WorldWideScience

Sample records for breast overexpress p53

  1. Overexpression of p53 in Nigerian breast cancers and its ...

    African Journals Online (AJOL)

    Background: Mutation of the tumour suppressor gene, p53, is implicated in most cancers. This gene has also been associated with high tumour grade in breast cancers. African women are known to generally have high grade tumours. This study sought to determine the expression of p53 protein as well as the relationship ...

  2. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  3. Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors

    NARCIS (Netherlands)

    Dummer, R; Bergh, J; Karlsson, Y; Horovitz, JA; Mulder, NH; Huinin, DT; Burg, G; Hofbauer, G; Osanto, S

    p53 mutations are common genetic alterations in human cancer. Gene transfer of a wild-type (wt) p53 gene reverses the loss of normal p53 function in vitro and in vivo. A phase I dose escalation study of single intratumoral (i.t.) injection of a replication-defective adenoviral expression vector

  4. CD8 T-cell responses against cyclin B1 in breast cancer patients with tumors overexpressing p53

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Andersen, Rikke Sick; Svane, Inge Marie

    2009-01-01

    CD8 T-cell response against at least one of the peptides; strongest reactivity was detected against the CB9L2 peptide. Because the level of cyclin B1 has been shown to be influenced by the level of p53, which in turn is elevated in cancer cells because of point mutation, we analyzed the level of p53...... protein in biopsies from the patients by immune histochemistry. Combined data showed that anti-cyclin B1 reactivity was predominantly detected in patients with tumors characterized by elevated expression of p53. Interestingly, no reactivity was detected against six peptides derived from the p53 protein....... CONCLUSIONS: Our data support the notion of cyclin B1 as a prominent target for immunologic recognition in cancer patients harboring p53-mutated cancer cells. Because mutation of p53 is one of the most frequent genetic alterations in human cancers, this suggests that immunotherapy based on targeting of cyclin...

  5. Breast Tumor Kinetics in Mice Overexpressing Cyclin E and Heterozygous for Tumor Suppressor p53 or Rb

    National Research Council Canada - National Science Library

    Smith, Adrian

    2003-01-01

    ...) with mice heterozygous at either the p53 or Rb loci. If genomic instability were induced by deregulated expression in the mammary epithelia, we anticipated an increased penetrance and decreased latency of tumorigenesis...

  6. Tobacco, alcohol, and p53 overexpression in early colorectal neoplasia

    Directory of Open Access Journals (Sweden)

    Mansukhani Mahesh

    2003-11-01

    Full Text Available Abstract Background The p53 tumor suppressor gene is commonly mutated in colorectal cancer. While the effect of p53 mutations on colorectal cancer prognosis has been heavily studied, less is known about how epidemiologic risk factors relate to p53 status, particularly in early colorectal neoplasia prior to clinically invasive colorectal cancer (including adenomas, carcinoma in situ (CIS, and intramucosal carcinoma. Methods We examined p53 status, as measured by protein overexpression, in 157 cases with early colorectal neoplasia selected from three New York City colonoscopy clinics. After collecting paraffin-embedded tissue blocks, immunohistochemistry was performed using an anti-p53 monoclonal mouse IgG2a [BP53-12-1] antibody. We analyzed whether p53 status was different for risk factors for colorectal neoplasia relative to a polyp-free control group (n = 508. Results p53 overexpression was found in 10.3%, 21.7%, and 34.9%, of adenomatous polyps, CIS, and intramucosal cases, respectively. Over 90% of the tumors with p53 overexpression were located in the distal colon and rectum. Heavy cigarette smoking (30+ years was associated with cases not overexpressing p53 (OR = 1.8, 95% CI = 1.1–2.9 but not with those cases overexpressing p53 (OR = 1.0, 95% CI = 0.4–2.6. Heavy beer consumption (8+ bottles per week was associated with cases overexpressing p53 (OR = 4.0, 95% CI = 1.3–12.0 but not with cases without p53 overexpression (OR = 1.6, 95% CI = 0.7–3.7. Conclusion Our findings that p53 overexpression in early colorectal neoplasia may be positively associated with alcohol intake and inversely associated with cigarette smoking are consistent with those of several studies of p53 expression and invasive cancer, and suggest that there may be relationships of smoking and alcohol with p53 early in the adenoma to carcinoma sequence.

  7. p53 and survival in early onset breast cancer

    DEFF Research Database (Denmark)

    Gentile, M; Bergman Jungeström, M; Olsen, K E

    1999-01-01

    The p53 protein has proven to be central in tumorigenesis by its cell cycle regulatory properties and both gene mutations and protein accumulation have been associated with poor prognosis in breast cancer. The present study was undertaken to investigate the prognostic significance of gene mutations......, p53 protein accumulation and of loss of heterozygosity (LOH) at the TP53 locus in young (age ... (46%). Log rank analysis revealed no significant association between survival and TP53 mutations (in general), p53 protein accumulation or LOH. However, missense mutations localised to the zinc binding domain were significantly (P = 0.0007) associated with poorer prognosis. As indicated...

  8. p53 gene mutations and expression of p53 and mdm2 proteins in invasive breast carcinoma. A comparative analysis with clinico-pathological factors.

    Science.gov (United States)

    Günther, T; Schneider-Stock, R; Rys, J; Niezabitowski, A; Roessner, A

    1997-01-01

    The aim of the study was to analyze p53 gene mutations and the expression of p53 and mdm2 proteins in 31 randomly selected invasive breast carcinomas. The results were then correlated with tumor grade, stage, estrogen receptor status, nodal status, and DNA ploidy. The expression of the proteins p53 and mdm2 was determined immunohistochemically using formalin-fixed, paraffin-embedded material. Screening for p53 mutation involved analysis of the highly conserved regions of the p53 gene (exons 5-9) by the polymerase chain reaction/ single-strand conformation polymorphism (PCR-SSCP) technique. PCR products with band shifts were directly sequenced. Immunohistochemical staining of p53 was positive in 9 cases (29.0%), only 2 of which showed a p53 gene mutation. These were identified as a C-->G transversion at the second position of codon 278 in exon 8 and an A-->G transition at the second position of codon 205 in exon 6. A third case with a mutation was observed (C-->T transition, position 1 of codon 250 in exon 7) that did not show p53 immunohistochemically. Of the 9 p53-positive tumors, 2 were moderately differentiated (grade II). The remaining tumors were poorly differentiated (7/9). By contrast, p53-negative carcinomas were well differentiated (grade I) in most cases (P = 0.02). DNA cytometry in 8 of the 9 p53-positive carcinomas revealed an aneuploid stem line. The majority of the p53-negative tumors were diploid (P = 0.01). Mdm2 oncoprotein was detected in 10 tumors (32.2%), 4 of which were p53-positive, including the 3 with mutations. The grading of the mdm2-positive tumors was moderate or poor, G1 carcinomas were always noted to be mdm2-negative (P = 0.04). Overexpression of p53 protein is a complex mechanism and does not merely indicate the detection of mutations in the p53 gene. This study has shown that p53 expression correlates with tumor grade and DNA ploidy. Mdm2 expression was also associated with the tumor grade. Immunohistological demonstration of the p53

  9. P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer.

    Science.gov (United States)

    Sharma, Shivani; Nagpal, Neha; Ghosh, Prahlad C; Kulshreshtha, Ritu

    2017-08-01

    miRNAs have emerged as key participants of p53 signaling pathways because they regulate or are regulated by p53. Here, we provide the first study demonstrating direct regulation of an oncogenic miRNA, miR-191-5p, by p53 and existence of a regulatory feedback loop. Using a combination of qRT-PCR, promoter-luciferase, and chromatin-immunoprecipitation assays, we show that p53 brings about down-regulation of miR-191-5p in breast cancer. miR-191-5p overexpression brought about inhibition of apoptosis in breast cancer cell lines (MCF7 and ZR-75) as demonstrated by reduction in annexin-V stained cells and caspase 3/7 activity, whereas miR-191-5p down-regulation showed the opposite. We further unveiled that SOX4 was a direct target of miR-191-5p. SOX4 overexpression was shown to increase p53 protein levels in MCF7 cells. miR-191-5p overexpression brought about down-regulation of SOX4 and thus p53 levels, suggesting the existence of a regulatory feedback loop. Breast cancer treatment by doxorubicin, an anti-cancer drug, involves induction of apoptosis by p53; we thus wanted to check whether miR-191-5p affects doxorubicin sensitivity. Interestingly, Anti-miR-191 treatment significantly decreased the IC50 of the doxorubicin drug and thus sensitized breast cancer cells to doxorubicin treatment by promoting apoptosis. Overall, this work highlights the importance of the p53-miR-191-SOX4 axis in the regulation of apoptosis and drug resistance in breast cancer and offers a preclinical proof-of-concept for use of an Anti-miR-191 and doxorubicin combination as a rational approach to pursue for better breast cancer treatment. © 2017 Sharma et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. p53 Over-expression and p53 mutations in colon carcinomas: Relation to dietary risk factors

    NARCIS (Netherlands)

    Voskuil, D.W.; Kampman, E.; Kraats, A.A. van; Balder, H.F.; Muijen, G.N.P. van; Goldbohm, R.A.; Veer, P. van 't

    1999-01-01

    Epidemiological studies have suggested that dietary factors may differently affect p53-dependent and p53-independent pathways to colon cancer. Results of such studies may depend on the method used to assess p53 status. This case-control study of 185 colon-cancer cases and 259 controls examines this

  11. p53 mutations occur in aggressive breast cancer.

    Science.gov (United States)

    Mazars, R; Spinardi, L; BenCheikh, M; Simony-Lafontaine, J; Jeanteur, P; Theillet, C

    1992-07-15

    Using a polymerase chain reaction-single strand conformation polymorphism approach we analyzed 96 human primary breast tumors for the presence of mutations in exons 2, 5, 6, 7, 8, and 9 of the p53 gene. These exons have been shown to comprise highly conserved sequences and the portion including exons 5 through 9 is believed to be the target for over 90% of the acquired mutations in human cancer. Eighteen tumors of the 96 (18.7%) tested showed reproducibly a variant band indicative of a mutation. Most (15 tumors) of the mutations were single nucleotide substitutions and G:C to A:T transitions were prevalent (6 tumors), G:C to T:A transversions came next (4 tumors), and guanines were always on the nontranscribed strand. Concomitant loss of the wild type allele and mutation of the other copy was observed in only 3 of 18 mutated cases; this is consistent with the heterogeneous cellular composition of breast tumors. Furthermore p53 mutations were correlated to estrogen and/or progesterone receptor negative tumors, thus indicating their relationships to aggressive breast cancer. No association could be observed with DNA amplification events in these tumors.

  12. Immunological and Clinical Effects of Vaccines Targeting p53-Overexpressing Malignancies

    Directory of Open Access Journals (Sweden)

    R. Vermeij

    2011-01-01

    Full Text Available Approximately 50% of human malignancies carry p53 mutations, which makes it a potential antigenic target for cancer immunotherapy. Adoptive transfer with p53-specific cytotoxic T-lymphocytes (CTL and CD4+ T-helper cells eradicates p53-overexpressing tumors in mice. Furthermore, p53 antibodies and p53-specific CTLs can be detected in cancer patients, indicating that p53 is immunogenic. Based on these results, clinical trials were initiated. In this paper, we review immunological and clinical responses observed in cancer patients vaccinated with p53 targeting vaccines. In most trials, p53-specific vaccine-induced immunological responses were observed. Unfortunately, no clinical responses with significant reduction of tumor-burden have occurred. We will elaborate on possible explanations for this lack of clinical effectiveness. In the second part of this paper, we summarize several immunopotentiating combination strategies suitable for clinical use. In our opinion, future p53-vaccine studies should focus on addition of these immunopotentiating regimens to achieve clinically effective therapeutic vaccination strategies for cancer patients.

  13. MiR-300 regulate the malignancy of breast cancer by targeting p53.

    Science.gov (United States)

    Xu, Xiao-Heng; Li, Da-Wei; Feng, Hui; Chen, Hong-Mei; Song, Yan-Qiu

    2015-01-01

    In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of breast cancer (BC) cells. MicroRNA and protein expression patterns were compared between breast cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in MCF-7 breast cancer cells. We observed that miR-300 expression was frequently and dramatically up-regulated in human breast cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote breast cancer cell proliferation and invasion by regulating p53 expression. Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in breast cancer cell proliferation during breast tumorigenesis.

  14. P53 overexpression in epidermoid carcinoma of the head and neck

    Directory of Open Access Journals (Sweden)

    Angela Flavia Logullo

    Full Text Available The theory of field cancerization in tumors of the head and neck reflects the complex oncogenesis that occurs in this region. The mechanisms that control cell proliferation at the molecular level in epidermoid carcinomas (ECs of the upper aerodigestive tract are still unclear. Mutations in p53 are the genetic alterations most often detected in ECs of the head and neck and seem to contribute actively to the carcinogenic process triggered by p53 as a tumor-suppressor gene and to its association with tobacco. The objective of the present study was to investigate the expression of p53 protein in epidermoid head and neck carcinomas by immunohistochemistry and its immunohistochemical correlation with other prognostic factors. The study was conducted on 63 consecutive ECs cases not submitted to previous treatment. Specimens of the tumor and of the normal adjacent mucosa were collected during surgery and submitted to immunohistochemical reaction for the determination of the expression of anti-protein p53 antibody (M7001 DAKO A/S, Denmark. Anatomo-clinical and demographic data were not significantly correlated with the presence of lymph node metastases or p53 expression in the tumor or in the adjacent normal mucosa. Tumor localization in the larynx was significantly correlated with p53 expression. Histological grading as grades I, II, Ill and IV was correlated with significant p53 expression (p = 0.025. Conclusions: 1 in the studied material obtained from 63 cases of head and neck ECs, we detected a 48 percent rate of immunohistochemically detectable p53 overexpression; 2 we did not detect a relationship between demographic patient data and p53 expression in the tumor or in the normal adjacent mucosa; 3 p53 overexpression was significantly more frequent in ECs material from the larynx; and 4 The presence of 12 cases with p53 overexpression in the normal adjacent mucosa and with a p53-negative tumor is in agreement with the theory of field cancerization

  15. Morphological Heterogeneity of p53 Positive and p53 Negative Nuclei in Breast Cancers Stratified by Clinicopathological Variables

    Directory of Open Access Journals (Sweden)

    Katrin Friedrich

    1997-01-01

    Full Text Available The study was aimed to detect differences in nuclear morphology between nuclear populations as well as between tumours with different p53 expression in breast cancers with different clinicopathological features, which also reflect the stage of tumour progression. The p53 immunohistochemistry was performed on paraffin sections from 88 tumour samples. After the cells had been localised by means of an image cytometry workstation and their immunostaining had been categorised visually, the sections were destained and stained by the Feulgen protocol. The nuclei were relocated and measured cytometrically by the workstation.

  16. [Overexpression of P53 and its risk factors in esophageal cancer in urban areas of Xian].

    Science.gov (United States)

    Qiao, G; Sun, C; Wang, Y

    1996-09-01

    To investigate the risk factors of esophageal cancer (EC) in urban areas of Xi'an, and to correlate these risk factors with overexpression of P53 in EC. A hospital-based case-control study was performed. All cases (89) and controls (97) were permanent residents in urban areas of Xi'an. Tumor tissues and normal tissues adjacent to tumors of 65 cases, and 24 available normal esophageal tissues of controls were detected by P53 overexpression via immunohistochemical method. Smoking and family history of EC were significantly associated with EC in Xi'an inhabitants. OR was 3.26 and 10.48, respectively. The laboratory findings indicated that P53 positive stain in Ec was 52.3% (34/65) and 6.1% (4/65) in normal tissues adjacent to tumor, but no positive stain was found in normal esophageal tissues of controls. Moreover, the results showed that P53 overexpression was closely related to smoking and family history of EC. OR was 3.89 and 17.28, respectively. These findings suggest that smoking and family history of EC are important risk factors for EC, and the alteration of P53 gene may be related to smoking and inherited factor.

  17. Stathmin is overexpressed and regulated by mutant p53 in oral squamous cell carcinoma.

    Science.gov (United States)

    Ma, Hai-Long; Jin, Shu-Fang; Ju, Wu-Tong; Fu, Yong; Tu, Yao-Yao; Wang, Li-Zhen; Jiang-Li; Zhang, Zhi-Yuan; Zhong, Lai-Ping

    2017-08-14

    The aim of this study was to investigate the oncogenic function and regulatory mechanism of stathmin in oral squamous cell carcinoma (OSCC). Two-dimensional electrophoresis and liquid chromatography-tandem mass chromatography were applied to screen differentiated proteins during carcinogenesis in OSCC. Cell Counting Kit-8 (CCK-8) assays, colony formation, migration, flow cytometry, immunofluorescence and a xenograft model were used to detect the function of stathmin. The correlation between stathmin and p53 expression was analyzed using immunohistochemistry. Mutant/wild type p53 plasmids and small interfering RNA were used to examine the regulation of stathmin. Chromatin immunoprecipitation assays and luciferase assays were performed to detect the transcriptional activation of stathmin by p53. Overexpression of stathmin was screened and confirmed in OSCC patients and cell lines. Silencing expression of stathmin inhibited proliferation, colony formation and migration and promoted apoptosis. Poly ADP ribose polymerase (PARP) and cyclin-dependent kinase 1 (cdc2) were activated after silencing the expression of stathmin. Suppression of tumorigenicity was also confirmed in vivo. Mutant p53 transcriptionally activated the expression of stathmin in HN6 and HN13 cancer cells, but not in HN30 cells harboring wild type p53. These results suggest that stathmin acts as an oncogene and is transcriptionally regulated by mutant p53, but not by wild-type p53. Stathmin could be a potential anti-tumor therapeutic target in OSCC.

  18. Identification of p53 and Its Isoforms in Human Breast Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Zorka Milićević

    2014-01-01

    Full Text Available In breast carcinoma, disruption of the p53 pathway is one of the most common genetic alterations. The observation that the p53 can express multiple protein isoforms adds a novel level of complexity to the outcome of p53 mutations. p53 expression was analysed by Western immunoblotting and immunohistochemistry using monoclonal antibodies DO-7, Pab240, and polyclonal antiserum CM-1. The more frequently p53-positive nuclear staining has been found in the invasive breast tumors. One of the most intriguing findings is that mutant p53 appears as discrete dot-shaped regions within the nucleus of breast cancer cells. In many malignant cells, the nucleolar sequestration of p53 is evident. These observations support the view that the nucleolus is involved directly in the mediation of p53 function or indirectly by the control of the localization of p53 interplayers. p53 expressed in the nuclear fraction of breast cancer cells revealed a wide spectrum of isoforms. p53 isoforms ΔNp53 (47 kDa and Δ133p53β (35 kDa, known as dominant-negative repressors of p53 function, were detected as the most predominant variants in nuclei of invasive breast carcinoma cells. The isoforms expressed also varied between individual tumors, indicating potential roles of these p53 variants in human breast cancer.

  19. P53 mutation analysis of colorectal liver metastases : Relation to actual survival, angiogenic status, and p53 overexpression

    NARCIS (Netherlands)

    de Jong, KP; Gouw, ASH; Peeters, PMJG; Bulthuis, M; Menkema, L; Porte, RJ; Slooff, MJH; van Goor, H; van den Berg, Anke

    2005-01-01

    Purpose: To correlate TP53 mutations with angiogenic status of the tumor and prognosis after liver surgery in patients with colorectal liver metastases and to correlate immunohistochemical staining of p53 protein with TP53 gene mutations. Experimental Design: Tumors of 44 patients with surgically

  20. Toca-1 is suppressed by p53 to limit breast cancer cell invasion and tumor metastasis.

    Science.gov (United States)

    Chander, Harish; Brien, Colin D; Truesdell, Peter; Watt, Kathleen; Meens, Jalna; Schick, Colleen; Germain, Doris; Craig, Andrew W B

    2014-12-30

    Transducer of Cdc42-dependent actin assembly-1 (Toca-1) recruits actin regulatory proteins to invadopodia, and promotes breast tumor metastasis. Since metastatic breast tumors frequently harbor mutations in the tumor suppressor p53, we tested whether p53 regulates Toca-1 expression. Normal mammary epithelial cells (HBL-100, MCF10A) and breast cancer cell lines expressing wild-type (WT) p53 (DU4475, MTLn3) were treated with camptothecin or Nutlin-3 to stabilize p53 to test effects on Toca-1 mRNA and protein levels. Chromatin immunoprecipitation (ChIP) assays were performed to identify p53 binding site in Toca-1 gene. Stable silencing of p53 and Toca-1 were performed in MTLn3 cells to test effects on invadopodia and cell invasion in vitro, and tumor metastasis in vivo. We observed that breast cancer cell lines with mutant p53 have high levels of Toca-1 compared to those with WT p53. Stabilization of WT p53 led to further reduction in Toca-1 mRNA and protein levels in normal breast epithelial cells and breast cancer cells. ChIP assays revealed p53 binding within intron 2 of toca1, and reduced histone acetylation within its promoter region upon p53 upregulation or activation. Stable silencing of WT p53 in MTLn3 cells led to increased extracellular matrix degradation and cell invasion compared to control cells. Interestingly, the combined silencing of p53 and Toca-1 led to a partial rescue of these effects of p53 silencing in vitro and reduced lung metastases in mice. In human breast tumors, Toca-1 levels were high in subtypes with frequent p53 mutations, and high Toca-1 transcript levels correlated with increased risk of relapse. Based on these findings, we conclude that loss of p53 tumor suppressor function in breast cancers leads to upregulation of Toca-1, and results in enhanced risk of developing metastatic disease.

  1. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2004-07-01

    Full Text Available Abstract Background BAK (Bcl-2 homologous antagonist/killer is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Methods Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53 and MKN-28 (mutant-type p53. RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. Results BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G0/G1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45, or in p53 mutant-type (MKN-28 gastric cancer cells. Conclusions The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies.

  2. Critical roles of DMP1 in HER2/neu-Arf-p53 signaling and breast cancer development

    Science.gov (United States)

    Taneja, Pankaj; Maglic, Dejan; Kai, Fumitake; Sugiyama, Takayuki; Kendig, Robert D.; Frazier, Donna P.; Willingham, Mark C.; Inoue, Kazushi

    2010-01-01

    HER2 overexpression stimulates cell growth in p53-mutated cells while it inhibits cell proliferation in those with wild-type p53, but the molecular mechanism is unknown. The Dmp1 promoter was activated by HER2/neu through the PI3K-Akt-NF-κB pathway, which in turn stimulated Arf transcription. Binding of p65 and p52 subunits of NF-κB was demonstrated to the Dmp1 promoter and that of Dmp1 to the Arf promoter upon HER2/neu overexpression. Both Dmp1 and p53 were induced in pre-malignant lesions from MMTV-neu mice and mammary tumorigenesis was significantly accelerated in both Dmp1+/− and Dmp1−/− mice. Selective deletion of Dmp1 and/or overexpression of Tbx2/Pokemon was found in >50 % of wild-type HER2/neu carcinomas while the involvement of Arf, Mdm2, or p53 was rare. Tumors from Dmp1+/−, Dmp1−/−, and wild-type neu mice with hemizygous Dmp1 deletion showed significant downregulation of Arf and p21Cip1/WAF1, showing p53 inactivity and more aggressive phenotypes than tumors without Dmp1 deletion. Notably, endogenous hDMP1 mRNA decreased when HER2 was depleted in human breast cancer cells. Our study demonstrates the pivotal roles of Dmp1 in HER2/neu-p53 signaling and breast carcinogenesis. PMID:21062982

  3. p300 and p53 levels determine activation of HIF-1 downstream targets in invasive breast cancer

    NARCIS (Netherlands)

    Vleugel, M.M.; Shvarts, D.; Wall, E. van der; Diest, P.J. van

    2006-01-01

    In previous studies, we noted that overexpression of hypoxia-inducible factor (HIF)–1a in breast cancer, especially the diffuse form, does not always lead to functional activation of its downstream genes. Transcriptional activity of HIF-1 may be repressed by p53 through competition

  4. Comparative study of Her-2, p53, Ki-67 expression and clinicopathological characteristics of breast cancer in a cohort of northern China female patients.

    Science.gov (United States)

    Ding, Li; Zhang, Zijin; Xu, Yan; Zhang, Yongqiang

    2017-07-04

    The objective was to study the relationship among Her-2, Ki-67, p53 expression and the clinicopathologic characteristics of breast cancer in the patients of northern China. Expression of Her-2, Ki-67, p53 and clinical characteristics of 260 breast cancer patients were retrospectively studied. Her-2 overexpression led to higher incidence rates of infiltrating ductal carcinoma and axillary lymph node metastasis, bigger diameters of the primary tumors, later pTNM staging, and a lower incidence rate of ductal carcinoma in situ (p Her-2 positive patients than Her-2 negative patients. Breast cancer with Her-2 overexpression was more likely to recur and metastasize than Her-2 negative breast cancer. Higher coincidence of high expression of p53 and Ki-67 with Her-2 overexpression and more progressed tumors suggested that in addition to p53, Ki-67 might also be a prognostic biomarker of breast cancer.

  5. The p53-Deficient Mouse as a Breast Cancer Model

    Science.gov (United States)

    1995-10-01

    Vogelstein, B. and Fornace, A.J., Jr. (1992). Cell 71:587-597. (6) Yonish-Rouach, E., Resnitsky, D., Lotem, J., Sachs, L., Kimchi , A., and Oren, M. (1991...Cell 70: 937-948. Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi , and M. Oren. 1991. Wild-type p53 induces apoptosis of my- eloid

  6. p53 mutations in classic and pleomorphic invasive lobular carcinoma of the breast.

    NARCIS (Netherlands)

    Ercan, C.; Diest, P.J. van; Ende, B. van der; Hinrichs, J.; Bult, P.; Buerger, H.; Wall, E. van der; Derksen, P.W.B.

    2012-01-01

    BACKGROUND: p53 is a tumor suppressor that is frequently mutated in human cancers. Although alterations in p53 are common in breast cancer, few studies have specifically investigated TP53 mutations in the breast cancer subtype invasive lobular carcinoma (ILC). Recently reported conditional mouse

  7. Distinguishing Low-Risk Luminal A Breast Cancer Subtypes with Ki-67 and p53 Is More Predictive of Long-Term Survival.

    Directory of Open Access Journals (Sweden)

    Se Kyung Lee

    Full Text Available Overexpression of p53 is the most frequent genetic alteration in breast cancer. Recently, many studies have shown that the expression of mutant p53 differs for each subtype of breast cancer and is associated with different prognoses. In this study, we aimed to determine the suitable cut-off value to predict the clinical outcome of p53 overexpression and its usefulness as a prognostic factor in each subtype of breast cancer, especially in luminal A breast cancer. Approval was granted by the Institutional Review Board of Samsung Medical Center. We analyzed a total of 7,739 patients who were surgically treated for invasive breast cancer at Samsung Medical Center between Dec 1995 and Apr 2013. Luminal A subtype was defined as ER&PR + and HER2- and was further subclassified according to Ki-67 and p53 expression as follows: luminal A (Ki-67-,p53-, luminal A (Ki-67+, p53-, luminal A (Ki-67 -, p53+ and luminal A (Ki-67+, p53+. Low-risk luminal A subtype was defined as negative for both Ki-67 and p53 (luminal A [ki-67-, p53-], and others subtypes were considered to be high-risk luminal A breast cancer. A cut-off value of 10% for p53 was a good predictor of clinical outcome in all patients and luminal A breast cancer patients. The prognostic role of p53 overexpression for OS and DFS was only significant in luminal A subtype. The combination of p53 and Ki-67 has been shown to have the best predictive power as calculated by the area under curve (AUC, especially for long-term overall survival. In this study, we have shown that overexpression of p53 and Ki-67 could be used to discriminate low-risk luminal A subtype in breast cancer. Therefore, using the combination of p53 and Ki-67 expression in discriminating low-risk luminal A breast cancer may improve the prognostic power and provide the greatest clinical utility.

  8. Expression of full-length p53 and its isoform Δp53 in breast carcinomas in relation to mutation status and clinical parameters

    Directory of Open Access Journals (Sweden)

    Deppert Wolfgang

    2006-10-01

    Full Text Available Abstract Background The tumor suppressor gene p53 (TP53 controls numerous signaling pathways and is frequently mutated in human cancers. Novel p53 isoforms suggest alternative splicing as a regulatory feature of p53 activity. Results In this study we have analyzed mRNA expression of both wild-type and mutated p53 and its respective Δp53 isoform in 88 tumor samples from breast cancer in relation to clinical parameters and molecular subgroups. Three-dimensional structure differences for the novel internally deleted p53 isoform Δp53 have been predicted. We confirmed the expression of Δp53 mRNA in tumors using quantitative real-time PCR technique. The mRNA expression levels of the two isoforms were strongly correlated in both wild-type and p53-mutated tumors, with the level of the Δp53 isoform being approximately 1/3 of that of the full-length p53 mRNA. Patients expressing mutated full-length p53 and non-mutated (wild-type Δp53, "mutational hybrids", showed a slightly higher frequency of patients with distant metastasis at time of diagnosis compared to other patients with p53 mutations, but otherwise did not differ significantly in any other clinical parameter. Interestingly, the p53 wild-type tumors showed a wide range of mRNA expression of both p53 isoforms. Tumors with mRNA expression levels in the upper or lower quartile were significantly associated with grade and molecular subtypes. In tumors with missense or in frame mutations the mRNA expression levels of both isoforms were significantly elevated, and in tumors with nonsense, frame shift or splice mutations the mRNA levels were significantly reduced compared to those expressing wild-type p53. Conclusion Expression of p53 is accompanied by the functionally different isoform Δp53 at the mRNA level in cell lines and human breast tumors. Investigations of "mutational hybrid" patients highlighted that wild-type Δp53 does not compensates for mutated p53, but rather may be associated with a

  9. Persistence of Human Papillomavirus, Overexpression of p53, and Outcomes of Patients After Endoscopic Ablation of Barrett's Esophagus.

    Science.gov (United States)

    Rajendra, Shanmugarajah; Wang, Bin; Pavey, Darren; Sharma, Prateek; Yang, Tao; Lee, Cheok Soon; Gupta, Neil; Ball, Madeleine J; Gill, Raghubinder Singh; Wu, Xiaojuan

    2015-07-01

    We investigated the role of high-risk human papillomavirus (hr-HPV) in patients with Barrett's dysplasia and adenocarcinoma (EAC). Clearance vs persistence of HPV (DNA, E6 or E7 mRNA, and p16INK4A protein) and overexpression or mutation of p53 were determined for 40 patients who underwent endotherapy for Barrett's dysplasia or EAC. After ablation, dysplasia or neoplasia was eradicated in 34 subjects (24 squamous, 10 intestinal metaplasia). Six patients had detectable lesions after treatment; 2 were positive for transcriptionally active hr-HPV, and 4 had overexpression of p53. Before endotherapy, 15 patients had biologically active hr-HPV, 13 cleared the infection with treatment, and dysplasia or EAC was eliminated from 12 patients. One patient who cleared HPV after ablation acquired a p53 mutation, and their cancer progressed. Of 13 patients with overexpression of p53 before treatment, 10 cleared the p53 abnormality after ablation with eradication of dysplasia or neoplasia, whereas 3 of 13 had persistent p53 mutation-associated dysplasia after endotherapy (P = .004). Immunohistochemical and sequence analyses of p53 produced concordant results for 36 of 40 samples (90%). Detection of dysplasia or neoplasia after treatment was associated with HPV persistence or continued p53 overexpression. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Detection of p53 overexpression in routinely paraffin-embedded tissue of human carcinomas using a novel target unmasking fluid

    NARCIS (Netherlands)

    van den Berg, F. M.; Baas, I. O.; Polak, M. M.; Offerhaus, G. J.

    1993-01-01

    With the aid of a newly developed target unmasking fluid (TUF), p53 overexpression was visualized by immunohistochemistry on recent and archival paraffin-embedded tissue samples of colon, stomach, and pancreas neoplasms. Using monoclonal anti-p53 antibody pAb1801 as well as polyclonal antiserum to

  11. Tumor suppressor protein p53 exerts negative transcriptional regulation on human sodium iodide symporter gene expression in breast cancer.

    Science.gov (United States)

    Kelkar, Madhura G; Thakur, Bhushan; Derle, Abhishek; Chatterjee, Sushmita; Ray, Pritha; De, Abhijit

    2017-08-01

    Aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) is well documented but the transcription factors (TF) regulating its aberrant expression is poorly known. We identify the presence of three p53 binding sites on the human NIS promoter sequence by conducting genome-wide TF analysis, and further investigate their regulatory role. The differences in transcription and translation were measured by real-time PCR, luciferase reporter assay, site-directed mutagenesis, in vivo optical imaging, and chromatin immunoprecipitation. The relation of NIS and p53 in clinical samples was judged by TCGA data analysis and immunohistochemistry. Overexpression of wild-type p53 as a transgene or pharmacological activation by doxorubicin drug treatment shows significant suppression of NIS transcription in multiple BC cell types which also results in lowered NIS protein content and cellular iodide intake. NIS repression by activated p53 is further confirmed by non-invasive bioluminescence imaging in live cell and orthotropic tumor model. Abrogation of p53-binding sites by directional mutagenesis confirms reversal of transcriptional activity in wild-type p53-positive BC cells. We also observe direct binding of p53 to these sites on the human NIS promoter. Importantly, TCGA data analysis of NIS and p53 co-expression registers an inverse relationship between the two candidates. Our data for the first time highlight the role of p53 as a negative regulator of functional NIS expression in BC, where the latter is a potential targeted radioiodine therapy candidate. Thus, the study provides an important insight into prospective clinical application of this approach that may significantly impact the patient with mutant versus wild-type p53 profile.

  12. Overexpression of SKI Oncoprotein Leads to p53 Degradation through Regulation of MDM2 Protein Sumoylation*

    Science.gov (United States)

    Ding, Boxiao; Sun, Yin; Huang, Jiaoti

    2012-01-01

    Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer. PMID:22411991

  13. Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation.

    Science.gov (United States)

    Ding, Boxiao; Sun, Yin; Huang, Jiaoti

    2012-04-27

    Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer.

  14. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin [West Biostatistics and Cost-effectiveness Research Center, Medical Insurance Office, West China Hospital of Sichuan University, 610041, Sichuan (China); Li, Yu [Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Sichuan (China); Yang, Bangxiang, E-mail: b19933009@qq.coom [Department of Pain Management, West China Hospital of Sichuan University, 610041, Sichuan (China)

    2016-09-09

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition of proliferation, colony formation, migration and invasion capacities by enhancing p53’s transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53’s transcriptional activity by decreasing MDM2’s transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells’ malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. - Highlights: • MEG3 RNA is widely downregulated in breast tumor tissue. • MEG3 regulates P53 indirectly through transcriptional regulation of MDM2. • Under unstressed condition, MEG3-related P53 accumulation transcriptionally activates p53’s target genes. • MEG3 expression level tightly regulates proliferation, colony formation, migration and invasion in breast tumor cells.

  15. Alterations in p53-specific T cells and other lymphocyte subsets in breast cancer patients during vaccination with p53-peptide loaded dendritic cells and low-dose interleukin-2

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Pedersen, Anders E; Nikolajsen, Kirsten

    2008-01-01

    We have previously established a cancer vaccine using autologous DCs, generated by in vitro stimulation with IL-4 and GM-CSF, and pulsed with six HLA-A*0201 binding wild-type p53 derived peptides. This vaccine was used in combination with low-dose interleukin-2 in a recently published clinical...... Phase II trial where 26 HLA-A2+ patients with progressive late-stage metastatic breast cancer (BC) were included. Almost 1/3rd of the patients obtained stable disease or minor regression during treatment with a positive correlation to tumour over-expression of p53. In the present study, we performed...... a comprehensive analysis of the effector stage of the p53-specific CD8+ T cells by the use of Dextramer Technology and multicolour FACS. Pre- and post-treatment blood samples from eight BC patients were analysed. Independent of clinical outcome p53-specific T cells were phenotypic distinctly antigen experienced...

  16. Interaction of Werner and Bloom syndrome genes with p53 in familial breast cancer.

    Science.gov (United States)

    Wirtenberger, Michael; Frank, Bernd; Hemminki, Kari; Klaes, Rüdiger; Schmutzler, Rita K; Wappenschmidt, Barbara; Meindl, Alfons; Kiechle, Marion; Arnold, Norbert; Weber, Bernhard H F; Niederacher, Dieter; Bartram, Claus R; Burwinkel, Barbara

    2006-08-01

    Mutations of the human RecQ helicase genes WRN and BLM lead to rare autosomal recessive disorders, Werner and Bloom syndromes, which are associated with premature ageing and cancer predisposition. We tested the hypothesis whether three polymorphic, non-conservative amino acid exchanges in WRN and BLM act as low-penetrance familial breast cancer risk factors. Moreover, we examined the putative impact of p53 MspI 1798G>A, which is completely linked to p53PIN3, a 16 bp insertion/duplication that has been associated with reduced p53 expression, on familial breast cancer risk. Genotyping analyses, performed on 816 BRCA1/2 mutation-negative German familial breast cancer patients and 1012 German controls, revealed a significant association of the WRN Cys1367Arg polymorphism with familial breast cancer (OR = 1.28, 95% CI 1.06-1.54) and high-risk familial breast cancer (OR = 1.32, 95% CI 1.06-1.65). The analysis of p53 MspI 1798G>A, which is completely linked to p53PIN3, showed a significantly increased familial breast cancer risk for carriers of the 16 bp insertion/duplication, following a recessive mode (OR = 2.15, 95% CI = 1.12-4.11). WRN Cys1367Arg, located in the C-terminus, the binding site of p53, is predicted to be damaging. The joint effect of WRN Cys1367Arg and p53 MspI resulted in an increased breast cancer risk compared to the single polymorphisms (OR = 3.39, 95% CI 1.19-9.71). In conclusion, our study indicates the importance of inherited variants in the WRN and p53 genes for familial breast cancer susceptibility.

  17. HER-2 positive and p53 negative breast cancers are associated with poor prognosis.

    LENUS (Irish Health Repository)

    2012-02-01

    p53 and HER-2 coexpression in breast cancer has been controversial. These markers were tested using immunohistochemistry and HercepTest. HER-2 expression is related to reduced breast cancer survival (p = .02) . p53 expression relates to HER-2 expression (p = .029). Coexpression between p53 and HER-2 has no relation to prognosis. On univariate and multivariate analysis, combination of HER-2 positive and p53 negative expression was associated with a poor prognosis (p = .018 and p = .027, respectively), while the combination of HER-2 negative and p53 positive expression was associated with a favorable prognosis (p = .022 and p = .010, respectively). Therefore the expression of these markers should be considered collectively.

  18. HER-2 positive and p53 negative breast cancers are associated with poor prognosis.

    LENUS (Irish Health Repository)

    2011-06-01

    p53 and HER-2 coexpression in breast cancer has been controversial. These markers were tested using immunohistochemistry and HercepTest. HER-2 expression is related to reduced breast cancer survival (p = .02) . p53 expression relates to HER-2 expression (p = .029). Coexpression between p53 and HER-2 has no relation to prognosis. On univariate and multivariate analysis, combination of HER-2 positive and p53 negative expression was associated with a poor prognosis (p = .018 and p = .027, respectively), while the combination of HER-2 negative and p53 positive expression was associated with a favorable prognosis (p = .022 and p = .010, respectively). Therefore the expression of these markers should be considered collectively.

  19. Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: Preclinical investigation with the anti-p53 drug, PK11007.

    Science.gov (United States)

    Synnott, Naoise C; Bauer, Matthias R; Madden, Stephen; Murray, Alyson; Klinger, Rut; O'Donovan, Norma; O'Connor, Darran; Gallagher, William M; Crown, John; Fersht, Alan R; Duffy, Michael J

    2017-10-22

    The identification of a targeted therapy for patients with triple-negative breast cancer (TNBC) is one of the most urgent needs in breast cancer therapeutics. The p53 gene is mutated in approximately 80% of patients with TNBC, and is a potential therapeutic target for patients with this form of breast cancer. The 2-sulfonylpyrimidine compound, PK11007, preferentially decreases viability in p53-compromised cancer cell lines. We investigated PK11007 as a potential new treatment for TNBC. IC50 values for inhibition of proliferation in a panel of 17 breast cell lines by PK11007 ranged from 2.3 to 42.2 μM. There were significantly lower IC50 values for TNBC than for non-TNBC cell lines (p = 0.03) and for p53-mutated cell lines compared with p53 WT cells (p = 0.003). Response to PK11007 however, was independent of the estrogen receptor (ER) or HER2 status of the cell lines. In addition to inhibiting cell proliferation, PK11007 induced apoptosis in p53 mutant cell lines. Using RNAseq and gene ontology analysis, we found that PK11007 altered the expression of genes enriched in pathways involved in regulated cell death, regulation of apoptosis, signal transduction, protein refolding and locomotion. The observations that PK11007 inhibited cell proliferation, induced apoptosis and altered genes involved in cell death are all consistent with the ability of PK11007 to reactivate mutant p53. Based on our data, we conclude that targeting mutant p53 with PK11007 is a potential approach for treating p53-mutated breast cancer, including the subgroup with TN disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Pedersen, Anders E; Johansen, Julia S

    2007-01-01

    II trial including 26 patients with verified progressive breast cancer are presented. Seven patients discontinued treatment after only 2-3 vaccination weeks due to rapid disease progression or death. Nineteen patients were available for first evaluation after 6 vaccinations; 8/19 evaluable patients......p53 Mutations are found in up to 30% of breast cancers and peptides derived from over-expressed p53 protein are presented by class I HLA molecules and may act as tumor-associated epitopes in cancer vaccines. A dendritic cell (DC) based p53 targeting vaccine was analyzed in HLA-A2+ patients...... with progressive advanced breast cancer. DCs were loaded with 3 wild-type and 3 P2 anchor modified HLA-A2 binding p53 peptides. Patients received up to 10 sc vaccinations with 5 x 10(6) p53-peptide loaded DC with 1-2 weeks interval. Concomitantly, 6 MIU/m(2) interleukine-2 was administered sc. Results from a phase...

  1. A Cohort Study of p53 Mutations and Protein Accumulation in Benign Breast Tissue and Subsequent Breast Cancer Risk

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Kabat

    2011-01-01

    Full Text Available Mutations in the p53 tumor suppressor gene and accumulation of its protein in breast tissue are thought to play a role in breast carcinogenesis. However, few studies have prospectively investigated the association of p53 immunopositivity and/or p53 alterations in women with benign breast disease in relation to the subsequent risk of invasive breast cancer. We carried out a case-control study nested within a large cohort of women biopsied for benign breast disease in order to address this question. After exclusions, 491 breast cancer cases and 471 controls were available for analysis. Unconditional logistic regression was used to estimate odds ratios (OR and 95% confidence intervals (95% CI. Neither p53 immunopositivity nor genetic alterations in p53 (either missense mutations or polymorphisms was associated with altered risk of subsequent breast cancer. However, the combination of both p53 immunopositivity and any p53 nucleotide change was associated with an approximate 5-fold nonsignificant increase in risk (adjusted OR 4.79, 95% CI 0.28–82.31 but the confidence intervals were extremely wide. Our findings raise the possibility that the combination of p53 protein accumulation and the presence of genetic alterations may identify a group at increased risk of breast cancer.

  2. Expression of p53, DCC, and HER-2/neu in Mucinous Carcinoma of the Breast

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Hsu

    2005-05-01

    Full Text Available We investigated the clinicopathologic and oncoprotein expression characteristics of 11 pure mucinous and 76 non-mucinous infiltrating ductal carcinomas in the human female breast. We compared patient age, tumor size, axillary lymph node status, and the expression of estrogen receptor (ER, progesterone receptor (PR, deleted-in-colon cancer (DCC, HER-2/neu, and p53. Mucinous carcinoma with axillary lymph node metastasis occurs less frequently than non-mucinous carcinoma (0% vs 63.1%; p = 0.0018. Compared with the non-mucinous type, mucinous carcinoma specimens have more DCC expression (100% vs 48.7%; p = 0.0027 and more ER expression (90.9% vs 26.9%; p = 0.0023, but less HER-2/neu overexpression (0% vs 38.1%; p = 0.0302. We confirmed that mucinous carcinoma samples from the breast reveal distinct clinicopathologic and oncoprotein expression features compared with non-mucinous carcinoma and, therefore, it seems reasonable to suggest different biologic characteristics and manifestations.

  3. P53 over-expression in laryngeal carcinoma is not predictive of response to radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L.K.S. [University of Texas Medical Branch, Galveston, TX (United States). Dept. of Otolaryngology]|[National University Hospital, Singapore (Singapore); Ogden, G.R. [Dundee Univ. (United Kingdom). Dept. of Dental Surgery and Periodontology

    1997-05-01

    It has been suggested that alterations involving the p53 gene may influence tumour response to radiotherapy. p53 expression was assessed in 90 formalin-fixed paraffin-embedded laryngeal carcinoma that were subsequently treated with radiotherapy. The polyclonal antibody DO1 (1 in 50 dilution) was used, together with an avidin-biotin immunoperoxidase technique, but in the absence of any additional antigen retrieval techniques. p53 expression was assessed and correlated with various clinicopathological parameters. Using Chi square analysis, no significant difference between p53 positive and p53 negative lesions was found for response to radiotherapy, as measured by survival and recurrence rates. Furthermore, no correlation with p53 expression was found for tumour size, nodal metastasis, sex, age, alcohol intake, tobacco habit and histological grade. (author).

  4. p53 inhibits the expression of p125 and the methylation of POLD1 gene promoter by downregulating the Sp1-induced DNMT1 activities in breast cancer

    Directory of Open Access Journals (Sweden)

    Zhang L

    2016-03-01

    Full Text Available Liang Zhang,1 Weiping Yang,2 Xiao Zhu,1 Changyuan Wei1 1Department of Breast Surgery, 2Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China Abstract: p125 is one of four subunits of human DNA polymerases – DNA Pol δ as well as one of p53 target protein encoded by POLD1. However, the function and significance of p125 and the role that p53 plays in regulating p125 expression are not fully understood in breast cancer. Tissue sections of human breast cancer obtained from 70 patients whose median age was 47.6 years (range: 38–69 years with stage II–III breast cancer were studied with normal breast tissue from the same patients and two human breast cell lines (MCF-7 and MCF-10A. p53 expression levels were reduced, while p125 protein expression was increased in human breast cancer tissues and cell line detected by Western blot and quantitative reverse transcriptase-polymerase chain reaction. The methylation level of the POLD1 gene promoter was greater in breast cancer tissues and cells when compared with normal tissues and cells. In MCF-7 cell model, p53 overexpression caused a decrease in the level of p125 protein, while the methylation level of the p125 gene promoter was also inhibited by p53 overexpression. To further investigate the regulating mechanism of p53 on p125 expression, our study focused on DNA methyltransferase 1 (DNMT1 and transcription factor Sp1. Both DNMT1 and Sp1 protein expression were reduced when p53 was overexpressed in MCF-7 cells. The Sp1 binding site appears to be important for DNMT1 gene transcription; Sp1 and p53 can bind together, which means that DNMT1 gene expression may be downregulated by p53 through binding to Sp1. Because DNMT1 methylation level of the p125 gene promoter can affect p125 gene transcription, we propose that p53 may indirectly regulate p125 gene promoter expression through the control of DNMT1 gene transcription. In

  5. Overexpression of MicroRNA-30b Improves Adenovirus-Mediated p53 Cancer Gene Therapy for Laryngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    Liang Li

    2014-10-01

    Full Text Available MicroRNAs play important roles in laryngeal carcinoma and other cancers. However, the expression of microRNAs in paracancerous tissue has been studied less. Here, using laser capture microdissection (LCM, we detected the expression of microRNAs in paracancerous tissues. Among all down-regulated microRNAs in the center area of tumor tissues, only miR-30b expression was significantly reduced in paracancerous tissues compared to surgical margins. Therefore, to further investigate the effect of miR-30b on laryngeal carcinoma, we stably overexpressed miR-30b in laryngeal carcinoma cell line HEp-2 cells. It was found that although there was no significant difference in cell viability between miR-30b overexpressed cells and control HEp-2 cells, p53 expression was obviously enhanced in miR-30b overexpressed cells. Whether miR-30b could improve the anti-tumor effect of adenovirus-p53 (Ad-p53 in laryngeal carcinoma and other cancer cell lines was also evaluated. It was found that in miR-30b overexpressed HEp-2 cells, p53-mediated tumor cell apoptosis was obviously increased both in vitro and in vivo. MDM2-p53 interaction might be involved in miR-30b-mediated anti-tumor effect. Together, results suggested that miR-30b could modulate p53 pathway and enhance p53 gene therapy-induced apoptosis in laryngeal carcinoma, which could provide a novel microRNA target in tumor therapy.

  6. Overexpression of P53 and its risk factors in esophageal cancer in urban areas of Xi'an.

    Science.gov (United States)

    Qiao, Gui-Bin; Han, Cheng-Long; Jiang, Ren-Chao; Sun, Chang-Sheng; Wang, Yan; Wang, Yun-Jie

    1998-02-01

    AIM:To investigate the risk factors of esophageal cancer (EC) in urban areas of Xi'an and to determine the association between overexpression of P53 and these risk factors.METHODS: All cases (89) and controls (97) were permanent residents in urban areas of Xi'an, all cases of primary EC had been histologically confirmed, controls were inpatients with non-cancer and nonsmoking-related disease. Cancer tissues and tissues adjacent to the cancer of 65 cases and 24 available normal esophageal tissues of controls were detected for P53 overexpression by the immunohistochemical method.RESULTS: The smoking and familial history of cancer were significantly associated with EC in Xi'an inhabitants. The laboratory assay indicated that P53 positive stain in EC was 50.0%(34/65)and 6.1%(4/65) in tissues adjacent to the cancer, but no positive stain was found in normal esophageal tissues of controls. The results showed that P53 overexpression in EC was closely related to smoking and cases with familial history of cancer.CONCLUSION: Smoking and familial cancer history were important risk factors for EC,and the alteration of P53 gene may be due to smoking and inheritance factors.

  7. Prognostic Value of p53 and bcl-2 Expression in Patients Treated with Breast Conservative Therapy

    Science.gov (United States)

    Kim, Kyubo; Chie, Eui Kyu; Han, Wonshik; Noh, Dong-Young; Park, In Ae; Oh, Do-Youn; Im, Seock-Ah; Kim, Tae-You; Bang, Yung-Jue

    2010-01-01

    Prognostic value of p53 and bcl-2 expression on treatment outcome in breast cancer patients has been extensively evaluated, but the results were inconclusive. We evaluated the prognostic significance of these molecular markers in patients treated with breast conserving surgery and radiotherapy. One hundred patients whose immunostaining of p53 and bcl-2 expression was available among 125 patients who underwent radiotherapy after breast conserving surgery and axillary lymph node dissection were enrolled into this study. Eighty-seven patients also received adjuvant chemotherapy and/or hormonal therapy. Conventional clinicopathologic variables and treatment-related factors were also considered. The 5-yr loco-regional relapse-free and distant metastasis-free survival rates were 91.7% and 90.9%, respectively. On univariate analysis, age, T stage and the absence of bcl-2 & estrogen receptor (ER) expression were associated with loco-regional relapse-free survival. When incorporating these variables into Cox proportional hazard model, only bcl-2(-)/ER(-) phenotype was an adverse prognostic factor (P=0.018). As for the distant metastasis-free survival, age, T stage, and p53 expression were significant on univariate analysis. However, p53 expression was the only prognosticator on multivariate analysis (P=0.009). A bcl-2(-)/ER(-) phenotype and p53 expression are useful molecular markers predicting loco-regional relapse-free and distant metastasis-free survival, respectively, in patients treated with breast conserving surgery and radiotherapy. PMID:20119576

  8. [Biochemical characterization of the optic nerve in mice overexpressing the P53 gen. Oxidative stress assays].

    Science.gov (United States)

    Gallego-Pinazo, R; Zanón-Moreno, V; Sanz, S; Andrés, V; Serrano, M; García-Cao, I; Pinazo-Durán, M D

    2008-02-01

    The tumour inhibitor p53 gene has the ability of triggering proliferation arrest and cellular death by apoptosis subsequent to several factors, among them oxidative stress. The p53 protein is a major regulator of gene expression. Using genetically manipulated mice carrying an extra copy of gene p53 (transgenic mice super p53) versus control mice, we have investigated the generation of reactive oxygen species and antioxidant activity in the optic nerve of mice in relation to p53 availability. We studied two groups of 12-month-old mice of the strain C57BL/6: 1) super p53 group (Sp53) and 2) wild-type control group (CG). Mice were anesthetized in ether atmosphere and the eyeball and retrobulbar optic nerves were excised, washed, soaked in PBS, and stored in liquid nitrogen at -85 degrees C until processing. Three-four optic nerves from the same group were placed in an eppendorf tube, homogenized and enzymatic-colorimetric methods used to determine oxidative and antioxidant activities and the nitric oxide synthesis. A significant increase in free radical formation (via lipid peroxidation; pp53 mice compared to respective controls. The presence of an extra copy of the p53 gene correlated with redox status in the mouse optic nerve. This transgenic mouse could be useful as an experimental model to study cell resistance to neurodegenerative processes in relation to oxidative stress and to apoptosis induction, such as glaucomatous optic neuropathy or age-related macular degeneration.

  9. Increased prevalence of p53 overexpression from typical endometriosis to atypical endometriosis and ovarian cancer associated with endometriosis.

    Science.gov (United States)

    Sáinz de la Cuesta, Ricardo; Izquierdo, Manuel; Cañamero, Marta; Granizo, Juan José; Manzarbeitia, Felix

    2004-03-15

    To evaluate the expression of p53, c-erb-B-2, MIB1 and Bcl-2 in normal endometrium, endometriosis, atypical endometriosis and ovarian cancer associated with endometriosis, looking for immunohistochemical markers that may help determine endometriosis with premalignant potential. Between 1948 and 1999, 410 epithelial ovarian cancers and 521 cases of endometriosis were surgically treated at Fundación Jiménez Díaz. Pathology reports and slides were reviewed. Four groups were defined: (1) endometriosis/cancer (n=17); (2) atypical endometriosis (n=6); (3) endometriosis (n=17); (4) endometrium (n=7). Tumors and controls were immunostained and evaluated for expression of p53, c-erb-B-2, MIB1 and Bcl-2. Statistical analysis was performed using Chi-square for linear trends, Fisher exact and Kruskal-Wallis tests. Of the 410 cancers, 17 (4.1%) had associated endometriosis and of the 521 endometriosis, 6 (1.2 %) had atypical changes. Fourteen of 17 (82.4%) cancers associated with endometriosis and all atypical endometriosis had p53 overexpression. Only 2 of 17 (11.8%) endometriosis and none of the endometriums had mutant p53 (P<0.01). We found a trend towards increased expression of MIB1 (0.073) in the cancer and atypical endometriosis groups, and no differences in expression of Bcl-2 or c-erb-B-2. The sensitivity and specificity of p53 as a marker for the diagnosis of atypical endometriosis and cancer associated with endometriosis were 87%; CI 95% (73.2-100%) and 92% (80.6-100%), respectively. When comparing all groups, the mean positive p53 and MIB1 cell count was statistically significant (P=0.01). Overexpression of p53 in atypical endometriosis and cancer associated with endometriosis is a common finding and may be used to identify endometriosis with premalignant potential.

  10. Concomitant inactivation of p53 and Chk2 in breast cancer.

    Science.gov (United States)

    Sullivan, Alexandra; Yuille, Martin; Repellin, Claire; Reddy, Archana; Reelfs, Olivier; Bell, Alexandra; Dunne, Barbara; Gusterson, Barry A; Osin, Peter; Farrell, Paul J; Yulug, Isik; Evans, Abigail; Ozcelik, Tayfun; Gasco, Milena; Crook, Tim

    2002-02-21

    The structure and expression of the human Rad53 homologue Chk2 was analysed in breast cancer. The previously described silent polymorphism at nucleotide 252 in codon 84 (GAA>GAG) was observed in 5/141 cases. Somatic Chk2 coding mutations were detected in 7/141 cases, these occurring in 4/18 BRCA1-associated breast cancers, 1/78 sporadic breast cancers and 2/25 typical medullary carcinomas. Each of the BRCA1-associated cancers with Chk2 mutations also contained mutations in p53, whereas the single sporadic cancer with Chk2 mutation was wild-type for p53. Expression of Chk2 was ubiquitously detected in normal ductal epithelium of the breast, but there was loss of expression in a significant proportion of breast carcinomas, and this occurred in cancers both with and without p53 mutation. A CpG island was identified 5' of the Chk2 transcriptional start site, but there was no evidence of cytosine methylation in any of the cancers with down-regulated Chk2 expression. Analysis of the germ-line of 45 individuals with hereditary or early onset breast cancer revealed wild-type Chk2 sequence in all cases. Thus, despite the rarity of somatic mutations in Chk2 in sporadic breast carcinomas, our results nevertheless reveal that concomitant loss of function in Chk2 (via down-regulation of expression) and p53 (via mutation) occurs in a proportion of sporadic cases. However, consistent with other studies, we show that germ-line mutations in Chk2 are unlikely to account for a significant proportion of non BRCA1-, non BRCA2-associated hereditary breast cancers.

  11. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna

    2010-07-01

    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  12. Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway

    Science.gov (United States)

    JEDINAK, ANDREJ; SLIVA, DANIEL

    2009-01-01

    In spite of the global consumption of mushrooms, only two epidemiological studies demonstrated an inverse correlation between mushroom intake and the risk of cancer. Therefore, in the present study we evaluated whether extracts from edible mushrooms Agaricus bisporus (portabella), Flammulina velutipes (enoki), Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster) affect the growth of breast and colon cancer cells. Here, we identified as the most potent, P. ostreatus (oyster mushroom) which suppressed proliferation of breast cancer (MCF-7, MDA-MB-231) and colon cancer (HT-29, HCT-116) cells, without affecting proliferation of epithelial mammary MCF-10A and normal colon FHC cells. Flow cytometry revealed that the inhibition of cell proliferation by P. ostreatus was associated with the cell cycle arrest at G0/G1 phase in MCF-7 and HT-29 cells. Moreover, P. ostreatus induced the expression of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21(CIP1/WAF1), whereas inhibited the phosphorylation of retinoblastoma Rb protein in MCF-7 cells. In addition, P. ostreatus also up-regulated expression of p21 and inhibited Rb phosphorylation in HT-29 cells, suggesting that that P. ostreatus suppresses the proliferation of breast and colon cancer cells via p53-dependent as well as p53-independent pathway. In conclusion, our results indicated that the edible oyster mushroom has potential therapeutic/preventive effects on breast and colon cancer. PMID:19020765

  13. The epidemiology of Her-2/ neu and P53 in breast cancer

    Directory of Open Access Journals (Sweden)

    Bernstein Jonine L.

    1999-01-01

    Full Text Available Breast cancer is an etiologically heterogeneous disease with marked geographical variations. Joint consideration of the relationship between specific molecular alterations and known or suspected epidemiologic risk factors for this disease should help distinguish subgroups of women that are at elevated risk of developing breast cancer. In this article, we present a comprehensive literature review of the etiologic and prognostic roles of Her-2/neu and P53 among women. In addition, we discuss the advantages and limitations of using biomarkers in epidemiological studies. We conclude that more research is needed to understand the complex relationships between genetic alterations and etiologic risk factors for breast cancer.

  14. Importance of P53, Ki-67 expression in the differential diagnosis of benign/malignant phyllodes tumors of the breast

    Directory of Open Access Journals (Sweden)

    Ulku Kucuk

    2013-01-01

    Full Text Available Background: Conventionally growth pattern, stromal overgrowth, stromal cellularity and stromal mitotic activity are the main parameters in the grading of phyllodes tumors (PTs. Recent studies revealed that both p53 and Ki-67 expressions are correlated with grade of PTs of the breast. Expression of hormone receptors and overexpression/amplification of HER2 has been studied in PTs to discover the roles of these markers as new treatment modalities. Materials and Method: We studied 26 PT cases. Seventeen benign and nine malignant PTs were re-evaluated as regards stromal cellularity mitotic activity, p53/Ki-67 expression rates and the relation between these parameters. Estrogen receptor and progesterone receptor (ER, PR positivity were determined by counting nuclear staining in five high-power fields. Also, the presence of any HER2 staining and staining patterns were documanted. Results: Stromal cellularity, mitotic rate, p53 and Ki-67 expression rates were all correlated with benign and malignant histologic subgroups (P = 0.000-0.001. Ki-67 and p53 expressions were statistically significantly correlated with histologic subgroups, stromal cellularity and mitotic rate (P < 0.005. ER and PR expressions in the epithelial component were not statistically significant between the two groups. HER2 showed different staining patterns in the epithelial component, and there was no staining in the stromal component. Conclusion: Ki-67 and p53 expression rates were statistically significantly correlated with grade of mammary PTs; therefore, they can be used in the determination of tumor grade, especially for the differential diagnosis of benign and malignant tumors. Malignant and benign tumors did not differ significantly in terms of hormone receptor and HER2 expression. HER2 expression showed different patterns in the epithelial component of the PTs.

  15. Concurrent overexpression of serum p53 mutation related with Helicobacter pylori infection

    Directory of Open Access Journals (Sweden)

    Lorenzo-Peñuelas Antonio

    2010-06-01

    Full Text Available Abstract Background & Aims In the province of Cadiz (Spain, the adjusted mortality rate for gastric cancer in the coastal town of Barbate is 10/100.000 inhabitants, whereas in the inland town of Ubrique, the rate is twice as high. The rate of Helicobacter pylori (H. pylori infection (H. pylori antibodies in the normal population was 54% in Ubrique, but only 32% in Barbate. In the two decades since its original discovery, p53 has found a singularly prominent place in our understanding of human gastric cancer and H. pylori cause accumulation of reactive oxygen species in the mucosa compartment. This study was designed to compare serum levels of p53 in a population characterized by high mortality due to stomach cancer and a high prevalence of H. pylori infection and another population in which mortality from this cause and the prevalence of H. pylori infection are low. Materials and methods 319 subjects from the low mortality population and 308 from the high mortality population were studied, as were 71 patients with stomach cancer. We measured serum immunoglobulin G antibody to H. pylori and serum mutant p53 protein and ceruloplasmin. Results The difference between the two populations in the prevalence of H. pylori infection was significant (p Conclusions There is a significant association between infection with H. pylori, elevated titers of H. pylori antibodies, and positivity for serum mutant p53 protein. Such information can significantly increase our basic knowledge in molecular pathology of gastric cancer and protection against H. pylori infection.

  16. Lunatic Fringe and p53 Cooperatively Suppress Mesenchymal Stem-Like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chung

    2017-11-01

    Full Text Available Claudin-low breast cancer (CLBC is a poor prognosis molecular subtype showing stemness and mesenchymal features. We previously discovered that deletion of a Notch signaling modulator, Lunatic Fringe (Lfng, in the mouse mammary gland induced a subset of tumors resembling CLBC. Here we report that deletion of one copy of p53 on this background not only accelerated mammary tumor development but also led to a complete penetrance of the mesenchymal stem-like phenotype. All mammary tumors examined in the Lfng/p53 compound mutant mice displayed a mesenchymal/spindloid pathology. These tumors showed high level expressions of epithelial-to-mesenchymal transition (EMT markers including Vimentin, Twist, and PDGFRα, a gene known to be enriched in CLBC. Prior to tumor onset, Lfng/p53 mutant mammary glands exhibited increased levels of Vimentin and E-cadherin, but decreased expressions of cytokeratin 14 and cytokeratin 8, accompanied by elevated basal cell proliferation and an expanded mammary stem cell-enriched population. Lfng/p53 mutant glands displayed increased accumulation of Notch3 intracellular fragment, up-regulation of Hes5 and down-regulation of Hes1. Analysis in human breast cancer datasets found the lowest HES1 and second lowest LFNG expressions in CLBC among molecular subtypes, and low level of LFNG is associated with poor survival. Immunostaining of human breast cancer tissue array found correlation between survival and LFNG immunoreactivity. Finally, patients carrying TP53 mutations express lower LFNG than patients with wild type TP53. Taken together, these data revealed genetic interaction between Lfng and p53 in mammary tumorigenesis, established a new mouse model resembling CLBC, and may suggest targeting strategy for this disease.

  17. Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation.

    Science.gov (United States)

    Suzuki, Maiko; Ikeda, Atsushi; Bartlett, John D

    2017-11-28

    Low-dose fluoride is an effective caries prophylactic, but high-dose fluoride is an environmental health hazard that causes skeletal and dental fluorosis. Treatments to prevent fluorosis and the molecular pathways responsive to fluoride exposure remain to be elucidated. Previously we showed that fluoride activates SIRT1 as an adaptive response to protect cells. Here, we demonstrate that fluoride induced p53 acetylation (Ac-p53) [Lys379], which is a SIRT1 deacetylation target, in ameloblast-derived LS8 cells in vitro and in enamel organ in vivo. Here we assessed SIRT1 function on fluoride-induced Ac-p53 formation using CRISPR/Cas9-mediated Sirt1 knockout (LS8Sirt/KO) cells or CRISPR/dCas9/SAM-mediated Sirt1 overexpressing (LS8Sirt1/over) cells. NaF (5 mM) induced Ac-p53 formation and increased cell cycle arrest via Cdkn1a/p21 expression in Wild-type (WT) cells. However, fluoride-induced Ac-p53 was suppressed by the SIRT1 activator resveratrol (50 µM). Without fluoride, Ac-p53 persisted in LS8Sirt/KO cells, whereas it decreased in LS8Sirt1/over. Fluoride-induced Ac-p53 formation was also suppressed in LS8Sirt1/over cells. Compared to WT cells, fluoride-induced Cdkn1a/p21 expression was elevated in LS8Sirt/KO and these cells were more susceptible to fluoride-induced growth inhibition. In contrast, LS8Sirt1/over cells were significantly more resistant. In addition, fluoride-induced cytochrome-c release and caspase-3 activation were suppressed in LS8Sirt1/over cells. Fluoride induced expression of the DNA double strand break marker γH2AX in WT cells and this was augmented in LS8Sirt1/KO cells, but was attenuated in LS8Sirt1/over cells. Our results suggest that SIRT1 deacetylates Ac-p53 to mitigate fluoride-induced cell growth inhibition, mitochondrial damage, DNA damage and apoptosis. This is the first report implicating Ac-p53 in fluoride toxicity.

  18. Expression of p53, DCC, and HER-2/neu in Mucinous Carcinoma of the Breast

    OpenAIRE

    Hsu, Yung-Hsiang; Shaw, Cheng-Kuang

    2005-01-01

    We investigated the clinicopathologic and oncoprotein expression characteristics of 11 pure mucinous and 76 non-mucinous infiltrating ductal carcinomas in the human female breast. We compared patient age, tumor size, axillary lymph node status, and the expression of estrogen receptor (ER), progesterone receptor (PR), deleted-in-colon cancer (DCC), HER-2/neu, and p53. Mucinous carcinoma with axillary lymph node metastasis occurs less frequently than non-mucinous carcinoma (0% vs 63.1%; p = 0.0...

  19. Increased ID4 expression, accompanied by mutant p53 accumulation and loss of BRCA1/2 proteins in triple-negative breast cancer, adversely affects survival.

    Science.gov (United States)

    Thike, Aye A; Tan, Puay H; Ikeda, Murasaki; Iqbal, Jabed

    2016-04-01

    Breast cancer 1 (BRCA1) expression is down-regulated in a significant proportion of non-hereditary breast cancers, in the absence of any mutation. This phenomenon is more pronounced in oestrogen (ER)-negative tumours. Recent studies have suggested that inhibitor of DNA binding 4 (ID4), as well as p53, participate in the transcriptional regulation of BRCA1. Immunohistochemical expression of ID4, BRCA1, BRCA2 and p53 in 699 women with triple-negative breast cancer was investigated using tissue microarrays. The prognostic role of these biomarkers was also evaluated. Survival outcomes were estimated with the Kaplan-Meier method and compared between groups with log-rank statistics. Loss of BRCA1 and BRCA2 expression and overexpression of ID4 and p53 was observed in 75%, 90%, 95% and 66% of tumours, respectively. ID4 expression was increased in higher tumour grade (P P P = 0.037) and p53 accumulation (P triple-negative breast cancers (P = 0.041) and basal-like triple-negative breast cancers (P = 0.026). There is frequent ID4 expression and concomitant loss of BRCA proteins in triple-negative breast cancer. We hypothesize that strong ID4 expression could be useful as a prognostic marker in triple-negative breast cancer, predicting early tumour recurrence. © 2015 John Wiley & Sons Ltd.

  20. Cooperativity of Rb, Brca1, and p53 in malignant breast cancer evolution.

    Directory of Open Access Journals (Sweden)

    Prashant Kumar

    Full Text Available Breast cancers that are "triple-negative" for the clinical markers ESR1, PGR, and HER2 typically belong to the Basal-like molecular subtype. Defective Rb, p53, and Brca1 pathways are each associated with triple-negative and Basal-like subtypes. Our mouse genetic studies demonstrate that the combined inactivation of Rb and p53 pathways is sufficient to suppress the physiological cell death of mammary involution. Furthermore, concomitant inactivation of all three pathways in mammary epithelium has an additive effect on tumor latency and predisposes highly penetrant, metastatic adenocarcinomas. The tumors are poorly differentiated and have histologic features that are common among human Brca1-mutated tumors, including heterogeneous morphology, metaplasia, and necrosis. Gene expression analyses demonstrate that the tumors share attributes of both Basal-like and Claudin-low signatures, two molecular subtypes encompassed by the broader, triple-negative class defined by clinical markers.

  1. AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53.

    Science.gov (United States)

    Kalous, Ondrej; Conklin, Dylan; Desai, Amrita J; Dering, Judy; Goldstein, Jennifer; Ginther, Charles; Anderson, Lee; Lu, Ming; Kolarova, Teodora; Eckardt, Mark A; Langerød, Anita; Børresen-Dale, Anne-Lise; Slamon, Dennis J; Finn, Richard S

    2013-10-01

    Aurora kinases play important roles in cell division and are frequently overexpressed in human cancer. AMG 900 is a novel pan-Aurora kinase inhibitor currently being tested in Phase I clinical trials. We aimed to evaluate the in vitro activity of AMG 900 in a panel of 44 human breast cancer and immortalized cell lines and identify predictors of response. AMG 900 inhibited proliferation at low nanomolar concentrations in all cell lines tested. Response was further classified based on the induction of lethality. 25 cell lines were classified as highly sensitive (lethality at 10 nM of AMG 900 >10 %), 19 cell lines as less sensitive to AMG 900 (lethality at 10 nM of AMG 900 AMG 900 (response ratio = 2.53, p = 0.09). mRNA expression levels of AURKA, AURKB, and AURKC and baseline protein levels of Aurora kinases A and B did not significantly associate with response. Cell lines with TP53 loss of function mutations (RR = 1.86, p = 0.004) and low baseline p21 protein levels (RR = 2.28, p = 0.0004) were far more likely to be classified as highly sensitive to AMG 900. AMG 900 induced p53 and p21 protein expression in cell lines with wt TP53. AMG 900 caused the accumulation of cells with >4 N DNA content in a majority of cell lines independently of sensitivity and p53 status. AMG 900 induced more pronounced apoptosis in highly sensitive p53-dysfunctional cell lines. We have found that AMG 900 is highly active in breast cancer cell lines and that TP53 loss of function mutations as well as low baseline expression of p21 protein predict strongly for increased sensitivity to this compound in vitro.

  2. Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2.

    Science.gov (United States)

    Dhar, Gopal; Banerjee, Snigdha; Dhar, Kakali; Tawfik, Ossama; Mayo, Matthew S; Vanveldhuizen, Peter J; Banerjee, Sushanta K

    2008-06-15

    CCN5/WISP-2 is overexpressed in noninvasive breast cancer cells and tissue samples, whereas its expression is minimal or undetected in invasive conditions. CCN5/WISP-2 has been considered as an antiinvasive gene because CCN5/WISP-2 silencing augments the invasive phenotypes in vitro. However, the mechanism of silencing of CCN5 during the progression of the disease has been elusive. Because p53 mutations are associated with breast cancer progression and have been shown to correlate inversely with CCN5/WISP-2 expression in other cancer cell types, the objective of this study was to explore whether p53 mutants suppress CCN5 expression in breast tumor cells resulting in the progression of this disease. We found CCN5 expression is inversely correlated with the mutational activation of p53 in human breast tumor cells. The ectopic expression of p53 mutants in ER-positive noninvasive breast tumor cells silenced the CCN5/WISP-2 expression and enhanced invasive phenotypes, including the induction of morphologic changes from the epithelial-to-mesenchymal type along with the alterations of hallmark proteins of these cell types and an augmentation of the migration of these cells. The suppression of CCN5 by the p53 mutants can be nullified by estrogen signaling in these cells through the transcriptional activation of the CCN5 gene. Moreover, the invasive changes can be imitated by blocking the CCN5/WISP-2 expression through RNA interference or can be reversed by the addition of CCN5/WISP-2 recombinant protein in the culture. Thus, these studies suggest that CCN5 inactivation could be an essential molecular event for p53 mutant-induced invasive phenotypes.

  3. p53 alteration in morphologically normal/benign breast luminal cells in BRCA carriers with or without history of breast cancer.

    Science.gov (United States)

    Wang, Xi; El-Halaby, Amber A; Zhang, Hengwei; Yang, Qi; Laughlin, Todd S; Rothberg, Paul G; Skinner, Kristin; Hicks, David G

    2017-10-01

    Germline mutations in BRCA genes have been shown to predispose patients to breast cancer. Studies have suggested that p53 alteration is a necessary step in tumorigenesis in BRCA carriers. Our previous study showed p53 alteration in morphologically normal/benign breast luminal cells in sporadic breast cancer patients, the so-called breast p53 signature. Here, we studied p53 status in 66 BRCA1/2 carriers' breasts: 29 patients with breast carcinoma (2 patients with bilateral breast carcinomas) and 37 without. Seven of the 12 (58%) triple-negative breast carcinomas in BRCA carriers were positive for p53 alteration (immunohistochemical stain and/or sequencing), the same frequency as in sporadic triple-negative breast carcinomas. Focal p53 positivity in adjacent normal/benign luminal cells was identified in 4 of the 7 cases with p53-positive carcinomas but not in breasts with p53-negative carcinomas, indicating that p53 positivity in normal/benign breast luminal cells is not a random event. Furthermore, in BRCA carriers' prophylactic mastectomies, 12 of the 94 (12.77%) breasts had focal p53 positivity in normal/benign luminal cells, with 2 cases in bilateral breasts, significantly higher than in previously studied mammoplasty specimens (0%). Our study suggests that germline BRCA gene mutations could result in genomic instability and an elevated gene mutation rate (such as the p53 gene) in breast luminal cells compared with the general population, predisposing BRCA carriers to develop p53-positive/triple-negative breast carcinomas. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mutant p53: a novel target for the treatment of patients with triple-negative breast cancer?

    Science.gov (United States)

    Synnott, N C; Murray, A; McGowan, P M; Kiely, M; Kiely, P A; O'Donovan, N; O'Connor, D P; Gallagher, W M; Crown, J; Duffy, M J

    2017-01-01

    The identification and validation of a targeted therapy for patients with triple-negative breast cancer (TNBC) is currently one of the most urgent needs in breast cancer therapeutics. One of the key reasons for the failure to develop a new therapy for this subgroup of breast cancer patients has been the difficulty in identifying a highly prevalent, targetable molecular alteration in these tumors. Recently however, the p53 gene was found to be mutated in approximately 80% of basal/TNBC, raising the possibility that targeting the mutant p53 protein product might be a new approach for the treatment of this form of breast cancer. In this study, we investigated the anti-cancer activity of PRIMA-1 and PRIMA-1MET (APR-246), two compounds which were previously reported to reactivate mutant p53 and convert it to a form with wild-type (WT) properties. Using a panel of 18 breast cancer cell lines and 2 immortalized breast cell lines, inhibition of proliferation by PRIMA-1 and PRIMA-1MET was found to be cell-line dependent, but independent of cell line molecular subtype. Although response was independent of molecular subtype, p53 mutated cell lines were significantly more sensitive to PRIMA-1MET than p53 WT cells (p = 0.029). Furthermore, response (measured as IC50 value) correlated significantly with p53 protein level as measured by ELISA (p = 0.0089, r=-0.57, n = 19). In addition to inhibiting cell proliferation, PRIMA-1MET induced apoptosis and inhibited migration in a p53 mutant-dependent manner. Based on our data, we conclude that targeting mutant p53 with PRIMA-1MET is a potential new approach for treating p53-mutated breast cancer, including the subgroup with triple-negative (TN) disease. © 2016 UICC.

  5. p53 Isoforms

    Science.gov (United States)

    Khoury, Marie P.; Bourdon, Jean-Christophe

    2011-01-01

    Normal function of the p53 pathway is ubiquitously lost in cancers either through mutation or inactivating interaction with viral or cellular proteins. However, it is difficult in clinical studies to link p53 mutation status to cancer treatment and clinical outcome, suggesting that the p53 pathway is not fully understood. We have recently reported that the human p53 gene expresses not only 1 but 12 different p53 proteins (isoforms) due to alternative splicing, alternative initiation of translation, and alternative promoter usage. p53 isoform proteins thus contain distinct protein domains. They are expressed in normal human tissues but are abnormally expressed in a wide range of cancer types. We have recently reported that p53 isoform expression is associated with breast cancer prognosis, suggesting that they play a role in carcinogenesis. Indeed, the cellular response to damages can be switched from cell cycle arrest to apoptosis by only manipulating p53 isoform expression. This may provide an explanation to the hitherto inconsistent relationship between p53 mutation, treatment response, and outcome in breast cancer. However, the molecular mechanism is still unknown. Recent reports suggest that it involves modulation of gene expression in a p53-dependent and -independent manner. In this review, we summarize our current knowledge about the biological activities of p53 isoforms and propose a molecular mechanism conciliating our current knowledge on p53 and integrating p63 and p73 isoforms in the p53 pathway. PMID:21779513

  6. High immunogenic potential of p53 mRNA-transfected dendritic cells in patients with primary breast cancer

    DEFF Research Database (Denmark)

    Met, Özcan; Balslev, Eva; Flyger, Henrik

    2011-01-01

    it will help to identify likely responders to TAAs among patients who qualify and may benefit from this form of immune therapy. This study aimed to determine pre-existent T-cell reactivity against the tumor suppressor protein p53 in breast cancer patients (BCP) at the time point of primary diagnosis. After...... a short-term stimulation with autologous wt p53 mRNA-transfected DCs, IFN-¿ enzyme-linked immunosorbent spot (ELISPOT) analysis revealed p53-reactive T cells in the peripheral blood of more than 40% (15 of 36) of the tested patients. Both CD4(+) and CD8(+) p53-specific T cells secreted IFN-¿ after...... stimulation with p53-transfected DCs. Interestingly, more than 72% (13 of 18) of patients with high p53 (p53(high)) expression in tumors were able to mount a p53-specific IFN-¿ T-cell response, in contrast to only 10% (1 of 10) of healthy donors and 11% (2 of 18) of patients with low or absent p53 (p53(low...

  7. Exposure to depleted uranium does not alter the co-expression of HER-2/neu and p53 in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Al-Toriahi Kaswer M

    2011-03-01

    Full Text Available Abstract Background Amongst the extensive literature on immunohistochemical profile of breast cancer, very little is found on populations exposed to a potential risk factor such as depleted uranium. This study looked at the immunohistochemical expression of HER-2/neu (c-erbB2 and p53 in different histological types of breast cancer found in the middle Euphrates region of Iraq, where the population has been exposed to high levels of depleted uranium. Findings The present investigation was performed over a period starting from September 2008 to April 2009. Formalin-fixed, paraffin-embedded blocks from 70 patients with breast cancer (62 ductal and 8 lobular carcinoma were included in this study. A group of 25 patients with fibroadenoma was included as a comparative group, and 20 samples of normal breast tissue sections were used as controls. Labeled streptavidin-biotin (LSAB+ complex method was employed for immunohistochemical detection of HER-2/neu and p53. The detection rate of HER-2/neu and p53 immunohistochemical expression were 47.14% and 35.71% respectively in malignant tumors; expression was negative in the comparative and control groups (p HER-2/neu immunostaining was significantly associated with histological type, tumor size, nodal involvement, and recurrence of breast carcinoma (p p Both biomarkers were positively correlated with each other. Furthermore, all the cases that co-expressed both HER-2/neu and p53 showed the most unfavorable biopathological profile. Conclusion P53 and HER-2/neu over-expression play an important role in pathogenesis of breast carcinoma. The findings indicate that in regions exposed to high levels of depleted uranium, although p53 and HER-2/neu overexpression are both high, correlation of their expression with age, grade, tumor size, recurrence and lymph node involvement is similar to studies that have been conducted on populations not exposed to depleted uranium. HER-2/neu expression in breast cancer was higher

  8. A Cohert Study of the Relationship Between c-erbB-2 and Cyclin D1 Overexpression, p53 Mutation and/or Protein Accumulation, and Risk of Progression from Benign Breast Disease to Breast Cancer; and Creation of a Bank of Benign Breast Tissue

    National Research Council Canada - National Science Library

    Kandel, Rita

    2000-01-01

    ... increase in risk to develop breast cancer. The purpose of this project is: 1) collect paraffm-embedded benign breast tissue from the remaining 4,336 cohort members who were not part of the case-control study. (2...

  9. Impedimetric detection of mutant p53 biomarker-driven metastatic breast cancers under hyposmotic pressure.

    Directory of Open Access Journals (Sweden)

    Menglu Shi

    Full Text Available In cancer cells, the oncogenic mutant p53 (mtp53 protein is present at high levels and gain-of-function (GOF activities with more expression of mtp53 proteins contribute to tumor growth and metastasis. Robust analytical approaches that probe the degree of metastasis of cancer cells in connection with the mtp53 activity will be extremely useful not only for establishing a better cancer prognosis but also understanding the fundamental mechanism of mtp53 oncogenic action. Here we assessed the influence of mtp53 in breast cancers to the mechanical property of breast cancer cells. Recently, ovarian and kidney cancer cell lines have been shown to have higher cellular elasticity as compared to normal cells assessed by monitoring the degree of deformation under hyposmotic pressure. To make fast detection in large scale, the impedance measurement was applied to monitor the swelling ratio of cells with time. The results showed that knockdown of mtp53 leads to decrease in cell swelling. In addition, by means of two types of impedimetric detection systems we consistently detected enhancement of impedance signal in mtp53-expressing breast cancer cells. Based on this observation we hypothesize that highly expressed mtp53 in metastatic mutant breast cancers can promote tumor progression by making cells more deformable and easier to spread out through extracellular matrix. The identification via the electric measurement can be accomplished within 10 minutes. All results in this report suggest that electric probing for the extent of the mtp53 expression of breast cancer cells may serve as a meaningful fingerprint for the cancer diagnostics, and this outcome will also have an important clinical implication for the development of mtp53-based targeting for tumor detection and treatment.

  10. The role of p53-microRNA 200-Moesin axis in invasion and drug resistance of breast cancer cells.

    Science.gov (United States)

    Alam, Farheen; Mezhal, Fatima; El Hasasna, Hussain; Nair, Vidhya A; Aravind, S R; Saber Ayad, Maha; El-Serafi, Ahmed; Abdel-Rahman, Wael M

    2017-09-01

    This study aimed to analyze the expression of microRNAs in relation to p53 status in breast cancer cells and to delineate the role of Moesin in this axis. We used three isogenic breast carcinoma cell lines MCF7 (with wild-type p53), 1001 (MCF7 with mutated p53), and MCF7-E6 (MCF7 in which p53 function was disrupted). MicroRNA expression was analyzed using microarray analysis and confirmed by real-time polymerase chain reaction. The 1001 clone with mutant p53 showed 22 upregulated and 25 downregulated microRNAs. The predicted targets of these 47 microRNAs were >700 human genes belonging to interesting functional groups such as stem cell development and maintenance. The most significantly downregulated microRNAs in the p53-mutant cell line were from the miR-200 family. We focused on miR-200c which targets many transcripts involved in epithelial-to-mesenchymal transition including Moesin. We found that Moesin was expressed in 1001 but not in its p53 wild-type parental MCF7 consistent with the observed mesenchymal features in the 1001, such as vimentin positivity, E-cadherin negativity, and ZEB1 positivity in addition to the morphological changes. After Moesin silencing, the p53-mutant cells 1001 reverted from mesenchymal-to-epithelial phenotype and showed subtle reduction in migration and invasion and loss of ZEB1 and SNAIL expression. Interestingly, Moesin silencing restored the 1001 sensitivity to Doxorubicin. These results indicate that loss of miR-200c, as a consequence of p53 mutation, can upregulate Moesin oncogene and thus promote carcinogenesis. Moesin may play a role in metastasis and drug resistance of breast cancer.

  11. Overexpression of p53 but not Rb in the cytoplasm of neurons and small vessels in an autopsy of a patient with Cockayne syndrome.

    Science.gov (United States)

    Miyahara, Hiroaki; Itonaga, Tomoyo; Maeda, Tomoki; Izumi, Tatsuro; Ihara, Kenji

    2015-06-01

    Cockayne syndrome presents senescence-like changes starting in early infancy; however, the mechanism of premature aging remains unclear. In an autopsy of a 23-year-old woman with Cockayne syndrome, we evaluated the correlation between Cockayne pathology and the expression patterns of the senescence-associated proteins p53 and Rb. Neuropathological findings in this case revealed basal ganglia calcification, tigroid leukodystrophy, bizarre reactive astrocytes, severe cerebellar atrophy with loss of Purkinje cells, and arteriolar/neuronal calcifications in the hypothalamus. Multiple arteriolar calcifications and sclerotic changes were seen in the central nervous system and kidney, but the endothelium of the aorta and coronary arteries remained intact appropriately for the individual's age without any finding of arteriosclerosis. Overexpression of p53 protein was confirmed in the cytoplasm of neurons in the basal ganglia, thalamus, hypothalamus, hippocampus and cerebellum, of arteriolar endothelial cells of the cerebrum and renal glomerular capillaries, and of cutaneous epithelial cells. The distribution of p53 overexpression was coincident with that of pathological alteration, such as neuronal loss, calcification and atrophy. High expression of p53 was localized in the cytoplasm, not in the nucleus. In contrast to p53, Rb was not expressed in any senescence lesion. In terms of senescence, distinct differences are found among organs in a patient with Cockayne syndrome. This segmental progeria differs from natural aging, and implicates p53 overexpression in the etiology of CS. © 2014 Japanese Society of Neuropathology.

  12. Extracellular NAMPT/visfatin causes p53 deacetylation via NAD production and SIRT1 activation in breast cancer cells.

    Science.gov (United States)

    Behrouzfar, Kiarash; Alaee, Mohammad; Nourbakhsh, Mitra; Gholinejad, Zafar; Golestani, Abolfazl

    2017-08-01

    Visfatin, which is secreted as an adipokine and cytokine, has been implicated in cancer development and progression. In this study, we investigated the NAD-producing ability of visfatin and its relationship with SIRT1 (silent information regulator 2) and p53 to clarify the role of visfatin in breast cancer. MCF-7 breast cancer cells were cultured and treated with visfatin. SIRT1 activity was assessed by measuring fluorescence intensity from fluoro-substrate peptide. To investigate the effect of visfatin on p53 acetylation, SDS-PAGE followed by western blotting was performed using specific antibodies against p53 and its acetylated form. Total NAD was measured both in cell lysate and the extracellular medium by colorimetric method. Visfatin increased both extracellular and intracellular NAD concentrations. It also induced proliferation of breast cancer cells, an effect that was abolished by inhibition of its enzymatic activity. Visfatin significantly increased SIRT1 activity, accompanied by induction of p53 deacetylation. In conclusion, the results show that extracellular visfatin produces NAD that causes upregulation of SIRT1 activity and p53 deacetylation. These findings explain the relationship between visfatin and breast cancer progression. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Data on the putative role of p53 in breast cancer cell adhesion: Technical information for adhesion assay

    Directory of Open Access Journals (Sweden)

    Kallirroi Voudouri

    2016-12-01

    Full Text Available In this data article, the potential role of p53 tumor suppressor gene (p53 on the attachment ability of MCF-7 breast cancer cells was investigated. In our main article, “IGF-I/ EGF and E2 signaling crosstalk through IGF-IR conduit point affect breast cancer cell adhesion” (K. Voudouri, D. Nikitovic, A. Berdiaki, D. Kletsas, N.K. Karamanos, G.N. Tzanakakis, 2016 [1], we describe the key role of IGF-IR in breast cancer cell adhesion onto fibronectin (FN. p53 tumor suppressor gene is a principal regulator of cancer cell proliferation. Various data have demonstrated an association between p53 and IGF-IR actions on cell growth through its’ putative regulation of IGF-IR expression. According to our performed experiments, p53 does not modify IGF-IR expression and does not affect basal MCF-7 cells adhesion onto FN. Moreover, technical details about the performance of adhesion assay onto the FN substrate were provided.

  14. Allopurinol protects human glomerular endothelial cells from high glucose-induced reactive oxygen species generation, p53 overexpression and endothelial dysfunction.

    Science.gov (United States)

    Eleftheriadis, Theodoros; Pissas, Georgios; Antoniadi, Georgia; Liakopoulos, Vassilios; Stefanidis, Ioannis

    2017-11-01

    Mitochondrial reactive oxygen species (ROS) overproduction in capillary endothelial cells is a prerequisite for the development of diabetic nephropathy. Inhibition of xanthine oxidase, another ROS generator, ameliorates experimental diabetic nephropathy. To test the hypothesis that the initial high glucose-induced ROS production by the mitochondria activates xanthine oxidase, which afterward remains as the major source of ROS, we cultured primary human glomerular endothelial cells (GEnC) under normal or high-glucose conditions, with or without the xanthine oxidase inhibitor allopurinol. ROS generation and nitric oxide synthase (NOS) activity were assessed by chemiluminescence or colorimetrically. Levels of intercellular adhesion molecule 1 (ICAM-1), p53 and phosphorylated p53 (p-p53) were assessed by western blotting. Allopurinol prevented high glucose-induced ROS generation indicating that xanthine oxidase is the major source of ROS. Allopurinol protected GEnC from endothelial dysfunction since it prevented the high glucose-induced decrease in NOS activity and increase in ICAM-1 expression. Allopurinol reduced p53 and p-p53 levels induced by high glucose suggesting an axis of xanthine oxidase-derived ROS, DNA damage, p53 stabilization and endothelial dysfunction that may contribute to the pathogenesis of diabetic nephropathy. Allopurinol protects GEnC from high glucose-induced ROS generation, p53 overexpression and endothelial dysfunction. These data provide a pathogenetic mechanism that supports the results of experimental and clinical studies about the beneficial effect of xanthine oxidase inhibitors on the development of diabetic nephropathy.

  15. Correlation of primary tumor size and axillary nodal status with tumor suppressor gene p53 in breast carcinoma

    Directory of Open Access Journals (Sweden)

    Topić Brano

    2002-01-01

    Full Text Available Correlation of standard path morphological prognostic parameters, primary tumor size and axillary nodal status with new prognostic factor in breast carcinoma: tumor suppressor gene p53 was analyzed. The studied sample included 65 women who underwent surgery for breast carcinoma at the Surgical Clinic of Clinical Center Banja Luka, from January 1st 1997 till January 1st 1999. Statistical data analysis was performed and correlation of prognostic factors was determined. The majority of authors in this field agree that the primary tumor size and axillary nodal status are the two most important prognostic factors. These factors are the best predictors of prognosis and survival of women who had the tumor and were operated on. Tumor markers were immunohistochemically determined in the last ten years and, according to the majority of authors, are still considered the additional or relative prognostic factors in breast carcinoma. Their prognostic value and significance increase almost daily. Most frequently determined tumor markers are bcl-2, pS2, Ki-67 and p53. There was a positive, directly proportional relationship between primary tumor size and tumor suppressor gene p53, but there was no positive correlation between the axillary nodal status and tumor suppressor gene p53. Significance of determination of new tumor markers as the prognostic factors was emphasized. These markers represent a powerful tool in the early detection and prevention of breast carcinoma.

  16. Flavopiridol potentiates the cytotoxic effects of radiation in radioresistant tumor cells in which p53 is mutated or Bcl-2 is overexpressed.

    Science.gov (United States)

    Hara, Takamitsu; Omura-Minamisawa, Motoko; Kang, Yun; Cheng, Chao; Inoue, Tomio

    2008-08-01

    Loss of the cell-cycle regulatory protein p53 or overexpression of the antiapoptotic protein Bcl-2 is associated with resistance to radiation in several types of cancer cells. Flavopiridol, a synthetic flavone, inhibits the growth of malignant tumors cells in vitro and in vivo through multiple mechanisms. The purpose of the present study is to clarify whether flavopiridol enhances the cytotoxic effects of radiation in tumor cells that contain dysfunction p53 or that overexpress Bcl-2. A human glioma cell line (A172/mp53) stably transfected with a plasmid containing mutated p53 and a human cervical cancer cell line (HeLa/bcl-2) transfected with a bcl-2 expression plasmid were used. Cells were incubated with flavopiridol for 24 h after radiation, and then cell viability was determined by a colony formation assay. Foci of phosphorylated histone H2AX were also evaluated as a sensitive indicator of DNA double-strand breaks. Compared with the parental wild-type cells, both transfected cell lines were more resistant to radiation. Post-treatment with flavopiridol increased the cytotoxic effects of radiation in both transfected cell lines, but not in their parental wild-type cell lines. Post-treatment with flavopiridol inhibited sublethal damage repair as well as the repair of DNA double-strand breaks in response to radiation. Flavopiridol enhanced the cytotoxic effect of radiation in radioresistant tumor cells that harbor p53 dysfunction or Bcl-2 overexpression. A combination treatment of flavopiridol with radiation has the potential to conquer the radioresistance of malignant tumors induced by the genetic alteration of p53 or bcl-2.

  17. Prostaglandin E2 inhibits p53 in human breast adipose stromal cells: a novel mechanism for the regulation of aromatase in obesity and breast cancer.

    Science.gov (United States)

    Wang, Xuyi; Docanto, Maria M; Sasano, Hironobu; Lo, Camden; Simpson, Evan R; Brown, Kristy A

    2015-02-15

    Obesity is a risk factor for postmenopausal breast cancer and the majority of these cancers are estrogen dependent. Aromatase converts androgens into estrogens and its increased expression in breast adipose stromal cells (ASC) is a major driver of estrogen receptor-positive breast cancer. In particular, obesity-associated and tumor-derived factors, such as prostaglandin E2 (PGE2), have been shown to drive the expression of aromatase by stimulating the activity of the proximal promoter II (PII). The tumor-suppressor p53 is a key regulator of cell-cycle arrest and apoptosis and is frequently mutated in breast cancer. Mutations in p53 are rare in tumor-associated ASCs. Therefore, it was hypothesized that p53 is regulated by PGE2 and involved in the PGE2-mediated regulation of aromatase. Results demonstrate that PGE2 causes a significant decrease in p53 transcript and nuclear protein expression, as well as phosphorylation at Ser15 in primary human breast ASCs. Stabilization of p53 with RITA leads to a significant decrease in the PGE2-stimulated aromatase mRNA expression and activity, and PII activity. Interaction of p53 with PII was demonstrated and this interaction is decreased in the presence of PGE2. Moreover, mutation of the identified p53 response element leads to an increase in the basal activity of the promoter. Immunofluorescence on clinical samples demonstrates that p53 is decreased in tumor-associated ASCs compared with ASCs from normal breast tissue, and that there is a positive association between perinuclear (inactive) p53 and aromatase expression in these cells. Furthermore, aromatase expression is increased in breast ASCs from Li-Fraumeni patients (germline TP53 mutations) compared with non-Li-Fraumeni breast tissue. Overall, our results demonstrate that p53 is a negative regulator of aromatase in the breast and its inhibition by PGE2 provides a novel mechanism for aromatase regulation in obesity and breast cancer. ©2015 American Association for Cancer

  18. Lack of prognostic significance of BCL2 and p53 protein overexpression in elderly patients with diffuse large B-cell non-Hodgkin's lymphoma : Results from a population-based non-Hodgkin's lymphoma registry

    NARCIS (Netherlands)

    Maartense, E.; Kramer, M.H.H.; Le Cessie, S.; Kluin-Nelemans, J. C.; Kluin, P.M.; Snijder, S.; Noordijk, E.M.

    The prognostic significance of age was studied in 372 patients with diffuse large B-cell non-Hodgkin's lymphoma, in relation to the prognostic factors of overexpressed BCL2 and p53 oncoprotein. Overexpression of BCL2 and p53 oncoprotein was defined when more than 50% of the tumor cells showed

  19. Mitotic Arrest and Apoptosis in Breast Cancer Cells Induced by Origanum majorana Extract: Upregulation of TNF-α and Downregulation of Survivin and Mutant p53

    Science.gov (United States)

    Al Dhaheri, Yusra; Eid, Ali; AbuQamar, Synan; Attoub, Samir; Khasawneh, Mohammad; Aiche, Ghenima; Hisaindee, Soleiman; Iratni, Rabah

    2013-01-01

    Background In the present study, we investigated the effect of Origanum majorana ethanolic extract on the survival of the highly proliferative and invasive triple-negative p53 mutant breast cancer cell line MDA-MB-231. Results We found that O. majorana extract (OME) was able to inhibit the viability of the MDA-MB-231 cells in a time- and concentration-dependent manner. The effect of OME on cellular viability was further confirmed by the inhibition of colony growth. We showed, depending on the concentration used, that OME elicited different effects on the MDA-MB 231 cells. Concentrations of 150 and 300 µg/mL induced an accumulation of apoptotic–resistant population of cells arrested in mitotis and overexpressing the cyclin-dependent kinase inhibitor, p21 and the inhibitor of apoptosis, survivin. On the other hand, higher concentrations of OME (450 and 600 µg/mL) triggered a massive apoptosis through the extrinsic pathway, including the activation of tumor necrosis factor-α (TNF-α), caspase 8, caspase 3, and cleavage of PARP, downregulation of survivin as well as depletion of the mutant p53 in MDA-MB-231 cells. Furthermore, OME induced an upregulation of γ-H2AX, a marker of double strand DNA breaks and an overall histone H3 and H4 hyperacetylation. Conclusion Our findings provide strong evidence that O. majorana may be a promising chemopreventive and therapeutic candidate against cancer especially for highly invasive triple negative p53 mutant breast cancer; thus validating its complementary and alternative medicinal use. PMID:23451065

  20. Mitotic arrest and apoptosis in breast cancer cells induced by Origanum majorana extract: upregulation of TNF-α and downregulation of survivin and mutant p53.

    Directory of Open Access Journals (Sweden)

    Yusra Al Dhaheri

    Full Text Available BACKGROUND: In the present study, we investigated the effect of Origanum majorana ethanolic extract on the survival of the highly proliferative and invasive triple-negative p53 mutant breast cancer cell line MDA-MB-231. RESULTS: We found that O. majorana extract (OME was able to inhibit the viability of the MDA-MB-231 cells in a time- and concentration-dependent manner. The effect of OME on cellular viability was further confirmed by the inhibition of colony growth. We showed, depending on the concentration used, that OME elicited different effects on the MDA-MB 231 cells. Concentrations of 150 and 300 µg/mL induced an accumulation of apoptotic-resistant population of cells arrested in mitotis and overexpressing the cyclin-dependent kinase inhibitor, p21 and the inhibitor of apoptosis, survivin. On the other hand, higher concentrations of OME (450 and 600 µg/mL triggered a massive apoptosis through the extrinsic pathway, including the activation of tumor necrosis factor-α (TNF-α, caspase 8, caspase 3, and cleavage of PARP, downregulation of survivin as well as depletion of the mutant p53 in MDA-MB-231 cells. Furthermore, OME induced an upregulation of γ-H2AX, a marker of double strand DNA breaks and an overall histone H3 and H4 hyperacetylation. CONCLUSION: Our findings provide strong evidence that O. majorana may be a promising chemopreventive and therapeutic candidate against cancer especially for highly invasive triple negative p53 mutant breast cancer; thus validating its complementary and alternative medicinal use.

  1. A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein.

    Directory of Open Access Journals (Sweden)

    Georgios Valianatos

    Full Text Available MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing Mdm

  2. Breastfeeding and Immunohistochemical Expression of ki-67, p53 and BCL2 in Infiltrating Lobular Breast Carcinoma.

    Directory of Open Access Journals (Sweden)

    Angel Gonzalez-Sistal

    Full Text Available Invasive lobular breast carcinoma is the second most common type of breast cancer after invasive ductal carcinoma. According to the American Cancer Society, more than 180,000 women in the United States find out they have invasive breast cancer each year. Personal history of breast cancer and certain changes in the breast are correlated with an increased breast cancer risk. The aim of this work was to analyze breastfeeding in patients with infiltrating lobular breast carcinoma, in relation with: 1 clinicopathological parameters, 2 hormonal receptors and 3 tissue-based tumor markers.The study included 80 women with ILC, 46 of which had breastfeed their children. Analyzed parameters were: age, tumor size, axillary lymph node (N, distant metastasis (M, histological grade (HG, estrogen receptor (ER, progesterone receptor (PR, androgen receptor (AR, Ki-67, p53 and BCL2.ILC of non-lactating women showed a larger (p = 0.009, lymph node involvement (p = 0.051 and distant metastasis (p = 0.060. They were also more proliferative tumors measured by Ki-67 (p = 0.053. Breastfeeding history did not influence the subsequent behavior of the tumor regardless of histological subtype.Lactation seems to influence the biological characteristics of ILC defining a subgroup with more tumor size, axillary lymph node involvement, distant metastasis and higher proliferation measured by ki-67 expression.

  3. The Role of the Phosphatidylinositol-5-Phosphate 4-Kinases in p53-Null Breast Cancers

    Science.gov (United States)

    2015-10-01

    CRISPR / Cas9  constructs  for  knocking  out  both  PIP4K2A  and  PIP4K2B.    This   approach...are  using   CRISPR  technology  to  generate  isogenic  TP53  wild-­‐type  versus  TP53  deleted  breast  cell  lines...metabolism  in  a  panel  of  breast  cancer  cell  lines.  Furthermore,  as  stated  above  using   CRISPR

  4. Detection of ATM germline variants by the p53 mitotic centrosomal localization test in BRCA1/2-negative patients with early-onset breast cancer.

    Science.gov (United States)

    Prodosmo, Andrea; Buffone, Amelia; Mattioni, Manlio; Barnabei, Agnese; Persichetti, Agnese; De Leo, Aurora; Appetecchia, Marialuisa; Nicolussi, Arianna; Coppa, Anna; Sciacchitano, Salvatore; Giordano, Carolina; Pinnarò, Paola; Sanguineti, Giuseppe; Strigari, Lidia; Alessandrini, Gabriele; Facciolo, Francesco; Cosimelli, Maurizio; Grazi, Gian Luca; Corrado, Giacomo; Vizza, Enrico; Giannini, Giuseppe; Soddu, Silvia

    2016-09-06

    Variant ATM heterozygotes have an increased risk of developing cancer, cardiovascular diseases, and diabetes. Costs and time of sequencing and ATM variant complexity make large-scale, general population screenings not cost-effective yet. Recently, we developed a straightforward, rapid, and inexpensive test based on p53 mitotic centrosomal localization (p53-MCL) in peripheral blood mononuclear cells (PBMCs) that diagnoses mutant ATM zygosity and recognizes tumor-associated ATM polymorphisms. Fresh PBMCs from 496 cancer patients were analyzed by p53-MCL: 90 cases with familial BRCA1/2-positive and -negative breast and/or ovarian cancer, 337 with sporadic cancers (ovarian, lung, colon, and post-menopausal breast cancers), and 69 with breast/thyroid cancer. Variants were confirmed by ATM sequencing. A total of seven individuals with ATM variants were identified, 5/65 (7.7 %) in breast cancer cases of familial breast and/or ovarian cancer and 2/69 (2.9 %) in breast/thyroid cancer. No variant ATM carriers were found among the other cancer cases. Excluding a single case in which both BRCA1 and ATM were mutated, no p53-MCL alterations were observed in BRCA1/2-positive cases. These data validate p53-MCL as reliable and specific test for germline ATM variants, confirm ATM as breast cancer susceptibility gene, and highlight a possible association with breast/thyroid cancers.

  5. Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations

    NARCIS (Netherlands)

    Cornelis, R. S.; van Vliet, M.; Vos, C. B.; Cleton-Jansen, A. M.; van de Vijver, M. J.; Peterse, J. L.; Khan, P. M.; Børresen, A. L.; Cornelisse, C. J.; Devilee, P.

    1994-01-01

    In breast cancer, loss of heterozygosity (LOH) on 17p is a frequent event and a likely target is the p53 gene on 17p13.1. However, several LOH mapping studies have indicated that, in some breast tumors, LOH affects only the most distal 17p markers, suggestive of a second tumor suppressor locus in

  6. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis.

    Science.gov (United States)

    Saini, Karan Singh; Hamidullah; Ashraf, Raghib; Mandalapu, Dhanaraju; Das, Sharmistha; Siddiqui, Mohd Quadir; Dwivedi, Sonam; Sarkar, Jayanta; Sharma, Vishnu Lal; Konwar, Rituraj

    2017-04-01

    Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. HPV Status and Its Correlation with BCL2, p21, p53, Rb, and Survivin Expression in Breast Cancer in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Ya-Wen Wang

    2017-01-01

    Full Text Available Despite recent evidence, the role of human papillomavirus (HPV in breast carcinogenesis is controversial. The correlations of HPV infection with the clinicopathological features of breast cancer and the expression of cell cycle/apoptosis-associated proteins have not been well elucidated. In this study, we sought to determine the prevalence of high-risk HPVs (HR-HPVs infection and BCL2, p21, p53, Rb, and survivin expression in breast cancer patients and to investigate the relationship of HPV with these cancer-related proteins, in an attempt to clarify the potential mechanism of HPV in breast cancer pathogenesis. HPV presence in 81 fresh breast cancer tissues was determined by hybrid capture 2 (HC2 assay, and expression of BCL2, p21, p53, Rb, and survivin was detected by immunohistochemistry. Here we showed that fourteen (17.3% patients were HR-HPV positive. HPV infection demonstrated no significant correlation with the clinicopathological characteristics of breast cancer. HPV-positive tumors showed significantly higher BCL2 and lower p53 expression than HPV-negative tumors. Expression of p21, Rb, and survivin was not associated with HPV status. Our results suggest a possible role of HR-HPV in breast cancer carcinogenesis, in which BCL2 and p53 may be involved.

  8. p63 and p73 repress CXCR5 chemokine receptor gene expression in p53-deficient MCF-7 breast cancer cells during genotoxic stress.

    Science.gov (United States)

    Mitkin, Nikita A; Muratova, Alisa M; Sharonov, George V; Korneev, Kirill V; Sviriaeva, Ekaterina N; Mazurov, Dmitriy; Schwartz, Anton M; Kuprash, Dmitry V

    2017-12-01

    Many types of chemotherapeutic agents induce of DNA-damage that is accompanied by activation of p53 tumor suppressor, a key regulator of tumor development and progression. In our previous study we demonstrated that p53 could repress CXCR5 chemokine receptor gene in MCF-7 breast cancer cells via attenuation of NFkB activity. In this work we aimed to determine individual roles of p53 family members in the regulation of CXCR5 gene expression under genotoxic stress. DNA-alkylating agent methyl methanesulfonate caused a reduction in CXCR5 expression not only in parental MCF-7 cells but also in MCF-7-p53off cells with CRISPR/Cas9-mediated inactivation of the p53 gene. Since p53 knockout was associated with elevated expression of its p63 and p73 homologues, we knocked out p63 using CRISPR/Cas9 system and knocked down p73 using specific siRNA. The CXCR5 promoter activity, CXCR5 expression and CXCL13-directed migration in MCF-7 cells with inactivation of all three p53 family genes were completely insensitive to genotoxic stress, while pairwise p53+p63 or p53+p73 inactivation resulted in partial effects. Using deletion analysis and site-directed mutagenesis, we demonstrated that effects of NFkB on the CXCR5 promoter inversely correlated with p63 and p73 levels. Thus, all three p53 family members mediate the effects of genotoxic stress on the CXCR5 promoter using the same mechanism associated with attenuation of NFkB activity. Understanding of this mechanism could facilitate prognosis of tumor responses to chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A novel chalcone derivative, LQFM064, induces breast cancer cells death via p53, p21, KIT and PDGFRA.

    Science.gov (United States)

    Cabral, Bruna Lannuce Silva; da Silva, Artur Christian Garcia; de Ávila, Renato Ivan; Cortez, Alane Pereira; Luzin, Rangel Magalhães; Lião, Luciano Morais; de Souza Gil, Eric; Sanz, Gérman; Vaz, Boniek G; Sabino, José R; Menegatti, Ricardo; Valadares, Marize Campos

    2017-09-30

    This study shows the design, synthesis and antitumoral potential evaluation of a novel chalcone-like compound, (E)-3- (3, 5-di-ter-butyl-4-hydroxyphenyl)-1- (4-hydroxy-3-methoxyphenyl) prop-2-en-1-one [LQFM064) (4)], against human breast adenocarcinoma MCF7 cells. Some toxicological parameters were also investigated. LQFM064) (4) exhibited cytotoxic activity against MCF7 cells (IC50=21μM), in a concentration dependent-manner, and triggered significant changes in cell morphology and biochemical/molecular parameters, which are suggestive of an apoptosis inductor. LQFM064) (4) (21μM) induced cell cycle arrest at G0/G1 phase with increased p53 and p21 expressions. It was also shown that the compound (4) did not interfere directly in p53/MDM2 complexation of MCF7 cells. In these cells, externalization of phosphatidylserine, cytochrome c release, increased expression of caspases-7, -8 and -9, reduced mitochondrial membrane potential and ROS overgeneration were also detected following LQFM064 (4) treatment. Further analysis revealed the activation of both apoptotic pathways via modulation of the proteins involved in the extrinsic and intrinsic pathways with an increase in TNF-R1, Fas-L and Bax levels and a reduction in Bcl-2 expression. Furthermore, KIT proto-oncogene receptor tyrosine kinase, insulin-like growth factor (IGF1) and platelet-derived growth factor receptor A (PDGFRA) were downregulated, while glutathione S-transferase P1 (GSTP1) and interferon regulatory factor 5 (IRF5) expressions were increased by LQFM064 (4)-triggered cytotoxic effects in MCF7 cells. Moreover, it can be inferred that compound (4) has a moderate acute oral systemic toxicity hazard, since its estimated LD50 was 452.50mg/kg, which classifies it as UN GHS Category 4 (300mg/kg>LD50<2000mg/kg). Furthermore, LQFM064 (4) showed a reduced potential myelotoxicity (IC50=150μM for mouse bone marrow hematopoietic progenitors). In conclusion, LQFM064 (4) was capable of inducing breast cancer cells

  10. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  11. NUCKS overexpression in breast cancer

    Directory of Open Access Journals (Sweden)

    Kittas Christos

    2009-08-01

    Full Text Available Abstract Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR, real-time PCR (qRT-PCR and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS. It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non

  12. The epidemiology of Her-2/ neu and P53 in breast cancer Epidemiología de los genes Her2/neu y P53 en relación al cáncer mamario

    Directory of Open Access Journals (Sweden)

    Jonine L. Bernstein

    1999-11-01

    Full Text Available Breast cancer is an etiologically heterogeneous disease with marked geographical variations. Joint consideration of the relationship between specific molecular alterations and known or suspected epidemiologic risk factors for this disease should help distinguish subgroups of women that are at elevated risk of developing breast cancer. In this article, we present a comprehensive literature review of the etiologic and prognostic roles of Her-2/neu and P53 among women. In addition, we discuss the advantages and limitations of using biomarkers in epidemiological studies. We conclude that more research is needed to understand the complex relationships between genetic alterations and etiologic risk factors for breast cancer.El cáncer mamario es una enfermedad con gran variabilidad geográfica y cuya etiología es heterogénea. La evaluación conjunta de los factores de riesgo que se conocen por estudios epidemiológicos y de las alteraciones específicas a nivel molecular, podría ser útil para identificar subgrupos de mujeres con alto riesgo de padecer dicho tumor maligno. En este artículo presentamos una revisión de la literatura acerca del papel que el Her-2/neu y el P53 tienen en la etiología y el pronóstico del cáncer mamario en mujeres. Además, discutimos las ventajas y limitaciones de utilizar biomarcadores en los estudios epidemiológicos. Concluimos que se requieren nuevas investigaciones orientadas a dilucidar las complejas relaciones que existen entre las alteraciones genéticas y los factores de riesgo para el cáncer mamario.

  13. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  14. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  15. Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4.

    Directory of Open Access Journals (Sweden)

    Harish Chander

    Full Text Available We previously reported that the degradation of prohibitin by the SCF(Skp2B ubiquitin ligase results in a defect in the activity of p53. We also reported that MMTV-Skp2B transgenic mice develop mammary gland tumors that are characterized by an increased proteolytic cleavage of the insulin-like growth factor binding protein 4 (IGFBP-4, an inhibitor of IGF signaling. However, whether a link exists between a defect in p53 activity and proteolysis of IGFBP-4 was not established.We analyzed the levels of pregnancy-associated plasma protein A (PAPP-A, the protease of IGFBP-4, in MMTV-Skp2B transgenic mice and found that PAPP-A levels are elevated. Further, we found a p53 binding site in intron 1 of the PAPP-A gene and that both wild type and mutant p53 bind to this site. However, binding of wild type p53 results in the transcriptional repression of PAPP-A, while binding of mutant p53 results in the transcriptional activation of PAPP-A. Since MMTV-Skp2B mice express wild type p53 and yet show elevated levels of PAPP-A, at first, these observations appeared contradictory. However, further analysis revealed that the defect in p53 activity in Skp2B overexpressing cells does not only abolish the activity of wild type of p53 but actually mimics that of mutant p53. Our results suggest that in absence of prohibitin, the half-life of p53 is increased and like mutant p53, the conformation of p53 is denatured.These observations revealed a novel function of prohibitin as a chaperone of p53. Further, they suggest that binding of denatured p53 in intron 1 causes an enhancer effect and increases the transcription of PAPP-A. Therefore, these findings indicate that the defect in p53 function and the increased proteolysis of IGFBP-4, we had observed, represent two components of the same pathway, which contributes to the oncogenic function of Skp2B.

  16. Skp2B Overexpression Alters a Prohibitin-p53 Axis and the Transcription of PAPP-A, the Protease of Insulin-Like Growth Factor Binding Protein 4

    Science.gov (United States)

    Chander, Harish; Halpern, Max; Resnick-Silverman, Lois; Manfredi, James J.; Germain, Doris

    2011-01-01

    Background We previously reported that the degradation of prohibitin by the SCFSkp2B ubiquitin ligase results in a defect in the activity of p53. We also reported that MMTV-Skp2B transgenic mice develop mammary gland tumors that are characterized by an increased proteolytic cleavage of the insulin-like growth factor binding protein 4 (IGFBP-4), an inhibitor of IGF signaling. However, whether a link exists between a defect in p53 activity and proteolysis of IGFBP-4 was not established. Methods and Results We analyzed the levels of pregnancy-associated plasma protein A (PAPP-A), the protease of IGFBP-4, in MMTV-Skp2B transgenic mice and found that PAPP-A levels are elevated. Further, we found a p53 binding site in intron 1 of the PAPP-A gene and that both wild type and mutant p53 bind to this site. However, binding of wild type p53 results in the transcriptional repression of PAPP-A, while binding of mutant p53 results in the transcriptional activation of PAPP-A. Since MMTV-Skp2B mice express wild type p53 and yet show elevated levels of PAPP-A, at first, these observations appeared contradictory. However, further analysis revealed that the defect in p53 activity in Skp2B overexpressing cells does not only abolish the activity of wild type of p53 but actually mimics that of mutant p53. Our results suggest that in absence of prohibitin, the half-life of p53 is increased and like mutant p53, the conformation of p53 is denatured. Conclusions These observations revealed a novel function of prohibitin as a chaperone of p53. Further, they suggest that binding of denatured p53 in intron 1 causes an enhancer effect and increases the transcription of PAPP-A. Therefore, these findings indicate that the defect in p53 function and the increased proteolysis of IGFBP-4, we had observed, represent two components of the same pathway, which contributes to the oncogenic function of Skp2B. PMID:21829624

  17. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer.

    Science.gov (United States)

    Wang, Sharon; Liu, Jeff C; Kim, Danbi; Datti, Alessandro; Zacksenhaus, Eldad

    2016-01-19

    Triple-negative breast cancer (TNBC), an aggressive disease comprising several subtypes including basal-like and claudin-low, involves frequent deletions or point mutations in TP53, as well as loss of PTEN. We previously showed that combined deletion of both tumor suppressors in the mouse mammary epithelium invariably induced claudin-low-like TNBC. The effect of p53 mutation plus Pten deletion on mammary tumorigenesis and whether this combination can induce basal-like TNBC in the mouse are unknown. WAP-Cre:Pten(f/f):p53(lox.stop.lox_R270H) composite mice were generated in which Pten is deleted and a p53-R270H mutation in the DNA-binding domain is induced upon expression of Cre-recombinase in pregnancy-identified alveolar progenitors. Tumors were characterized by histology, marker analysis, transcriptional profiling [GEO-GSE75989], bioinformatics, high-throughput (HTP) FDA drug screen as well as orthotopic injection to quantify tumor-initiating cells (TICs) and tail vein injection to identify lung metastasis. Combined Pten deletion plus induction of p53-R270H mutation accelerated formation of four distinct mammary tumors including poorly differentiated adenocarcinoma (PDA) and spindle/mesenchymal-like lesions. Transplantation assays revealed highest frequency of TICs in PDA and spindle tumors compared with other subtypes. Hierarchical clustering demonstrated that the PDA and spindle tumors grouped closely with human as well as mouse models of basal and claudin-low subtypes, respectively. HTP screens of primary Pten(∆):p53(∆) vs. Pten(∆):p53(R270H) spindle tumor cells with 1120 FDA-approved drugs identified 8-azaguanine as most potent for both tumor types, but found no allele-specific inhibitor. A gene set enrichment analysis revealed increased expression of a metastasis pathway in Pten(∆):p53(R270H) vs. Pten(∆):p53(∆) spindle tumors. Accordingly, following tail vein injection, both Pten(∆):p53(R270H) spindle and PDA tumor cells induced lung metastases

  18. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells.

    Science.gov (United States)

    Karmakar, Alokita; Bratton, Stacie M; Dervishi, Enkeleda; Ghosh, Anindya; Mahmood, Meena; Xu, Yang; Saeed, Lamya Mohammed; Mustafa, Thikra; Casciano, Dan; Radominska-Pandya, Anna; Biris, Alexandru S

    2011-01-01

    A gene delivery concept based on ethylenediamine-functionalized single-walled carbon nanotubes (f-SWCNTs) using the oncogene suppressor p53 gene as a model gene was successfully tested in vitro in MCF-7 breast cancer cells. The f-SWCNTs-p53 complexes were introduced into the cell medium at a concentration of 20 μg mL(-1) and cells were exposed for 24, 48, and 72 hours. Standard ethidium bromide and acridine orange assays were used to detect apoptotic cells and indicated that a significantly larger percentage of the cells (approx 40%) were dead after 72 hours of exposure to f-SWCNTs-p53 as compared to the control cells, which were exposed to only p53 or f-SWCNTs, respectively. To further support the uptake and expression of the genes within the cells, green fluorescent protein-tagged p53, attached to the f-SWCNTs was added to the medium and the complex was observed to be strongly expressed in the cells. Moreover, caspase 3 activity was found to be highly enhanced in cells incubated with the f-SWCNTs-p53 complex, indicating strongly induced apoptosis. This system could be the foundation for novel gene delivery platforms based on the unique structural and morphological properties of multi-functional nanomaterials.

  19. Environmental Exposures, Genetic Polymorphisms and p53 Mutational Spectra in a Case-Control Study of Breast Cancer

    National Research Council Canada - National Science Library

    Shields, eter

    1999-01-01

    .... Other genetic analyses are completed for MEH3, MEH4, CYP2D6, GSTMl, GST-T and CYP1A1. We have been validating a p53 mutational spectra detection technology using the Affymetrix gene chip array...

  20. Suppression of tumorigenicity of breast cancer cells by transfer of human chromosome 17 does not require transferred BRCA1 and p53 genes.

    Science.gov (United States)

    Theile, M; Hartmann, S; Scherthan, H; Arnold, W; Deppert, W; Frege, R; Glaab, F; Haensch, W; Scherneck, S

    1995-02-02

    A number of candidate tumor suppressor genes located on the human chromosome 17 are thought to have a role to play in the development of breast cancer. In addition to the p53 gene on 17p13.1 and the BRCA1 gene mapped to 17q12-21, other chromosomal regions for tumor suppressor genes have been suggested to exist on 17p13.3 and both the central and the distal parts of 17q, although definitive functional proof of their involvement in breast cancer tumorigenesis is still lacking. In this report we show that microcell transfer of a human chromosome 17 into wild-type p53 breast cancer cells CAL51 results in loss of tumorigenicity and anchorage-independent growth, changes in cell morphology and a reduction of cell growth rates of the neo-selected microcell hybrids. In the hybrid cells, which express the p53 wild-type protein, only the p- and the distal parts of the q arm of donor chromosome 17 are transferred. Thus, our results provide functional evidence for the presence of one or more tumor suppressor gene(s) on chromosome 17, which are distinct from the p53 and the BRCA1 genes.

  1. Survival of ovarian cancer patients overexpressing the tumour antigen p53 is diminished in case of MHC class I down-regulation

    NARCIS (Netherlands)

    Leffers, Ninke; Lambeck, Annechien J. A.; de Graeff, Pauline; Bijlsma, Astrid Y.; Daemen, Toos; van der Zee, Ate G. J.; Nijman, Hans W.

    Objectives. The adaptive immune system seems to play an essential role in the natural course of ovarian cancer. Aim of this study was to establish whether disease-specific survival for patients expressing the tumour antigen p53 is influenced by MHC class I expression or the presence of p53

  2. Protein expression of c-erbB-2 and p53 in normal ducts, ductal carcinoma in situ and invasive carcinoma of the same breast

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Martins de Menezes

    Full Text Available CONTEXT AND OBJECTIVE: Breast cancer is thought to derive from progressively aberrant, non-invasive breast lesions, but it is not known exactly how invasive breast cancer develops from these lesions. The aim of this study was to verify the changes in c-erbB-2 and p53 protein expression between non-neoplastic ducts, ductal carcinoma in situ and invasive ductal carcinoma found in the same breast. DESIGN AND SETTING: This was a cross-sectional study at Centro de Atenção Integral à Saúde da Mulher, Campinas, Brazil. METHODS: Fifty-six women with invasive ductal carcinoma and ductal carcinoma in situ in the same breast were included. The expression of c-erbB-2 and p53 proteins was assessed in non-neoplastic and neoplastic cells using immunohistochemical techniques. RESULTS: The c-erbB-2 protein was absent in non-neoplastic ducts but was present in 46% and 36% of in situ and invasive carcinoma components, respectively. Only 2% of non-neoplastic ducts, and 18% and 16% of ductal carcinoma in situ and invasive carcinoma components, respectively, were positive for p53 protein. No significant difference in c-erbB-2 and p53 protein expression was observed between in situ and invasive components. The nuclear grade agreement between in situ and invasive carcinoma was very good. CONCLUSIONS: The invasiveness of ductal carcinoma in situ seems to be independent of the Her-2/neu and TP53 genes. The general features of an occurrence of breast carcinoma are formulated at the outset of carcinogenesis, and the Her-2/neu and TP53 genes are involved.

  3. The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer.

    Directory of Open Access Journals (Sweden)

    Tingxiu Xiang

    Full Text Available Breast cancer (BrCa is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1 is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear.We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90% and 53 of 66 (80% primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells.UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.

  4. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  5. Hypermethylation of the 5′ CpG island of the p14ARF flanking exon 1β in human colorectal cancer displaying a restricted pattern of p53 overexpression concomitant with increased MDM2 expression

    Directory of Open Access Journals (Sweden)

    Nyiraneza Christine

    2012-06-01

    Full Text Available Abstract Background It has been suggested that inactivation of p14ARF, a tumor suppressor central to regulating p53 protein stability through interaction with the MDM2 oncoprotein, abrogates p53 activity in human tumors retaining the wild-type TP53 gene. Differences in expression of tumor suppressor genes are frequently associated with cancer. We previously reported on a pattern of restricted p53 immunohistochemical overexpression significantly associated with microsatellite instability (MSI, low TP53 mutation frequency, and MDM2 overexpression in colorectal cancers (CRCs. In this study, we investigated whether p14ARF alterations could be a mechanism for disabling the p53 pathway in this subgroup of CRCs. Results Detailed maps of the alterations in the p14ARF gene were determined in a cohort of 98 CRCs to detect both nucleotide and copy-number changes. Methylation-specific PCR combined with bisulfite sequencing was used to evaluate the prevalence and distribution of p14ARF methylation. p14ARF alterations were then correlated with MSI status, TP53 mutations, and immunohistochemical expression of p53 and MDM2. The frequency of p14ARF mutations was extremely low (1/98; 1%, whereas coexistence of methylated and unmethylated alleles in both tumors and normal colon mucosa was common (91/98; 93%. Only seven of ninety-eight tumors (7% had a distinct pattern of methylation compared with normal colon mucosa. Evaluation of the prevalence and distribution of p14ARF promoter methylation in a region containing 27 CpG sites in 35 patients showed a range of methylated CpG sites in tumors (0 to 25 (95% CI 1 to 13 versus 0 to 17 (95% CI 0 to 2 in adjacent colon mucosa (P = 0.004. Hypermethylation of the p14ARF promoter was significantly correlated with the restricted p53 overexpression pattern (P = 0.03, and MDM2 overexpression (P = 0.02, independently of MSI phenotype. Although no significant correlation between p14ARF methylation and TP53 mutational

  6. Male breast carcinoma: correlation of ER, PR, Ki-67, Her2-Neu, and p53 with treatment and survival, a study of 65 cases.

    Science.gov (United States)

    Wang-Rodriguez, Jessica; Cross, Keith; Gallagher, Scott; Djahanban, Marcia; Armstrong, Janet M; Wiedner, Noel; Shapiro, David H

    2002-08-01

    Male breast cancer is rare, and experience of it in any single institution is limited. Our current understanding regarding its biology, natural history, and treatment strategies has been extrapolated from its female counterpart. The aim of this study is to evaluate the expression patterns of estrogen receptor (ER), progesterone receptor (PR), MiB1 (Ki67), Her-2/neu (c-erbB2), and p53 and to correlate them with the prognosis, presentation, staging, management, and survival/outcome in male breast carcinoma identified through the Veterans Administration nationwide cancer registry. Sixty-five cases of male breast cancer were reviewed for classification. Tumor blocks were requested from each institution for immunohistochemical staining and evaluation of ER, PR, p53, Her2-neu, and MiB1. Seventeen age- and disease-matched male veteran patients with breast gynecomastia were used as controls. Traditional prognostic data were collected for comparison with female breast cancers (i.e., age, lymph node status, clinical staging, tumor size, histological grade, and disease-free and overall survival). Male breast carcinoma had worse disease-free survival than controls (P =.03). The clinical stage regardless of tumor size or lymph node metastasis was the single most significant prognostic factor (P <.0001). ER-positive patients appeared to have a better survival than did ER-negative patients (P =.03, univariate; P not significant in multivariate) and did not benefit from treatment with tamoxifen (P =.0027, univariate; P =.42, multivariate). MiB1 and PR expressions did not correlate with treatment or survival, and p53 was associated with shorter disease free survival (P =.07, univariate; P =.047, multivariate). Stage for stage, Her2-neu was associated with shorter disease-free survival (P <.0001) and correlated with positive lymph nodes (P =.08). Surgery alone versus surgery with adjuvant treatments (chemotherapy, radiotherapy, tamoxifen, or combination) did not show any survival

  7. Expression of c-erbB-2, p53 and c-myc proteins in male breast carcinoma: Comparison with traditional prognostic factors and survival

    Directory of Open Access Journals (Sweden)

    Mourão Netto M.

    2001-01-01

    Full Text Available There are few data evaluating biological markers for men with breast cancer. The purpose of the present study was to analyze the expression of the oncogenes c-erbB-2 and c-myc and of the suppressor gene p53 by immunohistochemical techniques in archival paraffin-embedded tissue blocks of 48 male breast cancer patients, treated at the A.C. Camargo Cancer Hospital, São Paulo, SP, Brazil. The results were compared with clinicopathological prognostic features. Immunopositivity of c-erbB-2, p53 and c-myc was detected in 62.5, 16.7 and 20.8% of the cases analyzed, respectively. Estrogen and progesterone receptors were positive in 75 and 69% of the cases, respectively. Increasing staging was statistically associated with c-erbB-2 (P = 0.04 and weakly related to p53 positivity (P = 0.06. No significant correlation between specific survival rate (determined by the log rank test and the molecular markers analyzed was found, whereas the number of compromised lymph nodes and advanced TNM (tumor, node, metastasis staging were associated with diminished survival.

  8. The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P(53)-dependent and Bcl-2 gene expression in breast cancer cell line.

    Science.gov (United States)

    Suganyadevi, P; Saravanakumar, K M; Mohandas, S

    2013-03-14

    The aim of this study was to investigate the anti proliferative activity of 3-deoxyanthocyanin extracted from red sorghum bran on human breast cancer cell line MCF 7. The confirmatory tests were carried out in vitro through the expression studies of p(53) and (bcl) 2 genes in MCF 7 cells. The 3-deoxyanthocyanins were isolated from red sorghum bran and cytotoxic studies were performed in MCF 7 cell line by MTT assay. The mRNA expression levels of p(53) and (bcl) 2 genes were performed using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis in MCF 7 cells. On cytotoxic studies, the present data indicates sorghum anthocyanins, which showed 84.09% of inhibition in the proliferation of MCF 7 cells, and the CTC(50) value was 300 μg/ml. The sorghum 3-deoxyanthocyanins induced apoptosis in MCF 7 was mediated by stimulation of the p(53) gene and down regulation of the (bcl) 2 gene. The significance of our work was the anthocyanin isolated from red sorghum bran inhibits the proliferation of human breast cancer cell line. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Presença da Proteína p53 como Prognóstico de Recidiva/Progressão de Neoplasia Intra-epitelial Vulvar III p53 Protein Overexpression as a Prognostic Marker for Vulvar Intraepithelial Neoplasia III Recurrence/Progression

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Chulvis do Val Guimarães

    2002-01-01

    Full Text Available Objetivo: avaliar o valor da presença da proteína p53 nos casos de recidiva/progressão da neoplasia intra-epitelial vulvar (VIN III. Métodos: foram selecionadas 20 pacientes com VIN III indiferenciada, seguidas semestralmente por período de até quatro anos, divididas em dois grupos: quatorze sem e seis com recidiva/progressão da lesão. Os casos de recidiva/progressão foram distribuídos da seguinte forma: em três pacientes a recidiva ocorreu uma única vez, em duas, houve dupla recorrência e apenas uma evoluiu para carcinoma escamoso. Em ambos os grupos foram avaliados o sítio vulvar acometido e a presença da proteína p53 com análise do padrão de marcação imunohistoquímica. Estudo semelhante foi realizado nos casos de recidiva/progressão além da análise do intervalo de tempo para o surgimento de recidiva/progressão. Resultados: observou-se recidiva da VIN III em 25% dos casos e, em 5%, progressão para carcinoma. O tempo médio de recidiva foi de 24,5 meses. A localização multifocal da lesão primária foi a mais freqüente (50% em ambos os grupos. Na maioria dos casos (87,5%, a recidiva/progressão ocorreu na mesma localização da lesão vulvar primária. A presença da proteína p53 mostrou-se positiva em 50% das lesões primárias de VIN III e em 75% dos casos de recidiva/progressão. Conclusões: a presença da proteína p53 parece desempenhar papel importante na gênese e na predição do curso clínico das VIN III. As recidivas/progressão das VIN III tendem a ocorrer na mesma área da doença inicial, sugerindo a presença de campo molecular alterado.Purpose: to evaluate p53 overexpression value in vulvar intraepithelial neoplasia (VIN III recurrence/progression. Methods: twenty patients with undifferentiated VIN III were selected and followed up every six months for four years and divided into two groups: fourteen without and six with recurrence/progression lesion. The recurrence/progression cases were

  10. Efficacy and Molecular Mechanisms of Differentiated Response to the Aurora and Angiogenic Kinase Inhibitor ENMD-2076 in Preclinical Models of p53-Mutated Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Anastasia A. Ionkina

    2017-05-01

    Full Text Available PurposeTriple-negative breast cancer (TNBC is a subtype associated with poor prognosis and for which there are limited therapeutic options. The purpose of this study was to evaluate the efficacy of ENMD-2076 in p53-mutated TNBC patient-derived xenograft (PDX models and describe patterns of terminal cell fate in models demonstrating sensitivity, intrinsic resistance, and acquired resistance to ENMD-2076.Experimental designp53-mutated, TNBC PDX models were treated with ENMD-2076 and evaluated for mechanisms of sensitivity or resistance to treatment. Correlative tissue testing was performed on tumor tissue to assess for markers of proliferation, apoptosis, senescence, and pathways of resistance after treatment and at the time of acquired resistance.ResultsSensitivity to ENMD-2076 200 mg/kg daily was associated with induction of apoptosis while models exhibiting intrinsic or acquired resistance to treatment presented with a senescent phenotype. Response to ENMD-2076 was accompanied by an increase in p53 and p73 levels, even within the background of mutant p53. Treatment with ENMD-2076 resulted in a decrease in pAurA and an increase in pHH3. We observed a TNBC subtype switch from the luminal androgen receptor to the basal-like subtype at acquired resistance.ConclusionENMD-2076 has antitumor activity in preclinical models of p53-mutated TNBC. Increased levels of p53 and p73 correlated with sensitivity whereas senescence was associated with resistance to ENMD-2076. The novel finding of a TNBC subtype switch at time of acquired resistance may provide mechanistic insights into the biologic effects of selective pressure of anticancer treatments on TNBC. ENMD-2076 is currently being evaluated in a Phase 2 clinical trial in patients with metastatic, previously treated TNBC where these biologic correlates can be further explored.

  11. Low p53 Binding Protein 1 (53BP1) Expression Is Associated With Increased Local Recurrence in Breast Cancer Patients Treated With Breast-Conserving Surgery and Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Neboori, Hanmanth J.R. [Department of Radiation Oncology, Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Haffty, Bruce G., E-mail: hafftybg@umdnj.edu [Department of Radiation Oncology, The Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Wu Hao [Department of Radiation Oncology, Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Yang Qifeng [Department of Breast Surgery, Qilu Hospital, Shandong University, Ji' nan (China); Aly, Amal [Division of Medical Oncology, The Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Goyal, Sharad; Schiff, Devora [Department of Radiation Oncology, Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Moran, Meena S. [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Golhar, Ryan [Department of Radiation Oncology, Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Chen Chunxia; Moore, Dirk [Department of Biostatistics, The Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States); and others

    2012-08-01

    Purpose: To investigate whether the expression of p53 binding protein 1 (53BP1) has prognostic significance in a cohort of early-stage breast cancer patients treated with breast-conserving surgery and radiotherapy (BCS+RT). Methods and Materials: A tissue microarray of early-stage breast cancer treated with BCS+RT from a cohort of 514 women was assayed for 53BP1, estrogen receptor, progesterone receptor, and HER2 expression by immunohistochemistry. Through log-rank tests and univariate and multivariate models, the staining profile of each tumor was correlated with clinical endpoints, including ipsilateral breast recurrence-free survival (IBRFS), distant metastasis-free survival (DMFS), cause-specific survival (CSS), recurrence-free survival (RFS), and overall survival (OS). Results: Of the 477 (93%) evaluable tumors, 63 (13%) were scored as low. Low expression of 53BP1 was associated with worse outcomes for all endpoints studied, including 10-year IBRFS (76.8% vs. 90.5%; P=.01), OS (66.4% vs. 81.7%; P=.02), CSS (66.0% vs. 87.4%; P<.01), DMFS (55.9% vs. 87.0%; P<.01), and RFS (45.2% vs. 80.6%; P<.01). Multivariate analysis incorporating various clinico-pathologic markers and 53BP1 expression found that 53BP1 expression was again an independent predictor of all endpoints (IBRFS: P=.0254; OS: P=.0094; CSS: P=.0033; DMFS: P=.0006; RFS: P=.0002). Low 53BP1 expression was also found to correlate with triple-negative (TN) phenotype (P<.01). Furthermore, in subset analysis of all TN breast cancer, negative 53BP1 expression trended for lower IBRFS (72.3% vs. 93.9%; P=.0361) and was significant for worse DMFS (48.2% vs. 86.8%; P=.0035) and RFS (37.8% vs. 83.7%; P=.0014). Conclusion: Our data indicate that low 53BP1 expression is an independent prognostic indicator for local relapse among other endpoints in early-stage breast cancer and TN breast cancer patients treated with BCS+RT. These results should be verified in larger cohorts of patients to validate their clinical

  12. P53 Mutation Analysis to Predict Tumor Response in Patients Undergoing Neoadjuvant Treatment for Locally Advanced Breast Cancer

    National Research Council Canada - National Science Library

    Carey, Lisa A

    2004-01-01

    .... In an ongoing multi-institutional prospective trial that is not supported by this award, breast cancer patients receiving neoadjuvant chemotherapy have serial response assessments and tumor sampling...

  13. p53 inactivation upregulates p73 expression through E2F-1 mediated transcription.

    Directory of Open Access Journals (Sweden)

    Chaitali Tophkhane

    Full Text Available While p73 overexpression has been associated with increased apoptosis in cancer tissues, p73 overexpressing tumors appear to be of high grade malignancy. Why this putative tumor suppressor is overexpressed in cancer cells and what the function of overexpressed p73 is in breast cancers are critical questions to be addressed. By investigating the effect of p53 inactivation on p73 expression, we found that both protein and mRNA levels of TAp73 were increased in MCF-7/p53siRNA cells, MCF-7/p53mt135 cells and HCT-116/p53-/- cells, as compared to wild type control, suggesting that p53 inactivation by various forms upregulates p73. We showed that p53 knockdown induced p73 was mainly regulated at the transcriptional level. However, although p53 has a putative binding site in the TAp73 promoter, deletion of this binding site did not affect p53 knockdown mediated activation of TAp73 promoter. Chromatin immuno-precipitation (ChIP data demonstrated that loss of p53 results in enhanced occupancy of E2F-1 in the TAp73 promoter. The responsive sequence of p53 inactivation mediated p73 upregulation was mapped to the proximal promoter region of the TAp73 gene. To test the role of E2F-1 in p53 inactivation mediated regulation of p73 transcription, we found that p53 knockdown enhanced E2F-1 dependent p73 transcription, and mutations in E2F-1 binding sites in the TAp73 promoter abrogated p53 knockdown mediated activation of TAp73 promoter. Moreover, we demonstrated that p21 is a mediator of p53-E2F crosstalk in the regulation of p73 transcription. We concluded that p53 knockdown/inactivation may upregulate TAp73 expression through E2F-1 mediated transcriptional regulation. p53 inactivation mediated upregulation of p73 suggests an intrinsic rescuing mechanism in response to p53 mutation/inactivation. These findings support further analysis of the correlation between p53 status and p73 expression and its prognostic/predictive significance in human cancers.

  14. Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics.

    Science.gov (United States)

    Cass, Jamaica D; Varma, Sonal; Day, Andrew G; Sangrar, Waheed; Rajput, Ashish B; Raptis, Leda H; Squire, Jeremy; Madarnas, Yolanda; Sengupta, Sandip K; Elliott, Bruce E

    2012-07-18

    There is critical need for improved biomarker assessment platforms which integrate traditional pathological parameters (TNM stage, grade and ER/PR/HER2 status) with molecular profiling, to better define prognostic subgroups or systemic treatment response. One roadblock is the lack of semi-quantitative methods which reliably measure biomarker expression. Our study assesses reliability of automated immunohistochemistry (IHC) scoring compared to manual scoring of five selected biomarkers in a tissue microarray (TMA) of 63 human breast cancer cases, and correlates these markers with clinico-pathological data. TMA slides were scanned into an Ariol Imaging System, and histologic (H) scores (% positive tumor area x staining intensity 0-3) were calculated using trained algorithms. H scores for all five biomarkers concurred with pathologists' scores, based on Pearson correlation coefficients (0.80-0.90) for continuous data and Kappa statistics (0.55-0.92) for positive vs. negative stain. Using continuous data, significant association of pERK expression with absence of LVI (p = 0.005) and lymph node negativity (p = 0.002) was observed. p53 over-expression, characteristic of dysfunctional p53 in cancer, and Ki67 were associated with high grade (p = 0.032 and 0.0007, respectively). Cyclin D1 correlated inversely with ER/PR/HER2-ve (triple negative) tumors (p = 0.0002). Thus automated quantitation of immunostaining concurs with pathologists' scoring, and provides meaningful associations with clinico-pathological data.

  15. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity

    DEFF Research Database (Denmark)

    Danovi, Davide; Meulmeester, Erik; Pasini, Diego

    2004-01-01

    Human tumors are believed to harbor a disabled p53 tumor suppressor pathway, either through direct mutation of the p53 gene or through aberrant expression of proteins acting in the p53 pathway, such as p14(ARF) or Mdm2. A role for Mdmx (or Mdm4) as a key negative regulator of p53 function in vivo...... has been established. However, a direct contribution of Mdmx to tumor formation remains to be demonstrated. Here we show that retrovirus-mediated Mdmx overexpression allows primary mouse embryonic fibroblast immortalization and leads to neoplastic transformation in combination with HRas(V12......). Furthermore, the human Mdmx ortholog, Hdmx, was found to be overexpressed in a significant percentage of various human tumors and amplified in 5% of primary breast tumors, all of which retained wild-type p53. Hdmx was also amplified and highly expressed in MCF-7, a breast cancer cell line harboring wild...

  16. Associação entre a presença da proteína p53 e o grau de diferenciação em carcinomas ductais invasivos de mama Association of p53 protein expression and degree of differentiation in infiltrating ductal breast carcinomas

    Directory of Open Access Journals (Sweden)

    Márcia Sanae Siroma

    2006-05-01

    Full Text Available OBJETIVO: avaliar a expressão da proteína p53 no carcinoma de mama ductal invasivo e avaliar a sua associação com o grau histológico e o grau nuclear. MÉTODOS: foram incluídas sessenta e cinco mulheres atendidas consecutivamente, entre julho de 1999 e julho de 2001. Todas tiveram diagnóstico de carcinoma primário de mama ductal invasivo. As pacientes foram primeiramente tratadas por terapia cirúrgica conservadora ou mastectomia. Nenhuma paciente recebeu terapia neoadjuvante. Os espécimes cirúrgicos dos tumores foram fixados em formalina a 10%, posteriormente incluídos em parafina e conservados para análise imuno-histoquimica. A expressão da proteína p53 foi avaliada. Foi utilizado o anticorpo primário monoclonal anti-humano p53 DO - 7 (DAKO. As distribuições das freqüências foram avaliadas pelo teste do chi2. O valor pPURPOSE: to assess p53 protein expression in infiltrating ductal breast carcinoma and to analyze its association with histological and nuclear grade. METHODS: sixty-five consecutive females who were diagnosed with primary infiltrating ductal breast tumor from July 1999 to July 2001 were included in the present study. Mean patient age at diagnosis was 69.2 years (range 41 - 90. All patients were first treated with surgical therapy, conservative surgery or mastectomy. None of the patients received any preoperative adjuvant therapy. Resected breast tumor specimens were fixed in 10% formalin, paraffin embedded, and conserved for immunohistochemical analysis. p53 protein expression was evaluated. Primary monoclonal anti-human p53 antibody DO-7 (DAKO was used. Frequency distributions were tested by the chi2 test. A level of p<0,05 was considered significant. RESULTS: p53 expression was detected in 24 (36,9% of 65 carcinomas. Of the cases with protein expression, 13 (54,2% were high or histological grade III, 8 (33,3%, were grade II, 3 (12,5% were grade I. On nuclear grade analysis, of the cases with protein

  17. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  18. p53 status as effect modifier of the association between pre-treatment fasting glucose and breast cancer outcomes in non diabetic, HER2 positive patients treated with trastuzumab.

    Science.gov (United States)

    Vici, Patrizia; Sperati, Francesca; Maugeri-Saccà, Marcello; Melucci, Elisa; Di Benedetto, Anna; Di Lauro, Luigi; Pizzuti, Laura; Sergi, Domenico; Terrenato, Irene; Esposito, Luca; Iannuzzi, Carmelina Antonella; Pasquale, Raffaella; Botti, Claudio; Fuhrman, Barbara; Giordano, Antonio; Mottolese, Marcella; Barba, Maddalena

    2014-11-15

    Mounting evidence supports the role of p53 in metabolic processes involved in breast carcinogenesis. We investigated whether p53 status affects the association of pre-treatment fasting glucose with treatment outcomes in 106 non diabetic, HER2 positive breast cancer patients treated with trastuzumab. p53 status was validated against gene sequencing of selected codons in 49 patients. The Kaplan-Meier method and log rank test were used to compare survival by categories of fasting glucose in the overall population and separate settings. Cox models included age and body mass index. Direct sequencing confirmed the lack of mutations in 73.7% of p53 negative patients and their presence in 53.3% of p53 positive cases. At 66 months, 88.3% of patients with glucose ≤ 89.0 mg/dl (median value) did not experiment disease progression compared with 70.0% in the highest category (p=0.034), with glucose being an independent predictor (p=0.046). Stratified analysis confirmed this association in p53 negative patients only (p=0.01). In the early setting, data suggested longer disease free survival in p53 negative patients in the lowest glucose category (p=0.053). In our study, p53 status acted as effect modifier of the investigated association. This may help differentiate target sub-groups and affect outcomes interpretation in similarly characterized patients.

  19. The Diagnostic, Prognostic and Follow-up Value of Serum Bcl-2, Bax and p53 Proteins in Breast Cancer Patients: A Comparison with Serum CA 15-3

    Directory of Open Access Journals (Sweden)

    Samia Abd El-Moneim Ebied

    2013-04-01

    Full Text Available Background: Biomarkers accepted for clinical use in breast cancer have low sensitivity and specificity. Thus, there is a need for new markers to assist in the diagnosis, prognosis and follow-up of breast cancer patients. This study aims to investigate the diagnostic, prognostic and follow-up role of serum Bcl-2, Bax and p53 proteins in breast cancer patients in comparison with those of serum CA 15-3 as the most commonly used breast cancer marker.Methods: We analyzed 50 breast cancer patients (before surgery, after one month of surgery and after six cycles of chemotherapy and 50 normal healthy controls for serum Bcl-2, Bax, p53 and CA 15-3 levels.Results: Mean serum Bcl-2 and CA 15-3 levels significantly increased, whereas the mean serum p53 level significantly declined in breast cancer patients compared to normal healthy controls. Using the ROC curve analysis, serum p53 had the greatest area under the curve (85.6%. Serum Bcl-2 levels significantly decreased after six cyclesof chemotherapy compared with its level one month after surgery. Preoperative serum levels of Bcl-2, Bax, p53 and CA 15-3 were non-significantly correlated with patient's disease-free survival.Conclusion: Serum p53 was superior to Bcl-2 and CA 15-3 in the diagnosis of breast cancer patients. Only Bcl-2 could be used for monitoring the effect of chemotherapy on breast cancer patients. None of the assayed biomarkers had a role in monitoring the effect of surgery on breast cancer patients. None of the assayed biomarkers had a prognostic role for breast cancer patients.

  20. Effects of sodium saccharin and linoleic acid on mRNA levels of Her2/neu and p53 in a human breast epithelial cell line.

    Science.gov (United States)

    Ogretmen, B; Ratajczak, H; Gendel, S M; Stark, B C

    1996-04-19

    The effects of two food-related chemicals (sodium saccharin and linoleic acid) on the levels of Her2/neu and p53 mRNA in a non-cancerous human breast epithelial cell line (HBL-100) were tested in comparison with the effects of the known tumor promoter phorbol 12-myristate 13-acetate (TPA). Treatments were made both with and without prior treatment with two well-known tumor initiators, N-nitroso-N-methylurea (NMU) or 7,12-dimethylbenz[a]anthracene (DMBA). The effects in general were small, the greatest being increases of 46-67% in Her2/neu mRNA levels in response to treatments with TPA or sodium saccharin following NMU treatments. These results demonstrate that sodium saccharin following NMU treatments might be involved in transcriptional regulation of Her2/neu in HBL-100 cells and suggest that its effects may not be limited to urinary bladder.

  1. Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Somayeh Khazaei

    2017-01-01

    Full Text Available Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.

  2. Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics

    Directory of Open Access Journals (Sweden)

    Yolanda Madarnas

    2012-07-01

    Full Text Available There is critical need for improved biomarker assessment platforms which integrate traditional pathological parameters (TNM stage, grade and ER/PR/HER2 status with molecular profiling, to better define prognostic subgroups or systemic treatment response. One roadblock is the lack of semi-quantitative methods which reliably measure biomarker expression. Our study assesses reliability of automated immunohistochemistry (IHC scoring compared to manual scoring of five selected biomarkers in a tissue microarray (TMA of 63 human breast cancer cases, and correlates these markers with clinico-pathological data. TMA slides were scanned into an Ariol Imaging System, and histologic (H scores (% positive tumor area x staining intensity 0–3 were calculated using trained algorithms. H scores for all five biomarkers concurred with pathologists’ scores, based on Pearson correlation coefficients (0.80–0.90 for continuous data and Kappa statistics (0.55–0.92 for positive vs. negative stain. Using continuous data, significant association of pERK expression with absence of LVI (p = 0.005 and lymph node negativity (p = 0.002 was observed. p53 over-expression, characteristic of dysfunctional p53 in cancer, and Ki67 were associated with high grade (p = 0.032 and 0.0007, respectively. Cyclin D1 correlated inversely with ER/PR/HER2-ve (triple negative tumors (p = 0.0002. Thus automated quantitation of immunostaining concurs with pathologists’ scoring, and provides meaningful associations with clinico-pathological data.

  3. OTUD5 regulates p53 stability by deubiquitinating p53.

    Directory of Open Access Journals (Sweden)

    Judong Luo

    Full Text Available The p53 tumour suppressor protein is a transcription factor that prevents oncogenic progression by activating the expression of apoptosis and cell-cycle arrest genes in stressed cells. The stability of p53 is tightly regulated by ubiquitin-dependent degradation, driven mainly by its negative regulators ubiquitin ligase MDM2.In this study, we have identified OTUD5 as a DUB that interacts with and deubiquitinates p53. OTUD5 forms a direct complex with p53 and controls level of ubiquitination. The function of OTUD5 is required to allow the rapid activation of p53-dependent transcription and a p53-dependent apoptosis in response to DNA damage stress.As a novel deubiquitinating enzyme for p53, OTUD5 is required for the stabilization and the activation of a p53 response.

  4. Integration of Genomic, Biologic, and Chemical Approaches to Target p53 Loss and Gain-of-Function in Triple Negative Breast Cancer

    Science.gov (United States)

    2016-09-01

    LOF) of wild-type p53 through mutation, gene silencing, or amplification of negative p53 regulators , and gain of function (GOF) displayed by some...LOF-adapted state. We will continue our analysis with three main goals : 1) To corroborate our differential gene expression findings with additional...majority of TNBC cases and produces two adaptive states: loss of function (LOF) of wild-type p53 through mutation, gene silencing, or amplification

  5. WDR5 positively regulates p53 stability by inhibiting p53 ubiquitination.

    Science.gov (United States)

    Xie, Qingqing; Li, Zengpeng; Chen, Jianming

    2017-05-27

    WD40 repeat protein WDR5 is a core component of the Set/MLL histone methyltransferase complex which catalyzes histone H3 Lys4 trimethylation and activates gene transcription in human cells. WDR5 promotes Set/MLL complex assembly and mediates the complex binding to Lys4-dimethylated histone H3 tail. Most earlier studies report that WDR5 exerts profound effects on various cellular and organismal processes mainly through epigenetic regulation of gene transcription. However, the functions of WDR5 in lung cancer remain largely unknown. Here, we report that WDR5 positively regulates p53 stability by inhibiting p53 ubiquitination in human lung cancer A549 cells. Overexpression of WDR5 dramatically increases p53 protein levels and its half-life in A549 cells, while depletion of WDR5 with WDR5-specific siRNAs significantly decreases p53 protein levels. We also observe that WDR5 is required for p53 induction in response to cisplatin treatment. Mechanistically, WDR5 colocalizes with p53 and inhibits p53 ubiquitination, resulting in p53 stabilization. Consequently, overexpression of WDR5 induces G1 phase arrest in A549 cells, and knocking down WDR5 by siRNAs reduces the population at G1 phase. Furthermore, p53 expression levels is at least in part determined by the p53 positive regulator WDR5 in some cancer cells. Taken together, these data suggest that WDR5 is directly involved in p53 signaling pathway. Our studies provide a new insight into WDR5 functions in A549 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Changes in the ER, PgR, HER2, p53 and Ki-67 biological markers between primary and recurrent breast cancer: discordance rates and prognosis

    Directory of Open Access Journals (Sweden)

    Tashima Rumiko

    2011-10-01

    Full Text Available Abstract Background In breast cancer, ER/PgR, HER2, and Ki-67 are important biological markers for predicting prognosis and making effective treatment decisions. In addition, changes in markers due to relapse are also clinically experienced; however, the frequency and clinical significance are still not fully understood. Thus, changes in markers and their correlations with prognosis were investigated. Patients and Methods Out of the patients with relapse from 1997 to March 2011, there were 97 consecutive patients from whom the lesion was resected and evaluated by immunostaining. The biopsy sites were chest wall, lymph node, ipsilateral breast tumor recurrence, lungs, bones, ovaries and brain. The markers sought were ER, PgR, HER2, p53 and Ki-67. Results The hormone receptor positive rate from the primary tumor to recurrence decreased from 63.9% to 57.7% and from 56.7% to 43.3% for ER and PgR, respectively. Changes in the positive/negative evaluation were seen at the rate of 10.3% and 25.8% for ER and PgR, respectively. The Ki-67 index increased significantly from a mean of 29.1% at primary tumor to 36.3% at relapse. When divided into 2 groups ( Conclusion Estrogen receptor and PgR decreased while Ki-67 increased due to relapse; however, the rate of change was high for PgR and Ki-67. Change in the subtypes was seen in 25%. In addition, PgR at relapse and Ki-67 at primary tumor were significant factors for post-relapse prognosis while PgR becoming negative was a poor prognostic factor. These findings are important for making effective treatment decisions.

  7. Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress.

    Science.gov (United States)

    Huang, Liqun; Wong, Chi C; Mackenzie, Gerardo G; Sun, Yu; Cheng, Ka Wing; Vrankova, Kvetoslava; Alston, Ninche; Ouyang, Nengtai; Rigas, Basil

    2014-02-28

    The anticancer properties of aspirin are restricted by its gastrointestinal toxicity and its limited efficacy. Therefore, we synthesized phospho-aspirin (PA-2; MDC-22), a novel derivative of aspirin, and evaluated its chemotherapeutic and chemopreventive efficacy in preclinical models of triple negative breast cancer (TNBC). Efficacy of PA-2 was evaluated in human breast cancer cells in vitro, and in orthotopic and subcutaneous TNBC xenografts in nude mice. Mechanistic studies were also carried out to elucidate the mechanism of action of PA-2. PA-2 inhibited the growth of TNBC cells in vitro more potently than aspirin. Treatment of established subcutaneous TNBC xenografts (MDA-MB-231 and BT-20) with PA-2 induced a strong growth inhibitory effect, resulting in tumor stasis (79% and 90% inhibition, respectively). PA-2, but not aspirin, significantly prevented the development of orthotopic MDA-MB-231 xenografts (62% inhibition). Mechanistically, PA-2: 1) inhibited the activation of epidermal growth factor receptor (EGFR) and suppressed its downstream signaling cascades, including PI3K/AKT/mTOR and STAT3; 2) induced acetylation of p53 at multiple lysine residues and enhanced its DNA binding activity, leading to cell cycle arrest; and 3) induced oxidative stress by suppressing the thioredoxin system, consequently inhibiting the activation of the redox sensitive transcription factor NF-κB. These molecular alterations were observed in vitro and in vivo, demonstrating their relevance to the anticancer effect of PA-2. Our findings demonstrate that PA-2 possesses potent chemotherapeutic efficacy against TNBC, and is also effective in its chemoprevention, warranting further evaluation as an anticancer agent.

  8. Phase III trial (EORTC 10994/BIG 1-00) assessing the value of p53 using a functional assay to predict sensitivity to a taxane versus non taxane primary chemotherapy in breast cancer: final analysis

    Science.gov (United States)

    Bonnefoi, Hervé; Piccart, Martine; Bogaerts, Jan; Mauriac, Louis; Fumoleau, Pierre; Brain, Etienne; Petit, Thierry; Rouanet, Philippe; Jassem, Jacek; Blot, Emmanuel; Zaman, Khalil; Cufer, Tanja; Lortholary, Alain; Lidbrink, Elisabet; André, Sylvie; Litière, Saskia; Lago, Lissandra Dal; Becette, Véronique; Cameron, David A.; Bergh, Jonas; Iggo, Richard

    2012-01-01

    Background This study tested the hypothesis that docetaxel confers a greater advantage over anthracyclines in p53 mutant compared to p53 wild type breast cancers. Methods Patients with locally advanced, inflammatory or large operable breast cancers were randomised to receive neoadjuvant chemotherapy consisting of either a standard anthracycline regimen (FEC 100 or tailored FEC) or a taxane-based regimen (docetaxel for 3 cycles, followed by epirubicin and docetaxel for 3 cycles). In this open label study, randomisation was performed using a minimisation method that stratified by institution and initial tumour stage (large operable versus locally advanced or inflammatory breast cancer). p53 status was assessed with a yeast functional assay on tumour biopsies taken before chemotherapy. The primary endpoint was a comparison of progression-free survival in the two arms according to p53 status and in the entire trial population (by intention to treat). We report the final analysis of the trial. The study is registered in ClinicalTrials.gov, number NCT00017095. Findings 1856 patients were enrolled and 370 were unassessable for p53 tumour status (the main reason being low tumour cell content in the biopsy). 675 events for the primary endpoint were registered. The hazard ratio (HR) between the two arms for progression-free survival (PFS) was 0.84 (98% CI: 0.63–1.14; p=0.17) in the p53 mutant group and 0.89 (98% CI: 0.68–1.18; p=0.35) in the p53 wild type group. In the entire population, the HR was 0.85 (98% CI: 0.71–1.02; p=0.035) for the use of docetaxel. The most common grade 3 or 4 adverse events were neutropenia in 1598 patients (86.6%), febrile neutropenia in 284 (15.4%), fatigue in 136 (7.4%), infection in 121 (6.6%) and nausea or vomiting in 89 (4.8%). Two patients died of toxicity during or within 30 days of chemotherapy completion and without disease relapse (one in each arm). Interpretation Although p53 status is prognostic for overall survival, it was not

  9. Primary chemotherapy in breast invasive carcinoma: predictive value of the immunohistochemical detection of hormonal receptors, p53, c-erbB-2, MiB1, pS2 and GST pi.

    Science.gov (United States)

    MacGrogan, G.; Mauriac, L.; Durand, M.; Bonichon, F.; Trojani, M.; de Mascarel, I.; Coindre, J. M.

    1996-01-01

    Primary chemotherapy in operable breast invasive carcinoma enables tumour reduction and conservative surgery. In order to search for one or more biological factors capable of predicting tumour behaviour under primary chemotherapy, and subsequent patient survival, an immunohistochemical study was performed with specific antibodies to p53, c-erbB-2 (Her-2/neu), Mib1 (antiKi-67), pS2, GST pi, oestrogen receptors (ERs) and progesterone receptors (PRs). Core biopsies, obtained before primary chemotherapy, were available from a series of 128 breast invasive carcinomas treated between January 1985 and April 1989, with a median follow-up of 93.3 months. Univariate statistical analysis showed that negative ER detection by immunohistochemistry (IHC) was highly correlated with chemosensitivity (P = 0.001). A high percentage of Mib1-positive tumour cells (> 40%), as well as initial tumour size less than 4 cm, were also correlated with tumour responsiveness to chemotherapy (P = 0.009 and P = 0.03). By multivariate analysis IHC-ER, Mib1 and initial tumour size were independent predictors, the last parameter being the most important. Concerning subsequent patient survival, c-erbB-2 overexpression, as detected by IHC, was significant with respect to overall survival (OS) (P = 0.0006), disease-free interval (DFI) (P = 0.03) and metastasis-free interval (MFI) (P = 0.008) by univariate analysis. Furthermore, c-erbB-2 was the major independent prognostic factor for OS and MFI by multivariate analysis. Images Figure 1 Figure 2 PMID:8912545

  10. p53-based Cancer Therapy

    Science.gov (United States)

    Lane, David P.; Cheok, Chit Fang; Lain, Sonia

    2010-01-01

    Inactivation of p53 functions is an almost universal feature of human cancer cells. This has spurred a tremendous effort to develop p53 based cancer therapies. Gene therapy using wild-type p53, delivered by adenovirus vectors, is now in widespread use in China. Other biologic approaches include the development of oncolytic viruses designed to replicate and kill only p53 defective cells and also the development of siRNA and antisense RNA's that activate p53 by inhibiting the function of the negative regulators Mdm2, MdmX, and HPV E6. The altered processing of p53 that occurs in tumor cells can elicit T-cell and B-cell responses to p53 that could be effective in eliminating cancer cells and p53 based vaccines are now in clinical trial. A number of small molecules that directly or indirectly activate the p53 response have also reached the clinic, of which the most advanced are the p53 mdm2 interaction inhibitors. Increased understanding of the p53 response is also allowing the development of powerful drug combinations that may increase the selectivity and safety of chemotherapy, by selective protection of normal cells and tissues. PMID:20463003

  11. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    Science.gov (United States)

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  12. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Pedersen, Anders E; Johnsen, Hans E

    2004-01-01

    . Our preclinical studies have shown that wild-type p53-derived HLA-A2-binding peptides are able to activate human T cells and that the generated effector T cells are cytotoxic to human HLA-A2+, p53+ tumour cells. In this phase I pilot study, the toxicity and efficacy of autologous dendritic cells (DCs...... not of course be excluded; further studies are necessary to answer these questions....

  13. Targeting Mortalin by Embelin Causes Activation of Tumor Suppressor p53 and Deactivation of Metastatic Signaling in Human Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Nupur Nigam

    Full Text Available Embelin, a natural quinone found in the fruits of Embelia ribes, is commonly used in Ayurvedic home medicine for a variety of therapeutic potentials including anti-inflammation, anti-fever, anti-bacteria and anti-cancer. Molecular mechanisms of these activities and cellular targets have not been clarified to-date. We demonstrate that the embelin inhibits mortalin-p53 interactions, and activates p53 protein in tumor cells. We provide bioinformatics, molecular docking and experimental evidence to the binding affinity of embelin with mortalin and p53. Binding of embelin with mortalin/p53 abrogates their complex resulted in nuclear translocation and transcriptional activation function of p53 causing growth arrest in cancer cells. Furthermore, analyses of growth factors and metastatic signaling using antibody membrane array revealed their downregulation in embelin-treated cells. We also found that the embelin causes transcriptional attenuation of mortalin and several other proteins involved in metastatic signaling in cancer cells. Based on these molecular dynamics and experimental data, it is concluded that the anticancer activity of embelin involves targeting of mortalin, activation of p53 and inactivation of metastatic signaling.

  14. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    Directory of Open Access Journals (Sweden)

    Nikola Arsic

    2015-04-01

    Full Text Available Cancer stem cells (CSC are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform.

  15. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    Science.gov (United States)

    Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre

    2015-01-01

    Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205

  16. Chemical Variations on the p53 Reactivation Theme

    Directory of Open Access Journals (Sweden)

    Carlos J. A. Ribeiro

    2016-05-01

    Full Text Available Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the “guardian of the genome”, playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX. Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented.

  17. Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning.

    Science.gov (United States)

    Riaz, Muhammad; Ashfaq, Usman A; Qasim, Muhammad; Yasmeen, Erum; Ul Qamar, Muhammad T; Anwar, Farooq

    2017-10-01

    In most types of cancer, overexpression of murine double minute 2 (MDM2) often leads to inactivation of p53. The crystal structure of MDM2, with a 109-residue amino-terminal domain, reveals that MDM2 has a core hydrophobic region to which p53 binds as an amphipathic α helix. The interface depends on the steric complementarity between MDM2 and the hydrophobic region of p53. Especially, on p53's triad, amino acids Phe19, Trp23 and Leu26 bind to the MDM2 core. Results from studies suggest that the structural motif of both p53 and MDM2 can be attributed to similarities in the amphipathic α helix. Thus, in the current investigation it is hypothesized that the similarity in the structural motif might be the cause of p53 inactivation by MDM2. Hence, molecular docking and phytochemical screening approaches are appraised to inhibit the hydrophobic cleft of MDM2 and to stop p53-MDM2 interaction, resulting in reactivation of p53 activity. For this purpose, a library of 2295 phytochemicals were screened against p53-MDM2 to find potential candidates. Of these, four phytochemicals including epigallocatechin gallate, alvaradoin M, alvaradoin E and nordihydroguaiaretic acid were found to be potential inhibitors of p53-MDM2 interaction. The screened phytochemicals, derived from natural extracts, may have negligible side effects and can be explored as potent antagonists of p53-MDM2 interactions, resulting in reactivation of the normal transcription of p53.

  18. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression

    Science.gov (United States)

    Pfefferle, Adam D.; Perou, Charles M.; Van Den Berg, Carla Lynn

    2015-01-01

    Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis. PMID:25970777

  19. Regulation of Mammary Progenitor Cells by p53 and Parity

    Science.gov (United States)

    2011-01-01

    pregnancy early in reproductive life can reduce breast cancer incidence in women by up to 50% 4. The research in our lab has shown that the p53 tum or...13. SUPPLEMENTARY NOTES 14. ABSTRACT Breast cancer is the most common tumor among women with inherited mutations in the p53 gene (Li-Fraumeni...4 Introduction Breast cancer is the m ost frequent cancer am ong women in the United S tates1. Understanding the biological

  20. Evaluation of p53 and Bcl-2 genes and proteins expression in human breast cancer T47D cells treated with extracts of Astrodaucus persicus (Boiss. Drude in comparison to Tamoxifen

    Directory of Open Access Journals (Sweden)

    E Azizi

    2009-10-01

    Full Text Available "n "nBackground and purpose of the study:Screening of different plant components for new anticancer drugs is one of the main research activities throughout the world. In this study, the anticancer effects of Astrodaucus persicus, an Iranian species of family of Umbelliferae, in human breast cancer T47D cells was investigated. Also since tumorigenesis is thought to result from a series of progressive gene alterations, including activa tion of oncogenes and inactivation of tumor suppres sor genes, expression of two such genes, p53 and Bcl-2 that are believed to play a crucial role in tumorigenesis and cell death were determined. "nMaterials and Methods: The p53 and Bcl-2 genes and proteins expression alterations in T47D cells at RNA synthesis level was studied by using RT-PCR analysis and protein synthesis using immunocytochemistry technique. "nResults: p53 gene expression increased significantly in the presence of both plant extracts but Bcl-2 expression increased significantly in the presence of aerial and decreased significantly in the presence of root extract. In addition, treatment of T47D cells with plant extracts decreased the nuclear staining of p53 and cytoplasmic staining of Bcl-2 proteins. "nConclusion: These results suggest that the methanolic extracts of Astrodaucus persicus especially its root extract may contains bioactive compounds, probably coumarins that prevents proliferation of T47D breast carcinoma cells by mechanisms such as apoptosis. These data are the first report on the possible molecular mechanisms of action of Astrodaucus persicus extracts in breast cancer cell proliferation.

  1. Stability of p53 homologs.

    Directory of Open Access Journals (Sweden)

    Tobias Brandt

    Full Text Available Most proteins have not evolved for maximal thermal stability. Some are only marginally stable, as for example, the DNA-binding domains of p53 and its homologs, whose kinetic and thermodynamic stabilities are strongly correlated. Here, we applied high-throughput methods using a real-time PCR thermocycler to study the stability of several full-length orthologs and paralogs of the p53 family of transcription factors, which have diverse functions, ranging from tumour suppression to control of developmental processes. From isothermal denaturation fluorimetry and differential scanning fluorimetry, we found that full-length proteins showed the same correlation between kinetic and thermodynamic stability as their isolated DNA-binding domains. The stabilities of the full-length p53 orthologs were marginal and correlated with the temperature of their organism, paralleling the stability of the isolated DNA-binding domains. Additionally, the paralogs p63 and p73 were significantly more stable and long-lived than p53. The short half-life of p53 orthologs and the greater persistence of the paralogs may be biologically relevant.

  2. Serum starvation and thymidine double blocking achieved efficient cell cycle synchronization and altered the expression of p27, p53, bcl-2 in canine breast cancer cells.

    Science.gov (United States)

    Tong, Jinjin; Sun, Dongdong; Yang, Chao; Wang, Yingxue; Sun, Sichao; Li, Qing; Bao, Jun; Liu, Yun

    2016-04-01

    Cell synchronization is an approach to obtain cell populations of the same stage, which is a prerequisite to studying the regulation of cell cycle progression in vivo. Serum starvation and thymidine double blocking (TdR) are two important practices in studying cell cycle synchronization. However, their effects on canine cancer cells as well as the regulatory mechanisms by these two methods are poorly understood. In this study, we determined the optimum conditions of serum starvation and TdR and their effects on cell cycle synchronization. We further explored the involvement of PI3K/Akt signaling pathway in the cell cycle synchronization by investigating the expression of three key genes (p27, p53 and bcl-2). Serum starvation resulted in a reversible cell cycle arrest and synchronously progress through G0/G1. The highest percentage of CHMm cells (87.47%) in G0/G1 stage was obtained after 42 h incubation with 0.5% fetal bovine serum (FBS). TdR double blocking could arrest 98.9% of CHMm cells in G1/S phase (0 h of release), and could arrest 93.74% of CHMm cells in S phase after 4h of release. We also found that the p27, p53, bcl-2 genes were most highly expressed in G0/G1 phase. Our current work revealed that serum starvation and TdR methods could achieve sufficient synchronization of CHMm cells. Moreover, the expression of p27, p53 and bcl-2 genes was related to cyclical movements and apoptosis. Our results will provide a new insight into cell cycle regulation and reprogramming of canine cancer cells induced by serum starvation and TdR blocking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2.

    Science.gov (United States)

    Lakhani, Sunil R; Van De Vijver, Marc J; Jacquemier, Jocelyne; Anderson, Thomas J; Osin, Peter P; McGuffog, Lesley; Easton, Douglas F

    2002-05-01

    The morphologic and molecular phenotype of breast cancers may help identify patients who are likely to carry germline mutations in BRCA1 and BRCA2. This study evaluates the immunohistochemical profiles of tumors arising in patients with mutations in these genes. Samples of breast cancers obtained from the International Breast Cancer Linkage Consortium were characterized morphologically and immunohistochemically using antibodies to estrogen receptor, progesterone receptor, HER-2 (c-erbB-2 oncogene), and p53 protein. Breast cancers in patients with BRCA1 germline mutations are more often negative for estrogen receptor, progesterone receptor, and HER-2, and are more likely to be positive for p53 protein compared with controls. In contrast, BRCA2 tumors do not show a significant difference in the expression of any of these proteins compared with controls. BRCA1 has a distinctive morphology and immunohistochemical phenotype. The combined morphologic and immunohistochemical data can be used to predict the risk of a young patient harboring a germline mutation in BRCA1. The BRCA2 phenotype is currently not well defined.

  4. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements.

    Directory of Open Access Journals (Sweden)

    Ivan Raimondi

    Full Text Available The tumor suppressor p53 was previously shown to markedly up-regulate the expression of the PRODH gene, encoding the proline dehydrogenase (PRODH enzyme, which catalyzes the first step in proline degradation. Also PRODH2, which degrades 4-hydroxy-L-proline, a product of protein (e.g. collagen catabolism, was recently described as a p53 target. Here, we confirmed p53-dependent induction of endogenous PRODH in response to genotoxic damage in cell lines of different histological origin. We established that over-expression of TAp73β or TAp63β is sufficient to induce PRODH expression in p53-null cells and that PRODH expression parallels the modulation of endogenous p73 by genotoxic drugs in several cell lines. The p53, p63, and p73-dependent transcriptional activation was linked to specific intronic response elements (REs, among those predicted by bioinformatics tools and experimentally validated by a yeast-based transactivation assay. p53 occupancy measurements were validated in HCT116 and MCF7 human cell lines. Conversely, PRODH2 was not responsive to p63 nor p73 and, at best, could be considered a weak p53 target. In fact, minimal levels of PRODH2 transcript induction by genotoxic stress was observed exclusively in one of four p53 wild-type cell lines tested. Consistently, all predicted p53 REs in PRODH2 were poor matches to the p53 RE consensus and showed very weak responsiveness, only to p53, in the functional assay. Taken together, our results highlight that PRODH, but not PRODH2, expression is under the control of p53 family members, specifically p53 and p73. This supports a deeper link between proteins of the p53-family and metabolic pathways, as PRODH modulates the balance of proline and glutamate levels and those of their derivative alpha-keto-glutarate (α-KG under normal and pathological (tumor conditions.

  5. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells

    Science.gov (United States)

    Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807

  6. Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-small ka, CyrillicB target genes in human breast cancer

    NARCIS (Netherlands)

    Dalmases, A.; Gonzalez, I.; Menendez, S.; Arpi, O.; Corominas, J.; Servitja, S.; Tusquets, I.; Chamizo, C.; Rincon, R.; Espinosa, L.; Bigas, A.; Eroles, P.; Furriol, J.; Lluch, A.; Rovira, A.; Albanell, J.; Rojo, F.

    2014-01-01

    NF-small ka, CyrillicB has been linked to doxorubicin resistance in breast cancer patients. NF-small ka, CyrillicB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined; however its functional relevance at transcriptional level on NF-small

  7. Induction of p53-Specific Immunity by a p53 Synthetic Long Peptide Vaccine in Patients Treated for Metastatic Colorectal Cancer

    NARCIS (Netherlands)

    Speetjens, Frank M.; Kuppen, PeterJ. K.; Welters, Marij. J. P.; Essahsah, Farah; van den Brink, Anne Marie E. G. Voet; Lantrua, M. Graziella Kallenberg; Valentijn, A. Rob P. M.; Oostendorp, Jaap; Fathers, Lorraine M.; Nijman, Hans W.; Drijfhout, Jan W.; van de Velde, Cornelis J. H.; Melief, Cornelis J. M.; van der Burg, Sjoerd H.

    2009-01-01

    Purpose: The tumor-associated self-antigen p53 is commonly overexpressed in cancer, including colorectal cancer, and can serve as a target for immunotherapy. The safety and immunogenicity of a p53 synthetic long peptide (p53-SLP) vaccine were investigated in patients treated for metastatic

  8. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis

    Directory of Open Access Journals (Sweden)

    Xue Zhu

    2016-11-01

    Full Text Available Background: Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae, on the TNBC cell line MDA-MB-231. Methods: The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. Results: Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21WAF1, elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated and extrinsic (Fas/FasL-initiated apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. Conclusion: Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.

  9. TRIM65 negatively regulates p53 through ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Ma, Chengyuan [Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021 (China); Zhou, Tong [Department of Endocrinology, The First Hospital of Jilin University, Changchun 130021 (China); Liu, Ying [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Sun, Luyao [Department of Infectious Diseases, The First Hospital of Jilin University, Changchun 130021 (China); Yu, Zhenxiang, E-mail: zhenxiangyu2015@gmail.com [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China)

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediated degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.

  10. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  11. Indicadores de Prognóstico em Câncer de Mama com Axila Negativa: Receptor de Estrógeno e Expressão de P53 e de c-erbB-2 Prognostic Indicators In Lymph Node-Negative Breast Cancer: Estrogen Receptor and P53 and c-erbB-2 Protein Expression

    Directory of Open Access Journals (Sweden)

    Adriana Harter Teixeira Bolaséll

    2000-08-01

    dos linfonodos axilares tem pior prognóstico, em relação ao intervalo livre de doença, quando apresentam associação de tumor pouco diferenciado com RE negativo, p53 positivo e c-erbB-2 positivo.Purpose: to evaluate the prognostic value of estrogen receptor and p53 and c-erbB-2 proteins in lymph node-negative breast cancer. Methods: an immunohistochemical study was made in paraffin-embedded tissues from the file of the Instituto de Pesquisas Cito-Oncológicas of the Fundação Faculdade Federal de Ciências Médicas de Porto Alegre of fifty cases of postmenopausal women, who were treated at the Irmandade da Santa Casa de Misericórdia de Porto Alegre and at the Santa Rita Hospital from 1990 to 1994. For statistical analysis c² with Yates correction, as well as exact Fisher tests were used and Kaplan Meier curves compared with log-rank test. The mean follow-up of the patients was 3.6 years (3.1-4.5. Of the 50 cases, 14 showed recurrence during the period of follow-up. Results: the mean age was 61 years (46-78. Modified radical mastectomy was performed in 35 patients (70% and 15 (30% were submitted to lumpectomy/axillary dissection and postoperative radiation therapy. Fifty percent of the patients who showed recurrence did it in the first three years after the diagnosis. The mean size of the tumor was 2.8 cm (1.98-3.13 and the most frequent histological type was invasive ductal carcinoma of no special type (92%, according to the Bloom and Richardson graduation, 3 being stage I (6.6%, 35 stage II (76% and 8 stage III (17.4%. In the tumors with recurrence, there was no grade I, 9 stage II (25.7% and 3 stage III (37.5%. In relation to the prognosis, the disease-free interval was less when there was association of a poorly differentiated tumor with negative estrogen receptor (p = 0.006, positive p53 (p = 0.006 and positive c-erbB-2 (p = 0.001. Conclusion: postmenopausal women with lymph node-negative breast cancer showed worse prognosis in relation to disease

  12. Constitutive Photomorphogensis Protein1 (COP1 mediated p53 pathway and its oncogenic role

    Directory of Open Access Journals (Sweden)

    Md. Golam Rabbani

    2014-05-01

    Full Text Available We have reviewed the COP1 mediated tumor suppressor protein p53 pathway and its oncogenic role. COP1 is a negative regulator of p53 and acts as a pivotal controller of p53-Akt death-live switch (Protein kinase B. In presence of p53, COP1 is overexpressed in breast, ovarian, gastric cancers, even without MDM2 (Mouse double minute-2 amplification. Following DNA damage, COP1 is phosphorylated instantly by ATM (Ataxia telangiectasia mutated and degraded by 14-3-3 and #963; following nuclear export and enhancing ubiquitination. In ATM lacking cell, other kinases, i.e. ATR (ataxia telangiectasia and Rad3-related protein, Jun kinases and DNA-PK (DNA-dependent protein kinase cause COP1 and CSN3 (COP9 signalosome complex subunit-3 phosphorylation and initiate COP1's down regulation. Although, it has been previously found that co-knockout of MDM2 and COP1 enhance p53's half life by eight fold, the reason is still unknown. Additionally, while interacting with p53, COP1 upregulate MDM2's E3 ubiquitin ligase, Akt, CSN6 (COP9 signalosome 6 activity and inhibit 14-3-3 and #963;'s negative regulation on MDM2 and COP1 itself. Conclusively, there persists an amplification loop among COP1, MDM2, Akt and 14-3-3 and #963; to regulate p53's stability and activity. However, the role of another tumor suppressor PTEN (phosphatase and tensin homologue is yet to be discovered. This study provides insight on the molecular genetic pathways related to cancer and might be helpful for therapeutic inventions. [Biomed Res Ther 2014; 1(5.000: 142-151

  13. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Park, Jung Hyun; Han, Jae Woong; Kim, Jin-Hoi

    2015-01-01

    Recently, the use of nanotechnology has been expanding very rapidly in diverse areas of research, such as consumer products, energy, materials, and medicine. This is especially true in the area of nanomedicine, due to physicochemical properties, such as mechanical, chemical, magnetic, optical, and electrical properties, compared with bulk materials. The first goal of this study was to produce silver nanoparticles (AgNPs) using two different biological resources as reducing agents, Bacillus tequilensis and Calocybe indica. The second goal was to investigate the apoptotic potential of the as-prepared AgNPs in breast cancer cells. The final goal was to investigate the role of p53 in the cellular response elicited by AgNPs. The synthesis and characterization of AgNPs were assessed by various analytical techniques, including ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The apoptotic efficiency of AgNPs was confirmed using a series of assays, including cell viability, leakage of lactate dehydrogenase (LDH), production of reactive oxygen species (ROS), DNA fragmentation, mitochondrial membrane potential, and Western blot. The absorption spectrum of the yellow AgNPs showed the presence of nanoparticles. XRD and FTIR spectroscopy results confirmed the crystal structure and biomolecules involved in the synthesis of AgNPs. The AgNPs derived from bacteria and fungi showed distinguishable shapes, with an average size of 20 nm. Cell viability assays suggested a dose-dependent toxic effect of AgNPs, which was confirmed by leakage of LDH, activation of ROS, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in MDA-MB-231 breast cancer cells. Western blot analyses revealed that AgNPs induce cellular apoptosis via activation of p53, p-Erk1/2, and caspase-3 signaling, and downregulation of Bcl-2. Cells

  14. Cross-regulation of protein stability by p53 and nuclear receptor SHP.

    Directory of Open Access Journals (Sweden)

    Zhihong Yang

    Full Text Available We report here a novel interplay between tumor suppressor p53 and nuclear receptor SHP that controls p53 and SHP stability. Overexpression of p53 causes rapid SHP protein degradation, which does not require the presence of Mdm2 and is mediated by the proteosome pathway. Overexpressing SHP alone does not affect p53 stability. However, SHP destabilizes p53 by augmentation of Mdm2 ubiquitin ligase activity toward p53. The single amino acid substitution in the SHP protein SHPK170R increases SHP binding to p53 relative to SHP wild-type, whereas SHPG171A variant shows a diminished p53 binding. As a result of the cross-regulation, the tumor suppressor function of p53 and SHP in inhibition of colon cancer growth is compromised. Our findings reveal a unique scenario for a cross-inhibition between two tumor suppressors to keep their expression and function in check.

  15. Induction of PTEN-p53 crosstalk in mammary epithelial cells: A novel mechanism of breast cancer prevention by the dietary factor genistein

    Science.gov (United States)

    Consumption of soy foods either at an early age or for lifetime has been associated with reduced risk for developing breast cancer in humans and in animal models. However, this association continues to be controversial, and the precise mechanisms for protection remain elusive. Among the soy products...

  16. p53 isoform Δ113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish

    OpenAIRE

    Chen, Jun; Ng, Sok Meng; Chang, Changqing; Zhang, Zhenhai; Bourdon, Jean-Christophe; Lane, David P; Peng, Jinrong

    2009-01-01

    p53 is a well-known tumor suppressor and is also involved in processes of organismal aging and developmental control. A recent exciting development in the p53 field is the discovery of various p53 isoforms. One p53 isoform is human Δ133p53 and its zebrafish counterpart Δ113p53. These N-terminal-truncated p53 isoforms are initiated from an alternative p53 promoter, but their expression regulation and physiological significance at the organismal level are not well understood. We show here that ...

  17. p53: an overview of over two decades of study.

    Science.gov (United States)

    Cheah, P L; Looi, L M

    2001-06-01

    p53 is the most commonly mutated gene in human cancers. It encodes a 53 kilodalton protein with several evolutionarily conserved domains viz sequence-specific DNA binding, tetramerisation, SH3 molecule binding, C-terminal and N-terminal. Existing in the cell at a very low level and in a relatively inactive form, p53 protein is increased and activated during periods of cellular stress. Unlike other proteins, the increase in protein level and its activation result from modification of the protein rather than genetic transcriptional or translational upregulation. Normally, Mdm2 protein interacts with p53 protein and effectively targets it for ubiquitin proteolysis within an autoregulatory feedback loop. Phosphorylation at the N-terminus reduces p53 interaction with Mdm2 with a resultant increase in p53 protein level. Modification at the C and N termini via phosphorylation or acetylation upregulates binding to specific DNA targets increasing transcription of these downstream genes. The net effect of p53 protein increase and activation lies in arrest of the cell in cycle which allows time for repair of the incurred damage or apoptosis or death of the cell. Failure of these normal protective and adaptive mechanisms caused by mutation of the p53 gene with product of an abnormal protein, loss of p53 protein through interaction with and degradation by HPV E6 protein or overexpressed Mdm2 etc. permits DNA-damaged cells to continue replicating. Left unchecked, this frequently contributes to tumourigenesis. Various methods have been devised to screen for mutations of the p53 gene, still the most common source of failed p53 mechanism. These include immunohistochemical detection of mutated proteins or identification of altered electrophoretic mobility of mutated p53 sequences. Sequencing of the gene nonetheless remains the most accurate method for determination of mutation. Major advances have been made in p53 research but the most meaningful probably lies in the promising

  18. Plk1-mediated phosphorylation of Topors regulates p53 stability.

    Science.gov (United States)

    Yang, Xiaoming; Li, Hongchang; Zhou, Zinan; Wang, Wen-Horng; Deng, Anping; Andrisani, Ourania; Liu, Xiaoqi

    2009-07-10

    Polo-like kinase 1 (Plk1) overexpression is associated with tumorigenesis by an unknown mechanism. Likewise, Plk1 was suggested to act as a negative regulator of tumor suppressor p53, but the mechanism remains to be determined. Herein, we have identified topoisomerase I-binding protein (Topors), a p53-binding protein, as a Plk1 target. We show that Plk1 phosphorylates Topors on Ser(718) in vivo. Significantly, expression of a Plk1-unphosphorylatable Topors mutant (S718A) leads to a dramatic accumulation of p53 through inhibition of p53 degradation. Topors is an ubiquitin and small ubiquitin-like modifier ubiquitin-protein isopeptide ligase (SUMO E3) ligase. Plk1-mediated phosphorylation of Topors inhibits Topors-mediated sumoylation of p53, whereas p53 ubiquitination is enhanced, leading to p53 degradation. These results demonstrate that Plk1 modulates Topors activity in suppressing p53 function and identify a likely mechanism for the tumorigenic potential of Plk1.

  19. Plk1-mediated Phosphorylation of Topors Regulates p53 Stability*

    Science.gov (United States)

    Yang, Xiaoming; Li, Hongchang; Zhou, Zinan; Wang, Wen-Horng; Deng, Anping; Andrisani, Ourania; Liu, Xiaoqi

    2009-01-01

    Polo-like kinase 1 (Plk1) overexpression is associated with tumorigenesis by an unknown mechanism. Likewise, Plk1 was suggested to act as a negative regulator of tumor suppressor p53, but the mechanism remains to be determined. Herein, we have identified topoisomerase I-binding protein (Topors), a p53-binding protein, as a Plk1 target. We show that Plk1 phosphorylates Topors on Ser718 in vivo. Significantly, expression of a Plk1-unphosphorylatable Topors mutant (S718A) leads to a dramatic accumulation of p53 through inhibition of p53 degradation. Topors is an ubiquitin and small ubiquitin-like modifier ubiquitin-protein isopeptide ligase (SUMO E3) ligase. Plk1-mediated phosphorylation of Topors inhibits Topors-mediated sumoylation of p53, whereas p53 ubiquitination is enhanced, leading to p53 degradation. These results demonstrate that Plk1 modulates Topors activity in suppressing p53 function and identify a likely mechanism for the tumorigenic potential of Plk1. PMID:19473992

  20. FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma

    NARCIS (Netherlands)

    B.W. van Rhijn (Bas); Th.H. van der Kwast (Theo); A.N. Vis (André); W.J. Kirkels (Wim); E.R. Boeve; A.C. Jobsis; E.C. Zwarthoff (Ellen)

    2004-01-01

    textabstractFibroblast growth factor receptor 3 (FGFR3) and P53 mutations are frequently observed in bladder cancer. We here describe the distribution of FGFR3 mutations and P53 overexpression in 260 primary urothelial cell carcinomas. FGFR3 mutations were observed in 59% and P53

  1. Suppression of p53 activity through the cooperative action of Ski and histone deacetylase SIRT1.

    Science.gov (United States)

    Inoue, Yasumichi; Iemura, Shun-ichiro; Natsume, Tohru; Miyazawa, Keiji; Imamura, Takeshi

    2011-02-25

    Ski was originally identified as an oncogene based on the fact that Ski overexpression transformed chicken and quail embryo fibroblasts. Consistent with these proposed oncogenic roles, Ski is overexpressed in various human tumors. However, whether and how Ski functions in mammalian tumorigenesis has not been fully investigated. Here, we show that Ski interacts with p53 and attenuates the biological functions of p53. Ski overexpression attenuated p53-dependent transactivation, whereas Ski knockdown enhanced the transcriptional activity of p53. Interestingly, Ski bound to the histone deacetylase SIRT1 and stabilized p53-SIRT1 interaction to promote p53 deacetylation, which subsequently decreased the DNA binding activity of p53. Consistent with the ability of Ski to inactivate p53, overexpressing Ski desensitized cells to genotoxic drugs and Nutlin-3, a small-molecule antagonist of Mdm2 that stabilizes p53 and activates the p53 pathway, whereas knocking down Ski increased the cellular sensitivity to these agents. These results indicate that Ski negatively regulates p53 and suggest that the p53-Ski-SIRT1 axis is an attractive target for cancer therapy.

  2. Acetylation Is Indispensable for p53 Activation

    OpenAIRE

    Tang, Yi; Zhao, Wenhui; Chen, Yue; Zhao, Yingming; Gu, Wei

    2008-01-01

    The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its...

  3. Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion.

    Science.gov (United States)

    Jana, Kuladip; Jana, Narayan; De, Dipak Kumar; Guha, Sujoy Kumar

    2010-09-01

    Although it has been well established that spermatogenic cells undergo apoptosis when treated with ethanol, the molecular mechanisms behind it remain to be investigated. Adult male mice were given intra-peritoneal injection (IP) of ethanol at a dose of 3 g (15%, v/v) per kg body weight per day during the period of 14 days. Testicular androgenesis and apoptotic germ cell death, along with different interrelated proteins expression, were evaluated. Ethanol treatment induced apoptotic spermatogenic cell death with a decrease in the plasma and intra-testicular testosterone concentration. Western blot analysis revealed that repeated ethanol treatment decreased the expression of steroidogenic acute regulatory protein (StAR), 3 beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17 beta-hydroxysteroid dehydrogenase (17beta-HSD); increased the expression of active caspase-3, p53, Fas and Fas-L; and led to up-regulation of Bax/Bcl-2 ratio and translocation of cytochrome c from mitochondria to cytosol in testis. It has also been shown in our study that repeated ethanol treatment led to up-regulation of caspase-3, p53, Fas, Fas-L transcripts; increase in caspase-3 and caspase-8 activities; diminution of 3beta-HSD, 17beta-HSD, and GPx activities; decrease in the mitochondrial membrane potential along with ROS generation and depletion of glutathione pool in the testicular tissue. The present study has indicated that the ethanol treatment induced apoptosis in the mouse testis through the increased expression of Fas/Fas-L and p53, up-regulation of Bax/Bcl-2 ratio, cytosolic translocation of cytochrome c along with caspase-3 activation and glutathione depletion. (c) 2010 Wiley-Liss, Inc.

  4. Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression

    Directory of Open Access Journals (Sweden)

    Sun Boqiao

    2008-11-01

    Full Text Available Abstract Background Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells. Methods To further confirm WTH3's drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA strategy to knockdown its expression in HEK293 cells. In addition, since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method was utilized to examine the p53 transgene's influence on either the methylated or non-methylated WTH3 promoter. Results The results generated from the gene knockdown strategy showed that reduction of WTH3 expression increased MDR1 expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity. Conclusion Taken together, our studies provided further evidence that WTH3 played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized p53's positive impact on WTH3 expression.

  5. Pathologies Associated with the p53 Response

    Science.gov (United States)

    Gudkov, Andrei V.; Komarova, Elena A.

    2010-01-01

    Although p53 is a major cancer preventive factor, under certain extreme stress conditions it may induce severe pathologies. Analyses of animal models indicate that p53 is largely responsible for the toxicity of ionizing radiation or DNA damaging drugs contributing to hematopoietic component of acute radiation syndrome and largely determining severe adverse effects of cancer treatment. p53-mediated damage is strictly tissue specific and occurs in tissues prone to p53-dependent apoptosis (e.g., hematopoietic system and hair follicles); on the contrary, p53 can serve as a survival factor in tissues that respond to p53 activation by cell cycle arrest (e.g., endothelium of small intestine). There are multiple experimental indications that p53 contributes to pathogenicity of acute ischemic diseases. Temporary reversible suppression of p53 by small molecules can be an effective and safe approach to reduce severity of p53-associated pathologies. PMID:20595398

  6. Arginine methylation regulates the p53 response

    DEFF Research Database (Denmark)

    Jansson, Martin; Durant, Stephen T; Cho, Er-Chieh

    2008-01-01

    Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence...... on the p53 response. We show that the protein arginine methyltransferase (PRMT) 5, as a co-factor in a DNA damage responsive co-activator complex that interacts with p53, is responsible for methylating p53. Arginine methylation is regulated during the p53 response and affects the target gene specificity...... of p53. Furthermore, PRMT5 depletion triggers p53-dependent apoptosis. Thus, methylation on arginine residues is an underlying mechanism of control during the p53 response....

  7. The p53-MDM2 network: from oscillations to apoptosis

    Indian Academy of Sciences (India)

    2007-07-05

    Jul 5, 2007 ... Keywords. Apoptosis; cancer; cell cycle; MDM2 overexpression; tumour suppressor ... In this paper, we give an overview of our studies on the p53-MDM2 module and the associated pathways from a systems biology perspective. We discuss a number of key predictions, related to some specific aspects of ...

  8. p53 Acetylation: Regulation and Consequences

    Science.gov (United States)

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer. PMID:25545885

  9. p53 Acetylation: Regulation and Consequences

    Directory of Open Access Journals (Sweden)

    Sara M. Reed

    2014-12-01

    Full Text Available Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  10. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  11. p53 and disease: when the guardian angel fails.

    Science.gov (United States)

    Royds, J A; Iacopetta, B

    2006-06-01

    The p53 tumor suppressor gene (TP53) is mutated more often in human cancers than any other gene yet reported. Of importance, it is mutated frequently in the common human malignancies of the breast and colorectum and also, but less frequently, in other significant human cancers such as glioblastomas. There is also one inherited cancer predisposing syndrome called Li-Fraumeni that is caused by TP53 mutations. In this review, we discuss the significance of p53 mutations in some of the above tumors with a view to outlining how p53 contributes to malignant progression. We also discuss the usefulness of TP53 status as a prognostic marker and its role as a predictor of response to therapy. Finally, we outline some evidence that abnormalities in p53 function contribute to the etiology of other non-neoplastic diseases.

  12. Immunohistochemical detection of Mdm2 and p53 in feline mammary gland tumors.

    Science.gov (United States)

    Nakano, Masatoshi; Wu, Haiyan; Taura, Yasuho; Inoue, Makoto

    2006-05-01

    The objective of this study was to evaluate nuclear reactivity of Mdm2 and p53 proteins by immunohistochemical means in feline mammary gland tumors; 12 adenomas which included 6 adenomatous lesions obtained from the tissue adjacent to adenocarcinomas, and 22 adenocarcinomas. Seven adenomas and 18 adenocarcinomas showed moderate or marked Mdm2 reactivity. Sixteen adenocarcinomas showed moderate to marked p53 reactivity, but 9 adenomas showed none. Discordant Mdm2 overexpression was found in 5 adenomas and 3 adenocarcinomas, although co-overexpression of Mdm2 and p53 was found in 15 adenocarcinomas. These results suggest that nuclear overexpression of Mdm2 is present in the tumors of early stage without p53 overexpression and related to feline mammary gland tumorigenesis. Nuclear overexpression of p53 is more frequent in adenocarcinomas, but not in adenomas.

  13. Synthesis, characterization, and in vitro evaluation of targeted gold nanoshelled poly(d,l-lactide-co-glycolide) nanoparticles carrying anti p53 antibody as a theranostic agent for ultrasound contrast imaging and photothermal therapy.

    Science.gov (United States)

    Xu, Li; Wan, Caifeng; Du, Jing; Li, Hongli; Liu, Xuesong; Yang, Hong; Li, Fenghua

    2017-03-01

    Breast cancer is the leading cause of cancer-related deaths in women and earlier detection can substantially reduce deaths from breast cancer. Polymers with targeted ligands are widely used in the field of molecular ultrasound imaging and targeted tumor therapy. In our study, the nanotheranostic agent was fabricated through filling perfluoropropane (C3F8) into poly(d,l-lactic-co-glycolic acid) nanoparticles (PLGA NPs), followed by the formation of gold nanoshell on the surface, then conjugated with anti p53 antibody which has high specificity with the p53 protein overexpressing in breast cancer. The average diameter of the gold nanoshelled PLGA NPs carrying anti p53 antibody (p53-PLGA@Au NPs) was 247 ± 108.2 nm. The p53-PLGA@Au NPs had well-defined spherical morphology and hollow interiors observed by electron microscope, and had a good photothermal effect under the irradiation of an 808 nm laser. The results of laser scanning confocal microscope (LSCM) and flow cytometer (FCM) indicated the specific targeting of p53-PLGA@Au NPs conjugating with breast cancer MCF-7 cells overexpressing p53 protein in vitro. Also the ultrasound imaging experiments in vitro showed that p53-PLGA@Au NPs were suitable for ultrasound contrast imaging. In conclusion, the p53-PLGA@Au NPs are demonstrated to be novel targeted UCAs and may have potential applications in the early diagnosis and targeted near-infrared (NIR) photothermal therapy of breast cancer in the future.

  14. Gene p53 mutations, protein p53, and anti-p53 antibodies as biomarkers of cancer process.

    Science.gov (United States)

    Lutz, Waldemar; Nowakowska-Swirta, Ewa

    2002-01-01

    The finding that gene mutations and changes in their expression form the basis of cancer processes, has prompted molecular epidemiologists to use biomarkers for detecting damaged genes or proteins synthesized under their control in easily available cellular material or systemic liquids. Mutations in the suppressor gen p53 are thought to be essential for cancer development. This gen is one of the most important regulators of transcription, cellular cycle, DNA repair and apoptosis detected till now. Inactivation of gene p53 leads to uncontrolled cell divisions, and further to transformation of normal cells into the carcinous ones. Observations that mutations in gene p53 appear under conditions of occupational and environmental exposures to chemical and physical carcinogens, such as vinyl chloride, radon, or aflatoxin B1, have proved to be of enormous importance for the occupational and environmental health. Changes in expression of gene p53, and also its mutations, cause variations of cellular protein p53 concentration. Higher cellular protein p53 levels are associated with increased protein transfer to the extracellular liquid and to blood. It has been observed that increased blood serum protein p53 concentrations may have a prognostic value in early diagnosis of lung cancer. The results of a number of studies confirm that accumulation of a mutated form of protein p53, and presumably also large quantities of wild forms of that protein in the cells, may be a factor that triggers the production of anti-p53 antibodies. Statistical analysis showed that anti-p53 antibodies can be regarded as a specific biomarker of cancer process. The prevalence of anti-p53 antibodies correlated with the degree of cancer malignancy. The increased incidence of anti-p53 antibodies was also associated with higher frequency of mutations in gene p53. There are some reports confirming that anti-p53 antibodies emerging in blood serum in the subclinical phase of cancer development may be

  15. The p53/mouse double minute 2 homolog complex deregulation in merlin-deficient tumours.

    Science.gov (United States)

    Ammoun, Sylwia; Schmid, Marei Caroline; Zhou, Lu; Hilton, David A; Barczyk, Magdalena; Hanemann, Clemens Oliver

    2015-01-01

    Deficiency of the tumour suppressor merlin leads to the development of schwannomas, meningiomas and ependymomas occurring spontaneously or as a part of the hereditary disease Neurofibromatosis type 2 (NF2). Merlin loss is also found in a proportion of other cancers like mesothelioma, melanoma, breast cancer and glioblastoma. The tumour suppressor/transcription factor p53 regulates proliferation, survival and differentiation and its deficiency plays a role in the development of many tumours. 53 can be negatively regulated by FAK, PI3K/AKT and MDM2 and possibly positively regulated by merlin in different cell lines. In this study we investigated the role of p53 in merlin-deficient tumours. Using our in vitro model of primary human schwannoma cells we have previously demonstrated that FAK is overexpressed/activated and localises into the nucleus of schwannoma cells increasing proliferation. AKT is strongly activated via platelet-derived growth factor (PDGF) - and insulin-like growth factor 1 (IGF1) - receptors increasing survival. Here we investigated p53 regulation and its role in proliferation and survival of human primary schwannoma cells using western blotting, immunocytochemistry, immunohistochemistry and proliferation, survival and transcription factor assays. In human primary schwannoma cells p53 was found to be downregulated while MDM2 was upregulated leading to increased cell proliferation and survival. p53 is regulated by merlin involving FAK, AKT and MDM2. Merlin reintroduction into schwannoma cells increased p53 levels and activity, and treatment with Nutlin-3, a drug which increases p53 stability by disrupting the p53/MDM2 complex, decreased tumour growth and reduced cell survival. These findings are important to dissect the mechanisms responsible for the development of merlin-deficient tumours and to identify new therapeutic targets. We suggest that Nutlin-3, possibly in combination with FAK or PI3K inhibitors, can be employed as a novel treatment for

  16. PTEN expression as a predictor for the response to trastuzumab-based therapy in Her-2 overexpressing metastatic breast cancer

    Science.gov (United States)

    Tan, Yen Y.; Fuchs, Eva-Maria; Hudelist, Gernot; Köstler, Wolfgang J.; Reiner, Angelika; Leser, Carmen; Salama, Mohamed; Attems, Johannes; Deutschmann, Christine; Zielinski, Christoph C.; Singer, Christian F.

    2017-01-01

    Background Even though trastuzumab is an effective therapy in early stage Her-2+ breast cancer, 40–50% of advanced Her-2+ breast cancer patients develop trastuzumab resistance. A potential resistance mechanism is aberrant downstream signal transmission due to loss of phosphatase and tensin homologue (PTEN). This study investigated the relationship between the expression of PTEN and trastuzumab response in Her-2 overexpressing metastatic breast cancer patients. Methods Between 2000 and 2007, 164 patients with Her-2+ metastatic breast cancer received trastuzumab-based therapy in our institution. We analyzed PTEN status by immunohistochemistry of 115 available tumor tissues and analyzed associations with other histopathological parameters, response rate, progression free survival (PFS) and overall survival (OS) with a median follow-up of 60 months. Results Eighty patients were PTEN positive (69.6%) and 35 patients PTEN negative (30.4%). We found a significant association of the expression of PTEN and p53 (p = 0.041), while there was no association with grading, hormone receptor status, IGFR or MIB. We found significantly more cases with progressive disease under trastuzumab-based therapy in patients with PTEN positive breast cancers (p = 0.018), while there was no significant correlation with PFS or OS. Conclusion In Her-2-positive metastatic breast cancers, PTEN positivity was significantly associated with progressive disease, but not with PFS or OS. PMID:28253285

  17. PTEN expression as a predictor for the response to trastuzumab-based therapy in Her-2 overexpressing metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Daphne Gschwantler-Kaulich

    Full Text Available Even though trastuzumab is an effective therapy in early stage Her-2+ breast cancer, 40-50% of advanced Her-2+ breast cancer patients develop trastuzumab resistance. A potential resistance mechanism is aberrant downstream signal transmission due to loss of phosphatase and tensin homologue (PTEN. This study investigated the relationship between the expression of PTEN and trastuzumab response in Her-2 overexpressing metastatic breast cancer patients.Between 2000 and 2007, 164 patients with Her-2+ metastatic breast cancer received trastuzumab-based therapy in our institution. We analyzed PTEN status by immunohistochemistry of 115 available tumor tissues and analyzed associations with other histopathological parameters, response rate, progression free survival (PFS and overall survival (OS with a median follow-up of 60 months.Eighty patients were PTEN positive (69.6% and 35 patients PTEN negative (30.4%. We found a significant association of the expression of PTEN and p53 (p = 0.041, while there was no association with grading, hormone receptor status, IGFR or MIB. We found significantly more cases with progressive disease under trastuzumab-based therapy in patients with PTEN positive breast cancers (p = 0.018, while there was no significant correlation with PFS or OS.In Her-2-positive metastatic breast cancers, PTEN positivity was significantly associated with progressive disease, but not with PFS or OS.

  18. PTEN expression as a predictor for the response to trastuzumab-based therapy in Her-2 overexpressing metastatic breast cancer.

    Science.gov (United States)

    Gschwantler-Kaulich, Daphne; Tan, Yen Y; Fuchs, Eva-Maria; Hudelist, Gernot; Köstler, Wolfgang J; Reiner, Angelika; Leser, Carmen; Salama, Mohamed; Attems, Johannes; Deutschmann, Christine; Zielinski, Christoph C; Singer, Christian F

    2017-01-01

    Even though trastuzumab is an effective therapy in early stage Her-2+ breast cancer, 40-50% of advanced Her-2+ breast cancer patients develop trastuzumab resistance. A potential resistance mechanism is aberrant downstream signal transmission due to loss of phosphatase and tensin homologue (PTEN). This study investigated the relationship between the expression of PTEN and trastuzumab response in Her-2 overexpressing metastatic breast cancer patients. Between 2000 and 2007, 164 patients with Her-2+ metastatic breast cancer received trastuzumab-based therapy in our institution. We analyzed PTEN status by immunohistochemistry of 115 available tumor tissues and analyzed associations with other histopathological parameters, response rate, progression free survival (PFS) and overall survival (OS) with a median follow-up of 60 months. Eighty patients were PTEN positive (69.6%) and 35 patients PTEN negative (30.4%). We found a significant association of the expression of PTEN and p53 (p = 0.041), while there was no association with grading, hormone receptor status, IGFR or MIB. We found significantly more cases with progressive disease under trastuzumab-based therapy in patients with PTEN positive breast cancers (p = 0.018), while there was no significant correlation with PFS or OS. In Her-2-positive metastatic breast cancers, PTEN positivity was significantly associated with progressive disease, but not with PFS or OS.

  19. BRCA1-IRIS overexpression promotes formation of aggressive breast cancers.

    Directory of Open Access Journals (Sweden)

    Yoshiko Shimizu

    Full Text Available INTRODUCTION: Women with HER2(+ or triple negative/basal-like (TN/BL breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2(+ and/or TN/BL tumors. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/Ras(V12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU, followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors. High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2(+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA. CONCLUSION/SIGNIFICANCE: BRCA1-IRIS overexpression triggers aggressive

  20. Identification of p53 in mitochondria.

    Science.gov (United States)

    Vaseva, Angelina V; Moll, Ute M

    2013-01-01

    p53 is a master regulator of cell death pathways and has transcription-dependent and transcription-independent modes of action. Mitochondria are major signal transducers in apoptosis and are critical for p53-dependent cell death. Our lab and others have discovered that a fraction of stress-induced wild-type p53 protein rapidly translocates to mitochondria upon various stress stimuli and exerts p53-dependent apoptosis. Suborganellar localization by various methods shows that p53 localizes to the surface of mitochondria. Direct targeting of p53 to mitochondria is sufficient to induce apoptosis in p53-null cells, without requiring further DNA damage. Recently, p53 has been also shown to localize to other mitochondrial compartments such as the mitochondrial matrix where it plays a role in maintaining mitochondrial genome integrity. Here, we describe subcellular fractionation as a classic technique for detecting mitochondrial p53 in cell extracts. It consists of cell homogenization by hypo-osmotic swelling, removal of nuclear components by low-speed centrifugation, and mitochondrial isolation by a discontinuous sucrose density gradient. Additionally, we describe a method for submitochondrial fractionation, performed by phosphate buffer mediated swelling/shrinking. p53 and other mitochondrial proteins can then be detected by standard immunoblotting procedures. The quality of mitochondrial isolates/subfractions can be verified for purity and intactness.

  1. Inhibition of p53-Dependent, but Not p53-Independent, Cell Death by U19 Protein from Human Herpesvirus 6B

    Science.gov (United States)

    Kofod-Olsen, Emil; Møller, Janni M. L.; Schleimann, Mariane H.; Bundgaard, Bettina; Bak, Rasmus O.; Øster, Bodil; Mikkelsen, Jacob G.; Hupp, Ted; Höllsberg, Per

    2013-01-01

    Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after γ irradiation in both permissive and non-permissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following γ irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein. PMID:23555634

  2. Mutant p53 as a target for cancer treatment.

    Science.gov (United States)

    Duffy, Michael J; Synnott, Naoise C; Crown, John

    2017-09-01

    TP53 (p53) is the single most frequently altered gene in human cancers, with mutations being present in approximately 50% of all invasive tumours. However, in some of the most difficult-to-treat cancers such as high-grade serous ovarian cancers, triple-negative breast cancers, oesophageal cancers, small-cell lung cancers and squamous cell lung cancers, p53 is mutated in at least 80% of samples. Clearly, therefore, mutant p53 protein is an important candidate target against which new anticancer treatments could be developed. Although traditionally regarded as undruggable, several compounds such as p53 reactivation and induction of massive apoptosis-1 (PRIMA-1), a methylated derivative and structural analogue of PRIMA-1, i.e. APR-246, 2-sulfonylpyrimidines such as PK11007, pyrazoles such as PK7088, zinc metallochaperone-1 (ZMC1), a third generation thiosemicarbazone developed by Critical Outcome Techonologies Inc. (COTI-2) as well as specific peptides have recently been reported to reactive mutant p53 protein by converting it to a form exhibiting wild-type properties. Consistent with the reactivation of mutant p53, these compounds have been shown to exhibit anticancer activity in preclinical models expressing mutant p53. To date, two of these compounds, i.e. APR-246 and COTI-2 have progressed to clinical trials. A phase I/IIa clinical trial with APR-246 reported no major adverse effect. Currently, APR-246 is undergoing a phase Ib/II trial in patients with advanced serous ovarian cancer, while COTI-2 is being evaluated in a phase I trial in patients with advanced gynaecological cancers. It remains to be shown however, whether any mutant p53 reactivating compound has efficacy for the treatment of human cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dial 9-1-1 for p53: Mechanisms of p53 Activation by Cellular Stress

    OpenAIRE

    Ljungman, Mats

    2000-01-01

    The tumor suppressor protein, p53, is part of the cell's emergency team that is called upon following cellular insult. How do cells sense DNA damage and other cellular stresses and what signal transduction pathways are used to alert p53? How is the resulting nuclear accumulation of p53 accomplished and what determines the outcome of p53 induction? Many posttranslational modifications of p53, such as phosphorylation, dephosphorylation, acetylation and ribosylation, have been shown to occur fol...

  4. p53 mutations in urinary bladder cancer

    OpenAIRE

    Berggren, P; Steineck, G; Adolfsson, J; Hansson, J; Jansson, O; Larsson, P; Sandstedt, B; Wijkstr?m, H; Hemminki, K

    2001-01-01

    We have screened for mutations in exons 5?8 of the p53 gene in a series consisting of 189 patients with urinary bladder neoplasms. 82 (44%) neoplasms were lowly malignant (Ta, G1?G2a) and 106 (56%) were highly malignant (G2b?G4 or ?T1). Only one mutation was in a lowly malignant urinary bladder neoplasm, in total we found p53 mutations in 26 (14%) of the 189 patients. 30% of the samples had loss of heterozygosity (LOH) for one or both of the p53 exogenic (CA)n repeat and the p53 intragenic (A...

  5. Lysosomal destabilization in p53-induced apoptosis

    OpenAIRE

    Yuan, Xi-Ming; Li, Wei; Dalen, Helge; Lotem, Joseph; Kama, Rachel; Sachs, Leo; Brunk, Ulf T.

    2002-01-01

    The tumor suppressor wild-type p53 can induce apoptosis. M1-t-p53 myeloid leukemic cells have a temperature-sensitive p53 protein that changes its conformation to wild-type p53 after transfer from 37°C to 32°C. We have now found that these cells showed an early lysosomal rupture after transfer to 32°C. Mitochondrial damage, including decreased membrane potential and release of cytochrome c, and the appearance of apoptotic cells occurred later. Lysosomal rupture, mitochondrial damage, and apop...

  6. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  7. Assessment of the potential diagnostic value of serum p53 antibody for cancer: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available BACKGROUND: Mutant p53 protein over-expression has been reported to induce serum antibodies against p53. We assessed the diagnostic precision of serum p53 (s-p53 antibodies for diagnosis of cancer patients and compared the positive rates of the s-p53 antibody in different types of cancers. METHODS: We systematically searched PubMed and Embase, through May 31, 2012. Studies were assessed for quality using QUADAS (quality assessment of studies of diagnostic accuracy. The positive likelihood ratio (PLR and negative likelihood ratio (NLR were pooled separately and compared with overall accuracy measures using diagnostic odds ratios (DORs and Area under the curve(AUC. Meta regression and subgroup analyses were done, and heterogeneity and publication bias were assessed. RESULTS: Of 1089 studies initially identified, 100 eligible studies with 23 different types of tumor met the inclusion criteria for the meta-analysis (cases = 15953, controls = 8694. However, we could conduct independent meta analysis on only 13 of 36 types of tumors. Approximately 56% (56/100 of the included studies were of high quality (QUADAS score≥8. The summary estimates for quantitative analysis of serum p53 antibody in the diagnosis of cancers were: PLR 5.75 (95% CI: 4.60-7.19, NLR 0.81 (95%CI: 0.79-0.83 and DOR 7.56 (95% CI: 6.02-9.50. However, for the 13 types of cancers on which meta-analysis was conducted, the ranges for PLR (2.33-11.05, NLR (0.74-0.97, DOR (2.86-13.80, AUC(0.29-0.81, and positive rate (4.47%-28.36% indicated significant heterogeneity. We found that breast, colorectal, esophageal, gastric, hepatic, lymphoma, lung and ovarian cancer had relatively reasonable diagnostic accuracy. The remaining results of the five types of cancers suggested that s-p53 antibody had limited value. CONCLUSIONS: The current evidence suggests that s-p53 antibody has potential diagnostic value for cancer, especially for breast, colorectal, esophageal, gastric, hepatic

  8. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhendong, E-mail: zdyu@hotmail.com [Department of Clinical laboratory, Peking University Shenzhen Hospital, Guangdong (China); Wang, Hao [Department of pathology, The Chinese University of Hong Kong, Hong Kong (China); Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li [Department of Clinical laboratory, Peking University Shenzhen Hospital, Guangdong (China); Li, Pengfei, E-mail: lipengfei@cuhk.edu.hk [Department of pathology, The Chinese University of Hong Kong, Hong Kong (China)

    2009-09-04

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  9. Inhibiting p53 Acetylation Reduces Cancer Chemotoxicity.

    Science.gov (United States)

    Zheng, Shunsheng; Koh, Xin Yu; Goh, Hui Chin; Rahmat, Siti Aishah B; Hwang, Le-Ann; Lane, David P

    2017-08-15

    Chemotoxicity due to unwanted p53 activation in the bone marrow remains an unmet clinical challenge. Doxorubicin, a first-line chemotherapy drug, often causes myelosuppression in patients, thus limiting its effectiveness. In this study, we discovered that C646, a reversible p300 inhibitor, downregulates p53 transcription and selectively protects noncancerous cells from p53-dependent apoptosis. C646 treatment blocked acetylation of specific lysine residues that regulate p53 activity. Exploitation of differential p53 genetic backgrounds between human hematopoietic and colorectal cancer cells improved the therapeutic index of doxorubicin with C646 cotreatment. C646 administration in mice afflicted with p53-mutant tumors protected them from doxorubicin-induced neutropenia and anemia while retaining antitumor efficacy. We deduce that temporary and reversible inhibition of p53 acetylation in cancer subjects, especially those with p53-mutant tumors, may protect them from severe chemotoxicity while allowing treatment regimens to effectively proceed. Cancer Res; 77(16); 4342-54. ©2017 AACR. ©2017 American Association for Cancer Research.

  10. Expression of p53 in oligodendrogliomas

    NARCIS (Netherlands)

    J.M. Kros (Johan); J.J.C.J. Godschalk (J. J C J); K.K. Krishnadath (Kausilia); C.G. van Eden (C.)

    1993-01-01

    textabstractThe expression of the nuclear protein p53 in oligodendrogliomas was investigated by immunohistochemistry, using a monoclonal anti-p53 antibody (DO-7) on formalin-fixed, paraffin-embedded material in 84 histologically verified cases, and compared with the histopathological grade and

  11. Microbial Regulation of p53 Tumor Suppressor.

    Directory of Open Access Journals (Sweden)

    Alexander I Zaika

    2015-09-01

    Full Text Available p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40. Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections.

  12. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  13. p53, oxidative stress, and aging.

    Science.gov (United States)

    Liu, Dongping; Xu, Yang

    2011-09-15

    Mammalian aging is associated with elevated levels of oxidative damage of DNA, proteins, and lipids as a result of unbalanced prooxidant and antioxidant activities. Accumulating evidence indicates that oxidative stress is a major physiological inducer of aging. p53, the guardian of the genome that is important for cellular responses to oxidative stresses, might be a key coordinator of oxidative stress and aging. In response to low levels of oxidative stresses, p53 exhibits antioxidant activities to eliminate oxidative stress and ensure cell survival; in response to high levels of oxidative stresses, p53 exhibits pro-oxidative activities that further increase the levels of stresses, leading to cell death. p53 accomplishes these context-dependent roles by regulating the expression of a panel of genes involved in cellular responses to oxidative stresses and by modulating other pathways important for oxidative stress responses. The mechanism that switches p53 function from antioxidant to prooxidant remains unclear, but could account for the findings that increased p53 activities have been linked to both accelerated aging and increased life span in mice. Therefore, a balance of p53 antioxidant and prooxidant activities in response to oxidative stresses could be important for longevity by suppressing the accumulation of oxidative stresses and DNA damage.

  14. miR-34 and p53: New Insights into a Complex Functional Relationship.

    Directory of Open Access Journals (Sweden)

    Francisco Navarro

    Full Text Available miR-34, a tumor suppressor miRNA family transcriptionally activated by p53, is considered a critical mediator of p53 function. However, knockout of the mouse miR-34 family has little or no effect on the p53 response. The relative contribution of different miR-34 family members to p53 function or how much p53 relies on miR-34 in human cells is unclear. Here we show that miR-34a has a complex effect on the p53 response in human cells. In HCT116 cells miR-34a overexpression enhances p53 transcriptional activity, but the closely related family members, miR-34b and miR-34c, even when over-expressed, have little effect. Both TP53 itself and MDM4, a strong p53 transactivation inhibitor, are direct targets of miR-34a. The genes regulated by miR-34a also include four other post-translational inhibitors of p53. miR-34a overexpression leads to variable effects on p53 levels in p53-sufficient human cancer cell lines. In HCT116, miR-34a overexpression increases p53 protein levels and stability. About a quarter of all mRNAs that participate in the human p53 network bind to biotinylated miR-34a, suggesting that many are direct miR-34a targets. However, only about a fifth of the mRNAs that bind to miR-34a also bind to miR-34b or miR-34c. Two human cell lines knocked out for miR-34a have unimpaired p53-mediated responses to genotoxic stress, like mouse cells. The complex positive and negative effects of miR-34 on the p53 network suggest that rather than simply promoting the p53 response, miR-34a might act at a systems level to stabilize the robustness of the p53 response to genotoxic stress.

  15. Mechanisms of p53-Mediated Apoptosis

    Science.gov (United States)

    2007-03-01

    terminus. Cell 81:1021–1029. 27. Juan , L. J., W. J. Shia, M. H. Chen, W. M. Yang, E. Seto, Y. S. Lin, and C. W. VOL. 25, 2005 THE C TERMINUS REGULATES p53...functionally resembles p53. Nat. Med. 4:839–843. 45. Pariat, M., S. Carillo, M. Molinari, C. Salvat , L. Debussche, L. Bracco, J. Milner, and M. Piechaczyk. 1997...apoptosis. Nature 2000;408:377-81. 27. Juan LJ, Shia WJ, Chen MH, et al. Histone deacetylases specifically down-regulate p53- dependent gene

  16. Small-molecule CB002 restores p53 pathway signaling and represses colorectal cancer cell growth.

    Science.gov (United States)

    Richardson, Colby; Zhang, Shengliang; Hernandez Borrero, Liz J; El-Deiry, Wafik S

    2017-09-17

    Much effort is currently focused on the p53 pathway. p53 is a key tumor suppressor, which is mutated or lost in many human cancers. Restoration of the p53 pathway holds the potential to induce selective cell death in tumor cells without harming normal cells that have intact p53 pathways. Most tumor cells express mutated p53 or suppress p53 by overexpression of MDM2. In this study, a compound referred to as CB002 with one closely related compound from the Chembridge library were evaluated for tumor cytotoxicity without affecting normal cells by restoration of the p53 pathway. A decrease of mutant p53 protein expression, restoration of inactivated p53, or some activation of p73 are candidate mechanisms this agent could cause tumor cell apoptosis and growth arrest. We further show that CB002 activates p53 pathway signaling in part via p73 in p53 mutant cancer cell lines. However, it is important to note that we have not established a role for p73 in the anti-tumor effect of CB002 or R1. CB002 causes tumor cell death with synergistic effects with traditional chemotherapeutics CPT-11 and 5-FU.

  17. Immunohistochemical detection of P53 and Mdm2 in vitiligo

    Directory of Open Access Journals (Sweden)

    Ola A Bakry

    2012-01-01

    Full Text Available Background: Vitiligo is a common depigmented skin disorder that is caused by selective destruction of melanocytes. It is generally accepted that the main function of melanin resides in the protection of skin cells against the deleterious effect of ultraviolet rays (UVRs. Association of vitiligo and skin cancer has been a subject of controversy. Occurrence of skin cancer in long-lasting vitiligo is rare despite multiple evidences of DNA damage in vitiliginous skin. Aim: To detect the expression of P53 and Mdm2 proteins in both depigmented and normally pigmented skin of vitiligo patients and to compare it to control subjects suffering from nonmelanoma skin cancer (NMSC. Materials and Methods: Thirty-four patients with vitiligo and 30 age and sex-matched patients with nodulo-ulcerative basal cell carcinoma (BCC as a control group were selected. Both patients and control subjects had outdoor occupations. Skin biopsies were taken from each case and control subjects. Histopathological examination of Hematoxylin and eosin-stained sections was done. Expression of P53 and Mdm2 proteins were examined immunohistochemically. Results: Both P53 and Mdm2 were strongly expressed in depigmented as well as normally pigmented skin of vitiligo patients. This expression involved the epidermis, skin adnexa and blood vessels with significant differences between cases and controls. Conclusions: The overexpression of P53 and Mdm2 proteins in both normally pigmented and depigmented skin of patients with vitiligo could contribute to the decreased occurrence of actinic damage and NMSC in these patients.

  18. p53 switches off pluripotency on differentiation.

    Science.gov (United States)

    Lin, Tongxiang; Lin, Yi

    2017-02-28

    The role of p53 as "a guardian of the genome" has been well established in somatic cells. However, its role in pluripotent stem cells remains much more elusive. Here, we discuss research progress in understanding the role of p53 in pluripotent stem cells and in pluripotent stem cell-like cancer stem cells. The p53 protein, which plays a key role in embryonic stem cells, was first discovered in 2005. Landmark studies of p53-related reprogramming elucidated this protein's importance in induced pluripotent stem cells in 2009. The p53-related safety concerns in pluripotent stem cells have been raised in stem cell-based therapy although the use of iPSCs in therapeutic application is promising. Because cancer stem cells have profiles similar to those of pluripotent stem cells, we also describe potential strategies for studies in cancer stem cells and cancer treatments. The new discoveries of p53 family proteins in pluripotent stem cells have made possible stable progress in stem cell transplantation efficiency and safety, as well as treatment strategies targeting cancer stem cells based on pluripotent stem cell technology.

  19. The MDM2-p53 pathway revisited

    Science.gov (United States)

    Nag, Subhasree; Qin, Jiangjiang; Srivenugopal, Kalkunte S.; Wang, Minghai; Zhang, Ruiwen

    2013-01-01

    The p53 tumor suppressor is a key transcription factor regulating cellular pathways such as DNA repair, cell cycle, apoptosis, angiogenesis, and senescence. It acts as an important defense mechanism against cancer onset and progression, and is negatively regulated by interaction with the oncoprotein MDM2. In human cancers, the TP53 gene is frequently mutated or deleted, or the wild-type p53 function is inhibited by high levels of MDM2, leading to downregulation of tumor suppressive p53 pathways. Thus, the inhibition of MDM2-p53 interaction presents an appealing therapeutic strategy for the treatment of cancer. However, recent studies have revealed the MDM2-p53 interaction to be more complex involving multiple levels of regulation by numerous cellular proteins and epigenetic mechanisms, making it imperative to reexamine this intricate interplay from a holistic viewpoint. This review aims to highlight the multifaceted network of molecules regulating the MDM2-p53 axis to better understand the pathway and exploit it for anticancer therapy. PMID:23885265

  20. Peptide and peptidomimetic leads for the inhibition of MDM2-mediated ubiquitination of p53

    OpenAIRE

    Petitjean, Nicolas

    2015-01-01

    The tumour suppressor p53 is essential for genome stability and loss of its function can lead to human cancer. The functional roles of p53 are regulated by a variety of mechanisms, some of which are not well understood. However, the murine double minute 2 (MDM2) protein, a major negative regulator of p53, has been found to be overexpressed in many human cancer cell lines in which p53 was not mutated; thus establishing MDM2 as a target for cancer therapeutics. MDM2 is defined as...

  1. Rewired Notch/p53 by Numb'ing Mdm2.

    Science.gov (United States)

    Kim, Hyungsoo; Ronai, Ze'ev A

    2018-01-16

    Although numerous pathways are known to control the tumor suppressor protein p53, coordinated regulation of the p53-Notch axis by Numb may have an even more remarkable impact. In this issue, Colaluca at al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201709092) reveal an unexpected role of a newly characterized Numb splice variant in the regulation of p53, which may have significant implications for therapeutic intervention in breast cancer. © 2018 Kim and Ronai.

  2. Mutant p53 Amplifies Epidermal Growth Factor Receptor Family Signaling to Promote Mammary Tumorigenesis.

    Science.gov (United States)

    Yallowitz, Alisha R; Li, Dun; Lobko, Anthony; Mott, Daniel; Nemajerova, Alice; Marchenko, Natalia

    2015-04-01

    The EGFR family (ErbB2/Her2 and EGFR/ErbB1/Her1) often modulates the transcriptional program involved in promoting mammary tumorigenesis. In humans, the majority of ErbB2-positive sporadic breast cancers harbor p53 mutations, which correlate with poor prognosis. Also, the extremely high incidence of ErbB2-positive breast cancer in women with p53 germline mutations (Li-Fraumeni syndrome) suggests a key role of mutant p53 specifically in ErbB2-mediated mammary tumorigenesis. To examine the role of mutant p53 during ErbB2-mediated mammary tumorigenesis, a mutant p53 allele (R172H) was introduced into the (MMTV)-ErbB2/Neu mouse model system. Interestingly, we show in heterozygous p53 mice that mutant p53 R172H is a more potent activator of ErbB2-mediated mammary tumorigenesis than simple loss of p53. The more aggressive disease in mutant p53 animals was reflected by earlier tumor onset, increased mammary tumor multiplicity, and shorter survival. These in vivo and in vitro data provide mechanistic evidence that mutant p53 amplifies ErbB2 and EGFR signaling to promote the expansion of mammary stem cells and induce cell proliferation. This study identifies mutant p53 as an essential player in ErbB2 and EGFR-mediated mammary tumorigenesis and indicates the potential translational importance of targeting mutant p53 in this subset of patients with breast cancer. ©2015 American Association for Cancer Research.

  3. Mdm2 RING mutation enhances p53 transcriptional activity and p53-p300 interaction.

    Directory of Open Access Journals (Sweden)

    Hilary V Clegg

    Full Text Available The p53 transcription factor and tumor suppressor is regulated primarily by the E3 ubiquitin ligase Mdm2, which ubiquitinates p53 to target it for proteasomal degradation. Aside from its ubiquitin ligase function, Mdm2 has been believed to be capable of suppressing p53's transcriptional activity by binding with and masking the transactivation domain of p53. The ability of Mdm2 to restrain p53 activity by binding alone, without ubiquitination, was challenged by a 2007 study using a knockin mouse harboring a single cysteine-to-alanine point mutation (C462A in Mdm2's RING domain. Mouse embryonic fibroblasts with this mutation, which abrogates Mdm2's E3 ubiquitin ligase activity without affecting its ability to bind with p53, were unable to suppress p53 activity. In this study, we utilized the Mdm2(C462A mouse model to characterize in further detail the role of Mdm2's RING domain in the control of p53. Here, we show in vivo that the Mdm2(C462A protein not only fails to suppress p53, but compared to the complete absence of Mdm2, Mdm2(C462A actually enhances p53 transcriptional activity toward p53 target genes p21/CDKN1A, MDM2, BAX, NOXA, and 14-3-3σ. In addition, we found that Mdm2(C462A facilitates the interaction between p53 and the acetyltransferase CBP/p300, and it fails to heterodimerize with its homolog and sister regulator of p53, Mdmx, suggesting that a fully intact RING domain is required for Mdm2's inhibition of the p300-p53 interaction and for its interaction with Mdmx. These findings help us to better understand the complex regulation of the Mdm2-p53 pathway and have important implications for chemotherapeutic agents targeting Mdm2, as they suggest that inhibition of Mdm2's E3 ubiquitin ligase activity may be sufficient for increasing p53 activity in vivo, without the need to block Mdm2-p53 binding.

  4. HPV and p53 in cervical cancer.

    OpenAIRE

    Ngan, H Y; Stanley, M; Liu, S S; Ma, H K

    1994-01-01

    Objective - To determine the prevalence of HPV 16 and 18 E6 by DNA detection and p53 abnormal protein expression in cervical cancers in Hong Kong. Materials and methods - Seventy-three squamous cell cervical cancer biopsy were analysed. Detection of HPV DNA was carried out by the polymerase chain reaction and Southern blotting (PCR/SB) technique using primers to the HPV16 and 18 E6 region and consensus primers to the L1 region. Abnormal expression of the p53 protein was detected by immunohist...

  5. The p53HMM algorithm: using profile hidden markov models to detect p53-responsive genes

    Directory of Open Access Journals (Sweden)

    Yu Xin

    2009-04-01

    Full Text Available Abstract Background A computational method (called p53HMM is presented that utilizes Profile Hidden Markov Models (PHMMs to estimate the relative binding affinities of putative p53 response elements (REs, both p53 single-sites and cluster-sites. These models incorporate a novel "Corresponded Baum-Welch" training algorithm that provides increased predictive power by exploiting the redundancy of information found in the repeated, palindromic p53-binding motif. The predictive accuracy of these new models are compared against other predictive models, including position specific score matrices (PSSMs, or weight matrices. We also present a new dynamic acceptance threshold, dependent upon a putative binding site's distance from the Transcription Start Site (TSS and its estimated binding affinity. This new criteria for classifying putative p53-binding sites increases predictive accuracy by reducing the false positive rate. Results Training a Profile Hidden Markov Model with corresponding positions matching a combined-palindromic p53-binding motif creates the best p53-RE predictive model. The p53HMM algorithm is available on-line: http://tools.csb.ias.edu Conclusion Using Profile Hidden Markov Models with training methods that exploit the redundant information of the homotetramer p53 binding site provides better predictive models than weight matrices (PSSMs. These methods may also boost performance when applied to other transcription factor binding sites.

  6. Emerging Non-Canonical Functions and Regulation by p53: p53 and Stemness.

    Science.gov (United States)

    Olivos, David J; Mayo, Lindsey D

    2016-11-26

    Since its discovery nearly 40 years ago, p53 has ascended to the forefront of investigated genes and proteins across diverse research disciplines and is recognized most exclusively for its role in cancer as a tumor suppressor. Levine and Oren (2009) reviewed the evolution of p53 detailing the significant discoveries of each decade since its first report in 1979. In this review, we will highlight the emerging non-canonical functions and regulation of p53 in stem cells. We will focus on general themes shared among p53's functions in non-malignant stem cells and cancer stem-like cells (CSCs) and the influence of p53 on the microenvironment and CSC niche. We will also examine p53 gain of function (GOF) roles in stemness. Mutant p53 (mutp53) GOFs that lead to survival, drug resistance and colonization are reviewed in the context of the acquisition of advantageous transformation processes, such as differentiation and dedifferentiation, epithelial-to-mesenchymal transition (EMT) and stem cell senescence and quiescence. Finally, we will conclude with therapeutic strategies that restore wild-type p53 (wtp53) function in cancer and CSCs, including RING finger E3 ligases and CSC maintenance. The mechanisms by which wtp53 and mutp53 influence stemness in non-malignant stem cells and CSCs or tumor-initiating cells (TICs) are poorly understood thus far. Further elucidation of p53's effects on stemness could lead to novel therapeutic strategies in cancer research.

  7. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer

    Directory of Open Access Journals (Sweden)

    Villiard Éric

    2007-09-01

    Full Text Available Abstract Background Urodele amphibians like the axolotl are unique among vertebrates in their ability to regenerate and their resistance to develop cancers. It is unknown whether these traits are linked at the molecular level. Results Blocking p53 signaling in axolotls using the p53 inhibitor, pifithrin-α, inhibited limb regeneration and the expression of p53 target genes such as Mdm2 and Gadd45, suggesting a link between tumor suppression and regeneration. To understand this relationship we cloned the p53 gene from axolotl. When comparing its sequence with p53 from other organisms, and more specifically human we observed multiple amino acids changes found in human tumors. Phylogenetic analysis of p53 protein sequences from various species is in general agreement with standard vertebrate phylogeny; however, both mice-like rodents and teleost fishes are fast evolving. This leads to long branch attraction resulting in an artefactual basal emergence of these groups in the phylogenetic tree. It is tempting to assume a correlation between certain life style traits (e.g. lifespan and the evolutionary rate of the corresponding p53 sequences. Functional assays of the axolotl p53 in human or axolotl cells using p53 promoter reporters demonstrated a temperature sensitivity (ts, which was further confirmed by performing colony assays at 37°C. In addition, axolotl p53 was capable of efficient transactivation at the Hmd2 promoter but has moderate activity at the p21 promoter. Endogenous axolotl p53 was activated following UV irradiation (100 j/m2 or treatment with an alkylating agent as measured using serine 15 phosphorylation and the expression of the endogenous p53 target Gadd45. Conclusion Urodele p53 may play a role in regeneration and has evolved to contain multiple amino acid changes predicted to render the human protein defective in tumor suppression. Some of these mutations were probably selected to maintain p53 activity at low temperature. However

  8. Data for a proteomic analysis of p53-independent induction of apoptosis by bortezomib

    Directory of Open Access Journals (Sweden)

    Azmi Yerlikaya

    2014-12-01

    Full Text Available This data article contains data related to the research article entitled, “A proteomic analysis of p53-independent induction of apoptosis by bortezomib in 4T1 breast cancer cell line” by Yerlikaya et al. [1]. The research article presented 2-DE and nLC-MS/MS based proteomic analysis of proteasome inhibitor bortezomib-induced changes in the expression of cellular proteins. The report showed that GRP78 and TCEB2 were over-expressed in response to treatment with bortezomib for 24 h. In addition, the report demonstrated that Hsp70, the 26S proteasome non-ATPase regulatory subunit 14 and sequestosome 1 were increased at least 2 fold in p53-deficient 4T1 cells. The data here show for the first time the increased expressions of Card10, Dffb, Traf3 and Trp53bp2 in response to inhibition of the 26S proteasome. The information presented here also shows that both Traf1 and Xiap (a member of IAPs are also downregulated simultaneously upon proteasomal inhibition. The increases in the level of Card10 and Trp53bp2 proteins were verified by Western blot analysis in response to varying concentrations of bortezomib for 24 h.

  9. Expression of Oestrogen and progesterone receptors, Ki-67,p53 and ...

    African Journals Online (AJOL)

    Expression of Oestrogen and progesterone receptors, Ki-67,p53 and bcl-2 proteins, cathepsin D, urokinase plasminogen activator and urokinase plasminogen activator-receptors in carcinomas of the female breast in an African population.

  10. Wildtype p53-specific Antibody and T-Cell Responses in Cancer Patients

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Stryhn, Anette; Justesen, Sune

    2011-01-01

    Mutation in the p53 gene based on single amino acid substitutions is a frequent event in human cancer. Accumulated mutant p53 protein is released to antigen presenting cells of the immune system and anti-p53 immune responses even against wt p53 is induced and observed in a number of human cancer...... patients. Detection of antibodies against wt p53 protein has been used as a diagnostic and prognostic marker and discovery of new T-cell epitopes has enabled design of cancer vaccination protocols with promising results. Here, we identified wt p53-specific antibodies in various cancer patients......(264-272) in breast cancer patients and against HLA-A*01:01 binding peptide wt p53(226-234) and HLA-B*07:02 binding peptide wt p53(74-82) in renal cell cancer and breast cancer patients, respectively. Finally, we analyzed antibody and T-cell responses against wt p53 15-mer peptides in patients with metastatic renal...

  11. p53 Testing for Li-Fraumeni and Li-Fraumeni-like syndromes.

    Science.gov (United States)

    Gonzalez, Kelly; Fong, Cindy; Buzin, Carolyn; Sommer, Steve S; Saldivar, Juan-Sebastian

    2008-04-01

    Li-Fraumeni Syndrome (LFS; OMIM #151623) is an autosomal dominant cancer predisposition syndrome characterized by early onset tumors including sarcomas, breast cancer, leukemia, brain tumors, and adrenocortical carcinoma. Li-Fraumeni syndrome is primarily attributed to germline mutations in the p53 tumor suppressor gene, which encodes tumor protein 53. In addition to germline p53 mutations, the p53 gene is the most commonly mutated gene in human cancers, with as much as 50% of tumors containing somatic p53 mutations. This unit provides a protocol to perform germline mutation analysis of the p53 gene. The protocol includes steps for amplification and sequencing of the entire coding region of the p53 gene (exons 2 to 11). The protocol was designed for detecting germline alterations from DNA extracted from blood; however, with some additional optimization, it could also be used to detect somatic mutations in DNA extracted from tumors. Copyright 2008 by John Wiley & Sons, Inc.

  12. Diverse p53/DNA binding modes expand the repertoire of p53 response elements.

    Science.gov (United States)

    Vyas, Pratik; Beno, Itai; Xi, Zhiqun; Stein, Yan; Golovenko, Dmitrij; Kessler, Naama; Rotter, Varda; Shakked, Zippora; Haran, Tali E

    2017-10-03

    The tumor suppressor protein p53 acts as a transcription factor, binding sequence-specifically to defined DNA sites, thereby activating the expression of genes leading to diverse cellular outcomes. Canonical p53 response elements (REs) are made of two decameric half-sites separated by a variable number of base pairs (spacers). Fifty percent of all validated p53 REs contain spacers between 1 and 18 bp; however, their functional significance is unclear at present. Here, we show that p53 forms two different tetrameric complexes with consensus or natural REs, both with long spacers: a fully specific complex where two p53 dimers bind to two specific half-sites, and a hemispecific complex where one dimer binds to a specific half-site and the second binds to an adjacent spacer sequence. The two types of complexes have comparable binding affinity and specificity, as judged from binding competition against bulk genomic DNA. Structural analysis of the p53 REs in solution shows that these sites are not bent in both their free and p53-bound states when the two half-sites are either abutting or separated by spacers. Cell-based assay supports the physiological relevance of our findings. We propose that p53 REs with long spacers comprise separate specific half-sites that can lead to several different tetrameric complexes. This finding expands the universe of p53 binding sites and demonstrates that even isolated p53 half-sites can form tetrameric complexes. Moreover, it explains the manner in which p53 binds to clusters of more than one canonical binding site, common in many natural REs.

  13. High Mdm4 levels suppress p53 activity and enhance its half-life in acute myeloid leukaemia

    Science.gov (United States)

    Tan, Ban Xiong; Khoo, Kian Hoe; Lim, Tit Meng; Lane, David Philip

    2014-01-01

    Although p53 is found mutated in almost 50% of all cancers, p53 mutations in leukaemia are relatively rare. Acute myeloid leukaemia (AML) cells employ other strategies to inactivate their wild type p53 (WTp53), like the overexpression of the p53 negative regulators Mdm2 and Mdm4. As such, AMLs are excellent candidates for therapeutics involving the reactivation of their WTp53 to restrict and destroy cancer cells, and the Mdm2 antagonist nutlin-3 is one such promising agent. Using AML cell lines with WTp53, we identified stable and high levels of p53 in the OCI/AML-2 cell lines. We demonstrate that this nutlin-3 sensitive cell line overexpressed Mdm4 to sequester, stabilise and inhibit p53 in the cytoplasm. We also show that elevated Mdm4 competed with Mdm2-p53 interaction and therefore extended p53 half-life while preventing p53 transcriptional activity. Our results provide biochemical evidence on the dynamics of the p53-Mdm2-Mdm4 interactions in affecting p53 levels and activity, and unlike previously reported findings derived from genetically manipulated systems, AML cells with naturally high levels of Mdm4 remain sensitive to nutlin treatment. Key Points Endogenously high levels of Mdm4 inhibit and sequester p53 in AML. High levels of Mdm4 do not block function of Mdm2 inhibitors in AML. PMID:24659749

  14. P53 status in radiation-induced soft-tissue sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Taubert, H.; Meye, A.; Hinze, R.; Holzhausen, H.J.; Schmidt, H.; Rath, F.W. [Halle-Wittenberg Univ., Halle/Saale (Germany). Inst. of Pathology; Bache, M.; Dunst, J. [Halle-Wittenberg Univ., Halle/Saale (Germany). Dept. of Radiotherapy; Wuerl, P. [Leipzig Univ. (Germany). Surgical Clinic

    1998-08-01

    Background: Following therapeutic irradiation after a latency period of many years radiation-induced tumors, often sarcomas, can arise. Results of radiation-induced DNA damage can be 1. p53 over-expression, inducing growth arrest or apoptosis, and 2. occurrence of mutations, frequently including the p53 gene, as one molecular promotor for carcinogenesis. We were interested whether radiation-induced sarcomas are associated with alterations of the p53 status. Material and Methods: Samples from 11 radiation-induced soft-tissue sarcomas (STS) were studied by a non-radioactive PCR-SSCP sequencing analysis and by immunohistochemistry with five antibodies for their p53 status. Results: A tumor of one patient possessed a G>A transition in codon 280 (exon 8). Of 11 tumors, 9 showed nuclear p53 positivity, detected by monoclonal antibody DO-1. Of these 9 patients, 7 died during the observation period, whereas the 2 patients with DO-1 negative tumor samples are still alive. Conclusions: p53 over-expression and p53 mutation occur in radiation-induced STS. p53 status is expected to have prognostic impact for radiation-induced STS. (orig.) [Deutsch] Hintergrund: Als Folge therapeutischer Bestrahlung koennen nach einer laengeren Latenzzeit von mehreren Jahren strahleninduzierte Tumoren, oft Sarkome, entstehen. Als Ergebnis strahleninduzierter DNA-Schaeden kann es 1. zu einer Ueberexprimierung von p53 und damit verbunden zu einer Wachstumsarretierung bzw. Apoptose kommen und 2. zum Auftreten von Mutationen fuehren, die haeufig das p53-Gen betreffen und Promotor fuer eine Kanzerogenese sind. Uns interessierte, ob fuer strahleninduzierte Sarkome ein veraenderter p53-Status vorliegt. Patientengut und Methode: Wir untersuchten Tumorproben von elf strahleninduzierten Weichteilsarkomen in einer nichtradioaktiven PCR-SSCP-Sequenzierungsanalyse und immunhistochemisch mit Hilfe von fuenf p53-Antikoerpern auf Veraenderungen im p53-Status. Ergebnisse: Der Tumor eines Patienten wies eine G

  15. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...... involving increased apoptosis in the germinal epithelium. This effect was potentiated by simultaneous overexpression of DP-1. Testicular atrophy as a result of overexpression of E2F-1 and DP-1 is independent of functional p53, since p53-nullizygous transgenic mice overexpressing E2F-1 and DP-1 also suffered...

  16. p53 regulation and activity in mouse embryonic stem cells

    OpenAIRE

    Solozobova, Valeriya

    2010-01-01

    P53 is a tumour development p53. The aim of this work was to study the regulation of p53 in embryonic stem cells and its activation in response to DNA damage. p53 was found that p53 becomes transcriptionally active in ES cells after DNA damage. Embryonic stem cells contain a relatively high amount of p53 protein and p53 RNA. After differentiation p53 level is rapidly downregulated. The high abundance of p53 in undifferentiated ES cells is a result of enhanced translation.

  17. Sulforaphane increases the efficacy of doxorubicin in mouse fibroblasts characterized by p53 mutations

    Energy Technology Data Exchange (ETDEWEB)

    Fimognari, Carmela [Department of Pharmacology, University of Bologna, Bologna (Italy)]. E-mail: carmela.fimognari@unibo.it; Nuesse, Michael [GSF-Flow Cytometry Group, Neuherberg (Germany); Lenzi, Monia [Department of Pharmacology, University of Bologna, Bologna (Italy); Sciuscio, Davide [Department of Pharmacology, University of Bologna, Bologna (Italy); Cantelli-Forti, Giorgio [Department of Pharmacology, University of Bologna, Bologna (Italy); Hrelia, Patrizia [Department of Pharmacology, University of Bologna, Bologna (Italy)

    2006-10-10

    One novel strategy for increasing cancer chemotherapy efficacy and reversing chemoresistance involves co-administration of natural chemopreventive compounds alongside standard chemotherapeutic protocols. Sulforaphane is a particularly promising chemopreventive agent, which has been shown to exert proapoptotic effects on tumor cells containing p53 mutations. The p53{sup Ser220} mutation has been implicated in reduced efficacy and drug resistance in the context of osteosarcomas and breast tumors treated with doxorubicin-based protocols. We investigated the effects of a combination of doxorubicin and sulforaphane on cell viability and apoptosis induction in fibroblasts characterized by different p53 status (p53 wild-type, p53 knock-out, and p53{sup Ser220} mutation), and identified some of the molecular pathways triggered by the drug combination. Very high concentrations of doxorubicin were necessary to decrease the viability of p53{sup Ser220} and p53 knock-out (but not wild-type) cells. Treatment of p53{sup Ser220} and p53 knock-out cells with doxorubicin did not induce apoptosis, also at very high concentrations (10 {mu}M). Sulforaphane restored chemosensitivity and induced apoptosis in doxorubicin-resistant p53{sup Ser220} and p53 knock-out cells, irrespective of p53 status. The induction of apoptosis was caspase-3 dependent and caspase-8 independent. Bongkrekic acid, a mitochondrial membrane stabilizer, partially prevented the effects of doxorubicin plus sulforaphane on mitochondrial permeability but was unable to prevent the induction of apoptosis. N-acetyl-cysteine, a glutathione precursor, blocked the induction of apoptosis by doxorubicin plus sulforaphane. Considering the negligible safety profile of sulforaphane, our findings could prompt innovative clinical studies designed to investigate whether its coadministration can enhance the efficacy of doxorubicin-based regimens.

  18. Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells In vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Petersen, T R; Kirkin, A F

    2000-01-01

    Mutations in the tumour suppressor gene p53 are among the most frequent genetic alterations in human malignancies, often associated with an accumulation of the p53 protein in the cytoplasm. We have generated a number of cytotoxic T lymphocyte (CTL) clones that specifically recognize the HLA-A*0201...... of recognizing p53 derived wild type (self) peptides. Furthermore, the capacity of R9V specific T cell clones to exert HLA restricted cytotoxicity, argues that the R9V peptide is naturally presented on certain cancer cells. This supports the view that p53 derived wild type peptides might serve as candidate...

  19. FTIR Microspectroscopy Probes Particle-Radiation Effect on HCT116 cells (p53+/+, p53-/-).

    Science.gov (United States)

    Yan, Jingwen; Zhang, Fengqiu; Huang, Qing

    2018-02-01

    p53 is a crucial tumor suppressor and plays an important role in cell cycle arrest, DNA damage repair, promotion of cell senescence and apoptosis, prevention of DNA damage and maintaining genomic stability and integrity. It has been reported that p53 might also be related to radiation sensitivity, for which the involved effects and processes could be further examined biochemically at the molecular level. In this study, we explored a new spectroscopic approach to probe the radiation-induced biological effects related to p53. Infrared microspectroscopy was used to detect the metabolic changes related to p53 under particle radiation. After alpha-particle irradiation of HCT116 cells (p53+/+, p53-/-), cell cycle arrest, DNA damage and lipid peroxidation in the cancer cells were observed using Fourier-transform infrared (FTIR) spectroscopy and microspectroscopy imaging. A remarkable difference in radiosensitivity between the two genotypes of cells was observed as well. This work provides a biochemical analysis of the p53-related radiation effects in cells and demonstrates the potential usefulness of FTIR microspectroscopy in the field of radiation research.

  20. Emerging Non-Canonical Functions and Regulation by p53: p53 and Stemness

    Directory of Open Access Journals (Sweden)

    David J. Olivos

    2016-11-01

    Full Text Available Since its discovery nearly 40 years ago, p53 has ascended to the forefront of investigated genes and proteins across diverse research disciplines and is recognized most exclusively for its role in cancer as a tumor suppressor. Levine and Oren (2009 reviewed the evolution of p53 detailing the significant discoveries of each decade since its first report in 1979. In this review, we will highlight the emerging non-canonical functions and regulation of p53 in stem cells. We will focus on general themes shared among p53’s functions in non-malignant stem cells and cancer stem-like cells (CSCs and the influence of p53 on the microenvironment and CSC niche. We will also examine p53 gain of function (GOF roles in stemness. Mutant p53 (mutp53 GOFs that lead to survival, drug resistance and colonization are reviewed in the context of the acquisition of advantageous transformation processes, such as differentiation and dedifferentiation, epithelial-to-mesenchymal transition (EMT and stem cell senescence and quiescence. Finally, we will conclude with therapeutic strategies that restore wild-type p53 (wtp53 function in cancer and CSCs, including RING finger E3 ligases and CSC maintenance. The mechanisms by which wtp53 and mutp53 influence stemness in non-malignant stem cells and CSCs or tumor-initiating cells (TICs are poorly understood thus far. Further elucidation of p53’s effects on stemness could lead to novel therapeutic strategies in cancer research.

  1. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  2. Inhibition of p53-induced apoptosis without affecting expression of p53-regulated genes

    OpenAIRE

    Lotem, Joseph; Gal, Hilah; Kama, Rachel; Amariglio, Ninette; Rechavi, Gideon; Domany, Eytan; Sachs, Leo; Givol, David

    2003-01-01

    Using DNA microarray and clustering of expressed genes we have analyzed the mechanism of inhibition of wild-type p53-induced apoptosis by the cytokine interleukin 6 (IL-6) and the calcium mobilizer thapsigargin (TG). Clustering analysis of 1,786 genes, the expression level of which changed after activation of wild-type p53 in the absence or presence of IL-6 or TG, showed that these compounds did not cause a general inhibition of the ability of p53 to up-regulate or down-regulate gene ex...

  3. Correlation between osteosarcoma and the expression of WWOX and p53.

    Science.gov (United States)

    Liu, Pingtao; Wang, Mingyue; Li, Li; Jin, Tao

    2017-10-01

    The objective of this study was to analyze the effect of the expression of WWOX and p53 on the growth of MG-63 osteosarcoma cells and to explore the correlation between osteosarcoma and the expression of WWOX and p53. WWOX and p53-overexpressing MG-63 osteosarcoma cell lines were established by transfection and named the MW and MP cell lines, respectively. Untransfected MG-63 cells (blank control) were used as control. Quantitative polymerase chain reaction (qPCR) and western blot analysis were used to detect the expression of WWOX and wild-type p53 mRNA and protein, respectively. The effects of WWOX and p53 (wild-type) on the activity of MG-63 cells were determined by MTT assay and flow cytometry. The expression of mutant p53 protein in 65 cases of osteosarcoma was detected by immunohistochemistry to analyze the correlation between p53 and the development of osteosarcoma. qPCR showed that WWOX and p53 mRNA was overexpressed in MW and MP cells, respectively. Western blot analysis showed that the levels of WWOX and p53 protein in MW and MP cells were higher than in the blank control group. MTT assay showed that the cell proliferation ability of MW and MP cells was significantly lower than in the blank control group. Flow cytometry showed that 78.49% of MW and 66.76% of MP cells were arrested in the G0/G1 phase. Immunohistochemistry showed that mutant p53 was highly expressed in osteosarcoma, with a positive expression rate of 47.7%. The expression rate was positively correlated with the pathological grade of cancer. In conclusion, WWOX can affect the cell cycle of MG-63 osteosarcoma cells to inhibit cell proliferation, which provides new insights into gene therapy for osteosarcoma. The two types of the p53 gene have different functions in the development of osteosarcoma. Wild-type p53 acts as a tumor suppressor, while mutant p53, which is overexpressed in malignant osteosarcoma, has a carcinogenic effect associated with the degree of osteosarcoma.

  4. FATS is a transcriptional target of p53 and associated with antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhang Xifeng

    2010-09-01

    Full Text Available Abstract Frequent mutations of p53 in human cancers exemplify its crucial role as a tumor suppressor transcription factor, and p21, a transcriptional target of p53, plays a central role in surveillance of cell-cycle checkpoints. Our previous study has shown that FATS stabilize p21 to preserve genome integrity. In this study we identified a novel transcript variant of FATS (GenBank: GQ499374 through screening a cDNA library from mouse testis, which uncovered the promoter region of mouse FATS. Mouse FATS was highly expressed in testis. The p53-responsive elements existed in proximal region of both mouse and human FATS promoters. Functional study indicated that the transcription of FATS gene was activated by p53, whereas such effect was abolished by site-directed mutagenesis in the p53-RE of FATS promoter. Furthermore, the expression of FATS increased upon DNA damage in a p53-dependent manner. FATS expression was silent or downregulated in human cancers, and overexpression of FATS suppressed tumorigenicity in vivo independently of p53. Our results reveal FATS as a p53-regulated gene to monitor genomic stability.

  5. Structurally diverse MDM2-p53 antagonists act as modulators of MDR-1 function in neuroblastoma.

    Science.gov (United States)

    Chen, L; Zhao, Y; Halliday, G C; Berry, P; Rousseau, R F; Middleton, S A; Nichols, G L; Del Bello, F; Piergentili, A; Newell, D R; Lunec, J; Tweddle, D A

    2014-08-12

    A frequent mechanism of acquired multidrug resistance in human cancers is overexpression of ATP-binding cassette transporters such as the Multi-Drug Resistance Protein 1 (MDR-1). Nutlin-3, an MDM2-p53 antagonist, has previously been reported to be a competitive MDR-1 inhibitor. This study assessed whether the structurally diverse MDM2-p53 antagonists, MI-63, NDD0005, and RG7388 are also able to modulate MDR-1 function, particularly in p53 mutant neuroblastoma cells, using XTT-based cell viability assays, western blotting, and liquid chromatography-mass spectrometry analysis. Verapamil and the MDM2-p53 antagonists potentiated vincristine-mediated growth inhibition in a concentration-dependent manner when used in combination with high MDR-1-expressing p53 mutant neuroblastoma cell lines at concentrations that did not affect the viability of cells when given alone. Liquid chromatography-mass spectrometry analyses showed that verapamil, Nutlin-3, MI-63 and NDD0005, but not RG7388, led to increased intracellular levels of vincristine in high MDR-1-expressing cell lines. These results show that in addition to Nutlin-3, other structurally unrelated MDM2-p53 antagonists can also act as MDR-1 inhibitors and reverse MDR-1-mediated multidrug resistance in neuroblastoma cell lines in a p53-independent manner. These findings are important for future clinical trial design with MDM2-p53 antagonists when used in combination with agents that are MDR-1 substrates.

  6. Distribution of p53 expression in tissue from 774 Danish ovarian tumour patients and its prognostic significance in ovarian carcinomas

    DEFF Research Database (Denmark)

    Hogdall, E.V.S.; Christensen, L.; Frederiksen, K.

    2008-01-01

    The clinical roles played by normal and altered p53 in cancer are under intensive investigation, but larger studies describing the pattern as well as the prognostic value are still needed. The aim of this study was, using tissue array (TA), to examine the overexpression of p53 protein in 774...... epithelial ovarian tumour tissues from Danish women and to evaluate whether p53 tissue expression levels correlate with clinicopathological parameters and prognosis. The distribution of p53 expression levels at different stages of disease, in different histological subtypes, and the prognostic value of p53...... tissue expression were examined. Overall, p53 was expressed in 24/189 (13%) low malignant potential ovarian tumours (LMP) and in 278/585 (48%) ovarian cancers (OC). No significant difference in frequency of p53 tissue expression in LMP tissue was noted with increasing tumour stage (p=0.98). By contrast...

  7. The p53-MDM2 network: from oscillations to apoptosis

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    developed a class of small molecules known as nutlins which occupy the p53 binding pocket in MDM2, thus preventing the binding of MDM2 to p53 and facilitating the activation of the p53 pathways in human cancer cell lines. The efficacy of the strategy has been demonstrated in experiments paving. Figure 4. Pulses of p53 ...

  8. USP3 stabilizes p53 protein through its deubiquitinase activity.

    Science.gov (United States)

    Fu, Song; Shao, Shize; Wang, Longqiang; Liu, Haijun; Hou, Haitao; Wang, Yanan; Wang, Huan; Huang, Xiangpeng; Lv, Renhua

    2017-10-14

    p53 is the guardian of the genome integrity and the degradation of p53 protein is mediated by MDM2. Here we report that USP3 interacts with p53 and regulates p53 stability. Depletion of USP3 lead to accelerated degradation of p53 in normal cells thereby enhanced cell proliferation and transformation. Reconstitution of wildtype USP3, but not the USP3 C168S mutant, restored the stability of p53 protein and inhibited cell proliferation and transformation. These findings suggest that USP3 is an important regulator of p53 and regulates normal cell transformation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 1,4,5-Trisubstituted Imidazole-Based p53-MDM2/MDMX Antagonists with Aliphatic Linkers for Conjugation with Biological Carriers

    NARCIS (Netherlands)

    Twarda-Clapa, Aleksandra; Krzanik, Sylwia; Kubica, Katarzyna; Guzik, Katarzyna; Labuzek, Beata; Neochoritis, Constantinos G.; Khoury, Kareem; Kowalska, Kaja; Czub, Miroslawa; Dubin, Grzegorz; Dömling, Alexander; Skalniak, Lukasz; Holak, Tad A.

    2017-01-01

    The tumor suppressor protein p53, the "guardian of the genome", is inactivated in nearly all cancer types by mutations in the TP53 gene or by overexpression of its negative regulators, oncoproteins MDM2/MDMX. Recovery of p53 function by disrupting the p53-MDM2/MDMX interaction using small-molecule

  10. Overexpression of granulocyte macrophage colony stimulating factor in breast cancer cells leads towards drug sensitization.

    Science.gov (United States)

    Chaubey, Nidhi; Ghosh, Siddhartha Sankar

    2015-02-01

    This report describes the effect of overexpressing granulocyte macrophage colony stimulating factor (GMCSF) in breast cancer cells, which otherwise is involved in proliferation and differentiation of granulocyte and macrophage lineages. The purified recombinant GMCSF cytokine is known to exert dose-dependent proliferative response on various cancer cells, but its effect during overexpression is yet to be evaluated. In our present study, we have generated MCF-7 (breast cancer) cells overexpressing GMCSF. Interestingly, cell viability studies showed pronounced sensitivity of GMCSF overexpressing MCF-7 cells towards anticancer drugs, such as, doxorubicin, 5FU and cisplatin. These findings were substantiated by cell cycle analysis of the drug-treated GMCSF overexpressing MCF-7 cells. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) results revealed differential expressions of cyclins, and the carboxyfluorescein succinimidyl ester (CFSE)-based assay established decrease in doubling time of GMCSF overexpressed cells with respect to the control populations. Thus, overexpressing of proliferative GMCSF cytokine in breast cancer cells may increase susceptibility to anticancer drugs.

  11. p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy.

    Science.gov (United States)

    Bosnakovski, Darko; Gearhart, Micah D; Toso, Erik A; Recht, Olivia O; Cucak, Anja; Jain, Abhinav K; Barton, Michelle C; Kyba, Michael

    2017-10-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a genetically dominant myopathy caused by mutations that disrupt repression of the normally silent DUX4 gene, which encodes a transcription factor that has been shown to interfere with myogenesis when misexpressed at very low levels in myoblasts and to cause cell death when overexpressed at high levels. A previous report using adeno-associated virus to deliver high levels of DUX4 to mouse skeletal muscle demonstrated severe pathology that was suppressed on a p53-knockout background, implying that DUX4 acted through the p53 pathway. Here, we investigate the p53 dependence of DUX4 using various in vitro and in vivo models. We find that inhibiting p53 has no effect on the cytoxicity of DUX4 on C2C12 myoblasts, and that expression of DUX4 does not lead to activation of the p53 pathway. DUX4 does lead to expression of the classic p53 target gene Cdkn1a (p21) but in a p53-independent manner. Meta-analysis of 5 publicly available data sets of DUX4 transcriptional profiles in both human and mouse cells shows no evidence of p53 activation, and further reveals that Cdkn1a is a mouse-specific target of DUX4. When the inducible DUX4 mouse model is crossed onto the p53-null background, we find no suppression of the male-specific lethality or skin phenotypes that are characteristic of the DUX4 transgene, and find that primary myoblasts from this mouse are still killed by DUX4 expression. These data challenge the notion that the p53 pathway is central to the pathogenicity of DUX4. © 2017. Published by The Company of Biologists Ltd.

  12. HZ-6d targeted HERC5 to regulate p53 ISGylation in human hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Yang; Ding, Qi; Xu, Tao; Li, Chang-Yao; Zhou, Dan-Dan; Zhang, Lei

    2017-11-01

    Manipulating the posttranslational modulator of p53 is central in the regulation of its activity and function. ISGylated p53 can be degraded by the 20S proteasome. During this process, HERC5/Ceb1, an IFN-induced HECT-type E3 ligase, mediated p53 ISGylation. In this study, we indicated that HERC5 was over-expressed in both HCC tissue samples and cell lines. Knockdown of HERC5 significantly induced the expression of p53, p21 and Bax/Bcl-2 in HCC cells, resulting in apoptosis augment. Whereas, opposite results were obtained by using HERC5 over-expression. On this basis, we screened a 7, 11-disubstituted quinazoline derivative HZ-6d that could bind to the HERC5 G-rich sequence in vitro. Interestingly, HZ-6d injection effectively delayed the growth of xenografts in nude mice. In vitro, HZ-6d significantly inhibited cell growth, suppressed cell migration, induced apoptosis in HCC cells. Further studies demonstrated the anti-cancer effect of HZ-6d was associated with down-regulation of HERC5 and accumulation of p53. Collectively, we demonstrated that HZ6d is a HERC5 G-quadruplex ligand with anti-tumor properties, an action that may offer an attractive idea for restoration of p53 function in cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element

    DEFF Research Database (Denmark)

    Vilborg, Anna; Glahder, Jacob-Andreas Harald; Wilhelm, Margareta T

    2009-01-01

    The p53 target gene Wig-1 encodes a double-stranded-RNA-binding zinc finger protein. We show here that Wig-1 binds to p53 mRNA and stabilizes it through an AU-rich element (ARE) in the 3' UTR of the p53 mRNA. This effect is mirrored by enhanced p53 protein levels in both unstressed cells and cells...... exposed to p53-activating stress agents. Thus, the p53 target Wig-1 is a previously undescribed ARE-regulating protein that acts as a positive feedback regulator of p53, with implications both for the steady-state levels of p53 and for the p53 stress response. Our data reveal a previously undescribed link...... between the tumor suppressor p53 and posttranscriptional gene regulation via AREs in mRNA....

  14. p53-A pro-apoptotic signal transducer involved in AIDS.

    Science.gov (United States)

    Castedo, Maria; Perfettini, Jean-Luc; Piacentini, Mauro; Kroemer, Guido

    2005-06-10

    P53 is a well-characterized tumor suppressor protein, which can induce apoptosis, either by inducing transcription of pro-apoptotic genes or by direct effects on mitochondrial membranes. Roughly 50% of human cancers are affected by the genetic or epigenetic inactivation of p53. Recently, p53 has been incriminated to play a cardinal role in the destruction of the immune system by human immunodeficiency virus (HIV-1) infection. This suspicion is based on several lines of evidence: (i) p53 exhibits activating phosphorylations in a subset of peripheral blood mononuclear cells and lymph node cells from HIV-1 carriers; (ii) some p53 target genes (e.g., PUMA, a pro-apoptotic member of the Bcl-2 family) are overexpressed in HIV-1 carriers; (iii) in vitro, p53 and/or PUMA are rate-limiting for the induction of cell death by HIV-1 infection or, in particular, by the HIV-1 Envelope (Env), in a variety of model systems, including the apoptosis of syncytia elicited by Env or cell death induced by the Env constituent gp120. Thus, p53 may constitute a novel therapeutic target for the treatment of AIDS.

  15. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation.

    Science.gov (United States)

    De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2017-05-01

    Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great

  16. TPX2-p53-GLIPR1 regulatory circuitry in cell proliferation, invasion, and tumor growth of bladder cancer.

    Science.gov (United States)

    Yan, Liang; Li, Qi; Yang, Juan; Qiao, Baoping

    2017-08-11

    The targeting protein for Xenopus kinesin-like protein 2 (TPX2) is associated with the metastasis and prognosis of bladder cancer. p53 is closely related to the progression of bladder cancer. Human glioma pathogenesis-related protein 1 (GLIPR1) is a p53 target gene with antitumor activity. This study aims to explore the interplay between TPX2, p53, and GLIPR1 and its correlation with cell proliferation, invasion, and tumor growth in bladder cancer. Here, Western blot and qRT-PCR analysis revealed that TPX2 at both mRNA and protein levels was up-regulated in bladder carcinoma tissues compared to their paired adjacent normal tissues. Additionally, tissues expressing high TPX2 level exhibited high p53 level and low GLIPR1 level. The expressions of TPX2 and p53 in non-muscle-invasive bladder cancer cells (KK47 and RT4) were lower than those in muscle-invasive bladder cancer cells (T24, 5637, and UM-UC-3), while GLIPR1 showed the converse expression pattern. Further investigation revealed that TPX2 activated the synthesis of p53; and GLIPR1 is up-regulated by wild-type (wt)-p53 but not affected by mutated p53; Additionally, GLIPR1 inhibited TPX2. These data suggested a TPX2-p53-GLIPR1 regulatory circuitry. Meanwhile, TPX2 overexpression promoted while overexpression of GLIPR1 or p53 inhibited bladder cancer growth. Interestingly, in T24 cells with mutated p53, p53 silence suppressed bladder cancer growth. This study identified a novel TPX2-p53-GLIPR1 regulatory circuitry which modulated cell proliferation, migration, invasion, and tumorigenicity of bladder cancer. Our findings provide new insight into underlying mechanisms of tumorigenesis and novel therapeutic options in bladder cancer. © 2017 Wiley Periodicals, Inc.

  17. Induction of ovarian leiomyosarcomas in mice by conditional inactivation of Brca1 and p53.

    Directory of Open Access Journals (Sweden)

    Bridget A Quinn

    2009-12-01

    Full Text Available Approximately one out of every ten cases of epithelial ovarian cancer (EOC is inherited. The majority of inherited cases of EOC result from mutations in the breast cancer associated gene 1 (BRCA1. In addition to mutation of BRCA1, mutation of the p53 gene is often found in patients with inherited breast and ovarian cancer syndrome.We investigated the role of loss of function of BRCA1 and p53 in ovarian cancer development using mouse models with conditionally expressed alleles of Brca1 and/or p53. Our results show that ovary-specific Cre-recombinase-mediated conditional inactivation of both Brca1(LoxP/LoxP and p53(LoxP/LoxP resulted in ovarian or reproductive tract tumor formation in 54% of mice, whereas conditional inactivation of either allele alone infrequently resulted in tumors (< or =5% of mice. In mice with conditionally inactivated Brca1(LoxP/LoxP and p53(LoxP/LoxP, ovarian tumors arose after long latency with the majority exhibiting histological features consistent with high grade leiomyosarcomas lacking expression of epithelial, follicular or lymphocyte markers. In addition, tumors with conditional inactivation of both Brca1(LoxP/LoxP and p53(LoxP/LoxP exhibited greater genomic instability compared to an ovarian tumor with inactivation of only p53(LoxP/LoxP.Although conditional inactivation of both Brca1 and p53 results in ovarian tumorigenesis, our results suggest that additional genetic alterations or alternative methods for targeting epithelial cells of the ovary or fallopian tube for conditional inactivation of Brca1 and p53 are required for the development of a mouse model of Brca1-associated inherited EOC.

  18. Isg15 controls p53 stability and functions

    Science.gov (United States)

    Huang, Yi-Fu; Wee, Sheena; Gunaratne, Jayantha; Lane, David P; Bulavin, Dmitry V

    2014-01-01

    Degradation of p53 is a cornerstone in the control of its functions as a tumor suppressor. This process is attributed to ubiquitin-dependent modification of p53. In addition to polyubiquitination, we found that p53 is targeted for degradation through ISGylation. Isg15, a ubiquitin-like protein, covalently modifies p53 at 2 sites in the N and C terminus, and ISGylated p53 can be degraded by the 20S proteasome. ISGylation primarily targets a misfolded, dominant-negative p53, and Isg15 deletion in normal cells results in suppression of p53 activity and functions. We propose that Isg15-dependent degradation of p53 represents an alternative mechanism of controlling p53 protein levels, and, thus, it is an attractive pathway for drug discovery. PMID:24844324

  19. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  20. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2

    NARCIS (Netherlands)

    Lakhani, Sunil R.; van de Vijver, Marc J.; Jacquemier, Jocelyne; Anderson, Thomas J.; Osin, Peter P.; McGuffog, Lesley; Easton, Douglas F.

    2002-01-01

    PURPOSE: The morphologic and molecular phenotype of breast cancers may help identify patients who are likely to carry germline mutations in BRCA1 and BRCA2. This study evaluates the immunohistochemical profiles of tumors arising in patients with mutations in these genes. MATERIALS AND METHODS:

  1. Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity

    Directory of Open Access Journals (Sweden)

    Price Brendan D

    2001-07-01

    Full Text Available Abstract Background The p53 protein is activated by genotoxic stress, oncogene expression and during senescence, p53 transcriptionally activates genes involved in growth arrest and apoptosis. p53 activation is regulated by post-translational modification, including phosphorylation of the N-terminal transactivation domain. Here, we have examined how Glycogen Synthase Kinase (GSK3, a protein kinase involved in tumorigenesis, differentiation and apoptosis, phosphorylates and regulates p53. Results The 2 isoforms of GSK3, GSK3α and GSK3β, phosphorylate the sequence Ser-X-X-X-Ser(P when the C-terminal serine residue is already phosphorylated. Several p53 kinases were examined for their ability to create GSK3 phosphorylation sites on the p53 protein. Our results demonstrate that phosphorylation of serine 37 of p53 by DNA-PK creates a site for GSK3β phosphorylation at serine 33 in vitro. GSK3α did not phosphorylate p53 under any condition. GSK3β increased the transcriptional activity of the p53 protein in vivo. Mutation of either serine 33 or serine 37 of p53 to alanine blocked the ability of GSK3β to regulate p53 transcriptional activity. GSK3β is therefore able to regulate p53 function in vivo. p53's transcriptional activity is commonly increased by DNA damage. However, GSK3β kinase activity was inhibited in response to DNA damage, suggesting that GSK3β regulation of p53 is not involved in the p53-DNA damage response. Conclusions GSK3β can regulate p53's transcriptional activity by phosphorylating serine 33. However, GSK3β does not appear to be part of the p53-DNA damage response pathway. Instead, GSK3β may provide the link between p53 and non-DNA damage mechanisms for p53 activation.

  2. A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction.

    Science.gov (United States)

    Knight, Stephen M G; Umezawa, Naoki; Lee, Hee-Seung; Gellman, Samuel H; Kay, Brian K

    2002-01-15

    Improper function of the tumor suppressor protein p53 is a contributing factor in many human cancers. In normal cells, p53 acts to arrest the cell cycle in response to DNA damage or nucleotide depletion. One mechanism of regulating the amount of p53 in the cell is through the action of the Double Minute 2 protein, DM2 (also known as MDM2), which ubiquitinates p53 and targets it for proteosomal degradation. In a number of human cancers, the DM2 gene is amplified or overexpressed, leading to inadequate levels of p53 for cell cycle arrest or apoptosis. With the goal of restoring p53 function in cancers that overexpress DM2, we are developing inhibitors of the p53-DM2 protein-protein interaction that structurally mimic the N-terminal segment of p53 that binds to DM2. To assist this effort, we have devised a fluorescence polarization assay that quantifies the interaction between the N-terminal regions of both proteins in 384-well microtiter plates. Using this assay, we have demonstrated that a peptide with a nonhydrolyzable beta-amino acid substitution binds DM2 with an affinity comparable to a p53 peptide that is composed of only alpha-amino acids. (c)2001 Elsevier Science.

  3. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Carlos Farkas

    Full Text Available SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.

  4. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  5. TBP-like Protein (TLP) Disrupts the p53-MDM2 Interaction and Induces Long-lasting p53 Activation.

    Science.gov (United States)

    Maeda, Ryo; Tamashiro, Hiroyuki; Takano, Kazunori; Takahashi, Hiro; Suzuki, Hidefumi; Saito, Shinta; Kojima, Waka; Adachi, Noritaka; Ura, Kiyoe; Endo, Takeshi; Tamura, Taka-Aki

    2017-02-24

    Stress-induced activation of p53 is an essential cellular response to prevent aberrant cell proliferation and cancer development. The ubiquitin ligase MDM2 promotes p53 degradation and limits the duration of p53 activation. It remains unclear, however, how p53 persistently escapes MDM2-mediated negative control for making appropriate cell fate decisions. Here we report that TBP-like protein (TLP), a member of the TBP family, is a new regulatory factor for the p53-MDM2 interplay and thus for p53 activation. We found that TLP acts to stabilize p53 protein to ensure long-lasting p53 activation, leading to potentiation of p53-induced apoptosis and senescence after genotoxic stress. Mechanistically, TLP interferes with MDM2 binding and ubiquitination of p53. Moreover, single cell imaging analysis shows that TLP depletion accelerates MDM2-mediated nuclear export of p53. We further show that a cervical cancer-derived TLP mutant has less p53 binding ability and lacks a proliferation-repressive function. Our findings uncover a role of TLP as a competitive MDM2 blocker, proposing a novel mechanism by which p53 escapes the p53-MDM2 negative feedback loop to modulate cell fate decisions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The role of p53 gene family in reproduction.

    Science.gov (United States)

    Hu, Wenwei

    2009-12-01

    The p53 family of genes (p53, p63, and p73) is conserved over evolutionary time scales. Although the functions of p53 gene and its protein as a tumor suppressor have been firmly established, the earliest functions for the p53 ancestral genes in worms and flies are to ensure germ-line genomic integrity and the fidelity of the developmental process. In vertebrates, the p53 family of genes retains those functions in germ-line genomic integrity but have added important functions in regulation of reproduction. Loss of the p53, p63, or p73 genes in female mice leads to a significant decrease of fertility. The p53 gene product regulates maternal reproduction at the implantation stage of the embryo. p63 and p73 play important roles in monitoring the genomic quality of oocytes. The p53 pathway appears to play a similar role in human fertility. In humans, certain alleles containing a functional single-nucleotide polymorphism (SNP) in the p53 pathway are under positive evolutionary selection. Selected alleles of these SNPs in the p53 pathway are associated with decreased fertility. This important function of the p53 pathway in reproduction provides a plausible explanation for the evolution of p53 as a tumor suppressor gene and the positive selection of some alleles in the p53 gene and its pathway. These observations provide a good possible example of antagonistic pleiotrophy for fertility, tumor suppression, and longevity.

  7. Expression of TP53 isoforms p53β or p53γ enhances chemosensitivity in TP53(null cell lines.

    Directory of Open Access Journals (Sweden)

    Elisabeth Silden

    Full Text Available The carboxy-terminal truncated p53 alternative spliced isoforms, p53β and p53γ, are expressed at disparate levels in cancer and are suggested to influence treatment response and therapy outcome. However, their functional role in cancer remains to be elucidated. We investigated their individual functionality in the p53(null background of cell lines H1299 and SAOS-2 by stable retroviral transduction or transient transfection. Expression status of p53β and p53γ protein was found to correlate with increased response to camptothecin and doxorubicin chemotherapy. Decreased DNA synthesis and clonogenicity in p53β and p53γ congenic H1299 was accompanied by increased p21((CIP1/WAF1, Bax and Mdm2 proteins. Chemotherapy induced p53 isoform degradation, most prominent for p53γ. The proteasome inhibitor bortezomib substantially increased basal p53γ protein level, while the level of p53β protein was unaffected. Treatment with dicoumarol, a putative blocker of the proteasome-related NAD(PH quinone oxidoreductase NQO1, effectively attenuated basal p53γ protein level in spite of bortezomib treatment. Although in vitro proliferation and clonogenicity assays indicated a weak suppressive effect by p53β and p53γ expression, studies of in vivo subcutaneous H1299 tumor growth demonstrated a significantly increased growth by expression of either p53 isoforms. This study suggests that p53β and p53γ share functionality in chemosensitizing and tumor growth enhancement but comprise distinct regulation at the protein level.

  8. Radiation induces p53-dependent cell apoptosis in bladder cancer cells with wild-type- p53 but not in p53-mutated bladder cancer cells.

    Science.gov (United States)

    Hinata, Nobuyuki; Shirakawa, Toshiro; Zhang, Zhujun; Matsumoto, Akira; Fujisawa, Masato; Okada, Hiroshi; Kamidono, Sadao; Gotoh, Akinobu

    2003-12-01

    Purpose. It has been reported in several studies that the absence in cancer cells of the p53 tumor suppressor gene, mutations of which are frequently found in bladder cancer, increases their resistance to ionizing radiation. Other studies, however, suggest that mutations of the p53 gene could increase the radiosensitivity of cancer cells, although the evidence is still inconclusive. In the present study, we investigated the relationship between p53 status and radiation response in five different bladder cancer cell lines. Materials and Methods. Five different human bladder cancer cell lines (KK47: with wt- p53, RT4: with wt- p53, T24: with mutated p53, 5637: with mutated p53, UM-UC-3: with mutated p53) were used in the study. Cells were irradiated with 0, 2, 4, 6 or 8 Gy, then trypsinized and re-plated for clonogenic survival assay, quantitative RT-PCR assay, flow-cytometry analysis and TUNEL assay. Results. The clonogenic assay demonstrated that KK47 and RT4 had significantly higher radiosensitivity than other cell lines. Quantitative RT-PCR analysis showed that radiation induced increased expression of p53, Bax, and p21 mRNA in KK47 and RT4. After irradiation, G1 cell-cycle arrest was observed in KK47 and RT4 under flow cytometry analysis, while T24, 5637, and UM-UC-3 showed an increase in the proportion of G2 cells. Increased cell apoptosis was also observed under TUNEL assay in KK47 and RT4, but not in other cell lines. It was demonstrated that ionizing radiation induces p53-dependent cell apoptosis in bladder cancer cells with wt- p53 but not in those with mutated p53.

  9. ZFX Overexpression in Breast Cancer Positively Correlates with Metastasis

    Directory of Open Access Journals (Sweden)

    Mahboube Ganji-Arjenaki

    2016-02-01

    Full Text Available Background: As the third most frequent cause of cancer death, breast cancer is a common disease worldwide. Most of the patients are being diagnosed in the stage that conventional treatments are not effective, and invasion and metastases lead to death. Therefore, identification of novel molecular markers to improve early diagnosis, prognosis and treatment of the breast cancer is a necessity. Zinc finger X-linked (ZFX gene is a member of ZFY family, which they upregulation has been demonstrated in several types of cancer. The aim of this study was to assess ZFX gene expression in Formalin-fixed, paraffin-embedded (FFPE tissues of the breast cancer invasive ductal carcinoma and to investigate its correlation with clinicopathological parameters. Materials and Methods: A total of 52 tumor and non-tumor breast specimens were evaluated for ZFX gene expression using quantitative real-time RT-PCR. Total RNA extraction was performed using RNeasy FFPE kit (Qiagene. complementary DNA (cDNA synthesis was performed using PrimeScript-RT Master Mix (Takara. The PCR mixture containing SYBR® Premix Ex Taq ™ II (Takara Bio Inc., Otsu, Japan, was run on the Rotor-gene 3000 (Qiagen, Hilden, Germany Results: The ZFX expression increased significantly in breast tumor tissues compared with non-tumor breast tissues. We further showed that there was a positive correlation between the ZFX gene expression level and lymphatic invasion. Conclusion: ZFX might be used as a potential biomarker to monitor breast carcinoma progression. Further studies to determine the mechanism of action of ZFX is needed to unravel the role of this gene in breast cancer pathogenesis.

  10. Restriction of human herpesvirus 6B replication by p53

    DEFF Research Database (Denmark)

    Øster, Bodil; Kofod-Olsen, Emil; Bundgaard, Bettina

    2008-01-01

    Human herpesvirus 6B (HHV-6B) induces significant accumulation of p53 in both the nucleus and cytoplasm during infection. Activation of p53 by DNA damage is known to induce either growth arrest or apoptosis; nevertheless, HHV-6B-infected cells are arrested in their cell cycle independently of p53......, and only a minor fraction of the infected cells undergoes apoptosis. Using pifithrin-alpha, a p53 inhibitor, and p53-null cells, this study showed that infected epithelial cells accumulated viral transcripts and proteins to a significantly higher degree in the absence of active p53. Moreover, HHV-6B......-induced cytopathic effects were greatly enhanced in the absence of p53. This suggests that, in epithelial cells, some of the functions of p53 leading to cell-cycle arrest and apoptosis are restrained by HHV-6B infection, whereas other cellular defences, causing inhibition of virus transcription, are partially...

  11. [P53 protein in adenocarcinoma of the large intestine].

    Science.gov (United States)

    Paluszkiewicz, P; Pawłowska-Wakowicz, B; Cybulski, M; Berbeć, H

    1997-01-01

    P53 gen mutations play significant role in neoplastic transformation of colorectal mucosa. We investigated p53 immunostaining in 80 cases of spontaneous human colorectal adenocarcinomas (with monoclonal DO7 antibody and LSAB+ kit). We found positive, nuclear p53 immunostaining in 64% of nonmucinous adenocarcinoma tissues and in 19% of mucinous adenocarcinomas tissues. P53 protein deposits were most often found in colorectal adenocarcinomas localised in rectum (66.67%) and in advanced (Dukes C, D) colorectal adenocarcinomas (59.38%) as well. There was no statistical significance between the p53 positive immunostaining and the histological differentiation of the colorectal adenocarcinomas. The overall survival of patients with tumours positive for p53 protein was significantly shorter than that of patients with colorectal cancers negative for p53 protein. We conclude that p53 immunohistochemical analysis may be treated as a supplementary prognostic marker for patients with colorectal adenocarcinoma, especially it may be useful for adjuvant therapy selection.

  12. Modeling the basal dynamics of p53 system

    National Research Council Canada - National Science Library

    Sun, Tingzhe; Yang, Weiwei; Liu, Jing; Shen, Pingping

    2011-01-01

    .... Most previous models have ignored the basal dynamics of p53 under nonstressed conditions. To explore the basal dynamics of p53, we constructed a stochastic delay model by incorporating two negative feedback loops...

  13. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis.

    Science.gov (United States)

    Adorno, Maddalena; Cordenonsi, Michelangelo; Montagner, Marco; Dupont, Sirio; Wong, Christine; Hann, Byron; Solari, Aldo; Bobisse, Sara; Rondina, Maria Beatrice; Guzzardo, Vincenza; Parenti, Anna R; Rosato, Antonio; Bicciato, Silvio; Balmain, Allan; Piccolo, Stefano

    2009-04-03

    TGFbeta ligands act as tumor suppressors in early stage tumors but are paradoxically diverted into potent prometastatic factors in advanced cancers. The molecular nature of this switch remains enigmatic. Here, we show that TGFbeta-dependent cell migration, invasion and metastasis are empowered by mutant-p53 and opposed by p63. Mechanistically, TGFbeta acts in concert with oncogenic Ras and mutant-p53 to induce the assembly of a mutant-p53/p63 protein complex in which Smads serve as essential platforms. Within this ternary complex, p63 functions are antagonized. Downstream of p63, we identified two candidate metastasis suppressor genes associated with metastasis risk in a large cohort of breast cancer patients. Thus, two common oncogenic lesions, mutant-p53 and Ras, selected in early neoplasms to promote growth and survival, also prefigure a cellular set-up with particular metastasis proclivity by TGFbeta-dependent inhibition of p63 function.

  14. A novel radiation-induced p53 mutation is not implicated in radiation resistance via a dominant-negative effect.

    Directory of Open Access Journals (Sweden)

    Yunguang Sun

    Full Text Available Understanding the mutations that confer radiation resistance is crucial to developing mechanisms to subvert this resistance. Here we describe the creation of a radiation resistant cell line and characterization of a novel p53 mutation. Treatment with 20 Gy radiation was used to induce mutations in the H460 lung cancer cell line; radiation resistance was confirmed by clonogenic assay. Limited sequencing was performed on the resistant cells created and compared to the parent cell line, leading to the identification of a novel mutation (del at the end of the DNA binding domain of p53. Levels of p53, phospho-p53, p21, total caspase 3 and cleaved caspase 3 in radiation resistant cells and the radiation susceptible (parent line were compared, all of which were found to be similar. These patterns held true after analysis of p53 overexpression in H460 cells; however, H1299 cells transfected with mutant p53 did not express p21, whereas those given WT p53 produced a significant amount, as expected. A luciferase assay demonstrated the inability of mutant p53 to bind its consensus elements. An MTS assay using H460 and H1299 cells transfected with WT or mutant p53 showed that the novel mutation did not improve cell survival. In summary, functional characterization of a radiation-induced p53 mutation in the H460 lung cancer cell line does not implicate it in the development of radiation resistance.

  15. 14-3-3 Sigma And p53 Expression in Gastric Cancer and Its Clinical Applications

    Directory of Open Access Journals (Sweden)

    Gilbert Mühlmann

    2010-01-01

    Full Text Available 14-3-3 sigma (σ induces G2 arrest enabling the repair of damaged DNA. The function of 14-3-3 σ is frequently lost in tumor cells, indicating a potential tumor suppressor function. The purpose of this study was to evaluate the prognostic value of 14-3-3 σ expression in human gastric cancer. 14-3-3 σ expression was analyzed by immunohistochemistry in 157 tumor samples of patients, who underwent resection for gastric cancer. Since 14-3-3 σ is involved in the p53 network, p53 expression was detected in parallel and correlated with 14-3-3 σ. 14-3-3 σ was found to be overexpressed in 75 (47.8% of 157 cases, the overexpression rate of p53 protein was 27.4%. 14-3-3 σ overexpression was statistically significantly associated with pT-stage (p=0.041 pN-stage (p=0.015 and UICC-stage (p=0.019 and showed a borderline significance with Lauren classification (p=0.057. Univariate survival calculations revealed a coexistent 14-3-3 σ and p53 overexpression as a significant predictor of disease-free survival. Multivariate analysis did not unfold 14-3-3 as an independent prognostic factor for disease-free survival and overall survival. Concomitant 14-3-3 σ and p53 overexpression in tumor cells of patients with gastric cancer identifies a population of patients with relatively unfavorable prognosis.

  16. CLCA2 as a p53-Inducible Senescence Mediator

    OpenAIRE

    Chizu Tanikawa; Hidewaki Nakagawa; Yoichi Furukawa; Yusuke Nakamura; Koichi Matsuda

    2012-01-01

    p53 is a tumor suppressor gene that is frequently mutated in multiple cancer tissues. Activated p53 protein regulates its downstream genes and subsequently inhibits malignant transformation by inducing cell cycle arrest, apoptosis, DNA repair, and senescence. However, genes involved in the p53-mediated senescence pathway are not yet fully elucidated. Through the screening of two genome-wide expression profile data sets, one for cells in which exogenous p53 was introduced and the other for sen...

  17. Mutant p53 in Cancer: New Functions and Therapeutic Opportunities

    Science.gov (United States)

    Muller, Patricia A.J.; Vousden, Karen H.

    2014-01-01

    Many different types of cancer show a high incidence of TP53 mutations, leading to the expression of mutant p53 proteins. There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression. Understanding the functions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad range of cancer types. PMID:24651012

  18. The role of the tumor suppressor p53 in spermatogenesis

    NARCIS (Netherlands)

    Beumer, T. L.; Roepers-Gajadien, H. L.; Gademan, I. S.; van Buul, P. P.; Gil-Gomez, G.; Rutgers, D. H.; de rooij, D. G.

    1998-01-01

    The p53 protein appeared to be involved in both spermatogonial cell proliferation and radiation response. During normal spermatogenesis in the mouse, spermatogonia do not express p53, as analyzed by immunohistochemistry. However, after a dose of 4 Gy of X-rays, a distinct p53 staining was present in

  19. p53 specific (auto)immunity in mice

    NARCIS (Netherlands)

    Lauwen, Marjolein Monique

    2008-01-01

    Self-tolerance to p53 is a major potential limitation for the activation of the endogenous T-cell repertoire. So far, p53 specific CD8+ and CD4+ T-cell immunity has been described in cancer patients and healthy individuals. However, the restrictions of tolerance on the recruitment of p53 specific T

  20. P53 MUTATIONS IN HUMAN LUNG-TUMORS

    NARCIS (Netherlands)

    MILLER, CW; ASLO, A; KOK, K; YOKOTA, J; BUYS, CHCM; TERADA, M; KOEFFLER, HP; Simon, K.

    1992-01-01

    Mutation of one p53 allele and loss of the normal p53 allele [loss of heterozygosity (LOH)] occur in many tumors including lung cancers. These alterations apparently contribute to development of cancer by interfering with the tumor suppressor activity of p53. We directly sequenced amplified DNA in

  1. Role of p53 in Cell Death and Human Cancers

    Science.gov (United States)

    Ozaki, Toshinori; Nakagawara, Akira

    2011-01-01

    p53 is a nuclear transcription factor with a pro-apoptotic function. Since over 50% of human cancers carry loss of function mutations in p53 gene, p53 has been considered to be one of the classical type tumor suppressors. Mutant p53 acts as the dominant-negative inhibitor toward wild-type p53. Indeed, mutant p53 has an oncogenic potential. In some cases, malignant cancer cells bearing p53 mutations display a chemo-resistant phenotype. In response to a variety of cellular stresses such as DNA damage, p53 is induced to accumulate in cell nucleus to exert its pro-apoptotic function. Activated p53 promotes cell cycle arrest to allow DNA repair and/or apoptosis to prevent the propagation of cells with serious DNA damage through the transactivation of its target genes implicated in the induction of cell cycle arrest and/or apoptosis. Thus, the DNA-binding activity of p53 is tightly linked to its tumor suppressive function. In the present review article, we describe the regulatory mechanisms of p53 and also p53-mediated therapeutic strategies to cure malignant cancers. PMID:24212651

  2. p53 expression in colorectal carcinoma in relation to ...

    African Journals Online (AJOL)

    Background: It has been shown that colorectal carcinoma is increasing in incidence in African countries. This could be due to change in life style. Molecular pathogenesis of colorectal cancer commonly involves mutation in p53 gene which leads to expression of p53 protein in tumor cells. Expression of p53 protein has been ...

  3. Oncogenicity evaluation of resveratrol in p53(+/-) (p53 knockout) mice.

    Science.gov (United States)

    Horn, T L; Cwik, M J; Morrissey, R L; Kapetanovic, I; Crowell, J A; Booth, T D; McCormick, D L

    2007-01-01

    A six-month study was conducted in p53(+/-) mice to evaluate the possible oncogenicity of resveratrol (3,5,4'-trihydroxy-trans-stilbene), a cancer chemopreventive agent present in grapes and other foods. p53(+/-) mice (25/sex/group) received daily gavage exposure to vehicle only (negative control), resveratrol doses of 1000, 2000, or 4000 mg/kg/day, or p-cresidine (400 mg/kg/day; positive control). No mortality was seen in mice receiving the low dose of resveratrol. However, the mid and high doses induced mortality associated with impaction of the test article in the gastrointestinal tract. Resveratrol had no effect on body weight, food consumption, or clinical signs in surviving mice in any dose group, but induced dose-related increases in liver weight and serum cholesterol in both sexes. Mild anemia was seen in male mice at the high dose only; hematologic effects were not seen in females. Histopathology identified the kidney (hydronephrosis) and urinary bladder (epithelial hyperplasia) as target tissues for resveratrol toxicity. The incidences of both benign and malignant tumors in mice exposed to resveratrol were comparable to those in vehicle controls. By contrast, the positive control article, p-cresidine, induced urinary bladder cancer in both sexes. When administered to p53(+/-) mice at its maximum tolerated dose, resveratrol demonstrates no evidence of oncogenicity.

  4. Overexpressed Genes/ESTs and Characterization of Distinct Amplicons on 17823 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ayse E. Erson

    2001-01-01

    Full Text Available 17823 is a frequent site of gene amplification in breast cancer. Several lines of evidence suggest the presence of multiple amplicons on 17823. To characterize distinct amplicons on 17823 and localize putative oncogenes, we screened genes and expressed sequence tags (ESTs in existing physical and radiation hybrid maps for amplification and overexpression in breast cancer cell lines by semiquantitative duplex PCR, semiquantitative duplex RT-PCR, Southern blot, Northern blot analyses. We identified two distinct amplicons on 17823, one including TBX2 and another proximal region including RPS6KB1 (PS6K and MUL. In addition to these previously reported overexpressed genes, we also identified amplification and overexpression of additional uncharacterized genes and ESTs, some of which suggest potential oncogenic activity. In conclusion, we have further defined two distinct regions of gene amplification and overexpression on 17823 with identification of new potential oncogene candidates. Based on the amplification and overexpression patterns of known and as of yet unrecognized genes on 17823, it is likely that some of these genes mapping to the discrete amplicons function as oncogenes and contribute to tumor progression in breast cancer cells.

  5. Choline kinase overexpression increases invasiveness and drug resistance of human breast cancer cells.

    Science.gov (United States)

    Shah, Tariq; Wildes, Flonne; Penet, Marie-France; Winnard, Paul T; Glunde, Kristine; Artemov, Dmitri; Ackerstaff, Ellen; Gimi, Barjor; Kakkad, Samata; Raman, Venu; Bhujwalla, Zaver M

    2010-07-01

    A direct correlation exists between increased choline kinase (Chk) expression, and the resulting increase of phosphocholine levels, and histological tumor grade. To better understand the function of Chk and choline phospholipid metabolism in breast cancer we have stably overexpressed one of the two isoforms of Chk-alpha known to be upregulated in malignant cells, in non-invasive MCF-7 human breast cancer cells. Dynamic tracking of cell invasion and cell metabolism were studied with a magnetic resonance (MR) compatible cell perfusion assay. The MR based invasion assay demonstrated that MCF-7 cells overexpressing Chk-alpha (MCF-7-Chk) exhibited an increase of invasion relative to control MCF-7 cells (0.84 vs 0.3). Proton MR spectroscopy studies showed significantly higher phosphocholine and elevated triglyceride signals in Chk overexpressing clones compared to control cells. A test of drug resistance in MCF-7-Chk cells revealed that these cells had an increased resistance to 5-fluorouracil and higher expression of thymidylate synthase compared to control MCF-7 cells. To further characterize increased drug resistance in these cells, we performed rhodamine-123 efflux studies to evaluate drug efflux pumps. MCF-7-Chk cells effluxed twice as much rhodamine-123 compared to MCF-7 cells. Chk-alpha overexpression resulted in MCF-7 human breast cancer cells acquiring an increasingly aggressive phenotype, supporting the role of Chk-alpha in mediating invasion and drug resistance, and the use of phosphocholine as a biomarker of aggressive breast cancers.

  6. A Dual Role of P53 in Regulating Colistin-Induced Autophagy in PC-12 Cells.

    Science.gov (United States)

    Lu, Ziyin; Chen, Chunli; Wu, Zhiyong; Miao, Yusong; Muhammad, Ishfaq; Ding, Liangjun; Tian, Erjie; Hu, Wanjun; Ni, Huilin; Li, Rui; Wang, Bo; Li, Jichang

    2017-01-01

    This study aimed to investigate the mechanism of p53 in regulating colistin-induced autophagy in PC-12 cells. Importantly, cells were treated with 125 μg/ml colistin for 12 and 24 h after transfection with p53 siRNA or recombinant plasmid. The hallmarks of autophagy and apoptosis were examined by real-time PCR and western blot, fluorescence/immunofluorescence microscopy, and electron microscopy. The results showed that silencing of p53 leads to down-regulation of Atg5 and beclin1 for 12 h while up-regulation at 24 h and up-regulation of p62 noted. The ratio of LC3-II/I and autophagic vacuoles were significantly increased at 24 h, but autophagy flux was blocked. The cleavage of caspase3 and PARP (poly ADP-ribose polymerase) were enhanced, while PC-12-sip53 cells exposed to 3-MA showed down-regulation of apoptosis. By contrast, the expression of autophagy-related genes and protein reduced in p53 overexpressing cells following a time dependent manner. Meanwhile, there was an increase in the expression of activated caspase3 and PARP, condensed and fragmented nuclei were evident. Conclusively, the data supported that silencing of p53 promotes impaired autophagy, which acts as a pro-apoptotic induction factor in PC-12 cells treated with colistin for 24 h, and overexpression of p53 inhibits autophagy and accelerates apoptosis. Hence, it has been suggested that p53 could not act as a neuro-protective target in colistin-induced neurotoxicity.

  7. Molecular assessment of p53 abnormalities at the invasive front of oral squamous cell carcinomas.

    Science.gov (United States)

    Piffkò, J; Bànkfalvi, A; Tory, K; Füzesi, L; Bryne, M; Ofner, D; Kusch, F; Joos, U; Schmid, K W

    1998-01-01

    The prognostic significance of the invasive tumor front in squamous cell carcinomas has recently been recognized. The aim of the present study was to investigate possible molecular mechanisms underlying the significance of this area in oral squamous cell carcinomas. We used immunohistochemical and molecular genetic techniques to investigate whether p53 alterations at the invasive tumor front could determine the aggressiveness of oral cancers. p53 Overexpression was detected in 52% to 56% (four different p53 antibodies) of 100 carcinomas studied. The concordance rate between results of immunohistochemistry and genetic analysis was 60%. No correlation was found between p53 status of the tumors and clinicopathologic parameters analyzed statistically. p53 Alterations have no prognostic impact in oral squamous cell carcinomas and apparently do not represent a molecular basis for the biologic significance of the invasive tumor front. The detection of discordant p53 aberrations between primary and second primary carcinomas in some patients provide evidence for their independent origin, with possible impact on prevention and therapy.

  8. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer.

    Science.gov (United States)

    Mello, Stephano S; Valente, Liz J; Raj, Nitin; Seoane, Jose A; Flowers, Brittany M; McClendon, Jacob; Bieging-Rolett, Kathryn T; Lee, Jonghyeob; Ivanochko, Danton; Kozak, Margaret M; Chang, Daniel T; Longacre, Teri A; Koong, Albert C; Arrowsmith, Cheryl H; Kim, Seung K; Vogel, Hannes; Wood, Laura D; Hruban, Ralph H; Curtis, Christina; Attardi, Laura D

    2017-10-09

    The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Census and evaluation of p53 target genes

    Science.gov (United States)

    Fischer, M

    2017-01-01

    The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53’s tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation. PMID:28288132

  10. The proline rich domain of p53 is dispensable for MGMT-dependent DNA repair and cell survival following alkylation damage.

    Science.gov (United States)

    Baran, Katherine; Yang, Mao; Dillon, Christopher P; Samson, Leona L; Green, Douglas R

    2017-11-01

    In addition to promoting cell death and senescence, p53 also has important cellular survival functions. A mutant p53, lacking a proline-rich domain (p53ΔP), that is deficient in controlling both cell death and cell cycle arrest, was employed to determine the biological means by which p53 mediates survival upon DNA damage. While p53ΔP and p53-/- cells were equally resistant to many DNA damaging agents, p53ΔP cells showed an exquisite resistance to high doses of the alkylating agent Diazald (N-Methyl-N-(p-tolylsulfonyl)nitrosamide), as compared to cells completely deficient for p53 function. We determined that p53ΔP was capable of transcribing the repair gene, MGMT (O6-methylguanine-DNA methyltransferase) after irradiation or alkylation damage, resulting in DNA repair and cell survival. Consistent with these observations, p53ΔP mice show enhanced survival after IR relative to p53-/- mice. Suppression or deletion of MGMT expression in p53ΔP cells inhibited DNA repair and survival after alkylation damage, whereas MGMT overexpression in p53-deficient cells facilitated DNA repair and conferred survival advantage. This study shows that when cell death and cell cycle arrest pathways are inhibited, p53 can still mediate MGMT-dependent repair, to promote cell survival upon DNA damage.

  11. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents

    NARCIS (Netherlands)

    Michaelis, M.; Rothweiler, F.; Agha, B.; Barth, S.; Voges, Y.; Loeschmann, N.; von Deimling, A.; Breitling, R.; Doerr, H. Wilhelm; Roedel, F.; Speidel, D.; Cinatl, J.; Cinatl Jr., J.; Stephanou, A.

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3,

  12. Involvement of hGLD-2 in cytoplasmic polyadenylation of human p53 mRNA

    DEFF Research Database (Denmark)

    Glahder, Jacob-Andreas Harald; Norrild, Bodil

    2011-01-01

    Cytoplasmic polyadenylation is a post-transcriptional mechanism regulating mRNA stability and translation. The human p53 3'-untranslated region (3'-UTR) contains two regions similar to cytoplasmic polyadenylation elements (CPEs) just upstream of the poly(A) hexanucleotide. Evaluation of the p53 CPE......-like elements was performed by luciferase reporter assays, qPCR, and poly(A) assays. Herein, we report the down regulation of a luciferase reporter fused to the p53 3'-UTR, when human CPE-binding protein 1 (hCPEB1) is overexpressed. This inhibition is partially rescued when hCPEB1fused to hGLD-2 [a human...... cytoplasmic poly(A) polymerase] is overexpressed instead. The stability of a luciferase mRNA containing the p53 3'-UTR downstream, is decreased when hCPEB1 is overexpressed as seen by qPCR. Expression of hGLD-2 restores the mRNA stability. This is due to elongation of the poly(A) tail as seen by a PCR...

  13. Molecularly targeted therapies for p53-mutant cancers.

    Science.gov (United States)

    Zhao, Dekuang; Tahaney, William M; Mazumdar, Abhijit; Savage, Michelle I; Brown, Powel H

    2017-11-01

    The tumor suppressor p53 is lost or mutated in approximately half of human cancers. Mutant p53 not only loses its anti-tumor transcriptional activity, but also often acquires oncogenic functions to promote tumor proliferation, invasion, and drug resistance. Traditional strategies have been taken to directly target p53 mutants through identifying small molecular compounds to deplete mutant p53, or to restore its tumor suppressive function. Accumulating evidence suggest that cancer cells with mutated p53 often exhibit specific functional dependencies on secondary genes or pathways to survive, providing alternative targets to indirectly treat p53-mutant cancers. Targeting these genes or pathways, critical for survival in the presence of p53 mutations, holds great promise for cancer treatment. In addition, mutant p53 often exhibits novel gain-of-functions to promote tumor growth and metastasis. Here, we review and discuss strategies targeting mutant p53, with focus on targeting the mutant p53 protein directly, and on the progress of identifying genes and pathways required in p53-mutant cells.

  14. Blocking of p53-Snail Binding, Promoted by Oncogenic K-Ras, Recovers p53 Expression and function

    Directory of Open Access Journals (Sweden)

    Sun-Hye Lee

    2009-01-01

    Full Text Available Differentially from other kinds of Ras, oncogenic K-Ras, which is mutated approximately 30% of human cancer, does not induce apoptosis and senescence. Here, we provide the evidence that oncogenic K-Ras abrogates p53 function and expression through induction of Ataxia telangiectasia-mutated and Rad3-related mediated Snail stabilization. Snail directly binds to DNA binding domain of p53 and diminishes the tumor-suppressive function of p53. Thus, elimination of Snail through si-RNA can induce p53 in K-Ras-mutated cells, whereas Snail and mutant K-Ras can suppress p53 in regardless of K-Ras status. Chemicals, isolated from inhibitor screening of p53-Snail binding, can block the Snail-mediated p53 suppression and enhance the expression of p53 as well as the transcriptional activity of p53 in an oncogenic K-Ras-dependent manner. Among the chemicals, two are very similar in structure. These results can answer why K-Ras can coexist with wild type p53 and propose the Snail-p53 binding as the new therapeutic target for K-Ras-mutated cancers including pancreatic, lung, and colon cancers.

  15. Prognostic value of microsatellite instability and p53 expression in metastatic colorectal cancer treated with oxaliplatin and fluoropyrimidine-based chemotherapy.

    Science.gov (United States)

    Nöpel-Dünnebacke, S; Schulmann, K; Reinacher-Schick, A; Porschen, R; Schmiegel, W; Tannapfel, A; Graeven, U

    2014-12-01

    The aim of this study was to evaluate the prognostic value of MSI-H and p53 overexpression in metastatic colorectal cancer (mCRC) treated with oxaliplatin and fluoropyrimidine-based first line chemotherapy. Tumour samples were retrospectively obtained from 229 patients from a prospective randomised phase III trial of the AIO colorectal study group, comparing CAPOX and FUFOX in mCRC. Immunohistochemistry of p53 and MMR proteins as well as microsatellite analysis were performed. The incidence of MSI-H and p53 overexpression was 7.9 % and 65.4 %, respectively. MSI-H status was not correlated with ORR, PFS and OS. We observed a trend to lower DCR for MSI-H tumours (65 % vs. 85 %, p = 0.055). p53 overexpression was not correlated with DCR, ORR and PFS. The median OS of patients with tumors with p53 overexpression was significantly longer compared to tumors withhout p53 overexpression (19.6 vs. 15.8 months; p = 0.05). The post-progression survival (PPS) of p53-positive patients undergoing 2nd and/or 3rd line chemotherapy with irinotecan and/or cetuximab was significantly longer compared to p53-negative patients. MSI-H tumours tend to have lower disease control rates when treated with an oxaliplatin/fluoropyrmidin combination. mCRC patients with p53 overexpression undergoing an irinotecan containing second- or third-line chemotherapy after oxaliplatin failure have a significantly longer post-progression survival compared to patients without p53 overexpression. To validate the clinical impact of p53 in patients with mCRC treated with irinotecan- and/or cetuximab further studies are needed. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Targeting the p53 Pathway in Ewing Sarcoma

    Directory of Open Access Journals (Sweden)

    Paul M. Neilsen

    2011-01-01

    Full Text Available The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of the TP53 gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in the TP53 gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53.

  17. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  18. Family feud in chemosensitvity: p73 and mutant p53.

    Science.gov (United States)

    Irwin, Meredith S

    2004-03-01

    The importance of p53 in chemotherapy-induced apoptosis of cancer cells is well established. p53 plays a critical role in the cellular response to DNA damage by regulating genes involved in cell cycle progression, apoptosis, and genomic stability. As a result, p53 tumor status is a critical determinant of both responses to anti-cancer treatment and clinical prognosis. Interestingly, tumors expressing certain mutant forms of p53 ("gain of function") are particularly resistant to chemotherapy, even when compared to cells that lack any detectable p53. Until recently, the explanation for this enhanced chemoresistance was not clear. Recent studies have shown that the p53 homologues, p73 and p63, are also activated by chemotherapies, leading to tumor cell death. Now the discovery that mutant p53 interacts with p73, and that regulation of this interaction by a p53 polymorphism can modulate chemosensitvity provide a new model for how p53-family interactions can influence the response of tumors to anti-cancer therapies. Since p53 mutations are found in more than 50% of human tumors, strategies aimed at manipulating these interactions may prove useful in enhancing the chemotherapy response, and perhaps, overcoming chemoresistance.

  19. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy.

    Science.gov (United States)

    Bressy, Christian; Hastie, Eric; Grdzelishvili, Valery Z

    2017-06-16

    Oncolytic virus (OV) therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53) or another p53 family member (TP63 or TP73) were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  20. p53: key conductor of all anti-acne therapies.

    Science.gov (United States)

    Melnik, Bodo C

    2017-09-19

    This review based on translational research predicts that the transcription factor p53 is the key effector of all anti-acne therapies. All-trans retinoic acid (ATRA) and isotretinoin (13-cis retinoic acid) enhance p53 expression. Tetracyclines and macrolides via inhibiting p450 enzymes attenuate ATRA degradation, thereby increase p53. Benzoyl peroxide and hydrogen peroxide elicit oxidative stress, which upregulates p53. Azelaic acid leads to mitochondrial damage associated with increased release of reactive oxygen species inducing p53. p53 inhibits the expression of androgen receptor and IGF-1 receptor, and induces the expression of IGF binding protein 3. p53 induces FoxO1, FoxO3, p21 and sestrin 1, sestrin 2, and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the key inducer of isotretinoin-mediated sebocyte apoptosis explaining isotretinoin's sebum-suppressive effect. Anti-androgens attenuate the expression of miRNA-125b, a key negative regulator of p53. It can thus be concluded that all anti-acne therapies have a common mode of action, i.e., upregulation of the guardian of the genome p53. Immortalized p53-inactivated sebocyte cultures are unfortunate models for studying acne pathogenesis and treatment.

  1. p53 RNA interactions: new clues in an old mystery.

    Science.gov (United States)

    Riley, Kasandra J-L; Maher, L James

    2007-11-01

    The p53 tumor suppressor protein is typically considered to be a sequence-specific DNA-binding transcription factor. However, reports over the last 15 years have described RNA binding by p53 in a variety of contexts, suggesting the possibility of new p53 functions. It is clear that p53-RNA interactions are mediated by a nucleic acid-binding domain of p53 independent of the sequence-specific core domain responsible for DNA recognition. Reports disagree on several aspects of the putative RNA interaction, including sequence specificity and biological relevance. Here we review the history and recent advances in the study of p53-RNA interactions. We argue that p53-RNA interactions are sequence nonspecific and depend on incomplete post-translational modification of the p53 C-terminal domain when the protein is expressed in heterologous systems. It is unknown what fraction of p53 protein exists in a state competent for RNA binding in vivo. Thus, potential physiological roles of p53-RNA interactions remain mysterious.

  2. NAD+ Modulates p53 DNA Binding Specificity and Function

    Science.gov (United States)

    McLure, Kevin G.; Takagi, Masatoshi; Kastan, Michael B.

    2004-01-01

    DNA damage induces p53 DNA binding activity, which affects tumorigenesis, tumor responses to therapies, and the toxicities of cancer therapies (B. Vogelstein, D. Lane, and A. J. Levine, Nature 408:307-310, 2000; K. H. Vousden and X. Lu, Nat. Rev. Cancer 2:594-604, 2002). Both transcriptional and transcription-independent activities of p53 contribute to DNA damage-induced cell cycle arrest, apoptosis, and aneuploidy prevention (M. B. Kastan et al., Cell 71:587-597, 1992; K. H. Vousden and X. Lu, Nat. Rev. Cancer 2:594-604, 2002). Small-molecule manipulation of p53 DNA binding activity has been an elusive goal, but here we show that NAD+ binds to p53 tetramers, induces a conformational change, and modulates p53 DNA binding specificity in vitro. Niacinamide (vitamin B3) increases the rate of intracellular NAD+ synthesis, alters radiation-induced p53 DNA binding specificity, and modulates activation of a subset of p53 transcriptional targets. These effects are likely due to a direct effect of NAD+ on p53, as a molecule structurally related to part of NAD+, TDP, also inhibits p53 DNA binding, and the TDP precursor, thiamine (vitamin B1), inhibits intracellular p53 activity. Niacinamide and thiamine affect two p53-regulated cellular responses to ionizing radiation: rereplication and apoptosis. Thus, niacinamide and thiamine form a novel basis for the development of small molecules that affect p53 function in vivo, and these results suggest that changes in cellular energy metabolism may regulate p53. PMID:15509798

  3. Synthesis and evaluation of modified chalcone based p53 stabilizing agents

    KAUST Repository

    Iftikhar, Sunniya

    2017-07-15

    Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (Cal-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI50 of 0.473 ± 0.043 µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-hour post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities.

  4. Synthesis and evaluation of modified chalcone based p53 stabilizing agents.

    Science.gov (United States)

    Iftikhar, Sunniya; Khan, Sardraz; Bilal, Aishah; Manzoor, Safia; Abdullah, Muhammad; Emwas, Abdel-Hamid; Sioud, Salim; Gao, Xin; Chotana, Ghayoor Abbas; Faisal, Amir; Saleem, Rahman Shah Zaib

    2017-09-01

    Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (CAL-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI50 of 0.473±0.043µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-h post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  6. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model

    Directory of Open Access Journals (Sweden)

    Qian Lu

    2007-08-01

    Full Text Available Abstract Background c-Jun/AP-1 has been linked to invasive properties of aggressive breast cancer. Recently, it has been reported that overexpression of c-Jun in breast cancer cell line MCF-7 resulted in increased AP-1 activity, motility and invasiveness of the cells in vitro and tumor formation in nude mice. However, the role of c-Jun in metastasis of human breast cancer in vivo is currently unknown. Methods To further investigate the direct involvement of c-Jun in tumorigenesis and metastasis, in the present study, the effects of c-Jun overexpression were studied in both in vitro and in nude mice. Results Ectopic overexpression of c-Jun promoted the growth of MCF-7 cells and resulted in a significant increase in the percentage of cells in S phase and increased motility and invasiveness. Introduction of c-Jun gene alone into weakly invasive MCF-7 cells resulted in the transfected cells capable of metastasizing to the nude mouse liver following tail vein injection. Conclusion The present study confirms that overexpression of c-Jun contributes to a more invasive phenotype in MCF-7 cells. It indicates an interesting relationship between c-Jun expression and increased property of adhesion, migration and in vivo liver metastasis of MCF-7/c-Jun cells. The results provide further evidence that c-Jun is involved in the metastasis of breast cancer. The finding also opens an opportunity for development of anti-c-Jun strategies in breast cancer therapy.

  7. On p53 revival using system oriented drug dosage design.

    Science.gov (United States)

    Haseeb, Muhammad; Azam, Shumaila; Bhatti, A I; Azam, Rizwan; Ullah, Mukhtar; Fazal, Sahar

    2017-02-21

    We propose a new paradigm in the drug design for the revival of the p53 pathway in cancer cells. It is shown that the current strategy of using small molecule based Mdm2 inhibitors is not enough to adequately revive p53 in cancerous cells, especially when it comes to the extracting pulsating behavior of p53. This fact has come to notice when a novel method for the drug dosage design is introduced using system oriented concepts. As a test case, small molecule drug Mdm2 repressor Nutlin 3a is considered. The proposed method determines the dose of Nutlin to revive p53 pathway functionality. For this purpose, PBK dynamics of Nutlin have also been integrated with p53 pathway model. The p53 pathway is the focus of researchers for the last thirty years for its pivotal role as a frontline cancer suppressant protein due to its effect on cell cycle checkpoints and cell apoptosis in response to a DNA strand break. That is the reason for finding p53 being absent in more than 50% of tumor cancers. Various drugs have been proposed to revive p53 in cancer cells. Small molecule based drugs are at the foremost and are the subject of advanced clinical trials. The dosage design of these drugs is an important issue. We use control systems concepts to develop the drug dosage so that the cancer cells can be treated in appropriate time. We investigate by using a computational model how p53 protein responds to drug Nutlin 3a, an agent that interferes with the MDM2-mediated p53 regulation. The proposed integrated model describes in some detail the regulation network of p53 including the negative feedback loop mediated by MDM2 and the positive feedback loop mediated by Mdm2 mRNA as well as the reversible represses of MDM2 caused by Nutlin. The reported PBK dynamics of Nutlin 3a are also incorporated to see the full effect. It has been reported that p53 response to stresses in two ways. Either it has a sustained (constant) p53 response, or there are oscillations in p53 concentration. The

  8. Gelsolin negatively regulates the activity of tumor suppressor p53 through their physical interaction in hepatocarcinoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Joo-Hee; Kim, Jung-Woong; Jang, Sang-Min; Kim, Chul-Hong; Kang, Eun-Jin; Choi, Kyung-Hee, E-mail: khchoi@cau.ac.kr

    2011-08-19

    Highlights: {yields} The actin binding protein Gelsolin (GSN) interacts with transcription factor p53. {yields} GSN interacts with transactivation- and DNA binding domains of p53. {yields} GSN represses transactivity of p53 via inhibition of nuclear translocation of p53. {yields} GSN inhibits the p53-mediated apoptosis in hepatocarcinoma HepG2 cells. -- Abstract: As a transcription factor, p53 modulates several cellular responses including cell-cycle control, apoptosis, and differentiation. In this study, we have shown that an actin regulatory protein, gelsolin (GSN), can physically interact with p53. The nuclear localization of p53 is inhibited by GSN overexpression in hepatocarcinoma HepG2 cells. Additionally, we demonstrate that GSN negatively regulates p53-dependent transcriptional activity of a reporter construct, driven by the p21-promoter. Furthermore, p53-mediated apoptosis was repressed in GSN-transfected HepG2 cells. Taken together, these results suggest that GSN binds to p53 and this interaction leads to the inhibition of p53-induced apoptosis by anchoring of p53 in the cytoplasm in HepG2 cells.

  9. The cooperation between hMena overexpression and HER2 signalling in breast cancer.

    Directory of Open Access Journals (Sweden)

    Francesca Di Modugno

    Full Text Available hMena and the epithelial specific isoform hMena(11a are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena(11a expression and phosphorylates hMena(11a, suggesting cross-talk between the ErbB receptor family and hMena/hMena(11a in breast cancer. The aim of this study was to determine whether the hMena/hMena(11a overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67, and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena(11a expression and hMena(11a phosphorylation. On the other hand, hMena/hMena(11a knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena(11a knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena(11a as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients.

  10. The cooperation between hMena overexpression and HER2 signalling in breast cancer.

    Science.gov (United States)

    Di Modugno, Francesca; Mottolese, Marcella; DeMonte, Lucia; Trono, Paola; Balsamo, Michele; Conidi, Andrea; Melucci, Elisa; Terrenato, Irene; Belleudi, Francesca; Torrisi, Maria Rosaria; Alessio, Massimo; Santoni, Angela; Nisticò, Paola

    2010-12-30

    hMena and the epithelial specific isoform hMena(11a) are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena(11a) expression and phosphorylates hMena(11a), suggesting cross-talk between the ErbB receptor family and hMena/hMena(11a) in breast cancer. The aim of this study was to determine whether the hMena/hMena(11a) overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena(11a) expression and hMena(11a) phosphorylation. On the other hand, hMena/hMena(11a) knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena(11a) knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena(11a) as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients.

  11. c-MYC-Induced Sebaceous Gland Differentiation Is Controlled by an Androgen Receptor/p53 Axis

    Directory of Open Access Journals (Sweden)

    Denny L. Cottle

    2013-02-01

    Full Text Available Although the sebaceous gland (SG plays an important role in skin function, the mechanisms regulating SG differentiation and carcinoma formation are poorly understood. We previously reported that c-MYC overexpression stimulates SG differentiation. We now demonstrate roles for the androgen receptor (AR and p53. MYC-induced SG differentiation was reduced in mice lacking a functional AR. High levels of MYC triggered a p53-dependent DNA damage response, leading to accumulation of proliferative SG progenitors and inhibition of AR signaling. Conversely, testosterone treatment or p53 deletion activated AR signaling and restored MYC-induced differentiation. Poorly differentiated human sebaceous carcinomas exhibited high p53 and low AR expression. Thus, the consequences of overactivating MYC in the SG depend on whether AR or p53 is activated, as they form a regulatory axis controlling proliferation and differentiation.

  12. Giant cell glioblastoma is associated with altered aurora b expression and concomitant p53 mutation.

    Science.gov (United States)

    Temme, Achim; Geiger, Kathrin D; Wiedemuth, Ralf; Conseur, Katharina; Pietsch, Torsten; Felsberg, Jörg; Reifenberger, Guido; Tatsuka, Masaaki; Hagel, Christian; Westphal, Manfred; Berger, Hilmar; Simon, Matthias; Weller, Michael; Schackert, Gabriele

    2010-06-01

    Giant cell glioblastoma (gcGB), a subtype of GB, is characterized by the presence of numerous multinucleated giant cells. The prognosis for gcGB is poor, but it may have a better clinical outcome compared with classic GB. The molecular alterations that lead to the multinucleated cell phenotype of gcGB have not been elucidated. Giant cell GB has a higher frequency of the tumor suppressor protein p53 mutations than GB, however, and a role for the mitotic Aurora B kinase has been suggested. We analyzed Aurora B expression in gcGB (n = 28) and GB (n = 54) patient tumor samples by immunohistochemistry; 17 gcGB and 22 GB samples were analyzed at the DNA and mRNA levels. No mutations in the Aurora B gene (AURKB) were found, but its mRNA and protein levels were significantly higher in gcGB than in GB. Fifty-nine percent of gcGB samples but only 18% of the GB samples showed p53 mutations. Ectopic overexpression of Aurora B induced a significant increase inthe proportion of multinucleated cells in p53 mutant U373-MG, but not in p53 wild-type U87-MG, glioma cells. RNAi of p53 in U87-MG cells led to an increase in the fraction of multinucleated cells that was further augmented by ectopic overexpression of Aurora B. These results suggest that loss of p53 function and dysregulated Aurora B protein levels might represent factors that drive the development of multinucleated cells in gcGB.

  13. Senescence and aging: the critical roles of p53.

    Science.gov (United States)

    Rufini, A; Tucci, P; Celardo, I; Melino, G

    2013-10-24

    p53 functions as a transcription factor involved in cell-cycle control, DNA repair, apoptosis and cellular stress responses. However, besides inducing cell growth arrest and apoptosis, p53 activation also modulates cellular senescence and organismal aging. Senescence is an irreversible cell-cycle arrest that has a crucial role both in aging and as a robust physiological antitumor response, which counteracts oncogenic insults. Therefore, via the regulation of senescence, p53 contributes to tumor growth suppression, in a manner strictly dependent by its expression and cellular context. In this review, we focus on the recent advances on the contribution of p53 to cellular senescence and its implication for cancer therapy, and we will discuss p53's impact on animal lifespan. Moreover, we describe p53-mediated regulation of several physiological pathways that could mediate its role in both senescence and aging.

  14. "Super p53" mice display retinal astroglial changes.

    Directory of Open Access Journals (Sweden)

    Juan J Salazar

    Full Text Available Tumour-suppressor genes, such as the p53 gene, produce proteins that inhibit cell division under adverse conditions, as in the case of DNA damage, radiation, hypoxia, or oxidative stress (OS. The p53 gene can arrest proliferation and trigger death by apoptosis subsequent to several factors. In astrocytes, p53 promotes cell-cycle arrest and is involved in oxidative stress-mediated astrocyte cell death. Increasingly, astrocytic p53 is proving fundamental in orchestrating neurodegenerative disease pathogenesis. In terms of ocular disease, p53 may play a role in hypoxia due to ischaemia and may be involved in the retinal response to oxidative stress (OS. We studied the influence of the p53 gene in the structural and quantitative characteristics of astrocytes in the retina. Adult mice of the C57BL/6 strain (12 months old were distributed into two groups: 1 mice with two extra copies of p53 ("super p53"; n = 6 and 2 wild-type p53 age-matched control, as the control group (WT; n = 6. Retinas from each group were immunohistochemically processed to locate the glial fibrillary acidic protein (GFAP. GFAP+ astrocytes were manually counted and the mean area occupied for one astrocyte was quantified. Retinal-astrocyte distribution followed established patterns; however, morphological changes were seen through the retinas in relation to p53 availability. The mean GFAP+ area occupied by one astrocyte in "super p53" eyes was significantly higher (p<0.05; Student's t-test than in the WT. In addition, astroglial density was significantly higher in the "super p53" retinas than in the WT ones, both in the whole-retina (p<0,01 Student's t-test and in the intermediate and peripheral concentric areas of the retina (p<0.05 Student's t-test. This fact might improve the resistance of the retinal cells against OS and its downstream signalling pathways.

  15. Battle Against Cancer: An Everlasting Saga of p53

    Directory of Open Access Journals (Sweden)

    Qian Hao

    2014-12-01

    Full Text Available Cancer is one of the most life-threatening diseases characterized by uncontrolled growth and spread of malignant cells. The tumor suppressor p53 is the master regulator of tumor cell growth and proliferation. In response to various stress signals, p53 can be activated and transcriptionally induces a myriad of target genes, including both protein-encoding and non-coding genes, controlling cell cycle progression, DNA repair, senescence, apoptosis, autophagy and metabolism of tumor cells. However, around 50% of human cancers harbor mutant p53 and, in the majority of the remaining cancers, p53 is inactivated through multiple mechanisms. Herein, we review the recent progress in understanding the molecular basis of p53 signaling, particularly the newly identified ribosomal stress—p53 pathway, and the development of chemotherapeutics via activating wild-type p53 or restoring mutant p53 functions in cancer. A full understanding of p53 regulation will aid the development of effective cancer treatments.

  16. Evolution of the p53-MDM2 pathway.

    Science.gov (United States)

    Åberg, Emma; Saccoccia, Fulvio; Grabherr, Manfred; Ore, Wai Ying Josefin; Jemth, Per; Hultqvist, Greta

    2017-08-03

    The p53 signalling pathway, which controls cell fate, has been extensively studied due to its prominent role in tumor development. The pathway includes the tumor supressor protein p53, its vertebrate paralogs p63 and p73, and their negative regulators MDM2 and MDM4. The p53/p63/p73-MDM system is ancient and can be traced in all extant animal phyla. Despite this, correct phylogenetic trees including both vertebrate and invertebrate species of the p53/p63/p73 and MDM families have not been published. Here, we have examined the evolution of the p53/p63/p73 protein family with particular focus on the p53/p63/p73 transactivation domain (TAD) and its co-evolution with the p53/p63/p73-binding domain (p53/p63/p73BD) of MDM2. We found that the TAD and p53/p63/p73BD share a strong evolutionary connection. If one of the domains of the protein is lost in a phylum, then it seems very likely to be followed by loss of function by the other domain as well, and due to the loss of function it is likely to eventually disappear. By focusing our phylogenetic analysis to p53/p63/p73 and MDM proteins from phyla that retain the interaction domains TAD and p53/p63/p73BD, we built phylogenetic trees of p53/p63/p73 and MDM based on both vertebrate and invertebrate species. The trees follow species evolution and contain a total number of 183 and 98 species for p53/p63/p73 and MDM, respectively. We also demonstrate that the p53/p63/p73 and MDM families result from whole genome duplications. The signaling pathway of the TAD and p53/p63/p73BD in p53/p63/p73 and MDM, respectively, dates back to early metazoan time and has since then tightly co-evolved, or disappeared in distinct lineages.

  17. Super p53 for Treatment of Ovarian Cancer

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0036 TITLE: Super p53 for Treatment of Ovarian Cancer PRINCIPAL INVESTIGATOR: Carol S. Lim University of Utah...Super p53 for Treatment of Ovarian Cancer 5b. GRANT NUMBER W81XWH-15-1-0036 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Carol S. Lim...ABSTRACT In this final report, we show gene therapy using re-engineered super p53 (p53-CC constructs) kills some ovarian cancer cell lines in vitro

  18. NQO1 stabilizes p53 through a distinct pathway

    OpenAIRE

    Asher, Gad; Lotem, Joseph; Kama, Rachel; Sachs, Leo; Shaul, Yosef

    2002-01-01

    Wild-type p53 is a tumor-suppressor gene that encodes a short-lived protein that, upon accumulation, induces growth arrest or apoptosis. Accumulation of p53 occurs mainly by posttranslational events that inhibit its proteosomal degradation. We have reported previously that inhibition of NAD(P)H: quinone oxidoreductase 1 (NQO1) activity by dicoumarol induces degradation of p53, indicating that NQO1 plays a role in p53 stabilization. We now have found that wild-type NQO1, but not the inactive p...

  19. Expression of Androgen Receptor Is Negatively Regulated By p53

    OpenAIRE

    Fatouma Alimirah; Ravichandran Panchanathan; Jianming Chen; Xiang Zhang; Shuk-Mei Ho; Divaker Choubey

    2007-01-01

    Increased expression of androgen receptor (AR) in prostate cancer (PC) is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs). We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in hu...

  20. A negative regulation loop of long noncoding RNA HOTAIR and p53 in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhai N

    2016-09-01

    Full Text Available Nailiang Zhai,1 Yongfu Xia,1 Rui Yin,2 Jinping Liu,3 Fuquan Gao1 1Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, 2Department of Respiratory Medicine, People’s Hospital of Binzhou City, 3Department of Pharmacology, Binzhou Medical University, Binzhou, Shandong, People’s Republic of China Abstract: Non-small-cell lung cancer (NSCLC is one of the leading causes of cancer-related death worldwide, and the 5-year survival rate is still low despite advances in diagnosis and therapeutics. A long noncoding RNA (lncRNA HOX antisense intergenic RNA (HOTAIR has been revealed to play important roles in NSCLC carcinogenesis but the detailed mechanisms are still unclear. In the current study, we aimed to investigate the regulation between the lncRNA HOTAIR and p53 in the NSCLC patient samples and cell lines. Our results showed that HOTAIR expression was significantly higher in the cancer tissues than that in the adjacent normal tissue, and was negatively correlated with p53 functionality rather than expression. When p53 was overexpressed in A549 cells, the lncRNA HOTAIR expression was downregulated, and the cell proliferation rate and cell invasion capacity decreased as a consequence. We identified two binding sites of p53 on the promoter region of HOTAIR, where the p53 protein would bind to and suppress the HOTAIR mRNA transcription. Inversely, overexpression of lncRNA HOTAIR inhibited the expression of p53 in A549 cells. Mechanistic studies revealed that HOTAIR modified the promoter of p53 and enhanced histone H3 lysine 27 trimethylation (H3K27me3. These studies identified a specific negative regulation loop of lncRNA HOTAIR and p53 in NSCLC cells, which revealed a new understanding of tumorigenesis in p53 dysfunction NSCLC cells. Keywords: NSCLC, LncRNA HOTAIR, p53, negative loop

  1. Functional consequence of the p53 codon 72 polymorphism in colorectal cancer.

    Science.gov (United States)

    Katkoori, Venkat R; Manne, Upender; Chaturvedi, Lakshmi S; Basson, Marc D; Haan, Pam; Coffey, Daniel; Bumpers, Harvey L

    2017-09-29

    The codon 72 polymorphism in p53 has been implicated in colorectal cancer (CRC) risk, prognosis and CRC health disparities. We examined the functional consequence of this polymorphism in CRC. Plasmids (pCMV6) that express different phenotypes of p53 [p53 wild type (wt) at codon 72 (R72wt), R72wt with mutation at codon 273 cysteine (R72273Cys), p53 mutation at codon 72 (P72wt) and P72wt with mutation at codon 273 (P72273Cys)] were constructed. The CRC cell line Caco2, which does not express p53 for in vitro studies, was used as host. CRC xenografts were established in severe combined immunodeficient (SCID) mice using established cell lines. CRC surgical specimens, corresponding normal colon, and tumor xenografts were sequenced for codon 72 polymorphism of p53. Proteins signaling mechanisms were evaluated to assess the functional consequence of P72 phenotype of p53. This study demonstrated a significantly increased survival of cells expressing P72wt, mutant phenotype, versus R72wt phenotype. WB analyses revealed that P72wt induced activation of p38 and RAF/MEK/ extracellular signal-regulated kinase (ERK) MAP kinases. Activation of CREB was found to be higher in tumors that exhibit P72 phenotype. Metastatic lesions of CRC expressed more phospho-CREB than non-metastatic lesions. The expression of P72wt promoted CRC metastasis. P72 contributes to the aggressiveness of CRC. Because P72 is over-expressed in CRC, specifically in African-American patients, this suggests a role for P72 in cancer health disparities. This work was supported by NIH/NCI Workforce Diversity Grant R21-CA171251 & U54CA118948.

  2. A naturally occurring 4-bp deletion in the intron 4 of p53 creates a spectrum of novel p53 isoforms with anti-apoptosis function

    OpenAIRE

    Shi, Hui; Tao, Ting; Huang, Delai; Ou, Zhao; Chen, Jun; Peng, Jinrong

    2014-01-01

    p53 functions as a tumor suppressor by transcriptionally regulating the expression of genes involved in controlling cell proliferation or apoptosis. p53 and its isoform ?133p53/?113p53 form a negative regulation loop in that p53 activates the expression of ?133p53/?113p53 while ?133p53/?113p53 specifically antagonizes p53 apoptotic activity. This pathway is especially important to safeguard the process of embryogenesis because sudden activation of p53 by DNA damage signals or developmental st...

  3. Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma.

    LENUS (Irish Health Repository)

    Burke, Louise

    2012-02-03

    PURPOSE: Many studies have highlighted the aberrant expression and prognostic significance of individual proteins in either the Rb (particularly cyclin D1, p16INK4A, and pRb) or the p53 (p53 and p21Waf1) pathways in non-small cell lung cancer. We hypothesize that cumulative abnormalities within each and between these pathways would have significant prognostic potential regarding survival. EXPERIMENTAL DESIGN: Our study population consisted of 106 consecutive surgically resected cases of predominantly early-stage non-small cell lung cancer from the National Cancer Institute-Mayo Clinic series, and assessment of proteins involved both immunohistochemical (cyclin D1, p21Waf1, pRb, p16INK4A, and p53) and mutational analysis (p53) in relationship to staging and survival. RESULTS: Cyclin D1 overexpression was noted in 48% of the tumors, p16INK4A negative in 53%, pRb negative in 17%, p53 immunopositive in 50%, p53 mutation frequency in 48%, and p21(Waf1) overexpression in 47%, none with prognostic significance. Cyclin D1 overexpression in pRb-negative tumors revealed a significantly worse prognosis with a mean survival of 2.3 years (P = 0.004). A simultaneous p53 mutation dramatically reduced the mean survival time to 0.9 years (P = 0.007). Cyclin D1 overexpression with either a p53 mutation or a p53 overexpression was also associated with a significantly poorer prognosis (P = 0.0033 and 0.0063, respectively). CONCLUSIONS: Some cumulative abnormalities in the Rb and p53 pathways (e.g., cyclin D1 overexpression and p53 mutations) significantly cooperate to predict a poor prognosis; however, the complexity of the cell cycle protein interaction in any given tumor warrants caution in interpreting survival results when specific protein abnormalities are taken in isolation.

  4. p53-dependent translational control of senescence and transformation via 4E-BPs.

    Science.gov (United States)

    Petroulakis, Emmanuel; Parsyan, Armen; Dowling, Ryan J O; LeBacquer, Olivier; Martineau, Yvan; Bidinosti, Michael; Larsson, Ola; Alain, Tommy; Rong, Liwei; Mamane, Yaël; Paquet, Marilene; Furic, Luc; Topisirovic, Ivan; Shahbazian, David; Livingstone, Mark; Costa-Mattioli, Mauro; Teodoro, Jose G; Sonenberg, Nahum

    2009-11-06

    eIF4E, the mRNA 5' cap-binding translation initiation factor, is overexpressed in numerous cancers and is implicated in mechanisms underlying oncogenesis and senescence. 4E-BPs (eIF4E-binding proteins) inhibit eIF4E activity, and thereby act as suppressors of eIF4E-dependent pathways. Here, we show that tumorigenesis is increased in p53 knockout mice that lack 4E-BP1 and 4E-BP2. However, primary fibroblasts lacking 4E-BPs, but expressing p53, undergo premature senescence and resist oncogene-driven transformation. Thus, the p53 status governs 4E-BP-dependent senescence and transformation. Intriguingly, the 4E-BPs engage in senescence via translational control of the p53-stabilizing protein, Gas2. Our data demonstrate a role for 4E-BPs in senescence and tumorigenesis and highlight a p53-mediated mechanism of senescence through a 4E-BP-dependent pathway.

  5. NRF2 Is a Major Target of ARF in p53-Independent Tumor Suppression.

    Science.gov (United States)

    Chen, Delin; Tavana, Omid; Chu, Bo; Erber, Luke; Chen, Yue; Baer, Richard; Gu, Wei

    2017-10-05

    Although ARF can suppress tumor growth by activating p53 function, the mechanisms by which it suppresses tumor growth independently of p53 are not well understood. Here, we identified ARF as a key regulator of nuclear factor E2-related factor 2 (NRF2) through complex purification. ARF inhibits the ability of NRF2 to transcriptionally activate its target genes, including SLC7A11, a component of the cystine/glutamate antiporter that regulates reactive oxygen species (ROS)-induced ferroptosis. As a consequence, ARF expression sensitizes cells to ferroptosis in a p53-independent manner while ARF depletion induces NRF2 activation and promotes cancer cell survival in response to oxidative stress. Moreover, the ability of ARF to induce p53-independent tumor growth suppression in mouse xenograft models is significantly abrogated upon NRF2 overexpression. These results demonstrate that NRF2 is a major target of p53-independent tumor suppression by ARF and also suggest that the ARF-NRF2 interaction acts as a new checkpoint for oxidative stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. p53 inhibits the upregulation of sirtuin 1 expression induced by c-Myc.

    Science.gov (United States)

    Yuan, Fang; Liu, Lu; Lei, Yonghong; Tang, Peifu

    2017-10-01

    Sirtuin 1 (Sirt1), a conserved NAD(+) dependent deacetylase, is a mediator of life span by calorie restriction. However, Sirt1 may paradoxically increase the risk of cancer. Accordingly, the expression level of Sirt1 is selectively elevated in numerous types of cancer cell; however, the mechanisms underlying the differential regulation remain largely unknown. The present study demonstrated that oncoprotein c-Myc was a direct regulator of Sirt1, which accounts for the upregulation of Sirt1 expression only in the cells without functional p53. In p53 deficient cells, the overexpression of c-Myc increased Sirt1 mRNA and protein expression levels as well as its promoter activity, whereas the inhibitor of c-Myc, 10058-F4, induced decreased Sirt1 basal mRNA and protein expression levels. Deletion/mutation mapping analyses revealed that c-Myc bound to the conserved E-box[-189 to -183 base pair (bp)] of the Sirt1 promoter. In addition, p53 and c-Myc shared at least response element and the presence of p53 may block the binding of c-Myc to the Sirt1 promoter, thus inhibit the c-Myc mediated upregulation of Sirt1 promoter activity. The present study indicated that the expression level of Sirt1 was tightly regulated by oncoprotein c-Myc and tumor suppressor p53, which aids an improved understanding of its expression regulation and tumor promoter role in certain conditions.

  7. Expression of Fbxo7 in haematopoietic progenitor cells cooperates with p53 loss to promote lymphomagenesis.

    Directory of Open Access Journals (Sweden)

    Mikhail Lomonosov

    Full Text Available Fbxo7 is an unusual F box protein that augments D-type cyclin complex formation with Cdk6, but not Cdk4 or Cdk2, and its over-expression has been demonstrated to transform immortalised fibroblasts in a Cdk6-dependent manner. Here we present new evidence in vitro and in vivo on the oncogenic potential of this regulatory protein in primary haematopoietic stem and progenitor cells (HSPCs. Increasing Fbxo7 expression in HSPCs suppressed their colony forming ability in vitro, specifically decreasing CD11b (Mac1 expression, and these effects were dependent on an intact p53 pathway. Furthermore, increased Fbxo7 levels enhanced the proliferative capacity of p53 null HSPCs when they were grown in reduced concentrations of stem cell factor. Finally, irradiated mice reconstituted with p53 null, but not wild-type, HSPCs expressing Fbxo7 showed a statistically significant increase in the incidence of T cell lymphoma in vivo. These data argue that Fbxo7 negatively regulates the proliferation and differentiation of HSPCs in a p53-dependent manner, and that in the absence of p53, Fbxo7 expression can promote T cell lymphomagenesis.

  8. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress.

    Science.gov (United States)

    Sloan, Katherine E; Bohnsack, Markus T; Watkins, Nicholas J

    2013-10-17

    Several proto-oncogenes and tumor suppressors regulate the production of ribosomes. Ribosome biogenesis is a major consumer of cellular energy, and defects result in p53 activation via repression of mouse double minute 2 (MDM2) homolog by the ribosomal proteins RPL5 and RPL11. Here, we report that RPL5 and RPL11 regulate p53 from the context of a ribosomal subcomplex, the 5S ribonucleoprotein particle (RNP). We provide evidence that the third component of this complex, the 5S rRNA, is critical for p53 regulation. In addition, we show that the 5S RNP is essential for the activation of p53 by p14(ARF), a protein that is activated by oncogene overexpression. Our data show that the abundance of the 5S RNP, and therefore p53 levels, is determined by factors regulating 5S complex formation and ribosome integration, including the tumor suppressor PICT1. The 5S RNP therefore emerges as the critical coordinator of signaling pathways that couple cell proliferation with ribosome production. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Clinical significance of P53 and Bcl-2 in acute myeloid leukemia patients of Eastern India

    Directory of Open Access Journals (Sweden)

    Geetaram Sahu

    2011-11-01

    Full Text Available The frequency of p53 and Bcl-2 protein expression in 100 newly diagnosed and 10 relapsed acute myeloid leukemia (AML patients was analyzed by immunocytochemistry (ICC. The Kaplan-Meier method was used for univariate and multivariate statistical analysis to assess the relationship between p53, Bcl-2 and clinico-hematologic feature with respect to overall survival (OS using SPSS statistical software. No statistical significance was found in univariate analysis (P=0.60. However, when the subgroups of patients (+1, +2, +3 and +4 were compared, expression of p53 and Bcl-2 protein (1-10%, 11- 30%, 31-50% and >50% was statistically significant (P<0.05. However, in multivariate analysis, p53, immunopositivity was independently associated with a shorter overall survival (OS (P=0.038 while Bcl-2 immunopositivity was associated with longer overall survival (OS (P=0.002. Our finding shows that p53 and Bcl-2 protein overexpression is a strong indicator of response to chemotherapy and overall survival. This study reports for the first time AML in patients from Eastern India.

  10. Inter-relationship between microsatellite instability, thymidylate synthase expression, and p53 status in colorectal cancer: implications for chemoresistance

    Directory of Open Access Journals (Sweden)

    Wort Richard

    2006-06-01

    Full Text Available Abstract Background Studies indicate that thymidylate synthase (TS expression, p53 and mismatch repair status have potential to influence colorectal cancer (CRC outcome. There is, however, little data on the inter-relationship between these three markers. We sought to investigate whether relationships exist between these markers that might contribute to CRC phenotypes. Methods Four hundred and forty-one stage I-III CRCs were investigated. p53 status and TS expression were assessed by standard immunohistochemistry methods. Mismatch repair status was determined by assessment of microsatellite instability (MSI using radiolabelled microsatellite genotyping. Results 244 tumours (55% over-expressed p53, and 259 (58% expressed high TS levels. 65 tumours (15% had MSI. A significant relationship between p53 over-expression and high TS expression was observed (p = 0.01. This was independent of MSI status. A highly significant inverse relationship between MSI and p53 status was observed (p = 0.001. No relationship was seen between MSI status and TS expression (p = 0.59. Conclusion Relationships exist between p53 status and TS expression, and MSI and p53 status. These inter-relationships may contribute to the clinical phenotype of CRCs associated with each of the molecular markers. High TS expression is unlikely to account for the clinical behaviour of CRCs with MSI.

  11. Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions.

    Science.gov (United States)

    Barakat, Khaled; Mane, Jonathan; Friesen, Douglas; Tuszynski, Jack

    2010-02-26

    The p53 protein, a guardian of the genome, is inactivated by mutations or deletions in approximately half of human tumors. While in the rest of human tumors, p53 is expressed in wild-type form, yet it is inhibited by over-expression of its cellular regulators MDM2 and MDMX proteins. Although the p53-binding sites within the MDMX and MDM2 proteins are closely related, known MDM2 small-molecule inhibitors have been shown experimentally not to bind to its homolog, MDMX. As a result, the activity of these inhibitors including Nutlin3 is compromised in tumor cells over-expressing MDMX, preventing these compounds from fully activating the p53 protein. Here, we applied the relaxed complex scheme (RCS) to allow for the full receptor flexibility in screening for dual-inhibitors that can mutually antagonize the two p53-regulator proteins. First, we filtered the NCI diversity set, DrugBank compounds and a derivative library for MDM2-inhibitors against 28 dominant MDM2-conformations. Then, we screened the MDM2 top hits against the binding site of p53 within the MDMX target. Results described herein identify a set of compounds that have been computationally predicted to ultimately activate the p53 pathway in tumor cells retaining the wild-type protein. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  12. Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel.

    Science.gov (United States)

    Zhao, Weihong; Song, Yongmei; Xu, Binghe; Zhan, Qimin

    2012-02-01

    Nlp (ninein-like protein), an important molecule involved in centrosome maturation and spindle formation, plays an important role in tumorigenesis and its abnormal expression was recently observed in human breast and lung cancers. In this study, the correlation between overexpression of Nlp and paclitaxel chemosensitivity was investigated to explore the mechanisms of resistance to paclitaxel and to understand the effect of Nlp upon apoptosis induced by chemotherapeutic agents. Nlp expression vector was stably transfected into breast cancer MCF-7 cells. With Nlp overexpression, the survival rates, cell cycle distributions and apoptosis were analyzed in transfected MCF-7 cells by MTT test and FCM approach. The immunofluorescent assay was employed to detect the changes of microtubule after paclitaxel treatment. Immunoblotting analysis was used to examine expression of centrosomal proteins and apoptosis associated proteins. Subsequently, Nlp expression was retrospectively examined with 55 breast cancer samples derived from paclitaxel treated patients. Interestingly, the survival rates of MCF-7 cells with Nlp overexpressing were higher than that of control after paclitaxel treatment. Nlp overexpression promoted G2-M arrest and attenuated apoptosis induced by paclitaxel, which was coupled with elevated Bcl-2 protein. Nlp expression significantly lessened the microtubule polymerization and bundling elicited by paclitaxel attributing to alteration on the structure or dynamics of β-tubulin but not on its expression. The breast cancer patients with high expression of Nlp were likely resistant to the treatment of paclitaxel, as the response rate in Nlp negative patients was 62.5%, whereas was 58.3 and 15.8% in Nlp (+) and Nlp (++) patients respectively (p = 0.015). Nlp expression was positive correlated with those of Plk1 and PCNA. These findings provide insights into more rational chemotherapeutic regimens in clinical practice, and more effective approaches might be

  13. HER-3 overexpression is prognostic of reduced breast cancer survival: a study of 4046 patients.

    Science.gov (United States)

    Chiu, Connie G; Masoudi, Hamid; Leung, Samuel; Voduc, David K; Gilks, Blake; Huntsman, David G; Wiseman, Sam M

    2010-06-01

    Advances in molecular biology have led to the identification of potential markers of prognostic and therapeutic importance in human cancers. HER-2 testing and targeted therapy now represents a critical cornerstone in the management of breast cancer. The objectives of the current study were to determine the frequency and prognostic significance of HER-3 over-expression and HER-4 over-expression by invasive breast cancer. Tissue microarrays were constructed using clinically annotated formalin-fixed and paraffin-embedded tumor samples from 4046 patients diagnosed with invasive breast carcinoma with a median 12.5 years of follow-up. Type 1 growth factor receptor family members HER-1, HER-2, HER-3, and HER-4 expression levels were determined by immunohistochemistry, and HER-2 status was further resolved by fluorescent in-situ hybridization. The study cohort was randomly divided and analyzed as a core data set and a validation data set. HER-3 over-expression was identified in 10.0% of tumors and was a significant marker of reduced patient breast cancer-specific survival on univariate analysis (P = 1.32 x 10(-5)). Furthermore, in tumors with normal expression levels of HER-1 and HER-2, the overexpression of HER-3 had a significant negative prognostic effect on disease-specific survival (HR: 1.541, 95% CI: 1.166-2.036, P = 2.37 x 10(-3)) independent of patient age at diagnosis, Estrogen receptor status, tumor grade, tumor size, nodal status, and the presence of lymphatic or vascular invasion by cancer. HER-4 overexpression was identified in 78.2% of breast cancers and was not a significant marker of patient survival (P = 0.214). Results of all statistical tests were positively confirmed in the validation data set analysis. HER-3 status is an important prognostic marker of disease-specific survival in patients with invasive breast cancer. Accordingly, evaluation of the HER-3 expression level may identify a subset of patients with a poor disease prognosis, and who could

  14. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    Science.gov (United States)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  15. [Frequency factor Her-2/neu overexpression in patients with breast cancer].

    Science.gov (United States)

    Mamani-Cancino, Alex Daniel; Veloz-Martínez, Maria Guadalupe; Casasola-Busteros, Ivonne; Moctezuma-Meza, Christian; García-Cebada, Juan Manuel

    2014-06-01

    Her-2/neu is an oncogen related with a poor prognosis and high agresivity when overexpressed in breast cancer. Main objective was analyze the frecuency of positivity or negativity ofller/neu in patients with breast cancer after surgery and their relationship with hormone receptors. We perfomed a longitudinal, retrospective, descriptive and observational trial in all patients included in the Patology Service with a determination of Her-2/neu and hormone receptors analysis, between January 1st 2007 and December 31 st 2009.We used descriptive stadistic and association tests with correlation coefficients. We analyze 893 patients. The age range was between 24 and 94 years. The 16.% of all cases overexpressed Her-2/neu (150 patients). The 4.8% (43 patients) were included in the FISII test resulting in 29 positives to Her-2/neu. There were a total of 179 cases overexpressed. Negative estrogen receptores cases were 23%, negative progesterone receptores cases were 28% and triple negative receptors cases were 19%. We analyzed independient variables with Student I resulting age with P = 0.294. We analyzed distribution variables with Pearson test resulting in negative estrogen receptors with a P = 0.0001 negative progesterone receptres with a P = 0.0001 and triple negative receptors P= 0.0001. Relationship between hormone receptors and Her-2/neu in proporlionaly inverse in other vvords when a high hormone receptors negativitvis present there is algo a Her-2/neu highly overexpressed.

  16. Rbm24, a target of p53, is necessary for proper expression of p53 and heart development.

    Science.gov (United States)

    Zhang, Min; Zhang, Yanhong; Xu, Enshun; Mohibi, Shakur; de Anda, Danielle Michelle; Jiang, Yuqian; Zhang, Jin; Chen, Xinbin

    2018-01-22

    Activation of p53-dependent apoptosis is critical for tumor suppression but aberrant activation of p53 also leads to developmental defects and heart failure. Here, we found that Rbm24 RNA-binding protein, a target of p53, regulates p53 mRNA translation. Mechanistically, we found that through binding to p53 mRNA and interaction with translation initiation factor eIF4E, Rbm24 prevents eIF4E from binding to p53 mRNA and inhibits the assembly of translation initiation complex. Importantly, we showed that mice deficient in Rbm24 die in utero due to the endocardial cushion defect in the heart at least in part due to aberrant activation of p53-dependent apoptosis. We also showed that the heart developmental defect in Rbm24-null mice can be partially rescued by p53 deficiency through decreased apoptosis in the heart. Together, we postulate that the p53-Rbm24 loop is critical for the heart development and may be explored for mitigating congenital heart diseases and heart failure.

  17. Restoration of p53 using the novel MDM2-p53 antagonist APG115 suppresses dedifferentiated papillary thyroid cancer cells.

    Science.gov (United States)

    Chen, Haibo; Luo, Dingyuan; Zhang, Lin; Lin, Xiaofeng; Luo, Qiuyun; Yi, Hanjie; Wang, Jing; Yan, Xianglei; Li, Baoxia; Chen, Yuelei; Liu, Xingguang; Zhang, Hong; Liu, Sheng; Qiu, Miaozhen; Yang, Dajun; Jiang, Ningyi

    2017-06-27

    Dedifferentiated papillary thyroid cancer (DePTC) is characterized by aggressive growth, recurrence, distant metastasis, and resistance to radioactive iodine (RAI) therapy. DePTC is also accompanied by poor prognosis and high early-mortality. Nevertheless, most DePTC cells show intact p53 downstream functionality. In cells with wild-type p53, the murine double minute2 (MDM2) protein interacts with p53 and abrogates its activity. Inhibition of the MDM2-p53 interaction restores p53 activity and leads to cell cycle arrest and apoptosis. Restoring p53 function by inhibiting its interaction with p53 suppressors such as MDM2 is thus a promising therapeutic strategy for the treatment of DePTC. The novel MDM2-p53 interaction antagonist APG115 is an analogue of SAR405838, and is being tested in a phase I clinical trial. In this study, we evaluated the efficacy of APG115 as a single-agent to treat DePTC. APG115 diminished the viability of p53 wild-type DePTC cells and induced cell cycle arrest and apoptosis. In a human xenograft mouse model, APG115 elicited robust tumor regression and cell apoptosis. These data demonstrate that further research is warranted to determine whether APG115 can be used to effectively treat DePTC patients.

  18. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells.

    Science.gov (United States)

    Do, Minh Truong; Kim, Hyung Gyun; Choi, Jae Ho; Khanal, Tilak; Park, Bong Hwan; Tran, Thu Phuong; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-12-01

    Piperine is a bioactive component of black pepper, Piper nigrum Linn, commonly used for daily consumption and in traditional medicine. Here, the molecular mechanisms by which piperine exerts antitumor effects in HER2-overexpressing breast cancer cells was investigated. The results showed that piperine strongly inhibited proliferation and induced apoptosis through caspase-3 activation and PARP cleavage. Furthermore, piperine inhibited HER2 gene expression at the transcriptional level. Blockade of ERK1/2 signaling by piperine significantly reduced SREBP-1 and FAS expression. Piperine strongly suppressed EGF-induced MMP-9 expression through inhibition of AP-1 and NF-κB activation by interfering with ERK1/2, p38 MAPK, and Akt signaling pathways resulting in a reduction in migration. Finally, piperine pretreatment enhanced sensitization to paclitaxel killing in HER2-overexpressing breast cancer cells. Our findings suggest that piperine may be a potential agent for the prevention and treatment of human breast cancer with HER2 overexpression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Hepatitis C Virus Indirectly Disrupts DNA Damage-Induced p53 Responses by Activating Protein Kinase R

    Directory of Open Access Journals (Sweden)

    Jonathan K. Mitchell

    2017-04-01

    Full Text Available Many DNA tumor viruses promote cellular transformation by inactivating the critically important tumor suppressor protein p53. In contrast, it is not known whether p53 function is disrupted by hepatitis C virus (HCV, a unique, oncogenic RNA virus that is the leading infectious cause of liver cancer in many regions of the world. Here we show that HCV-permissive, liver-derived HepG2 cells engineered to constitutively express microRNA-122 (HepG2/miR-122 cells have normal p53-mediated responses to DNA damage and that HCV replication in these cells potently suppresses p53 responses to etoposide, an inducer of DNA damage, or nutlin-3, an inhibitor of p53 degradation pathways. Upregulation of p53-dependent targets is consequently repressed within HCV-infected cells, with potential consequences for cell survival. Despite this, p53 function is not disrupted by overexpression of the complete HCV polyprotein, suggesting that altered p53 function may result from the host response to viral RNA replication intermediates. Clustered regularly interspaced short palindromic repeat (CRISPR/Cas9-mediated ablation of double-stranded RNA (dsRNA-activated protein kinase R (PKR restored p53 responses while boosting HCV replication, showing that p53 inhibition results directly from viral activation of PKR. The hepatocellular abundance of phosphorylated PKR is elevated in HCV-infected chimpanzees, suggesting that PKR activation and consequent p53 inhibition accompany HCV infection in vivo. These findings reveal a feature of the host response to HCV infection that may contribute to hepatocellular carcinogenesis.

  20. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53.

    Science.gov (United States)

    Lundgren, K; Montes de Oca Luna, R; McNeill, Y B; Emerick, E P; Spencer, B; Barfield, C R; Lozano, G; Rosenberg, M P; Finlay, C A

    1997-03-15

    MDM2 is a cellular protein that binds to and inactivates the p53 tumor suppressor protein. Although mdm2 has been shown to function as an oncogene in vitro, all studies to date have assessed MDM2 activities in the presence of p53, implicating p53 inactivation in MDM2-directed transformation. To determine the role of MDM2 in the cell cycle and in tumorigenesis and whether or not this role is dependent on p53, an MDM2 minigene was expressed during gestation and lactation in the mammary gland of both wild-type p53 (p53+/+) and p53 knockout (p53-/-) mice using the bovine beta-lactoglobulin promoter. In six different transgenic mouse lines, deregulated expression of MDM2 inhibited normal development and morphogenesis of the mammary gland, and caused cellular hypertrophy and nuclear abnormalities. These abnormalities included both multinucleated cells and enlarged cells with giant nuclei. Although there were fewer epithelial cells present in the transgenic mammary gland, no apoptosis was observed. Instead, BrdU incorporation and PCNA staining showed that 12%-27% of the transgenic mammary epithelial cells were in S phase at a time when normal cells were terminally differentiated. Analysis of DNA content showed that 30%-45% of the cells were polyploid, with DNA contents up to 16N, indicating that overexpression of MDM2 caused mammary epithelial cells to undergo multiple rounds of S phase without cell division. This phenotype was similar in the p53+/+ and p53-/- background, demonstrating a role for MDM2 in the regulation of DNA synthesis that is independent of the ability of MDM2 to inhibit p53 activity. Additionally, multiple lines of BLGMDM2 transgenic mice developed mammary tumors, confirming that overproduction of MDM2 contributes to tumorigenesis in epithelial cells in vivo.

  1. Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma

    Directory of Open Access Journals (Sweden)

    Kim Il-Han

    2009-06-01

    Full Text Available Abstract Background Peroxiredoxins (Prxs are a novel group of peroxidases containing high antioxidant efficiency. The mammalian Prx family has six distinct members (Prx I-VI in various subcellular locations, including peroxisomes and mitochondria, places where oxidative stress is most evident. The function of Prx I in particular has been implicated in regulating cell proliferation, differentiation, and apoptosis. Since thioredoxin1 (Trx1 as an electron donor is functionally associated with Prx I, we investigated levels of expression of both Prx I and Trx1. Methods We investigated levels of expression of both Prx I and Trx1 in breast cancer by real-time polymerase chain reaction (RT-PCR and Western blot. Results Levels of messenger RNA (mRNA for both Prx I and Trx1 in normal human breast tissue were very low compared to other major human tissues, whereas their levels in breast cancer exceeded that in other solid cancers (colon, kidney, liver, lung, ovary, prostate, and thyroid. Among members of the Prx family (Prx I-VI and Trx family (Trx1, Trx2, Prx I and Trx1 were preferentially induced in breast cancer. Moreover, the expression of each was associated with progress of breast cancer and correlated with each other. Western blot analysis of different and paired breast tissues revealed consistent and preferential expression of Prx I and Trx1 protein in breast cancer tissue. Conclusion Prx I and Trx1 are overexpressed in human breast carcinoma and the expression levels are associated with tumor grade. The striking induction of Prx I and Trx1 in breast cancer may enable their use as breast cancer markers.

  2. Frequent alteration of MDM2 and p53 in the molecular progression of recurring non-Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Nielsen, O; Pedersen, Niels Tinggaard

    2002-01-01

    -Hodgkin's lymphoma. METHODS AND RESULTS: We have analysed sequential biopsies from 42 non-Hodgkin's lymphoma patients immunohistochemically for p53 alterations (based on p53 and p21Waf1 expression), as well as for expression of MDM2, p27Kip1 and cyclin D3. Relapse of follicle centre lymphoma was associated with p53...... alterations as 5/6 (83%) follicle centre lymphomas with normal p53 at diagnosis showed p53 alterations at relapse. Of these cases, three showed transformation to diffuse large B-cell lymphoma. p53 alteration was also associated with relapse of de novo diffuse large B-cell lymphoma and T-cell non......-Hodgkin's lymphoma, as 2/5 (40%) diffuse large B-cell lymphomas and 3/9 (33%) T-cell non-Hodgkin's lymphomas with normal p53 at diagnosis showed p53 alterations at relapse. No indolent non-Hodgkin's lymphoma case showed MDM2 over-expression at diagnosis, whereas 4/5 (80%) transformed diffuse large B-cell lymphomas...

  3. DGKζ ablation engenders upregulation of p53 level in the spleen upon whole-body ionizing radiation.

    Science.gov (United States)

    Tanaka, Toshiaki; Iseki, Ken; Tanaka, Ken; Nakano, Tomoyuki; Iino, Mitsuyoshi; Goto, Kaoru

    2017-09-28

    The tumor suppressor gene product p53, which coordinates the cellular response to various stresses, is subject to tight regulation by a complex network of signal transduction. The DGK family metabolizes lipidic second messenger diacylglycerol to produce phosphatidic acid. Our earlier studies showed that one isozyme, DGKζ, is involved in the regulatory mechanism of p53. In a cellular model of doxorubicin-induced DNA damage, overexpression of wild-type DGKζ suppresses p53 protein induction and reduces apoptosis, whereas knockdown of DGKζ upregulates p53 protein level and promotes apoptosis. Further examination reveals that DGKζ facilitates p53 degradation via ubiquitin-proteasome system in the cytoplasm. However, it remains undetermined whether the regulatory mechanism of DGKζ on p53 function found in cell-based experiments is also functional at the animal level. This study was conducted to elucidate this point using an experiment with DGKζ-KO mice under DNA damage induced by whole-body ionizing radiation. Our results reveal that p53 protein is induced robustly in the spleen of DGKζ-KO mice upon exposure to ionizing radiation, thereby promoting apoptosis in this organ. Taken together, the results demonstrate that DGKζ plays a sentinel role in p53 expression at the cellular and organismal levels after DNA damaging stress conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fermentative metabolism impedes p53-dependent apoptosis in a ...

    Indian Academy of Sciences (India)

    It is known that the Warburg effect and Crabtree effect aredisplayed by Saccharomyces cerevisiae, during growth on abundant glucose. Beyond this similarity, it was also demonstratedthat expression of human pro-apoptotic proteins in S. cerevisiae such as Bax and p53 caused apoptosis. Here, wedemonstrate that p53 ...

  5. The role of serotonin and p53 status in the radiation-induced bystander effect.

    Science.gov (United States)

    Kalanxhi, Erta; Dahle, Jostein

    2012-10-01

    The aim of this study was to investigate the role of serotonin and protein 53 (p53) status of the cells in the radiation-induced bystander effects (RIBE). The radiation-induced bystander response was investigated in human MCF-7 breast cancer cells and human HCT116 colorectal cancer cells employing medium-transfer experiments and micronuclei (MN) induction as an end-point. Irradiated cell conditioned medium (ICCM) from cells exposed to α-particle or γ-radiation was filtered and transferred to unirradiated cells 2 h following irradiation. MCF-7 cells were irradiated with 0.5 Gy α-particles, while HCT116 p53(+/+) and HCT116 p53(-/-) cells were irradiated with 0.5 Gy γ-radiation. Bystander MCF-7 cells, recipient of ICCM from 0.5 Gy α-particle irradiated MCF-7 cells grown in high serotonin conditions showed a modest but significant increase in MN, while MCF-7 cells receiving ICCM with low serotonin levels did not show any bystander effect. Added serotonin (100 ng/ml) led to a bystander effectin HCT116 p53(-/-) cells recipient of ICCM from 0.5 Gy γ-irradiated HCT116 p53(+/+) cells, but had no effect when the ICCM was from γ-irradiated HCT116 P53(-/-) cells. The results indicate that serotonin levels in the medium play a role in the RIBE and that there may be an interaction between the role of serotonin and the p53 status of the irradiated cells.

  6. COX-2 and p53 in human sinonasal cancer

    DEFF Research Database (Denmark)

    Holmila, Reetta; Cyr, Diane; Luce, Danièle

    2008-01-01

    to development of cancer. Many signals that activate COX-2 also induce tumor suppressor p53, a transcription factor central in cellular stress response. We investigated COX-2 and p53 expressions by immunohistochemistry in 50 SNCs (23 adenocarcinomas, and 27 squamous cell carcinomas (SCC); 48 analyzed for COX-2......; 41 for p53). Occupational histories and smoking habits were available for majority of the cases. Most of the adenocarcinoma cases with exposure history data had been exposed to wood dust at work in the past (88%, 14/16). For smokers, 63% (12/19) presented with SSC, whereas 64% (7/11) of nonsmokers...... the exposures and p53 accumulation were found; however, the p53 accumulation pattern (p = 0.062 for wood dust exposure) resembled that of COX-2 expression. In summary, our findings show increased COX-2 expression in SNC adenocarcinoma with wood dust exposure, suggesting a role for inflammatory components...

  7. Malign Melanomda Serum P53 Onkoprotein Düzeyleri

    OpenAIRE

    Özbek, Uğur; Şengün, Zeynep; Kurul, Sıdıka; Aydıner, Adnan; Ertürk, Nurcan; Topuz, Erkan

    1994-01-01

    p53, SV 40 trasforme edilmiş hücrelerde bulunmuş ve tanımlanmış bir nukleer fosfoproteindir. P53'ün mutasyona uğramış ya da 'wild-type' formu, hücre bölünmesinde negatif regülatör rolü olan bir tümör-supressör gen olarak kabul edilir. P53 geninin yüksek oranda korunmuş dizilerinden birinde nokta mutasyonu ortaya çıktığında, aktive olmuş onkogen ürünü özellikleri gösteren bir mutant protein eksprese edilir. p53 proteini monoklonal antikorlarla ayırt edilebilir. Mutant p53 serum ...

  8. p53 in the DNA damage repair process

    Science.gov (United States)

    Williams, Ashley B.; Schumacher, Björn

    2016-01-01

    The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA damage response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA repair systems. It thus appears as if p53 is multitasking in protecting from cancer development by maintaining genome stability. PMID:27048304

  9. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Stefanelli, C. [Department for Life Quality Studies, University of Bologna, Rimini Campus, Rimini (Italy); Malucelli, E. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Zini, M. [Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy); Onofrillo, C. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Locatelli, A.; Rambaldi, M.; Sargenti, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Merolle, L. [ELETTRA–Sincrotrone Trieste S.C.p.A., Trieste (Italy); Farruggia, G. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy); Graziadio, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); Montanaro, L. [Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna (Italy); Iotti, S. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna (Italy); National Institute of Biostructures and Biosystems, Roma (Italy)

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of the cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.

  10. p53 selectively regulates developmental apoptosis of rod photoreceptors.

    Directory of Open Access Journals (Sweden)

    Linda Vuong

    Full Text Available Retinal cells become post-mitotic early during post-natal development. It is likely that p53, a well-known cell cycle regulator, is involved in regulating the genesis, differentiation and death of retinal cells. Furthermore, retinal cells are under constant oxidative stress that can result in DNA damage, due to the extremely high level of metabolic activity associated with phototransduction. If not repaired, this damage may result in p53-dependent cell death and ensuing vision loss. In this study, the role of p53 during retinal development and in the post-mitotic retina is investigated. A previously described super p53 transgenic mouse that expresses an extra copy of the mouse p53 gene driven by its endogenous promoter is utilized. Another transgenic mouse (HIP that expresses the p53 gene in rod and cone photoreceptors driven by the human interphotoreceptor retinoid binding protein promoter was generated. The electroretinogram (ERG of the super p53 mouse exhibited reduced rod-driven scotopic a and b wave and cone-driven photopic b wave responses. This deficit resulted from a reduced number of rod photoreceptors and inner nuclear layer cells. However, the reduced photopic signal arose only from lost inner retinal neurons, as cone numbers did not change. Furthermore, cell loss was non-progressive and resulted from increased apoptosis during retinal developmental as determined by TUNEL staining. In contrast, the continuous and specific expression of p53 in rod and cone photoreceptors in the mature retinas of HIP mice led to the selective loss of both rods and cones. These findings strongly support a role for p53 in regulating developmental apoptosis in the retina and suggest a potential role, either direct or indirect, for p53 in the degenerative photoreceptor loss associated with human blinding disorders.

  11. Wild-type alternatively spliced p53: binding to DNA and interaction with the major p53 protein in vitro and in cells.

    OpenAIRE

    Wu, Y.; Liu, Y; L. Lee; Miner, Z; Kulesz-Martin, M

    1994-01-01

    A p53 variant protein (p53as) generated from alternatively spliced p53 RNA is expressed in normal and malignant mouse cells and tissues, and p53as antigen activity is preferentially associated with the G2 phase of the cell cycle, suggesting that p53as and p53 protein may have distinct properties. Using p53as and p53 proteins translated in vitro, we now provide evidence that p53as protein has efficient sequence-specific DNA-binding ability. DNA binding by p53 protein is inefficient in comparis...

  12. A p53-bound enhancer region controls a long intergenic noncoding RNA required for p53 stress response

    NARCIS (Netherlands)

    Melo, C A; Léveillé, N; Rooijers, K; Wijchers, P J; Geeven, G; Tal, A; Melo, S A; de Laat, W; Agami, R

    2016-01-01

    Genome-wide chromatin studies identified the tumor suppressor p53 as both a promoter and an enhancer-binding transcription factor. As an enhancer factor, p53 can induce local production of enhancer RNAs, as well as transcriptional activation of distal neighboring genes. Beyond the regulation of

  13. BTG2 is a tumor suppressor gene upregulated by p53 and PTEN in human bladder carcinoma cells.

    Science.gov (United States)

    Tsui, Ke-Hung; Chiang, Kun-Chun; Lin, Yu-Hsiang; Chang, Kang-Shuo; Feng, Tsui-Hsia; Juang, Horng-Heng

    2017-12-13

    Although widely deemed as a tumor suppressor gene, the role of B-cell translocation gene 2 (BTG2) in bladder cancer is still inconclusive. We investigated the role and regulatory mechanism of BTG2 in bladder cancer. BTG2 expression in human bladder tissues was determined by RT-qPCR and immunoblotting assays. Expressions of BTG2 and PTEN in bladder carcinoma cells were determined by immunoblotting, RT-qPCR, or reporter assays. The 3 H-thymidine incorporation assay, flow cytometry, and the xenograft animal model were used to determine the cell growth. BTG2 expression was lower in human bladder cancer tissues than normal bladder tissues. Highly differentiated bladder cancer cells, RT4, expressed higher BTG2 than the less-differentiated bladder cancer cells, HT1376 and T24. Overexpression of BTG2 in T24 cells inhibited cell growth in vitro and in vivo. Camptothecin and doxorubicin treatments in RT-4 cells or transient overexpression of p53 into p53-mutant HT1376 cells induced p53 and BTG2 expression. Further reporter assays with site-mutation of p53 response element from GGGAAAGTCC to GGAGTCC within BTG2 promoter area showed that p53-induced BTG2 gene expression was dependent on the p53 response element. Ectopic PTEN overexpression in T24 cells blocked the Akt signal pathway which attenuated cell growth via upregualtion of BTG2 gene expression, while reverse effect was found in PTEN-knockdown RT-4 cells. PTEN activity inhibitor (VO-OHpic) treatment decreased BTG2 expression in RT-4 and PTEN-overexpressed T24 cells. Our results suggested that BTG2 functioned as a bladder cancer tumor suppressor gene, and was induced by p53 and PTEN. Modulation of BTG2 expression seems a promising way to treat human bladder cancer. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Fuzzy tandem repeats containing p53 response elements may define species-specific p53 target genes.

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2012-06-01

    Full Text Available Evolutionary forces that shape regulatory networks remain poorly understood. In mammals, the Rb pathway is a classic example of species-specific gene regulation, as a germline mutation in one Rb allele promotes retinoblastoma in humans, but not in mice. Here we show that p53 transactivates the Retinoblastoma-like 2 (Rbl2 gene to produce p130 in murine, but not human, cells. We found intronic fuzzy tandem repeats containing perfect p53 response elements to be important for this regulation. We next identified two other murine genes regulated by p53 via fuzzy tandem repeats: Ncoa1 and Klhl26. The repeats are poorly conserved in evolution, and the p53-dependent regulation of the murine genes is lost in humans. Our results indicate a role for the rapid evolution of tandem repeats in shaping differences in p53 regulatory networks between mammalian species.

  15. Fuzzy tandem repeats containing p53 response elements may define species-specific p53 target genes.

    Science.gov (United States)

    Simeonova, Iva; Lejour, Vincent; Bardot, Boris; Bouarich-Bourimi, Rachida; Morin, Aurélie; Fang, Ming; Charbonnier, Laure; Toledo, Franck

    2012-06-01

    Evolutionary forces that shape regulatory networks remain poorly understood. In mammals, the Rb pathway is a classic example of species-specific gene regulation, as a germline mutation in one Rb allele promotes retinoblastoma in humans, but not in mice. Here we show that p53 transactivates the Retinoblastoma-like 2 (Rbl2) gene to produce p130 in murine, but not human, cells. We found intronic fuzzy tandem repeats containing perfect p53 response elements to be important for this regulation. We next identified two other murine genes regulated by p53 via fuzzy tandem repeats: Ncoa1 and Klhl26. The repeats are poorly conserved in evolution, and the p53-dependent regulation of the murine genes is lost in humans. Our results indicate a role for the rapid evolution of tandem repeats in shaping differences in p53 regulatory networks between mammalian species.

  16. Fluoxetine protects against IL-1β-induced neuronal apoptosis via downregulation of p53.

    Science.gov (United States)

    Shan, Han; Bian, Yaqi; Shu, Zhaoma; Zhang, Linxia; Zhu, Jialei; Ding, Jianhua; Lu, Ming; Xiao, Ming; Hu, Gang

    2016-08-01

    Fluoxetine, a selective serotonin reuptake inhibitor, exerts neuroprotective effects in a variety of neurological diseases including stroke, but the underlying mechanism remains obscure. In the present study, we addressed the molecular events in fluoxetine against ischemia/reperfusion-induced acute neuronal injury and inflammation-induced neuronal apoptosis. We showed that treatment of fluoxetine (40 mg/kg, i.p.) with twice injections at 1 h and 12 h after transient middle cerebral artery occlusion (tMCAO) respectively alleviated neurological deficits and neuronal apoptosis in a mouse ischemic stroke model, accompanied by inhibiting interleukin-1β (IL-1β), Bax and p53 expression and upregulating anti-apoptotic protein Bcl-2 level. We next mimicked neuroinflammation in ischemic stroke with IL-1β in primary cultured cortical neurons and found that pretreatment with fluoxetine (1 μM) prevented IL-1β-induced neuronal apoptosis and upregulation of p53 expression. Furthermore, we demonstrated that p53 overexpression in N2a cell line abolished the anti-apoptotic effect of fluoxetine, indicating that p53 downregulation is required for the protective role of fluoxetine in IL-1β-induced neuronal apoptosis. Fluoxetine downregulating p53 expression could be mimicked by SB203580, a specific inhibitor of p38, but blocked by anisomycin, a p38 activator. Collectively, our findings have revealed that fluoxetine protects against IL-1β-induced neuronal apoptosis via p38-p53 dependent pathway, which give us an insight into the potential of fluoxetine in terms of opening up novel therapeutic avenues for neurological diseases including stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. p53: Biology and role for cellular radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Dahm-Daphi, J. [Hamburg Univ. (Germany). Abt. fuer Strahlentherapie und Onkologie

    2000-06-01

    Purpose: p53 is the most commonly mutated gene in human tumors with large impact on cellular biology and response to radiation. Many excellent reviews are available on various aspects but for several years none about the role of p53 for radiosensitivity. The latter is the aim of the present paper. Methods: Review of the literature. Results: p53 is a regulator of apoptosis mainly in hematopoetic tissue. In normal tissue and solid tumors presumably other functions have more impact on the cellular response. p53 controls cell-cycle progression after irradiation and also DNA-repair, namely homologous and non-homologous recombination. Mutations of p53 alter these functions which may be responsible for an enhanced cellular and tumor radioresistance. At present only few reports were able to show that under tightly controlled conditions loss of p53 wild-type function leads to enhanced radioresistance. A general proof is still lacking. Conclusion: The emerging picture in the year 2000 shows p53 as a central protein in a multi-enzyme multi-function network which is far from being fully understood. Although p53 appears to be a major regulator it is certainly not the unreplacable component the loss of which uniformly determines radioresistance. Only further understanding of modifiers and cooperators in the cell and in the specific tissue context will elucidate p53's role for radiosensitivity and radiotherapy. (orig.) [German] Hintergrund: p53 ist das am haeufigsten mutierte Gen in menschlichen Tumoren mit grossem Einfluss auf die zellulaere Biologie und Strahlenantwort. Viele ausgezeichnete Uebersichten sind verfuegbar, aber seit Jahren keine, die die Rolle von p53 fuer die Strahlenempfindlichkeit beleuchtet. Dies ist das Ziel der vorliegenden Arbeit. Methode: Literaturuebersicht. Ergebnis: p53 ist ein Regulator der Apoptose in haematopoetischen Gewerben. Im uebrigen Normalgewebe und in soliden Tumoren haben andere Funktionen groessere Bedeutung fuer die Zellantwort. Nach

  18. Cisplatinum and Taxol Induce Different Patterns of p53 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Giovanna Damia

    2001-01-01

    Full Text Available Posttranslational modifications of p53 induced by two widely used anticancer agents, cisplatinum (DDP and taxol were investigated in two human cancer cell lines. Although both drugs were able to induce phosphorylation at serine 20 (Ser20, only DDP treatment induced p53 phosphorylation at serine 15 (Ser15. Moreover, both drug treatments were able to increase p53 levels and consequently the transcription of waf1 and mdm-2 genes, although DDP treatment resulted in a stronger inducer of both genes. Using two ataxia telangiectasia mutated (ATM cell lines, the role of ATM in druginduced p53 phosphorylations was investigated. No differences in drug-induced p53 phosphorylation could be observed, indicating that ATM is not the kinase involved in these phosphorylation events. In addition, inhibition of DNA-dependent protein kinase activity by wortmannin did not abolish p53 phosphorylation at Ser15 and Ser20, again indicating that DNA-PK is unlikely to be the kinase involved. After both taxol and DDP treatments, an activation of hCHK2 was found and this is likely to be responsible for phosphorylation at Ser20. In contrast, only DDP was able to activate ATR, which is the candidate kinase for phosphorylation of Ser15 by this drug. This data clearly suggests that differential mechanisms are involved in phosphorylation and activation of p53 depending on the drug type.

  19. CLCA2 as a p53-Inducible Senescence Mediator

    Directory of Open Access Journals (Sweden)

    Chizu Tanikawa

    2012-02-01

    Full Text Available p53 is a tumor suppressor gene that is frequently mutated in multiple cancer tissues. Activated p53 protein regulates its downstream genes and subsequently inhibits malignant transformation by inducing cell cycle arrest, apoptosis, DNA repair, and senescence. However, genes involved in the p53-mediated senescence pathway are not yet fully elucidated. Through the screening of two genome-wide expression profile data sets, one for cells in which exogenous p53 was introduced and the other for senescent fibroblasts, we have identified chloride channel accessory 2 (CLCA2 as a p53-inducible senescence-associated gene. CLCA2 was remarkably induced by replicative senescence as well as oxidative stress in a p53-dependent manner. We also found that ectopically expressed CLCA2 induced cellular senescence, and the down-regulation of CLCA2 by small interfering RNA caused inhibition of oxidative stress-induced senescence. Interestingly, the reduced expression of CLCA2 was frequently observed in various kinds of cancers including prostate cancer, whereas its expression was not affected in precancerous prostatic intraepithelial neoplasia. Thus, our findings suggest a crucial role of p53/CLCA2-mediated senescence induction as a barrier for malignant transformation.

  20. ZNF509S1 downregulates PUMA by inhibiting p53K382 acetylation and p53-DNA binding.

    Science.gov (United States)

    Jeon, Bu-Nam; Yoon, Jae-Hyeon; Han, Dohyun; Kim, Min-Kyeong; Kim, Youngsoo; Choi, Seo-Hyun; Song, Jiyang; Kim, Kyung-Sup; Kim, Kunhong; Hur, Man-Wook

    2017-09-01

    Expression of the POK family protein ZNF509L, and -its S1 isoform, is induced by p53 upon exposure to genotoxic stress. Due to alternative splicing of the ZNF509 primary transcript, ZNF509S1 lacks the 6 zinc-fingers and C-terminus of ZNF509L, resulting in only one zinc-finger. ZNF509L and -S1 inhibit cell proliferation by activating p21/CDKN1A and RB transcription, respectively. When cells are exposed to severe DNA damage, p53 activates PUMA (p53-upregulated modulator of apoptosis) transcription. Interestingly, apoptosis due to transcriptional activation of PUMA by p53 is attenuated by ZNF509S1. Thus we investigated the molecular mechanism(s) underlying the transcriptional attenuation and anti-apoptotic effects of ZNF509S1. We show that ZNF509S1 modulation of p53 activity is important in PUMA gene transcription by modulating post-translational modification of p53 by p300. ZNF509S1 directly interacts with p53 and inhibits p300-mediated acetylation of p53 lysine K382, with deacetylation of p53 K382 leading to decreased DNA binding at the p53 response element 1 of the PUMA promoter. ZNF509S1 may play a role not only in cell cycle arrest, by activating RB expression, but also in rescuing cells from apoptotic death by repressing PUMA expression in cells exposed to severe DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. p53 immunohistochemical staining patterns in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    G Dundy

    2016-09-01

    Full Text Available Background: Mutation of p53 gene is one of the most common events in oral carcinogenesis. Accumulation of p53 protein has also been detected in premalignant lesions.Materials and Methods:  This study included 40 biopsy samples, which were received in department of pathology, Sarojini Naidu Medical College, Agra, to ascertain p53 expression by immunohistochemically, in patients with oral squamous cell carcinomas and to correlate its expression with histological grade, different sites in oral cavity and tobacco intake/smoking habits.Results: Out of 40 biopsies of oral mucosa, 03 showed normal oral mucosa and 37 were diagnosed as squamous cell carcinoma (SCC, most patients were in 5th and 6th decade and majority (86.5% of oral SCC were males with buccal mucosa being the most common site. There was a statistically significant difference in p53 expression between oral SCC and normal oral mucosa (p value <0.05. Of total 37 cases, 12 cases were well differentiated type, 16 moderately differentiated and 09 of poorly differentiated type of SCC. In each category, about two thirds were positive for p53 staining. Out of total 37 cases of oral SCC, 64.9% were positive and 35.1% were negative for p53 expression, 34 cases had positive history of tobacco intake/smoking habits, of which 23 cases were positive while 11 cases were negative for p53 staining.Conclusion: Abnormal p53 protein was detected in 64.9% of oral squamous cell carcinoma, but not in normal oral mucosa. p53 expression was associated with malignant transformation of oral mucosa. 

  2. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  3. Targeting p53-MDM2-MDMX Loop for Cancer Therapy

    OpenAIRE

    Zhang, Qi; Zeng, Shelya X.; Lu, Hua

    2014-01-01

    The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as “the guardian of the genome”, because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the tr...

  4. p53/HMGB1 Complexes Regulate Autophagy and Apoptosis

    OpenAIRE

    Livesey, Kristen M.; Kang, Rui; Vernon, Philip; Buchser, William; Loughran, Patricia; Watkins, Simon C.; Zhang, Lin; Manfredi, James J.; Zeh, Herbert J.; Li, Luyuan; Lotze, Michael T.; Tang, Daolin

    2012-01-01

    The balance between apoptosis (“programmed cell death”) and autophagy (“programmed cell survival”) is important in tumor development and response to therapy. Here we show that HMGB1 and p53 form a complex which regulates the balance between tumor cell death and survival. We demonstrate that knockout of p53 inHCT116 cells increases expression of cytosolic HMGB1 and induces autophagy. Conversely, knockout of HMGB1 in mouse embryonic fibroblasts increases p53 cytosolic localization and decreases...

  5. Robustness of the p53 network and biological hackers.

    Science.gov (United States)

    Dartnell, Lewis; Simeonidis, Evangelos; Hubank, Michael; Tsoka, Sophia; Bogle, I David L; Papageorgiou, Lazaros G

    2005-06-06

    The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses.

  6. SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer.

    Science.gov (United States)

    Xiong, Yanlu; Wang, Lei; Wang, Shan; Wang, Mingxing; Zhao, Jinbo; Zhang, Zhipei; Li, Xiaofei; Jia, Lintao; Han, Yong

    2017-11-04

    In non-small cell lung cancer (NSCLC), success of targeted therapy has promoted researches explicitly orientated based on genetic background. Although PTEN deficiency is common in NSCLC, carcinogenesis about such genetic type has not been fully explored. Here, we have found that classical tumor suppressor P53 could be modulated by deacetylase sirtuin-3 (SIRT3) depending on the PTEN condition in NSCLC, which may be a novel breakpoint for handling PTEN deficiency NSCLC. First, we examined SIRT3 and P53 expression files in PTEN-deficient NSCLC clinical samples and investigated their correlation. Second, we built SIRT3 high or low expression models in different PTEN conditions by plasmid overexpression or si-RNA interference in NSCLC cell lines and explored the effect of SIRT3 upon P53. Furthermore, we investigated the influence of SIRT3 upon the ubiquitin-proteasome dependent degradation pathway of P53 in PTEN-deficient NSCLC cell lines. Finally, we probed into the deacetylation modification of P53 via SIRT3. We found that SIRT3 expression was strongly positive and P53 expression was almost negative in PTEN-deficient NSCLC clinical samples. Further, we demonstrated that SIRT3 promoted degradation of P53 in PTEN-deficient NSCLC cell lines via the ubiquitin-proteasome pathway. Finally, we demonstrated that SIRT3 could deacetylate P53 at lysines 320 and 382, which may account for the observed degradation of P53 in PTEN-deficient tumor cells. We have identified a novel mechanism by which P53 was inactivated via SIRT3 in PTEN-deficient cells. This may shed light on the mechanisms underlying the malignancy of PTEN-deficient NSCLC.

  7. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Haixi [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wang, Na; Zhao, Lijuan; Li, Shuman; Li, Qianqian; Chen, Ling; Luo, Xinrong; Qiu, Zhu [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Li, Lili [Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute (Hong Kong); Ren, Guosheng [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Xu, Yongzhu [Chongqing Health Service Center, Chongqing 400020 (China); Zhou, Xiangyang [The Wistar Institute, Philadelphia, PA (United States); Xiang, Tingxiu, E-mail: xiangtx1@gmail.com [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2015-03-15

    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumor cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer.

  8. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    Science.gov (United States)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  9. EMP3 Overexpression in Primary Breast Carcinomas is not Associated with Epigenetic Aberrations

    Science.gov (United States)

    Zhou, Wei; Jiang, Zheng; Li, Xingang; Xu, Fenghua; Liu, Yanbing; Wen, Peie; Kong, Li; Hou, Ming

    2009-01-01

    Epithelial membrane protein 3 (EMP3) is a trans-membrane signaling molecule with important roles in the regulation of apoptosis, differentiation and invasion of cancer cells, but the detailed is largely still unknown. We analyzed the mRNA levels and methylation statuses of EMP3 in 63 primary breast carcinomas and assessed their correlations with clinicopathologic variables. The expression of EMP3 mRNA in primary breast carcinomas was significantly higher than the expression of 20 normal breast tissues (pbreast carcinomas was significantly related to histological grade III (p=3.9×10-7), lymph node metastasis (p=0.003), and strong Her-2 expression (p=3.3×10-6). Hypermethylation frequencies of EMP3 were detected in 36.5% of breast carcinomas by methylation-specific polymerase chain reaction. However, no significant correlations were found between methylation status of EMP3 and mRNA expression levels as well as other clinical parameters. In conclusion, EMP3 may be a novel marker of tumor aggressiveness. Overexpression of EMP3 in primary breast carcinoma is not associated with DNA methylation. PMID:19270820

  10. A dynamic P53-MDM2 model with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Mihalas, Gh.I. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: mihalas@medinfo.umft.ro; Neamtu, M. [Department of Forecasting, Economic Analysis, Mathematics and Statistics, West University of Timisoara, Str. Pestalozzi, nr. 14A, 300115 Timisoara (Romania)]. E-mail: mihaela.neamtu@fse.uvt.ro; Opris, D. [Department of Applied Mathematics, West University of Timisoara, Bd. V. Parvan, nr. 4, 300223 Timisoara (Romania)]. E-mail: opris@math.uvt.ro; Horhat, R.F. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: rhorhat@yahoo.com

    2006-11-15

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results.

  11. p53 Abnormalities and Potential Therapeutic Targeting in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    P. J. Teoh

    2014-01-01

    Full Text Available p53 abnormalities are regarded as an independent prognostic marker in multiple myeloma. Patients harbouring this genetic anomaly are commonly resistant to standard therapy. Thus, various p53 reactivating agents have been developed in order to restore its tumour suppressive abilities. Small molecular compounds, especially, have gained popularity in its efficacy against myeloma cells. For instance, promising preclinical results have steered both nutlin-3 and PRIMA-1 into phase I/II clinical trials. This review summarizes different modes of p53 inactivation in myeloma and highlights the current p53-based therapies that are being utilized in the clinic. Finally, we discuss the potential and promise that the novel small molecules possess for clinical application in improving the treatment outcome of myeloma.

  12. Evidence for a radiation-responsive 'p53 gateway' contributing significantly to the radioresistance of lepidopteran insect cells.

    Science.gov (United States)

    Kumar, Ashish; Chandna, Sudhir

    2018-01-08

    Recently, we have demonstrated that microRNA-31 (miR-31) overexpression is inherent to radiation-induced cell death in the highly radioresistant Sf9 insect cells, and regulates pro-apoptotic Bax translocation to mitochondria. In the present study, we report that at sub-lethal radiation doses for Sf9 cells, miR-31 is significantly downregulated and is tightly regulated by an unusual mechanism involving p53. While ectopic overexpression of a well-conserved Sfp53 caused typical apoptosis, radiation-induced p53 accumulation observed selectively at sub-lethal doses failed to induce cell death. Further investigation of this paradoxical response revealed an intriguing phenomenon that sub-lethal radiation doses result in accumulation of a 'hyper-phosphorylated' Sfp53, which in turn binds to miR-31 genomic location and suppresses its expression to prevent cell death. Interestingly, priming cells with sub-lethal doses even prevented the apoptosis induced by lethal radiation or ectopic Sfp53 overexpression. On the other hand, silencing p53 increased radiation-induced cell death by inhibiting miR-31 downregulation. This study thus shows the existence of a unique radiation-responsive 'p53 gateway' preventing miR-31-mediated apoptosis in Sf9 cells. Since Sfp53 has a good functional homology with human p53, this study may have significant implications for effectively modulating the mammalian cell radioresistance.

  13. p53-dependent delayed effects of radiation vary according to time of irradiation of p53 + / - mice.

    Science.gov (United States)

    Okazaki, Ryuji; Ootsuyama, Akira

    2014-01-01

    We previously reported that in p53 (+ / -) mice that had been given a whole-body dose of 3 Gy at 8 weeks of age, p53-dependent delayed effects of radiation, as manifested in T-cell receptor (TCR) variant fractions (VF) instability in mouse splenocytes, were biphasic, namely, induction of TCR-VF mutation reappeared at 44 weeks. The manifestation of the delayed effects and the measures of biological markers varied according to the timing of irradiation. We also reported that the decrease in function of the p53 gene was related to the effects of a delayed mutation. In the present study, we investigated the functions and mutations of the p53 gene in old age for p53 (+ / -) mice following irradiation at various ages. p53 (+ / -) mice were given a whole-body dose of 3 Gy at 8, 28 or 40 weeks of age. There were significant differences for all variables tested at 8 weeks of age. This was similarly the case for mice irradiated at 28 weeks of age, in which there were also significant differences in TCR VF and the percentage of apoptosis. In mice irradiated at 40 weeks of age, there were significant differences for all considered variables except for the p53 allele. We demonstrated that the different patterns of delayed mutation of the p53 gene at 56 weeks of age depended on the age at which mice had undergone 3-Gy whole-body irradiation. Our conclusions are limited to variation in p53-dependent delayed effects according to the time of irradiation.

  14. p53 E3 ubiquitin protein ligase homolog regulates p53 in vivo in the adult mouse eye lens

    Science.gov (United States)

    Jaramillo-Rangel, Gilberto; Ortega-Martínez, Marta; Sepúlveda-Saavedra, Julio; Saucedo-Cárdenas, Odila; Montes-de-Oca-Luna, Roberto

    2013-01-01

    Purpose p53 is a transcription factor that plays an important role in preventing cancer development. p53 participates in relevant aspects of cell biology, including apoptosis and cell cycle control and must be strictly regulated to maintain normal tissue homeostasis. p53 E3 ubiquitin protein ligase homolog (Mdm2) is an important negative regulator of p53. The purpose of this study was to determine if Mdm2 regulates p53 in vivo in the adult lens. Methods We analyzed mice expressing human p53 transgene (Tgp53) selectively in the lens in the presence or absence of Mdm2. Mice with the required genotypes were obtained by crossing transgenic, mdm2+/−, and p53−/− mice. Eye phenotype and lens histology and ultrastructure were analyzed in adult mice. Results In a wild-type genetic background (mdm2+/+), lens damage and microphthalmia were observed only in mice homozygous for Tgp53 (t/t). However, in an mdm2 null background, just one allele of Tgp53 (mdm2−/−/Tgp53t/0 mice) was sufficient to cause lens damage and microphthalmia. Furthermore, Mdm2 in only one allele was sufficient to rescue these deleterious effects, since the mdm2+/−/Tgp53t/0 mice had eye size and lens morphology similar to the control mice. Conclusions Mdm2 regulates p53 in the adult lens in vivo. This information may have relevance for analyzing normal and pathological conditions of the lens, and designing cancer therapies targeting Mdm2–p53 interaction. PMID:24339722

  15. Thymidylate synthase inhibition induces p53-dependent and p53-independent apoptotic responses in human urinary bladder cancer cells.

    Science.gov (United States)

    Stravopodis, Dimitrios J; Karkoulis, Panagiotis K; Konstantakou, Eumorphia G; Melachroinou, Sophia; Thanasopoulou, Angeliki; Aravantinos, Gerasimos; Margaritis, Lukas H; Anastasiadou, Ema; Voutsinas, Gerassimos E

    2011-02-01

    In search for more effective clinical protocols, the antimetabolite drug 5-fluorouracil (5-FU) has been successfully included in new regimens of bladder cancer combination chemotherapy. In the present study, we have investigated the effects of 5-FU treatment on apoptosis induction in wild-type and mutant p53 urinary bladder cancer cells. We have used MTT-based assays, FACS analysis, Western blotting and semi-quantitative RT-PCR in RT4 and RT112 (grade I, wild-type p53), as well as in T24 (grade III, mutant p53) and TCCSUP (grade IV, mutant p53) human urinary bladder cancer cell lines. In the urothelial bladder cancer cell lines RT4 and T24, 5-FU-induced TS inhibition proved to be associated with cell type-dependent (a) sensitivity to the drug, (b) Caspase-mediated apoptosis, (c) p53 stabilization and activation, as well as Rb phosphorylation and E2F1 expression and (d) transcriptional regulation of p53 target genes and their cognate proteins, while an E2F-dependent transcriptional network did not seem to be critically engaged in such type of responses. We have shown that in the wild-type p53 context of RT4 cells, 5-FU-triggered apoptosis was prominently efficient and mainly regulated by p53-dependent mechanisms, whereas the mutant p53 environment of T24 cells was able to provide notable levels of resistance to apoptosis, basically ascribed to E2F-independent, and still unidentified, pathways. Nevertheless, the differential vulnerability of RT4 and T24 cells to 5-FU administration could also be associated with cell-type-specific transcriptional expression patterns of certain genes critically involved in 5-FU metabolism.

  16. Irradiation selects for p53-deficient hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Andriy Marusyk

    2010-03-01

    Full Text Available Identification and characterization of mutations that drive cancer evolution constitute a major focus of cancer research. Consequently, dominant paradigms attribute the tumorigenic effects of carcinogens in general and ionizing radiation in particular to their direct mutagenic action on genetic loci encoding oncogenes and tumor suppressor genes. However, the effects of irradiation are not limited to genetic loci that encode oncogenes and tumor suppressors, as irradiation induces a multitude of other changes both in the cells and their microenvironment which could potentially affect the selective effects of some oncogenic mutations. P53 is a key tumor suppressor, the loss of which can provide resistance to multiple genotoxic stimuli, including irradiation. Given that p53 null animals develop T-cell lymphomas with high penetrance and that irradiation dramatically accelerates lymphoma development in p53 heterozygous mice, we hypothesized that increased selection for p53-deficient cells contributes to the causal link between irradiation and induction of lymphoid malignancies. We sought to determine whether ionizing irradiation selects for p53-deficient hematopoietic progenitors in vivo using mouse models. We found that p53 disruption does not provide a clear selective advantage within an unstressed hematopoietic system or in previously irradiated BM allowed to recover from irradiation. In contrast, upon irradiation p53 disruption confers a dramatic selective advantage, leading to long-term expansion of p53-deficient clones and to increased lymphoma development. Selection for cells with disrupted p53 appears to be attributable to several factors: protection from acute irradiation-induced ablation of progenitor cells, prevention of irradiation-induced loss of clonogenic capacity for stem and progenitor cells, improved long-term maintenance of progenitor cell fitness, and the disabling/elimination of competing p53 wild-type progenitors. These studies

  17. Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy

    Science.gov (United States)

    Liu, Shu-Xia; Geng, Yi-Zhao; Yan, Shi-Wei

    2017-06-01

    Approximately half of all human cancers show normal TP53 gene expression but aberrant overexpression of MDM2 and/or MDMX. This fact suggests a promising cancer therapeutic strategy in targeting the interactions between p53 and MDM2/MDMX. To help realize the goal of developing effective inhibitors to disrupt the p53-MDM2/MDMX interaction, we systematically investigated the structural and interaction characteristics of p53 with inhibitors of its interactions with MDM2 and MDMX from an atomistic perspective using stochastic molecular dynamics simulations. We found that some specific α helices in the structures of MDM2 and MDMX play key roles in their binding to inhibitors, and that the hydrogen bond formed by the Trp23 residue of p53 with its counterpart in MDM2 or MDMX determines the dynamic competition processes of the disruption of the MDM2-p53 interaction and replacement of p53 from the MDM2-p53 complex in vivo. The results reported in this paper are expected to provide basic information for designing functional inhibitors and realizing new strategies of cancer gene therapy.

  18. Super p53 for Treatment of Ovarian Cancer

    Science.gov (United States)

    2017-09-01

    ABSTRACT In this final report, we show gene therapy using re-engineered super p53 (p53-CC constructs) kills some ovarian cancer cell lines in vitro ...a lead construct. Technical skills gained in the proposal include cell culture , transfections, microscopy, apoptosis assays, transcriptional assays...able to create ovarian tumors in mice. Our polymer-adenovirus constructs were optimized in vitro and in vivo, and did not show gross signs of toxicity

  19. Super p53 for Treatment of Ovarian Cancer

    Science.gov (United States)

    2016-07-01

    as demonstrated by fluorescence microscopy. Preliminary studies indicate that p53-CC causes robust apoptosis in Kuramochi and ID8 cells as well...measured using the 7AAD assay (late stage apoptosis ). IC50 values for taxol have been determined in ID8 (and SKOV3) cells. In ID8 cells (which will...be used to implant into mice for the syngeneic animal study), p53-CCmut causes the highest levels of apoptosis regardless of whether taxol is added

  20. Blocking of p53-Snail Binding, Promoted by Oncogenic K-Ras, Recovers p53 Expression and function

    OpenAIRE

    Lee, Sun-Hye; Lee, Su-Jin; Jung, Yeon Sang; Xu, Yongbin; Kang, Ho Sung; Ha, Nam-Chul; Park, Bum-Joon

    2009-01-01

    Differentially from other kinds of Ras, oncogenic K-Ras, which is mutated approximately 30% of human cancer, does not induce apoptosis and senescence. Here, we provide the evidence that oncogenic K-Ras abrogates p53 function and expression through induction of Ataxia telangiectasia-mutated and Rad3-related mediated Snail stabilization. Snail directly binds to DNA binding domain of p53 and diminishes the tumor-suppressive function of p53. Thus, elimination of Snail through si-RNA can induce p5...

  1. Expression of p53 protein in pituitary adenomas

    Directory of Open Access Journals (Sweden)

    Oliveira M.C.

    2002-01-01

    Full Text Available Inactivating mutations of TP53, a tumor suppressor gene, are associated with abnormal cell proliferation. Although p53 expression is common in many human malignancies, p53 protein has seldom been evaluated in pituitary tumors. When detected, the percentage of p53-positive cells is low, and, in general, it is exclusive for invasive lesions. The aim of the present study was to use immunohistochemistry to determine the presence of p53 protein in pituitary adenomas from tumor samples of 163 surgeries performed in 148 patients (40% male, 60% female. In 35% of the cases the adenoma was nonfunctional, while in the others it was associated with PRL, GH and/or ACTH endocrine hypersecretion syndrome. Macroadenomas were observed in 83.2% of the cases with available neuroimage evaluation, of which 28% invaded the cavernous, sphenoid and/or ethmoidal sinus, bone, third ventricle or subfrontal lobe. p53 protein was detected in 2/148 patients (1.3%. Immunohistochemistry was positive for PRL and GH in these cases. Due to the high percentage of invasive pituitary adenomas found in our study, the low frequency of p53 detection suggests that it is inadequate as a routine marker for aggressiveness and as a predictive factor of tumor behavior.

  2. Stimulus-Specific Transcriptional Regulation Within the p53 Network

    Science.gov (United States)

    Donner, Aaron Joseph; Hoover, Jennifer Michelle; Szostek, Stephanie Aspen; Espinosa, Joaquín Maximiliano

    2010-01-01

    The p53 transcriptional network is composed of hundreds of effector genes involved in varied stress-response pathways, including cell cycle arrest and apoptosis. It is not clear how distinct p53 target genes are differentially activated to trigger stress-specific biological responses. We analyzed the p53 transcriptional program upon activation by two DNA-damaging agents, UVC and doxorubicin, versus the non-genotoxic molecule Nutlin-3. In colorectal cancer cells, UVC triggers apoptosis, doxorubicin induces transient cell cycle arrest followed by apoptosis, and Nutlin-3 leads to cell cycle arrest with no significant apoptosis. Quantitative gene expression analysis allowed us to group p53 target genes into three main classes according to their activation profiles in each scenario. The CDK-inhibitor p21 was classified as a Class I gene, being significantly activated under cell cycle arrest conditions (i.e., doxorubicin and Nutlin-3) but not during UVC-induced apoptosis. Chromatin immunoprecipitation analysis of the p21 locus indicates that the level of p53-dependent transcription is determined by the effects of stimulus-specific transcriptional coregulators acting downstream of p53 binding and histone acetylation. In particular, our analysis indicates that the subunits of the CDK-module of the human Mediator complex function as stimulus-specific positive coregulators of p21 transcription. PMID:17957141

  3. Characterization of p53 expression in rainbow trout.

    Science.gov (United States)

    Liu, Michelle; Tee, Catherine; Zeng, Fanxing; Sherry, James P; Dixon, Brian; Bols, Niels C; Duncker, Bernard P

    2011-11-01

    The tumour suppressor protein p53 is a critical component of cell cycle checkpoint responses. It upregulates the expression of cyclin-dependent kinase inhibitors in response to DNA damage and other cellular perturbations, and promotes apoptosis when DNA repair pathways are overwhelmed. Given the high incidence of p53 mutations in human cancers, it has been extensively studied, though only a small fraction of these investigations have been in non-mammalian systems. For the present study, an anti-rainbow trout p53 polyclonal antibody was generated. A variety of rainbow trout (Oncorhynchus mykiss) tissues and cell lines were examined through western blot analysis of cellular protein extracts, which revealed relatively high p53 levels in brain and gills. To evaluate the checkpoint response of rainbow trout p53, RTbrain-W1 and RTgill-W1 cell lines were exposed to varying concentrations of the DNA damaging agent bleomycin and ribonucleotide reductase inhibitor hydroxyurea. In contrast to mammals, these checkpoint-inducing agents provoked no apparent increase in rainbow trout p53 levels. These results infer the presence of alternate DNA damage checkpoint mechanisms in rainbow trout cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Clinical implications of the coexpression of SRC1 and NANOG in HER-2-overexpressing breast cancers

    Directory of Open Access Journals (Sweden)

    Jin CY

    2016-09-01

    Full Text Available Chengyan Jin,1 Xingyi Zhang,1 Mei Sun,2 Yifan Zhang,1 Guangxin Zhang,1 Bin Wang1 1Department of Thoracic Surgery, 2Department of Pathology, The Second Affiliated Hospital of Jilin University, Changchun, People’s Republic of China Objective: Given the lack of clarity on the expression status of SRC1 protein in breast cancer, we attempted to ascertain the clinical implications of the expression of this protein in breast cancer.Methods: Samples from 312 breast cancer patients who were followed up for 5 years were analyzed in this study. The associations of SRC1 expression and clinicopathological factors with the prognosis of breast cancer were determined.Results: The 312 breast cancer patients underwent radical resection, and 155 (49.68% of them demonstrated high expression of SRC1 protein. No significant differences were found for tumor size, estrogen receptor expression, or progesterone receptor expression (P=0.191, 0.888, or 0.163, respectively. It is noteworthy that SRC1 expression was found to be related to HER-2 and Ki-67 expression (P=0.044 and P=0.001, respectively. According to logistic regression analysis, SRC1 expression was also significantly correlated with Ki-67 and HER-2 expression (P=0.032 and P=0.001, respectively. Survival analysis showed that patients with a high expression of SRC1 and NANOG and those with SRC1 and NANOG coexpression had significantly poorer postoperative disease-specific survival than those with no expression in the HER-2-positive group (P=0.032, 0.01, and P=0.01, respectively.Conclusion: High SRC1 protein expression was related to the prognosis of HER-2-overexpressing breast cancers. Keywords: breast cancer, prognosis, molecular classification, SRC1, NANOG

  5. SIX1 and DACH1 influence the proliferation and apoptosis of hepatocellular carcinoma through regulating p53.

    Science.gov (United States)

    Cheng, Qi; Ning, Deng; Chen, Jin; Li, Xue; Chen, Xiaoping; Jiang, Li

    2018-01-15

    ABSTRACTS This research aimed to explore effects of SIX1 and DACH1 on hepatocellular carcinoma (HCC) cell proliferation, apoptosis and cell cycle. Fifty paired hepatocellular carcinoma tissues were screened for differentially expressed genes. SIX1 and DACH1 expressions were subjected to qRT-PCR and western blot in tumor tissues and cells. The knockdown efficiency of siRNAs and transfection efficiency of cDNAs and siRNAs were validated by qRT-PCR and western blot as well. Then colony formation assay and flow cytometry were applied to observe cell proliferation, cell apoptosis and cell cycle changes. Immunofluorescence co-localization and immunoprecipitation were used to analyze the interaction between proteins which was quantified using western blot. Effects of SIX1 and DACH1 on tumor growth and their expressions in tumors were confirmed in vitro in nude mice model. Results of these experiments showed that SIX1 was overexpressed while DACH1 was suppressed in HCC tissues and cells. The suppression of SIX1 and overexpression of DACH1 not only inhibited cell proliferation, but also induced cell apoptosis and arrested cell cycle in G2/M phase compared with control group. Results of immunofluorescence co-localization suggested that SIX1, p53 and DACH1 were significantly overlapped. Immunoprecipitation showed that DACH1 (marked with Flag tag) could pull down p53 and SIX1, but SIX1 (marked with His tag) could only pull down DACH1, which indicated that an indirect regulation between SIX1 and p53. Validated with western blot afterwards, DACH1 overexpression suppressed tumorigenesis in vivo by up-regulating p53 expression while SIX1 overexpression accelerated tumor growth by down-regulating p53 expression. Therefore, the decrease of SIX1 facilitated the expression of DACH1, thus activated the expression of p53 and suppressed the progression of HCC both in vitro and in vivo.

  6. Identification and design of p53-derived HLA-A2-binding peptides with increased CTL immunogenicity

    DEFF Research Database (Denmark)

    Petersen, T R; Buus, S; Brunak, S

    2001-01-01

    HLA-A2 transgenic mouse fibrosarcoma cells transfected with human p53 DNA. The data suggest that modified self-peptides derived from overexpressed tumour-associated proteins can be used in vaccine development against cancer, and that quantitative predictions of HLA binding is of value in the rational...

  7. p53-competent cells and p53-deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity.

    Science.gov (United States)

    Petibone, Dayton M; Mustafa, Thikra; Bourdo, Shawn E; Lafont, Andersen; Ding, Wei; Karmakar, Alokita; Nima, Zeid A; Watanabe, Fumiya; Casciano, Daniel; Morris, Suzanne M; Dobrovolsky, Vasily N; Biris, Alexandru S

    2017-11-01

    Due to the distinctive physical, electrical, and chemical properties of graphene nanomaterials, numerous efforts pursuing graphene-based biomedical and industrial applications are underway. Oxidation of pristine graphene surfaces mitigates its otherwise hydrophobic characteristic thereby improving its biocompatibility and functionality. Yet, the potential widespread use of oxidized graphene derivatives raises concern about adverse impacts on human health. The p53 tumor suppressor protein maintains cellular and genetic stability after toxic exposures. Here, we show that p53 functional status correlates with oxygen functionalized graphene (f-G) cytotoxicity and genotoxicity in vitro. The f-G exposed p53-competent cells, but not p53-deficient cells, initiated G0 /G1 phase cell cycle arrest, suppressed reactive oxygen species, and entered apoptosis. There was p53-dependent f-G genotoxicity evident as increased structural chromosome damage, but not increased gene mutation or chromatin loss. In conclusion, the cytotoxic and genotoxic potential for f-G in exposed cells was dependent on the p53 functional status. These findings have broad implications for the safe and effective implementation of oxidized graphene derivatives into biomedical and industrial applications. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  8. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-05-01

    Full Text Available Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress.

  9. p16 and p53 in HPV-positive versus HPV-negative oral squamous cell carcinoma: do pathways differ?

    Science.gov (United States)

    Singh, Vineeta; Husain, Nuzhat; Akhtar, Naseem; Khan, Mohammad Yahia; Sonkar, Abhinav A; Kumar, Vijay

    2017-10-01

    p16 overexpression and wild-type p53 expression are associated with human papilloma virus (HPV) in cervical and oropharyngeal cancer. Role of HPV-related carcinogenesis in the etiology of oral squamous cell carcinoma (OSCC) is still vague in Indian population. We aimed to explore the expression pattern of p16 and p53 in HPV-positive and HPV-negative OSCC to elicit differences, if any. Further their effect on survival of patients was studied. Thirty-one consecutive HPV-positive as well as 31 age and sex-matched HPV-negative OSCC cases from a case series of 369 histologically diagnosed cases of OSCC were included in this study. HPV was detected by two methods, viz. real-time PCR and conventional PCR in biopsy samples. p16 and p53 protein expression was assessed by immunohistochemistry, and p16 mRNA expression was quantified with real-time PCR using SYBR Green assay. p16 was expressed in six (19.4%) HPV-positive and in four (12.9%) HPV-negative cases. Overall mutant-type p53 expression in 62 OSCC cases was 54.8%. Out of ten p16-positive cases, eight expressed mutant-type p53 and only two cases expressed wild-type p53. Risk factors including oral tobacco consumption and alcohol were present in all these ten p16-positive cases. Survival of patients was not affected by HPV, p16 and p53 status. Presence of mutant-type p53 and exposure to tobacco-related risk factors in both HPV-positive and negative cases suggest existence of p53-related carcinogenesis in HPV-positive cases in Indian population. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The Role of Wild-Type p53 in Cisplatin-Induced Chk2 Phosphorylation and the Inhibition of Platinum Resistance with a Chk2 Inhibitor

    Directory of Open Access Journals (Sweden)

    Xiaobing Liang

    2011-01-01

    Full Text Available The major obstacle in platinum chemotherapy is the repair of platinum-damaged DNA that results in increased resistance, reduced apoptosis, and finally treatment failure. Our research goal is to determine and block the mechanisms of platinum resistance. Our recent studies demonstrate that several kinases in the DNA-repair pathway are activated after cells are exposed to cisplatin. These include ATM, p53, and Chk2. The increased Chk2 phosphorylation is modulated by p53 in a wild-type p53 model. Overexpression of p53 by cDNA transfection in wt-p53 (but not p53 deficient cells doubled the amount of Chk2 phosphorylation 48 hours after cisplatin treatment. p53 knockdown by specific siRNA greatly reduced Chk2 phosphorylation. We conclude that wild-type p53, in response to cisplatin stimulation, plays a role in the upstream regulation of Chk2 phosphorylation at Thr-68. Cells without normal p53 function survive via an alternative pathway in response to the exogenous influence of cisplatin. We strongly suggest that it is very important to include the p53 mutational status in any p53 involved studies due to the functional differentiation of wt p53 and p53 mutant. Inhibition of Chk2 pathway with a Chk2 inhibitor (C3742 increased cisplatin efficacy, especially those with defective p53. Our findings suggest that inhibition of platinum resistance can be achieved with a small-molecule inhibitor of Chk2, thus improving the therapeutic indices for platinum chemotherapy.

  11. Influence of P53 on the radiotherapy response of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Ana R. Gomes

    2015-09-01

    Full Text Available Background/AimsHepatocellular carcinoma (HCC is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines.MethodsWestern blotting was used to measure P53 expression. The effects of radiotherapy with iodine-131 were assessed by using the clonogenic assay to evaluate cell survival. Flow cytometry was carried out to examine the effects of iodine-131 on cell death, oxidative stress, reduced intracellular glutathione expression, the mitochondrial membrane potential, and the cell cycle.ResultsThe P53 protein was not expressed in Hep3B2.1-7 cells, was expressed at normal levels in HepG2 cells, and was overexpressed in HuH7 cells. P53 expression in the HuH7 and HepG2 cell lines increased after internal and external irradiation with iodine-131. Irradiation induced a decrease in cell survival and led to a decrease in cell viability in all of the cell lines studied, accompanied by cell death via late apoptosis/necrosis and necrosis. Irradiation with 131-iodine induced mostly cell-cycle arrest in the G0/G1 phase.ConclusionsThese results suggest that P53 plays a key role in the radiotherapy response of HCC.

  12. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma

    Science.gov (United States)

    Yang, Hongyan; Xie, Yan; Yang, Dongyu; Ren, Decheng

    2017-01-01

    Reactive oxygen species (ROS) play important roles in follicular development and survival. Granulosa cell death is associated with increased ROS, but the mechanism of granulosa cell death induced by ROS is not clear. In order to define the molecular link between ROS and granulosa cell death, COV434, human granulosa tumor cells, were treated with H2O2. Compared to control cells, H2O2 induced granulosa cell death in a dose- and time-dependent manner. H2O2 induced an increase in Bax, Bak and Puma, and a decrease in anti-apoptotic molecules such as Bcl-2, Bcl-xL and Mcl-1. Both knockdown of Puma and overexpression of Bcl-xL could inhibit H2O2-induced granulosa cell death. These results suggest that suppression of Puma and overexpression of anti-apoptotic Bcl-2 family members could improve granulosa cell survival. To explore the mechanisms responsible for these findings, ROS in granulosa cells treatment with H2O2 were measured. The results showed that ROS was increased in a H2O2 dose- and time-dependent manner at the earlier time point. In addition, H2O2 induced an increase in Nrf2 and phosphorylation of JNK and p53. SP600125, an inhibitor of JNK, inhibits H2O2-induced phosphorylation of JNK and p53, and granulosa cell death. Antioxidant N-acetylcysteine (NAC) dose-dependently prevents H2O2-induced granulosa cell death. Furthermore, NAC also prevents phosphorylation of JNK and p53 induced by H2O2. Taken together, these data suggest that H2O2 regulates cell death in granulosa cells via the ROS-JNK-p53 pathway. These findings provide an improved understanding of the mechanisms underlying granulosa cell apoptosis, which could potentially be useful for future clinical applications. PMID:28445976

  13. Microsatellite instability and p53 mutations in hepatocellular carcinoma.

    Science.gov (United States)

    Karachristos, A; Liloglou, T; Field, J K; Deligiorgi, E; Kouskouni, E; Spandidos, D A

    1999-01-01

    We have studied 27 hepatocellular carcinomas (HCCs) to identify possible relationships between microsatellite instability (MSI), p53 mutations, and HBV infection in hepatocarcinogenesis. MSI was assessed using 19 polymorphic markers and the poly(A) tract BAT-26. All coding regions of p53 were examined for mutations. Tumors were also examined for presence of hepatitis B virus (HBV) DNA sequences; 66.6% of the samples exhibit MSI in at least one microsatellite locus and 44% in two or three loci. None of the tumors examined showed alterations in BAT-26. Moreover, 73.3% of samples with indication of HBV infection showed instability in at least one marker. No association between MSI and pathological profile was found. Five (18.5%) samples harbored mutations in p53, three missense, and two insertions, all in exons 5 and 8 not previously reported. No mutations were detected in codon 249, which has been linked with dietary intake of aflatoxins. Our results support the hypothesis that HCC is a "low" MSI tumor. Only 1/5 samples with MSI in more than two markers harbored a mutation in p53. Although the number of samples is too small to support a statistical significance, this finding may indicate an inverse relationship between p53 mutations and MSI in HCC.

  14. p53 as a retrovirus-induced oxidative stress modulator.

    Science.gov (United States)

    Kim, Soo Jin; Wong, Paul K Y

    2015-01-01

    Infection of astrocytes by the neuropathogenic mutant of Moloney murine leukemia virus, ts1, exhibits increased levels of reactive oxygen species (ROS) and signs of oxidative stress compared with uninfected astrocytes. Previously, we have demonstrated that ts1 infection caused two separate events of ROS upregulation. The first upregulation occurs during early viral establishment in host cells and the second during the virus-mediated apoptotic process. In this study, we show that virus-mediated ROS upregulation activates the protein kinase, ataxia telangiectasia mutated, which in turn phosphorylates serine 15 on p53. This activation of p53 however, is unlikely associated with ts1-induced cell death. Rather p53 appears to be involved in suppressing intracellular ROS levels in astrocytes under oxidative stress. The activated p53 appears to delay retroviral gene expression by suppressing NADPH oxidase, a superoxide-producing enzyme. These results suggest that p53 plays a role as a retrovirus-mediated oxidative stress modulator. © 2015 The Authors.

  15. PERAN MUTASI GEN p53 PADA KARSINOGENESIS SEL BASAL KULIT

    Directory of Open Access Journals (Sweden)

    Kadek Pramesti Dewi

    2015-01-01

    Full Text Available Karsinoma sel basal (KSB merupakan keganasan kulit non-melanotik tersering dan mempunyai kaitan erat dengan paparan sinar ultra violet (UV. Keganasan ini berasal dari sel-sel pluripotensial stratum basalis epidermis maupun selubung akar folikel rambut. Gambaran klinis dan histopatologis terdiri dari KSB tipe klasik (noduler dan KSB varian (tipe superfisial, fibroepithelial, KSB dengan diferensiasi adneksal, basoskuamous, infiltrating, morpheaform.Kanker pada tubuh manusia muncul karena adanya mutasi genetik pada gen-gen yang terlibat dalamkontrol pertumbuhan sel, seperti onkogen, tumor suppressor gene, gen apoptosis, dan DNA repair gene.Pada kebanyakan kasus KSB, gen yang tersering mengalami mutasi adalah tumor suppressor genep53. Mutasi ini timbul akibat paparan langsung sinar UV, bergantung pada dosis, durasi dan intensitas paparan.Gen p53 dikenal dengan sebutan guardian of the genome, karena fungsinya sebagai sensor terhadapterjadinya kerusakan DNA. Adanya kerusakan DNA menginduksi aktivasi p53 untuk menghentikan siklus sel saat memasuki fase G1, sehingga memberikan kesempatan kepada DNA repair proteinbekerja memperbaiki kerusakan DNA. Lebih dari itu, p53 juga mengaktivasi gen GADD45 (growth arrest and DNA damage untuk membantu perbaikan DNA. Jika perbaikan gagal, p53 akanmengarahkan sel dengan DNA yang rusak ke mesin apoptosis.Pada sel-sel basal terpapar UV, gen p53 mengalami mutasi dan inaktivasi. Karena itu, sel-sel dengan DNA yang mengalami kerusakan non-lethal akan mengalami ekspansi klonal sehingga tumbuh menjadilesi pra kanker dan akhirnya kanker (KSB. [MEDICINA 2014;45:38-42

  16. Delayed cell cycle progression in selenoprotein W depleted cells is regulated by a mitogen-activated protein kinase kinase 4–p38–p53 pathway

    Science.gov (United States)

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser33 in p53, which is associated with decreased p53...

  17. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    Directory of Open Access Journals (Sweden)

    Kousparou Christina A

    2012-08-01

    Full Text Available Abstract Background A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. Methods The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp and wild-type, full-length p21 (Antp-p21. This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model with differing p21 or p53 status. Results Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Conclusions Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology.

  18. p53 regulates cytoskeleton remodeling to suppress tumor progression.

    Science.gov (United States)

    Araki, Keigo; Ebata, Takahiro; Guo, Alvin Kunyao; Tobiume, Kei; Wolf, Steven John; Kawauchi, Keiko

    2015-11-01

    Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.

  19. Combining oncolytic virotherapy with p53 tumor suppressor gene therapy

    OpenAIRE

    Bressy, Christian; Hastie, Eric; Grdzelishvili, Valery Z.

    2017-01-01

    Oncolytic virus (OV) therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53) or another p53 family member (TP63 or TP73) were engineered with the goal of gen...

  20. An innovative immunosensor for detection of tumor suppressor protein p53 in unprocessed human plasma and cancer cell lysates.

    Science.gov (United States)

    Hasanzadeh, Mohammad; Baghban, Hossein Navay; Mokhtarzadeh, Ahad; Shadjou, Nasrin; Mahboob, Soltanali

    2017-12-01

    An innovative mediator-free electrochemical immunosensor for quantitation of p53 tumor suppressor protein based on signal amplification strategy was fabricated. In this work, biotin conjugated p53-antibody (anti-p53) was immobilized onto a green and biocompatible nanocomposite containing poly l-cysteine (P-Cys) as conductive matrix and 3D gold nanoparticles (GNPs) as signal amplification element. Therefore, a novel nanocomposite film based on P-Cys and GNPs was exploited to develop a highly sensitive immunosensor for detection of p53 protein. Importantly, GNPs prepared by sonoelectrodeposition method which lead to compact morphology. Fully electrochemical methodology was used to prepare a new transducer on a gold surface which provided a high surface area to immobilize a high amount of the anti-p53. The surface morphology of electrode was characterized by high-resolution field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDX). The immunosensor was employed for the detection of p53 in physiological pH using square wav voltammetry and differential pulse voltammetry (DPVs) techniques. Under optimized condition the calibration curve for p53 concentration by SWV and DPV was linear in 0.0369-50pM and 0.018-2.5pM with lower limit of quantification of 48fM and 18fM, respectively. The method was successfully applied assay of the p53 in unprocessed human plasma samples. Also, the method was applied to the assay of p53 in human plasma sample and normal and malignant cell line lysates such as (L929 normal cell Line from mouse C3H (L929), colon cancer cell-HCT, prostate cancer cell line PC-3, and human breast adenocarcinoma cell line-MCF7). Copyright © 2017 Elsevier B.V. All rights reserved.

  1. p53 Dimers associate with a head-to-tail response element to repress cyclin B transcription.

    Directory of Open Access Journals (Sweden)

    Robert Lipski

    Full Text Available DNA damage induced by the topoisomerase I inhibitor SN38 activates cell cycle checkpoints which promote cell cycle arrest. This arrest can be abrogated in p53-defective cells by the Chk1 inhibitor 7-hydroxystaurosporine (UCN-01. Previously, we compared p53 wild-type MCF10A cells with derivatives whose p53 function was inhibited by over-expression of the tetramerization domain (MCF10A/OD or expression of shRNA against p53 (MCF10A/Δp53. Treatment of SN38-arrested MCF10A/OD cells with UCN-01 abrogated S, but not G2 arrest, while the MCF10A/Δp53 cells abrogated both S and G2 arrest. The MCF10A/OD cells had reduced levels of cyclin B, suggesting that tetramerization of p53 is not required for repression of cyclin B gene expression. In the present study, we analyzed p53 oligomerization status using glutaraldehyde cross-linking. Following SN38 treatment, MCF10A cells contained oligomeric forms of p53 with molecular weights approximating monomers, dimers, trimers, and tetramers. However, MCF10A/OD cells possessed only monomers and dimers suggesting that these complexes may be involved in repression of cyclin B. While genes transcriptionally activated by p53 contain a consensus sequence with elements repeated in a head-to-head orientation, the cyclin B promoter contains similar elements oriented head-to-tail. Chromatin immunoprecipitation (ChIP assays revealed that p53 associates with this head-to-tail element in both MCF10A and MCF10A/OD. Electrophoretic mobility shift assays (EMSA using a biotin-labeled probe containing the head-to-tail element showed a shift in mobility consistent with the molecular weight of tetramers and dimers in MCF10A nuclear extract, but only the dimer in MCF10A/OD nuclear extract. Taken together, these results suggest a novel mechanism whereby p53 dimers associate with the head-to-tail element to repress cyclin B transcription.

  2. MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis.

    Directory of Open Access Journals (Sweden)

    Kazuki Heishima

    Full Text Available MicroRNA-214 regulates both angiogenic function in endothelial cells and apoptosis in various cancers. However, the regulation and function of miR-214 is unclear in canine hemangiosarcoma, which is a spontaneous model of human angiosarcoma. The expression and functional roles of miR-214 in canine hemangiosarcoma were presently explored by performing miRNA TaqMan qRT-PCR and transfecting cells with synthetic microRNA. Here, we report that miR-214 was significantly down-regulated in the cell lines used and in clinical samples of canine hemangiosarcoma. Restoration of miR-214 expression reduced cell growth and induced apoptosis in canine hemangiosarcoma cell lines through transcriptional activation of p53-regulated genes although miR-214 had a slight effect of growth inhibition on normal endothelial cells. We identified COP1, which is a critical negative regulator of p53, as a novel direct target of miR-214. COP1 was overexpressed and the specific COP1 knockdown induced apoptosis through transcriptional activation of p53-regulated genes as well as did miR-214-transfection in HSA cell lines. Furthermore, p53 knockdown abolished the miR-214-COP1-mediated apoptosis; thus, miR-214 and COP1 regulated apoptosis through controlling p53 in HSA. In conclusion, miR-214 functioned as a tumor suppressor in canine hemangiosarcoma by inducing apoptosis through recovering the function of p53. miR-214 down-regulation and COP1 overexpression is likely to contribute to tumorigenesis of HSA. Therefore, targeting miR-214-COP1-p53 axis would possibly be a novel effective strategy for treatment of canine hemangiosarcoma and capable of being applied to the development of novel therapeutics for human angiosarcoma.

  3. MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis.

    Science.gov (United States)

    Heishima, Kazuki; Mori, Takashi; Sakai, Hiroki; Sugito, Nobuhiko; Murakami, Mami; Yamada, Nami; Akao, Yukihiro; Maruo, Kohji

    2015-01-01

    MicroRNA-214 regulates both angiogenic function in endothelial cells and apoptosis in various cancers. However, the regulation and function of miR-214 is unclear in canine hemangiosarcoma, which is a spontaneous model of human angiosarcoma. The expression and functional roles of miR-214 in canine hemangiosarcoma were presently explored by performing miRNA TaqMan qRT-PCR and transfecting cells with synthetic microRNA. Here, we report that miR-214 was significantly down-regulated in the cell lines used and in clinical samples of canine hemangiosarcoma. Restoration of miR-214 expression reduced cell growth and induced apoptosis in canine hemangiosarcoma cell lines through transcriptional activation of p53-regulated genes although miR-214 had a slight effect of growth inhibition on normal endothelial cells. We identified COP1, which is a critical negative regulator of p53, as a novel direct target of miR-214. COP1 was overexpressed and the specific COP1 knockdown induced apoptosis through transcriptional activation of p53-regulated genes as well as did miR-214-transfection in HSA cell lines. Furthermore, p53 knockdown abolished the miR-214-COP1-mediated apoptosis; thus, miR-214 and COP1 regulated apoptosis through controlling p53 in HSA. In conclusion, miR-214 functioned as a tumor suppressor in canine hemangiosarcoma by inducing apoptosis through recovering the function of p53. miR-214 down-regulation and COP1 overexpression is likely to contribute to tumorigenesis of HSA. Therefore, targeting miR-214-COP1-p53 axis would possibly be a novel effective strategy for treatment of canine hemangiosarcoma and capable of being applied to the development of novel therapeutics for human angiosarcoma.

  4. P53 Protein Expression in Dental Follicle, Dentigerous Cyst, Odontogenic Keratocyst, and Inflammatory Subtypes of Cysts: An Immunohistochemical Study

    Directory of Open Access Journals (Sweden)

    Mashhadiabbas Fatemeh

    2017-05-01

    Full Text Available Objectives: An odontogenic keratocyst (OKC is a developmental odontogenic cyst with aggressive clinical behavior. This cyst shows a different growth mechanism from the more common dentigerous cyst and now has been renamed as a keratocystic odontogenic tumor (KCOT. Inflammation can assist tumor growth via different mechanisms including dysregulation of the p53 gene. This study aims to assess and compare the expression of tumor suppressor gene p53 in inflamed and non-inflamed types of OKC and dentigerous cyst. Methods: Immunohistochemical expression of p53 was assessed in 14 cases of dental follicle, 34 cases of OKC (including 18 inflamed OKCs, and 31 cases of dentigerous cyst (including 16 inflamed cysts. Results: The mean percentage of p53 positive cells was 0.7% in dental follicles, 5.4% in non-inflamed OKCs, 17.3% in inflamed OKCs, 1.2% in non-inflamed dentigerous cysts, and 2.2% in inflamed dentigerous cysts. The differences between the groups were statistically significant (p < 0.050 except for the difference between inflamed and non-inflamed dentigerous cysts, and between dental follicle and non-inflamed dentigerous cyst. Conclusions: The difference in p53 expression in OKC and dentigerous cyst can explain their different growth mechanism and clinical behavior. Inflammation is responsible for the change in behavior of neoplastic epithelium of OKC via p53 overexpression.

  5. p53 performs an essential role in mediating the oncogenic stimulus triggered by loss of expression of neurofibromatosis type 2 during in vitro tumor progression.

    Science.gov (United States)

    Li, Xiye; Chen, Hongsai; Xue, Lu; Pang, Xiuhong; Zhang, Xiaoman; Zhu, Zhengjie; Zhu, Weidong; Wang, Zhaoyan; Wu, Hao

    2017-08-01

    The loss of the tumor suppressor neurofibromatosis type 2 gene, encoding merlin, has been considered to be a fundamental event during the malignant progression of various cell types. However, a consensus for the mainstream mechanism, by which merlin deficiency contributes to uncontrolled cellular proliferation, has not been reached. The present study aimed to determine whether silencing of merlin using lentivirus-based short hairpin RNA potentiates cellular proliferation and cell cycle progression in human colon carcinoma HCT116 cell lines, expressing p53. The present results demonstrated that merlin knockdown contributed to cellular proliferation and G1/S cell cycle progression to a greater extent in HCT116 cells wide-type for p53 (p53(wt)) compared with p53-null (p53(-/-)) cells. This was supported by overexpression experiments which demonstrated a significant inhibitory effect of excess merlin on cellular proliferation only in HCT116 p53(wt) cells. In order to investigate the underlying mechanisms of action, the expression of p53-involved G1/S transition genes was evaluated by western blot analysis. For HCT116 p53(wt) cells, merlin loss suppressed p53 expression, and therefore the dysregulation of cell cycle regulatory proteins, including p21, cyclin D1/cyclin-dependent kinase (CDK)4 and cyclin E1/CDK2 complexes. However, merlin knockdowns had no impact on the expression of any of the aforementioned molecules in p53(-/-) cells, indicating that lack of merlin resulted in G1/S cell cycle progression, and thereby uncontrolled cellular proliferation mainly via the regulation of p53-mediated pathways. Taken together, it was proposed that p53 performs an essential role in mediating the oncogenic stimulus triggered by merlin loss, and p53 is a molecule that should be investigated for its potential in targeted drug therapy for merlin-deficient malignancies.

  6. The cyclin-dependent kinase inhibitor flavopiridol potentiates the effects of topoisomerase I poisons by suppressing Rad51 expression in a p53-dependent manner.

    Science.gov (United States)

    Ambrosini, Grazia; Seelman, Sharon L; Qin, Li-Xuan; Schwartz, Gary K

    2008-04-01

    The results of a phase I clinical trial of the topoisomerase I (Topo I) poison CPT-11 followed by the cyclin-dependent kinase inhibitor flavopiridol in patients with advanced solid tumors indicate that patients whose tumors were wild-type, but not mutant, for p53 obtained the most clinical benefit from this combination therapy. We elected to elucidate the mechanistic basis for this effect in isogenic-paired HCT116 colon cancer cells that were either wild-type (+/+) or null (-/-) for p53. With the combination therapy of SN-38 (the active metabolite of CPT-11) followed by flavopiridol, the induction of apoptosis was 5-fold greater in the p53+/+ cells compared with the p53-/- cells. This sequential treatment induced phosphorylation of p53 at Ser(15), which interacted with Rad51, a DNA repair protein involved in homologous recombination. Rad51 bound to p53-Ser(15) within the first 5 hours of combination therapy, and then was transcriptionally suppressed at 24 hours by flavopiridol only in p53+/+ cells. Microarray analysis also revealed suppression of Rad51 in a p53-dependent manner. Depletion of Rad51 by small interfering RNA (siRNA) sensitized both p53+/+ and p53-/- cells to SN-38-induced apoptosis with increase of gamma H2AX, a marker of DNA damage. Conversely, overexpression of Rad51 rescued p53+/+ cells from SN-->F-induced apoptosis. Because flavopiridol inhibits Cdk9, we found that inhibition of Cdk9 by DRB or by siRNA could recapitulate the flavopiridol effects, with suppression of Rad51 and induction of apoptosis only in p53+/+ cells. In conclusion, after DNA damage by Topo I poisons, flavopiridol targets homologous recombination through a p53-dependent down-regulation of Rad51, resulting in enhancement of apoptosis.

  7. Pertuzumab : evolving therapeutic strategies in the management of HER2-overexpressing breast cancer.

    Science.gov (United States)

    O'Sullivan, Ciara C; Swain, Sandra M

    2013-05-01

    HER2 overexpression or amplification is present in approximately one-fifth of breast cancers and historically was associated with aggressive disease and poorer prognosis. The introduction of the humanized monoclonal antibody trastuzumab dramatically improved disease-free survival (DFS) and overall survival (OS) in this subgroup. As the majority of patients with metastatic disease ultimately develop resistance to trastuzumab, a need exists for more effective targeted therapies. Pertuzumab is an anti-HER2/neu-targeted therapy in the late stages of clinical development. The combination of pertuzumab, trastuzumab and docetaxel has been found to have an OS benefit in patients with HER2 positive metastatic breast cancer (MBC) when used in the first-line setting. This reflects a new standard of care, and pertuzumab was recently approved for this indication by the Food and Drug Administration (FDA). The efficacy of pertuzumab and trastuzumab in conjunction with chemotherapy is currently being evaluated in the adjuvant setting. This article provides an overview of preclinical investigations in addition to reviewing pertinent Phase I, Phase II and Phase III clinical trials. Pertuzumab, in combination with the humanized monoclonal antibody trastuzumab, and docetaxel is a standard of care for patients with previously untreated metastatic breast cancer based on the CLEOPATRA study showing a survival benefit. There is no increase in cardiac toxicity with the combined HER2-targeted therapy. Future issues will address appropriate sequencing and combination with other anti-HER2-targeted therapies and/or chemotherapy.

  8. Synergistic effect of p53 on TSA-induced stanniocalcin 1 expression in human nasopharyngeal carcinoma cells, CNE2.

    Science.gov (United States)

    Ching, L Y; Yeung, Bonnie H Y; Wong, Chris K C

    2012-06-01

    Human stanniocalcin 1 (STC1) has recently been identified as a putative protein factor involved in cellular apoptosis. The use of histone deacetylase inhibitor (i.e. trichostatin A (TSA)) and doxorubicin (Dox) is one of the common treatment methods to induce apoptosis in human cancer cells. A study on TSA and Dox-mediated apoptosis may shed light on the regulation and function of STC1 in cancer treatment. In this study, TSA and Dox cotreatment in human nasopharyngeal carcinoma cells (CNE2) elicited synergistic effects on STC1 gene expression and cellular apoptosis. An activation of p53 (TP53) transcriptional activity in Dox- or Dox+TSA-treated cells was revealed by the increased expression levels of p53 mRNA/protein as well as p53-driven luciferase activities. To elucidate the possible involvement of p53 in STC1 gene transcription, a vector expressing wild-type or dominant negative (DN) p53 was transiently transfected into the cells. Both STC1 promoter luciferase constructs and chromatin immunoprecipitation assays did not support the direct role of p53 in STC1 gene transactivation. However, the synergistic effects of p53 on the induction of NF-κB phosphorylation and the recruitment of acetylated histone H3 in STC1 promoter were observed in TSA-cotreated cells. The overexpression of exogenous STC1 sensitized apoptosis in Dox-treated cells. Taken together, this study provides data to show the cross talk of NF-κB, p53, and histone protein in the regulation of STC1 expression and function.

  9. Structurally diverse MDM2–p53 antagonists act as modulators of MDR-1 function in neuroblastoma

    Science.gov (United States)

    Chen, L; Zhao, Y; Halliday, G C; Berry, P; Rousseau, R F; Middleton, S A; Nichols, G L; Del Bello, F; Piergentili, A; Newell, D R; Lunec, J; Tweddle, D A

    2014-01-01

    Background: A frequent mechanism of acquired multidrug resistance in human cancers is overexpression of ATP-binding cassette transporters such as the Multi-Drug Resistance Protein 1 (MDR-1). Nutlin-3, an MDM2–p53 antagonist, has previously been reported to be a competitive MDR-1 inhibitor. Methods: This study assessed whether the structurally diverse MDM2–p53 antagonists, MI-63, NDD0005, and RG7388 are also able to modulate MDR-1 function, particularly in p53 mutant neuroblastoma cells, using XTT-based cell viability assays, western blotting, and liquid chromatography–mass spectrometry analysis. Results: Verapamil and the MDM2–p53 antagonists potentiated vincristine-mediated growth inhibition in a concentration-dependent manner when used in combination with high MDR-1-expressing p53 mutant neuroblastoma cell lines at concentrations that did not affect the viability of cells when given alone. Liquid chromatography–mass spectrometry analyses showed that verapamil, Nutlin-3, MI-63 and NDD0005, but not RG7388, led to increased intracellular levels of vincristine in high MDR-1-expressing cell lines. Conclusions: These results show that in addition to Nutlin-3, other structurally unrelated MDM2–p53 antagonists can also act as MDR-1 inhibitors and reverse MDR-1-mediated multidrug resistance in neuroblastoma cell lines in a p53-independent manner. These findings are important for future clinical trial design with MDM2–p53 antagonists when used in combination with agents that are MDR-1 substrates. PMID:24921920

  10. Systematic and comprehensive analysis of mutant p53 proteins in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The gene p53 is a well-known tumour suppressor gene that prevents cancer formation. It is the most commonly mutated gene among individuals with a diagnosis of cancer. Through recent advances in DNA sequencing abilities, researchers are now in a position to take a patient's tumour and identify the exact mutation in ...

  11. A role for p53 in selenium-induced senescence

    Science.gov (United States)

    The tumor suppressor p53 and the ataxia-telangiectasia mutated (ATM) kinase play important roles in the senescence response to oncogene activation and DNA damage. We have previously shown that selenium-containing compounds can activate an ATM-dependent senescence response in MRC-5 normal fibroblasts...

  12. Cellular inactivation of nitric oxide induces p53-dependent ...

    African Journals Online (AJOL)

    Results: c-PTIO and 1400W, alone or in combination, inhibited cell growth and promoted apoptosis via sub-G1 cell cycle arrest mediated by decrease in NO•. Apoptosis was delayed and greatly reduced in magnitude in SK mel-28 cells, underscoring the importance of p53 modulation of the response. In both cell types, ...

  13. Protecting the hedgerow: p53 and hedgehog pathway interactions.

    Science.gov (United States)

    Ho, Louisa; Alman, Benjamin

    2010-02-01

    A common environment for the Hedgehog (Subfamily: erinaceinae) is a row of shrubs and trees often used on farms for enclosing or separating fields, called a hedgerow. Maintenance of a continuous shrub border is important for shielding crops from weather damage, but also provides an ideal protective habitat for the hedgehog. Similar to its mammalian counterpart, the Hedgehog (Hh) signalling pathway requires a controlled environment to regulate proper functioning of the cell. When allowed to run wild, constitutive activation of the Hh pathway results in tumorigenesis in different tissues types, including brain, skin and cartilage. With an additional loss of p53 tumor suppressor activity, an increase in tumor incidence, size and metastasis have been observed. p53 has a number of functions that can suppress tumor formation and growth in most, if not all Hh-related cancers, such as the inhibition of cell cycle progression and cell survival. Furthermore, increasing evidence of an interaction between p53 and Hedgehog signalling pathways suggests a critical role for the tumor suppressor activity of p53 in "protecting the hedgerow".

  14. Artificial Macrocycles as Potent p53-MDM2 Inhibitors

    NARCIS (Netherlands)

    Estrada-Ortiz, Natalia; Neochoritis, Constantinos G.; Twarda-Clapa, Aleksandra; Musielak, Bogdan; Holak, Tad A.; Dömling, Alexander

    2017-01-01

    Based on a combination of an Ugi four component reaction and a ring closing metathesis, a library of novel artificial macrocyclic inhibitors of the p53-MDM2 interaction was designed and synthesized. These macrocycles, alternatively to stapled peptides, target for the first time the large hydrophobic

  15. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  16. Mutant presenilin2 promotes apoptosis through the p53/miR-34a axis in neuronal cells.

    Science.gov (United States)

    Li, Liu-Hong; Tu, Qiu-Yun; Deng, Xiao-Hua; Xia, Jian; Hou, De-Ren; Guo, Ke; Zi, Xiao-Hong

    2017-05-01

    Neurodegenerative disorders have attracted attention in last decades due to their high incidence in the world. The p53/miR-34a axis triggers apoptosis and suppresses viability in multiple types of cells, but little is known about its role in neurodegenerative diseases. In this study, we showed that presenilin (PS)-2, a major gene associated with familial Alzheimer's disease (AD) could trigger the apoptosis through the p53/miR-34a axis in PC12 cells. First we found that PC12 cell viability was downregulated by PS-2 and mutant PS-2 overexpression, especially by mutant PS-2 overexpression. Then, we established a mutant PS-2-overexpressing PC12 cell line and confirmed that mutant PS-2 induced not only p53 but also miR-34a expression. The transfection of miR-34a inhibitor reversed PS-2-induced effects on cellular viability and apoptosis. Mutant PS-2 overexpression promoted caspase-3 expression, reduced Sirt1 and Bcl-2 expression, all of which were miR-34a downstream genes related with cell apoptosis. Moreover, mutant PS-2 also activated the p53/miR-34a axis and induced apoptosis in AD transgenic mice brain. These results implied that mutant PS-2 might promote the apoptosis of neuronal cells through triggering the p53/miR-34a axis. Altogether our results provide a novel insight into neurodegenerative disease and deepen our understandings of AD pathogenic processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cancer progression by breast tumors with Pit-1-overexpression is blocked by inhibition of metalloproteinase (MMP)-13.

    Science.gov (United States)

    Sendon-Lago, Juan; Seoane, Samuel; Eiro, Noemi; Bermudez, Maria A; Macia, Manuel; Garcia-Caballero, Tomas; Vizoso, Francisco J; Perez-Fernandez, Roman

    2014-12-20

    The POU class 1 homeobox 1 transcription factor (POU1F1, also known as Pit-1) is expressed in the mammary gland and its overexpression induces profound phenotypic changes in proteins involved in cell proliferation, apoptosis, and invasion. Patients with breast cancer and elevated expression of Pit-1 show a positive correlation with the occurrence of distant metastasis. In this study we evaluate the relationship between Pit-1 and two collagenases: matrix metalloproteinase-1 (MMP-1) and matrix metalloproteinase-13 (MMP-13), which have been related to metastasis in breast cancer. We began by transfecting the MCF-7 and MDA-MB-231 human breast adenocarcinoma cell lines with the Pit-1 overexpression vector (pRSV-hPit-1). Afterward, the mRNA, protein, and transcriptional regulation of both MMP-1 and MMP-13 were evaluated by real-time PCR, Western blot, chromatin immunoprecipitation (ChIP), and luciferase reporter assays. We also evaluated Pit-1 overexpression with MMP-1 and MMP-13 knockdown in a severe combined immunodeficiency (SCID) mouse tumor xenograft model. Finally, by immunohistochemistry we correlated Pit-1 with MMP-1 and MMP-13 protein expression in 110 human breast tumors samples. Our data show that Pit-1 increases mRNA and protein of both MMP-1 and MMP-13 through direct transcriptional regulation. In SCID mice, knockdown of MMP-13 completely blocked lung metastasis in Pit-1-overexpressing MCF-7 cells injected into the mammary fat pad. In breast cancer patients, expression of Pit-1 was found to be positively correlated with the presence of both MMP-1 and MMP-13. Our data indicates that Pit-1 regulates MMP-1 and MMP-13, and that inhibition of MMP-13 blocked invasiveness to lung in Pit-1-overexpressed breast cancer cells.

  18. TP53 Codon 72 Polymorphism and P53 Protein Expression in Colorectal Cancer Specimens in Isfahan

    Directory of Open Access Journals (Sweden)

    Mehdi Nikbahkt Dastjerdi

    2011-02-01

    proline allele. A significant difference between cases and controls was found for the arginine/arginine genotype compared with (grouped arginine/proline and proline/proline genotypes (Odds Ratio = 1.451 (1.002-2.103, P=0.048. Overexpression of p53 was observed in 50.8 percent of cancer specimens which most of them were arginine/arginine genotype (P<0.001. TP53 polymorphism and arginine/arginine genotype may be correlated with overexpression of p53 and increased risk for colorectal cancer in city of Isfahan.

  19. Knockdown of CDK2AP1 in primary human fibroblasts induces p53 dependent senescence.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1 is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1 in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a no increase in senescence associated beta-galactosidase activity, (b decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1

  20. CONVERGENCE OF P53 AND TGFβ SIGNALING ON ACTIVATING EXPRESSION OF THE TUMOR SUPPRESSOR GENE MASPIN IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Wang, Shizhen Emily; Narasanna, Archana; Whitell, Corbin W.; Wu, Frederick Y.; Friedman, David B.; Arteaga, Carlos L.

    2014-01-01

    Using two-dimensional difference gel electrophoresis, we identified the tumor suppressor gene maspin as a TGFβ target gene in human mammary epithelial cells. TGFβ upregulates maspin expression both at the RNA and protein levels. This upregulation required Smad2/3 function and intact p53 binding elements in the maspin promoter. DNA affinity immunoblot and chromatin immunoprecipitation (ChIP) revealed the presence of both Smads and p53 at the maspin promoter in TGFβ-treated cells, suggesting that both transcription factors cooperate to induce maspin transcription. TGFβ did not activate maspin-luciferase reporter in p53-mutant MDA-MB-231 breast cancer cells, which exhibit methylation of the endogenous maspin promoter. Expression of ectopic p53, however, restored ligand-induced association of Smad2/3 with a transfected maspin promoter. Stable transfection of maspin inhibited basal and TGFβ-stimulated MDA-MB-231 cell motility. Finally, knockdown of endogenous maspin in p53 wild-type MCF10A/HER2 cells enhanced basal and TGFβ-stimulated motility. Taken together, these data support cooperation between the p53 and TGFβ tumor suppressor pathways in the induction of maspin expression, thus leading to inhibition of cell migration. PMID:17204482

  1. Magnetite nanoparticles inhibit tumor growth and upregulate the expression of p53/p16 in Ehrlich solid carcinoma bearing mice.

    Directory of Open Access Journals (Sweden)

    Heba Bassiony

    Full Text Available BACKGROUND: Magnetite nanoparticles (MNPs have been widely used as contrast agents and have promising approaches in cancer treatment. In the present study we used Ehrlich solid carcinoma (ESC bearing mice as a model to investigate MNPs antitumor activity, their effect on expression of p53 and p16 genes as an indicator for apoptotic induction in tumor tissues. METHOD: MNPs coated with ascorbic acid (size: 25.0±5.0 nm were synthesized by co-precipitation method and characterized. Ehrlich mice model were treated with MNPs using 60 mg/Kg day by day for 14 injections; intratumorally (IT or intraperitoneally (IP. Tumor size, pathological changes and iron content in tumor and normal muscle tissues were assessed. We also assessed changes in expression levels of p53 and p16 genes in addition to p53 protein level by immunohistochemistry. RESULTS: Our results revealed that tumor growth was significantly reduced by IT and IP MNPs injection compared to untreated tumor. A significant increase in p53 and p16 mRNA expression was detected in Ehrlich solid tumors of IT and IP treated groups compared to untreated Ehrlich solid tumor. This increase was accompanied with increase in p53 protein expression. It is worth mentioning that no significant difference in expression of p53 and p16 could be detected between IT ESC and control group. CONCLUSION: MNPs might be more effective in breast cancer treatment if injected intratumorally to be directed to the tumor tissues.

  2. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein

    Czech Academy of Sciences Publication Activity Database

    Brázda, Václav; Čechová, Jana; Battistin, M.; Coufal, Jan; Jagelská, Eva; Raimondi, I.; Inga, A.

    2017-01-01

    Roč. 483, č. 1 (2017), s. 516-521 ISSN 0006-291X R&D Projects: GA ČR GA15-21855S Institutional support: RVO:68081707 Keywords : tumor-suppressor p53 * cruciform structures * dna-conformation Subject RIV: CE - Biochemistry Impact factor: 2.466, year: 2016

  3. Construction of a triple modified p53 containing DNA vaccine to enhance processing and presentation of the p53 antigen

    NARCIS (Netherlands)

    Hospers, Geke A. P.; Meijer, Coby; Dam, Wendy A.; Roossink, Frank; Mulder, Nanno H.

    2009-01-01

    More effective and less toxic treatments are urgently needed in the treatment of patients with cancer. The turnout suppressor protein p53 is a tumour-associated antigen that could serve that purpose when applied in an immunologic approval to cancer. It is mutated in similar to 50% of the tumours

  4. Haploinsufficiency of Def activates p53-dependent TGFβ signalling and causes scar formation after partial hepatectomy.

    Directory of Open Access Journals (Sweden)

    Zhihui Zhu

    Full Text Available The metazoan liver exhibits a remarkable capacity to regenerate lost liver mass without leaving a scar following partial hepatectomy (PH. Whilst previous studies have identified components of several different signaling pathways that are essential for activation of hepatocyte proliferation during liver regeneration, the mechanisms that enable such regeneration to occur without accompanying scar formation remain poorly understood. Here we use the adult zebrafish liver, which can regenerate within two weeks following PH, as a new genetic model to address this important question. We focus on the role of Digestive-organ-expansion-factor (Def, a nucleolar protein which has recently been shown to complex with calpain3 (Capn3 to mediate p53 degradation specifically in the nucleolus, in liver regeneration. Firstly, we show that Def expression is up-regulated in the wild-type liver following amputation, and that the defhi429/+ heteroozygous mutant (def+/- suffers from haploinsufficiency of Def in the liver. We then show that the expression of pro-inflammatory cytokines is up-regulated in the def+/- liver, which leads to distortion of the migration and the clearance of leukocytes after PH. Transforming growth factor β (TGFβ signalling is thus activated in the wound epidermis in def+/- due to a prolonged inflammatory response, which leads to fibrosis at the amputation site. Fibrotic scar formation in def+/- is blocked by the over-expression of Def, by the loss-of-function of p53, and by treatment with anti-inflammation drug dexamethasone or TGFβ-signalling inhibitor SB431542. We finally show that the Def- p53 pathway suppresses fibrotic scar formation, at least in part, through the regulation of the expression of the pro-inflammatory factor, high-mobility group box 1. We conclude that the novel Def- p53 nucleolar pathway functions specifically to prevent a scar formation at the amputation site in a normal amputated liver.

  5. Haploinsufficiency of Def activates p53-dependent TGFβ signalling and causes scar formation after partial hepatectomy.

    Science.gov (United States)

    Zhu, Zhihui; Chen, Jun; Xiong, Jing-Wei; Peng, Jinrong

    2014-01-01

    The metazoan liver exhibits a remarkable capacity to regenerate lost liver mass without leaving a scar following partial hepatectomy (PH). Whilst previous studies have identified components of several different signaling pathways that are essential for activation of hepatocyte proliferation during liver regeneration, the mechanisms that enable such regeneration to occur without accompanying scar formation remain poorly understood. Here we use the adult zebrafish liver, which can regenerate within two weeks following PH, as a new genetic model to address this important question. We focus on the role of Digestive-organ-expansion-factor (Def), a nucleolar protein which has recently been shown to complex with calpain3 (Capn3) to mediate p53 degradation specifically in the nucleolus, in liver regeneration. Firstly, we show that Def expression is up-regulated in the wild-type liver following amputation, and that the defhi429/+ heteroozygous mutant (def+/-) suffers from haploinsufficiency of Def in the liver. We then show that the expression of pro-inflammatory cytokines is up-regulated in the def+/- liver, which leads to distortion of the migration and the clearance of leukocytes after PH. Transforming growth factor β (TGFβ) signalling is thus activated in the wound epidermis in def+/- due to a prolonged inflammatory response, which leads to fibrosis at the amputation site. Fibrotic scar formation in def+/- is blocked by the over-expression of Def, by the loss-of-function of p53, and by treatment with anti-inflammation drug dexamethasone or TGFβ-signalling inhibitor SB431542. We finally show that the Def- p53 pathway suppresses fibrotic scar formation, at least in part, through the regulation of the expression of the pro-inflammatory factor, high-mobility group box 1. We conclude that the novel Def- p53 nucleolar pathway functions specifically to prevent a scar formation at the amputation site in a normal amputated liver.

  6. Correlation of HER2 overexpression with histopathologic features in breast cancer: a two- year study

    Directory of Open Access Journals (Sweden)

    Foruhesh Tehrani Z

    2010-02-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Breast cancer is the most common cancer and the second most common cause of death from cancer in women. HER2 is an epidermal growth factor receptor which plays a substantial role in pathogenesis of breast cancer and also a target for new antineoplastic drug Herceptin. This study was conducted for determining the correlation between HER2 overexpression and histopathologic characteristics of breast cancer and also degree of intraobserver and interobserver agreement in scoring of Immnohistochemistry (IHC slides between pathologists in samples referred to pathology ward."n"nMethods: This study was conducted as a descriptive cross sectional study. Among the breast cancer samples referred to pathology ward in Shariati Hospital in Tehran, Iran. 140 samples have been selected sequentially using simple non-random sampling method. All the information has been extracted using medical records and pathology reports."n"nResults: This study showed significant difference between diagnosis and HER2 status (p<0.05. Significant difference observed between lymph node invasion and HER2 status (p<0.05. Positive significant association between the size and tumor grade with HER2 status (r=0.188, p=0.026, Significant difference

  7. Identification and characterization of a metastatic suppressor BRMS1L as a target gene of p53.

    Science.gov (United States)

    Koyama, Ryota; Tamura, Miyuki; Nakagaki, Takafumi; Ohashi, Tomoko; Idogawa, Masashi; Suzuki, Hiromu; Tokino, Takashi; Sasaki, Yasushi

    2017-12-01

    The tumor suppressor p53 and its family members, p63 and p73, play a pivotal role in the cell fate determination in response to diverse upstream signals. As transcription factors, p53 family proteins regulate a number of genes that are involved in cell cycle arrest, apoptosis, senescence, and maintenance of genomic stability. Recent studies revealed that p53 family proteins are important for the regulation of cell invasion and migration. Microarray analysis showed that breast cancer metastasis suppressor 1-like (BRMS1L) is upregulated by p53 family proteins, specifically p53, TAp63γ, and TAp73β. We identified two responsive elements of p53 family proteins in the first intron and upstream of BRMS1L. These response elements are well conserved among mammals. Functional analysis showed that ectopic expression of BRMS1L inhibited cancer cell invasion and migration; knockdown of BRMS1L by siRNA induced the opposite effect. Importantly, clinical databases revealed that reduced BRMS1L expression correlated with poor prognosis in patients with breast and brain cancer. Together, these results strongly indicate that BRMS1L is one of the mediators downstream of the p53 pathway, and that it inhibits cancer cell invasion and migration, which are essential steps in cancer metastasis. Collectively, our results indicate that BRMS1L is involved in cancer cell invasion and migration, and could be a therapeutic target for cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Histone modifications affect differential regulation of TGFβ- induced NADPH oxidase 4 (NOX4) by wild-type and mutant p53

    Science.gov (United States)

    Boudreau, Howard E.; Ma, Wei Feng; Korzeniowska, Agnieszka; Park, Jonathan J.; Bhagwat, Medha A.; Leto, Thomas L.

    2017-01-01

    Previously, we showed wild-type (WT) and mutant (mut) p53 differentially regulate reactive oxygen species (ROS) generation by NADPH oxidase-4 (NOX4): p53-WT suppresses TGFβ-induced NOX4, ROS and cell migration, whereas tumor-associated mut-p53 proteins enhance NOX4 expression and cell migration. Here, we extended our findings on the effects of p53 on NOX4 in several tumors and examined the basis of NOX4 transcriptional regulation by p53 and SMAD3. Statistical analysis of expression data from primary tumors available from The Cancer Genome Atlas (TCGA) detected correlations between mut-p53 and increased NOX4 expression. Furthermore, by altering p53 levels in cell culture models we showed several common tumor-associated mutant forms support TGFβ/SMAD3-dependent NOX4 expression. Deletion analysis revealed two critical SMAD3 binding elements (SBE) required for mut-p53-dependent NOX4 induction, whereas p53-WT caused dose-dependent suppression of NOX4 transcription. ChIP analysis revealed SMAD3 and p53-WT or mut-p53 associate with SBEs and p53 response elements in a TGFβ-dependent manner. Interestingly, the repressive effects of p53-WT on NOX4 were relieved by mutation of its transactivation domain or histone deacetylase (HDAC) inhibitor treatment. Overexpression of p300, a transcriptional co-regulator and histone acetyltransferase (HAT), enhanced p53-mediated NOX4 induction, whereas HAT-inactive p300 reduced NOX4 expression. Mut-p53 augmented TGFβ-stimulated histone acetylation within the NOX4 promoter. Finally, wound assays demonstrated NOX4 and p300 promote TGFβ/mut-p53-mediated cell migration. Our studies provide new insight into TGFβ/SMAD3 and mut-p53-mediated NOX4 induction involving epigenetic control of NOX4 in tumor cell migration, suggesting NOX4 is a potential therapeutic target to combat tumor progression and metastasis. PMID:28574838

  9. Overexpression of L1 cell adhesion molecule correlates with aggressive tumor progression of patients with breast cancer and promotes motility of breast cancer cells.

    Science.gov (United States)

    Zhang, Jian; Yang, Fei; Ding, Yong; Zhen, Linlin; Han, Xuedong; Jiao, Feng; Tang, Jinhai

    2015-01-01

    L1 cell adhesion molecule (L1CAM) has been observed to be aberrantly expressed and implicated in progression of several types of human cancers. However, its roles in breast cancer have not been fully elucidated. In this study, we aimed to investigate the clinical significance of L1CAM in human breast cancer and to validate whether it participates in cancer cell migration and invasion. Immunohistochemical analysis of 100 breast cancer and matched non-cancerous breast tissues was performed to detect the expression and sub-cellular localization of L1CAM protein. Its associations with clinicopathological characteristics of breast cancer patients were statistically analyzed and its phenotypic effects were also evaluated in vitro. Of the 100 breast cancer patients, 89 (89.0%) were positive for L1CAM immunostaining localized in the membrane of cancer cells. The immunoreactive scores of L1CAM protein in breast cancer tissues were significantly higher than those in matched non-cancerous breast tissues (Pbreast cancer patients. Moreover, we found that RNA interference-mediated knockdown of L1CAM could inhibit the migration and invasion abilities of breast cancer cells in vitro. Our results suggest that the overexpression of L1CAM may be related to several established markers of poor prognosis in breast cancer patients. L1CAM might be a potential therapeutic target against metastatic breast cancer.

  10. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy.

    Science.gov (United States)

    Benkafadar, Nesrine; Menardo, Julien; Bourien, Jérôme; Nouvian, Régis; François, Florence; Decaudin, Didier; Maiorano, Domenico; Puel, Jean-Luc; Wang, Jing

    2017-01-01

    Cisplatin is a widely used chemotherapy drug, despite its significant ototoxic side effects. To date, the mechanism of cisplatin-induced ototoxicity remains unclear, and hearing preservation during cisplatin-based chemotherapy in patients is lacking. We found activation of the ATM-Chk2-p53 pathway to be a major determinant of cisplatin ototoxicity. However, prevention of cisplatin-induced ototoxicity is hampered by opposite effects of ATM activation upon sensory hair cells: promoting both outer hair cell death and inner hair cell survival. Encouragingly, however, genetic or pharmacological ablation of p53 substantially attenuated cochlear cell apoptosis, thus preserving hearing. Importantly, systemic administration of a p53 inhibitor in mice bearing patient-derived triple-negative breast cancer protected auditory function, without compromising the anti-tumor efficacy of cisplatin. Altogether, these findings highlight a novel and effective strategy for hearing protection in cisplatin-based chemotherapy. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Mutasi Gen P53: Faktor Prediktif Kanker Payudara?

    OpenAIRE

    Suyanto, Putri Y; Utomo, Ahmad R; Sandra, Ferry

    2008-01-01

    Farmakogenetik dalam terapi kanker adalah pemberian terapi kepada pasien berdasarkan status atau profil genetik dari sel kanker. Dengan demikian, pemberian kemoterapi diharapkan bisa lebih efektif dan meningkatkan kualitas hidup pasien dengan menghindari terapi yang diketahui secara genetik tidak memberikan keuntungan klinis. Pemeriksaan DNA gen p53 sebagai salah satu tumor suppresor gene yang termutasi pada hampir sebagian besar tumor diharapkan mampu menjadi faktor prediktif ketika dilakuka...

  12. Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jeng-Wei Lu

    Full Text Available Hepatocarcinogenesis is a multistep process that starts from fatty liver and transitions to fibrosis and, finally, into cancer. Many etiological factors, including hepatitis B virus X antigen (HBx and p53 mutations, have been implicated in hepatocarcinogenesis. However, potential synergistic effects between these two factors and the underlying mechanisms by which they promote hepatocarcinogenesis are still unclear. In this report, we show that the synergistic action of HBx and p53 mutation triggers progressive hepatocellular carcinoma (HCC formation via src activation in zebrafish. Liver-specific expression of HBx in wild-type zebrafish caused steatosis, fibrosis and glycogen accumulation. However, the induction of tumorigenesis by HBx was only observed in p53 mutant fish and occurred in association with the up-regulation and activation of the src tyrosine kinase pathway. Furthermore, the overexpression of src in p53 mutant zebrafish also caused hyperplasia, HCC, and sarcomatoid HCC, which were accompanied by increased levels of the signaling proteins p-erk, p-akt, myc, jnk1 and vegf. Increased expression levels of lipogenic factors and the genes involved in lipid metabolism and glycogen storage were detected during the early stages of hepatocarcinogenesis in the HBx and src transgenic zebrafish. The up-regulation of genes involved in cell cycle regulation, tumor progression and other molecular hallmarks of human liver cancer were found at later stages in both HBx and src transgenic, p53 mutant zebrafish. Together, our study demonstrates that HBx and src overexpression induced hepatocarcinogenesis in p53 mutant zebrafish. This phenomenon mimics human HCC formation and provides potential in vivo platforms for drug screening for therapies for human liver cancer.

  13. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells.

    Science.gov (United States)

    Siafaka, P; Betsiou, M; Tsolou, A; Angelou, E; Agianian, B; Koffa, M; Chaitidou, S; Karavas, E; Avgoustakis, K; Bikiaris, D

    2015-12-01

    The aim of this study was the preparation of novel polyester nanoparticles based on folic acid (FA)-functionalized poly(ethylene glycol)-poly(propylene succinate) (PEG-PPSu) copolymer and loaded with the new anticancer drug ixabepilone (IXA). These nanoparticles may serve as a more selective (targeted) treatment of breast cancer tumors overexpressing the folate receptor. The synthesized materials were characterized by (1)H-NMR, FTIR, XRD and DSC. The nanoparticles were prepared by a double emulsification and solvent evaporation method and characterized with regard to their morphology by scanning electron microscopy, drug loading with HPLC-UV and size by dynamic light scattering. An average size of 195 nm and satisfactory drug loading efficiency (3.5%) were observed. XRD data indicated that IXA was incorporated into nanoparticles in amorphous form. The nanoparticles exhibited sustained drug release properties in vitro. Based on in vitro cytotoxicity studies, the blank FA-PEG-PPSu nanoparticles were found to be non-toxic to the cells. Fluorescent nanoparticles were prepared by conjugating Rhodanine B to PEG-PPSu, and live cell, fluorescence, confocal microscopy was applied in order to demonstrate the ability of FA-PEG-PPSu nanoparticles to enter into human breast cancer cells expressing the folate receptor.

  14. Functional four-base A/T gap core sequence CATTAG of P53 response elements specifically bound tetrameric P53 differently than two-base A/T gap core sequence CATG bound both dimeric and tetrameric P53.

    Science.gov (United States)

    Cai, Bi-He; Chen, Jang-Yi; Lu, Mei-Hua; Chang, Li-Tze; Lin, Hwang-Chi; Chang, Yu-Ming; Chao, Chung-Faye

    2009-04-01

    The consensus sequence of p53 is repeated half sites of PuPuPuC(A/T)(A/T)GPyPyPy. GtAGCAttAGCCCAGACATGTCC is a 14-3-3sigma promoter p53 regulation site; the first core sequence is CAttAG, and the second is CATG. Both mutants GtAGgAttAGCCCAGACATGTCC and GtAGCAttAGCCCAGACATcTCC can be activated by p53 as a 1.5-fold half site. The original p53 regulated site on the 14-3-3sigma promoter is a whole site, and CATTAG is a functional core sequence. The p53-binding affinity and the activity of CATTAG were lower than for the mutant CATATG core sequence. Wild-type p53 acts as a tetramer to bind to the whole site; however, it also can bind to a half site by one of its dimers. Wild-type p53 can only bind to a half site with core sequence CATG but not to CATATG. The 1.5-fold half site or whole site with core sequence CATATG can be bound by wild-type p53. A p53 mutant, A344, forms dimeric p53; it can only bind to CATG, and not to CATATG. Therefore, tetrameric and dimeric p53 can bind to a two-base A/T gap core sequence, but only tetrameric p53 can bind to a four-base A/T gap core sequence.

  15. p53's choice of myocardial death or survival: Oxygen protects infarct myocardium by recruiting p53 on NOS3 promoter through regulation of p53-Lys118 acetylation

    Science.gov (United States)

    Gogna, Rajan; Madan, Esha; Khan, Mahmood; Pati, Uttam; Kuppusamy, Periannan

    2013-01-01

    Myocardial infarction, an irreversible cardiac tissue damage, involves progressive loss of cardiomyocytes due to p53-mediated apoptosis. Oxygenation is known to promote cardiac survival through activation of NOS3 gene. We hypothesized a dual role for p53, which, depending on oxygenation, can elicit apoptotic death signals or NOS3-mediated survival signals in the infarct heart. p53 exhibited a differential DNA-binding, namely, BAX-p53RE in the infarct heart or NOS3-p53RE in the oxygenated heart, which was regulated by oxygen-induced, post-translational modification of p53. In the infarct heart, p53 was heavily acetylated at Lys118 residue, which was exclusively reversed in the oxygenated heart, apparently regulated by oxygen-dependent expression of TIP60. The inhibition of Lys118 acetylation promoted the generation of NOS3-promoting prosurvival form of p53. Thus, oxygenation switches p53-DNA interaction by regulating p53 core-domain acetylation, promoting a prosurvival transcription activity of p53. Understanding this novel oxygen-p53 survival pathway will open new avenues in cardioprotection molecular therapy. PMID:24096875

  16. p53's choice of myocardial death or survival: Oxygen protects infarct myocardium by recruiting p53 on NOS3 promoter through regulation of p53-Lys(118) acetylation.

    Science.gov (United States)

    Gogna, Rajan; Madan, Esha; Khan, Mahmood; Pati, Uttam; Kuppusamy, Periannan

    2013-11-01

    Myocardial infarction, an irreversible cardiac tissue damage, involves progressive loss of cardiomyocytes due to p53-mediated apoptosis. Oxygenation is known to promote cardiac survival through activation of NOS3 gene. We hypothesized a dual role for p53, which, depending on oxygenation, can elicit apoptotic death signals or NOS3-mediated survival signals in the infarct heart. p53 exhibited a differential DNA-binding, namely, BAX-p53RE in the infarct heart or NOS3-p53RE in the oxygenated heart, which was regulated by oxygen-induced, post-translational modification of p53. In the infarct heart, p53 was heavily acetylated at Lys(118) residue, which was exclusively reversed in the oxygenated heart, apparently regulated by oxygen-dependent expression of TIP60. The inhibition of Lys(118) acetylation promoted the generation of NOS3-promoting prosurvival form of p53. Thus, oxygenation switches p53-DNA interaction by regulating p53 core-domain acetylation, promoting a prosurvival transcription activity of p53. Understanding this novel oxygen-p53 survival pathway will open new avenues in cardioprotection molecular therapy. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  17. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer

    NARCIS (Netherlands)

    van de Vijver, M. J.; Peterse, J. L.; Mooi, W. J.; Wisman, P.; Lomans, J.; Dalesio, O.; Nusse, R.

    1988-01-01

    Amplification of the neu proto-oncogene in breast cancer has been reported to correlate with the presence of lymph-node metastases and with a poor prognosis. We describe a method for the immunohistochemical detection of overexpression of neu protein on formalin-fixed paraffin-embedded tissue, with

  18. Cytoskeleton-Anchoring of Conformational Mutant-Like p53, but Not Shorter Isoforms p53β and p47 (ΔN40p53) in Senescent Human Fibroblasts.

    Science.gov (United States)

    Nishio, Koji

    2017-01-01

    Cytoskeleton anchoring of conformational mutant-like p53 is prominent in human senescent cells. The present research investigated the structural basis of vimentin cytoskeleton- anchoring of human p53. GFP-fused wild type p53, mutant p53, those of the various truncated isoforms including p53β and p47, were expressed in the vimentin-expressing cells: mouse fibroblasts, COS-7 cells, young and senescent human fibroblasts, and HeLa cells (non-vimentin-expressing). A cancer-specific mutant p53V143A-GFP expressed in mouse fibroblasts, exclusively anchored on the vimentin cytoskeleton. Class I mutant p53R175C-GFP and class II mutant p53R175S-GFP localized in the nuclei of COS-7 cells. A class III mutant p53R175X-GFP (X: D, F, W or Y), cancer-specific mutant p53V143A-GFP and p53R249S-GFP, exclusively anchored on the vimentin cytoskeleton of COS-7 cells. The deletions of p53R249S and p53V143A at the Cterminus (ΔC63) exclusively promoted the nuclear import of the deleted mutant p53 in COS-7 and HeLa cells, whereas the deletions at the N-terminus (ΔN40) or C-terminus (ΔC33) were ineffective. Thus, the cancer-specific mutant p53R249S and p53V143A adopt distinct mutant conformation and thereby the C-terminal region (aa331-360) potently interacts with the vimentin cytoskeleton and HeLa cells' cytoskeleton. Wild type p53-GFP exclusively localized in the nuclei of growing young fibroblast, in contrast to the significant cytoplasmic retention in senescent human fibroblasts. The deletion of p53 at the N-terminus or at the C-terminus (ΔN40 or ΔC63) results in