.33, 0.47, and 0.70 mm of the ground truth, respectively, for fluences comparable to imaging through 18.0, 27.2, and 34.6 cm acrylic. Surface accuracies of gFBP and gPWLS-TV were similar at high fluences, while gPWLS-TV offered improvement at the lowest fluence. The gPWLS-TV voxel noise was reduced by 60% relative to gFBP, on average. High-contrast linespread functions measured 1.25 mm and 0.96 mm (FWHM) for gPWLS-TV and gFBP. In a simulation of gated and truncated projection data from a full-sized thorax, gPWLS-TV reconstruction yielded segmented surface points which were within 1.41 mm of ground truth. Results support the feasibility of 3D surface segmentation with SBDX. Further investigation of artifacts caused by data truncation and patient motion is warranted.

  11. Estimates of Average Glandular Dose with Auto-modes of X-ray Exposures in Digital Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Izdihar Kamal

    2015-05-01

    Full Text Available Objectives: The aim of this research was to examine the average glandular dose (AGD of radiation among different breast compositions of glandular and adipose tissue with auto-modes of exposure factor selection in digital breast tomosynthesis. Methods: This experimental study was carried out in the National Cancer Society, Kuala Lumpur, Malaysia, between February 2012 and February 2013 using a tomosynthesis digital mammography X-ray machine. The entrance surface air kerma and the half-value layer were determined using a 100H thermoluminescent dosimeter on 50% glandular and 50% adipose tissue (50/50 and 20% glandular and 80% adipose tissue (20/80 commercially available breast phantoms (Computerized Imaging Reference Systems, Inc., Norfolk, Virginia, USA with auto-time, auto-filter and auto-kilovolt modes. Results: The lowest AGD for the 20/80 phantom with auto-time was 2.28 milliGray (mGy for two dimension (2D and 2.48 mGy for three dimensional (3D images. The lowest AGD for the 50/50 phantom with auto-time was 0.97 mGy for 2D and 1.0 mGy for 3D. Conclusion: The AGD values for both phantoms were lower against a high kilovolt peak and the use of auto-filter mode was more practical for quick acquisition while limiting the probability of operator error.

  12. Experimental investigation for determination of optimal X-ray beam tube voltages in a newly developed digital breast tomosynthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Suk, E-mail: radiosugar@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Ye-Seul, E-mail: radiohesugar@gmail.com [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Choi, Young-Wook, E-mail: ywchoi@keri.re.kr [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Choi, JaeGu, E-mail: jgchoi88@paran.com [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Rhee, Yong-Chun, E-mail: ycrhee@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of)

    2014-11-01

    Our purpose was to investigate optimal tube voltages (kVp) for a newly developed digital breast tomosynthesis (DBT) process and to determine tube current–exposure time products (mA s) for the average glandular dose (AGD), which is similar to that of the two views in conventional mammography (CM). In addition, the optimal acquisition parameters for this system were compared with those of CM. The analysis was based on the contrast-to-noise ratio (CNR) from the simulated micro-calcifications on homogeneous phantoms, and the figure of merit (FOM) was retrieved from the CNR and AGD at X-ray tube voltages ranging from 24 to 40 kVp at intervals of 2 kV. The optimal kVp increased more than 2 kV with increasing glandularity for thicker (≥50 mm) breast phantoms. The optimal kVp for DBT was found to be 4–7 kV higher than that calculated for CM with breast phantoms thicker than 50 mm. This is likely due to the greater effect of noise and dose reduction by kVp increment when using the lower dose per projection in DBT. It is important to determine optimum acquisition conditions for a maximally effective DBT system. The results of our study provide useful information to further improve DBT for high quality imaging.

  13. WE-AB-BRA-11: Improved Imaging of Permanent Prostate Brachytherapy Seed Implants by Combining an Endorectal X-Ray Sensor with a CT Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, J; Matthews, K; Jia, G [Louisiana State University, Baton Rouge, LA (United States)

    2016-06-15

    Purpose: To test feasibility of the use of a digital endorectal x-ray sensor for improved image resolution of permanent brachytherapy seed implants compared to conventional CT. Methods: Two phantoms simulating the male pelvic region were used to test the capabilities of a digital endorectal x-ray sensor for imaging permanent brachytherapy seed implants. Phantom 1 was constructed from acrylic plastic with cavities milled in the locations of the prostate and the rectum. The prostate cavity was filled a Styrofoam plug implanted with 10 training seeds. Phantom 2 was constructed from tissue-equivalent gelatins and contained a prostate phantom implanted with 18 strands of training seeds. For both phantoms, an intraoral digital dental x-ray sensor was placed in the rectum within 2 cm of the seed implants. Scout scans were taken of the phantoms over a limited arc angle using a CT scanner (80 kV, 120–200 mA). The dental sensor was removed from the phantoms and normal helical CT and scout (0 degree) scans using typical parameters for pelvic CT (120 kV, auto-mA) were collected. A shift-and add tomosynthesis algorithm was developed to localize seed plane location normal to detector face. Results: The endorectal sensor produced images with improved resolution compared to CT scans. Seed clusters and individual seed geometry were more discernable using the endorectal sensor. Seed 3D locations, including seeds that were not located in every projection image, were discernable using the shift and add algorithm. Conclusion: This work shows that digital endorectal x-ray sensors are a feasible method for improving imaging of permanent brachytherapy seed implants. Future work will consist of optimizing the tomosynthesis technique to produce higher resolution, lower dose images of 1) permanent brachytherapy seed implants for post-implant dosimetry and 2) fine anatomic details for imaging and managing prostatic disease compared to CT images. Funding: LSU Faculty Start-up Funding

  14. X-ray CT imaging and image-based modelling study of gas exchange in the rice rhizosphere

    Science.gov (United States)

    Affholder, Marie-Cecile; Keyes, Samuel David; Roose, Tiina; Heppell, James; Kirk, Guy

    2016-04-01

    We used X-ray computer tomography and image-based modelling to investigate CO2 uptake by rice roots growing in submerged soil, and its consequences for the chemistry and biology of the rhizosphere. From previous work, three processes are known to greatly modify the rhizophere of rice and other wetland plants: (1) oxygenation of the submerged, anoxic soil by O2 transported through the root gas channels (aerenchyma); (2) oxidation of ferrous iron and resulting accumulation of ferric oxide; and (3) pH changes due to protons formed in iron oxidation and released from the roots to balance excess intake of cations over anions. A further process, so far not much investigated, is the possibility of CO2 uptake by the roots. Large amounts of CO2 accumulate in submerged soils because CO2 formed in soil respiration escapes only slowly by diffusion through the water-saturated soil pores. There is therefore a large CO2 gradient between the soil and the aerenchyma inside the root, and CO2 may be taken up by the roots and vented to the atmosphere. The extent of this and its consequences for rhizosphere chemistry and biology are poorly understood. We grew rice plants in a submerged, strongly-reduced, Philippine rice soil contained in 10-cm diameter, 20-cm deep Perspex pots. Four-week old rice seedlings, grown in nutrient culture, were transplanted into the pots at either 1 or 4 plants per pot, planted closely together. After 3 and 4 weeks, the pots were analysed with an X-ray CT scanner (Custom Nikon/Xtek Hutch; 80 mm by 56 mm field of view and 40 μm voxel size). Gas bubbles were extracted from the data by 3D median filtering and roots using a region-growth method. The images showed prominent and abundant gas bubbles in the soil bulk, but no or very few bubbles in the soil close to roots. There was a clear relation between the absence of gas bubbles and the presence of roots, as well as an increasing concentration of bubbles with depth through the soil. Analysis of the bubbles

  15. SU-F-18C-13: Low-Dose X-Ray CT Reconstruction Using a Hybrid First-Order Method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L; Lin, W [Tianjin University, Tianjin (China); Jin, M [University of Texas at Arlington, Arlington, TX (United States)

    2014-06-15

    Purpose: To develop a novel reconstruction method for X-ray CT that can lead to accurate reconstruction at significantly reduced dose levels combining low X-ray incident intensity and few views of projection data. Methods: The noise nature of the projection data at low X-ray incident intensity was modeled and accounted by the weighted least-squares (WLS) criterion. The total variation (TV) penalty was used to mitigate artifacts caused by few views of data. The first order primal-dual (FOPD) algorithm was used to minimize TV in image domain, which avoided the difficulty of the non-smooth objective function. The TV penalized WLS reconstruction was achieved by alternated FOPD TV minimization and projection onto convex sets (POCS) for data fidelity constraints. The proposed FOPD-POCS method was evaluated using the FORBILD jaw phantom and the real cadaver head CT data. Results: The quantitative measures, root mean square error (RMSE) and contrast-to-noise ratio (CNR), demonstrate the superior denoising capability of WLS over LS-based TV iterative reconstruction. The improvement of RMSE (WLS vs. LS) is 15%∼21% and that of CNR is 17%∼72% when the incident counts per ray are ranged from 1×10{sup 5} to 1×10{sup 3}. In addition, the TV regularization can accurately reconstruct images from about 50 views of the jaw phantom. The FOPD-POCS reconstruction reveals more structural details and suffers fewer artifacts in both the phantom and real head images. The FOPD-POCS method also shows fast convergence at low X-ray incident intensity. Conclusion: The new hybrid FOPD-POCS method, based on TV penalized WLS, yields excellent image quality when the incident X-ray intensity is low and the projection views are limited. The reconstruction is computationally efficient since the FOPD minimization of TV is applied only in the image domain. The characteristics of FOPD-POCS can be exploited to significantly reduce radiation dose of X-ray CT without compromising accuracy for diagnosis

  16. The Yield from Routine Chest X-Rays in Stage 3 Breast Cancer ...

    African Journals Online (AJOL)

    Methods: This descriptive retrospective study evaluated clinical records and chest radiographs of 61 female Nigerian patients with local stage 3 histologically diagnosed breast cancers, who presented at the radiotherapy unit of the University College hospital, Ibadan, over a 12-month period. All abnormalities on the chest ...

  17. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Mohammad R. [Geneva University Hospital, Division of Nuclear Medicine, Geneva (Switzerland); Zaidi, Habib

    2006-11-15

    Quantitative image reconstruction in positron emission tomography (PET) requires an accurate attenuation map of the object under study for the purpose of attenuation correction. Current dual-modality PET/CT systems offer significant advantages over stand-alone PET, including decreased overall scanning time and increased accuracy in lesion localisation and detectability. However, the contamination of CT data with scattered radiation and misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) are known to generate artefacts in the attenuation map and thus the resulting PET images. The purpose of this work was to quantitatively measure the impact of scattered radiation and contrast medium on the accuracy of CTAC. Our recently developed MCNP4C-based Monte Carlo X-ray CT simulator for modelling both fan- and cone-beam CT scanners and the Eidolon dedicated 3D PET Monte Carlo simulator were used to generate realigned PET/CT data sets. The impact of X-ray scattered radiation on the accuracy of CTAC was investigated through simulation of a uniform cylindrical water phantom for both a commercial fan-beam multi-slice and a prototype cone-beam flat panel detector-based CT scanner. The influence of contrast medium was studied by simulation of a cylindrical phantom containing different concentrations of contrast medium. Moreover, an experimental study using an anthropomorphic striatal phantom was conducted for quantitative evaluation of errors arising from the presence of contrast medium by calculating the apparent recovery coefficient (ARC) in the presence of different concentrations of contrast medium. The analysis of attenuation correction factors (ACFs) for the simulated cylindrical water phantom in both fan- and cone-beam CT scanners showed that the contamination of CT data with scattered radiation in the absence of scatter removal causes underestimation of the true ACFs, namely by 7.3% and 28.2% in the centre for the two

  18. Influence of difference in cross-sectional dose profile in a CTDI phantom on X-ray CT dose estimation: a Monte Carlo study.

    Science.gov (United States)

    Haba, Tomonobu; Koyama, Shuji; Ida, Yoshihiro

    2014-01-01

    The longitudinal dose profile in a computed tomography dose index (CTDI) phantom had been studied by many researchers. The cross-sectional dose profile in the CTDI phantom, however, has not been studied. It is also important to understand the cross-sectional dose profile in the CTDI phantom for dose estimation in X-ray CT. In this study, the cross-sectional dose profile in the CTDI phantom was calculated by use of a Monte Carlo (MC) simulation method. A helical or a 320-detector-row cone-beam X-ray CT scanner was simulated. The cross-sectional dose profile in the CTDI phantom from surface to surface through the center point was calculated by MC simulation. The shape of the calculation region was a cylinder of 1-mm-diameter. The length of the cylinder was 23, 100, or 300 mm to represent various CT ionization chamber lengths. Detailed analyses of the energy depositions demonstrated that the cross-sectional dose profile was different in measurement methods and phantom sizes. In this study, we also focused on the validation of the weighting factor used in weighted CTDI (CTDI w ). As it stands now, the weighting factor used in CTDI w is (1/3, 2/3) for the (central, peripheral) axes. Our results showed that an equal weighting factor, which is (1/2, 1/2) for the (central, peripheral) axes, is more suitable to estimate the average cross-sectional dose when X-ray CT dose estimation is performed.

  19. A novel physical anthropomorphic breast phantom for 2D and 3D x-ray imaging.

    Science.gov (United States)

    Ikejimba, Lynda C; Graff, Christian G; Rosenthal, Shani; Badal, Andreu; Ghammraoui, Bahaa; Lo, Joseph Y; Glick, Stephen J

    2017-02-01

    Physical phantoms are central to the evaluation of 2D and 3D breast-imaging systems. Currently, available physical phantoms have limitations including unrealistic uniform background structure, large expense, or excessive fabrication time. The purpose of this work is to outline a method for rapidly creating realistic, inexpensive physical anthropomorphic phantoms for use in full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT). The phantom was first modeled using analytical expressions and then discretized into voxels of a specified size. The interior of the breast was divided into glandular and adipose tissue classes using Voronoi segmentation, and additional structures like blood vessels, chest muscle, and ligaments were added. The physical phantom was then fabricated from the virtual model in a slice by slice fashion through inkjet printing, using parchment paper and a radiopaque ink containing 33% (I33% ) or 25% (I25% ) iohexol by volume. Three types of parchment paper (P1, P2, and P3) were examined. The phantom materials were characterized in terms of their effective linear attenuation coefficients (μeff ) using full-field digital mammography (FFDM) and their energy-dependent linear attenuation coefficients (μ(E)) using a spectroscopic energy discriminating detector system. The printing method was further validated on the basis of accuracy, print consistency, and the reproducibility of ink batches. The μeff of two types of parchment paper were close to that of adipose tissue, with μeff = 0.61 ± 0.05 cm(-1) for P1, 0.61 ± 0.04 cm(-1) for P2, and 0.57 ± 0.03 cm(-1) for adipose tissue. The addition of the iodinated ink increased the effective attenuation to that of glandular tissue, with μeff = 0.89 ± 0.06 cm(-1) for P1 + I25% and 0.94 ± 0.06 cm(-1) for P1 + I33% compared to 0.90 ± 0.03 cm(-1) for glandular tissue. Spectroscopic measurements showed a good match between the parchment paper and reference values for adipose and

  20. A digital x-ray tomosynthesis coupled near infrared spectral tomography system for dual-modality breast imaging.

    Science.gov (United States)

    Krishnaswamy, Venkataramanan; Michaelsen, Kelly E; Pogue, Brian W; Poplack, Steven P; Shaw, Ian; Defrietas, Ken; Brooks, Ken; Paulsen, Keith D

    2012-08-13

    A Near Infrared Spectral Tomography (NIRST) system has been developed and integrated into a commercial Digital Breast Tomosynthesis (DBT) scanner to allow structural and functional imaging of breast in vivo. The NIRST instrument uses an 8-wavelength continuous wave (CW) laser-based scanning source assembly and a 75-element silicon photodiode solid-state detector panel to produce dense spectral and spatial projection data from which spectrally constrained 3D tomographic images of tissue chromophores are produced. Integration of the optical imaging system into the DBT scanner allows direct co-registration of the optical and DBT images, while also facilitating the synergistic use of x-ray contrast as anatomical priors in optical image reconstruction. Currently, the total scan time for a combined NIRST-DBT exam is ~50s with data collection from 8 wavelengths in the optical scan requiring ~42s to complete. The system was tested in breast simulating phantoms constructed using intralipid and blood in an agarose matrix with a 3 cm x 2 cm cylindrical inclusion at 1 cm depth from the surface. Diffuse image reconstruction of total hemoglobin (HbT) concentration resulted in accurate recovery of the lateral size and position of the inclusion to within 6% and 8%, respectively. Use of DBT structural priors in the NIRST reconstruction process improved the quantitative accuracy of the HbT recovery, and led to linear changes in imaged versus actual contrast, underscoring the advantages of dual-modality optical imaging approaches. The quantitative accuracy of the system can be further improved with independent measurements of scattering properties through integration of frequency or time domain data.

  1. Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT

    Science.gov (United States)

    Braunagel, Margarita; Birnbacher, Lorenz; Willner, Marian; Marschner, Mathias; De Marco, Fabio; Viermetz, Manuel; Notohamiprodjo, Susan; Hellbach, Katharina; Auweter, Sigrid; Link, Vera; Woischke, Christine; Reiser, Maximilian F.; Pfeiffer, Franz; Notohamiprodjo, Mike; Herzen, Julia

    2017-03-01

    Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.

  2. Adaptive Adjustment of Relaxation Parameters for Algebraic Reconstruction Technique and its Possible Application to Sparsity Prior X-ray CT Reconstruction

    CERN Document Server

    Saha, Sajib; Lambert, Andrew; Pickering, Mark

    2015-01-01

    In this paper, we systematically evaluate the performance of adaptive adjustment of the relaxation parameters of various iterative algorithms for X-ray CT reconstruction relying on sparsity priors. Sparsity prior has been found to be an efficient strategy in CT reconstruction where significantly fewer attenuation measurements are available. Sparsity prior CT reconstruction relies on iterative algorithms such as the algebraic reconstruction technique (ART) to produce a crude reconstruction based on which a sparse approximation is performed. Data driven adjustment of relaxation has been found to ensure better convergence than traditional relaxation for ART. In this paper, we study the performance of such data driven relaxation on a (CS) compressed sensing environment. State-of-the-art algorithms are implemented and their performance analyzed in regard to conventional and data-driven relaxation. Experiments are performed both on simulated and real environments. For the simulated case, experiments are conducted w...

  3. Synthesis of PEG-Iodine-Capped Gold Nanoparticles and Their Contrast Enhancement in In Vitro and In Vivo for X-Ray/CT

    Directory of Open Access Journals (Sweden)

    Sun-Hee Kim

    2012-01-01

    Full Text Available We designed gold nanoparticles (AuNPs capped with iodine and polyethylene glycol (PEG to provide effective enhancement for X-ray CT imaging. The methoxy PEG-iodine-capped AuNPs were prepared through the chemisorption of iodine and substitution of methoxy PEG-SH onto the surface of gold nanoparticles, and severe aggregation in TEM was not observed. The binding energies of Au 4f7/2 and I 3d5/2 of the methoxy PEG-iodine-capped AuNPs were obtained as 84.1 eV and 619.3 eV, respectively. The binding energy shift of methoxy PEG-iodine-capped AuNPs would be resulted from the chemisorption between gold nanoparticles and iodine atoms. The methoxy PEG-iodine-capped AuNPs have higher enhancement compared to PEG-capped gold nanoparicles in the same amount of gold in vitro. After postinjection of methoxy PEG-iodine-capped AuNPs into the mice, dramatic contrast enhancement at the heart, aorta, liver, and kidney was observed, this was maintained up to 5 days, and there was no evidence of apparent toxicity. In conclusion, methoxy PEG-iodine-capped AuNPs might be a good candidate as a CT contrast agent for blood pool imaging, and this will also contribute to the prolongation of a blood circulation time for X-ray CT imaging.

  4. Joint x-ray

    Science.gov (United States)

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  5. Optimal exposure techniques for iodinated contrast enhanced breast CT

    Science.gov (United States)

    Glick, Stephen J.; Makeev, Andrey

    2016-03-01

    Screening for breast cancer using mammography has been very successful in the effort to reduce breast cancer mortality, and its use has largely resulted in the 30% reduction in breast cancer mortality observed since 1990 [1]. However, diagnostic mammography remains an area of breast imaging that is in great need for improvement. One imaging modality proposed for improving the accuracy of diagnostic workup is iodinated contrast-enhanced breast CT [2]. In this study, a mathematical framework is used to evaluate optimal exposure techniques for contrast-enhanced breast CT. The ideal observer signal-to-noise ratio (i.e., d') figure-of-merit is used to provide a task performance based assessment of optimal acquisition parameters under the assumptions of a linear, shift-invariant imaging system. A parallel-cascade model was used to estimate signal and noise propagation through the detector, and a realistic lesion model with iodine uptake was embedded into a structured breast background. Ideal observer performance was investigated across kVp settings, filter materials, and filter thickness. Results indicated many kVp spectra/filter combinations can improve performance over currently used x-ray spectra.

  6. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Tushita, E-mail: tp3rn@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Peppard, Heather [Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908 (United States); Williams, Mark B. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908 (United States); Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2016-04-15

    Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscatter grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and

  7. Identification of human breast pathologies by X-ray elastic scattering; Identificacao de patologias mamarias atraves do espalhamento elastico de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Andre L.C.; Antoniassi, Marcelo; Poletti, Martin E., E-mail: andre_conceicao@yahoo.com.b [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2011-07-01

    In this paper we determine the scattering profiles of normal, benign and malignant human breast samples in a momentum transfer range of 0.07nm{sup -1} {<=}q{<=}70.55nm{sup -1}, resulted from combining WAXS (wide angle x-ray scattering) and SAXS (small angle x-ray scattering) data. The results showed considerable differences between the scattering profiles of each tissue type. Based on this fact, some parameters, representing structural features, were extracted from these scattering profiles and submitted to a discriminant analysis. From statistical analysis, the ratio between the peak intensities at q=19.8nm{sup -1} and q=13.9nm{sup -1} and the intensity of third order axial collagen peak arose as two potentials breast tissue classifiers and, from combining them it was possible differentiate among normal, benign and malignant lesions. (author)

  8. An Assessment of the Medial Angle of Inserted Subaxial Cervical Pedicle Screw during Surgery: Practical Use of Preoperative CT Scanning and Intraoperative X-rays.

    Science.gov (United States)

    Kim, Hong Bum; Lee, Moon Kyu; Lee, Young-Seok; Sohn, Jun-Young; Jung, Sang Ku; Park, Jin Hoon

    2017-04-15

    The most important factor for cervical pedicle screw placement (CPS) is creating a sufficient medial angle. We aimed to know the medial angle of the inserted subaxial CPS during surgery using intraoperative AP X-rays. From March 2012 to September 2014, we performed posterior cervical fusions using CPS on 75 patients, including a total of 389 CPS insertions. Using preoperative CT scanning, we determined the θ lat (i.e., an angle between a vertical line and a line to connect the planned entry point and the axial middle point of the pedicle) and θ med (i.e., an angle between a vertical line and a line to connect a new medial entry point and the axial middle point of the pedicle; this angle was regarded as minimally acceptable and a safe medial angle). The actual inserted medial angle (θ ins ) was checked and we determined whether it was between the θ med and θ lat in the accurately placed CPS, and not in the laterally violated CPS. We measured the horizontal distance of the CPS body (l; using an intraoperative AP X-ray). If the actual screw length (L) was known, we could calculate the medial angle (θ AP ) as sin -1 l / L. We checked the θ AP and θ ins for all of the same levels. Intra- and inter-observer agreement was analyzed. Among 368 accurately inserted CPSs, we found that 360 of the θ ins values were greater than or equal to the θ med on the same level (P angle of the inserted CPS and for comparing it with θ med during surgery based on an AP X-ray and preoperative CT scan.

  9. Comparison of Unmonochromatized Synchrotron Radiation and Conventional X-rays in the Imaging of Mammographic Phantom and Human Breast Specimens: A Preliminary Result

    OpenAIRE

    Jung, Haijo; Kim, Hee-Joung; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-01-01

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4...

  10. Ultralow dose CT for pulmonary nodule detection with chest X-ray equivalent dose - a prospective intra-individual comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Messerli, Michael [University Zurich, Department of Nuclear Medicine, University Hospital Zurich, Zurich (Switzerland); Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Kluckert, Thomas; Knitel, Meinhard; Desbiolles, Lotus; Bauer, Ralf W.; Wildermuth, Simon [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Waelti, Stephan [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University of Montreal, Department of Radiology, CHU Sainte-Justine, Montreal, Quebec (Canada); Rengier, Fabian [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Warschkow, Rene [Cantonal Hospital St. Gallen, Department of Surgery, St. Gallen (Switzerland); Alkadhi, Hatem [University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland); Leschka, Sebastian [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland)

    2017-08-15

    To prospectively evaluate the accuracy of ultralow radiation dose CT of the chest with tin filtration at 100 kV for pulmonary nodule detection. 202 consecutive patients undergoing clinically indicated chest CT (standard dose, 1.8 ± 0.7 mSv) were prospectively included and additionally scanned with an ultralow dose protocol (0.13 ± 0.01 mSv). Standard dose CT was read in consensus by two board-certified radiologists to determine the presence of lung nodules and served as standard of reference (SOR). Two radiologists assessed the presence of lung nodules and their locations on ultralow dose CT. Sensitivity and specificity of the ultralow dose protocol was compared against the SOR, including subgroup analyses of different nodule sizes and types. A mixed effects logistic regression was used to test for independent predictors for sensitivity of pulmonary nodule detection. 425 nodules (mean diameter 3.7 ± 2.9 mm) were found on SOR. Overall sensitivity for nodule detection by ultralow dose CT was 91%. In multivariate analysis, nodule type, size and patients BMI were independent predictors for sensitivity (p < 0.001). Ultralow dose chest CT at 100 kV with spectral shaping enables a high sensitivity for the detection of pulmonary nodules at exposure levels comparable to plain film chest X-ray. (orig.)

  11. Reconstruction of Intima and Adventitia Models into a State Undeformed by a Catheter by Using CT, IVUS, and Biplane X-Ray Angiogram Images

    Directory of Open Access Journals (Sweden)

    Jinwon Son

    2017-01-01

    Full Text Available The number of studies on blood flow analysis using fluid-structure interaction (FSI analysis is increasing. Though a 3D blood vessel model that includes intima and adventitia is required for FSI analysis, there are difficulties in generating it using only one type of medical imaging. In this paper, we propose a 3D modeling method for accurate FSI analysis. An intravascular ultrasound (IVUS image is used with biplane X-ray angiogram images to calculate the position and orientation of the blood vessel. However, these images show that the blood vessel is deformed by the catheter inserted into the blood vessel for IVUS imaging. To eliminate such deformation, a CT image was added and the two models were registered. First, a 3D model of the undeformed intima was generated using a CT image. In the second stage, a model of intima and adventitia deformed by the catheter was generated by combining the IVUS image and the X-ray angiogram images. A 3D model of intima and adventitia with the deformation caused by insertion of the catheter eliminated was generated by matching these 3D blood vessel models in different states. In addition, a 3D blood vessel model including bifurcation was generated using the proposed method.

  12. Investigation of self-sealing in high-strength and ultra-low-permeability concrete in water using micro-focus X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Daisuke [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Nara, Yoshitaka, E-mail: nara.yoshitaka.2n@kyoto-u.ac.jp [Graduate School of Engineering, Kyoto University, Kyoto 611-8540 (Japan); Kobayashi, Yuya; Maruyama, Megumi; Koketsu, Mayuko [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Hayashi, Daisuke; Ogawa, Hideo [Taiheiyo Consultant Co., Ltd., Ohsaku, Sakura 285-8655 (Japan); Kaneko, Katsuhiko [Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2012-11-15

    High-strength and ultra-low-permeability concrete (HSULPC) is thought to be useful as a radioactive waste package. Thus, a high confining ability is desirable. For cementitious materials, sealing of cracks may occur in water due to the precipitation of calcium compounds. This can affect the confining ability. In this study, the sealing of a crack in HSULPC in water was investigated using micro-focus X-ray computed tomography (CT). The sealing by precipitation occurred only around the end of the specimen. Sealed regions of the crack were identified using three-dimensional image registration and CT image subtraction of images obtained for the specimen before and after it was immersed in water to evaluate temporal changes of the sealing deposits in the crack. The sealing deposits increased as the HSULPC specimen was kept in water longer. It was concluded that cracks in HSULPC in water are sealed by precipitation.

  13. Correlation analysis between expression of PCNA, Ki-67 and COX-2 and X-ray features in mammography in breast cancer.

    Science.gov (United States)

    Qiu, Xiaoming; Mei, Jixin; Yin, Jianjun; Wang, Hong; Wang, Jinqi; Xie, Ming

    2017-09-01

    This study investigated expression of proliferating cell nuclear antigen (PCNA), proliferation-associated nuclear antigen (Ki-67) and cyclooxygenase-2 (COX-2) in tissues of breast invasive ductal carcinoma, and analyzed the correlations between these indexes and X-ray features in mammography. A total of 90 patients who were admitted to Huangshi Central Hospital and diagnosed as breast invasive ductal carcinoma from January 2014 to January 2016 were selected. The expression of PCNA, Ki-67 and COX-2 in cancer tissues and cancer-adjacent normal tissues of patients were detected by immunohistochemical staining, and X-ray features in mammography of patients were observed. By using Spearman correlation analysis, the correlations between expression of PCNA, Ki-67 and COX-2 and X-ray features in mammography in breast cancer were investigated. As a result, the positive expression rates of PCNA, Ki-67 and COX-2 in cancer tissues of the patient groups were respectively 42.2, 45.6 and 51.1%, which were significantly higher than those in cancer-adjacent normal tissues of the control group (pcorrelation with age and tumor size (p>0.05). PCNA, Ki-67 and COX-2 expression in cancer tissues of the patient group had no correlation with the existence of lumps and localized density-increased shadows (p>0.05), but were associated with manifestations of architectural distortion, calcification as well as skin and nipple depression (pcorrelation analysis revealed that there was a significantly positive correlation between the expression of PCNA and COX-2 in cancer tissues of the patient group (r=0.676, pcorrelation between the expression of Ki-67 and COX-2 (r=0.724, pcorrelation with the expression of Ki-67 (p>0.05). In conclusion, PCNA, Ki-67 and COX-2 expression is of great significance in the occurrence, invasion and metastasis of breast invasive ductal carcinoma. There is a strong correlation between PCNA, Ki-67 and COX-2 expression levels and X-ray features in mammography in breast

  14. What is the clinical significance of chest CT when the chest x-ray result is normal in patients with blunt trauma?

    Science.gov (United States)

    Kea, Bory; Gamarallage, Ruwan; Vairamuthu, Hemamalini; Fortman, Jonathan; Lunney, Kevin; Hendey, Gregory W; Rodriguez, Robert M

    2013-08-01

    Computed tomography (CT) has been shown to detect more injuries than plain radiography in patients with blunt trauma, but it is unclear whether these injuries are clinically significant. This study aimed to determine the proportion of patients with normal chest x-ray (CXR) result and injury seen on CT and abnormal initial CXR result and no injury on CT and to characterize the clinical significance of injuries seen on CT as determined by a trauma expert panel. Patients with blunt trauma older than 14 years who received emergency department chest imaging as part of their evaluation at 2 urban level I trauma centers were enrolled. An expert trauma panel a priori classified thoracic injuries and subsequent interventions as major, minor, or no clinical significance. Of 3639 participants, 2848 (78.3%) had CXR alone and 791 (21.7%) had CXR and chest CT. Of 589 patients who had chest CT after a normal CXR result, 483 (82.0% [95% confidence interval [CI], 78.7-84.9%]) had normal CT results, and 106 (18.0% [95% CI, 15.1%-21.3%]) had CTs diagnosing injuries-primarily rib fractures, pulmonary contusion, and incidental pneumothorax. Twelve patients had injuries classified as clinically major (2.0% [95% CI, 1.2%-3.5%]), 78 were clinically minor (13.2% [95% CI, 10.7%-16.2%]), and 16 were clinically insignificant (2.7% (95% CI, 1.7%-4.4%]). Of 202 patients with CXRs suggesting injury, 177 (87.6% [95% CI, 82.4%-91.5%]) had chest CTs confirming injury and 25 (12.4% [95% CI, 8.5%-17.6%]) had no injury on CT. Chest CT after a normal CXR result in patients with blunt trauma detects injuries, but most do not lead to changes in patient management. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Four-dimensional x-ray attenuation model of the human heart and the coronary vasculature for assessment of CT system capability

    Science.gov (United States)

    Edic, Peter M.; Iatrou, Maria; Cline, Harvey E.; Ishaque, A. N.; Cesmeli, Erdogan; Pfoh, Armin H.

    2001-06-01

    With the introduction of helical, multi-detector computed tomography (CT) scanners having sub-second scanning speeds, clinicians are currently investigating the role of CT in cardiac imaging. In this paper, we describe a four-dimensional (4D) x-ray attenuation model of a human heart and the use of this model to assess the capabilities of both hardware and software algorithms for cardiac imaging. We developed a model of the human thorax, composed of several analytical structures, and a model of the human heart, constructed from several elliptical surfaces. A model for each coronary vessel consists of a torus placed at a suitable location on the heart's surface. The motion of the heart during the cardiac cycle was implemented by applying transformational operators to each surface composing the heart. We used the 4D model of the heart to generate forward projection data, which then became input into a model of a CT imaging system. The use of the model to predict image quality is demonstrated by varying both the reconstruction algorithm (sector-based, half-scan) and CT system parameters (gantry speed, spatial resolution). The mathematical model of the human heart, while having limitations, provides a means to rapidly evaluate new reconstruction algorithms and CT system designs for cardiac imaging.

  16. Surface and bulk 3D analysis of natural and processed ruby using electron probe micro analyzer and X-ray micro CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Rakesh K., E-mail: rakesh.materialscience@gmail.com; Singh, Saroj K.; Mishra, B.K.

    2016-08-15

    Highlights: • Firm linking between two advance techniques: Micro-CT and EPMA for mineral analysis. • Attempt to identify and differentiate the treated gem stone from natural counterpart. • 3D structural and surface elemental analysis of the natural gem stone. - Abstract: The change in surface compositional and bulk structural characteristics of the natural ruby stone, before and after heat treatment with lead oxide has been analyzed using two advance characterization techniques like: X-ray micro CT scan (μ-CT) and electron probe micro analyzer (EPMA). The analytical correlation between these two techniques in identification as well as in depth study of the ores and minerals before and after processing has been presented. Also, we describe the aesthetic enhancement of a low quality defective ruby stone by lead oxide filling and the sequential analysis of this ruby stone before and after treatment using these two advanced techniques to identify and to confirm the change in its aesthetic value. The cracks healing and pores filling by the metal oxide on the surface of the ruby have been analyzed using μ-CT and EPMA. Moreover, in this work we describe the advance characterization of the repaired gem stones especially ruby stones. This work will light up the path for in-depth understanding of diffusion mechanism and abstract information of impurity particles inside the minerals. Based on these observations, EPMA and micro CT are shown to be powerful tools for the identification as well as research in gem stones.

  17. Modelling the radiobiological effect of intraoperative X-ray brachytherapy for breast cancer using an air-filled spherical applicator

    Directory of Open Access Journals (Sweden)

    Kris Armoogum

    2016-08-01

    Full Text Available Purpose : We present a framework, in which we compare a conventional standard dose of 50 Gy in 25 fractions with accelerated partial breast irradiation (APBI using electronic brachytherapy (eBT. We discuss how radiobiological modelling enables us to establish a framework, within which we can compare external beam radiotherapy (EBRT. This leads to a determination of the shell of isoeffect in breast tissue, at which very low kV eBT can be considered to be clinically equivalent to standard EBRT. Material and methods : To estimate relative biological effectiveness (RBE values as a function of dose and irradiation time, we used a modified linear quadratic (LQ approach, taking into account the ability of this new device, to deliver 20 Gy at the surface of a 40 mm diameter rigid, hollow spherical applicator in less than 2 minutes. In this study, we considered the radiobiological effectiveness of the Papillon+™ X-ray brachytherapy device operating at 30 kV, 0.3 mA producing dose rates in excess of 14 Gy/min. Results : Calculated clinical RBEs ranged from 1.154 at the surface of a 40 mm diameter applicator to 1.100 at 35 mm from the applicator surface for the Papillon+ device. The absolute physical dose D (abs 30 kV ranged from 20.00 Gy at the applicator surface to 1.20 at 35 mm distant. The product of the isoeffective single dose of 60Co reference radiation – (RBE60Co, and the RBE corrected standard 2 Gy equivalent dose fractions (EQD2 doses, EQD2(30 kV * (RBE60Co ranged from 98.62 Gy at the applicator surface to 1.13 at 35 mm. The ‘shell of isoeffect’, the value on the X-axis where the EQD2(30 kV * (RBE60Co line crosses the 50 Gy mark on the Y-axis, was found to be approximately 3.5 mm beyond the applicator surface. Conclusions : The ‘shell of isoeffect’ can serve as a useful metric with which to compare the radiobiological effectiveness of low kV eBT with various regimes of conventional EBRT.

  18. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner

    NARCIS (Netherlands)

    Arabi, Hossein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    Objective: The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. MethodsA realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To

  19. Efficient iterative image reconstruction algorithm for dedicated breast CT

    Science.gov (United States)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  20. A step-by-step review on patient-specific biomechanical finite element models for breast MRI to X-ray mammography registration.

    Science.gov (United States)

    García, Eloy; Diez, Yago; Diaz, Oliver; Lladó, Xavier; Martí, Robert; Martí, Joan; Oliver, Arnau

    2017-11-17

    Breast magnetic resonance imaging (MRI) and X-ray mammography are two image modalities widely used for the early detection and diagnosis of breast diseases in women. The combination of these modalities leads to a more accurate diagnosis and treatment of breast diseases. The aim of this paper is to review the registration between breast MRI and X-ray mammographic images using patient-specific finite element-based biomechanical models. Specifically, a biomechanical model is obtained from the patient's MRI volume and is subsequently used to mimic the mammographic acquisition. Due to the different patient positioning and movement restrictions applied in each image modality, the finite element analysis provides a realistic physics-based approach to perform the breast deformation. In contrast with other reviews, we do not only expose the overall process of compression and registration but we also include main ideas, describe challenges and provide an overview of the used software in each step of the process. Extracting an accurate description from the MR images and preserving the stability during the finite element analysis require an accurate knowledge about the algorithms used, as well as the software and underlying physics. The wide perspective offered makes the paper suitable not only for expert researchers but also for graduate students and clinicians. We also include several medical applications in the paper, with the aim to fill the gap between the engineering and clinical performance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Schoerner, K., E-mail: karsten.schoerner.ext@siemens.co [Corporate Technology, Siemens AG, 81739 Muenchen (Germany); Physik-Department, Technische Universitaet Muenchen, 85748 Garching (Germany); Goldammer, M.; Stephan, J. [Corporate Technology, Siemens AG, 81739 Muenchen (Germany)

    2011-02-01

    Research highlights: {yields} We propose a scatter correction method employing a beam-hole array. {yields} Beam-hole and beam-stop array techniques are compared in respect of geometric and scattering properties. {yields} The beam-hole array method reduces overall scattering compared to a beam-stop array. {yields} Application of the beam-hole array method is successfully demonstrated for a CT of ceramic specimen. -- Abstract: In industrial X-ray cone-beam computed tomography, the inspection of large-scale samples is important because of increasing demands on their quality and long-term mechanical resilience. Large-scale samples, for example made of aluminum or iron, are strongly scattering X-rays. Scattered radiation leads to artifacts such as cupping, streaks, and a reduction in contrast in the reconstructed CT-volume. We propose a scatter correction method based on sampling primary signals by employing a beam-hole array (BHA). In this indirect method, a scatter estimate is calculated by subtraction of the sampled primary signal from the total signal, the latter taken from an image where the BHA is absent. This technique is considered complementary to the better known beam-stop array (BSA) method. The two scatter estimation methods are compared here with respect to geometric effects, scatter-to-total ratio and practicability. Scatter estimation with the BHA method yields more accurate scatter estimates in off-centered regions, and a lower scatter-to-total ratio in critical image regions where the primary signal is very low. Scatter correction with the proposed BHA method is then applied to a ceramic specimen from power generation technologies. In the reconstructed CT volume, cupping almost completely vanishes and contrast is enhanced significantly.

  2. MO-FG-CAMPUS-IeP2-05: Feasibility Demonstration of High-Voltage Clinical CT and Impact On X-Ray Penetration Through Metal Objects

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y; De Man, B [GE Global Research, Niskayuna, NY (United States); Robinson, V [GE, Global Research, Niskayuna, NY (United States); Gjesteby, L [Rensselaer Polytechnic Institute, Troy, NY (United States); Wang, G [Rensselaer Polytechnic Institute Troy, NY (United States); Verburg, J [Massachusetts, General Hospital, Boston, MA (United States); Giantsoudi, D; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To demonstrate the possibility and quantify the impact of operating a clinical CT scanner at exceptionally high x-ray tube voltage for better penetration through metal objects and facilitating metal artifact reduction. Methods: We categorize metal objects according to the data corruption severeness (level of distortion and complete photon starvation fraction). To demonstrate feasibility and investigate the impact of high voltage scanning we modified a commercial GE LightSpeed VCT scanner (generator and software) to enable CT scans with x-ray tube voltages as high as 175 kVp. A 20 cm diameter water phantom with two metal rods (10 mm stainless and 25 mm titanium) and a water phantom with realistic metal object (spine cage) were used to evaluate the data corruption and image artifacts in the absence of any algorithm correction. We also performed simulations to confirm our understanding of the transmitted photon levels through metal objects with different size and composition. Results: The reconstructed images at 175 kVp still have significant dark shading artifacts, as expected since no special scatter correction or beam hardening was performed but show substantially lower noise and photon starvation than at lower kVp due to better beam penetration. Analysis of the raw data shows that the photon starved data is reduced from over 4% at 140 kVp to below 0.2% at 175 kVp. The simulations indicate that for clinically relevant titanium and stainless objects a 175 kVp tube voltage effectively avoids photon starvation. Conclusion: The use of exceptionally high tube voltage on a clinical CT system is a practical and effective solution to avoid photon starvation caused by certain metal implants. Sparse and hybrid high-voltage protocols are being considered to maintain low patient dose. This opens the door to algorithmic physics-based corrections rather than treating the data as missing and relying on missing data algorithms. Some of the authors are employees of General

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dislocations. In elderly or patients with osteoporosis, a hip fracture may be clearly seen on a CT scan, while it may be barely seen, if at all, on a hip x-ray. For suspected spine injury or other ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluated). MRI can also detect subtle or occult fractures or bone bruises (also called bone contusions or microfractures) not visible on x-ray images. CT is being used widely to assess trauma patients in ... fractures, subtle fractures or dislocations. In elderly or patients ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... may be placed over your pelvic area or breasts when feasible to protect from ... chance of cancer from excessive exposure to radiation. However, the benefit ...

  6. Experimental Investigation of the Variation of Concrete Pores under the Action of Freeze-Thaw Cycles by Using X-Ray CT

    Directory of Open Access Journals (Sweden)

    Jie Yuan

    2014-01-01

    Full Text Available The variation of concrete pores under the action of freeze-thaw cycles was investigated experimentally by using the X-ray CT. Firstly, the statistical characteristics of pores of concrete specimens were obtained by using the X-ray image analysis. Secondly, the variation of porosity and pore volume of concrete pores were analyzed and discussed by comparing with above characteristics. Thirdly, the failure process of the concrete specimens acted by the freeze-thaw cycles was investigated by scanning the interior of concrete specimens. The results showed that the pore volumes of concrete pores whose volumes were located at the interval [0.5 mm3, 20 mm3] have no big variation in both the amounts and volume of concrete pores, while others were found to have huge change during the process of experiment. The extent of damage acted by the repeated freezing and thawing gradually ranged from surface to complete disintegration of the interior of concrete specimens after 30 cycles of freeze-thaw acting.

  7. The role of 18F-FDG-PET/CT in the management of patients with high-risk breast cancer: case series and guideline comparison

    NARCIS (Netherlands)

    Bulten, Ben; de Haas, M.J.; Bloemendal, H.J.; van Overbeeke, A.J.; Esser, J.P.; Baarslag, H.J.; de Geus-Oei, Lioe-Fee; de Klerk, J.M.H.

    2014-01-01

    Objectives: In grade III-IV breast cancer, dissemination of disease needs to be assessed. Until now this was done by conventional imaging (liver ultrasonography, chest X-ray and bone scintigraphy), but evidence favoring the use of FDG-PET/CT is accumulating. Methods: Patients with high-risk breast

  8. Intraoperative fluoroscopy, portable X-ray, and CT: patient and operating room personnel radiation exposure in spinal surgery.

    Science.gov (United States)

    Nelson, Elisha M; Monazzam, Shafagh M; Kim, Kee D; Seibert, J Anthony; Klineberg, Eric O

    2014-12-01

    Intraoperative imaging is essential in spinal surgery to both determine the correct level and place implants safely. Surgeons have a variety of options: C-arm fluoroscopy (C-arm), portable X-ray (XR) radiography, and portable cone-beam computed tomography (O-arm). Although these modalities have their respective advantages and disadvantages, direct comparison of radiation exposure to either the patient or the operating room (OR) staff has not been made. To determine the amount of radiation exposure to patients and OR staff during spine surgery with C-arm, XR, and O-arm. An experimental model to assess radiation exposure to OR staff and phantom patient during spine surgery. A plastic phantom was created to emulate patient volume and absorption scattering characteristics of a typical sized adult abdominal volume. Radiation exposure was measured with ion chamber dosimeters to determine entrance phantom and scatter exposures at common positions occupied by OR staff for C-arm, XR, and O-arm in typical image acquisition during spinal surgery. Single lateral (LAT)/posterior-anterior entrance patient radiation exposure for C-arm was on average 116/102 mR, single-exposure XR for LAT/anterior-posterior (AP) was 3,435/2,160 mR, and single-exposure O-arm for LAT/AP was 4,360/5,220 mR. O-arm surface exposure LAT/AP was equivalent to 38/41 C-arm and 1.5/2.4 XR exposures. The surgeon and surgeon assistant had higher levels of scatter radiation for C-arm, followed by O-arm and XR. For the LAT C-arm acquisition, a 7.7-fold increase in radiation exposure was measured on the X-ray tube side compared with the detector side. The anesthesiologist scatter radiation level for a single acquisition was highest for O-arm, followed by XR and C-arm. The radiologic technologist scatter radiation level was highest for XR, followed by O-arm and fluoroscopy. Overall radiation exposure to OR staff was less than 4.4 mR for a single acquisition in all modalities. Assessment of radiation risk to the

  9. Micromechanical Time-Lapse X-ray CT Study of Fatigue Damage in Uni-Directional Fibre Composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Lowe, Tristan; Withers, Philip J.

    2015-01-01

    . In the current study 3D X-ray Computed Tomography (XCT) is used to characterise the fatigue damage in the material at three different stages of the fatigue life of a tension-tension fatigue test. 3D XCT is performed on rectangular samples (4x4x110mm) cut out from pre-fatigued full-size fatigue test specimens......This study considers fatigue damage evolution in a uni-directional (UD) glass fibre composite used for wind turbine blades which is manufactured from a non-crimp fabric. It is the initial part of a time-lapse study where the damage progression is followed in a sample during a fatigue test....... The geometry of the cut-out is similar to that which will be used in the time-lapse study. As the micro-mechanical damage mechanisms are small features, it is necessary to obtain a high scan resolution which sets a limit to how large the field of view can be. Therefore, it is necessary to perform several scans...

  10. Partial arc beam filtration: a novel approach to reducing CT breast radiation dose.

    Science.gov (United States)

    Mathieu, Kelsey B; Cody, Dianna D

    2013-03-01

    We sought to assess the effectiveness of a novel CT radiation dose reduction strategy in which filtration was added at the x-ray tube output port between the x-ray beam and the breast area of three sizes of anthropomorphic phantoms. To evaluate the dose-reduction potential of partial arc x-ray beam filtration, copper foil filtration or lead foil filtration was placed over CT scanners' covers when scanning anthropomorphic phantoms representative of a 5-year-old child, a 10-year-old child, and an adult female. Dose reduction was calculated as the percentage difference between the mean entrance radiation dose (on the phantoms' surfaces at locations representing the sternum and left breast) in unshielded scans compared with the mean dose in scans shielded by copper or lead foil. We also compared the CT numbers and noise sampled in regions representing the lung and the soft tissues near the sternum, left breast, and spine in CT images of the phantoms during unshielded scans relative to acquisitions shielded by copper or lead foil. Entrance dose at the sternum and left breast in the three anthropomorphic phantoms was reduced by 28-66% and 54-79% when using copper or lead foil filtration, respectively. However, copper foil filtration affected the CT numbers and noise in the CT images less than the lead foil filtration did (8.2% vs 32% mean increase in noise). By incorporating partial arc beam filtration into CT scanners, substantial dose reductions may be achieved with a minimal increase in image noise.

  11. Partial Arc Beam Filtration: A Novel Approach to Reducing CT Breast Dose

    Science.gov (United States)

    Mathieu, Kelsey B.; Cody, Dianna D.

    2013-01-01

    OBJECTIVE We sought to assess the effectiveness of a novel computed tomography (CT) radiation dose-reduction strategy in which filtration was added at the x-ray tube output port between the x-ray beam and the breast area of three sizes of anthropomorphic phantoms. METHODS To evaluate the dose-reduction potential of partial arc x-ray beam filtration, copper foil filtration or lead foil filtration was placed over CT scanners’ covers when scanning anthropomorphic phantoms representative of a 5-year-old, 10-year-old, and an adult female. Dose reduction was calculated as the percent difference between the mean entrance radiation dose (detected on the phantoms’ surfaces at locations representing the sternum and left breast) in unshielded scans compared to the mean dose in scans shielded by copper foil or lead foil. Additionally, we compared the CT numbers and noise sampled in regions representing the lung and the soft tissues near the sternum, left breast, and spine in CT images of the phantoms during unshielded scans relative to acquisitions shielded copper foil or lead foil. RESULTS Entrance dose at the sternum and left breast in the three anthropomorphic phantoms was reduced by 28% to 66% and 54% to 79% when using copper foil or lead foil filtration, respectively. However, copper foil filtration affected the CT numbers and noise in the CT images less than the lead foil filtration (8.2% versus 32% mean increase in noise, respectively). CONCLUSION By incorporating partial arc beam filtration into CT scanners, substantial dose reductions may be achieved with a minimal increase in image noise. PMID:23436850

  12. Investigations of different kilovoltage X-ray energy for three-dimensional converging stereotactic radiotherapy system: Monte Carlo simulations with CT data.

    Science.gov (United States)

    Deloar, Hossain M; Kunieda, Etsuo; Kawase, Takatsugu; Tsunoo, Takanori; Saitoh, Hidetoshi; Ozaki, Masahiro; Saito, Kimiaki; Takagi, Shunji; Sato, Osamu; Fujisaki, Tatsuya; Myojoyama, Atsushi; Sorell, Graham

    2006-12-01

    We are investigating three-dimensional converging stereotactic radiotherapy (3DCSRT) with suitable medium-energy x rays as treatment for small lung tumors with better dose homogeneity at the target. A computed tomography (CT) system dedicated for non-coplanar converging radiotherapy was simulated with BEAMnrc (EGS4) Monte-Carlo code for x-ray energy of 147.5, 200, 300, and 500 kilovoltage (kVp). The system was validated by comparing calculated and measured percentage of depth dose in a water phantom for the energy of 120 and 147.5 kVp. A thorax phantom and CT data from lung tumors (dose homogeneities of kVp energies with MV energies of 4, 6, and 10 MV. Three non-coplanar arcs (0 degrees and +/-25 degrees ) around the center of the target were employed. The Monte Carlo dose data format was converted to the XiO RTP format to compare dose homogeneity, differential, and integral dose volume histograms of kVp and MV energies. In terms of dose homogeneity and DVHs, dose distributions at the target of all kVp energies with the thorax phantom were better than MV energies, with mean dose absorption at the ribs (human data) of 100%, 85%, 50%, 30% for 147.5, 200, 300, and 500 kVp, respectively. Considering dose distributions and reduction of the enhanced dose absorption at the ribs, a minimum of 500 kVp is suitable for the lung kVp 3DCSRT system.

  13. [Observations on three dimensional images for cracks of doweled teeth--comparison of images from specimen sections and dental tomograms from small three dimensional X-ray CT].

    Science.gov (United States)

    Misawa, Hiroko; Tsuchiya, Soichiro; Sasaki, Norichika; Hagihara, Takahiro; Fujiseki, Youhei; Takayama, Junichi; Fujisaki, Noboru; Kurasawa, Ikufumi; Amari, Mitsuharu; Ohshima, Kazunari

    2005-02-01

    Intraoral views of teeth with dowel and post hole taken by small three-dimensional X-ray CT (3DX) were compared with three-dimensional images from specimen sections of the same extracted teeth. This comparison shows the usefulness of 3DX for examination of cracked teeth in the oral cavity. After taking dental tomographic images using 3DX for fractured teeth in the oral cavity, the fractured teeth were extracted and three-dimensional images for them and their cracks were obtained from a set of photographed sections. Then both sets of three-dimensional images for the fractured teeth were compared in terms of the form and region of the cracks. The tooth cracks were observed at the root face region in the intraoral view. Also, in the extracted teeth, fracture lines were recognized from the three-dimensional images. Moreover, a discontinuous image was obtained in teeth from the dental tomographic image using 3DX. This discontinuous image in teeth was observed in the same region and direction as the cracks of the three dimensional image from specimen sections of the extracted teeth. The discontinuous images of teeth in the dental tomographic images from 3DX were observed in the same region and direction as the cracks of teeth in the three-dimensional images from specimen sections of the extracted teeth. It was confirmed that dental tomographic images from 3DX are useful for finding cracks in living teeth. However, dental tomographic images from small three-dimensional X-ray CT are not perfectly reliable because the discontinuous image is not found in some teeth where the cracks are recognized by images from specimen sections after extraction.

  14. Improving the spatial resolution characteristics of dedicated cone-beam breast CT technology

    Science.gov (United States)

    Gazi, Peymon; Boone, John M.

    2014-03-01

    Prior studies have shown that breast CT (bCT) outperforms mammography in the visualization of mass lesions, yet underperforms in the detection of micro-calcifications. The Breast Tomography Project at UC Davis has successively developed and fabricated four dedicated breast CT scanners, the most recent code-named Doheny, that produce high resolution, fully tomographic images, and overcome the tissue superposition effects of mammography at equivalent radiation dose. Over 600 patients have been imaged thus far in an ongoing clinical trial. The Doheny prototype differs from prior bCT generations in its usage of a pulsed rather than continuous x-ray source and in its utilization of a CMOS flat-panel fluoroscopic detector rather than TFT. Spatial Resolution analysis performed on Doheny indicates that the MTF characteristics have been substantially improved.

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  16. THE DIAGNOSTIC EFFICACY OF SPECT/CT IN DETECTION OF BONE METASTASES IN PATIENTS WITH BREAST AND PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    Е. А. Glushkov

    2015-01-01

    Full Text Available The present study was undertaken to evaluate the benefit of single photon emission computed tomography/ computed tomography (SPECT/CT over SPECT alone, osteoscintigraphy (OSG, CT and conventional X-ray for the detection of bone metastasis in patients with breast cancer (BC and prostate cancer (PC. 72 BC patients and 17 PC patients at high risk of developing bone metastasis were examined by (SPECT/ CT, SPECT,OSG,CTand conventional X-ray. Bone metastases were detected in 33 (37.1 % patients. It was found that the diagnostic efficacy (sensitivity, specificity and accuracy of SPECT/CT was significantly superior to that of the other types of imaging modalities in detection of bone metastases from BC. In addition, the combination of SPECT with CT resulted in a change in SPECT and CT findings on skeletal metastasis in 5 (6 % and 11 (12 % cases, respectively.

  17. A simple way to track single gold-loaded alginate microcapsules using x-ray CT in small animal longitudinal studies.

    Science.gov (United States)

    Astolfo, Alberto; Qie, Fengxiang; Kibleur, Astrid; Hao, Xiaojuan; Menk, Ralf Hendrik; Arfelli, Fulvia; Rigon, Luigi; Hinton, Tracey M; Wickramaratna, Malsha; Tan, Tianwei; Hughes, Timothy C

    2014-11-01

    The use of alginate based microcapsules to deliver drugs and cells with a minimal host interaction is increasingly being proposed. A proficient method to track the position of the microcapsules during such therapies, particularly if they are amenable to commonly used instrumentation, would greatly help the development of such treatments. Here we propose to label the microcapsules with gold nanoparticles to provide a bright contrast on small animal x-ray micro-CT systems enabling single microcapsule detection. The microcapsules preparation is based on a simple protocol using inexpensive compounds. This, combined with the widespread availability of micro-CT apparatus, renders our method more accessible compared with other methods. Our labeled microcapsules showed good mechanical stability and low cytotoxicity in-vitro. Our post-mortem rodent model data strongly suggest that the high signal intensity generated by the labeled microcapsules permits the use of a reduced radiation dose yielding a method fully compatible with longitudinal in-vivo studies. The authors of this study report the development of a micro-CT based tracking method of alginate-based microcapsules by incorporating gold nanoparticles in the microcapsules. They demonstrate the feasibility of this system in rodent models, where due to the high signal intensity, even reduced radiation dose is sufficient to track these particles, providing a simple and effective method to track these commonly used microcapsules and allowing longitudinal studies. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  18. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    Science.gov (United States)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  19. Adaptation Measurement of CAD/CAM Dental Crowns with X-Ray Micro-CT: Metrological Chain Standardization and 3D Gap Size Distribution

    Directory of Open Access Journals (Sweden)

    L. Tapie

    2016-01-01

    Full Text Available Computer-Aided Design and Manufacturing systems are increasingly used to produce dental prostheses, but the parts produced suffer from a lack of evaluation, especially concerning the internal gap of the final assembly, that is, the space between the prepared tooth and the prosthesis. X-ray micro-Computed Tomography (micro-CT is a noninvasive imaging technique enabling the internal inspection of the assembly. It has proved to be an efficient tool for measuring the gap. In this study, a critical review of the protocols using micro-CT to quantify the gap is proposed as an introduction to a new protocol aimed at minimizing errors and enabling comparison between CAD/CAM systems. To compare different systems, a standardized protocol is proposed including two reference geometries. Micro-CT is used to acquire the reference geometries. A new 3D method is then proposed and a new indicator is defined (Gap Size Distribution (GSD. In addition, the usual 2D measurements are described and discussed. The 3D gap measurement method proposed can be used in clinical case geometries and has the considerable advantage of minimizing the data processing steps before performing the measurements.

  20. X-ray tensor tomography

    Science.gov (United States)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  1. Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer; Kruschel, C.; Lorenz, D. A.

    2015-01-01

    , but not for CT. Recoverability is typically tested by checking whether a computed solution recovers the original. This approach cannot guarantee solution uniqueness and the recoverability decision therefore depends on the optimization algorithm. We propose new computational methods to test recoverability...... by verifying solution uniqueness conditions. Using both reconstruction and uniqueness testing, we empirically study the number of CT measurements sufficient for recovery on new classes of sparse test images. We demonstrate an average-case relation between sparsity and sufficient sampling and observe a sharp...

  2. Hand x-ray

    Science.gov (United States)

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  3. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barbes, Damien, E-mail: damien.barbes@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Tabary, Joachim, E-mail: joachim.tabary@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Paulus, Caroline, E-mail: caroline.paulus@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Hazemann, Jean-Louis, E-mail: jean-louis.hazemann@neel.cnrs.fr [Univ.Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Verger, Loïck, E-mail: loick.verger@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2017-03-11

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  4. X-ray induced formation of γ-H2AX foci after full-field digital mammography and digital breast-tomosynthesis.

    Directory of Open Access Journals (Sweden)

    Siegfried A Schwab

    Full Text Available PURPOSE: To determine in-vivo formation of x-ray induced γ-H2AX foci in systemic blood lymphocytes of patients undergoing full-field digital mammography (FFDM and to estimate foci after FFDM and digital breast-tomosynthesis (DBT using a biological phantom model. MATERIALS AND METHODS: The study complies with the Declaration of Helsinki and was performed following approval by the ethic committee of the University of Erlangen-Nuremberg. Written informed consent was obtained from every patient. For in-vivo tests, systemic blood lymphocytes were obtained from 20 patients before and after FFDM. In order to compare in-vivo post-exposure with pre-exposure foci levels, the Wilcoxon matched pairs test was used. For in-vitro experiments, isolated blood lymphocytes from healthy volunteers were irradiated at skin and glandular level of a porcine breast using FFDM and DBT. Cells were stained against the phosphorylated histone variant γ-H2AX, and foci representing distinct DNA damages were quantified. RESULTS: Median in-vivo foci level/cell was 0.086 (range 0.067-0.116 before and 0.094 (0.076-0.126 after FFDM (p = 0.0004. In the in-vitro model, the median x-ray induced foci level/cell after FFDM was 0.120 (range 0.086-0.140 at skin level and 0.035 (range 0.030-0.050 at glandular level. After DBT, the median x-ray induced foci level/cell was 0.061 (range 0.040-0.081 at skin level and 0.015 (range 0.006-0.020 at glandular level. CONCLUSION: In patients, mammography induces a slight but significant increase of γ-H2AX foci in systemic blood lymphocytes. The introduced biological phantom model is suitable for the estimation of x-ray induced DNA damages in breast tissue in different breast imaging techniques.

  5. Towards standardization of x-ray beam filters in digital mammography and digital breast tomosynthesis: Monte Carlo simulations and analytical modelling

    Science.gov (United States)

    Shrestha, Suman; Vedantham, Srinivasan; Karellas, Andrew

    2017-03-01

    In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50 µm Rh; 50 µm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700 µm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37-57% reduction in exposure duration and with 2-20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700 µm) and HVL matched by increasing the kV over (0,4) range, identical SDNR was achieved with 62-65% decrease in exposure duration and with 2-24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over (700, 880) µm range, identical SDNR was achieved with 23-56% reduction in exposure duration and 2-20% reduction in MGD, depending on breast thickness. These

  6. Towards standardization of x-ray beam filters in digital mammography and digital breast tomosynthesis: Monte Carlo simulations and analytical modelling.

    Science.gov (United States)

    Shrestha, Suman; Vedantham, Srinivasan; Karellas, Andrew

    2017-03-07

    In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50 µm Rh; 50 µm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700 µm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37-57% reduction in exposure duration and with 2-20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700 µm) and HVL matched by increasing the kV over (0,4) range, identical SDNR was achieved with 62-65% decrease in exposure duration and with 2-24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over (700, 880) µm range, identical SDNR was achieved with 23-56% reduction in exposure duration and 2-20% reduction in MGD, depending on breast thickness. These

  7. First-order convex feasibility algorithms for iterative image reconstruction in limited angular-range X-ray CT

    CERN Document Server

    Sidky, Emil Y; Pan, Xiaochuan

    2012-01-01

    Iterative image reconstruction (IIR) algorithms in Computed Tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times, however, it is impractical to achieve accurate solution to the optimization of interest, which complicates design of IIR algorithms. This issue is particularly acute for CT with a limited angular-range scan, which leads to poorly conditioned system matrices and difficult to solve optimization problems. In this article, we develop IIR algorithms which solve a certain type of optimization called convex feasibility. The convex feasibility approach can provide alternatives to unconstrained optimization approaches and at the same time allow for efficient algorithms for their solution -- thereby facilitating the IIR algorithm design process. An accelerated version of the Chambolle-Pock (CP) algorithm is adapted to various convex fea...

  8. UT-CT: A National Resource for Applications of High-Resolution X-ray Computed Tomography in the Geological Sciences

    Science.gov (United States)

    Carlson, W. D.; Ketcham, R. A.; Rowe, T. B.

    2002-12-01

    An NSF-sponsored (EAR-IF) shared multi-user facility dedicated to research applications of high-resolution X-ray computed tomography (CT) in the geological sciences has been in operation since 1997 at the University of Texas at Austin. The centerpiece of the facility is an industrial CT scanner custom-designed for geological applications. Because the instrument can optimize trade-offs among penetrating ability, spatial resolution, density discrimination, imaging modes, and scan times, it can image a very broad range of geological specimens and materials, and thus offers significant advantages over medical scanners and desktop microtomographs. Two tungsten-target X-ray sources (200-kV microfocal and 420-kV) and three X-ray detectors (image-intensifier, high-sensitivity cadmium tungstate linear array, and high-resolution gadolinium-oxysulfide radiographic line scanner) can be used in various combinations to meet specific imaging goals. Further flexibility is provided by multiple imaging modes: second-generation (translate-rotate), third-generation (rotate-only; centered and variably offset), and cone-beam (volume CT). The instrument can accommodate specimens as small as about 1 mm on a side, and as large as 0.5 m in diameter and 1.5 m tall. Applications in petrology and structural geology include measuring crystal sizes and locations to identify mechanisms governing the kinetics of metamorphic reactions; visualizing relationships between alteration zones and abundant macrodiamonds in Siberian eclogites to elucidate metasomatic processes in the mantle; characterizing morphologies of spiral inclusion trails in garnet to test hypotheses of porphyroblast rotation during growth; measuring vesicle size distributions in basaltic flows for determination of elevation at the time of eruption to constrain timing and rates of continental uplift; analysis of the geometry, connectivity, and tortuosity of migmatite leucosomes to define the topology of melt flow paths, for numerical

  9. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer.

    Science.gov (United States)

    Jin, Yushen; Li, Yanyan; Ma, Xibo; Zha, Zhengbao; Shi, Liangliang; Tian, Jie; Dai, Zhifei

    2014-07-01

    A nanotheranostic agent has been readily fabricated by encapsulating tantalum oxide (TaOx) nanoparticles (NPs) into polypyrrole (PPy) NPs via a facile one-step chemical oxidation polymerization for bimodal imaging guided photothermal ablation of tumor. It was proved that the obtained composite nanoparticles (TaOx@PPy NPs) with an average diameter around 45 nm could operate as an efficient bimodal contrast agent to simultaneously enhance X-ray CT and photoacoustic (PA) imaging greatly in vivo. Systemically administered TaOx@PPy NPs could passively accumulate at the tumor site during the blood circulation, which was proved by both CT and PA imaging. In addition, the in vivo therapeutic examinations showed that TaOx@PPy NPs exhibited significant photothermal cytotoxicity under near infrared laser irradiation. The tumor growth inhibition was evaluated to be 66.5% for intravenously injection and 100% for intratumoral injection, respectively. This versatile agent can be developed as a smart and promising nanoplatform that integrates multiple capabilities for both accurate diagnosing and precise locating of cancerous tissue, as well as effective photoablation of tumor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Adrian [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); University Hospital Pitie-Salpetriere, Department of Polyvalent and Oncological Radiology, Paris (France); Landau, Julia; Buetikofer, Yanik; Leidolt, Lars; Brela, Barbara; May, Michelle; Heverhagen, Johannes; Christe, Andreas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Ebner, Lukas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Duke University Medical Center, Department of Radiology, Durham, NC (United States)

    2016-10-15

    To investigate the detection rate of pulmonary nodules in ultralow-dose CT acquisitions. In this lung phantom study, 232 nodules (115 solid, 117 ground-glass) of different sizes were randomly distributed in a lung phantom in 60 different arrangements. Every arrangement was acquired once with standard radiation dose (100 kVp, 100 references mAs) and once with ultralow radiation dose (80 kVp, 6 mAs). Iterative reconstruction was used with optimized kernels: I30 for ultralow-dose, I70 for standard dose and I50 for CAD. Six radiologists examined the axial 1-mm stack for solid and ground-glass nodules. During a second and third step, three radiologists used maximum intensity projection (MIPs), finally checking with computer-assisted detection (CAD), while the others first used CAD, finally checking with the MIPs. The detection rate was 95.5 % with standard dose (DLP 126 mGy*cm) and 93.3 % with ultralow-dose (DLP: 9 mGy*cm). The additional use of either MIP reconstructions or CAD software could compensate for this difference. A combination of both MIP reconstructions and CAD software resulted in a maximum detection rate of 97.5 % with ultralow-dose. Lung cancer screening with ultralow-dose CT using the same radiation dose as a conventional chest X-ray is feasible. (orig.)

  11. SU-F-I-12: Region-Specific Dictionary Learning for Low-Dose X-Ray CT Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q; Han, H; Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: Dictionary learning based method has attracted more and more attentions in low-dose CT due to the superior performance on suppressing noise and preserving structural details. Considering the structures and noise vary from region to region in one imaging object, we propose a region-specific dictionary learning method to improve the low-dose CT reconstruction. Methods: A set of normal-dose images was used for dictionary learning. Segmentations were performed on these images, so that the training patch sets corresponding to different regions can be extracted out. After that, region-specific dictionaries were learned from these training sets. For the low-dose CT reconstruction, a conventional reconstruction, such as filtered back-projection (FBP), was performed firstly, and then segmentation was followed to segment the image into different regions. Sparsity constraints of each region based on its dictionary were used as regularization terms. The regularization parameters were selected adaptively according to different regions. A low-dose human thorax dataset was used to evaluate the proposed method. The single dictionary based method was performed for comparison. Results: Since the lung region is very different from the other part of thorax, two dictionaries corresponding to lung region and the rest part of thorax respectively were learned to better express the structural details and avoid artifacts. With only one dictionary some artifact appeared in the body region caused by the spot atoms corresponding to the structures in the lung region. And also some structure in the lung regions cannot be recovered well by only one dictionary. The quantitative indices of the result by the proposed method were also improved a little compared to the single dictionary based method. Conclusion: Region-specific dictionary can make the dictionary more adaptive to different region characteristics, which is much desirable for enhancing the performance of dictionary learning

  12. Imaging with ultra-small-angle X-ray scattering using a Laue-case analyzer and its application to human breast tumors.

    Science.gov (United States)

    Shimao, Daisuke; Sunaguchi, Naoki; Sasaya, Tenta; Yuasa, Tetsuya; Ichihara, Shu; Kawasaki, Tomonori; Ando, Masami

    2017-12-01

    In this study, we demonstrate a novel imaging technique, based on ultra-small-angle X-ray scattering (USAXS) that uses a Laue-case Si wafer as the angle analyzer. We utilized the (1 1 1) diffraction plane of a 356 μm thick, symmetrically cut Si wafer as the angle analyzer, denoted by A[L]. With this device, we performed USAXS imaging experiments using 19.8 keV synchrotron X-rays. The objects we imaged were formalin-fixed, paraffin-embedded breast tumors (an invasive carcinoma and an intraductal papilloma). During image acquisition by a charge-coupled device (CCD) camera, we varied the rotation angle of the analyzer in 0.02″ steps from -2.40″ to +2.40″ around the Bragg angle. The exposure time for each image was 2 s. We determined the amount of ultra-small-angle X-ray scattering from the width of the intensity curve obtained for each local pixel during the rotation of the analyzer. We acquired USAXS images of malignant and benign breast tumor specimens using the A[L] analyzer; regions with larger USAXS form brighter areas in the image. We varied the sensitivity of the USAXS image by changing the threshold level of the object rocking curve. The USAXS images can provide information about the internal distribution of closely packed scattering bodies in a sample with reasonable sensitivity. This information differs from that obtainable through refraction-contrast imaging. Although further validation studies will be necessary, we conclude that USAXS imaging using a Laue-case analyzer may have significant potential as a new diagnosis technique. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. X-ray phase-contrast imaging of the breast—advances towards clinical implementation

    Science.gov (United States)

    Herzen, J; Willner, M; Grandl, S; Scherer, K; Bamberg, F; Reiser, M F; Pfeiffer, F; Hellerhoff, K

    2014-01-01

    Breast cancer constitutes about one-quarter of all cancers and is the leading cause of cancer death in women. To reduce breast cancer mortality, mammographic screening programmes have been implemented in many Western countries. However, these programmes remain controversial because of the associated radiation exposure and the need for improvement in terms of diagnostic accuracy. Phase-contrast imaging is a new X-ray-based technology that has been shown to provide enhanced soft-tissue contrast and improved visualization of cancerous structures. Furthermore, there is some indication that these improvements of image quality can be maintained at reduced radiation doses. Thus, X-ray phase-contrast mammography may significantly contribute to advancements in early breast cancer diagnosis. Feasibility studies of X-ray phase-contrast breast CT have provided images that allow resolution of the fine structure of tissue that can otherwise only be obtained by histology. This implies that X-ray phase-contrast imaging may also lead to the development of entirely new (micro-) radiological applications. This review provides a brief overview of the physical characteristics of this new technology and describes recent developments towards clinical implementation of X-ray phase-contrast imaging of the breast. PMID:24452106

  14. Detection of metastases in breast cancer patients. Comparison of FDG PET with chest X-ray, bone scintigraphy and ultrasound of the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Dose-Schwarz, J.; Mahner, S.; Schirrmacher, S.; Mueller, V. [Klinik und Poliklinik fuer Gynaekologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Jenicke, L.; Brenner, W. [Klinik fuer Nuklearmedizin, Universitaetsklinikum Hamburg-Eppendorf (Germany); Habermann, C.R. [Klinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany)

    2008-07-01

    Distant metastases at primary diagnosis are a prognostic key factor in breast cancer patients and play a central role in therapeutic decisions. To detect them, chest X-ray, abdominal ultrasound, and bone scintigraphy are performed as standard of care in Germany and many centers worldwide. Although FDG PET detects metastatic disease with high accuracy, its diagnostic value in breast cancer still needs to be defined. The aim of this study was to compare the diagnostic performance of FDG PET with conventional imaging. Patients, methods: a retrospective analysis of 119 breast cancer patients who presented for staging was performed. Whole-body FDG-PET (n = 119) was compared with chest X-ray (n = 106) and bone scintigraphy (n = 95). Each imaging modality was independently assessed and classified for metastasis (negative, equivocal and positive). The results of abdominal ultrasound (n = 100) were classified as negative and positive according to written reports. Imaging results were compared with clinical follow-up including follow-up imaging procedures and histopathology. Results: FDG-PET detected distant metastases with a sensitivity of 87.3% and a specificity of 83.3%. In contrast, the sensitivity and specificity of combined conventional imaging procedures was 43.1% and 98.5%, respectively. Regarding so-called equivocal and positive results as positive, the sensitivity and specificity of FDG-PET was 93.1% and 76.6%, respectively, compared to 61.2% and 86.6% for conventional imaging. Regarding different locations of metastases the sensitivity of FDG PET was superior in the detection of pulmonary metastases and lymph node metastases of the mediastinum in comparison to chest X-ray, whereas the sensitivity of FDG PET in the detection of bone and liver metastases was comparable with bone scintigraphy and ultrasound of the abdomen. Conclusions: FDG-PET is more sensitive than conventional imaging procedures for detection of distant breast cancer metastases and should be

  15. WE-G-207-02: Full Sequential Projection Onto Convex Sets (FS-POCS) for X-Ray CT Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L; Han, Y [Tianjin University, Tianjin (China); Jin, M [University of Texas at Arlington, Arlington, TX (United States)

    2015-06-15

    Purpose: To develop an iterative reconstruction method for X-ray CT, in which the reconstruction can quickly converge to the desired solution with much reduced projection views. Methods: The reconstruction is formulated as a convex feasibility problem, i.e. the solution is an intersection of three convex sets: 1) data fidelity (DF) set – the L2 norm of the difference of observed projections and those from the reconstructed image is no greater than an error bound; 2) non-negativity of image voxels (NN) set; and 3) piecewise constant (PC) set - the total variation (TV) of the reconstructed image is no greater than an upper bound. The solution can be found by applying projection onto convex sets (POCS) sequentially for these three convex sets. Specifically, the algebraic reconstruction technique and setting negative voxels as zero are used for projection onto the DF and NN sets, respectively, while the projection onto the PC set is achieved by solving a standard Rudin, Osher, and Fatemi (ROF) model. The proposed method is named as full sequential POCS (FS-POCS), which is tested using the Shepp-Logan phantom and the Catphan600 phantom and compared with two similar algorithms, TV-POCS and CP-TV. Results: Using the Shepp-Logan phantom, the root mean square error (RMSE) of reconstructed images changing along with the number of iterations is used as the convergence measurement. In general, FS- POCS converges faster than TV-POCS and CP-TV, especially with fewer projection views. FS-POCS can also achieve accurate reconstruction of cone-beam CT of the Catphan600 phantom using only 54 views, comparable to that of FDK using 364 views. Conclusion: We developed an efficient iterative reconstruction for sparse-view CT using full sequential POCS. The simulation and physical phantom data demonstrated the computational efficiency and effectiveness of FS-POCS.

  16. Normative values for CT-based texture analysis of vertebral bodies in dual X-ray absorptiometry-confirmed, normally mineralized subjects

    Energy Technology Data Exchange (ETDEWEB)

    Mannil, Manoj; Eberhard, Matthias; Becker, Anton S.; Alkadhi, Hatem; Guggenberger, Roman [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Schoenenberg, Denise; Osterhoff, Georg [University Hospital Zurich, Division of Trauma Surgery, Zurich (Switzerland); Frey, Diana P. [University Hospital Zurich, Department of Rheumatology, Zurich (Switzerland); Konukoglu, Ender [Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, Zurich (Switzerland)

    2017-11-15

    To develop age-, gender-, and regional-specific normative values for texture analysis (TA) of spinal computed tomography (CT) in subjects with normal bone mineral density (BMD), as defined by dual X-ray absorptiometry (DXA), and to determine age-, gender-, and regional-specific differences. In this retrospective, IRB-approved study, TA was performed on sagittal CT bone images of the thoracic and lumbar spine using dedicated software (MaZda) in 141 individuals with normal DXA BMD findings. Numbers of female and male subjects were balanced in each of six age decades. Three hundred and five TA features were analyzed in thoracic and lumbar vertebrae using free-hand regions-of-interest. Intraclass correlation (ICC) coefficients were calculated for determining intra- and inter-observer agreement of each feature. Further dimension reduction was performed with correlation analyses. The TA features with an ICC < 0.81 indicating compromised intra- and inter-observer agreement and with Pearson correlation scores r > 0.8 with other features were excluded from further analysis for dimension reduction. From the remaining 31 texture features, a significant correlation with age was found for the features mean (r = -0.489, p < 0.001), variance (r = -0.681, p < 0.001), kurtosis (r = 0.273, p < 0.001), and WavEnLL{sub s}4 (r = 0.273, p < 0.001). Significant differences were found between genders for various higher-level texture features (p < 0.001). Regional differences among the thoracic spine, thoracic-lumbar junction, and lumbar spine were found for most TA features (p < 0.021). This study established normative values of TA features on CT images of the spine and showed age-, gender-, and regional-specific differences in individuals with normal BMD as defined by DXA. (orig.)

  17. MO-DE-207A-06: ECG-Gated CT Reconstruction for a C-Arm Inverse Geometry X-Ray System

    Energy Technology Data Exchange (ETDEWEB)

    Slagowski, JM; Dunkerley, DAP [MA Speidel, University of Wisconsin - Madison, Madison, WI (United States)

    2016-06-15

    Purpose: To obtain ECG-gated CT images from truncated projection data acquired with a C-arm based inverse geometry fluoroscopy system, for the purpose of cardiac chamber mapping in interventional procedures. Methods: Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system with a scanned multisource x-ray tube and a photon-counting detector mounted to a C-arm. In the proposed method, SBDX short-scan rotational acquisition is performed followed by inverse geometry CT (IGCT) reconstruction and segmentation of contrast-enhanced objects. The prior image constrained compressed sensing (PICCS) framework was adapted for IGCT reconstruction to mitigate artifacts arising from data truncation and angular undersampling due to cardiac gating. The performance of the reconstruction algorithm was evaluated in numerical simulations of truncated and non-truncated thorax phantoms containing a dynamic ellipsoid to represent a moving cardiac chamber. The eccentricity of the ellipsoid was varied at frequencies from 1–1.5 Hz. Projection data were retrospectively sorted into 13 cardiac phases. Each phase was reconstructed using IGCT-PICCS, with a nongated gridded FBP (gFBP) prior image. Surface accuracy was determined using Dice similarity coefficient and a histogram of the point distances between the segmented surface and ground truth surface. Results: The gated IGCT-PICCS algorithm improved surface accuracy and reduced streaking and truncation artifacts when compared to nongated gFBP. For the non-truncated thorax with 1.25 Hz motion, 99% of segmented surface points were within 0.3 mm of the 15 mm diameter ground truth ellipse, versus 1.0 mm for gFBP. For the truncated thorax phantom with a 40 mm diameter ellipse, IGCT-PICCS surface accuracy measured 0.3 mm versus 7.8 mm for gFBP. Dice similarity coefficient was 0.99–1.00 (IGCT-PICCS) versus 0.63–0.75 (gFBP) for intensity-based segmentation thresholds ranging from 25–75% maximum contrast. Conclusions: The

  18. TU-EF-207-05: Dedicated Cone-beam Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, S. [Univ. of Massachusetts Medical School (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  19. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  20. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners.

    Science.gov (United States)

    Ay, Mohammad Reza; Mehranian, Abolfazl; Maleki, Asghar; Ghadiri, Hossien; Ghafarian, Pardis; Zaidi, Habib

    2013-05-01

    Beam hardening filters have long been employed in X-ray Computed Tomography (CT) to preferentially absorb soft and low-energy X-rays having no or little contribution to image formation, thus allowing the reduction of patient dose and beam hardening artefacts. In this work, we studied the influence of additional copper (Cu) and aluminium (Al) flat filters on patient dose and image quality and seek an optimum filter thickness for the GE LightSpeed VCT 64-slice CT scanner using experimental phantom measurements. Different thicknesses of Cu and Al filters (0.5-1.6mm Cu, 0.5-4mm Al) were installed on the scanner's collimator. A planar phantom consisting of 13 slabs of Cu having different thicknesses was designed and scanned to assess the impact of beam filtration on contrast in the intensity domain (CT detector's output). To assess image contrast and image noise, a cylindrical phantom consisting of a polyethylene cylinder having 16 holes filled with different concentrations of K2HPO4 solution mimicking different tissue types was used. The GE performance and the standard head CT dose index (CTDI) phantoms were also used to assess image resolution characterized by the modulation transfer function (MTF) and patient dose defined by the weighted CTDI. A 100mm pencil ionization chamber was used for CTDI measurement. Finally, an optimum filter thickness was determined from an objective figure of merit (FOM) metric. The results show that the contrast is somewhat compromised with filter thickness in both the planar and cylindrical phantoms. The contrast of the K2HPO4 solutions in the cylindrical phantom was degraded by up to 10% for a 0.68mm Cu filter and 6% for a 4.14mm Al filter. It was shown that additional filters increase image noise which impaired the detectability of low density K2HPO4 solutions. It was found that with a 0.48mm Cu filter the 50% MTF value is shifted by about 0.77lp/cm compared to the case where the filter is not used. An added Cu filter with approximately

  1. Reconstruction of the 3-D Shape and Crystal Preferred Orientation of Olivine: A Combined X-ray µ-CT and EBSD-SEM approach

    Science.gov (United States)

    Kahl, Wolf-Achim; Hidas, Károly; Dilissen, Nicole; Garrido, Carlos J.; López-Sánchez Vizcaíno, Vicente; Jesús Román-Alpiste, Manuel

    2017-04-01

    The complete reconstruction of the microstructure of rocks requires, among others, a full description of the shape preferred orientation (SPO) and crystal preferred orientation (CPO) of the constituent mineral phases. New advances in instrumental analyses, particularly electron backscatter diffraction (EBSD) coupled to focused ion beam-scanning electron microscope (FIB-SEM), allows a complete characterization of SPO and CPO in rocks at the micron scale [1-2]. Unfortunately, the large grain size of many crystalline rocks, such as peridotite, prevents a representative characterization of the CPO and SPO of their constituent minerals by this technique. Here, we present a new approach combining X-ray micro computed tomography (µ-CT) and EBSD to reconstruct the geographically oriented, 3-D SPO and CPO of cm- to mm-sized olivine crystals in two contrasting fabric types of chlorite harzburgites (Almírez ultramafic massif, SE Spain). The semi-destructive sample treatment involves drilling of geographically oriented micro drills in the field and preparation of oriented thin sections from µ-CT scanned cores. This allows for establishing the link among geological structures, macrostructure, fabric, and 3-D SPO-CPO at the thin section scale. Based on EBSD analyses, different CPO groups of olivine crystals can be discriminated in the thin sections and allocated to 3-D SPO in the µ-CT volume data. This approach overcomes the limitations of both methods (i.e., no crystal orientation data in µ-CT and no spatial information in EBSD), hence 3-D orientation of the crystallographic axes of olivines from different orientation groups could be correlated with the crystal shapes of olivine grains. This combined µ-CT and EBSD technique enables the correlation of both SPO and CPO and representative grain size, and is capable to characterize the 3-D microstructure of olivine-bearing rocks at the hand specimen scale. REFERENCES 1. Zaefferer, S., Wright, S.I., Raabe, D., 2008. Three

  2. Unwrapping an Ancient Egyptian Mummy Using X-Rays

    Science.gov (United States)

    Hughes, Stephen W.

    2010-01-01

    This article describes a project of unwrapping an ancient Egyptian mummy using x-ray computed tomography (CT). About 600 x-ray CT images were obtained through the mummified body of a female named Tjetmutjengebtiu (or Jeni for short), who was a singer in the great temple of Karnak in Egypt during the 22nd dynasty (c 945-715 BC). The x-ray CT images…

  3. Synchrotron radiation X-ray microfluorescence techniques and ...

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  4. Modeling shift-variant X-ray focal spot blur for high-resolution flat-panel cone-beam CT

    CERN Document Server

    Tilley, Steven; Siewerdsen, Jeffrey H; Stayman, J Webster

    2016-01-01

    Flat-panel cone-beam CT (CBCT) has been applied clinically in a number of high-resolution applications. Increasing geometric magnification can potentially improve resolution, but also increases blur due to an extended x-ray focal-spot. We present a shift-variant focal-spot blur model and incorporate it into a model-based iterative-reconstruction algorithm. We apply this algorithm to simulation and CBCT test-bench data. In a trabecular bone simulation study, we find traditional reconstruction approaches without a blur model exhibit shift-variant resolution properties that depend greatly on the acquisition protocol (e.g. short vs. full scans) and the anode angles of the rays used to reconstruct a particular region. For physical CBCT experiments focal spot blur was characterized and a spatial resolution phantom was scanned and reconstructed. In both experiments image quality using the shift-variant model was significantly improved over approaches that modeled no blur or only a shift-invariant blur, suggesting a ...

  5. Idiopathic pulmonary fibrosis complicated by acute thromboembolic disease: chest X-ray, HRCT and multi-detector row CT angiographic findings.

    Science.gov (United States)

    Camera, Luigi; Campanile, Francesco; Imbriaco, Massimo; Ippolito, Renato; Sirignano, Cesare; Santoro, Ciro; Galderisi, Maurizio; Salvatore, Marco

    2013-02-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic diffuse interstitial disease characterized by a predominant reticular pattern of involvement of the lung parenchyma which can be well documented by High Resolution Computed Tomography (HRCT). While almost half of the patients with IPF may develop pulmonary arterial hypertension, the occurrence of superimposed acute thrombo-embolic disease is rare.We describe a case of an 87 yrs old female who was found to have IPF complicated by acute pulmonary thrombo-embolism during the clinical and radiological investigation of a rapidly worsening dyspnea. While chest x-ray findings were initially considered consistent with a congestive heart failure, a bed side echocardiography revealed findings suggestive of pulmonary arterial hypertension and right ventricular failure with enlargement of both right cavities and associated valvular regurgitations. An acute thrombo-embolic disease was initially ruled out by a perfusion lung scintigraphy and subsequently confirmed by contrast-enhanced multi-detector CT which showed an embolus at the emergency of the right inter-lobar artery with associated signs of chronic pulmonary hypertension. However, unenhanced scans performed with both conventional and high resolution techniques also depicted a reticular pattern of involvement of lung parenchyma considered suggestive of IPF despite a atypical upper lobe predominance. IPF was later confirmed by further clinical, serological and instrumental follow-up.

  6. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ...

  9. X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fenster, A. [Univ. of Western Ontario, J.P. Robarts Institute, London, Ontario (Canada); Yaffe, M.J. [Univ. of Toronto, Depts. of Medical Biophysics and Medical Imaging, North York, Ontario (Canada)

    1995-09-01

    In this article, we briefly review the principles of x-ray imaging, consider some of its applications in medicine and describe some of the developments in this area which have taken place in Canada. X rays were first used for diagnosis and therapy in medicine almost immediately after the report of their discovery by Roentgen in 1895. X-ray imaging has remained the primary tool for the investigation of structures within the body up to the present time (Johns and Cunningham 1983). Medical x rays are produced in a vacuum tube by the electron bombardment of a metallic target. Electrons emitted from a heated cathode are accelerated through an electric field to energies of 20-150 keV (wavelength 6.2-0.83 nm) and strike a target anode. X rays appear in a spectrum of bremsstrahlung radiation with energies ranging from 0 to a value that is numerically equal to the peak voltage applied between the cathode and anode of the x-ray tube (Figure 1). In addition, where the energy of the impinging electrons exceeds the binding energy of inner atomic orbitals of the target material, electrons may be ejected from those shells. Filling of these shells by more loosely-bound electrons gives rise to x rays whose energies are equal to the difference of the binding energies of the donor and acceptor shells. The energies of these characteristic x rays are unique to the target material. Less than 1% of the energy of the incident electrons is converted to that of x rays, while the remainder is dissipated as heat in the target. For this reason, a tremendous amount of engineering has gone into the design of x-ray tubes that can yield a large fluence rate of quanta from a small effective source size, while withstanding the enormous applied heat loading (e.g. 10 kJ per exposure). Tungsten is by far the most common material used for targets in tubes for diagnostic radiology, because of its high melting point and its high atomic number; the efficiency of x-ray production is proportional to Z of the

  10. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  13. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  14. Comprehensive Non-Destructive Conservation Documentation of Lunar Samples Using High-Resolution Image-Based 3D Reconstructions and X-Ray CT Data

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2015-01-01

    Established contemporary conservation methods within the fields of Natural and Cultural Heritage encourage an interdisciplinary approach to preservation of heritage material (both tangible and intangible) that holds "Outstanding Universal Value" for our global community. NASA's lunar samples were acquired from the moon for the primary purpose of intensive scientific investigation. These samples, however, also invoke cultural significance, as evidenced by the millions of people per year that visit lunar displays in museums and heritage centers around the world. Being both scientifically and culturally significant, the lunar samples require a unique conservation approach. Government mandate dictates that NASA's Astromaterials Acquisition and Curation Office develop and maintain protocols for "documentation, preservation, preparation and distribution of samples for research, education and public outreach" for both current and future collections of astromaterials. Documentation, considered the first stage within the conservation methodology, has evolved many new techniques since curation protocols for the lunar samples were first implemented, and the development of new documentation strategies for current and future astromaterials is beneficial to keeping curation protocols up to date. We have developed and tested a comprehensive non-destructive documentation technique using high-resolution image-based 3D reconstruction and X-ray CT (XCT) data in order to create interactive 3D models of lunar samples that would ultimately be served to both researchers and the public. These data enhance preliminary scientific investigations including targeted sample requests, and also provide a new visual platform for the public to experience and interact with the lunar samples. We intend to serve these data as they are acquired on NASA's Astromaterials Acquisistion and Curation website at http://curator.jsc.nasa.gov/. Providing 3D interior and exterior documentation of astromaterial

  15. Development of real-time x-ray microtomography system

    Science.gov (United States)

    Takano, H.; Morikawa, M.; Konishi, S.; Azuma, H.; Shimomura, S.; Tsusaka, Y.; Nakano, S.; Kosaka, N.; Yamamoto, K.; Kagoshima, Y.

    2013-10-01

    We have developed a four-dimensional (4D) x-ray microcomputed tomography (CT) system that can obtain time-lapse CT volumes in real time. The system consists of a high-speed sample rotation system and a high-frame-rate x-ray imager, which are installed at a synchrotron radiation x-ray beamline. As a result of system optimization and introduction of a "zoom resolution" procedure, a real-time 4D CT movie with a frame rate of 30 was obtained with a voxel size of 2.5 μm using 10 keV x-rays.

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight March is National Colorectal Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight February is American Heart Month Recently posted: Carotid Intima-Media Thickness Test ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  2. Sinus x-ray

    Science.gov (United States)

    ... an infection and inflammation of the sinuses called sinusitis . A sinus x-ray is ordered when you have any of the following: Symptoms of sinusitis Other sinus disorders, such as a deviated septum ( ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  4. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... and You Take our survey Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You ...

  6. X-ray

    Science.gov (United States)

    ... X-ray References Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard ... Updated by: C. Benjamin Ma, MD, Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... and use a very small dose of ionizing radiation to produce pictures of the inside of the ... x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. ... University in Durham, North Carolina. I’d like to talk with you about chest radiography also known ...

  9. Average glandular dose coefficients for pendant-geometry breast CT using realistic breast phantoms.

    Science.gov (United States)

    Hernandez, Andrew M; Boone, John M

    2017-10-01

    To design volume-specific breast phantoms from breast CT (bCT) data sets and estimate the associated normalized mean glandular dose coefficients for breast CT using Monte Carlo methods. A large cohort of bCT data sets (N = 215) was used to evaluate breast volume into quintiles (plus the top 5%). The average radius profile was then determined for each of the six volume-specific groups and used to both fabricate physical phantoms and generate mathematical phantoms (V1-V6; "V" denotes classification by volume). The MCNP6 Monte Carlo code was used to model a prototype bCT system fabricated at our institution; and this model was validated against physical measurements in the fabricated phantoms. The mathematical phantoms were used to simulate normalized mean glandular dose coefficients for both monoenergetic source photons "DgNCT (E)" (8-70 keV in 1 keV intervals) and polyenergetic x-ray beams "pDgNCT " (35-70 kV in 1 kV intervals). The Monte Carlo code was used to study the influence of breast size (V1 vs. V5) and glandular fraction (6.4% vs. 45.8%) on glandular dose. The pDgNCT coefficients estimated for the V1, V3, and V5 phantoms were also compared to those generated using simple, cylindrical phantoms with equivalent volume and two geometrical constraints including; (a) cylinder radius determined at the breast phantom chest wall "Rcw "; and (b) cylinder radius determined at the breast phantom center-of-mass "RCOM ". Satisfactory agreement was observed for dose estimations using MCNP6 compared with both physical measurements in the V1, V3, and V5 phantoms (R2 = 0.995) and reference bCT dose coefficients using simple phantoms (R2 = 0.999). For a 49 kV spectrum with 1.5 mm Al filtration, differences in glandular fraction [6.5% (5th percentile) vs. 45.8% (95th percentile)] had a 13.2% influence on pDgNCT for the V3 phantom, and differences in breast size (V1 vs. V5) had a 16.6% influence on pDgNCT for a breast composed of 17% (median) fibroglandular tissue. For

  10. Line-Source Based X-Ray Tomography

    OpenAIRE

    Deepak Bharkhada; Hengyong Yu; Hong Liu; Robert Plemmons; Ge Wang

    2009-01-01

    Current computed tomography (CT) scanners, including micro-CT scanners, utilize a point x-ray source. As we target higher and higher spatial resolutions, the reduced x-ray focal spot size limits the temporal and contrast resolutions achievable. To overcome this limitation, in this paper we propose to use a line-shaped x-ray source so that many more photons can be generated, given a data acquisition interval. In reference to the simultaneous algebraic reconstruction technique (SART) algorithm...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray (Radiography) - ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  18. Radiological study on internal condition of radiopaque lesions occurred in the jaws bones. First report. Observation of 56 cases with limited cone beam X-ray CT for dental use (ortho-CT) images

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Masao; Arai, Yoshinori; Hashimoto, Koji; Shinoda, Koji; Komiyama, Kazuo [Nihon Univ., Tokyo (Japan). School of Dentistry

    2000-05-01

    According to the WHO classification in 1992, fibro-osseous lesion (FOL) of jaw bones were divided into osteogenic neoplasms and non-neoplastic lesions. However, it is difficult to differentiate cement-osseous dysplasia, diffuse sclerosing osteomyelitis and condensing osteitis occurring in the periapical region, which show mixed radiolucent and radiopaque appearances, because the radiographic features of these lesions are very similar. Therefore, we investigated the findings of the internal condition of the lesions with limited cone beam X-ray CT for dental use (Ortho-CT) developed by Arai et al. in contrast to rotational panoramic radiography (RPR). A total of fifty-six lesions were analyzed using the rotational panoramic images and classified into the following three types. Type 1 had an amorphous appearance that showed uniform density, type 2 had a mottled appearance that showed mixed radiopacity and radiolucency, and type 3 had a complex appearance that showed complex internal condition. These lesions were also classified using Ortho-CT images according to the above criteria. Thirty-six (64.3%) of 56 cases were classified the same using either RPR or Ortho-CT image analysis. Many FOL of the jaw bones were not removed, except for neoplasms, so we obtained little information about the pathological findings of these lesions. However, in our study, the Ortho-CT images showed that FOL in the edentulous region included inflammatory lesions and a reactive bone formation. We conclude that Ortho-CT images are useful for diagnosing the internal condition of FOL and observing in minute detail by means of multi-directional images to provide new information of these lesions. (author)

  19. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    Science.gov (United States)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  20. Investigation of optimal parameters for penalized maximum-likelihood reconstruction applied to iodinated contrast-enhanced breast CT

    Science.gov (United States)

    Makeev, Andrey; Ikejimba, Lynda; Lo, Joseph Y.; Glick, Stephen J.

    2016-03-01

    Although digital mammography has reduced breast cancer mortality by approximately 30%, sensitivity and specificity are still far from perfect. In particular, the performance of mammography is especially limited for women with dense breast tissue. Two out of every three biopsies performed in the U.S. are unnecessary, thereby resulting in increased patient anxiety, pain, and possible complications. One promising tomographic breast imaging method that has recently been approved by the FDA is dedicated breast computed tomography (BCT). However, visualizing lesions with BCT can still be challenging for women with dense breast tissue due to the minimal contrast for lesions surrounded by fibroglandular tissue. In recent years there has been renewed interest in improving lesion conspicuity in x-ray breast imaging by administration of an iodinated contrast agent. Due to the fully 3-D imaging nature of BCT, as well as sub-optimal contrast enhancement while the breast is under compression with mammography and breast tomosynthesis, dedicated BCT of the uncompressed breast is likely to offer the best solution for injected contrast-enhanced x-ray breast imaging. It is well known that use of statistically-based iterative reconstruction in CT results in improved image quality at lower radiation dose. Here we investigate possible improvements in image reconstruction for BCT, by optimizing free regularization parameter in method of maximum likelihood and comparing its performance with clinical cone-beam filtered backprojection (FBP) algorithm.

  1. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.|info:eu-repo/dai/nl/08747610X

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  2. Attenuation properties and percentage depth dose of tannin-based Rhizophora spp. particleboard phantoms using computed tomography (CT) and treatment planning system (TPS) at high energy x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, M. F. Mohd, E-mail: mfahmi@usm.my [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan (Malaysia); Abdullah, R. [School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan (Malaysia); Tajuddin, A. A. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang (Malaysia); Hashim, R. [School of Industrial Technologies, Universiti Sains Malaysia, 11800 Penang (Malaysia); Bauk, S. [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2016-01-22

    A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm{sup 3}. The mass attenuation coefficient of the phantom was measured using {sup 60}Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ{sup 2} value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Z{sub max}.

  3. Attenuation properties and percentage depth dose of tannin-based Rhizophora spp. particleboard phantoms using computed tomography (CT) and treatment planning system (TPS) at high energy x-ray beams

    Science.gov (United States)

    Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.

    2016-01-01

    A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm3. The mass attenuation coefficient of the phantom was measured using 60Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ2 value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Zmax.

  4. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) ... top of page What are some common uses of the procedure? A bone x-ray is used ...

  6. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  7. Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro

    NARCIS (Netherlands)

    J.-W. Kuiper (Jan-Willem); C. van Kuijk (Cornelis); J.L. Grashuis (Jan); A.G.H. Ederveen (Antwan); H.E. Schütte (Henri)

    1996-01-01

    markdownabstractAbstract Bone mineral measurements with quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) were compared with chemical analysis (ChA) to determine (1) the accuracy and (2) the influence of bone marrow fat. Total bone mass of 19 human femoral necks in

  8. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography

    DEFF Research Database (Denmark)

    Jensen, Torben Haugaard; Bech, Martin; Binderup, Tina

    2013-01-01

    whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years) diagnosed with invasive ductal carcinomas were analyzed by X-ray phase......-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study...... was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations...

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... posted: Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Coronary CT Angiography Video: Myelography Video: CT ... posted: Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Coronary CT Angiography Video: Myelography Video: CT ...

  10. Comparison of Unmonochromatized Synchrotron Radiation and Conventional X-rays in the Imaging of Mammographic Phantom and Human Breast Specimens: A Preliminary Result

    Science.gov (United States)

    Jung, Haijo; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-01-01

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4 scintillator screen, a CCD (Charge Coupled Device) camera coupled to optical magnification lenses, and a personal computer. In preliminary studies, a spatial resolution test pattern and glass capillary filled with air bubbles were imaged to evaluate the resOolution characteristics and coherence-based contrast enhancement. Both the spatial resolution and image quality of the proposed system were compared with those of a conventional mammography system in order to establish the characteristic advantages of this approach. The images obtained with the proposed system showed a resolution of at least 25 µm on the test pattern with much better contrast, while the images of the capillary filled with air bubbles revealed coherence-based edge enhancement. This result shows that the coherence-based contrast imaging system, which emphasizes the refraction effect from the edge of materials of different refractive indexes, is applicable to imaging studies in fundamental medicine and biology, although further research works will be required before it can be used for clinical applications. PMID:15744811

  11. Comparison of unmonochromatized synchrotron radiation and conventional X-rays in the imaging of mammographic phantom and human breast specimens: a preliminary result.

    Science.gov (United States)

    Jung, Haijo; Kim, Hee-Joung; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-02-28

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4 scintillator screen, a CCD (Charge Coupled Device) camera coupled to optical magnification lenses, and a personal computer. In preliminary studies, a spatial resolution test pattern and glass capillary filled with air bubbles were imaged to evaluate the resOolution characteristics and coherence-based contrast enhancement. Both the spatial resolution and image quality of the proposed system were compared with those of a conventional mammography system in order to establish the characteristic advantages of this approach. The images obtained with the proposed system showed a resolution of at least 25 microm on the test pattern with much better contrast, while the images of the capillary filled with air bubbles revealed coherence-based edge enhancement. This result shows that the coherence-based contrast imaging system, which emphasizes the refraction effect from the edge of materials of different refractive indexes, is applicable to imaging studies in fundamental medicine and biology, although further research works will be required before it can be used for clinical applications.

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions ... Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, ...

  14. Pelvis x-ray

    Science.gov (United States)

    The x-ray is used to look for: Fractures Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... Abnormal results may suggest: Pelvic fractures Arthritis of the hip joint ... spondylitis (abnormal stiffness of the spine and joint) ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... Radiology (IDoR) Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound November 8 is ...

  16. TU-CD-207-11: Patient-Driven Automatic Exposure Control for Dedicated Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A; Gazi, P [Biomedical Engineering Graduate Group, University of California Davis, Davis, CA (United States); Department of Radiology, UC Davis Medical Center, Sacramento, CA (United States); Seibert, J; Boone, J [Department of Radiology, UC Davis Medical Center, Sacramento, CA (United States); Department of Biomedical Engineering, University of California Davis, Davis, CA (United States)

    2015-06-15

    Purpose: To implement automatic exposure control (AEC) in dedicated breast CT (bCT) on a patient-specific basis using only the pre-scan scout views. Methods: Using a large cohort (N=153) of bCT data sets, the breast effective diameter (D) and width in orthogonal planes (Wa,Wb) were calculated from the reconstructed bCT image and pre-scan scout views, respectively. D, Wa, and Wb were measured at the breast center-of-mass (COM), making use of the known geometry of our bCT system. These data were then fit to a second-order polynomial “D=F(Wa,Wb)” in a least squares sense in order to provide a functional form for determining the breast diameter. The coefficient of determination (R{sup 2}) and mean percent error between the measured breast diameter and fit breast diameter were used to evaluate the overall robustness of the polynomial fit. Lastly, previously-reported bCT technique factors derived from Monte Carlo simulations were used to determine the tube current required for each breast diameter in order to match two-view mammographic dose levels. Results: F(Wa,Wb) provided fitted breast diameters in agreement with the measured breast diameters resulting in R{sup 2} values ranging from 0.908 to 0.929 and mean percent errors ranging from 3.2% to 3.7%. For all 153 bCT data sets used in this study, the fitted breast diameters ranged from 7.9 cm to 15.7 cm corresponding to tube current values ranging from 0.6 mA to 4.9 mA in order to deliver the same dose as two-view mammography in a 50% glandular breast with a 80 kV x-ray beam and 16.6 second scan time. Conclusion: The present work provides a robust framework for AEC in dedicated bCT using only the width measurements derived from the two orthogonal pre-scan scout views. Future work will investigate how these automatically chosen exposure levels affect the quality of the reconstructed image.

  17. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    Science.gov (United States)

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  18. Investigation of statistical iterative reconstruction for dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Makeev, Andrey; Glick, Stephen J. [UMass Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655 (United States)

    2013-08-15

    Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially

  19. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector.

    Science.gov (United States)

    Dudak, Jan; Zemlicka, Jan; Karch, Jakub; Patzelt, Matej; Mrzilkova, Jana; Zach, Petr; Hermanova, Zuzana; Kvacek, Jiri; Krejci, Frantisek

    2016-07-27

    Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation.

  20. Contrast-enhanced Dedicated Breast CT: Initial Clinical Experience1

    Science.gov (United States)

    Prionas, Nicolas D.; Ray, Shonket; Huang, Shih-Ying; Beckett, Laurel A.; Monsky, Wayne L.; Boone, John M.

    2010-01-01

    Purpose: To quantify contrast material enhancement of breast lesions scanned with dedicated breast computed tomography (CT) and to compare their conspicuity with that at unenhanced breast CT and mammography. Materials and Methods: Approval of the institutional review board and the Radiation Use Committee and written informed consent were obtained for this HIPAA-compliant study. Between September 2006 and April 2009, 46 women (mean age, 53.2 years; age range, 35–72 years) with Breast Imaging Reporting and Data System category 4 or 5 lesions underwent unenhanced breast CT and contrast material–enhanced breast CT before biopsy. Two radiologists independently scored lesion conspicuity for contrast-enhanced breast CT versus mammography and for contrast-enhanced breast CT versus unenhanced breast CT. Mean lesion voxel intensity was measured in Hounsfield units and normalized to adipose tissue intensity on manually segmented images obtained before and after administration of contrast material. Regression models focused on conspicuity and quantified enhancement were used to estimate the effect of pathologic diagnosis (benign vs malignant), lesion type (mass vs calcifications), breast density, and interradiologist variability. Results: Fifty-four lesions (25 benign, 29 malignant) in 46 subjects were analyzed. Malignant lesions were seen significantly better at contrast-enhanced breast CT than at unenhanced breast CT (P mammography (P contrast-enhanced breast CT than at unenhanced breast CT (P contrast-enhanced breast CT and mammography. Malignant lesions enhanced 55.9 HU ± 4.0 (standard error), whereas benign lesions enhanced 17.6 HU ± 6.1 (P contrast-enhanced breast CT. Quantifying lesion enhancement may aid in the detection and diagnosis of breast cancer. © RSNA, 2010 PMID:20720067

  1. Studying the Morphology of Lyophilized Protein Solids Using X-ray Micro-CT: Effect of Post-freeze Annealing and Controlled Nucleation

    OpenAIRE

    Izutsu, Ken-ichi; Yonemochi, Etsuo; Yomota, Chikako; Goda, Yukihiro; Okuda, Haruhiro

    2014-01-01

    The objective of this study was to determine how different techniques used during the freezing step of lyophilization affect morphology of the dried protein solids. Aqueous solutions containing recombinant human albumin, trehalose, and sodium phosphate buffer were dried after their freezing by shelf-ramp cooling, immersion in liquid nitrogen, or controlled ice nucleation. Some shelf-frozen solutions were heat treated (annealed) before the vacuum drying. We used three-dimensional (3D) X-ray mi...

  2. X-ray filter for x-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  3. Assessment of grating-based X-ray phase-contrast CT for differentiation of invasive ductal carcinoma and ductal carcinoma in situ in an experimental ex vivo set-up

    Energy Technology Data Exchange (ETDEWEB)

    Sztrokay, Aniko; Auweter, Sigrid D.; Liebhardt, Susanne; Hellerhoff, Karin; Reiser, Maximilian F. [Ludwig-Maximilians-Universitaet Muenchen, Department of Clinical Radiology, Munich (Germany); Herzen, Julia; Willner, Marian; Hahn, Dieter; Pfeiffer, Franz [Technische Universitaet Muenchen, Department of Physics, Garching (Germany); Mayr, Doris [Ludwig-Maximilians-Universitaet Muenchen, Institute of Pathology, Munich (Germany); Zanette, Irene [Technische Universitaet Muenchen, Department of Physics, Garching (Germany); European Synchrotron Radiation Facility (ESRF), Grenoble (France); Weitkamp, Timm [Synchrotron Soleil, L' Orme des Merisiers, Gif-sur-Yvette (France); Bamberg, Fabian [Ludwig-Maximilians-Universitaet Muenchen, Department of Clinical Radiology, Munich (Germany); LMU Munich, Institute of Clinical Radiology, Munich (Germany)

    2013-02-15

    Limited contrast between healthy and tumour tissue is a limiting factor in mammography and CT of the breast. Phase-contrast computed tomography (PC-CT) provides improved soft-tissue contrast compared with absorption-based techniques. In this study, we assessed the technical feasibility of grating-based PC-CT imaging of the breast for characterisation of ductal carcinoma in situ (DCIS). Grating-based PC-CT was performed on one breast specimen containing an invasive ductal carcinoma and DCIS using monochromatic radiation of 23 keV. Phase-contrast and absorption-based images were compared qualitatively and quantitatively with histopathology in a blinded fashion. Grating-based PC-CT showed improved differentiation of soft-tissue components. Circular structures of high phase-shift contrast corresponding to the walls of the dilated ductuli of the DCIS were visualised with a contrast-to-noise ratio (CNR) of 9.6 using PC-CT but were not detectable on absorption-based images (CNR = 0.27). The high phase-shift structures of the dilated ductuli were identifiable in the PC-CT volume data set allowing for 3D characterisation of DCIS. Our results indicate that unlike conventional CT, grating-based PC-CT may allow the differentiation between invasive carcinoma and intraductal carcinoma and healthy breast tissue and provide 3D visualisation of DCIS. (orig.)

  4. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... shades of gray and air appears black. Until recently, x-ray images were maintained on large film ... assist you in finding the most comfortable position possible that still ensures x-ray image quality. top ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  9. Coherent x-ray optics

    CERN Document Server

    Paganin, David M

    2006-01-01

    'Coherent X-Ray Optics' gives a thorough treatment of the rapidly expanding field of coherent x-ray optics, which has recently experienced something of a renaissance with the availability of third-generation synchrotron sources.

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissues around or in bones. top of page How should I prepare? Most bone x-rays require ... is placed beneath the patient. top of page How does the procedure work? X-rays are a ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ... and procedures may vary by geographic region. Discuss the fees associated with your prescribed ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used ... placed beneath the patient. top of page How does the procedure work? X-rays are a form ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of ionizing radiation to produce pictures of the inside of the body. X-rays are the oldest ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray technologist if there is any possibility that they are pregnant. Many imaging tests are not performed during pregnancy ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  3. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Kesava S. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, One University Avenue, Lowell, Massachusetts 01854 (United States); Mahd, Mufeed [Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, One University Avenue, Lowell, Massachusetts 01854 (United States); Glick, Stephen J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-08-15

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector.Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom.Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver

  4. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT.

    Science.gov (United States)

    Kalluri, Kesava S; Mahd, Mufeed; Glick, Stephen J

    2013-08-01

    Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%-63% and 4%-34%, for HA and IDC lesions and 12%-30% (with Al filtration) and 32%-38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver operating characteristic curve

  5. X-ray spectral measurements for tungsten-anode from 20 to 49 kVp on a digital breast tomosynthesis system.

    Science.gov (United States)

    Zhang, Da; Li, Xinhua; Liu, Bob

    2012-06-01

    This paper presents new spectral measurements of a tungsten-target digital breast tomosynthesis (DBT) system, including spectra of 43-49 kVp. Raw x-ray spectra of 20-49 kVp were directly measured from the tube port of a Selenia Dimensions DBT system using a CdTe based spectrometer. Two configurations of collimation were employed: one with two tungsten pinholes of 25 μm and 200 μm diameters, and the other with a single pinhole of 25 μm diameter, for acquiring spectra from the focal spot and from the focal spot as well as its vicinity. Stripping correction was applied to the measured spectra to compensate distortions due to escape events. The measured spectra were compared with the existing mammographic spectra of the TASMIP model in terms of photon fluence per exposure, spectral components, and half-value layer (HVL). HVLs were calculated from the spectra with a numerical filtration of 0.7 mm aluminum and were compared against actual measurements on the DBT system using W/Al (target-filter) combination, without paddle in the beam. The spectra from the double-pinhole configuration, in which the acceptance aperture pointed right at the focal spot, were harder than the single-pinhole spectra which include both primary and off-focus radiation. HVL calculated from the single-pinhole setup agreed with the measured HVL within 0.04 mm aluminum, while the HVL values from the double-pinhole setup were larger than the single-pinhole HVL by at most 0.1 mm aluminum. The spectra from single-pinhole setup agreed well with the TASMIP mammographic spectra, and are more relevant for clinical purpose. The spectra data would be useful for future research on DBT system with tungsten targets. © 2012 American Association of Physicists in Medicine.

  6. Assessment of segmental arm soft tissue composition in breast cancer-related lymphedema: a pilot study using dual energy X-ray absorptiometry and bioimpedance spectroscopy.

    Science.gov (United States)

    Czerniec, Sharon Anne; Ward, Leigh C; Meerkin, Jarrod D; Kilbreath, Sharon L

    2015-03-01

    Changes in arm soft tissue composition, especially increased adipose tissue, has been found in advanced, non-pitting breast cancer-related lymphedema (BCRL). The aim of this study was to examine whether these changes were localized to any particular region of the arm and whether they occurred in lymphedema which still pitted to pressure. Secondary aims were to explore relationships between arm segment volumes, bioimpedance spectroscopy (BIS) measurements of extracellular fluid (ECF), and dual-energy X-ray absorptiometry (DXA) measurements of tissue composition. Nine women with unilateral BCRL participated. The dominant arm was affected in 4 women, and all presented with lymphedema that pitted to pressure. Arm volume was calculated from circumferences by the truncated cone method, ECF was determined with BIS and fat and lean tissue content measured by DXA. BIS and DXA measurements for women with lymphedema were made of the whole arm and also of four 10 cm-segments measured from the ulnar styloid at the wrist. Whole arm DXA data were compared to those of 45 women of similar age and body mass index without lymphedema. All women with lymphedema had a significantly larger absolute fat mass in their affected arm compared to their unaffected arm, (median difference between arms 146.9 g). The forearm segment 10 - 20 cm proximal to the wrist had the highest median inter-limb fat difference of all four arm segments. The soft tissue composition changes associated with BCRL may occur in the presence of pitting and predominantly affect the proximal forearm.

  7. Bone diagnosis by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil)], E-mail: inaya@lin.ufrj.br; Anjos, M.J. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil); Physics Institute, UERJ (Brazil); Farias, M.L.F. [University Hospital, UFRJ (Brazil); Parcegoni, N.; Rosenthal, D. [Biophysics Institute, UFRJ (Brazil); Duarte, M.E.L. [Histologic and Embriology Department, UFRJ (Brazil); Lopes, R.T. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil)

    2008-12-15

    In this work, two X-ray techniques used were 3D microcomputed tomography (micro-CT) and X-ray microfluorescence (micro-XRF) in order to investigate the internal structure of the bone samples. Those two techniques work together, e.g. as a complement to each other, to characterize bones structure and composition. Initially, the specimens were used to do the scan procedure in the microcomputer tomography system and the second step consists of doing the X-ray microfluorescence analysis. The results show that both techniques are powerful methods for analyzing, inspecting and characterizing bone samples: they are alternative procedures for examining bone structures and compositions and they are complementary.

  8. Characterizing a discrete-to-discrete X-ray transform for iterative image reconstruction with limited angular-range scanning in CT

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    Iterative image reconstruction in computed tomography often employs a discrete-to-discrete (DD) linear data model, and many of the aspects of the image recovery relate directly to the properties of this linear model. While much is known about the properties of the continuous X-ray, the correspond......Iterative image reconstruction in computed tomography often employs a discrete-to-discrete (DD) linear data model, and many of the aspects of the image recovery relate directly to the properties of this linear model. While much is known about the properties of the continuous X...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... be taken to minimize radiation exposure to the baby. See the Safety page for more information about pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of an x-ray tube suspended over a table on which the patient ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  11. X-Ray Exam: Forearm

    Science.gov (United States)

    ... recorded on a computer or special X-ray film. This image shows the soft tissues and bones of the forearm. The X-ray image is black and white. Dense structures that block the passage of the X-ray beam through the body, such as the bones, appear white on the ...

  12. A novel high-pressure vessel for simultaneous observations of seismic velocity and in situ CO2 distribution in a porous rock using a medical X-ray CT scanner

    Science.gov (United States)

    Jiang, Lanlan; Nishizawa, Osamu; Zhang, Yi; Park, Hyuck; Xue, Ziqiu

    2016-12-01

    Understanding the relationship between seismic wave velocity or attenuation and CO2 saturation is essential for CO2 storage in deep saline formations. In the present study, we describe a novel upright high-pressure vessel that is designed to keep a rock sample under reservoir conditions and simultaneously image the entire sample using a medical X-ray CT scanner. The pressure vessel is composed of low X-ray absorption materials: a carbon-fibre-enhanced polyetheretherketone (PEEK) cylinder and PEEK vessel closures supported by carbon-fibre-reinforced plastic (CFRP) joists. The temperature was controlled by a carbon-coated film heater and an aramid fibre thermal insulator. The assembled sample cell allows us to obtain high-resolution images of rock samples during CO2 drainage and brine imbibition under reservoir conditions. The rock sample was oriented vertical to the rotation axis of the CT scanner, and seismic wave paths were aligned parallel to the rotation axis to avoid shadows from the acoustic transducers. The reconstructed CO2 distribution images allow us to calculate the CO2 saturation in the first Fresnel zone along the ray path between transducers. A robust relationship between the seismic wave velocity or attenuation and the CO2 saturation in porous rock was obtained from experiments using this pressure vessel.

  13. CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles

    Science.gov (United States)

    Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong

    2016-03-01

    Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.

  14. Description of a transmission X-ray computed tomography scanner

    Energy Technology Data Exchange (ETDEWEB)

    Hamideen, M.S., E-mail: mhamideen@fet.edu.jo [Department of Applied Science, Faculty of Engineering Technology, Al-Balqa' Applied University, Amman (Jordan); Sharaf, J.; Al-Saleh, K.A. [Department of Physics, University of Jordan, Amman (Jordan); Shaderma, M. [Department of Applied science, Faculty of Prince Abdullah bin Ghazi, Al-Balqa' Applied University, Amman (Jordan)

    2011-11-15

    A new prototype X-ray computed tomography scanner has been designed, constructed and tested locally. The major system employs an X-ray tube, a semiconductor detector, data logger and a three-dimensional sample position controller driven by three stepping motors, which allow two linear translations in addition to the rotational motion. The image resolution is determined by the step size and the diameter of the X-ray beam, which is controlled by the pinhole collimator. The scanner is designed to reconstruct two- and three-dimensional images mapping the internal structures of the object with the aid of the computer. This system, due to the semiconductor detector used, presents the novelty of being potentially able to acquire both in CT (transmission) mode and in SPECT (emission) mode. The imaging system performance is inspected for different phantoms, and some typical reconstructed images are presented. - Highlights: > A prototype X-ray transmission CT scanner system was designed and constructed successfully at the X-ray Laboratory in the University of Jordan. > X-ray CT scanner demonstrated its capability as a non-destructive tool for evaluating the internal atomic details of material objects. > Some general problems of X-ray CT scanning and image reconstruction are discussed and some suggested solutions are presented. > Scanner is designed to reconstruct two- and three-dimensional images mapping the internal structures of the object with the aid of the computer. > Internal geometrical structure can be determined from CT images.

  15. TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data.

    Science.gov (United States)

    Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; van de Kamp, Thomas; dos Santos Rolo, Tomy; Xiao, Xianghui; Moosmann, Julian; Kashef, Jubin; Stotzka, Rainer

    2015-03-09

    High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.

  16. Jovian X-ray emissions

    Science.gov (United States)

    Waite, J. H.; Lewis, W. S.; Gladstone, G. R.; Fabian, A. C.; Brandt, W. N.

    1996-01-01

    The Einstein and Rosat observations of X-ray emissions from Jupiter are summarized. Jupiter's soft X-ray emission is observed to originate from the planet's auroral zones, and specifically, from its equatorial region. The processes responsible for these emissions are not established. The brightness distribution of the Jovian X-rays is characterized by the dependence on central meridian longitude and by north-south and morning-afternoon asymmetries. The X-rays observed during the impact of the comet Shoemaker-Levy 9 are believed to be impact-induced brightenings of the X-ray aurora.

  17. A rare cause of misdiagnosis in chest X-ray

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Ortiz-Mendoza

    2016-01-01

    Full Text Available Chest X-ray is a usual tool for family physicians; however, unexpected findings in chest X-ray are a frequent challenge. We present a rare case of pulmonary hilar nodule misdiagnosis in a chest X-ray. An 84-year-old woman was sent with a diagnosis of a right pulmonary hilum nodule. She had a history of chronic obstructive pulmonary disease; so in a chest X-ray, her family physician discovered a "nodule" in her right lung hilum. Her physical exam was not relevant. In our hospital, a thoracic computed tomography (CT scan verified the mass in the right pulmonary hilum; nevertheless, in a coronal CT scan, the "hilum lump" was the tortuous descending aorta that created an angle. This case illustrates how anatomical changes associated with vascular aging may cause this exceptional pitfall in chest X-ray.

  18. Contrast-enhanced dedicated breast CT detection of invasive breast cancer preceding mammographic diagnosis

    OpenAIRE

    Prionas, Nicolas D.; Aminololama-Shakeri, Shadi; Yang, Kai; Martinez, Steve R.; Lindfors, Karen K.; Boone, John M.

    2015-01-01

    Dedicated breast computed tomography (bCT) generates high-resolution, three-dimensional images of the pendent uncompressed breast. Intravenous iodinated contrast during bCT provides additional physiologic information. In this case, a 10.0-mm invasive ductal carcinoma was visualized using contrast-enhanced breast CT one year before mammographic detection. Mammography four months before bCT was negative. The bCT contrast enhancement pattern closely matched the dynamic contrast-enhanced MRI obta...

  19. Achieving high-resolution soft-tissue imaging with cone-beam CT: a two-pronged approach for modulation of x-ray fluence and detector gain

    Science.gov (United States)

    Graham, S. A.; Siewerdsen, J. H.; Moseley, D. J.; Keller, H.; Shkumat, N. A.; Jaffray, D. A.

    2005-04-01

    Cone-beam computed tomography (CBCT) presents a highly promising and challenging advanced application of flat-panel detectors (FPDs). The great advantage of this adaptable technology is in the potential for sub-mm 3D spatial resolution in combination with soft-tissue detectability. While the former is achieved naturally by CBCT systems incorporating modern FPD designs (e.g., 200 - 400 um pixel pitch), the latter presents a significant challenge due to limitations in FPD dynamic range, large field of view, and elevated levels of x-ray scatter in typical CBCT configurations. We are investigating a two-pronged strategy to maximizing soft-tissue detectability in CBCT: 1) front-end solutions, including novel beam modulation designs (viz., spatially varying compensators) that alleviate detector dynamic range requirements, reduce x-ray scatter, and better distribute imaging dose in a manner suited to soft-tissue visualization throughout the field of view; and 2) back-end solutions, including implementation of an advanced FPD design (Varian PaxScan 4030CB) that features dual-gain and dynamic gain switching that effectively extends detector dynamic range to 18 bits. These strategies are explored quantitatively on CBCT imaging platforms developed in our laboratory, including a dedicated CBCT bench and a mobile isocentric C-arm (Siemens PowerMobil). Pre-clinical evaluation of improved soft-tissue visibility was carried out in phantom and patient imaging with the C-arm device. Incorporation of these strategies begin to reveal the full potential of CBCT for soft-tissue visualization, an essential step in realizing broad utility of this adaptable technology for diagnostic and image-guided procedures.

  20. Neutrosophic segmentation of breast lesions for dedicated breast CT

    Science.gov (United States)

    Lee, Juhun; Nishikawa, Robert M.; Reiser, Ingrid; Boone, John M.

    2017-03-01

    We proposed the neutrosophic approach for segmenting breast lesions in breast Computer Tomography (bCT) images. The neutrosophic set (NS) considers the nature and properties of neutrality (or indeterminacy), which is neither true nor false. We considered the image noise as an indeterminate component, while treating the breast lesion and other breast areas as true and false components. We first transformed the image into the NS domain. Each voxel in the image can be described as its membership in True, Indeterminate, and False sets. Operations α-mean, β-enhancement, and γ-plateau iteratively smooth and contrast-enhance the image to reduce the noise level of the true set. Once the true image no longer changes, we applied one existing algorithm for bCT images, the RGI segmentation, on the resulting image to segment the breast lesions. We compared the segmentation performance of the proposed method (named as NS-RGI) to that of the regular RGI segmentation. We used a total of 122 breast lesions (44 benign, 78 malignant) of 123 non-contrasted bCT cases. We measured the segmentation performances of the NS-RGI and the RGI using the DICE coefficient. The average DICE value of the NS-RGI was 0.82 (STD: 0.09), while that of the RGI was 0.8 (STD: 0.12). The difference between the two DICE values was statistically significant (paired t test, p-value = 0.0007). We conducted a subsequent feature analysis on the resulting segmentations. The classifier performance for the NS-RGI (AUC = 0.8) improved over that of the RGI (AUC = 0.69, p-value = 0.006).

  1. The forgotten view: Chest X-ray - Lateral view

    Directory of Open Access Journals (Sweden)

    Abraham M. Ittyachen

    2017-01-01

    Full Text Available With CT (computed tomography chest gaining more importance as a diagnostic tool, chest X-ray especially the lateral view is taken less commonly nowadays. Besides CT chest is also proven to be superior to chest X-ray in patients with major blunt trauma. We are presenting a 68-year old male who was partially treated from outside for a left sided pneumonia. He came to our hospital because of persisting chest pain. Chest X-ray, frontal view (postero-anterior was almost normal except for a mild opacity in the left lower zone. CT scan of the chest revealed a fluid collection posteriorly enclosed within enhancing pleura. Chest X-ray, left lateral view showed a corresponding posterior pleural based opacity. We are presenting this case to highlight the importance of the lateral view of the chest X-ray. In selected cases there is still a role for the lateral view. With the three dimensional visualization provided by the CT, the lateral view of the chest may be easier to understand. Consequent to the initial diagnosis by CT further follow up can be done with the chest X-ray. In a limited way this mitigates unnecessary expenditure and more importantly prevents the patient from exposure to harmful radiation in the form of repeated CT.

  2. Varying kVp as a means of reducing CT breast dose to pediatric patients

    Science.gov (United States)

    Mathieu, K. B.; Turner, A. C.; Khatonabadi, M.; McNitt-Gray, M. F.; Cagnon, C. H.; Cody, D. D.

    2013-07-01

    We investigated the possibility of reducing radiation dose to the breast tissue of pediatric females by using multiple tube voltages within a single CT examination. The peak kilovoltage (kVp) was adjusted when the x-ray beam was directly exposing the representative breast tissue of a 5-year-old, 10-year-old, and an adult female anthropomorphic phantom; this strategy was called kVp splitting and was emulated by using a different kVp over the anterior and posterior tube angles. Dose savings from kVp splitting were calculated relative to using a fixed kVp over all tube angles and the results indicated savings in all three phantoms when using 80 kVp over the posterior tube angles regardless of the anterior kVp. Monte Carlo (MC) simulations with and without kVp splitting were performed to estimate absorbed breast dose in voxelized models constructed from the CT images of pediatric female patients; 80 kVp was used over the posterior tube angles. The MC simulations revealed breast dose savings of between 9.8% and 33% from using kVp splitting compared to simulations using a fixed kVp protocol with the anterior technique. Before this strategy could be implemented clinically, the development of suitable image reconstruction algorithms and the image quality of scans with kVp splitting would need further study.

  3. [Clinical applications of synchrotron radiation X-ray].

    Science.gov (United States)

    Uyama, C

    1994-09-01

    Synchrotron Radiation X-ray (SR X-ray) is an extremely strong X-ray source with a photon number more than 10(4) compared with that of the current X-ray tube. X-rays obtained by monochromatizing SR X-ray have been applied to new techniques for medical diagnosis. Several studies are now being conducted at the beam site for medical use at the Accumulation Ring of the High Energy Physics Research Institute, Tsukuba. Applications being studied include (1) energy subtraction coronary angiography. (2) microdetection of metas in samples excised from subjects. (3) monochromatic X-ray computed tomography and so on. Energy subtraction coronary angiography might have a safety advantage over the current selective coronary angiography. Microdetection of mandatory metals and poisonous heavy metals in in vivo samples contributes to the development of pathologic knowledge and clinical treatment of cancer and heavy metal toxications. Monochromatic X-ray CT is expected to detect diseases in the early stage due to increased accuracy in CT values.

  4. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  5. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  6. Comparison of high-resolution X-ray and micro-CT for experimental evaluation of intracranial stent prototypes: quality evaluation beyond CE mark

    Energy Technology Data Exchange (ETDEWEB)

    Keuler, Andreas; Taschner, Christian; Schumacher, Martin [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Brockmann, Marc Alexander [University Hospital of RWTH Aachen, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University of Heidelberg, Department of Neuroradiology, University Medical Center Mannheim, Mannheim (Germany); Boll, Hanne [University of Heidelberg, Department of Neuroradiology, University Medical Center Mannheim, Mannheim (Germany); Foerster, Katharina [University Medical Center Freiburg, Department of Cardiovascular Surgery, Freiburg (Germany); Lutz, Lisa [University Medical Center Freiburg, Department of Pathology, Freiburg (Germany); Herrmann-Frank, Annegret; Lelgemann, Monika [Medical Advisory Service of Social Health Insurance, Department of Evidence-Based Medicine, Essen (Germany)

    2014-04-15

    As digital mammography and micro-computed tomography (CT) have been used for evaluation of stents deployed in experimental animal models, we compared the two methods regarding their sensitivity to detect abnormalities in three prototypes of intracranial stents. Three different prototypes of intracranial stents (n = 84) were implanted in various animal models. Explanted stents were examined using digital mammography and micro-CT. The images were compared with respect to maintenance of material and form and the stents were compared to one another. Histological analysis was performed as well. In the open-cell stents, expansion of the stent cells was detected in the majority of cases (57.1 %) using micro-CT and less frequently using mammography (42.3 %). The closed-cell stent revealed kink stenoses in mammography as well as in micro-CT (3/7, 42.9 %). Detailed reconstructions of micro-CT images showed high-grade kink stenoses of the flow-diverter stent in two extremely curved vessels. Strut breaks were observed more frequently using micro-CT (6/84, 7.1 %) than by mammography (4/84, 4.8 %). Histology confirmed all changes of stent architecture. Significant changes of stent architecture can be observed and assessed even in the two-dimensional mammographic images. The use of micro-CT is recommended to detect subtle changes like single strut breaks and for three-dimensional information. (orig.)

  7. Comparison of high-resolution X-ray and micro-CT for experimental evaluation of intracranial stent prototypes: quality evaluation beyond CE mark.

    Science.gov (United States)

    Keuler, Andreas; Taschner, Christian; Brockmann, Marc Alexander; Boll, Hanne; Förster, Katharina; Lutz, Lisa; Herrmann-Frank, Annegret; Lelgemann, Monika; Schumacher, Martin

    2014-04-01

    As digital mammography and micro-computed tomography (CT) have been used for evaluation of stents deployed in experimental animal models, we compared the two methods regarding their sensitivity to detect abnormalities in three prototypes of intracranial stents. Three different prototypes of intracranial stents (n = 84) were implanted in various animal models. Explanted stents were examined using digital mammography and micro-CT. The images were compared with respect to maintenance of material and form and the stents were compared to one another. Histological analysis was performed as well. In the open-cell stents, expansion of the stent cells was detected in the majority of cases (57.1 %) using micro-CT and less frequently using mammography (42.3 %). The closed-cell stent revealed kink stenoses in mammography as well as in micro-CT (3/7, 42.9 %). Detailed reconstructions of micro-CT images showed high-grade kink stenoses of the flow-diverter stent in two extremely curved vessels. Strut breaks were observed more frequently using micro-CT (6/84, 7.1 %) than by mammography (4/84, 4.8 %). Histology confirmed all changes of stent architecture. Significant changes of stent architecture can be observed and assessed even in the two-dimensional mammographic images. The use of micro-CT is recommended to detect subtle changes like single strut breaks and for three-dimensional information.

  8. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images

    Science.gov (United States)

    Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented

  9. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  10. Soft X-ray optics

    CERN Document Server

    Spiller, Eberhard A

    1993-01-01

    This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction.

  11. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  12. On a fractional order calculus model in diffusion weighted breast imaging to differentiate between malignant and benign breast lesions detected on X-ray screening mammography.

    Science.gov (United States)

    Bickelhaupt, Sebastian; Steudle, Franziska; Paech, Daniel; Mlynarska, Anna; Kuder, Tristan Anselm; Lederer, Wolfgang; Daniel, Heidi; Freitag, Martin; Delorme, Stefan; Schlemmer, Heinz-Peter; Laun, Frederik Bernd

    2017-01-01

    To evaluate a fractional order calculus (FROC) model in diffusion weighted imaging to differentiate between malignant and benign breast lesions in breast cancer screening work-up using recently introduced parameters (βFROC, DFROC and μFROC). This retrospective analysis within a prospective IRB-approved study included 51 participants (mean 58.4 years) after written informed consent. All patients had suspicious screening mammograms and indication for biopsy. Prior to biopsy, full diagnostic contrast-enhanced MRI examination was acquired including diffusion-weighted-imaging (DWI, b = 0,100,750,1500 s/mm2). Conventional apparent diffusion coefficient Dapp and FROC parameters (βFROC, DFROC and μFROC) as suggested further indicators of diffusivity components were measured in benign and malignant lesions. Receiver operating characteristics (ROC) were calculated to evaluate the diagnostic performance of the parameters. 29/51 patients histopathologically revealed malignant lesions. The analysis revealed an AUC for Dapp of 0.89 (95% CI 0.80-0.98). For FROC derived parameters, AUC was 0.75 (0.60-0.89) for DFROC, 0.59 (0.43-0.75) for βFROC and 0.59 (0.42-0.77) for μFROC. Comparison of the AUC curves revealed a significantly higher AUC of Dapp compared to the FROC parameters DFROC (p = 0.009), βFROC (p = 0.003) and μFROC (p = 0.001). In contrast to recent description in brain tumors, the apparent diffusion coefficient Dapp showed a significantly higher AUC than the recently proposed FROC parameters βFROC, DFROC and μFROC for differentiating between malignant and benign breast lesions. This might be related to the intrinsic high heterogeneity within breast tissue or to the lower maximal b-value used in our study.

  13. On a fractional order calculus model in diffusion weighted breast imaging to differentiate between malignant and benign breast lesions detected on X-ray screening mammography.

    Directory of Open Access Journals (Sweden)

    Sebastian Bickelhaupt

    Full Text Available To evaluate a fractional order calculus (FROC model in diffusion weighted imaging to differentiate between malignant and benign breast lesions in breast cancer screening work-up using recently introduced parameters (βFROC, DFROC and μFROC.This retrospective analysis within a prospective IRB-approved study included 51 participants (mean 58.4 years after written informed consent. All patients had suspicious screening mammograms and indication for biopsy. Prior to biopsy, full diagnostic contrast-enhanced MRI examination was acquired including diffusion-weighted-imaging (DWI, b = 0,100,750,1500 s/mm2. Conventional apparent diffusion coefficient Dapp and FROC parameters (βFROC, DFROC and μFROC as suggested further indicators of diffusivity components were measured in benign and malignant lesions. Receiver operating characteristics (ROC were calculated to evaluate the diagnostic performance of the parameters.29/51 patients histopathologically revealed malignant lesions. The analysis revealed an AUC for Dapp of 0.89 (95% CI 0.80-0.98. For FROC derived parameters, AUC was 0.75 (0.60-0.89 for DFROC, 0.59 (0.43-0.75 for βFROC and 0.59 (0.42-0.77 for μFROC. Comparison of the AUC curves revealed a significantly higher AUC of Dapp compared to the FROC parameters DFROC (p = 0.009, βFROC (p = 0.003 and μFROC (p = 0.001.In contrast to recent description in brain tumors, the apparent diffusion coefficient Dapp showed a significantly higher AUC than the recently proposed FROC parameters βFROC, DFROC and μFROC for differentiating between malignant and benign breast lesions. This might be related to the intrinsic high heterogeneity within breast tissue or to the lower maximal b-value used in our study.

  14. Usefulness of SPECT/CT in the Diagnosis of Intrathoracic Goiter versus Metastases From Cancer of the Breast

    DEFF Research Database (Denmark)

    Dümcke, Christine Elisabeth; Madsen, Jan Lysgård

    2007-01-01

    A 77-year-old woman was referred because of local reoccurrence of cancer of the breast. Chest x-ray showed a mediastinal tumor with dislocation of the trachea to the right. A Tc-99m pertechnetate scan showed irregular tracer uptake in an enlarged left lobe of the thyroid gland. Ultrasound confirmed...... the diagnosis of a nodular goiter with intrathoracic growth of the left lobe. A SPECT/CT scan of the mediastinum clearly showed that the soft tissue tumor was the left lobe of the thyroid gland, and not lymphatic metastases....

  15. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.

    2012-01-30

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a few tens of nanometers to several hun-dred nanometers have had limited success. We demonstrate, for the first time, that it is possible to go beyond visualization and to extract quantitative morphological information from X-ray images in the aforementioned length scales. As examples, two different hierarchical geomaterials exhibiting complex porous structures ranging from nanometer to macroscopic scale are studied: a flocculated clay water suspension and two hydrated cement pastes. We show that from a single projection image it is possible to perform a direct computation of the ultra-small angle-scattering spectra. The predictions matched very well the experimental data obtained by the best ultra-small angle-scattering experimental setups as observed for the cement paste. In this context, we demonstrate that the structure of flocculated clay suspension exhibit two well-distinct regimes of aggregation, a dense mass fractal aggregation at short distance and a more open structure at large distance, which can be generated by a 3D reaction limited cluster-cluster aggregation process. For the first time, a high-resolution 3D image of fibrillar cement paste cluster was obtained from limited angle nanotomography.

  16. CT-guided aspiration cytology of advanced silicosis and confirmation of the deposited zeolite nano particles through X ray diffraction: A novel approach.

    Science.gov (United States)

    Bandyopadhyay, Arghya; Majumdar, Kaushik; Chakraborty, Abhijit; Mitra, Partha; Nag, Subhomoy

    2016-03-01

    Silicosis is a common occupational lung disease, resulting in fibrotic nodular lesions in the upper lobes of the lung parenchyma. Most of the pneumoconioses are diagnosed on the basis of relevant history and clinico-radiological correlation. Image-guided aspiration cytology appears to be poorly yielding and is not usually considered as a diagnostic modality. However, silicosis may sometimes offer a diagnostic challenge because of its radiological resemblance and clinical overlap with pulmonary tuberculosis and neoplastic lesions. We present a unique situation where image-guided fine needle aspiration cytology (FNAC) has been advised on the basis of nodular upper lobe opacities. The cytology smears revealed hypocellular granular material, while phase contrast and polarized light microscopy highlighted crystalline particles. History of silica dust exposure long back was available after the cytological evaluation, suggesting the diagnosis of pulmonary silicosis. X ray diffraction (XRD) crystallography was also possible on cytology smears, confirming zeolite nano particles of size as small as 40 - 50 nm as the concerned agent for the first time. Cytological evaluation by phase contrast and polarized light microscopy may be useful for the confirmation of silicosis, supplemented by clinical history and radiological evaluation. XRD on smears may help in determination of chemical nature and particle size. © 2015 Wiley Periodicals, Inc.

  17. HipMatch: an object-oriented cross-platform program for accurate determination of cup orientation using 2D-3D registration of single standard X-ray radiograph and a CT volume.

    Science.gov (United States)

    Zheng, Guoyan; Zhang, Xuan; Steppacher, Simon D; Murphy, Stephen B; Siebenrock, Klaus A; Tannast, Moritz

    2009-09-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D-3D image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of either multiple radiographs or a radiograph-specific calibration, both of which are not available for most retrospective studies. To address these issues, we developed and validated an object-oriented cross-platform program called "HipMatch" where a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration was implemented to estimate a rigid transformation between a pre-operative CT volume and the post-operative X-ray radiograph for a precise estimation of cup alignment. No CAD model of the prosthesis is required. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the robustness and the accuracy of the program. HipMatch is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway), VTK, and Coin3D and is transportable to any platform.

  18. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  19. Detection of breast abnormalities on enhanced chest CT: Correlation with breast composition on mammography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Mi; Kang, Hee; Shin, Young Gyung; Yun, Jong Hyouk; Oh, Kyung Seung [Dept. of Radiology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of)

    2017-02-15

    To investigate the capability of enhanced chest computed tomography (CT) for detecting breast abnormalities and to assess the influence of breast composition on this detectability. From 2000 to 2013, 75 patients who underwent mammography, breast sonography, and enhanced chest CT within one month and had abnormalities on sonography were included. Detection rate of breast abnormality on enhanced chest CT was compared among 4 types of breast composition by the Breast Imaging Reporting and Data System. Contribution of breast composition, size and enhancement of target lesions to detectability of enhanced chest CT was assessed using logistic regression and chi-square test. Of the 75 target lesions, 34 (45.3%) were detected on enhanced chest CT, corresponding with those on breast sonography; there were no significantly different detection rates among the 4 types of breast composition (p = 0.078). Breast composition [odds ratio (OR) = 1.07, p = 0.206] and enhancement (OR = 21.49, p = 0.998) had no significant effect, but size (OR = 1.23, p = 0.004) was a significant contributing factor influencing the detectability of enhanced chest CT for breast lesions. About half of the cases (45.3%) demonstrated breast lesions on chest CT corresponding with target lesions on sonography. Breast composition defined on mammography did not affect the detectability of enhanced chest CT for breast lesions.

  20. A semiempirical linear model of indirect, flat-panel x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M. [Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 92106 (United States); Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817 (United States)

    2012-04-15

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r

  1. Automated segmentation and recognition of abdominal wall muscles in X-ray torso CT images and its application in abdominal CAD

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Kamiya, N.; Hara, T.; Fujita, H. [Dept. of Intelligent Image Information, Div. of Regeneration and Advanced Medical Sciences, Graduate School of Medicine, Gifu Univ., Gifu (Japan); Chen, H. [Dept. of Anatomy, Graduate School of Medicine, Gifu Univ., Gifu (Japan); Yokoyama, R.; Hoshi, H. [Dept. of Radiology, Gifu Univ. Graduate School of Medicine and Univ. Hospital, Gifu (Japan)

    2007-06-15

    The information of abdominal wall is very important for the planning of surgical operation and abdominal organ recognition. In research fields of computer assisted radiology and surgery and computer-aided diagnosis, the segmentation and recognition of the abdominal wall muscles in CT images is a necessary pre-processing step. Due to the complexity of the abdominal wall structure and indistinctive in CT images, the automated segmentation of abdominal wall muscles is a difficult issue and has not been solved completely. We propose an approach to segment the abdominal wall muscles and divide it into three categories (front abdominal muscles including rectus abdominis; left and right side abdominal muscles including external oblique, internal oblique and transversus abdominis muscles) automatically. The approach, first, makes an initial classification of bone, fat, and muscles and organs based on the CT number. Then a layer structure is generated to describe the 3-D anatomical structures of human torso by stretching the torso region onto a thin-plate for easy recognition. The abdominal wall muscles are recognized on the layer structures using the spatial relations to the skeletal structure and CT numbers. Finally, the recognized regions are mapped back to the 3-D CT images using an inverse transformation of the stretching process. This method is applied to 20 cases of torso CT images and evaluations are based on visual comparison of the recognition results and the original CT images by an expert in anatomy. The results show that our approach can segment and recognize abdominal wall muscle regions effectively. (orig.)

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... About Us News Physician Resources Professions Site Index A-Z Spotlight October is National Breast Cancer Awareness ... dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist at Duke University in Durham, North Carolina. ...

  3. Unwrapping an ancient Egyptian mummy using x-rays

    Science.gov (United States)

    Hughes, Stephen W.

    2010-05-01

    This article describes a project of unwrapping an ancient Egyptian mummy using x-ray computed tomography (CT). About 600 x-ray CT images were obtained through the mummified body of a female named Tjetmutjengebtiu (or Jeni for short), who was a singer in the great temple of Karnak in Egypt during the 22nd dynasty (c 945-715 BC). The x-ray CT images reveal details of the remains of body organs, wrappings and jewellery. 3D reconstructions of Jeni's teeth suggest that she was probably only around 20 years old when she died, although the cause of death cannot be ascertained from the CT scans. The CT images were used to build a 3D model of Jeni's head which enabled an artist to paint a picture of what Jeni may have looked like during life. A PowerPoint presentation and movie clips are provided as supplementary material that may be useful for teaching.

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... diagnosis and treatment. No radiation remains in a patient's body after an x-ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both patients and physicians. Because x-ray imaging is fast and easy, it is ... Radiation Exposure Special care is taken during x-ray examinations to use ...

  8. Chandra's X-ray Vision

    Indian Academy of Sciences (India)

    1999-07-23

    Jul 23, 1999 ... GENERAL I ARTICLE. Chandra's X-ray Vision. K P Singh. Chandra X-ray Observatory (CXO) is a scientific satellite (moon/ chandra), named after the Indian-born Nobel laureate. Subrahmanyan Chandrasekhar - one of the foremost astro- physicists of the twentieth century and popularly known as. Chandra.

  9. X-Ray Exam: Ankle

    Science.gov (United States)

    ... radiation through the ankle, and black and white images of the bones and soft tissues are recorded on a computer or special X-ray film. Dense structures that block the passage of the X-ray beam through the body, such as bones, appear white. Softer body tissues, ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ...

  11. Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Riegger, C.; Heusner, T.A. [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany); University of Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Herrmann, J.; Hahn, S.; Lauenstein, T. [University of Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Nagarajah, J.; Bockisch, A. [University of Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Hecktor, J.; Kuemmel, S. [University of Duisburg-Essen, Medical Faculty, Department of Gynecology and Obstetrics, Essen (Germany); Otterbach, F. [University of Duisburg-Essen, Institute of Pathology and Neuropathology, Essen (Germany); Antoch, G. [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany)

    2012-05-15

    This retrospective study aimed (1) to compare the diagnostic accuracy of whole-body FDG PET/CT for initial breast cancer staging with the accuracy of a conventional, multimodal imaging algorithm, and (2) to assess potential alteration in patient management based on the FDG PET/CT findings. Patients with primary breast cancer (106 women, mean age 57 {+-} 13 years) underwent whole-body FDG PET/CT and conventional imaging (X-ray mammography, MR mammography, chest plain radiography, bone scintigraphy and breast, axillary and liver ultrasonography). The diagnostic accuracies of FDG PET/CT and a conventional algorithm were compared. Diagnostic accuracy was assessed in terms of primary tumour detection rate, correct assessment of primary lesion focality, T stage and the detection rates for lymph node and distant metastases. Histopathology, imaging or clinical follow-up served as the standards of reference. FDG PET/CT was significantly more accurate for detecting axillary lymph node and distant metastases (p = 0.0125 and p < 0.005, respectively). No significant differences were detected for other parameters. Synchronous tumours or locoregional extraaxillary lymph node or distant metastases were detected in 14 patients (13%) solely by FDG PET/CT. Management of 15 patients (14%) was altered based on the FDG PET/CT findings, including 3 patients with axillary lymph node metastases, 5 patients with extraaxillary lymph node metastases, 4 patients with distant metastases and 3 patients with synchronous malignancies. Full-dose, intravenous contrast-enhanced FDG PET/CT was more accurate than conventional imaging for initial breast cancer staging due to the higher detection rate of metastases and synchronous tumours, although the study had several limitations including a retrospective design, a possible selection bias and a relevant false-positive rate for the detection of axillary lymph node metastases. FDG PET/CT resulted in a change of treatment in a substantial proportion of

  12. X-Ray Tomographic Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  13. Contrast-enhanced dedicated breast CT detection of invasive breast cancer preceding mammographic diagnosis

    Directory of Open Access Journals (Sweden)

    Nicolas D. Prionas, MD, PhD

    2015-01-01

    Full Text Available Dedicated breast computed tomography (bCT generates high-resolution, three-dimensional images of the pendent uncompressed breast. Intravenous iodinated contrast during bCT provides additional physiologic information. In this case, a 10.0-mm invasive ductal carcinoma was visualized using contrast-enhanced breast CT one year before mammographic detection. Mammography four months before bCT was negative. The bCT contrast enhancement pattern closely matched the dynamic contrast-enhanced MRI obtained after diagnosis. Lesion enhancement at contrast-enhanced breast CT matched previously published enhancement values of breast cancer. Contrast-enhanced dedicated bCT provided high-resolution tomographic images and physiologic contrast enhancement data that facilitated the detection of an early breast cancer.

  14. A prospective study comparing whole-body skeletal X-ray survey with 18F-FDG-PET/CT, 18F-NaF-PET/CT and whole-body MRI in the detection of bone lesions in multiple myeloma patients

    DEFF Research Database (Denmark)

    Dyrberg, Eva; Hendel, Helle W; Al-Farra, Gina

    2017-01-01

    Background: For decades, the most widely used imaging technique for myeloma bone lesions has been a whole-body skeletal X-ray survey (WBXR), but newer promising imaging techniques are evolving. Purpose: To compare WBXR with the advanced imaging techniques 18F-fluorodeoxyglucose (FDG) positron......, all patients underwent FDG-PET/CT, NaF-PET/CT, and WB-MRI. Experienced specialists performed blinded readings based on predefined anatomical regions and diagnostic criteria. Results: In a region-based analysis, a two-sided ANOVA test showed that the extent of detected skeletal disease depends...... on the scanning technique (P 

  15. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... appears black. With CT scanning, numerous x-ray beams and a set of electronic x-ray detectors ... during the scan, so that the x-ray beam follows a spiral path. A special computer program ...

  16. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... appears black. With CT scanning, numerous x-ray beams and a set of electronic x-ray detectors ... during the scan, so that the x-ray beam follows a spiral path. A special computer program ...

  17. Abdominal and Pelvic CT

    Medline Plus

    Full Text Available ... appears black. With CT scanning, numerous x-ray beams and a set of electronic x-ray detectors ... during the scan, so that the x-ray beam follows a spiral path. A special computer program ...

  18. Dental x-rays

    Science.gov (United States)

    ... 2016 Updated by: Michael Kapner, DDS, general and aesthetic dentistry, Norwalk Medical Center, Norwalk, CT. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Dental Health Read more Tooth Disorders Read more X- ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Awareness Month Recently posted: Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Coronary CT Angiography Video: ...

  20. Development of 3D CAD/FEM Analysis System for Natural Teeth and Jaw Bone Constructed from X-Ray CT Images

    Directory of Open Access Journals (Sweden)

    Aki Hasegawa

    2010-01-01

    Full Text Available A three-dimensional finite element model of the lower first premolar, with the three layers of enamel, dentin, and pulp, and the mandible, with the two layers of cortical and cancellous bones, was directly constructed from noninvasively acquired CT images. This model was used to develop a system to analyze the stresses on the teeth and supporting bone structure during occlusion based on the finite element method and to examine the possibility of mechanical simulation.

  1. A look-up table-based ray integration framework for 2D/3D forward and back-projection in X-ray CT.

    Science.gov (United States)

    Ha, Sungsoo; Mueller, Klaus

    2017-08-18

    Iterative algorithms have become increasingly popular in Computed Tomography (CT) image reconstruction since they better deal with the adverse image artifacts arising from low radiation dose image acquisition. But iterative methods remain computationally expensive. The main cost emerges in the projection and backprojection operations where accurate CT system modeling can greatly improve the quality of the reconstructed image. We present a framework that improves upon one particular aspect - the accurate projection of the image basis functions. It differs from current methods in that it substitutes the high computational complexity associated with accurate voxel projection by a small number of memory operations. Coefficients are computed in advance and stored in look-up tables parameterized by the CT system's projection geometry. The look-up tables only require a few kilobytes of storage and can be efficiently accelerated on the GPU. We demonstrate our framework with both numerical and clinical experiments and compare its performance with the current state of the art scheme - the separable footprint method.

  2. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  3. {sup 18}F-FDG PET/CT for initial staging in breast cancer patients. Is there a relevant impact on treatment planning compared to conventional staging modalities?

    Energy Technology Data Exchange (ETDEWEB)

    Krammer, J.; Schnitzer, A.; Kaiser, C.G.; Buesing, K.A.; Schoenberg, S.O.; Wasser, K. [University of Heidelberg, Institute of Clinical Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Sperk, E. [University of Heidelberg, Department of Radiation Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Brade, J. [University of Heidelberg, Institute of Medical Statistics, Biomathematics and Data Processing, Medical Faculty Mannheim, Mannheim (Germany); Wasgindt, S.; Suetterlin, M. [University of Heidelberg, Department of Gynaecology and Obstetrics, University Medical Centre Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Sutton, E.J. [Memorial Sloan-Kettering Cancer Center, Evelyn H. Lauder Breast Center, Department of Radiology, New York, NY (United States)

    2015-08-15

    To evaluate the impact of whole-body {sup 18}F-FDG PET/CT on initial staging of breast cancer in comparison to conventional staging modalities. This study included 102 breast cancer patients, 101 patients were eligible for evaluation. Preoperative whole-body staging with PET/CT was performed in patients with clinical stage ≥ T2 tumours or positive local lymph nodes (n = 91). Postoperative PET/CT was performed in patients without these criteria but positive sentinel lymph node biopsy (n = 10). All patients underwent PET/CT and a conventional staging algorithm, which included bone scan, chest X-ray and abdominal ultrasound. PET/CT findings were compared to conventional staging and the impact on therapeutic management was evaluated. PET/CT led to an upgrade of the N or M stage in overall 19 patients (19 %) and newly identified manifestation of breast cancer in two patients (2 %). PET/CT findings caused a change in treatment of 11 patients (11 %). This is within the range of recent studies, all applying conventional inclusion criteria based on the initial T and N status. PET/CT has a relevant impact on initial staging and treatment of breast cancer when compared to conventional modalities. Further studies should assess inclusion criteria beyond the conventional T and N status, e.g. tumour grading and receptor status. (orig.)

  4. X-Ray Psoralen Activated Cancer Therapy (X-PACT.

    Directory of Open Access Journals (Sweden)

    Mark Oldham

    Full Text Available This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy: a new approach for the treatment of solid cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with current application to proliferative disease and extracorporeal photopheresis (ECP of cutaneous T Cell Lymphoma. An immunogenic role for light-activated psoralen has been reported, contributing to long-term clinical responses. Psoralen therapies have to-date been limited to superficial or extracorporeal scenarios due to the requirement for psoralen activation by UVA light, which has limited penetration in tissue. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen that absorb x-rays and re-radiate (phosphoresce at UV wavelengths. The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1, glioma (CT2A and sarcoma (KP-B cell lines. Cells were exposed to X-PACT treatments where the concentrations of drug (psoralen and phosphor and radiation parameters (energy, dose, and dose rate were varied. Efficacy was evaluated primarily using flow cell cytometry in combination with complimentary assays, and the in-vivo mouse study. In an in-vitro study, we show that X-PACT induces significant tumor cell apoptosis and cytotoxicity, unlike psoralen or phosphor alone (p<0.0001. We also show that apoptosis increases as doses of phosphor, psoralen, or radiation increase. Finally, in an in-vivo pilot study of BALBc mice with syngeneic 4T1 tumors, we show that the rate of tumor growth is slower with X-PACT than with saline or AMT + X-ray (p<0.0001. Overall these studies demonstrate a potential therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. In summary, X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation are delivered to a specific tumor site to generate UVA

  5. X-Ray Optics Research

    Science.gov (United States)

    1990-09-20

    OF FUNDING NUMBERS Building 410 PORM POET TS OKUI Bolig FBDC2032648ELEMENT NO. NO. NO ACCESiON NO 11. TITLE (include Security Classification) X - Ray Optics Research...by block number) This report describes work conducted during the period I October 1987 through 30 April 1990, under Contract AFOSR-88-00l0, " X - Ray Optics Research...growth and structure of multilayer interfaces. This capability is central to the development of future materials for multilayer x - ray optics , because

  6. High contrast soft tissue imaging based on multi-energy x-ray

    Science.gov (United States)

    Oh, Hyun-Hwa; Sung, Young-Hun; Kim, Sung-Su; Kwon, Jae-Hyun; Lee, Seong-Deok; Kim, Chang-Yeong

    2011-03-01

    Breast soft tissues have similar x-ray attenuations to mass tissue. Overlapping breast tissue structure often obscures mass and microcalcification, essential to the early detection of breast cancer. In this paper, we propose new method to generate the high contrast mammogram with distinctive features of a breast cancer by using multiple images with different x-ray energy spectra. On the experiments with mammography simulation and real breast tissues, the proposed method has provided noticeable images with obvious mass structure and microcalifications.

  7. Combined bilateral idiopathic necrosis of the humerus and femur heads: Bone scan, X-ray, CT, and MRI findings. Kombinierte beidseitige idiopathische Nekrose der Humerus- und Femurkoepfe: Skelettszintigraphie, Roentgen-, CT- und MRT-Befunde

    Energy Technology Data Exchange (ETDEWEB)

    Piepenburg, R.; Hahn, K. (Mainz Univ. (Germany). Klinik fuer Nuklearmedizin); Doll, G. (Mainz Univ. (Germany). Klinik fuer Roentgendiagnostik); Grimm, J. (Mainz Univ. (Germany). Orthopaedische Klinik)

    1992-12-01

    Untreated aseptic bone necroses close to a joint commonly leads to severe secondary arthrosis and destruction of the joint within a short time. Therefore, only a diagnosis in an early stage of the disease offers the chance of a successful joint- preserving therapy. In cases of clinically suspected aseptic bone necrosis but still negative or doubtful X-ray findings, bone scans or MRI are reliable methods of verifying the diagnosis. (orig./MG).

  8. An update on carbon nanotube-enabled X-ray sources for biomedical imaging.

    Science.gov (United States)

    Puett, Connor; Inscoe, Christina; Hartman, Allison; Calliste, Jabari; Franceschi, Dora K; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2018-01-01

    A new imaging technology has emerged that uses carbon nanotubes (CNT) as the electron emitter (cathode) for the X-ray tube. Since the performance of the CNT cathode is controlled by simple voltage manipulation, CNT-enabled X-ray sources are ideal for the repetitive imaging steps needed to capture three-dimensional information. As such, they have allowed the development of a gated micro-computed tomography (CT) scanner for small animal research as well as stationary tomosynthesis, an experimental technology for large field-of-view human imaging. The small animal CT can acquire images at specific points in the respiratory and cardiac cycles. Longitudinal imaging therefore becomes possible and has been applied to many research questions, ranging from tumor response to the noninvasive assessment of cardiac output. Digital tomosynthesis (DT) is a low-dose and low-cost human imaging tool that captures some depth information. Known as three-dimensional mammography, DT is now used clinically for breast imaging. However, the resolution of currently-approved DT is limited by the need to swing the X-ray source through space to collect a series of projection views. An array of fixed and distributed CNT-enabled sources provides the solution and has been used to construct stationary DT devices for breast, lung, and dental imaging. To date, over 100 patients have been imaged on Institutional Review Board-approved study protocols. Early experience is promising, showing an excellent conspicuity of soft-tissue features, while also highlighting technical and post-acquisition processing limitations that are guiding continued research and development. Additionally, CNT-enabled sources are being tested in miniature X-ray tubes that are capable of generating adequate photon energies and tube currents for clinical imaging. Although there are many potential applications for these small field-of-view devices, initial experience has been with an X-ray source that can be inserted into the

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  10. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation ... x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones or joint dislocation. Bone ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine is a compact apparatus that can be taken to the patient in a hospital ... so that any change in a known abnormality can be monitored over time. Follow-up examinations are ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones ... x-rays involves exposing a part of the body to a small dose of ionizing radiation to ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... or in bones. top of page How should I prepare? Most bone x-rays require no special ... to 10 minutes. top of page What will I experience during and after the procedure? A bone ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... examination may also be necessary so that any change in a known abnormality can be monitored over ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the patient in a hospital bed or the emergency room. The x-ray tube is connected to ... equipment is relatively inexpensive and widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... here Images × Image Gallery Radiological technologist preparing to take an arm x-ray on a patient. View ... and/or your insurance provider to get a better understanding of the possible charges you will incur. ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in evaluating the hips of children with congenital problems. top of page This page was reviewed on ... Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... white on the x-ray, soft tissue shows up in shades of gray and air appears black. ... who will discuss the results with you. Follow-up examinations may be necessary. Your doctor will explain ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... little information about muscles, tendons or joints. An MRI may be more useful in identifying bone and ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media Arthritis X-ray, Interventional Radiology and ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very small dose of ionizing radiation to produce pictures of any bone in the body. It is ... a small dose of ionizing radiation to produce pictures of the inside of the body. X-rays ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page What are some common uses ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and easiest ... is used to: diagnose fractured bones or joint dislocation. demonstrate proper alignment and stabilization of bony fragments ...