WorldWideScience

Sample records for brca1 brca2 msh2

  1. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva;

    2008-01-01

    deletions or duplications occurring in BRCA1 (n=11), BRCA2 (n=2), MSH2 (n=7), or MLH1 (n=9). Additionally, we demonstrate its applicability for uncovering complex somatic rearrangements, exemplified by zoom-in analysis of the PTEN and CDKN2A loci in breast cancer cells. The sizes of rearrangements ranged...

  2. BRCA1 and BRCA2 gene testing

    Science.gov (United States)

    ... of br east ca ncer. What is the BRCA Gene Mutation? BRCA1 and BRCA2 are genes that ... even negative results, with your genetic counselor. References BRCA and BRCA2: Cancer Risk and Genetic Testing. National ...

  3. Comprehensive BRCA1 and BRCA2 mutational profile in Lithuania.

    Science.gov (United States)

    Janavičius, Ramūnas; Rudaitis, Vilius; Mickys, Ugnius; Elsakov, Pavel; Griškevičius, Laimonas

    2014-05-01

    There is limited knowledge about the BRCA1/2 mutational profile in Lithuania. We aimed to define the full BRCA1 and BRCA2 mutational spectrum and the clinically relevant prevalence of these gene mutations in Lithuania. A data set of 753 unrelated probands, recruited through a clinical setting, was used and consisted of 380 female breast cancer cases, 213 epithelial ovarian cancer cases, 20 breast and ovarian cancer cases, and 140 probands with positive family history of breast or ovarian cancer. A comprehensive mutation analysis of the BRCA1/2 genes by high resolution melting analysis coupled with Sanger sequencing and multiplex ligation-dependent probe amplification analysis was performed. Genetic analysis revealed 32 different pathogenic germline BRCA1/2 mutations: 20 in the BRCA1 gene and 12 in the BRCA2 gene, including four different large genomic rearrangements in the BRCA1 gene. In all, 10 novel BRCA1/2 mutations were found. Nine different recurrent BRCA1 mutations and two recurrent BRCA2 mutations were identified, which comprised 90.4% of all BRCA1/2 mutations. BRCA1 exon 1-3 deletion and BRCA2 c.658_659del are reported for the first time as recurrent mutations, pointing to a possible Baltic founder effect. Approximately 7% of breast cancer and 22% of ovarian cancer patients without family history and an estimated 0.5-0.6% of all Lithuanian women were found to be carriers of mutations in the BRCA1 or BRCA2 gene.

  4. LOS GENES BRCA1 y BRCA2. ESTUDIO MOLECULAR

    Directory of Open Access Journals (Sweden)

    N. Alonso

    2006-11-01

    Full Text Available RESUMENEn los últimos años, se realizaron numerosos estudios para establecer la predisposición hereditaria al cáncer y las alteraciones mutacionales a nivel de genes susceptibles de originar cáncer de mama y ovario. En 1994 se identificaron los genes BRCA1 (Breast Cancer Gene 1 y BRCA2 (Breast Cancer Gene 2 como susceptibles de cáncer de mama y ovario. En la actualidad se sabe que las mutaciones en BRCA1 y BRCA2 están lejos de explicar la totalidad de los casos de cáncer de mama y/o ovario, y a pesar de que se postulan alteraciones mutacionales en otros genes como CHEK2, TP53 y PTEN, el BRCA1 y BRCA2, siguen teniendo su importancia y utilidad en la valoración del riesgo de predisposición hereditaria. Aunque las cifras son variables según los distintos estudios y autores, se trata en cualquier caso de porcentajes importantes. Entre el 15 y el 85% de las mujeres portadoras de mutación BRCA 1 o BRCA 2 tienen riesgo de desarrollar un cáncer de mama y entre un 10 y 60% de desarrollar un cáncer de ovario. ABSTRACT:In the last years, numerous studies were made to establish the hereditary predisposition to the cancer and the mutationals alterations at level of genes susceptible to originate breast and ovarian cancers. In 1994 genes BRCA1 (Breast Cancer Gene 1 and BRCA2 were identified (Breast Cancer Gene 2 as susceptible of both of breast and ovarian cancers. At the present time, it is knows that the mutations in BRCA 1 and BRCA 2 are far from explaining the totality of the cases of breast cancer and/or ovary, and although mutationals alterations in other genes like CHEK2, TP53 and PTEN, the BRCA1 and BRCA2 are postulated, they continue having his importance and utility in the valuation of the risk of hereditary predisposition. Correlations between both BRCA1 and BRCA2 levels with tumour grade metastasis and prognostic accuracy. Between 15 and 85% of the carrying women of mutation BRCA 1 or BRCA 2 have risk of developing a cancer of breast

  5. BRCA1/BRCA2 founder mutations and cancer risks

    DEFF Research Database (Denmark)

    Nielsen, Henriette Roed; Nilbert, Mef; Petersen, Janne

    2016-01-01

    Mutations in the BRCA1 and BRCA2 genes significantly contribute to hereditary breast cancer and ovarian cancer, but the phenotypic effect from different mutations is insufficiently recognized. We used a western Danish clinic-based cohort of 299 BRCA families to study the female cancer risk...... in mutation carriers and their untested first-degree relatives. Founder mutations were characterized and the risk of cancer was assessed in relation to the specific mutations. In BRCA1, the cumulative cancer risk at age 70 was 35 % for breast cancer and 29 % for ovarian cancer. In BRCA2, the cumulative risk...... was 44 % for breast cancer and 15 % for ovarian cancer. We identified 47 distinct BRCA1 mutations and 48 distinct mutations in BRCA2. Among these, 8 founder mutations [BRCA1 c.81-?_4986+?del, c.3319G>T (p.Glu1107*), c.3874delT and c.5213G>A (p.Gly1738Glu) and BRCA2 c.6373delA, c.7008-1G>A, c.7617+1G...

  6. Contralateral breast cancer after radiotherapy among BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Bernstein, Jonine L; Thomas, Duncan C; Shore, Roy E

    2013-01-01

    Women with germline BRCA1 or BRCA2 (BRCA1/BRCA2) mutations are at very high risk of developing breast cancer, including asynchronous contralateral breast cancer (CBC). BRCA1/BRCA2 genes help maintain genome stability and assist in DNA repair. We examined whether the risk of CBC associated with ra...

  7. Ispartada meme kanserli hastalarda BRCA1 ve BRCA2 ekspresyonu

    OpenAIRE

    Çandır, Özden; Karahan, Nermin; Bülbül, Mahmut; Kılınç, Fahriye; Başpınar, Şirin

    2009-01-01

    SüleymanDemirel Üniversitesi TIP FAKÜLTESİ DERGİSİ: 2005 Haziran; 12(2) Ispartada meme kanserli hastalarda BRCA1 ve BRCA2 ekspresyonu Özden Çandır, Nermin Karahan, Mahmut Bülbül, Fahriye Kılınç, Şirin Başpınar, Özet Amaç: BRCA1 ve BRCA2 genlerindeki mutasyonlar, kalıtımsal meme kanserlerinde predispozan faktördür. Sporadik meme kanserlerinde de BRCA proteini ekpresyonunda kayıp olduğu görülmektedir. Bu çalışmada amacımız, Isparta'da meme kanserleri...

  8. Founder mutations in BRCA1 and BRCA2 genes.

    Science.gov (United States)

    Ferla, R; Calò, V; Cascio, S; Rinaldi, G; Badalamenti, G; Carreca, I; Surmacz, E; Colucci, G; Bazan, V; Russo, A

    2007-06-01

    BRCA1 and BRCA2 germline mutations contribute to a significant number of familial and hereditary breast and/or ovarian cancers. The proportion of high-risk families with breast and/or ovarian cancer cases due to mutations in these tumor suppressor genes varies widely among populations. In some population, a wide spectrum of different mutations in both genes are present, whereas in other groups specific mutations in BRCA1 and BRCA2 have been reported with high frequency. Most of these mutations are prevalent in restricted populations as consequence of a founder effect. The comparison of haplotypes between families with the same mutation can distinguish whether high-frequency alleles derive from an older or more recent single mutational event or whether they have arisen independently more than once. Here, we review some of the most well-known and significant examples of founder mutations in BRCA genes found in European and non-European populations. In conclusion, the identification of the ethnic group of families undergoing genetic counseling enables the geneticist and oncologist to make more specific choices, leading to simplify the clinical approach to genetic testing carried out on members of high-risk families. Futhermore, the high frequency of founder mutations, allowing to analyze a large number of cases, might provide accurate information regarding their penetrance.

  9. BRCA1 and BRCA2 heterozygosity and repair of X-ray-induced DNA damage

    NARCIS (Netherlands)

    Nieuwenhuis, B.; Van Assen-Bolt, AJ; van Waarde-Verhagen, Maria; Sijmons, R.J.; van der Hout, A.H.; Bauch, T; Streffer, C; Kampinga, H.H.

    2002-01-01

    Purpose: Up to 90% of hereditary breast cancer cases are linked to germ-line mutations in one of the two copies of the BRCA1 or BRCA2 genes. Brca1 and Brca2 proteins are both involved in the cellular defence against DNA damage, although the precise function of the proteins is still not known. Some s

  10. Tamoxifen and Risk of Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Phillips, Kelly-Anne; Milne, Roger L; Rookus, Matti A;

    2013-01-01

    To determine whether adjuvant tamoxifen treatment for breast cancer (BC) is associated with reduced contralateral breast cancer (CBC) risk for BRCA1 and/or BRCA2 mutation carriers.......To determine whether adjuvant tamoxifen treatment for breast cancer (BC) is associated with reduced contralateral breast cancer (CBC) risk for BRCA1 and/or BRCA2 mutation carriers....

  11. Mutations of the BRCA1 and BRCA2 genes in patients with bilateral breast cancer.

    Science.gov (United States)

    Steinmann, D; Bremer, M; Rades, D; Skawran, B; Siebrands, C; Karstens, J H; Dörk, T

    2001-09-14

    Mutations of the BRCA1 or BRCA2 genes have been shown to strongly predispose towards the development of contralateral breast cancer in patients from large multi-case families. In order to test the hypothesis that BRCA1 and BRCA2 mutations are more frequent in patients with bilateral breast cancer, we have investigated a hospital-based series of 75 consecutive patients with bilateral breast cancer and a comparison group of 75 patients with unilateral breast cancer, pairwise matched by age and family history, for mutations in the BRCA1 and BRCA2 genes. Five frameshift deletions (517delGT in BRCA1; 4772delA, 5946delCT, 6174delT and 8138del5 in BRCA2) were identified in patients with bilateral disease. No further mutations, apart from polymorphisms and 3 rare unclassified variants, were found after scanning the whole BRCA1 and BRCA2 coding sequence. Three pathogenic BRCA1 mutations (Cys61Gly, 3814del5, 5382insC) were identified in the group of patients with unilateral breast cancer. The frequencies of common BRCA1 and BRCA2 missense variants were not different between the 2 groups. In summary, we did not find a significantly increased prevalence of BRCA1 and BRCA2 mutations in a hospital-based cohort of German patients with bilateral breast cancer. We conclude that bilaterality of breast cancer on its own is not strongly associated with BRCA1 and BRCA2 mutations when adjusted for age and family history. The high frequency of bilateral disease in multi-case breast cancer families may be due to a familial aggregation of additional susceptibility factors modifying the penetrance of BRCA1 and BRCA2 mutations.

  12. Low frequency of large genomic rearrangements of BRCA1 and BRCA2 in western Denmark

    DEFF Research Database (Denmark)

    Thomassen, Mads; Gerdes, Anne-Marie; Cruger, Dorthe;

    2006-01-01

    Germline mutations in BRCA1 and BRCA2 predispose female carriers to breast and ovarian cancer. The majority of mutations identified are small deletions or insertions or are nonsense mutations. Large genomic rearrangements in BRCA1 are found with varying frequencies in different populations......, but BRCA2 rearrangements have not been investigated thoroughly. The objective in this study was to determine the frequency of large genomic rearrangements in BRCA1 and BRCA2 in a large group of Danish families with increased risk of breast and ovarian cancer. A total of 617 families previously tested...... negative for mutations involving few bases were screened with multiplex ligation-dependent probe amplification (MLPA). Two deletions in BRCA1 were identified in three families; no large rearrangements were detected in BRCA2. The large deletions constitute 3.8% of the BRCA1 mutations identified, which...

  13. Localization of human BRCA1 and BRCA2 in non-inherited colorectal carcinomas and matched normal mucosas.

    Science.gov (United States)

    Bernard-Gallon, D J; Peffault de Latour, M; Hizel, C; Vissac, C; Cure, H; Pezet, D; Dechelotte, P J; Chipponi, J; Chassagne, J; Bignon, Y J

    2001-01-01

    We characterized the expression of BRCA1 and BRCA2 in 38 sporadic colorectal carcinomas and matched normal mucosas with 9 anti-BRCA1 antibodies and 4 anti-BRCA2 antibodies, raised against several different epitopes, using immunohistochemical technique. We demonstrated an increased BRCA1 and BRCA2 staining in the apical cell pole of epithelial malignant cells and we also revealed a significant increase in BRCA1 and BRCA2 nuclear foci in tumor colorectal specimens in comparison with corresponding normal tissues. These increases in BRCA1 and BRCA2 expression may be explained by the fact that colorectal tissue is subject to very active proliferation and differentiation.

  14. Women with BRCA1 and BRCA2 mutations survive ovarian cancer at higher rates

    Science.gov (United States)

    Results from a National Cancer Institute (NCI) sponsored multicenter study published in the Journal of the American Medical Association on January 25, 2012, provides strong evidence that BRCA1 and BRCA2 gene mutation carriers with ovarian cancer were more

  15. BRCA1 and BRCA2 Germline Mutations Screening in Algerian Breast/Ovarian Cancer Families

    Directory of Open Access Journals (Sweden)

    Farid Cherbal

    2010-01-01

    Full Text Available Background: Breast cancer is the leading cause of cancer death in women in Algeria. The contribution of BRCA1 and BRCA2 mutations to hereditary breast/ovarian cancer in Algerian population is largely unknown. Here, we describe analysis of BRCA1 and BRCA2 genes in 86 individuals from 70 families from an Algerian cohort with a personal and family history suggestive of genetic predisposition to breast cancer.

  16. Breast cancer risk in Chinese women with BRCA1 or BRCA2 mutations.

    Science.gov (United States)

    Yao, Lu; Sun, Jie; Zhang, Juan; He, Yingjian; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2016-04-01

    BRCA1/2 mutations represent approximately 5 % of unselected Chinese women with breast cancer. However, the breast cancer risk of Chinese women with BRCA1/2 mutations is unknown. Therefore, the aim of this study was to estimate the age-specific cumulative risk of breast cancer in Chinese women who carry a BRCA1 or BRCA2 mutation. Our study included 1816 unselected Chinese women with breast cancer and 5549 female first-degree relatives of these probands. All probands were screened for BRCA1/2 mutation. The age-specific cumulative risks of BRCA1/2 carriers were estimated using the kin-cohort study by comparing the history of breast cancer in first-degree female relatives of BRCA1/2 carriers and non-carriers. Among the 1816 probands, 125 BRCA1/2 pathogenic mutations were identified (70 in the BRCA1 gene and 55 in the BRCA2 gene). The incidence of breast cancer in the first-degree female relatives of BRCA1/2 mutation carriers was significantly higher (3.7-fold and 4.4-fold for BRCA1 and BRCA2 mutation carriers, respectively) than in non-carriers. The estimated cumulative risks of breast cancer by age 70 years were 37.9 % [95 % confidence interval (CI) 24.1-54.4 %] for BRCA1 mutation carriers and 36.5 % (95 % CI 26.7-51.8 %) for BRCA2 mutation carriers, respectively. Our study suggests that the breast cancer risk of Chinese women with BRCA1/2 mutations appears to be relatively high by the age of 70. Therefore, genetic counseling, enhanced surveillance, and individual preventive strategies should be provided for Chinese women who carry a BRCA1/2 mutation.

  17. Male breast cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Silvestri, Valentina; Barrowdale, Daniel; Mulligan, Anna Marie

    2016-01-01

    BACKGROUND: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs...

  18. Male breast cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Silvestri, Valentina; Barrowdale, Daniel; Mulligan, Anna Marie;

    2016-01-01

    BACKGROUND: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs aris...

  19. Reproductive and hormonal factors, and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers:

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Rookus, Matti; Andrieu, Nadine;

    2009-01-01

    BACKGROUND: Several reproductive and hormonal factors are known to be associated with ovarian cancer risk in the general population, including parity and oral contraceptive (OC) use. However, their effect on ovarian cancer risk for BRCA1 and BRCA2 mutation carriers has only been investigated...... in a small number of studies. METHODS: We used data on 2,281 BRCA1 carriers and 1,038 BRCA2 carriers from the International BRCA1/2 Carrier Cohort Study to evaluate the effect of reproductive and hormonal factors on ovarian cancer risk for mutation carriers. Data were analyzed within a weighted Cox...... proportional hazards framework. RESULTS: There were no significant differences in the risk of ovarian cancer between parous and nulliparous carriers. For parous BRCA1 mutation carriers, the risk of ovarian cancer was reduced with each additional full-term pregnancy (P trend = 0.002). BRCA1 carriers who had...

  20. Pathology of Breast and Ovarian Cancers among BRCA1 and BRCA2 Mutation Carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA)

    DEFF Research Database (Denmark)

    Mavaddat, Nasim; Barrowdale, Daniel; Andrulis, Irene L

    2012-01-01

    BACKGROUND: Previously, small studies have found that BRCA1 and BRCA2 breast tumors differ in their pathology. Analysis of larger datasets of mutation carriers should allow further tumor characterization. METHODS: We used data from 4,325 BRCA1 and 2,568 BRCA2 mutation carriers to analyze the path...

  1. Pathology of Breast and Ovarian Cancers among BRCA1 and BRCA2 Mutation Carriers : Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA)

    NARCIS (Netherlands)

    Mavaddat, Nasim; Barrowdale, Daniel; Andrulis, Irene L.; Domchek, Susan M.; Eccles, Diana; Nevanlinna, Heli; Ramus, Susan J.; Spurdle, Amanda; Robson, Mark; Sherman, Mark; Mulligan, Anna Marie; Couch, Fergus J.; Engel, Christoph; McGuffog, Lesley; Healey, Sue; Sinilnikova, Olga M.; Southey, Melissa C.; Terry, Mary Beth; Goldgar, David; O'Malley, Frances; John, Esther M.; Janavicius, Ramunas; Tihomirova, Laima; Hansen, Thomas V. O.; Nielsen, Finn C.; Osorio, Ana; Stavropoulou, Alexandra; Benitez, Javier; Manoukian, Siranoush; Peissel, Bernard; Barile, Monica; Volorio, Sara; Pasini, Barbara; Dolcetti, Riccardo; Putignano, Anna Laura; Ottini, Laura; Radice, Paolo; Hamann, Ute; Rashid, Muhammad U.; Hogervorst, Frans B.; Kriege, Mieke; van der Luijt, Rob B.; Peock, Susan; Frost, Debra; Evans, D. Gareth; Brewer, Carole; Walker, Lisa; Rogers, Mark T.; Side, Lucy E.; Houghton, Catherine; Weaver, JoEllen; Godwin, Andrew K.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Meindl, Alfons; Kast, Karin; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Doroteha; Preisler-Adams, Sabine; Varon-Mateeva, Raymonda; Schoenbuchner, Ines; Gevensleben, Heidrun; Stoppa-Lyonnet, Dominique; Belotti, Muriel; Barjhoux, Laure; Isaacs, Claudine; Peshkin, Beth N.; Caldes, Trinidad; de la Hoya, Miguel; Canadas, Carmen; Heikkinen, Tuomas; Heikkila, Paivi; Aittomaki, Kristiina; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Agnarsson, Bjarni A.; Arason, Adalgeir; Barkardottir, Rosa B.; Dumont, Martine; Simard, Jacques; Montagna, Marco; Agata, Simona; D'Andrea, Emma; Yan, Max; Fox, Stephen; Rebbeck, Timothy R.; Rubinstein, Wendy; Tung, Nadine; Garber, Judy E.; Wang, Xianshu; Fredericksen, Zachary; Pankratz, Vernon S.; Lindor, Noralane M.; Szabo, Csilla; Offit, Kenneth; Sakr, Rita; Gaudet, Mia M.; Singer, Christian F.; Tea, Muy-Kheng; Rappaport, Christine; Mai, Phuong L.; Greene, Mark H.; Sokolenko, Anna; Imyanitov, Evgeny; Toland, Amanda Ewart; Senter, Leigha; Sweet, Kevin; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben; Caligo, Maria; Aretini, Paolo; Rantala, Johanna; von Wachenfeld, Anna; Henriksson, Karin; Steele, Linda; Neuhausen, Susan L.; Nussbaum, Robert; Beattie, Mary; Odunsi, Kunle; Sucheston, Lara; Gayther, Simon A.; Nathanson, Kate; Gross, Jenny; Walsh, Christine; Karlan, Beth; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.

    2012-01-01

    Background: Previously, small studies have found that BRCA1 and BRCA2 breast tumors differ in their pathology. Analysis of larger datasets of mutation carriers should allow further tumor characterization. Methods: We used data from 4,325 BRCA1 and 2,568 BRCA2 mutation carriers to analyze the patholo

  2. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).

    NARCIS (Netherlands)

    Mavaddat, N.; Barrowdale, D.; Andrulis, I.L.; Domchek, S.M.; Eccles, D.; Nevanlinna, H.; Ramus, S.J.; Spurdle, A.; Robson, M.; Sherman, M.; Mulligan, A.M.; Couch, F.J.; Engel, C.; McGuffog, L.; Healey, S.; Sinilnikova, O.M.; Southey, M.C.; Terry, M.B.; Goldgar, D.; O'Malley, F.; John, E.M.; Janavicius, R.; Tihomirova, L.; Hansen, T.V.; Nielsen, F.C.; Osorio, A.; Stavropoulou, A.; Benitez, J.; Manoukian, S.; Peissel, B.; Barile, M.; Volorio, S.; Pasini, B.; Dolcetti, R.; Putignano, A.L.; Ottini, L.; Radice, P.; Hamann, U.; Rashid, M.U.; Hogervorst, F.B.L.; Kriege, M.; Luijt, R.B. van der; Peock, S.; Frost, D.; Evans, D.G.; Brewer, C.; Walker, L.; Rogers, M.T.; Side, L.E.; Houghton, C.; Weaver, J.; Godwin, A.K.; Schmutzler, R.K.; Wappenschmidt, B.; Meindl, A.; Kast, K.; Arnold, N.; Niederacher, D.; Sutter, C.; Deissler, H.; Gadzicki, D.; Preisler-Adams, S.; Varon-Mateeva, R.; Schonbuchner, I.; Gevensleben, H.; Stoppa-Lyonnet, D.; Belotti, M.; Barjhoux, L.; Isaacs, C.; Peshkin, B.N.; Caldes, T.; Hoya, M. de la; Canadas, C.; Heikkinen, T.; Heikkila, P.; Aittomaki, K.; Blanco, I.; Lazaro, C.; Brunet, J.; Agnarsson, B.A.; Arason, A.; Barkardottir, R.B.; Dumont, M.; Simard, J.; Montagna, M.; Agata, S.; D'Andrea, E.; Yan, M.; Fox, S.; Rebbeck, T.R.; Rubinstein, W.; Tung, N.; Garber, J.E.; Wang, X.; Fredericksen, Z.; Pankratz, V.S.; Lindor, N.M.; Szabo, C.; Offit, K.; Sakr, R.; Gaudet, M.M.; Singer, C.F.; Tea, M.K.; Rappaport, C.; Mai, P.L.; Greene, M.H.; Sokolenko, A.; Imyanitov, E.; Toland, A.E.; Senter, L.; Sweet, K.; Thomassen, M.; Gerdes, A.M.; Kruse, T.; Caligo, M.; Aretini, P.; Rantala, J.; Wachenfeld, A. von; Henriksson, K.; Steele, L.; Neuhausen, S.L.; Nussbaum, R.; Beattie, M.; Odunsi, K.; Sucheston, L.; Gayther, S.A.; Nathanson, K.; Gross, J.; Walsh, C.; Karlan, B.; Chenevix-Trench, G.; Easton, D.F.; Antoniou, A.C.; Ligtenberg, M.J.L.; Hoogerbrugge, N.

    2012-01-01

    BACKGROUND: Previously, small studies have found that BRCA1 and BRCA2 breast tumors differ in their pathology. Analysis of larger datasets of mutation carriers should allow further tumor characterization. METHODS: We used data from 4,325 BRCA1 and 2,568 BRCA2 mutation carriers to analyze the patholo

  3. Breast imaging findings in women with BRCA1- and BRCA2-associated breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.J.; Evans, A.J. E-mail: aevans@ncht.trent.nhs.uk; Wilson, A.R.M.; Scott, N.; Cornford, E.J.; Pinder, S.E.; Khan, H.N.; Macmillan, R.D

    2004-10-01

    AIM: To document the breast imaging findings of women with BRCA1 and BRCA2-associated breast carcinoma. MATERIALS AND METHODS: Family history clinic records identified 18 BRCA1 and 10 BRCA2 cases who collectively were diagnosed with 27 invasive breast carcinomas and four ductal carcinoma in situ (DCIS) lesions. All underwent pre-operative imaging (29 mammogram and 22 ultrasound examinations). All invasive BRCA-associated breast carcinoma cases were compared with age-matched cases of sporadic breast carcinoma. RESULTS: Within the BRCA cases the age range was 26-62 years, mean 36 years. Two mammograms were normal and 27 (93%) abnormal. The most common mammographic features were defined mass (63%) and microcalcifications (37%). Thirty-four percent of women had a dense mammographic pattern, 59% mixed and 7% fatty. Ultrasound was performed in 22 patients and in 21 (95%) indicated a mass. This was classified as benign in 24%, indeterminate in 29% and malignant in 48%. Mammograms of BRCA1-associated carcinomas more frequently showed a defined mass compared with BRCA2-associated carcinomas, 72 versus 36% (73% control group) whilst mammograms of BRCA2-associated carcinomas more frequently showed microcalcification, 73 versus 12% (8% control group; p<0.001). Thirty-six percent of the BRCA2-associated carcinomas were pure DCIS while none of the BRCA1 associated carcinomas were pure DCIS (p=0.004). Of those patients undergoing regular mammographic screening, 100% of BRCA2-associated carcinomas were detected compared with 75% of BRCA1-associated carcinomas. CONCLUSION: These data suggest that the imaging findings of BRCA1 and BRCA2-associated carcinomas differ from each other and from age-matched cases of sporadic breast carcinoma.

  4. Mutations of the BRCA1 and BRCA2 genes in patients with bilateral breast cancer

    OpenAIRE

    Steinmann, D; Bremer, M.; Rades, D; SKAWRAN, B.; Siebrands, C; Karstens, J.H.; Dörk, T.

    2001-01-01

    Mutations of the BRCA1 or BRCA2 genes have been shown to strongly predispose towards the development of contralateral breast cancer in patients from large multi-case families. In order to test the hypothesis that BRCA1 and BRCA2 mutations are more frequent in patients with bilateral breast cancer, we have investigated a hospital-based series of 75 consecutive patients with bilateral breast cancer and a comparison group of 75 patients with unilateral breast cancer, pairwise matched by age and ...

  5. Large BRCA1 and BRCA2 genomic rearrangements in Danish high risk breast-ovarian cancer families

    DEFF Research Database (Denmark)

    Hansen, Thomas v O; Jønson, Lars; Albrechtsen, Anders;

    2009-01-01

    BRCA1 and BRCA2 germ-line mutations predispose to breast and ovarian cancer. Large genomic rearrangements of BRCA1 account for 0-36% of all disease causing mutations in various populations, while large genomic rearrangements in BRCA2 are more rare. We examined 642 East Danish breast and/or ovarian...... cancer patients in whom a deleterious mutation in BRCA1 and BRCA2 was not detected by sequencing using the multiplex ligation-dependent probe amplification (MLPA) assay. We identified 15 patients with 7 different genomic rearrangements, including a BRCA1 exon 5-7 deletion with a novel breakpoint, a BRCA1...... exon 13 duplication, a BRCA1 exon 17-19 deletion, a BRCA1 exon 3-16 deletion, and a BRCA2 exon 20 deletion with a novel breakpoint as well as two novel BRCA1 exon 17-18 and BRCA1 exon 19 deletions. The large rearrangements in BRCA1 and BRCA2 accounted for 9.2% (15/163) of all BRCA1 and BRCA2 mutations...

  6. Molecular classification of familial non-BRCA1/BRCA2 breast cancer.

    Science.gov (United States)

    Hedenfalk, Ingrid; Ringner, Markus; Ben-Dor, Amir; Yakhini, Zohar; Chen, Yidong; Chebil, Gunilla; Ach, Robert; Loman, Niklas; Olsson, Håkan; Meltzer, Paul; Borg, Ake; Trent, Jeffrey

    2003-03-01

    In the decade since their discovery, the two major breast cancer susceptibility genes BRCA1 and BRCA2, have been shown conclusively to be involved in a significant fraction of families segregating breast and ovarian cancer. However, it has become equally clear that a large proportion of families segregating breast cancer alone are not caused by mutations in BRCA1 or BRCA2. Unfortunately, despite intensive effort, the identification of additional breast cancer predisposition genes has so far been unsuccessful, presumably because of genetic heterogeneity, low penetrance, or recessive/polygenic mechanisms. These non-BRCA1/2 breast cancer families (termed BRCAx families) comprise a histopathologically heterogeneous group, further supporting their origin from multiple genetic events. Accordingly, the identification of a method to successfully subdivide BRCAx families into recognizable groups could be of considerable value to further genetic analysis. We have previously shown that global gene expression analysis can identify unique and distinct expression profiles in breast tumors from BRCA1 and BRCA2 mutation carriers. Here we show that gene expression profiling can discover novel classes among BRCAx tumors, and differentiate them from BRCA1 and BRCA2 tumors. Moreover, microarray-based comparative genomic hybridization (CGH) to cDNA arrays revealed specific somatic genetic alterations within the BRCAx subgroups. These findings illustrate that, when gene expression-based classifications are used, BRCAx families can be grouped into homogeneous subsets, thereby potentially increasing the power of conventional genetic analysis.

  7. BRCA1 and BRCA2 mutation analysis in breast-ovarian cancer families from northeastern Poland.

    Science.gov (United States)

    Perkowska, Magdalena; BroZek, Izabela; Wysocka, Barbara; Haraldsson, Karin; Sandberg, Therese; Johansson, Ulla; Sellberg, Gunilla; Borg, Ake; Limon, Janusz

    2003-05-01

    Sixty high-risk breast and/or ovarian cancer families from North-Eastern Poland were screened for germline mutations in BRCA1 (MIM# 113705) and BRCA2 (MIM# 600185), using a combination of protein truncation test, denaturing high-performance liquid chromatography and direct sequencing. Sixteen (27%) of the families were found to carry nine different BRCA mutations, including 14 families with BRCA1 mutation and two families with BRCA2 mutation. The results suggest the presence of two strong BRCA1 founder mutations in the Polish population - 5382insC (6 families) and 300T>G (Cys61Gly; 3 families). The remaining seven mutations were found in single families and included three previously reported BRCA1 mutations (185delAG, 2682C>T [Gln855Ter] and 3819del5), a novel BRCA1 mutation (IVS14+1G>A), as well as two BRCA2 mutations (4088delA and 7985G>A [Trp2586Ter]) not previously observed in Polish families. We confirm the strong influence of two Central-Eastern European BRCA1 founder mutations in familial breast and/or ovarian cancer in Poland. We also conclude that the Polish population has a more dispersed BRCA mutation spectrum than had been earlier thought. This warrants further careful BRCA mutation screening in order to optimise genetic counselling and disease prevention in affected families.

  8. AURKA F31I Polymorphism and Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers: A CIMBA study

    Science.gov (United States)

    Couch, Fergus J.; Sinilnikova, Olga; Vierkant, Robert A; Pankratz, V. Shane; Fredericksen, Zachary S.; Stoppa-Lyonnet, Dominique; Coupier, Isabelle; Hughes, David; Hardouin, Agnès; Berthet, Pascaline; Peock, Susan; Cook, Margaret; Baynes, Caroline; Hodgson, Shirley; Morrison, Patrick J.; Porteous, Mary E.; Jakubowska, Anna; Lubinski, Jan; Gronwald, Jacek; Spurdle, Amanda B.; Schmutzler, Rita; Versmold, Beatrix; Engel, Christoph; Meindl, Alfons; Sutter, Christian; Horst, Jurgen; Schaefer, Dieter; Offit, Kenneth; Kirchhoff, Tomas; Andrulis, Irene L.; Ilyushik, Eduard; Glendon, Gordon; Devilee, Peter; Vreeswijk, Maaike P.G.; Vasen, Hans F.A.; Borg, Ake; Backenhorn, Katja; Struewing, Jeffery P.; Greene, Mark H.; Neuhausen, Susan L.; Rebbeck, Timothy R.; Nathanson, Katherine; Domchek, Susan; Wagner, Theresa; Garber, Judy E.; Szabo, Csilla; Zikan, Michal; Foretova, Lenka; Olson, Janet E.; Sellers, Thomas A.; Lindor, Noralane; Nevanlinna, Heli; Tommiska, Johanna; Aittomaki, Kristiina; Hamann, Ute; Rashid, Muhammad U.; Torres, Diana; Simard, Jacques; Durocher, Francine; Guenard, Frederic; Lynch, Henry T.; Isaacs, Claudine; Weitzel, Jeffrey; Olopade, Olufunmilayo I.; Narod, Steven; Daly, Mary B.; Godwin, Andrew K.; Tomlinson, Gail; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniouon, Antonis C.

    2009-01-01

    The AURKA oncogene is associated with abnormal chromosome segregation and aneuploidy and predisposition to cancer. Amplification of AURKA has been detected at higher frequency in tumors from BRCA1 and BRCA2 mutation carriers than in sporadic breast tumors, suggesting that overexpression of AURKA and inactivation of BRCA1 and BRCA2 co-operate during tumor development and progression. The F31I polymorphism in AURKA has been associated with breast cancer risk in the homozygous state in prior studies. We evaluated whether the AURKA F31I polymorphism modifies breast cancer risk in BRCA1 and BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). CIMBA was established to provide sufficient statistical power through increased numbers of mutation carriers to identify polymorphisms that act as modifiers of cancer risk and can refine breast cancer risk estimates in BRCA1 and BRCA2 mutation carriers. A total of 4935 BRCA1 and 2241 BRCA2 mutation carriers and 11 individuals carrying both BRCA1 and BRCA2 mutations were genotyped for F31I. Overall, homozygosity for the 31I allele was not significantly associated with breast cancer risk in BRCA1 and BRCA2 carriers combined (HR = 0.91; 95% CI 0.77-1.06). Similarly, no significant association was seen in BRCA1 (HR = 0.90; 95% CI 0.75-1.08) or BRCA2 carriers (HR = 0.93; 95% CI 0.67-1.29) or when assessing the modifying effects of either bilateral prophylactic oophorectomy or menopausal status of BRCA1 and BRCA2 carriers. In summary, the F31I polymorphism in AURKA is not associated with a modified risk of breast cancer in BRCA1 and BRCA2 carriers. PMID:17627006

  9. Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

    DEFF Research Database (Denmark)

    Rebbeck, Timothy R; Friebel, Tara M; Mitra, Nandita

    2016-01-01

    BACKGROUND: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. METHODS: From 32,295 female BRCA...

  10. BRCA1 and BRCA2 mutations in Danish families with hereditary breast and/or ovarian cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Hansen, Thomas V O; Borg, Ake

    2008-01-01

    A national study of BRCA1 and BRCA2 mutations in Danish HBOC (Hereditary Breast Ovarian Cancer) families revealed a total number of 322 mutation positive families, 206 (64%) BRCA1 and 116 (36%) BRCA2 positive families from a population of 5.5 million inhabitants. Seven hundred and twenty six muta...

  11. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Bolton, Kelly L; Chenevix-Trench, Georgia; Goh, Cindy;

    2012-01-01

    Approximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested that BRCA2-related EOC was associated with an improved prognosis, but the effect of BRCA1 remains unclear....

  12. Large genomic rearrangement of BRCA1 and BRCA2 genes in familial breast cancer patients in Korea.

    Science.gov (United States)

    Cho, Ja Young; Cho, Dae-Yeon; Ahn, Sei Hyun; Choi, Su-Youn; Shin, Inkyung; Park, Hyun Gyu; Lee, Jong Won; Kim, Hee Jeong; Yu, Jong Han; Ko, Beom Seok; Ku, Bo Kyung; Son, Byung Ho

    2014-06-01

    We screened large genomic rearrangements of the BRCA1 and BRCA2 genes in Korean, familial breast cancer patients. Multiplex ligation-dependent probe amplification assay was used to identify BRCA1 and BRCA2 genomic rearrangements in 226 Korean familial breast cancer patients with risk factors for BRCA1 and BRCA2 mutations, who previously tested negative for point mutations in the two genes. We identified only one large deletion (c.4186-1593_4676-1465del) in BRCA1. No large rearrangements were found in BRCA2. Our result indicates that large genomic rearrangement in the BRCA1 and BRCA2 genes does not seem like a major determinant of breast cancer susceptibility in the Korean population. A large-scale study needs to validate our result in Korea.

  13. Haplotype structure in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Im, Kate M.; Kirchhoff, Tomas; Wang, Xianshu; Green, Todd; Chow, Clement Y.; Vijai, Joseph; Korn, Joshua; Gaudet, Mia M.; Fredericksen, Zachary; Pankratz, V. Shane; Guiducci, Candace; Crenshaw, Andrew; McGuffog, Lesley; Kartsonaki, Christiana; Morrison, Jonathan; Healey, Sue; Sinilnikova, Olga M.; Mai, Phuong L.; Greene, Mark H.; Piedmonte, Marion; Rubinstein, Wendy S.; Hogervorst, Frans B.; Rookus, Matti A.; Collee, J. Margriet; Hoogerbrugge, Nicoline; van Asperen, Christi J.; Meijers-Heijboer, Hanne E. J.; van Roozendaal, Cees E.; Caldes, Trinidad; Perez-Segura, Pedro; Jakubowska, Anna; Lubinski, Jan; Huzarski, Tomasz; Blecharz, Pawel; Nevanlinna, Heli; Aittomaki, Kristiina; Lazaro, Conxi; Blanco, Ignacio; Barkardottir, Rosa B.; Montagna, Marco; D'Andrea, Emma; Devilee, Peter; Olopade, Olufunmilayo I.; Neuhausen, Susan L.; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Singer, Christian F.; Rennert, Gad; Lejbkowicz, Flavio; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Toland, Amanda Ewart; Caligo, Maria Adelaide; Beattie, Mary S.; Chan, Salina; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Phelan, Catherine; Narod, Steven; John, Esther M.; Hopper, John L.; Buys, Saundra S.; Daly, Mary B.; Southey, Melissa C.; Terry, Mary-Beth; Tung, Nadine; Hansen, Thomas V. O.; Osorio, Ana; Benitez, Javier; Duran, Mercedes; Weitzel, Jeffrey N.; Garber, Judy; Hamann, Ute; Peock, Susan; Cook, Margaret; Oliver, Clare T.; Frost, Debra; Platte, Radka; Evans, D. Gareth; Eeles, Ros; Izatt, Louise; Paterson, Joan; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Porteous, Mary; Walker, Lisa; Rogers, Mark T.; Side, Lucy E.; Godwin, Andrew K.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Laitman, Yael; Meindl, Alfons; Deissler, Helmut; Varon-Mateeva, Raymonda; Preisler-Adams, Sabine; Kast, Karin; Venat-Bouvet, Laurence; Stoppa-Lyonnet, Dominique; Chenevix-Trench, Georgia; Easton, Douglas F.; Klein, Robert J.; Daly, Mark J.; Friedman, Eitan; Dean, Michael; Clark, Andrew G.; Altshuler, David M.; Antoniou, Antonis C.; Couch, Fergus J.; Offit, Kenneth; Gold, Bert

    2011-01-01

    Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele freque

  14. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Bancroft, Elizabeth K; Page, Elizabeth C; Castro, Elena;

    2014-01-01

    BACKGROUND: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in ...

  15. Characterization of BRCA1 and BRCA2 splicing variants: a collaborative report by ENIGMA consortium members

    DEFF Research Database (Denmark)

    Thomassen, Mads; Blanco, Ana; Montagna, Marco

    2012-01-01

    Mutations in BRCA1 and BRCA2 predispose carriers to early onset breast and ovarian cancer. A common problem in clinical genetic testing is interpretation of variants with unknown clinical significance. The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortiu...

  16. Haplotype structure in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Im, Kate M; Kirchhoff, Tomas; Wang, Xianshu

    2011-01-01

    Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele fre...

  17. Refined histopathological predictors of BRCA1 and BRCA2 mutation status

    DEFF Research Database (Denmark)

    Spurdle, Amanda B; Couch, Fergus J; Parsons, Michael T

    2014-01-01

    INTRODUCTION: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to asse...

  18. Missense polymorphisms in BRCA1 and BRCA2 and risk of breast and ovarian cancer

    DEFF Research Database (Denmark)

    Dombernowsky, Sarah Louise; Weischer, Maren; Freiberg, Jacob Johannes;

    2009-01-01

    PURPOSE: BRCA1 and BRCA2 are key tumor suppressors with a role in cellular DNA repair, genomic stability, and checkpoint control. Mutations in BRCA1 and BRCA2 often cause hereditary breast and ovarian cancer; however, missense polymorphisms in these genes pose a problem in genetic counseling......, as their impact on risk of breast and ovarian cancer is unclear. EXPERIMENTAL DESIGN: We resequenced BRCA1 and BRCA2 in 194 women with a familial history of breast and/or ovarian cancer and identified nine possibly biologically relevant polymorphisms (BRCA1 Gln356Arg, Pro871Leu, Glu1038Gly, Ser1613Gly, and Met......1652Ile. BRCA2 Asn289His, Asn372His, Asp1420Tyr, and Tyr1915Met). We evaluated risk of breast and/or ovarian cancer by these polymorphisms in a prospective study of 5,743 women from the general population followed for 39 years and in a case-control study of 1,201 breast cancer cases and 4,120 controls...

  19. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer

    DEFF Research Database (Denmark)

    Rebbeck, Timothy R; Mitra, Nandita; Wan, Fei

    2015-01-01

    IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained...

  20. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer

    NARCIS (Netherlands)

    R. Rebbeck (Timothy); N. Mitra (Nandita); F. Wan (Fei); O. Sinilnikova (Olga); S. Healey (Sue); L. McGuffog (Lesley); G. Chenevix-Trench (Georgia); D.F. Easton (Douglas); A.C. Antoniou (Antonis C.); K.L. Nathanson (Katherine); Y. Laitman (Yael); A. Kushnir (Anya); S. Paluch-Shimon (Shani); R. Berger (Raanan); J. Zidan (Jamal); E. Friedman (Eitan); H. Ehrencrona (Hans); M. Stenmark-Askmalm (Marie); Z. Einbeigi (Zakaria); N. Loman (Niklas); K. Harbst (Katja); J. Rantala (Johanna); B. Melin (Beatrice); D. Huo (Dezheng); O.I. Olopade (Olofunmilayo); J.L. Seldon (Joyce); P.A. Ganz (Patricia); R.L. Nussbaum (Robert L.); S. Chan (Salina); K. Odunsi (Kunle); S.A. Gayther (Simon); S.M. Domchek (Susan); B.K. Arun (Banu); K.H. Lu (Karen); G. Mitchell (Gillian); B. Karlan; C.S. Walsh (Christine); K.J. Lester (Kathryn); A.K. Godwin (Andrew); S.S. Pathak; E.B. Ross (Eric); M.J. Daly (Mark); A.S. Whittemore (Alice); E.M. John (Esther); A. Miron (Alexander); M.B. Terry (Mary Beth); W.K. Chung (Wendy K.); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); T.V.O. Hansen (Thomas); T. Ramon Y Cajal; A. Osorio (Ana); J. Benítez (Javier); J. Godino (Javier); M.I. Tejada; M. Duran (Mercedes); J.N. Weitzel (Jeffrey); K.A. Bobolis (Kristie A.); S.R. Sand (Sharon); A. Fontaine (Annette); A. Savarese (Antonella); B. Pasini (Barbara); B. Peissel (Bernard); B. Bonnani (Bernardo); D. Zaffaroni (Daniela); F. Vignolo-Lutati (Francesca); G. Scuvera (Giulietta); G. Giannini (Giuseppe); L. Bernard (Loris); M. Genuardi (Maurizio); P. Radice (Paolo); R. Dolcetti (Riccardo); S. Manoukian (Siranoush); V. Pensotti (Valeria); V. Gismondi (Viviana); D. Yannoukakos (Drakoulis); F. Fostira (Florentia); J. Garber (Judy); D. Torres (Diana); M.U. Rashid (Muhammad); U. Hamann (Ute); S. Peock (Susan); D. Frost (Debra); R. Platte (Radka); D.G. Evans (Gareth); R. Eeles (Rosalind); R. Davidson (Rosemarie); D. Eccles (Diana); T. Cole (Trevor); J. Cook (Jackie); C. Brewer (Carole); S. Hodgson (Shirley); P.J. Morrison (Patrick); L.J. Walker (Lisa); M.E. Porteous (Mary); M.J. Kennedy (John); L. Izatt (Louise); L. Adlard; A. Donaldson (Alan); S.D. Ellis (Steve); P. Sharma (Priyanka); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); A. Becker (Alexandra); K. Rhiem (Kerstin); E. Hahnen (Eric); C. Engel (Christoph); A. Meindl (Alfons); S. Engert (Stefanie); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); C. Mundhenke (Christoph); D. Niederacher (Dieter); M.C. Fleisch (Markus); C. Sutter (Christian); C.R. Bartram; N. Dikow (Nicola); S. Wang-Gohrke (Shan); D. Gadzicki (Dorothea); D. Steinemann (Doris); K. Kast (Karin); M. Beer (Marit); R. Varon-Mateeva (Raymonda); P.A. Gehrig (Paola A.); B.H.F. Weber (Bernhard); D. Stoppa-Lyonnet (Dominique); M. Belotti (Muriel); M. Gauthier-Villars (Marion); F. Damiola (Francesca); N. Boutry-Kryza (N.); C. Lasset (Christine); H. Sobol (Hagay); J.-P. Peyrat; D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); M.-A. Collonge-Rame; I. Mortemousque (Isabelle); C. Nogues (Catherine); E. Rouleau (Etienne); C. Isaacs (Claudine); A. de Paepe (Anne); B. Poppe (Bruce); K. Claes (Kathleen); K. De Leeneer (Kim); M. Piedmonte (Marion); G. Rodriguez (Gustavo); K. Wakely (Katie); J.F. Boggess (John); S.V. Blank (Stephanie); J. Basil (Jack); M. Azodi (Masoud); K.-A. Phillips (Kelly-Anne); T. Caldes (Trinidad); M. de La Hoya (Miguel); A. Romero (Atocha); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); A.H. van der Hout (Annemarie); F.B.L. Hogervorst (Frans); S. Verhoef; J.M. Collee (Margriet); C.M. Seynaeve (Caroline); J.C. Oosterwijk (Jan); J.J. Gille (Johan); J.T. Wijnen (Juul); E.B. Gómez García (Encarna); C.M. Kets; M.G.E.M. Ausems (Margreet); C.M. Aalfs (Cora); P. Devilee (Peter); A.R. Mensenkamp (Arjen); A. Kwong (Ava); E. Olah; J. Papp (Janos); O. Díez (Orland); C. Lazaro (Conxi); E. Darder (Esther); I. Blanco (Ignacio); M. Salinas; A. Jakubowska (Anna); J. Lubinski (Jan); J. Gronwald (Jacek); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); G. Sukiennicki (Grzegorz); T. Huzarski (Tomasz); T. Byrski (Tomasz); C. Cybulski (Cezary); A. Toloczko-Grabarek (Aleksandra); E. Złowocka-Perłowska (Elzbieta); J. Menkiszak (Janusz); A. Arason (Adalgeir); R.B. Barkardottir (Rosa); J. Simard (Jacques); R. Laframboise (Rachel)

    2015-01-01

    textabstractImportance: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. Objective: To identify mutation-specific cancer risks for carriers of BRCA1/2. Design, Setting, and Participants: Observational study ofwomen whowere asce

  1. BRCA1 and BRCA2 Gene Mutations Screening In Sporadic Breast Cancer Patients In Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Ainur R. Akilzhanova

    2013-05-01

    Full Text Available Background: A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Kazakhstan women. Aim: To evaluate the role of BRCA1/2 mutations in Kazakhstan women presenting with sporadic breast cancer. Methods: We investigated the distribution and nature of polymorphisms in BRCA1 and BRCA2 entire coding regions in 156 Kazakhstan sporadic breast cancer cases and 112 age-matched controls using automatic direct sequencing. Results: We identified 22 distinct variants, including 16 missense mutations and 6 polymorphisms in BRCA1/2 genes. In BRCA1, 9 missense mutations and 3 synonymous polymorphisms were observed. In BRCA2, 7 missense mutations and 3 polymorphisms were detected. There was a higher prevalence of observed mutations in Caucasian breast cancer cases compared to Asian cases (p<0.05; higher frequencies of sequence variants were observed in Asian controls. No recurrent or founder mutations were observed in BRCA1/2 genes. There were no statistically significant differences in age at diagnosis, tumor histology, size of tumor, and lymph node involvement between women with breast cancer with or without the BRCA sequence alterations. Conclusions: Considering the majority of breast cancer cases are sporadic, the present study will be helpful in the evaluation of the need for the genetic screening of BRCA1/2 mutations and reliable genetic counseling for Kazakhstan sporadic breast cancer patients. Evaluation of common polymorphisms and mutations and breast cancer risk in families with genetic predisposition to breast cancer is ongoing in another current investigation. 

  2. Common genetic variation at BARD1 is not associated with breast cancer risk in BRCA1 or BRCA2 mutation carriers

    NARCIS (Netherlands)

    Spurdle, A.B.; Marquart, L.; McGuffog, L.; Healey, S.; Sinilnikova, O.; Wan, F.; Chen, X.; Beesley, J.; Singer, C.F.; Dressler, A.C.; Gschwantler-Kaulich, D.; Blum, J.L.; Tung, N.; Weitzel, J.; Lynch, H.; Garber, J.; Easton, D.F.; Peock, S.; Cook, M.; Oliver, C.T.; Frost, D.; Conroy, D.; Evans, D.G.; Lalloo, F.; Eeles, R.; Izatt, L.; Davidson, R.; Chu, C.; Eccles, D.; Selkirk, C.G.; Daly, M.; Isaacs, C.; Stoppa-Lyonnet, D.; Sinilnikova, O.M.; Buecher, B.; Belotti, M.; Mazoyer, S.; Barjhoux, L.; Verny-Pierre, C.; Lasset, C.; Dreyfus, H.; Pujol, P.; Collonge-Rame, M.A.; Rookus, M.A.; Verhoef, S.; Kriege, M.; Hoogerbrugge, N.; Ausems, M.G.; Os, T.A. van; Wijnen, J.; Devilee, P.; Meijers-Heijboer, H.E.; Blok, M.J.; Heikkinen, T.; Nevanlinna, H.; Jakubowska, A.; Lubinski, J.; Huzarski, T.; Byrski, T.; Durocher, F.; Couch, F.J.; Lindor, N.M.; Wang, X.; Thomassen, M.; Domchek, S.; Nathanson, K.; Caligo, M.; Jernstrom, H.; Liljegren, A.; Ehrencrona, H.; Karlsson, P.; Ganz, P.A.; Olopade, O.I.; Tomlinson, G.; Neuhausen, S.; Antoniou, A.C.; Chenevix-Trench, G.; Rebbeck, T.R.

    2011-01-01

    BACKGROUND: Inherited BRCA1 and BRCA2 (BRCA1/2) mutations confer elevated breast cancer risk. Knowledge of factors that can improve breast cancer risk assessment in BRCA1/2 mutation carriers may improve personalized cancer prevention strategies. METHODS: A cohort of 5,546 BRCA1 and 2,865 BRCA2 mutat

  3. Mutation analysis of BRCA1 and BRCA2 in a male breast cancer population

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, L.S.; Gayther, S.A.; Ponder, B.A.J. [Univ. of Cambridge (United Kingdom)] [and others

    1997-02-01

    A population-based series of 54 male breast cancer cases from Southern California were analyzed for germ-line mutations in the inherited breast/ovarian cancer genes, BRCA1 and BRCA2. Nine (17%) of the patients had a family history of breast and/or ovarian cancer in at least one first-degree relative. A further seven (13%) of the patients reported breast/ovarian cancer in at least one second-degree relative and in no first-degree relatives. No germ-line BRCA1 mutations were found. Two male breast cancer patients (4% of the total) were found to carry novel truncating mutations in the BRCA2 gene. Only one of the two male breast cancer patients carrying a BRCA2 mutation had a family history of cancer, with one case of ovarian cancer in a first-degree relative. The remaining eight cases (89%) of male breast cancer with a family history of breast/ovarian cancer in first-degree relatives remain unaccounted for by mutations in either the BRCA1 gene or the BRCA2 gene. 23 refs., 1 fig., 5 tabs.

  4. Common genetic variation at BARD1 is not associated with breast cancer risk in BRCA1 or BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Spurdle, Amanda B; Marquart, Louise; McGuffog, Lesley;

    2011-01-01

    Inherited BRCA1 and BRCA2 (BRCA1/2) mutations confer elevated breast cancer risk. Knowledge of factors that can improve breast cancer risk assessment in BRCA1/2 mutation carriers may improve personalized cancer prevention strategies.......Inherited BRCA1 and BRCA2 (BRCA1/2) mutations confer elevated breast cancer risk. Knowledge of factors that can improve breast cancer risk assessment in BRCA1/2 mutation carriers may improve personalized cancer prevention strategies....

  5. Telomere length shows no association with BRCA1 and BRCA2 mutation status

    DEFF Research Database (Denmark)

    Killick, Emma; Tymrakiewicz, Malgorzata; Cieza-Borrella, Clara;

    2014-01-01

    This study aimed to determine whether telomere length (TL) is a marker of cancer risk or genetic status amongst two cohorts of BRCA1 and BRCA2 mutation carriers and controls. The first group was a prospective set of 665 male BRCA1/2 mutation carriers and controls (mean age 53 years), all healthy...... mutation carrier and telomere length. It is the first study investigating TL in a cohort of genetically predisposed males and although TL and BRCA status was previously studied in females our results don't support the previous finding of association between hereditary breast cancer and shorter TL....

  6. Tumor Mutation Burden Forecasts Outcome in Ovarian Cancer with BRCA1 or BRCA2 Mutations

    DEFF Research Database (Denmark)

    Birkbak, Nicolai Juul; Kochupurakkal, Bose; Gonzalez-Izarzugaza, Jose Maria;

    2013-01-01

    Background: Increased number of single nucleotide substitutions is seen in breast and ovarian cancer genomes carrying disease-associated mutations in BRCA1 or BRCA2. The significance of these genome-wide mutations is unknown. We hypothesize genome-wide mutation burden mirrors deficiencies in DNA...... repair and is associated with treatment outcome in ovarian cancer. Methods and Results: The total number of synonymous and non-synonymous exome mutations (Nmut), and the presence of germline or somatic mutation in BRCA1 or BRCA2 (mBRCA) were extracted from whole-exome sequences of high-grade serous...... ovarian cancers from The Cancer Genome Atlas (TCGA). Cox regression and Kaplan-Meier methods were used to correlate Nmut with chemotherapy response and outcome. Higher Nmut correlated with a better response to chemotherapy after surgery. In patients with mBRCA-associated cancer, low Nmut was associated...

  7. Haplotype structure in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Im, Kate M; Kirchhoff, Tomas; Wang, Xianshu; Green, Todd; Chow, Clement Y; Vijai, Joseph; Korn, Joshua; Gaudet, Mia M; Fredericksen, Zachary; Shane Pankratz, V; Guiducci, Candace; Crenshaw, Andrew; McGuffog, Lesley; Kartsonaki, Christiana; Morrison, Jonathan; Healey, Sue; Sinilnikova, Olga M; Mai, Phuong L; Greene, Mark H; Piedmonte, Marion; Rubinstein, Wendy S; Hogervorst, Frans B; Rookus, Matti A; Collée, J Margriet; Hoogerbrugge, Nicoline; van Asperen, Christi J; Meijers-Heijboer, Hanne E J; Van Roozendaal, Cees E; Caldes, Trinidad; Perez-Segura, Pedro; Jakubowska, Anna; Lubinski, Jan; Huzarski, Tomasz; Blecharz, Paweł; Nevanlinna, Heli; Aittomäki, Kristiina; Lazaro, Conxi; Blanco, Ignacio; Barkardottir, Rosa B; Montagna, Marco; D'Andrea, Emma; Devilee, Peter; Olopade, Olufunmilayo I; Neuhausen, Susan L; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Singer, Christian F; Rennert, Gad; Lejbkowicz, Flavio; Andrulis, Irene L; Glendon, Gord; Ozcelik, Hilmi; Toland, Amanda Ewart; Caligo, Maria Adelaide; Beattie, Mary S; Chan, Salina; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Timothy R; Phelan, Catherine; Narod, Steven; John, Esther M; Hopper, John L; Buys, Saundra S; Daly, Mary B; Southey, Melissa C; Terry, Mary-Beth; Tung, Nadine; Hansen, Thomas V O; Osorio, Ana; Benitez, Javier; Durán, Mercedes; Weitzel, Jeffrey N; Garber, Judy; Hamann, Ute; Peock, Susan; Cook, Margaret; Oliver, Clare T; Frost, Debra; Platte, Radka; Evans, D Gareth; Eeles, Ros; Izatt, Louise; Paterson, Joan; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J; Porteous, Mary; Walker, Lisa; Rogers, Mark T; Side, Lucy E; Godwin, Andrew K; Schmutzler, Rita K; Wappenschmidt, Barbara; Laitman, Yael; Meindl, Alfons; Deissler, Helmut; Varon-Mateeva, Raymonda; Preisler-Adams, Sabine; Kast, Karin; Venat-Bouvet, Laurence; Stoppa-Lyonnet, Dominique; Chenevix-Trench, Georgia; Easton, Douglas F; Klein, Robert J; Daly, Mark J; Friedman, Eitan; Dean, Michael; Clark, Andrew G; Altshuler, David M; Antoniou, Antonis C; Couch, Fergus J; Offit, Kenneth; Gold, Bert

    2011-11-01

    Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele frequencies in the surrounding genomic regions reflect adaptive or balancing selection. Such proposals predict long-range linkage disequilibrium (LD) resulting from a selective sweep, although genetic drift in a founder population may also act to create long-distance LD. To date, few studies have used the tools of statistical genomics to examine the likelihood of long-range LD at a deleterious locus in a population that faced a genetic bottleneck. We studied the genotypes of hundreds of women from a large international consortium of BRCA1 and BRCA2 mutation carriers and found that AJ women exhibited long-range haplotypes compared to CNJ women. More than 50% of the AJ chromosomes with the BRCA1 185delAG mutation share an identical 2.1 Mb haplotype and nearly 16% of AJ chromosomes carrying the BRCA2 6174delT mutation share a 1.4 Mb haplotype. Simulations based on the best inference of Ashkenazi population demography indicate that long-range haplotypes are expected in the context of a genome-wide survey. Our results are consistent with the hypothesis that a local bottleneck effect from population size constriction events could by chance have resulted in the large haplotype blocks observed at high frequency in the BRCA1 and BRCA2 regions of Ashkenazi Jews.

  8. Elevated expression of Ki-67 identifies aggressive prostate cancers but does not distinguish BRCA1 or BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Mitra, A V; Jameson, C; Barbachano, Y;

    2010-01-01

    Prostate cancers in men with germline BRCA1 and BRCA2 mutations are more aggressive than morphologically similar cancers in men without these mutations. This study was performed to test the hypothesis that enhanced expression of Ki-67, as a surrogate of cell proliferation, is a characteristic...... feature of prostate cancers occurring in BRCA1 or BRCA2 mutation carriers. The study cohort comprised 20 cases of prostate cancer in mutation carriers and 126 control sporadic prostate cancers. Of the combined sample cohort, 65.7% stained only within malignant tissues while 0.7% stained in both malignant...... a background of BRCA1 or BRCA2 mutations or as sporadic disease. The data suggest that, since elevated Ki-67 does not distinguish prostate cancers occurring in BRCA1 or BRCA2 mutation carriers from sporadic prostatic malignancies, the effects of these genetic mutations are probably independent. While all...

  9. Identification of a Danish breast/ovarian cancer family double heterozygote for BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Steffensen, Ane Y; Jønson, Lars; Ejlertsen, Bent;

    2010-01-01

    Mutations in the two breast cancer susceptibility genes BRCA1 and BRCA2 are associated with increased risk of breast and ovarian cancer. Patients with mutations in both genes are rarely reported and often involve Ashkenazi founder mutations. Here we report the first identification of a Danish...... breast and ovarian cancer family heterozygote for mutations in the BRCA1 and BRCA2 genes. The BRCA1 nucleotide 5215G > A/c.5096G > A mutation results in the missense mutation Arg1699Gln, while the BRCA2 nucleotide 859 + 4A > G/c.631 + 4A > G is novel. Exon trapping experiments and reverse transcriptase...... (RT)-PCR analysis revealed that the BRCA2 mutation results in skipping of exon 7, thereby introducing a frameshift and a premature stop codon. We therefore classify the mutation as disease causing. Since the BRCA1 Arg1699Gln mutation is also suggested to be disease-causing, we consider this family...

  10. [Breast cancer genetics. BRCA1 and BRCA2: the main genes for disease predisposition].

    Science.gov (United States)

    Ruiz-Flores, P; Calderón-Garcidueñas, A L; Barrera-Saldaña, H A

    2001-01-01

    Breast cancer is among the most common world cancers. In Mexico this neoplasm has been progressively increasing since 1990 and is expected to continue. The risk factors for this disease are age, some reproductive factors, ionizing radiation, contraceptives, obesity and high fat diets, among other factors. The main risk factor for BC is a positive family history. Several families, in which clustering but no mendelian inheritance exists, the BC is due probably to mutations in low penetrance genes and/or environmental factors. In families with autosomal dominant trait, the BRCA1 and BRCA2 genes are frequently mutated. These genes are the two main BC susceptibility genes. BRCA1 predispose to BC and ovarian cancer, while BRCA2 mutations predispose to BC in men and women. Both are long genes, tumor suppressors, functioning in a cell cycle dependent manner, and it is believed that both switch on the transcription of several genes, and participate in DNA repair. The mutations profile of these genes is known in developed countries, while in Latin America their search has just began. A multidisciplinary group most be responsible of the clinical management of patients with mutations in BRCA1 and BRCA2, and the risk assignment and Genetic counseling most be done carefully.

  11. Classifications within Molecular Subtypes Enables Identification of BRCA1/BRCA2 Mutation Carriers by RNA Tumor Profiling

    DEFF Research Database (Denmark)

    Larsen, Martin Jakob; Kruse, Torben A; Tan, Qihua;

    2013-01-01

    Pathogenic germline mutations in BRCA1 or BRCA2 are detected in less than one third of families with a strong history of breast cancer. It is therefore expected that mutations still remain undetected by currently used screening methods. In addition, a growing number of BRCA1/2 sequence variants...... of unclear pathogen significance are found in the families, constituting an increasing clinical challenge. New methods are therefore needed to improve the detection rate and aid the interpretation of the clinically uncertain variants. In this study we analyzed a series of 33 BRCA1, 22 BRCA2, and 128 sporadic...... tumors by RNA profiling to investigate the classification potential of RNA profiles to predict BRCA1/2 mutation status. We found that breast tumors from BRCA1 and BRCA2 mutation carriers display characteristic RNA expression patterns, allowing them to be distinguished from sporadic tumors. The majority...

  12. Mutational analysis of BRCA1 and BRCA2 in hereditary breast and ovarian cancer families from Asturias (Northern Spain)

    OpenAIRE

    Blay, Pilar; Santamaría, Iñigo; Pitiot, Ana S.; Luque, María; Alvarado, Marta G; Lastra, Ana; Fernández, Yolanda; Paredes, Ángeles; Freije, José MP; Balbín, Milagros

    2013-01-01

    Background The prevalence of BRCA1 and BRCA2 mutations in Spain is heterogeneous and varies according to geographical origin of studied families. The contribution of these mutations to hereditary breast and ovarian cancer has not been previously investigated in Asturian populations (Northern Spain). Methods In the present work, 256 unrelated high-risk probands with breast and/or ovarian cancer from families living in Asturias were analyzed for the presence of a BRCA1 or BRCA2 gene mutation fr...

  13. Mutations in BRCA1 and BRCA2 in breast cancer families: Are there more breast cancer-susceptibility genes?

    Energy Technology Data Exchange (ETDEWEB)

    Serova, O.M.; Mazoyer, S.; Putet, N. [CNRS, Lyon (France)] [and others

    1997-03-01

    To estimate the proportion of breast cancer families due to BRCA1 or BRCA2, we performed mutation screening of the entire coding regions of both genes supplemented with linkage analysis of 31 families, 8 containing male breast cancers and 23 site-specific female breast cancer. A combination of protein-truncation test and SSCP or heteroduplex analyses was used for mutation screening complemented, where possible, by the analysis of expression level of BRCA1 and BRCA2 alleles. Six of the eight families with male breast cancer revealed frameshift mutations, two in BRCA1 and four in BRCA2. Although most families with female site-specific breast cancers were thought to be due to mutations in either BRCA1 or BRCA2, we identified only eight mutations in our series of 23 site-specific female breast cancer families (34%), four in BRCA1 and four in BRCA2. According to the posterior probabilities calculated for mutation-negative families, based on linkage data and mutation screening results, we would expect 8-10 site-specific female breast cancer families of our series to be due to neither BRCA1 nor BRCA2. Thus, our results suggest the existence of at least one more major breast cancer-susceptibility gene. 24 refs., 1 fig., 3 tabs.

  14. Prevalence and clinical correlations of BRCA1/BRCA2 unclassified variant carriers among unselected primary ovarian cancer cases - preliminary report

    NARCIS (Netherlands)

    Majdak, EJ; De Bock, GH; Brozek, [No Value; Perkowska, M; Ochman, K; Debniak, J; Milczek, T; Cornelisse, CJ; Jassem, J; Emerich, J; Limon, J; Devilee, P; Brozek, I.

    2005-01-01

    The objective of this study was to determine the prevalence of BRCA1 and BRCA2 gene mutations in unselected ovarian cancer patients, and to analyse clinical and pathological features of ovarian cancer unclassified variant mutation carriers in comparison with BRCA1 pathogenic mutation carriers and sp

  15. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability

    DEFF Research Database (Denmark)

    Trego, Kelly S.; Groesser, Torsten; Davalos, Albert R.;

    2016-01-01

    about how XPG loss results in this devastating disease. We identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability...... to overcome replication fork stalling,and replication stress. XPG directly interacts withBRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatin binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper...

  16. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Jønson, Lars; Steffensen, Ane Y;

    2011-01-01

    Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1...... and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1...... interpreted as pathogenic, 3 missense mutations were suggested to be pathogenic based on in silico analysis, 6 mutations were suggested to be benign since they were identified in patients together with a well-known disease-causing BRCA1/BRCA2 mutation, while 12 were variants of unknown significance....

  17. Design and validation of a next generation sequencing assay for hereditary BRCA1 and BRCA2 mutation testing

    Directory of Open Access Journals (Sweden)

    Hyunseok P. Kang

    2016-06-01

    Full Text Available Hereditary breast and ovarian cancer syndrome, caused by a germline pathogenic variant in the BRCA1 or BRCA2 (BRCA1/2 genes, is characterized by an increased risk for breast, ovarian, pancreatic and other cancers. Identification of those who have a BRCA1/2 mutation is important so that they can take advantage of genetic counseling, screening, and potentially life-saving prevention strategies. We describe the design and analytic validation of the Counsyl Inherited Cancer Screen, a next-generation-sequencing-based test to detect pathogenic variation in the BRCA1 and BRCA2 genes. We demonstrate that the test is capable of detecting single-nucleotide variants (SNVs, short insertions and deletions (indels, and copy-number variants (CNVs, also known as large rearrangements with zero errors over a 114-sample validation set consisting of samples from cell lines and deidentified patient samples, including 36 samples with BRCA1/2pathogenic germline mutations.

  18. An international survey of surveillance schemes for unaffected BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Madorsky-Feldman, Dana; Sklair-Levy, Miri; Perri, Tamar;

    2016-01-01

    Female BRCA1/BRCA2 mutation carriers are at substantially increased risk for developing breast and/or ovarian cancer, and are offered enhanced surveillance including screening from a young age and risk-reducing surgery (RRS)-mastectomy (RRM) and/or salpingo-oophorectomy (RRSO). While....../ovarian cancer detection in BRCA carriers are being applied pre RRS but are not globally harmonized, and most centers offer no specific surveillance post RRS. From this comprehensive multinational study it is clear that evidence-based, long-term prospective data on the most effective scheme for BRCA carriers...

  19. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Directory of Open Access Journals (Sweden)

    Hashishe Mervat M

    2010-06-01

    Full Text Available Abstract Background Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. Objective Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. Methods This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22 and one region (exon 9 of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. Results Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80(67% out of total 120, were mutation carriers. Conclusions BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations

  20. Frequency and Significance of Abnormal Pancreatic Imaging in Patients with BRCA1 and BRCA2 Genetic Mutations

    Directory of Open Access Journals (Sweden)

    Elie Chahla

    2016-01-01

    Full Text Available Objective. Pancreatic adenocarcinoma is typically diagnosed in advanced stages resulting in a significant reduction in the number of patients who are candidates for surgical resection. Although the majority of cases are believed to occur sporadically, about 10% show familial clustering and studies have identified an increased frequency of BRCA germline mutations. The role of screening for pancreatic adenocarcinoma in these populations is unclear. Our study aims to identify the abnormal pancreatic imaging findings in BRCA1 and BRCA2 mutation carriers. Methods. A retrospective review of patient medical records with known BRCA1 and BRCA2 mutations was conducted. Data was collected and all available abdominal imaging studies were reviewed. Results. A total of 66 patients were identified, 36 with BRCA1 and 30 with BRCA2 mutations. Only 20/66 (30% had abdominal imaging (14 BRCA1 and 6 BRCA2 patients. Of those patients with abdominal imaging, abnormal pancreatic imaging findings were detected in 7/20 (35% cases. Conclusion. Our study shows a high incidence of abnormal pancreatic imaging findings in patients with BRCA genetic mutations (35%. Larger studies are needed to further define the role of pancreatic cancer screening and the significance of abnormal imaging findings in BRCA1 and BRCA2 mutation carriers.

  1. Analysis of BRCA1 and BRCA2 mutations in Brazilian breast cancer patients with positive family history

    Directory of Open Access Journals (Sweden)

    Rozany Mucha Dufloth

    Full Text Available CONTEXT AND OBJECTIVE: BRCA1 and BRCA2 are the two principal hereditary breast cancer susceptibility genes, and the prevalence of their mutations among Brazilian women is unknown. The objective was to detect BRCA1 and BRCA2 mutations in Brazilian patients with breast cancer, so as to establish genetic profiles. DESIGN AND SETTING: Cross-sectional study, in Centro de Atenção Integral à Saúde da Mulher, Universidade Estadual de Campinas, Brazil, and Institute of Pathology and Molecular Immunology, University of Porto, Portugal. METHODS: Thirty-one breast cancer patients with positive family history (criteria from the Breast Cancer Linkage Consortium were studied, and genomic DNA was extracted from peripheral blood. Single-strand conformation polymorphism was used for the analysis of exons 2, 3, 5, and 20 of BRCA1. Cases showing PCR products with abnormal bands were sequenced. Exon 11 of BRCA1 and exons 10 and 11 of BRCA2 were directly sequenced in both directions. RESULTS: Four mutations were detected: one in BRCA1 and three in BRCA2. The BRCA1 mutation is a frameshift located at codon 1756 of exon 20: 5382 ins C. Two BRCA2 mutations were nonsense mutations located at exon 11: S2219X and the other was an unclassified variant located at exon 11: C1290Y. CONCLUSION: The BRCA1 or BRCA2 mutation prevalence found among women with breast cancer and such family history was 13% (4/31. Larger studies are needed to establish the significance of BRCA mutations among Brazilian women and the prevalence of specific mutations.

  2. Long Term Outcomes of BRCA1/BRCA2 Testing: Risk Reduction and Surveillance

    Science.gov (United States)

    Schwartz, Marc D.; Isaacs, Claudine; Graves, Kristi D.; Poggi, Elizabeth; Peshkin, Beth N.; Gell, Christy; Finch, Clinton; Kelly, Scott; Taylor, Kathryn L.; Perley, Lauren

    2012-01-01

    Purpose For BRCA1/BRCA2 gene testing to benefit public health, mutation carriers must initiate appropriate risk management strategies. There has been little research examining the long-term use and prospective predictors of the full range of risk management behaviors among women who have undergone BRCA1/2 testing. We evaluated long-term uptake and predictors of risk reducing mastectomy (RRM), risk reducing oophorectomy (RRBSO), chemoprevention and cancer screening among women at a mean of 5.3 years post testing. Patients and Methods Participants were 465 women who underwent BRCA1/2 testing. Prior to genetic counseling, we measured family/personal cancer history, sociodemographics, perceived risk, cancer-specific and general distress. We contacted patients at a mean of 5.3-years post-testing to measure use of: RRM; RRBSO; chemoprevention; breast and ovarian cancer screening. Results Among participants with intact breasts and/or ovaries at the time of testing, BRCA1/2 carriers were significantly more likely to obtain RRM (37%) and RRBSO (65%) compared to women who received uninformative (RRM=6.8%; RRBSO=13.3%) or negative (RRM=0%; RRBSO=1.9%) results. Among carriers, pre-counseling anxiety was associated with subsequent uptake of RRM. RRO was predicted by age. Carriers were also more likely have used breast cancer chemoprevention and have obtained a screening MRI. Conclusion This prospective evaluation of the uptake and predictors of long-term management outcomes provides a clearer picture of decision making in this population. By a mean of 5.3 years post-testing, more than 80% of carriers had obtained RRM, RRBSO or both, suggesting that BRCA1/2 testing is likely to favorably impact breast and ovarian cancer outcomes. PMID:21717445

  3. Exome mutation burden predicts clinical outcome in ovarian cancer carrying mutated BRCA1 and BRCA2 genes

    DEFF Research Database (Denmark)

    Birkbak, Nicolai Juul; Kochupurakkal, Bose; Gonzalez-Izarzugaza, Jose Maria;

    2013-01-01

    Reliable biomarkers predicting resistance or sensitivity to anti-cancer therapy are critical for oncologists to select proper therapeutic drugs in individual cancer patients. Ovarian and breast cancer patients carrying germline mutations in BRCA1 or BRCA2 genes are often sensitive to DNA damaging...... drugs and relative to non-mutation carriers present a favorable clinical outcome following therapy. Genome sequencing studies have shown a high number of mutations in the tumor genome in patients carrying BRCA1 or BRCA2 mutations (mBRCA). The present study used exome-sequencing and SNP 6 array data...... had either germlines or somatic mutations of BRCA1 or BRCA2 genes. The results revealed that the Nmut was significantly lower in the chemotherapy-resistant mBRCA HGSOC defined by progression within 6 months after completion of first line platinum-based chemotherapy. We found a significant association...

  4. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Jønson, Lars; Steffensen, Ane Y;

    2011-01-01

    Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1...... and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1...... synonymous variant. The remaining 24 variants were identified in BRCA2, including 10 deleterious mutants (6 frame-shift and 4 nonsense), 2 intronic variants, 10 missense mutations and 2 synonymous variants. The frequency of the variants of unknown significance was examined in control individuals. Moreover...

  5. Prostate screening uptake in Australian BRCA1 and BRCA2 carriers

    Directory of Open Access Journals (Sweden)

    McKinley Joanne M

    2007-09-01

    Full Text Available Abstract Men who carry mutations in BRCA1 or BRCA2 are at increased risk for prostate cancer. However the efficacy of prostate screening in this setting is uncertain and limited data exists on the uptake of prostate screening by mutation carriers. This study prospectively evaluated uptake of prostate cancer screening in a multi-institutional cohort of mutation carriers. Subjects were unaffected male BRCA1 and BRCA2 mutation carriers, aged 40–69 years, enrolled in the Kathleen Cuningham Consortium for Research into Familial Breast Cancer (kConFab and who had completed a mailed, self-report follow-up questionnaire 3 yearly after study entry. Of the 75 male carriers in this study, only 26 (35% had elected to receive their mutation result. Overall, 51 (68% did not recall having received a recommendation to have prostate screening because of their family history, but 41 (55% had undergone a prostate specific antigen (PSA test and 32 (43% a digital rectal examination (DRE in the previous 3 years. Those who were aware of their mutation result were more likely to have received a recommendation for prostate screening (43 vs. 6%, p = 0.0001, and to have had a PSA test (77 vs. 43%, p = 0.005 and a DRE (69 vs. 29%, p = 0.001 in the previous 3 years. The majority of unaffected males enrolled in kConFab with a BRCA1/2 mutation have not sought out their mutation result. However, of those aware of their positive mutation status, most have undergone at least one round of prostate screening in the previous 3 years.

  6. Large genomic rearrangements of BRCA1 and BRCA2 among patients referred for genetic analysis in Galicia (NW Spain: delimitation and mechanism of three novel BRCA1 rearrangements.

    Directory of Open Access Journals (Sweden)

    Laura Fachal

    Full Text Available In the Iberian Peninsula, which includes mainly Spain and Portugal, large genomic rearrangements (LGRs of BRCA1 and BRCA2 have respectively been found in up to 2.33% and 8.4% of families with hereditary breast and/or ovarian cancer (HBOC that lack point mutations and small indels. In Galicia (Northwest Spain, the spectrum and frequency of BRCA1/BRCA2 point mutations differs from the rest of the Iberian populations. However, to date there are no Galician frequency reports of BRCA1/BRCA2 LGRs. Here we used multiplex ligation-dependent probe amplification (MLPA to screen 651 Galician index cases (out of the 830 individuals referred for genetic analysis without point mutations or small indels. We identified three different BRCA1 LGRs in four families. Two of them have been previously classified as pathogenic LGRs: the complete deletion of BRCA1 (identified in two unrelated families and the deletion of exons 1 to 13. We also identified the duplication of exons 1 and 2 that is a LGR with unknown pathogenicity. Determination of the breakpoints of the BRCA1 LGRs using CNV/SNP arrays and sequencing identified them as NG_005905.2:g.70536_180359del, NG_005905.2:g.90012_97270dup, and NC_000017.10:g.41230935_41399840delinsAluSx1, respectively; previous observations of BRCA1 exon1-24del, exon1-2dup, and exon1-13del LGRs have not characterized them in such detail. All the BRCA1 LGRs arose from unequal homologous recombination events involving Alu elements. We also detected, by sequencing, one BRCA2 LGR, the Portuguese founder mutation c.156_157insAluYa5. The low frequency of BRCA1 LGRs within BRCA1 mutation carriers in Galicia (2.34%, 95% CI: 0.61-7.22 seems to differ from the Spanish population (9.93%, 95% CI: 6.76-14.27, P-value = 0.013 and from the rest of the Iberian population (9.76%, 95% CI: 6.69-13.94, P-value = 0.014.

  7. Large genomic rearrangements of BRCA1 and BRCA2 among patients referred for genetic analysis in Galicia (NW Spain): delimitation and mechanism of three novel BRCA1 rearrangements.

    Science.gov (United States)

    Fachal, Laura; Blanco, Ana; Santamariña, Marta; Carracedo, Angel; Vega, Ana

    2014-01-01

    In the Iberian Peninsula, which includes mainly Spain and Portugal, large genomic rearrangements (LGRs) of BRCA1 and BRCA2 have respectively been found in up to 2.33% and 8.4% of families with hereditary breast and/or ovarian cancer (HBOC) that lack point mutations and small indels. In Galicia (Northwest Spain), the spectrum and frequency of BRCA1/BRCA2 point mutations differs from the rest of the Iberian populations. However, to date there are no Galician frequency reports of BRCA1/BRCA2 LGRs. Here we used multiplex ligation-dependent probe amplification (MLPA) to screen 651 Galician index cases (out of the 830 individuals referred for genetic analysis) without point mutations or small indels. We identified three different BRCA1 LGRs in four families. Two of them have been previously classified as pathogenic LGRs: the complete deletion of BRCA1 (identified in two unrelated families) and the deletion of exons 1 to 13. We also identified the duplication of exons 1 and 2 that is a LGR with unknown pathogenicity. Determination of the breakpoints of the BRCA1 LGRs using CNV/SNP arrays and sequencing identified them as NG_005905.2:g.70536_180359del, NG_005905.2:g.90012_97270dup, and NC_000017.10:g.41230935_41399840delinsAluSx1, respectively; previous observations of BRCA1 exon1-24del, exon1-2dup, and exon1-13del LGRs have not characterized them in such detail. All the BRCA1 LGRs arose from unequal homologous recombination events involving Alu elements. We also detected, by sequencing, one BRCA2 LGR, the Portuguese founder mutation c.156_157insAluYa5. The low frequency of BRCA1 LGRs within BRCA1 mutation carriers in Galicia (2.34%, 95% CI: 0.61-7.22) seems to differ from the Spanish population (9.93%, 95% CI: 6.76-14.27, P-value = 0.013) and from the rest of the Iberian population (9.76%, 95% CI: 6.69-13.94, P-value = 0.014).

  8. Significant clinical impact of recurrent BRCA1 and BRCA2 mutations in Mexico

    Science.gov (United States)

    Villarreal-Garza, Cynthia; Alvarez-Gómez, Rosa María; Pérez-Plasencia, Carlos; Herrera, Luis A.; Herzog, Josef; Castillo, Danielle; Mohar, Alejandro; Castro, Clementina; Gallardo, Lenny N.; Gallardo, Dolores; Santibáñez, Miguel; Blazer, Kathleen R.; Weitzel, Jeffrey N.

    2014-01-01

    Background Frequent recurrent BRCA1 and BRCA2 gene (BRCA) mutations among Hispanics, including a large rearrangement Mexican founder mutation (BRCA1 ex9-12del), suggest that an ancestry-informed BRCA-testing strategy could reduce disparities and promote cancer prevention by enabling economical screening for hereditary breast and ovarian cancer in Mexico. Methods In a multistage approach, 188 cancer cases unselected for family cancer history (92 ovarian cancer and 96 breast cancer) were screened for BRCA mutations using a Hispanic mutation panel (HISPANEL®) of 115 recurrent mutations in a multiplex assay (114 on a mass spectroscopy platform, and a PCR assay for the BRCA1 ex9-12del mutation), followed by sequencing of all BRCA exons and adjacent intronic regions, and BRCA1 multiplex ligation-dependent probe amplification assay (MLPA) for HISPANEL negative cases. BRCA mutation prevalence was calculated and correlated with histology and tumor receptor status, and HISPANEL sensitivity was estimated. Results BRCA mutations were detected in 28% (26/92) of ovarian cancer cases and 15% (14/96) of breast cancer cases overall and 27% (9/33) of triple negative breast cancer. Most breast cancer cases were diagnosed with locally advanced disease. The Mexican founder mutation (BRCA1 ex9-12del) accounted for 35% of the BRCA-associated ovarian cancer cases and 29% of the BRCA-associated breast cancer cases. At 2% of the sequencing and MLPA cost, the HISPANEL detected 68% of all BRCA mutations. Conclusion In this study, we found a remarkably high prevalence of BRCA mutations among ovarian and breast cases not selected for family history, and BRCA1 ex9-12del explained one third of the total. The remarkable frequency of BRCA1 ex9-12del in Mexico City supports a nearby origin of this Mexican founder mutation and may constitute a regional public health problem. The HISPANEL presents a translational opportunity for cost-effective genetic testing to enable breast and ovarian cancer

  9. The role of BRCA1 and BRCA2 in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Elena Castro; Rosalind Eeles

    2012-01-01

    One of the strongest risk factors for prostate cancer is a family history of the disease.Germline mutations in the breast cancer predisposition gene 2 (BRCA2) are the genetic events known to date that confer the highest risk of prostate cancer (8.6-fold in men ≤ 65 years).Although the role of BRCA2 and BRCA1 in prostate tumorigenesis remains unrevealed,deleterious mutations in both genes have been associated with more aggressive disease and poor clinical outcomes.The increasing incidence of prostate cancer worldwide supports the need for new methods to predict outcome and identify patients with potentially lethal forms of the disease.As we present here,BRCA germline mutations,mainly in the BRCA2gene,are one of those predictive factors.We will also discuss the implications of these mutations in the management of prostate cancer and hypothesize on the potential for the development of strategies for sporadic cases with similar characteristics.

  10. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Antoniou, Antonis C; Kuchenbaecker, Karoline B

    2012-01-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers...... for the remaining loci were consistent with odds ratio estimates for the general population. The identification of multiple loci modifying ovarian cancer risk may be useful for counseling women with BRCA1 and BRCA2 mutations regarding their risk of ovarian cancer....

  11. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    Science.gov (United States)

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B.; Rudolph, Anja; Schmutzler, Rita K.; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A.; Easton, Douglas F.; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A.; Schmidt, Marjanka K; van der Baan, Frederieke H.; Spurdle, Amanda B.; Walker, Logan C.; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B.; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K.; Miron, Alex; Southey, Melissa C.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Ding, Yuan Chun; Neuhausen, Susan L.; Hansen, Thomas V. O.; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E.; Blazer, Kathleen R.; Weitzel, Jeffrey N.; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E.; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D. Gareth R.; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V.; Ellis, Steve; Cole, Trevor; Godwin, Andrew K.; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M.; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L.; Rodriguez, Gustavo C.; Copeland, Larry J; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A.M.; Meijers-Heijboer, Hanne E.J.; van der Hout, Annemarie H.; Vreeswijk, Maaike P.G.; Hoogerbrugge, Nicoline; Ausems, Margreet G.E.M.; van Doorn, Helena C.; Collée, J. Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R.; Olswold, Curtis; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Szabo, Csilla I.; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E.; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M.; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L.; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B.; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D.P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Friedman, Eitan

    2014-01-01

    Background BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and non-genetic modifying factors. In this study we evaluated the putative role of variants in many candidate modifier genes. Methods Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n=3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. Results The observed p-values of association ranged between 0.005-1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. Conclusion There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Impact Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies. PMID:25336561

  12. Germline mutation in BRCA1 or BRCA2 and ten-year survival for women diagnosed with epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Candido-dos-Reis, Francisco J; Song, Honglin; Goode, Ellen L

    2015-01-01

    ,314 patients from previously reported studies. All participants had been screened for deleterious germline mutations in BRCA1 and BRCA2. Survival time was analyzed for the combined data using Cox proportional hazard models with BRCA1 and BRCA2 as time-varying covariates. Competing risks were analyzed using......PURPOSE: To analyze the effect of germline mutations in BRCA1 and BRCA2 on mortality in patients with ovarian cancer up to 10 years after diagnosis. EXPERIMENTAL DESIGN: We used unpublished survival time data for 2,242 patients from two case-control studies and extended survival time data for 4...... Fine and Gray model. RESULTS: The combined 10-year overall survival rate was 30% [95% confidence interval (CI), 28%-31%] for non-carriers, 25% (95% CI, 22%-28%) for BRCA1 carriers, and 35% (95% CI, 30%-41%) for BRCA2 carriers. The HR for BRCA1 was 0.53 at time zero and increased over time becoming...

  13. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Mulligan, Anna Marie; Couch, Fergus J; Barrowdale, Daniel

    2011-01-01

    -negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status...

  14. Breast and ovarian cancer risks in a large series of clinically ascertained families with a high proportion of BRCA1 and BRCA2 Dutch founder mutations

    NARCIS (Netherlands)

    Brohet, Richard M.; Velthuizen, Maria E.; Hogervorst, Frans B. L.; Meijers-Heijboer, Hanne E. J.; Seynaeve, Caroline; Collee, Margriet J.; Verhoef, Senno; Ausems, Margreet G. E. M.; Hoogerbrugge, Nicoline; van Asperen, Christi J.; Garcia, Encarna Gomez; Menko, Fred; Oosterwijk, Jan C.; Devilee, Peter; van't Veer, Laura J.; van Leeuwen, Flora E.; Easton, Douglas F.; Rookus, Matti A.; Antoniou, Antonis C.

    2014-01-01

    Background BRCA1 or BRCA2 mutations confer increased risks of breast and ovarian cancer, but risks have been found to vary across studies and populations. Methods We ascertained pedigree data of 582 BRCA1 and 176 BRCA2 families and studied the variation in breast and ovarian cancer risks using a mod

  15. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 ...

  16. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the consortium of investigators of modifiers of BRCA1/BRCA2 (CIMBA)

    NARCIS (Netherlands)

    A. Osorio (Ana); R.L. Milne (Roger); G. Pita (G.); P. Peterlongo (Paolo); T. Heikinen (Tuomas); J. Simard (Jacques); G. Chenevix-Trench (Georgia); A.B. Spurdle (Amanda); J. Beesley (Jonathan); X.C. Chen (X. C.); S. Healey (Sue); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); F.J. Couch (Fergus); X. Wang (Xing); N.M. Lindor (Noralane); S. Manoukian (Siranoush); M. Barile (Monica); A. Viel (Alessandra); L. Tizzoni (Laura); C. Szabo (Csilla); L. Foretova (Lenka); M. Zikan (Michal); K. Claes (Kathleen); M.H. Greene (Mark); P.L. Mai (Phuong); G. Rennert (Gad); F. Lejbkowicz (Flavio); O. Barnett-Griness (Ofra); I.L. Andrulis (Irene); H. Ozcelik (Hilmi); N. Weerasooriya (Nayana); A-M. Gerdes (Anne-Marie); M. Thomassen (Mads); D. Cruger (Dorthe); M.A. Caligo (Maria); E. Friedman (Eitan); B. Kaufman (Bella); Y. Laitman (Yael); S. Cohen (Shimrit); T. Kontorovich (Tair); R. Gershoni-Baruch; E. Dagan (Efrat); H. Jernström (H.); M.S. Askmalm (Marie); B. Arver (Brita Wasteson); B. Malmer (Beatrice); S.M. Domchek (Susan); K.L. Nathanson (Katherine); J. Brunet (Joan); T. Ramon Y Cajal; D. Yannoukakos (Drakoulis); U. Hamann (Ute); F.B.L. Hogervorst (Frans); S. Verhoef; E.B.G. Garcíla (E.B. Gómez); J.T. Wijnen (Juul); A.M.W. van den Ouweland (Ans); D.F. Easton (Douglas); S. Peock (Susan); M. Cook (Margaret); C.T. Oliver (Clare); D. Frost (Debra); C. Luccarini (Craig); D.G. Evans (Gareth); F. Lalloo (Fiona); R. Eeles (Rosalind); G. Pichert (Gabriella); J. Cook (Jackie); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); F. Douglas (Fiona); A.K. Godwin (Andrew); O. Sinilnikova (Olga); L. Barjhoux (Laure); D. Stoppa-Lyonnet (Dominique); V. Moncoutier (Virginie); S. Giraud (Sophie); C. Cassini (C.); L. Faivre (Laurence); F. Révillion (Françoise); J.-P. Peyrat; D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); H. Lynch (Henry); E.M. John (Esther); S.S. Buys (Saundra); M.B. Daly (Mary); J.L. Hopper (John); M.-B. Terry (Mary-Beth); A. Miron (Alexander); Y. Yassin (Yosuf); D. Goldgar (David); C.F. Singer (Christian); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); E. Spiess (Eberhard); T.V.O. Hansen (Thomas); O.T. Johannson (Oskar); T. Kircchoff (Tomas); K. Offit (Kenneth); K. Kosarin (Kristi); M. Piedmonte (Marion); G.C. Rodriguez (Gustavo); K. Wakeley (Katie); J.F. Boggess (John); J. Basil (Jack); P.E. Schwartz (Peter); S.V. Blank (Stephanie); A.E. Toland (Amanda); M. Montagna (Marco); C. Casella (Cinzia); E.N. Imyanitov (Evgeny); A. Allavena (Anna); R.K. Schmutzler (Rita); B. Versmold (Beatrix); C. Engel (Christoph); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); D. Niederacher (Dieter); H. Deiler (H.); B. Fiebig (Britta); R. Varon-Mateeva (Raymonda); D. Schaefer (D.); U.G. Froster (U.); T. Caldes (Trinidad); M. de La Hoya (Miguel); L. McGuffog (Lesley); A.C. Antoniou (Antonis); H. Nevanlinna (Heli); P. Radice (Paolo); J. Benítez (Javier)

    2009-01-01

    textabstractBackground: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. Methods:

  17. The prevalence of BRCA1 and BRCA2 mutations among young Mexican women with triple-negative breast cancer.

    Science.gov (United States)

    Villarreal-Garza, C; Weitzel, J N; Llacuachaqui, M; Sifuentes, E; Magallanes-Hoyos, M C; Gallardo, L; Alvarez-Gómez, R M; Herzog, J; Castillo, D; Royer, R; Akbari, Mohammad; Lara-Medina, F; Herrera, L A; Mohar, A; Narod, S A

    2015-04-01

    Various guidelines recommend that women with triple-negative breast cancer should be tested for BRCA1 mutations, but the prevalence of mutations may vary with ethnic group and with geographic region, and the optimal cutoff age for testing has not been established. We estimated the frequencies of BRCA1 and BRCA2 (BRCA) mutations among 190 women with triple-negative breast cancer, unselected for family history, diagnosed at age 50 or less at a single hospital in Mexico City. Patients were screened for 115 recurrent BRCA mutations, which have been reported previously in women of Hispanic origin, including a common large rearrangement Mexican founder mutation (BRCA1 ex9-12del). A BRCA mutation was detected in 44 of 190 patients with triple-negative breast cancer (23 %). Forty-three mutations were found in BRCA1 and one mutation was found in BRCA2. Seven different mutations accounted for 39 patients (89 % of the total mutations). The Mexican founder mutation (BRCA1 ex9-12del) was found 18 times and accounted for 41 % of all mutations detected. There is a high prevalence of BRCA1 mutations among young triple-negative breast cancer patients in Mexico. Women with triple-negative breast cancer in Mexico should be screened for mutations in BRCA1.

  18. Age and Geographical Distribution in Families with BRCA1/BRCA2 Mutations in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Ciernikova Sona

    2006-12-01

    Full Text Available Abstract Molecular diagnostics of hereditary breast and/or ovarian cancer is mainly based on detection of BRCA1 and BRCA2 germline mutations in suspected families. The aim of the study was to determine the frequency, age and geographical distribution in 130 Slovak hereditary breast and ovarian cancer (HBOC families diagnosed within the years 2000-2004. Mutation screening was performed by single-strand conformation polymorphism (SSCP, heteroduplex analysis (HDA and sequencing of PCR products showing an abnormal migration pattern. Twenty of 130 (15.6% HBOC suspected families were found to carry mutations in BRCA1 or BRCA2 genes. The glossary data from the National Cancer Registry of Slovakia (NCRS were compared with the results from HBOC suspected kindreds. Age distribution of breast cancer onset in our study group showed the highest proportion of onset in HBC families within the 5th decade of life, while NCRS reports at least a ten year later onset. These findings confirmed that cases of breast cancer under 50 years of age can be used as one of the principal criteria to assign a family as a hereditary breast and/or ovarian cancer kindred. In contrast with unselected ovarian cancer cases, about 75% of all HOC index cases were diagnosed between 40 and 49 years of age. To study the geographical distribution of hereditary breast and/or ovarian cancer, Slovakia was divided into three parts. The distribution of HBOC suspected families approximately follows this division, with an increasing number in the western area of the country.

  19. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.N. [Harvard Medical School (United States). Joint Center for Radiation Therapy

    1999-07-01

    The breast cancer susceptibility genes, BRCA1 and BRCA2, are used to illustrate the application of molecular biology to clinical radiation oncology. Identified by linkage analysis and cloned, the structure of the genes and the numerous mutations are determined by molecular biology techniques that examine the structure of the DNA and the proteins made by the normal and mutant alleles. Mutations in the non-transcribed portion of the gene will not be found in protein structure assays and may be important in gene function. In addition to potential deleterious mutations, normal polymorphisms of the gene will also be detected, therefore not all differences in gene sequence may represent important mutations, a finding that complicates genetic screening and counseling. The localization of the protein in the nucleus, the expression in relation to cell cycle and the association with RAD51 led to the discovery that the two BRCA genes may be involved in transcriptional regulation and DNA repair. The defect in DNA repair can increase radiosensitivity which might improve local control using breast-conserving treatment in a tumor which is homozygous for the loss of the gene (i.e., BRCA1 and BRCA2 are tumor suppressor genes). This is supported by the early reports of a high rate of local control with breast-conserving therapy. Nonetheless, this radiosensitivity theoretically may also lead to increased susceptibility to carcinogenic effects in surviving cells, a finding that might not be observed for decades. The susceptibility to radiation-induced DNA damage appears also to make the cells more sensitive to chemotherapy. Understanding the role of the normal BRCA genes in DNA repair might help define a novel mechanism for radiation sensitization by interfering with the normal gene function using a variety of molecular or biochemical therapies.

  20. PGD for hereditary breast and ovarian cancer : the route to universal tests for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Drusedau, Marion; Dreesen, Jos C.; Derks-Smeets, Inge; Coonen, Edith; van Golde, Ron; van Echten-Arends, Jannie; Kastrop, Peter M. M.; Blok, Marinus J.; Gomez-Garcia, Encarna; Geraedts, Joep P.; Smeets, Hubert J.; de Die-Smulders, Christine E.; Paulussen, Aimee D.

    2013-01-01

    Preimplantation Genetic Diagnosis (PGD) is a method of testing in vitro embryos as an alternative to prenatal diagnosis with possible termination of pregnancy in case of an affected child. Recently, PGD for hereditary breast and ovarian cancer caused by BRCA1 and BRCA2 mutations has found its way in

  1. Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B.; Rudolph, Anja; Schmutzler, Rita K.; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A.; Easton, Douglas F.; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A.; Schmidt, MarjankaK.; van der Baan, Frederieke H.; Spurdle, Amanda B.; Walker, Logan C.; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Garcia, Encarna B. Gomez; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K.; Miron, Alex; Southey, Melissa C.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Ding, Yuan Chun; Neuhausen, Susan L.; Hansen, Thomas V. O.; Gerdes, Anne-Marie; Ejlertsen, Bent; Jonson, Lars; Osorio, Ana; Martinez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E.; Blazer, Kathleen R.; Weitzel, Jeffrey N.; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E.; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D. Gareth R.; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V.; Ellis, Steve; Cole, Trevor; Godwin, Andrew K.; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M.; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L.; Rodriguez, Gustavo C.; Copeland, Larry J.; de la Hoya, Miguel; Perez Segura, Pedro; Nevanlinna, Heli; Aittomaeki, Kristiina; van Os, Theo A. M.; Meijers-Heijboer, Hanne E. J.; van der Hout, Annemarie H.; Vreeswijk, Maaike P. G.; Hoogerbrugge, Nicoline; Ausems, Margreet G. E. M.; van Doorn, Helena C.; Collee, J. Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R.; Olswold, Curtis; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Szabo, Csilla I.; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E.; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M.; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L.; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Ake; Kuchenbaecker, Karoline B.; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D. P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Friedman, Eitan; Oosterwijk, Jan C.; van der Hout, Annemarie H.; Ligtenberg, Jakobus J. M.

    2015-01-01

    Background: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In thi

  2. Candidate genetic modifiers for breast and ovarian cancer risk inBRCA1andBRCA2 mutation carriers

    NARCIS (Netherlands)

    P. Peterlongo (Paolo); J. Chang-Claude (Jenny); K.B. Moysich (Kirsten); A. Rudolph (Anja); R.K. Schmutzler (Rita); J. Simard (Jacques); P. Soucy (Penny); R. Eeles (Rosalind); D.F. Easton (Douglas); U. Hamann (Ute); S. Wilkening (Stefan); B. Chen (Bowang); M.A. Rookus (Matti); M.K. Schmidt (Marjanka K.); F.H. Van Der Baan (Frederieke H.); A.B. Spurdle (Amanda); L.C. Walker (Logan); F. Lose (Felicity); A.-T. Maia (Ana-Teresa); M. Montagna (Marco); L. Matricardi (Laura); J. Lubinski (Jan); A. Jakubowska (Anna); E.B.G. Garcia; O.I. Olopade (Olofunmilayo); R.L. Nussbaum (Robert L.); K.L. Nathanson (Katherine); S.M. Domchek (Susan); R. Rebbeck (Timothy); B.K. Arun (Banu); B. Karlan; S. Orsulic (Sandra); K.J. Lester (Kathryn); W.K. Chung (Wendy K.); A. Miron (Alexander); M.C. Southey (Melissa); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); Y.C. Ding (Yuan Chun); S.L. Neuhausen (Susan); T.V.O. Hansen (Thomas); A.-M. Gerdes (Anne-Marie); B. Ejlertsen (Bent); L. Jønson (Lars); A. Osorio (Ana); C. Martínez-Bouzas (Cristina); J. Benítez (Javier); E.E. Conway (Edye E.); K.R. Blazer (Kathleen R.); J.N. Weitzel (Jeffrey); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (Daniela); G. Scuvera (Giulietta); M. Barile (Monica); F. Ficarazzi (Filomena); F. Mariette (F.); S. Fortuzzi (S.); A. Viel (Alessandra); G. Giannini (Giuseppe); L. Papi (Laura); A. Martayan (Aline); M.G. Tibiletti (Maria Grazia); P. Radice (Paolo); A. Vratimos (Athanassios); F. Fostira (Florentia); J. Garber (Judy); A. Donaldson (Alan); C. Brewer (Carole); C. Foo (Claire); D.G. Evans (Gareth); D. Frost (Debra); D. Eccles (Diana); A. Brady (A.); J. Cook (Jackie); M. Tischkowitz (Marc); L. Adlard; J. Barwell (Julian); L.J. Walker (Lisa); L. Izatt (Louise); L. Side (Lucy); M.J. Kennedy (John); M.T. Rogers (Mark); M.E. Porteous (Mary); P.J. Morrison (Patrick); R. Platte (Radka); R. Davidson (Rosemarie); S. Hodgson (Shirley); S.D. Ellis (Steve); T. Cole (Trevor); A.K. Godwin (Andrew); K.B.M. Claes (Kathleen B.M.); T. Van Maerken (Tom); A. Meindl (Alfons); P.A. Gehrig (Paola A.); C. Sutter (Christian); C. Engel (Christoph); D. Niederacher (Dieter); D. Steinemann (Doris); H. Plendl (Hansjoerg); K. Kast (Karin); K. Rhiem (Kerstin); N. Ditsch (Nina); N. Arnold (Norbert); R. Varon-Mateeva (Raymonda); B. Wapenschmidt (Barbara); S. Wang-Gohrke (Shan); B. Bressac-de Paillerets (Brigitte); B. Buecher (Bruno); C.D. Delnatte (Capucine); C. Houdayer (Claude); D. Stoppa-Lyonnet (Dominique); F. Damiola (Francesca); I. Coupier (Isabelle); L. Barjhoux (Laure); L. Vénat-Bouvet (Laurence); L. Golmard (Lisa); N. Boutry-Kryza (N.); O. Sinilnikova (Olga); O. Caron (Olivier); P. Pujol (Pascal); S. Mazoyer (Sylvie); M. Belotti (Muriel); M. Piedmonte (Marion); M.L. Friedlander (Michael L.); G. Rodriguez (Gustavo); L.J. Copeland (Larry J.); M. de La Hoya (Miguel); P. Perez-Segura (Pedro); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); T.A.M. van Os (Theo); E.J. Meijers-Heijboer (Hanne); A.H. van der Hout (Annemarie); M.P. Vreeswijk (Maaike); N. Hoogerbrugqe (N.); M.G.E.M. Ausems (Margreet); H.C. van Doorn (Helena); J.M. Collee (Margriet); E. Olah; O. Díez (Orland); I. Blanco (Ignacio); C. Lazaro (Conxi); J. Brunet (Joan); L. Feliubadaló (L.); C. Cybulski (Cezary); J. Gronwald (Jacek); K. Durda (Katarzyna); K. Jaworska-Bieniek (Katarzyna); G. Sukiennicki (Grzegorz); A. Arason (Adalgeir); J. Chiquette (Jocelyne); P.J. Teixeira; C. Olswold (Curtis); F.J. Couch (Fergus); N.M. Lindor (Noralane); X. Wang (X.); C. Szabo (Csilla); K. Offit (Kenneth); M. Corines (Marina); L. Jacobs (Lauren); M.E. Robson (Mark E.); L. Zhang (Lingling); V. Joseph (Vijai); A. Berger (Andreas); C.F. Singer (Christian); C. Rappaport (Christine); D.G. Kaulich (Daphne Gschwantler); G. Pfeiler (Georg); M.-K. Tea; C. Phelan (Catherine); M.H. Greene (Mark); P.L. Mai (Phuong); G. Rennert (Gad); A.-M. Mulligan (Anna-Marie); G. Glendon (Gord); S. Tchatchou (Sandrine); I.L. Andrulis (Irene); A.E. Toland (Amanda); A. Bojesen (Anders); I.S. Pedersen (Inge Sokilde); M. Thomassen (Mads); U.B. Jensen; Y. Laitman (Yael); J. Rantala (Johanna); A. von Wachenfeldt (Anna); H. Ehrencrona (Hans); M.S. Askmalm (Marie); Å. Borg (Åke); K.B. Kuchenbaecker (Karoline); L. McGuffog (Lesley); D. Barrowdale (Daniel); S. Healey (Sue); A. Lee (Andrew); P.D.P. Pharoah (Paul D.P.); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis C.); E. Friedman (Eitan)

    2015-01-01

    textabstractBackground: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying fac

  3. Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Ramus, Susan J.; Kartsonaki, Christiana; Gayther, Simon A.; Pharoah, Paul D. P.; Sinilnikova, Olga M.; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Healey, Sue; Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Roversi, Gaia; Barile, Monica; Viel, Alessandra; Allavena, Anna; Ottini, Laura; Papi, Laura; Gismondi, Viviana; Capra, Fabio; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Cruger, Dorthe; Jensen, Uffe Birk; Caligo, Maria Adelaide; Olsson, Hakan; Kristoffersson, Ulf; Lindblom, Annika; Arver, Brita; Karlsson, Per; Askmalm, Marie Stenmark; Borg, Ake; Neuhausen, Susan L.; Ding, Yuan Chun; Nathanson, Katherine L.; Domchek, Susan M.; Jakubowska, Anna; Lubinski, Jan; Huzarski, Tomasz; Byrski, Tomasz; Gronwald, Jacek; Gorski, Bohdan; Cybulski, Cezary; Debniak, Tadeusz; Osorio, Ana; Duran, Mercedes; Tejada, Maria-Isabel; Benitez, Javier; Hamann, Ute; Rookus, Matti A.; Verhoef, Senno; Tilanus-Linthorst, Madeleine A.; Vreeswijk, Maaike P.; Bodmer, Danielle; Ausems, Margreet G. E. M.; van Os, Theo A.; Asperen, Christi J.; Blok, Marinus J.; Meijers-Heijboer, Hanne E. J.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Dunning, Alison M.; Evans, D. Gareth; Eeles, Ros; Pichert, Gabriella; Cole, Trevor; Hodgson, Shirley; Brewer, Carole; Morrison, Patrick J.; Porteous, Mary; Kennedy, M. John; Rogers, Mark T.; Side, Lucy E.; Donaldson, Alan; Gregory, Helen; Godwin, Andrew; Stoppa-Lyonnet, Dominique; Moncoutier, Virginie; Castera, Laurent; Mazoyer, Sylvie; Barjhoux, Laure; Bonadona, Valerie; Leroux, Dominique; Faivre, Laurence; Lidereau, Rosette; Nogues, Catherine; Bignon, Yves-Jean; Prieur, Fabienne; Collonge-Rame, Marie-Agnes; Venat-Bouvet, Laurence; Fert-Ferrer, Sandra; Miron, Alex; Buys, Saundra S.; Hopper, John L.; Daly, Mary B.; John, Esther M.; Terry, Mary Beth; Goldgar, David; Hansen, Thomas V. O.; Jonson, Lars; Ejlertsen, Bent; Agnarsson, Bjarni A.; Offit, Kenneth; Kirchhoff, Tomas; Vijai, Joseph; Dutra-Clarke, Ana V. C.; Przybylo, Jennifer A.; Montagna, Marco; Casella, Cinzia; Imyanitov, Evgeny N.; Janavicius, Ramunas; Blanco, Ignacio; Lazaro, Conxi; Moysich, Kirsten B.; Karlan, Beth Y.; Gross, Jenny; Beattie, Mary S.; Schmutzler, Rita; Wappenschmidt, Barbara; Meindl, Alfons; Ruehl, Ina; Fiebig, Britta; Sutter, Christian; Arnold, Norbert; Deissler, Helmut; Varon-Mateeva, Raymonda; Kast, Karin; Niederacher, Dieter; Gadzicki, Dorothea; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomaeki, Kristiina; Simard, Jacques; Soucy, Penny; Spurdle, Amanda B.; Holland, Helene; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.

    2011-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility. A

  4. Identification of a Danish breast/ovarian cancer family double heterozygote for BRCA1 and BRCA2 mutations

    DEFF Research Database (Denmark)

    Steffensen, Ane Y; Jønson, Lars; Ejlertsen, Bent;

    2010-01-01

    (RT)-PCR analysis revealed that the BRCA2 mutation results in skipping of exon 7, thereby introducing a frameshift and a premature stop codon. We therefore classify the mutation as disease causing. Since the BRCA1 Arg1699Gln mutation is also suggested to be disease-causing, we consider this family...

  5. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Kartsonaki, Christiana; Gayther, Simon A

    2011-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility....

  6. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ramus, Susan J; Kartsonaki, Christiana; Gayther, Simon A

    2011-01-01

    Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility. A genome-w...

  7. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B

    2015-01-01

    BACKGROUND: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In ...

  8. Breast cancer screening in BRCA1 and BRCA2 mutation carriers after risk reducing salpingo-oophorectomy

    NARCIS (Netherlands)

    Fakkert, I.E.; Jansen, L.; Meijer, K.; Kok, Theo; Oosterwijk, J.C.; Mourits, M.J.E.; de Bock, G.H.

    2011-01-01

    Breast cancer screening is offered to BRCA1 and BRCA2 mutation carriers from the age of 25 years because of their increased risk of breast cancer. As ovarian cancer screening is not effective, risk-reducing salpingho-oophorectomy (RRSO) is offered after child bearing age. RRSO before menopause reduc

  9. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Peterlongo, P.; Chang-Claude, J.; Moysich, K.B.; Rudolph, A.; Schmutzler, R.K.; Simard, J.; Soucy, P.; Eeles, R.A.; Easton, D.F.; Hamann, U.; Wilkening, S.; Chen, B.; Rookus, M.A.; Schmidt, M.K.; Baan, F.H. van der; Spurdle, A.B.; Walker, L.C.; Lose, F.; Maia, A.T.; Montagna, M.; Matricardi, L.; Lubinski, J.; Jakubowska, A.; Garcia, E.B.; Olopade, O.I.; Nussbaum, R.L.; Nathanson, K.L.; Domchek, S.M.; Rebbeck, T.R.; Arun, B.K.; Karlan, B.Y.; Orsulic, S.; Lester, J.; Chung, W.K.; Miron, A.; Southey, M.C.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Dorfling, C.M.; Rensburg, E.J. van; Ding, Y.C.; Neuhausen, S.L.; Hansen, T.V.; Gerdes, A.M.; Ejlertsen, B.; Jonson, L.; Osorio, A.; Martinez-Bouzas, C.; Benitez, J.; Conway, E.E.; Blazer, K.R.; Weitzel, J.N.; Manoukian, S.; Peissel, B.; Zaffaroni, D.; Scuvera, G.; Barile, M.; Ficarazzi, F.; Mariette, F.; Fortuzzi, S.; Viel, A.; Giannini, G.; Papi, L.; Martayan, A.; Tibiletti, M.G.; Radice, P.; Vratimos, A.; Fostira, F.; Garber, J.E.; Donaldson, A.; Brewer, C.; Foo, C.; Evans, D.G.; Frost, D.; Eccles, D.; Brady, A.; Cook, J.; Tischkowitz, M.; Adlard, J.; Barwell, J.; Walker, L.; Izatt, L.; Side, L.E.; Kennedy, M.J.; Rogers, M.T.; Porteous, M.E.; Morrison, P.J.; Platte, R.; Davidson, R.; Hodgson, S.V.; Ellis, S.; Cole, T.; Godwin, A.K.; Claes, K.; Maerken, T. Van; Meindl, A.; Gehrig, A.; Sutter, C.; Engel, C.; Hoogerbrugge, N.

    2015-01-01

    BACKGROUND: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In thi

  10. Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    S.J. Ramus (Susan); C. Kartsonaki (Christiana); S.A. Gayther (Simon); P.D.P. Pharoah (Paul); O. Sinilnikova (Olga); J. Beesley (Jonathan); G. Chenevix-Trench (Georgia); L. McGuffog (Lesley); S. Healey (Sue); F.J. Couch (Fergus); X. Wang (Xing); Z. Fredericksen (Zachary); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); G. Roversi (Gaia); M. Barile (Monica); A. Viel (Alessandra); A. Allavena (Anna); L. Ottini (Laura); L. Papi (Laura); V. Gismondi (Viviana); F. Capra (Fabio); P. Radice (Paolo); M.H. Greene (Mark); P.L. Mai (Phuong); I.L. Andrulis (Irene); G. Glendon (Gord); H. Ozcelik (Hilmi); M. Thomassen (Mads); A-M. Gerdes (Anne-Marie); T.A. Kruse (Torben); D. Cruger (Dorthe); U.B. Jensen; M.A. Caligo (Maria); H. Olsson (Hkan); U. Kristoffersson (Ulf); A. Lindblom (Annika); B. Arver (Brita Wasteson); P. Karlsson (Per); M. Stenmark-Askmalm (M.); Å. Borg (Åke); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); K.L. Nathanson (Katherine); S.M. Domchek (Susan); A. Jakubowska (Anna); J. Lubinski (Jan); T. Huzarski (Tomasz); T. Byrski (Tomasz); J. Gronwald (Jacek); B. Górski (Bohdan); C. Cybulski (Cezary); T. Dbniak (Tadeusz); A. Osorio (Ana); M. Durán (Mercedes); M.-I. Tejada; J. Benitez (Javier); U. Hamann (Ute); M.A. Rookus (Matti); S. Verhoef; M.A. Tilanus-Linthorst (Madeleine); M.P. Vreeswijk (Maaike); D. Bodmer (Danielle); M.G.E.M. Ausems (Margreet); T.A.M. van Os (Theo); M.J. Blok (Marinus); H. Meijers-Heijboer (Hanne); S. Peock (Susan); M. Cook (Margaret); C.T. Oliver (Clare); D. Frost (Debra); A.M. Dunning (Alison); D.G. Evans (Gareth); R. Eeles (Rosalind); G. Pichert (Gabriella); T.J. Cole (Trevor); S.V. Hodgson (Shirley); C. Brewer (Carole); P.J. Morrison (Patrick); M.E. Porteous (Mary); M.J. Kennedy (John); M.T. Rogers (Mark); L. Side (Lucy); A. Donaldson (Alan); H. Gregory (Helen); A.K. Godwin (Andrew); D. Stoppa-Lyonnet (Dominique); V. Moncoutier (Virginie); L. Castera (Laurent); S. Mazoyer (Sylvie); L. Barjhoux (Laure); V. Bonadona (Valérie); D. Leroux (Dominique); L. Faivre (Laurence); R. Lidereau (Rosette); C. Nogues (Catherine); Y.-J. Bignon (Yves-Jean); F. Prieur (Fabienne); M.-A. Collonge-Rame; L. Vénat-Bouvet (Laurence); S. Fert-Ferrer (Sandra); A. Miron (Alexander); S.S. Buys (Saundra); J. Hopper (John); M.J. Daly (Mark); E.M. John (Esther); M-B. Terry (Mary-beth); D. Goldgar (David); T.V.O. Hansen (Thomas); L. Jønson (Lars); B.A. Agnarsson (Bjarni); K. Offit (Kenneth); T. Kircchoff (Tomas); J. Vijai (Joseph); A. Dutra-Clarke (Ana); J.A. Przybylo (Jennifer); M. Montagna (Marco); C. Casella (Cinzia); E.N. Imyanitov (Evgeny); R. Janavicius (Ramunas); I. Blanco (Ignacio); C. Lazaro (Conxi); K.B. Moysich (Kirsten); B.Y. Karlan (Beth); J. Gross (Jenny); M.S. Beattie (Mary); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); A. Meindl (Alfons); I. Ruehl (Ina); B. Fiebig (Britta); C. Sutter (Christian); N. Arnold (Norbert); H. Deissler (Helmut); R. Varon-Mateeva (Raymonda); K. Kast (Karin); D. Niederacher (Dieter); D. Gadzicki (Dorothea); B. Ejlertsen (Bent); T. Caldes (Trinidad); M. de La Hoya (Miguel); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); J. Simard (Jacques); P. Soucy (Penny); A.B. Spurdle (Amanda); H. Holland (Helene); D.F. Easton (Douglas); A.C. Antoniou (Antonis); C.J. van Asperen (Christi)

    2011-01-01

    textabstractBackground Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer suscep

  11. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Ramus, Susan J; Antoniou, Antonis C; Kuchenbaecker, Karoline B; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Sinilnikova, Olga M; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Timothy R; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Złowocka, Elżbieta; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Osorio, Ana; Benitez, Javier; Duran, Mercedes; Tejada, Maria-Isabel; Hamann, Ute; Rookus, Matti; van Leeuwen, Flora E; Aalfs, Cora M; Meijers-Heijboer, Hanne E J; van Asperen, Christi J; van Roozendaal, K E P; Hoogerbrugge, Nicoline; Collée, J Margriet; Kriege, Mieke; van der Luijt, Rob B; Peock, Susan; Frost, Debra; Ellis, Steve D; Platte, Radka; Fineberg, Elena; Evans, D Gareth; Lalloo, Fiona; Jacobs, Chris; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Paterson, Joan; Douglas, Fiona; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J; Walker, Lisa; Porteous, Mary E; Kennedy, M John; Pathak, Harsh; Godwin, Andrew K; Stoppa-Lyonnet, Dominique; Caux-Moncoutier, Virginie; de Pauw, Antoine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Léoné, Mélanie; Calender, Alain; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Bignon, Yves-Jean; Uhrhammer, Nancy; Faivre, Laurence; Loustalot, Catherine; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy K; John, Esther M; Southey, Melissa; Goldgar, David; Singer, Christian F; Tea, Muy-Kheng; Pfeiler, Georg; Fink-Retter, Anneliese; Hansen, Thomas v O; Ejlertsen, Bent; Johannsson, Oskar Th; Offit, Kenneth; Kirchhoff, Tomas; Gaudet, Mia M; Vijai, Joseph; Robson, Mark; Piedmonte, Marion; Phillips, Kelly-Anne; Van Le, Linda; Hoffman, James S; Ewart Toland, Amanda; Montagna, Marco; Tognazzo, Silvia; Imyanitov, Evgeny; Issacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Iganacio; Tornero, Eva; Navarro, Matilde; Moysich, Kirsten B; Karlan, Beth Y; Gross, Jenny; Olah, Edith; Vaszko, Tibor; Teo, Soo-Hwang; Ganz, Patricia A; Beattie, Mary S; Dorfling, Cecelia M; van Rensburg, Elizabeth J; Diez, Orland; Kwong, Ava; Schmutzler, Rita K; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Schäfer, Dieter; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Plante, Marie; Spurdle, Amanda B; Neuhausen, Susan L; Ding, Yuan Chun; Wang, Xianshu; Lindor, Noralane; Fredericksen, Zachary; Pankratz, V Shane; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Bonanni, Bernardo; Bernard, Loris; Dolcetti, Riccardo; Papi, Laura; Ottini, Laura; Radice, Paolo; Greene, Mark H; Mai, Phuong L; Andrulis, Irene L; Glendon, Gord; Ozcelik, Hilmi; Pharoah, Paul D P; Gayther, Simon A; Simard, Jacques; Easton, Douglas F; Couch, Fergus J; Chenevix-Trench, Georgia

    2012-04-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers of ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Four single-nucleotide polymorphisms (SNPs), rs10088218 (at 8q24), rs2665390 (at 3q25), rs717852 (at 2q31), and rs9303542 (at 17q21), were genotyped in 12,599 BRCA1 and 7,132 BRCA2 carriers, including 2,678 ovarian cancer cases. Associations were evaluated within a retrospective cohort approach. All four loci were associated with ovarian cancer risk in BRCA2 carriers; rs10088218 per-allele hazard ratio (HR) = 0.81 (95% CI: 0.67-0.98) P-trend = 0.033, rs2665390 HR = 1.48 (95% CI: 1.21-1.83) P-trend = 1.8 × 10(-4), rs717852 HR = 1.25 (95% CI: 1.10-1.42) P-trend = 6.6 × 10(-4), rs9303542 HR = 1.16 (95% CI: 1.02-1.33) P-trend = 0.026. Two loci were associated with ovarian cancer risk in BRCA1 carriers; rs10088218 per-allele HR = 0.89 (95% CI: 0.81-0.99) P-trend = 0.029, rs2665390 HR = 1.25 (95% CI: 1.10-1.42) P-trend = 6.1 × 10(-4). The HR estimates for the remaining loci were consistent with odds ratio estimates for the general population. The identification of multiple loci modifying ovarian cancer risk may be useful for counseling women with BRCA1 and BRCA2 mutations regarding their risk of ovarian cancer.

  12. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    DEFF Research Database (Denmark)

    Osorio, A.; Milne, R.L.; Pita, G.;

    2009-01-01

    BACKGROUND: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. METHODS: We have...... genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. RESULTS: We found no evidence of association with breast cancer risk...... for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93-1.04, P = 0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89-1.06, P = 0.5) mutation carriers. CONCLUSION: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out Udgivelsesdato: 2009/12/15...

  13. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    DEFF Research Database (Denmark)

    Osorio, A; Milne, R L; Pita, G;

    2009-01-01

    Background:In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers.Methods:We have...... genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach.Results:We found no evidence of association with breast cancer risk...... for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93-1.04, P=0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89-1.06, P=0.5) mutation carriers.Conclusion:This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out.British Journal of Cancer advance...

  14. A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects

    Science.gov (United States)

    Jervis, Sarah; Song, Honglin; Lee, Andrew; Dicks, Ed; Harrington, Patricia; Baynes, Caroline; Manchanda, Ranjit; Easton, Douglas F; Jacobs, Ian; Pharoah, Paul P D; Antoniou, Antonis C

    2015-01-01

    Background Although BRCA1 and BRCA2 mutations account for only ∼27% of the familial aggregation of ovarian cancer (OvC), no OvC risk prediction model currently exists that considers the effects of BRCA1, BRCA2 and other familial factors. Therefore, a currently unresolved problem in clinical genetics is how to counsel women with family history of OvC but no identifiable BRCA1/2 mutations. Methods We used data from 1548 patients with OvC and their relatives from a population-based study, with known BRCA1/2 mutation status, to investigate OvC genetic susceptibility models, using segregation analysis methods. Results The most parsimonious model included the effects of BRCA1/2 mutations, and the residual familial aggregation was accounted for by a polygenic component (SD 1.43, 95% CI 1.10 to 1.86), reflecting the multiplicative effects of a large number of genes with small contributions to the familial risk. We estimated that 1 in 630 individuals carries a BRCA1 mutation and 1 in 195 carries a BRCA2 mutation. We extended this model to incorporate the explicit effects of 17 common alleles that are associated with OvC risk. Based on our models, assuming all of the susceptibility genes could be identified we estimate that the half of the female population at highest genetic risk will account for 92% of all OvCs. Conclusions The resulting model can be used to obtain the risk of developing OvC on the basis of BRCA1/2, explicit family history and common alleles. This is the first model that accounts for all OvC familial aggregation and would be useful in the OvC genetic counselling process. PMID:26025000

  15. Evaluation of two different models to predict BRCA1 and BRCA2 mutations in a cohort of Danish hereditary breast and/or ovarian cancer families

    DEFF Research Database (Denmark)

    Gerdes, Anne-Marie; Cruger, D G; Thomassen, M;

    2006-01-01

    To meet the increasing demand for BRCA1 and BRCA2 mutation analysis, a robust system for selecting families who have a higher chance of a mutation has become important. Several models have been developed to help predict which samples are more likely to be mutation positive than others. We have...... undertaken a complete BRCA1 and BRCA2 mutation analysis in 267 Danish families with high-risk family history. We found deleterious mutations in 28% (76) of the families, 68% (52) of those in BRCA1 and 32% (24) in BRCA2. We compared our results with two popular manual models developed to estimate the chance...

  16. BRCA1 and BRCA2 Germline Mutations in Asian and European Populations

    Directory of Open Access Journals (Sweden)

    Ute Hamann

    2017-02-01

    Full Text Available Women who carry a pathogenic mutation in the breast cancer susceptibility genes BRCA1 or BRCA2 (BRCA have markedly increased risks of developing breast and ovarian cancers during their lifetime. It has been estimated that their breast and ovarian cancer risks are in the range of 46-87% and 15-68%, respectively. Therefore it is of utmost clinical importance to identify BRCA mutation carriers in order to target unaffected women for prevention and/or close surveillance and to help affected women choose the best chemotherapy regimen. Genetic testing for BRCA germline mutations is expanding in clinical oncology centers worldwide. Given the high costs of complete BRCA gene screens, a lot of effort has been expended on deciding upon whom to test. Relevant issues involved in decision making include the prior probability of a woman having a BRCA mutation, which is a function of her age and her disease status, her ethnic group, and her family history of breast or ovarian cancer. The frequency and spectrum of mutations in these genes show considerable variation by ethnic groups and by geographic regions. Most studies have been conducted in European and North American populations, while studies in Asian, Hispanic, and African populations are fewer. In most populations, many BRCA mutations were identified, which were distributed all over the genes. However, in some populations, a relatively small number of specific BRCA mutations are recurrent and account for the majority of all mutations in that population. Many of the recurrent mutations are founder mutations, which were derived from a common ancestor. Founder mutations are present in Ashkenazi Jewish, European, and Islander (Faroe, Easter, and Pitcairn populations. Such mutations have also been identified in patients from several Asian, South American, and African countries. Population-specific genetic risk assessment and genetic mutation screening have been facilitated at low costs. Given that mutations

  17. Predisposición genética para el cáncer de mama: genes BRCA1 y BRCA2 Genetic predisposition for breast cancer: BRCA1 and BRCA2 genes

    Directory of Open Access Journals (Sweden)

    Steven A Narod

    2011-10-01

    Full Text Available El descubrimiento de los genes BRCA1 y BRCA2 ha llevado a la introducción de pruebas genéticas cada vez más sofisticadas para medir el riesgo de cáncer de mama de origen hereditario, entre otras cosas. En el presente artículo exploramos los criterios a seguir para realizar pruebas para estos genes, así como las implicaciones en el tratamiento para los pacientes en caso de identificarlos.The discovery of genes BRCA1 and BRCA2 has led to the introduction of genetic tests more complex every time for the evaluation ofthehereditarycancerrisk,amongothers.In the present paper we explore the criteria to decide when to run the testing for the genes, as well as the implications for the treatment of patients who are identified with them.

  18. Breast tumor characteristics of BRCA1 and BRCA2 gene mutation carriers on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, J.; Mann, R.; Blickman, J.G.; Boetes, C. [University Medical Center, 430 Department of Radiology, P.O. Box 9101, Nijmegen (Netherlands); Kok, T. [University Medical Center, Department of Radiology, Groningen (Netherlands); Obdeijn, I.M. [Erasmus Medical Center Daniel den Hoed Cancer Center, Department of Radiology, Rotterdam (Netherlands); Hoogerbrugge, N. [University Medical Center, Department of Human Genetics, Nijmegen (Netherlands)

    2008-05-15

    The appearance of malignant lesions in BRCA1 and BRCA2 mutation carriers (BRCA-MCs) on mammography and magnetic resonance imaging (MRI) was evaluated. Thus, 29 BRCA-MCs with breast cancer were retrospectively evaluated and the results compared with an age, tumor size and tumor type matched control group of 29 sporadic breast cancer cases. Detection rates on both modalities were evaluated. Tumors were analyzed on morphology, density (mammography), enhancement pattern and kinetics (MRI). Overall detection was significantly better with MRI than with mammography (55/58 vs 44/57, P = 0.021). On mammography, lesions in the BRCA-MC group were significantly more described as rounded (12//19 vs 3/13, P = 0.036) and with sharp margins (9/19 vs 1/13, P = 0.024). On MRI lesions in the BRCA-MC group were significantly more described as rounded (16/27 vs 7/28, P = 0.010), with sharp margins (20/27 vs 7/28, P < 0.001) and with rim enhancement (7/27 vs 1/28, P = 0.025). No significant difference was found for enhancement kinetics (P = 0.667). Malignant lesions in BRCA-MC frequently have morphological characteristics commonly seen in benign lesions, like a rounded shape or sharp margins. This applies for both mammography and MRI. However the possibility of MRI to evaluate the enhancement pattern and kinetics enables the detection of characteristics suggestive for a malignancy. (orig.)

  19. Effect of Prior Bilateral Oophorectomy on the Presentation of Breast Cancer in BRCA1 and BRCA2 Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Metcalfe Kelly A

    2005-04-01

    Full Text Available Abstract Purpose To compare the presentation of invasive breast cancer in BRCA1 and BRCA2 mutation carriers with and without prior bilateral oophorectomy. Patients and methods Women with a BRCA1 or BRCA2 mutation with the diagnosis of invasive breast cancer were identified from ten cancer genetics clinics. The medical history, medical treatment records and pathology reports for the breast cancers were reviewed. Information was abstracted from medical charts, including history (and date of oophorectomy, date of breast cancer diagnosis, stage of disease, and pathologic characteristics of the breast cancer. Women with prior bilateral oophorectomy were matched by age, year of diagnosis, and mutation with one or more women who had two intact ovaries at the time of breast cancer diagnosis. Characteristics of the breast tumours were compared between the two groups. Results Women with prior bilateral oophorectomy presented with smaller tumours on average compared to women without prior oophorectomy (mean size 1.50 cm vs. 1.95 cm; p = 0.01. Additionally, although not statistically significant, women with intact ovaries were more likely to have high-grade tumour (70% vs. 54%: p = 0.10 and to have positive lymph nodes (34% vs. 18%; p = 0.11 compared to women with prior bilateral oophorectomy. Conclusions Bilateral oophorectomy prior to breast cancer appears to favourably influence the biological presentation of breast cancer in BRCA1 and BRCA2 mutation carriers.

  20. No evidence of increased breast cancer risk for proven noncarriers from BRCA1 and BRCA2 families

    DEFF Research Database (Denmark)

    Nielsen, Henriette Roed; Petersen, Janne; Krogh, Lotte;

    2016-01-01

    In families screened for mutations in the BRCA1 or BRCA2 genes and found to have a segregating mutation the breast cancer risk for women shown not to carry the family-specific mutation might be at above "average" risk. We assessed the risk of breast cancer in a clinic based cohort of 725 female...... proven noncarriers in 239 BRCA1 and BRCA2 families compared with birth-matched controls from the Danish Civil Registration System. Prospective analysis showed no significantly increased risk for breast cancer in noncarriers with a hazard ratio of 0.67 [95 % confidence interval (CI) 0.32-1.42, p = 0.......29] for all family members who tested negative and 0.87 (95 % CI 0.38-1.97, p = 0.73) for non-carries who were first-degree relatives of mutation carriers. Proven noncarriers from BRCA1 and BRCA2 families have no markedly increased risk for breast cancer compared to the general population, and our data do...

  1. An Exploratory Study to Determine Whether BRCA1 and BRCA2 Mutation Carriers Have Higher Risk of Cardiac Toxicity

    Science.gov (United States)

    Sajjad, Monique; Fradley, Michael; Sun, Weihong; Kim, Jongphil; Zhao, Xiuhua; Pal, Tuya; Ismail-Khan, Roohi

    2017-01-01

    Anthracycline-based cardiotoxicity is concerning for women with breast cancer and portends a dose-dependent risk of developing left ventricular dysfunction. Overall, the prevalence of heart failure (HF) is ≈2% of the total US population; however, BRCA-deficient mice have shown increased HF. We evaluated for the inherent risk of HF in women with BRCA mutations to determine whether treatment with anthracycline-based therapy increased this risk. We obtained results on BRCA mutation carriers regarding cancer treatment and HF, identified through the BRCA patient advocacy organization Facing Our Risk for Cancer Empowered (FORCE) and the Moffitt-based Inherited Cancer Registry. In our patient group (232 BRCA1 and 159 BRCA2 patients; 10 with both mutations), 7.7% reported HF, with similar proportions in BRCA1 versus BRCA2 carriers (7.4% and 8.2%, respectively). These proportions are significantly higher than published rates (p BRCA1 carriers and 8.2% of BRCA2 carriers reported arrhythmias. BRCA mutation carriers showed increased risk of cardiotoxicity versus the general population and an overall increased risk of cardiotoxicity from anthracycline-based therapy. Our study supports data that BRCA carriers have increased non-cancer mortality from cardiotoxicity. A prospective trial to determine HF and conduction abnormalities in this population is warranted. PMID:28157161

  2. Comparison of risk assessment models of BRCA1 and BRCA2 mutation carrier in patients with breast cancer

    Directory of Open Access Journals (Sweden)

    Rybchenko L.A.

    2013-12-01

    Full Text Available Analysis of efficiency of the algorithm BOADICEA using and Manchester scoring system to predict the carrier of BRCA1 and BRCA2 mutations in Ukranian patients with breast cancer was performed. Materials for this study were the results of clinical, imunogistological, pathogistological, genealogical, molecular genetic researches of 146 patients with breast cancer. Calculations of mutations risk were performed using BOADICEA algorithm and Manchester scoring system. In the total group of patients the area under the curve while predicting BRCA1 mutations with algorithm BOADICEA was 0.86, with Manchester scoring system - 0.84, and in calculation of the combined risk of BRCA mutations - 0.83 and 0.84, respectively. However, statistical difference between the areas of algorithms has not been established (p> 0.05, it indicates to the same discriminatory power of the test models. Better sensitivity, specificity, positive and negative predictive value of results of BOADICEA algorithm was reached in 6% of BRCA1 probability and in 8% threshold of BRCA1/2 mutations. The Manchester scoring system has showed the best operating characteristics with 6 and 13-point probability of BRCA1 and BRCA1/2 mutations respectively. Patients with probability of mutations with such thresholds may be offered molecular study of pathogenic alleles.

  3. BRCA1 and BRCA2 point mutations and large rearrangements in breast and ovarian cancer families in Northern Poland.

    Science.gov (United States)

    Ratajska, Magdalena; Brozek, Izabela; Senkus-Konefka, Elzbieta; Jassem, Jacek; Stepnowska, Magdalena; Palomba, Grazia; Pisano, Marina; Casula, Milena; Palmieri, Giuseppe; Borg, Ake; Limon, Janusz

    2008-01-01

    Sixty-four Polish families with a history of breast and/or ovarian cancer were screened for mutations in the BRCA1/2 genes using a combination of denaturing high performance liquid chromatography (DHPLC) and sequencing. Two thirds (43/64; 67%) of the families were found to carry deleterious mutations, of which the most frequent were BRCA1 5382insC (n=22/43; 51%) and Cys61Gly (n=9/43; 20%). Two other recurrent mutations were BRCA1 185delAG (n=3) and 3819del5 (n=4), together accounting for 16% of the 43 mutation-positive cases. We also found three novel mutations (BRCA1 2991del5, BRCA2 6238ins2del21 and 8876delC) which combined with findings from our earlier study of 60 Northern Polish families. Moreover, screening of 43 BRCA1/2 negative families for the presence of large rearrangements by multiplex ligation-dependent probe amplification (MLPA) resulted in the finding of two additional BRCA1 mutations: a deletion of exons 1A, 1B and 2, and a deletion of exons 17-19, both present in single families. We conclude that the Polish population has a diverse mutation spectrum influenced by strong founder effects. However, families with strong breast/ovarian cancer history who are negative for these common mutations should be offered a complete BRCA gene screening, including MLPA analysis.

  4. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers : results from the Consortium of Investigators of Modifiers of BRCA1/2

    NARCIS (Netherlands)

    Mulligan, Anna Marie; Couch, Fergus J.; Barrowdale, Daniel; Domchek, Susan M.; Eccles, Diana; Nevanlinna, Heli; Ramus, Susan J.; Robson, Mark; Sherman, Mark; Spurdle, Amanda B.; Wappenschmidt, Barbara; Lee, Andrew; McGuffog, Lesley; Healey, Sue; Sinilnikova, Olga M.; Janavicius, Ramunas; Hansen, Thomas V. O.; Nielsen, Finn C.; Ejlertsen, Bent; Osorio, Ana; Munoz-Repeto, Ivan; Duran, Mercedes; Godino, Javier; Pertesi, Maroulio; Benitez, Javier; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Cattaneo, Elisa; Bonanni, Bernardo; Viel, Alessandra; Pasini, Barbara; Papi, Laura; Ottini, Laura; Savarese, Antonella; Bernard, Loris; Radice, Paolo; Hamann, Ute; Verheus, Martijn; Meijers-Heijboer, Hanne E. J.; Wijnen, Juul; Garcia, Encarna B. Gomez; Nelen, Marcel R.; Kets, C. Marleen; Seynaeve, Caroline; Tilanus-Linthorst, Madeleine M. A.; van der Luijt, Rob B.; van Os, Theo; Rookus, Matti; Frost, Debra; Jones, J. Louise; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Adlard, Julian; Davidson, Rosemarie; Cook, Jackie; Donaldson, Alan; Dorkins, Huw; Gregory, Helen; Eason, Jacqueline; Houghton, Catherine; Barwell, Julian; Side, Lucy E.; McCann, Emma; Murray, Alex; Peock, Susan; Godwin, Andrew K.; Schmutzler, Rita K.; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ruehl, Ina; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Dorothea; Kast, Karin; Preisler-Adams, Sabine; Varon-Mateeva, Raymonda; Schoenbuchner, Ines; Fiebig, Britta; Heinritz, Wolfram; Schaefer, Dieter; Gevensleben, Heidrun; Caux-Moncoutier, Virginie; Fassy-Colcombet, Marion; Cornelis, Francois; Mazoyer, Sylvie; Leone, Melanie; Boutry-Kryza, Nadia; Hardouin, Agnes; Berthet, Pascaline; Muller, Daniele; Fricker, Jean-Pierre; Mortemousque, Isabelle; Pujol, Pascal; Coupier, Isabelle; Lebrun, Marine; Kientz, Caroline; Longy, Michel; Sevenet, Nicolas; Stoppa-Lyonnet, Dominique; Isaacs, Claudine; Caldes, Trinidad; de la Hoya, Miguel; Heikkinen, Tuomas; Aittomaki, Kristiina; Blanco, Ignacio; Lazaro, Conxi; Barkardottir, Rosa B.; Soucy, Penny; Dumont, Martine; Simard, Jacques; Montagna, Marco; Tognazzo, Silvia; D'Andrea, Emma; Fox, Stephen; Yan, Max; Rebbeck, Tim; Olopade, Olufunmilayo I.; Weitzel, Jeffrey N.; Lynch, Henry T.; Ganz, Patricia A.; Tomlinson, Gail E.; Wang, Xianshu; Fredericksen, Zachary; Pankratz, Vernon S.; Lindor, Noralane M.; Szabo, Csilla; Offit, Kenneth; Sakr, Rita; Gaudet, Mia; Bhatia, Jasmine; Kauff, Noah; Singer, Christian F.; Tea, Muy-Kheng; Gschwantler-Kaulich, Daphne; Fink-Retter, Anneliese; Mai, Phuong L.; Greene, Mark H.; Imyanitov, Evgeny; O'Malley, Frances P.; Ozcelik, Hilmi; Glendon, Gordon; Toland, Amanda E.; Gerdes, Anne-Marie; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Soller, Maria; Henriksson, Karin; Wachenfeldt, von Anna; Arver, Brita; Stenmark-Askmalm, Marie; Karlsson, Per; Ding, Yuan Chun; Neuhausen, Susan L.; Beattie, Mary; Pharoah, Paul D. P.; Moysich, Kirsten B.; Nathanson, Katherine L.; Karlan, Beth Y.; Gross, Jenny; John, Esther M.; Daly, Mary B.; Buys, Saundra M.; Southey, Melissa C.; Hopper, John L.; Terry, Mary Beth; Chung, Wendy; Miron, Alexander F.; Goldgar, David; Chenevix-Trench, Georgia; Easton, Douglas F.; Andrulis, Irene L.; Antoniou, Antonis C.

    2011-01-01

    Introduction: Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 an

  5. Detection of genomic variations in BRCA1 and BRCA2 genes by long-range PCR and next-generation sequencing.

    Science.gov (United States)

    Hernan, Imma; Borràs, Emma; de Sousa Dias, Miguel; Gamundi, María José; Mañé, Begoña; Llort, Gemma; Agúndez, José A G; Blanca, Miguel; Carballo, Miguel

    2012-01-01

    Advances in sequencing technologies, such as next-generation sequencing (NGS), represent an opportunity to perform genetic testing in a clinical scenario. In this study, we developed and tested a method for the detection of mutations in the large BRCA1 and BRCA2 tumor suppressor genes, using long-range PCR (LR-PCR) and NGS, in samples from individuals with a personal and/or family history of breast and/or ovarian cancer. Eleven LR-PCR fragments, between 3000 and 15,300 bp, containing all coding exons and flanking splice junctions of BRCA1 and BRCA2, were obtained from DNA samples of five individuals carrying mutations in either BRCA1 or BRCA2. Libraries for NGS were prepared using an enzymatic (Nextera technology) method. We analyzed five individual samples in parallel by NGS and obtained complete coverage of all LR-PCR fragments, with an average coding sequence depth for each nucleotide of >30 reads, running from ×7 (in exon 22 of BRCA1) to >×150. We detected and confirmed 100% of the mutations that predispose to the risk of cancer, together with other genomic variations in BRCA1 and BRCA2. Our approach demonstrates that genomic LR-PCR, together with NGS, using the GS Junior 454 System platform, is an effective method for patient sample analysis of BRCA1 and BRCA2 genes. In addition, this method could be performed in regular molecular genetics laboratories.

  6. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Spurdle, Amanda B; Sinilnikova, Olga M;

    2008-01-01

    Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide...... polymorphisms (SNPs) in FGFR2 (rs2981582), TNRC9 (rs3803662), and MAP3K1 (rs889312) are associated with increased breast cancer risks in the general population. To investigate whether these loci are also associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers, we genotyped these SNPs in a sample...... of 10,358 mutation carriers from 23 studies. The minor alleles of SNP rs2981582 and rs889312 were each associated with increased breast cancer risk in BRCA2 mutation carriers (per-allele hazard ratio [HR] = 1.32, 95% CI: 1.20-1.45, p(trend) = 1.7 x 10(-8) and HR = 1.12, 95% CI: 1.02-1.24, p(trend) = 0...

  7. Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: preliminary analysis of the results of the IMPACT study

    DEFF Research Database (Denmark)

    Mitra, Anita V; Bancroft, Elizabeth K; Barbachano, Yolanda;

    2011-01-01

    Study Type - Diagnostic (validating cohort)
Level of Evidence 1b OBJECTIVES: To evaluate the role of targeted prostate cancer screening in men with BRCA1 or BRCA2 mutations, an international study, IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening...... in BRCA1/2 mutation carriers and controls), was established. This is the first multicentre screening study targeted at men with a known genetic predisposition to prostate cancer. A preliminary analysis of the data is reported. MATERIALS AND METHODS: Men aged 40-69 years from families with BRCA1 or BRCA2...... mutations were offered annual prostate specific antigen (PSA) testing, and those with PSA >3 ng/mL, were offered a prostate biopsy. Controls were men age-matched (± 5 years) who were negative for the familial mutation. RESULTS: In total, 300 men were recruited (205 mutation carriers; 89 BRCA1, 116 BRCA2...

  8. Predictive Factors for BRCA1 and BRCA2 Genetic Testing in an Asian Clinic-Based Population.

    Directory of Open Access Journals (Sweden)

    Edward S Y Wong

    Full Text Available The National Comprehensive Cancer Network (NCCN has proposed guidelines for the genetic testing of the BRCA1 and BRCA2 genes, based on studies in western populations. This current study assessed potential predictive factors for BRCA mutation probability, in an Asian population.A total of 359 breast cancer patients, who presented with either a family history (FH of breast and/or ovarian cancer or early onset breast cancer, were accrued at the National Cancer Center Singapore (NCCS. The relationships between clinico-pathological features and mutational status were calculated using the Chi-squared test and binary logistic regression analysis.Of 359 patients, 45 (12.5% had deleterious or damaging missense mutations in BRCA1 and/or BRCA2. BRCA1 mutations were more likely to be found in ER-negative than ER-positive breast cancer patients (P=0.01. Moreover, ER-negative patients with BRCA mutations were diagnosed at an earlier age (40 vs. 48 years, P=0.008. Similarly, triple-negative breast cancer (TNBC patients were more likely to have BRCA1 mutations (P=0.001 and that these patients were diagnosed at a relatively younger age than non-TNBC patients (38 vs. 46 years, P=0.028. Our analysis has confirmed that ER-negative status, TNBC status and a FH of hereditary breast and ovarian cancer (HBOC are strong factors predicting the likelihood of having BRCA mutations.Our study provides evidence that TNBC or ER-negative patients may benefit from BRCA genetic testing, particularly younger patients (<40 years or those with a strong FH of HBOC, in Asian patients.

  9. BRCA1 and BRCA2 missense variants of high and low clinical significance influence lymphoblastoid cell line post-irradiation gene expression.

    Directory of Open Access Journals (Sweden)

    Nic Waddell

    2008-05-01

    Full Text Available The functional consequences of missense variants in disease genes are difficult to predict. We assessed if gene expression profiles could distinguish between BRCA1 or BRCA2 pathogenic truncating and missense mutation carriers and familial breast cancer cases whose disease was not attributable to BRCA1 or BRCA2 mutations (BRCAX cases. 72 cell lines from affected women in high-risk breast ovarian families were assayed after exposure to ionising irradiation, including 23 BRCA1 carriers, 22 BRCA2 carriers, and 27 BRCAX individuals. A subset of 10 BRCAX individuals carried rare BRCA1/2 sequence variants considered to be of low clinical significance (LCS. BRCA1 and BRCA2 mutation carriers had similar expression profiles, with some subclustering of missense mutation carriers. The majority of BRCAX individuals formed a distinct cluster, but BRCAX individuals with LCS variants had expression profiles similar to BRCA1/2 mutation carriers. Gaussian Process Classifier predicted BRCA1, BRCA2 and BRCAX status, with a maximum of 62% accuracy, and prediction accuracy decreased with inclusion of BRCAX samples carrying an LCS variant, and inclusion of pathogenic missense carriers. Similarly, prediction of mutation status with gene lists derived using Support Vector Machines was good for BRCAX samples without an LCS variant (82-94%, poor for BRCAX with an LCS (40-50%, and improved for pathogenic BRCA1/2 mutation carriers when the gene list used for prediction was appropriate to mutation effect being tested (71-100%. This study indicates that mutation effect, and presence of rare variants possibly associated with a low risk of cancer, must be considered in the development of array-based assays of variant pathogenicity.

  10. Targeted Prostate Cancer Screening in BRCA1 and BRCA2 Mutation Carriers: Results from the Initial Screening Round of the IMPACT Study

    Science.gov (United States)

    Bancroft, Elizabeth K.; Page, Elizabeth C.; Castro, Elena; Lilja, Hans; Vickers, Andrew; Sjoberg, Daniel; Assel, Melissa; Foster, Christopher S.; Mitchell, Gillian; Drew, Kate; Mæhle, Lovise; Axcrona, Karol; Evans, D. Gareth; Bulman, Barbara; Eccles, Diana; McBride, Donna; van Asperen, Christi; Vasen, Hans; Kiemeney, Lambertus A.; Ringelberg, Janneke; Cybulski, Cezary; Wokolorczyk, Dominika; Selkirk, Christina; Hulick, Peter J.; Bojesen, Anders; Skytte, Anne-Bine; Lam, Jimmy; Taylor, Louise; Oldenburg, Rogier; Cremers, Ruben; Verhaegh, Gerald; van Zelst-Stams, Wendy A.; Oosterwijk, Jan C.; Blanco, Ignacio; Salinas, Monica; Cook, Jackie; Rosario, Derek J.; Buys, Saundra; Conner, Tom; Ausems, Margreet G.; Ong, Kai-ren; Hoffman, Jonathan; Domchek, Susan; Powers, Jacquelyn; Teixeira, Manuel R.; Maia, Sofia; Foulkes, William D.; Taherian, Nassim; Ruijs, Marielle; den Enden, Apollonia T. Helderman-van; Izatt, Louise; Davidson, Rosemarie; Adank, Muriel A.; Walker, Lisa; Schmutzler, Rita; Tucker, Kathy; Kirk, Judy; Hodgson, Shirley; Harris, Marion; Douglas, Fiona; Lindeman, Geoffrey J.; Zgajnar, Janez; Tischkowitz, Marc; Clowes, Virginia E.; Susman, Rachel; Ramón y Cajal, Teresa; Patcher, Nicholas; Gadea, Neus; Spigelman, Allan; van Os, Theo; Liljegren, Annelie; Side, Lucy; Brewer, Carole; Brady, Angela F.; Donaldson, Alan; Stefansdottir, Vigdis; Friedman, Eitan; Chen-Shtoyerman, Rakefet; Amor, David J.; Copakova, Lucia; Barwell, Julian; Giri, Veda N.; Murthy, Vedang; Nicolai, Nicola; Teo, Soo-Hwang; Greenhalgh, Lynn; Strom, Sara; Henderson, Alex; McGrath, John; Gallagher, David; Aaronson, Neil; Ardern-Jones, Audrey; Bangma, Chris; Dearnaley, David; Costello, Philandra; Eyfjord, Jorunn; Rothwell, Jeanette; Falconer, Alison; Gronberg, Henrik; Hamdy, Freddie C.; Johannsson, Oskar; Khoo, Vincent; Kote-Jarai, Zsofia; Lubinski, Jan; Axcrona, Ulrika; Melia, Jane; McKinley, Joanne; Mitra, Anita V.; Moynihan, Clare; Rennert, Gad; Suri, Mohnish; Wilson, Penny; Killick, Emma; Moss, Sue; Eeles, Rosalind A.

    2014-01-01

    Background Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in BRCA1/2 mutation carriers and controls) is an international consortium of 62 centres in 20 countries evaluating the use of targeted PCa screening in men with BRCA1/2 mutations. Objective To report the first year's screening results for all men at enrolment in the study. Design, setting and participants We recruited men aged 40–69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrolment, and those men with PSA >3 ng/ml were offered prostate biopsy. Outcome measurements and statistical analysis PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types. Results and limitations We recruited 2481 men (791 BRCA1 carriers, 531 BRCA1 controls; 731 BRCA2 carriers, 428 BRCA2 controls). A total of 199 men (8%) presented with PSA >3.0 ng/ml, 162 biopsies were performed, and 59 PCas were diagnosed (18 BRCA1 carriers, 10 BRCA1 controls; 24 BRCA2 carriers, 7 BRCA2 controls); 66% of the tumours were classified as intermediate- or high-risk disease. The positive predictive value (PPV) for biopsy using a PSA threshold of 3.0 ng/ml in BRCA2 mutation carriers was 48%—double the PPV reported in population screening studies. A significant difference in detecting intermediate- or high-risk disease was observed in BRCA2 carriers. Ninety-five percent of the men were white, thus the results cannot be generalised to all ethnic groups. Conclusions The IMPACT screening network will be useful

  11. Predicting the Pathogenic Potential of BRCA1 and BRCA2 Gene Variants Identified in Clinical Genetic Testing

    Directory of Open Access Journals (Sweden)

    Clare Brookes

    2015-05-01

    Full Text Available Objectives: Missense variants are very commonly detected when screening for mutations in the BRCA1 and BRCA2 genes. Pathogenic mutations in the BRCA1 and BRCA2 genes lead to an increased risk of developing breast, ovarian, prostate and/or pancreatic cancer. This study aimed to assess the predictive capability of in silico programmes and mutation databases in assisting diagnostic laboratories to determine the pathogenicity of sequence-detectable mutations. Methods: Between July 2011 and April 2013, an analysis was undertaken of 13 missense BRCA gene variants that had been detected in patients referred to the Genetic Health Services New Zealand (Northern Hub for BRCA gene analysis. The analysis involved the use of 13 in silico protein prediction programmes, two in silico transcript analysis programmes and the examination of three BRCA gene databases. Results: In most of the variants, the analysis showed different in silico interpretations. This illustrates the interpretation challenges faced by diagnostic laboratories. Conclusion: Unfortunately, when using online mutation databases and carrying out in silico analyses, there is significant discordance in the classification of some missense variants in the BRCA genes. This discordance leads to complexities in interpreting and reporting these variants in a clinical context. The authors have developed a simple procedure for analysing variants; however, those of unknown significance largely remain unknown. As a consequence, the clinical value of some reports may be negligible.

  12. Sanger Sequencing for BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del Mutation Screen on Pap Smear Cytology Samples.

    Science.gov (United States)

    Lee, Sin Hang; Zhou, Shaoxia; Zhou, Tianjun; Hong, Guofan

    2016-02-08

    Three sets of polymerase chain reaction (PCR) primers were designed for heminested PCR amplification of the target DNA fragments in the human genome which include the site of BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del respectively, to prepare the templates for direct Sanger sequencing screen of these three founder mutations. With a robust PCR mixture, crude proteinase K digestate of the fixed cervicovaginal cells in the liquid-based Papanicolaou (Pap) cytology specimens can be used as the sample for target DNA amplification without pre-PCR DNA extraction, purification and quantitation. The post-PCR products can be used directly as the sequencing templates without further purification or quantitation. By simplifying the frontend procedures for template preparation, the cost for screening these three founder mutations can be reduced to about US $200 per test when performed in conjunction with human papillomavirus (HPV) assays now routinely ordered for cervical cancer prevention. With this projected price structure, selective patients in a high-risk population can be tested and each provided with a set of DNA sequencing electropherograms to document the absence or presence of these founder mutations in her genome to help assess inherited susceptibility to breast and ovarian cancer in this era of precision molecular personalized medicine.

  13. Sanger Sequencing for BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del Mutation Screen on Pap Smear Cytology Samples

    Directory of Open Access Journals (Sweden)

    Sin Hang Lee

    2016-02-01

    Full Text Available Three sets of polymerase chain reaction (PCR primers were designed for heminested PCR amplification of the target DNA fragments in the human genome which include the site of BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del respectively, to prepare the templates for direct Sanger sequencing screen of these three founder mutations. With a robust PCR mixture, crude proteinase K digestate of the fixed cervicovaginal cells in the liquid-based Papanicolaou (Pap cytology specimens can be used as the sample for target DNA amplification without pre-PCR DNA extraction, purification and quantitation. The post-PCR products can be used directly as the sequencing templates without further purification or quantitation. By simplifying the frontend procedures for template preparation, the cost for screening these three founder mutations can be reduced to about US $200 per test when performed in conjunction with human papillomavirus (HPV assays now routinely ordered for cervical cancer prevention. With this projected price structure, selective patients in a high-risk population can be tested and each provided with a set of DNA sequencing electropherograms to document the absence or presence of these founder mutations in her genome to help assess inherited susceptibility to breast and ovarian cancer in this era of precision molecular personalized medicine.

  14. BRCA1 and BRCA2 mutation prevalence and clinical characteristics of a population-based series of ovarian cancer cases from Denmark

    DEFF Research Database (Denmark)

    Soegaard, M.; Kjaer, S.K.; Cox, M.;

    2008-01-01

    PURPOSE: To evaluate the prevalence of BRCA1 and BRCA2 mutations and associations with clinical correlates of disease in a population-based series of ovarian cancer cases from Denmark. METHODS: DNA sequencing and multiplex ligation-dependent probe amplification analysis were used to analyze...... the BRCA1 and BRCA2 genes for coding sequence mutations and large genomic rearrangements in 445 confirmed cases of ovarian cancer. We evaluated associations between mutation status and clinical characteristics, including cancer risks for first-degree relatives and clinicopathologic features of tumors....... RESULTS: Deleterious BRCA1 or BRCA2 mutations were identified in 26 cases; thus, mutations in these genes are responsible for at least 5.8% of ovarian cancer cases in this population. Five different mutations were identified in more than one individual, suggesting that they may be founder mutations...

  15. Common breast cancer susceptibility alleles are associated with tumor subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2

    DEFF Research Database (Denmark)

    Mulligan, Anna Marie; Couch, Fergus J; Barrowdale, Daniel

    2011-01-01

    -negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status...

  16. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

    Science.gov (United States)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A; Andrulis, Irene L; Arun, Banu K; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A; Campbell, Ian; Chan, Salina B; Claes, Kathleen B M; Cohn, David E; Cook, Jackie; Daly, Mary B; Damiola, Francesca; Davidson, Rosemarie; Pauw, Antoine de; Delnatte, Capucine; Diez, Orland; Domchek, Susan M; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K; Goldgar, David E; Hake, Christopher R; Hansen, Thomas V O; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B L; Houdayer, Claude; Hulick, Peter J; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R; Montagna, Marco; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I; Ong, Kai-Ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C; Rookus, Matti A; Ross, Eric A; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F; Slavin, Thomas P; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tea, Muy-Kheng; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J; Greene, Mark H; Couch, Fergus J; Offit, Kenneth; Pharoah, Paul D P; Chenevix-Trench, Georgia; Antoniou, Antonis C

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.

  17. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    Science.gov (United States)

    Vigorito, Elena; Kuchenbaecker, Karoline B.; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A.; Andrulis, Irene L.; Arun, Banu K.; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Chan, Salina B.; Claes, Kathleen B. M.; Cohn, David E.; Cook, Jackie; Daly, Mary B.; Damiola, Francesca; Davidson, Rosemarie; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Domchek, Susan M.; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F.; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D. Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D.; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A.; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K.; Goldgar, David E.; Hake, Christopher R.; Hansen, Thomas V. O.; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B. L.; Houdayer, Claude; Hulick, Peter J.; Imyanitov, Evgeny N.; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M.; Vijai, Joseph; Karlan, Beth Y.; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L.; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R.; Montagna, Marco; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I.; Ong, Kai-ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M.; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C.; Rookus, Matti A.; Ross, Eric A.; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F.; Slavin, Thomas P.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I.; Tea, Muy-Kheng; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J.; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N.; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J.; Greene, Mark H.; Couch, Fergus J.; Offit, Kenneth; Pharoah, Paul D. P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10−16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10−6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population. PMID:27463617

  18. Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, A.C.; Sinilnikova, O.M.; McGuffog, L.

    2009-01-01

    and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated...... for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA......2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk...

  19. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan;

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2...... mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively......, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream...

  20. Comprehensive analysis of BRCA1, BRCA2 and TP53 germline mutation and tumor characterization: a portrait of early-onset breast cancer in Brazil.

    Directory of Open Access Journals (Sweden)

    Dirce Maria Carraro

    Full Text Available Germline mutations in BRCA1, BRCA2 and TP53 genes have been identified as one of the most important disease-causing issues in young breast cancer patients worldwide. The specific defective biological processes that trigger germline mutation-associated and -negative tumors remain unclear. To delineate an initial portrait of Brazilian early-onset breast cancer, we performed an investigation combining both germline and tumor analysis. Germline screening of the BRCA1, BRCA2, CHEK2 (c.1100delC and TP53 genes was performed in 54 unrelated patients <35 y; their tumors were investigated with respect to transcriptional and genomic profiles as well as hormonal receptors and HER2 expression/amplification. Germline mutations were detected in 12 out of 54 patients (22% [7 in BRCA1 (13%, 4 in BRCA2 (7% and one in TP53 (2% gene]. A cancer familial history was present in 31.4% of the unrelated patients, from them 43.7% were carriers for germline mutation (37.5% in BRCA1 and in 6.2% in the BRCA2 genes. Fifty percent of the unrelated patients with hormone receptor-negative tumors carried BRCA1 mutations, percentage increasing to 83% in cases with familial history of cancer. Over-representation of DNA damage-, cellular and cell cycle-related processes was detected in the up-regulated genes of BRCA1/2-associated tumors, whereas cell and embryo development-related processes were over-represented in the up-regulated genes of BRCA1/2-negative tumors, suggesting distinct mechanisms driving the tumorigenesis. An initial portrait of the early-onset breast cancer patients in Brazil was generated pointing out that hormone receptor-negative tumors and positive familial history are two major risk factors for detection of a BRCA1 germline mutation. Additionally, the data revealed molecular factors that potentially trigger the tumor development in young patients.

  1. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón Y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Swe-Brca; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I; Beattie, Mary S; Domchek, Susan M; Nathanson, Katherine; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; John, Esther M; Whittemore, Alice S; Daly, Mary B; Southey, Melissa; Hopper, John; Terry, Mary B; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A; van Os, Theo A M; van der Kolk, Lizet; de Lange, J L; Meijers-Heijboer, Hanne E J; van der Hout, A H; van Asperen, Christi J; Gómez Garcia, Encarna B; Hoogerbrugge, Nicoline; Collée, J Margriet; van Deurzen, Carolien H M; van der Luijt, Rob B; Devilee, Peter; Hebon; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Healey, Sue; Investigators, Kconfab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Chenevix-Trench, Georgia; Antoniou, Antonis C; Benitez, Javier

    2014-04-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  2. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    Directory of Open Access Journals (Sweden)

    Ana Osorio

    2014-04-01

    Full Text Available Single Nucleotide Polymorphisms (SNPs in genes involved in the DNA Base Excision Repair (BER pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase, and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2. Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2 gene (HR: 1.09, 95% CI (1.03-1.16, p = 2.7 × 10(-3 for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3. DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  3. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2

    NARCIS (Netherlands)

    A.M. Mulligan (Anna Marie); F.J. Couch (Fergus); D. Barrowdale (Daniel); S.M. Domchek (Susan); D. Eccles (Diana); H. Nevanlinna (Heli); S.J. Ramus (Susan); M. Robson (Mark); M.E. Sherman (Mark); A.B. Spurdle (Amanda); B. Wapenschmidt (Barbara); A. Lee (Andrew); L. McGuffog (Lesley); S. Healey (Sue); O. Sinilnikova (Olga); R. Janavicius (Ramunas); T.V.O. Hansen (Thomas); F.C. Nielsen (Finn); B. Ejlertsen (Bent); A. Osorio (Ana); I. Muñoz-Repeto (Iván); M. Durán (Mercedes); J. Godino (Javier); M. Pertesi (Maroulio); J. Benítez (Javier); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); E. Cattaneo (Elisa); B. Bonnani (Bernardo); A. Viel (Alessandra); B. Pasini (Barbara); L. Papi (Laura); L. Ottini (Laura); A. Savarese (Antonella); L. Bernard (Loris); P. Radice (Paolo); U. Hamann (Ute); M. Verheus (Martijn); E.J. Meijers-Heijboer (Hanne); J.T. Wijnen (Juul); E.B. Gómez García (Encarna); M.R. Nelen (Marcel); C.M. Kets; C.M. Seynaeve (Caroline); M.M.A. Tilanus-Linthorst (Madeleine); R.B. van der Luijt (Rob); T.V. Os (Theo); M.A. Rookus (Matti); D. Frost (Debra); J.L. Jones (J Louise); D.G. Evans (Gareth); F. Lalloo (Fiona); R. Eeles (Rosalind); L. Izatt (Louise); J.W. Adlard (Julian); R. Davidson (Rosemarie); J. Cook (Jackie); A. Donaldson (Alan); H. Dorkins (Huw); H. Gregory (Helen); J. Eason (Jacqueline); C. Houghton (Catherine); J. Barwell (Julian); L. Side (Lucy); E. McCann (Emma); A. Murray (Alexandra); S. Peock (Susan); A.K. Godwin (Andrew); R.K. Schmutzler (Rita); K. Rhiem (Kerstin); C. Engel (Christoph); A. Meindl (Alfons); I. Ruehl (Ina); N. Arnold (Norbert); D. Niederacher (Dieter); C. Sutter (Christian); H. Deissler (Helmut); D. Gadzicki (Dorothea); K. Kast (Karin); S. Preisler-Adams (Sabine); R. Varon-Mateeva (Raymonda); I. Schoenbuchner (Ines); B. Fiebig (Britta); W. Heinritz (Wolfram); D. Schäfer; H. Gevensleben (Heidrun); V. Caux-Moncoutier (Virginie); M. Fassy-Colcombet (Marion); F. Cornelis (Franco̧is); S. Mazoyer (Sylvie); M. Léone (Mélanie); N. Boutry-Kryza (N.); A. Hardouin (Agnès); P. Berthet (Pascaline); D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); I. Mortemousque (Isabelle); P. Pujol (Pascal); I. Coupier (Isabelle); M. Lebrun (Marine); C. Kientz (Caroline); M. Longy (Michel); N. Sevenet (Nicolas); D. Stoppa-Lyonnet (Dominique); C. Isaacs (Claudine); T. Caldes (Trinidad); M. de La Hoya (Miguel); T. Heikinen (Tuomas); K. Aittomäki (Kristiina); I. Blanco (Ignacio); C. Lazaro (Conxi); R.B. Barkardottir (Rosa); P. Soucy (Penny); M. Dumont (Martine); J. Simard (Jacques); M. Montagna (Marco); S. Tognazzo (Silvia); E. D'Andrea (Emma); S.B. Fox (Stephen); M. Yan (Max); R. Rebbeck (Timothy); O.I. Olopade (Olofunmilayo); J.N. Weitzel (Jeffrey); H. Lynch (Henry); P.A. Ganz (Patricia); G. Tomlinson (Gail); X. Wang (Xing); Z. Fredericksen (Zachary); V.S. Pankratz (Shane); N.M. Lindor (Noralane); C. Szabo (Csilla); K. Offit (Kenneth); R. Sakr (Rita); M.M. Gaudet (Mia); K.P. Bhatia (Kailash); N. Kauff (Noah); C.F. Singer (Christian); M.-K. Tea; D. Gschwantler-Kaulich (Daphne); A. Fink-Retter (Anneliese); P.L. Mai (Phuong); M.H. Greene (Mark); E.N. Imyanitov (Evgeny); F.P. O'Malley (Frances); H. Ozcelik (Hilmi); G. Glendon (Gord); A.E. Toland (Amanda); A-M. Gerdes (Anne-Marie); M. Thomassen (Mads); T.A. Kruse (Torben); U.B. Jensen; A.-B. Skytte (Anne-Bine); M.A. Caligo (Maria); M. Soller (Maria); K. Henriksson (Karin); A. von Wachenfeldt (Anna); B. Arver (Brita Wasteson); M. Stenmark-Askmalm (M.); P. Karlsson (Per); Y.C. Ding (Yuan); S.L. Neuhausen (Susan); M.S. Beattie (Mary); P.D.P. Pharoah (Paul); K.B. Moysich (Kirsten); K.L. Nathanson (Katherine); B. Karlan; J. Gross (Jenny); E.M. John (Esther); M.B. Daly (Mary); S.S. Buys (Saundra); M.C. Southey (Melissa); J.L. Hopper (John); M.-B. Terry (Mary-Beth); W. Chung (Wendy); A. Miron (Alexander); D. Goldgar (David); G. Chenevix-Trench (Georgia); D.F. Easton (Douglas); I.L. Andrulis (Irene); A.C. Antoniou (Antonis)

    2011-01-01

    textabstractIntroduction: Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes

  4. The impact of contralateral mastectomy on mortality in BRCA1 and BRCA2 mutation carriers with breast cancer.

    Science.gov (United States)

    Narod, Steven A

    2011-07-01

    Among women with breast cancer and a BRCA1 or BRCA2 mutation, the lifetime risk of breast cancer may be as high as 40%. Many physicians recommend prophylactic contralateral mastectomy, which is an effective measure of minimising the risk of contralateral cancer. The benefits of preventive contralateral mastectomy are apparent within 10 years, in terms of preventing cancer, but a much longer time period is required in order to demonstrate a reduction in mortality. Under the simple model presented here, among women who retain the contralateral breast, 0.4% of women are expected to die of contralateral breast cancer within 5 years, but 6.8% are expected to die at 20 years from diagnosis. These unnecessary deaths can be prevented by bilateral mastectomy.

  5. Endometrium is not the primary site of origin of pelvic high-grade serous carcinoma in BRCA1 or BRCA2 mutation carriers

    NARCIS (Netherlands)

    Reitsma, Welmoed; Mourits, Marian J. E.; de Bock, Geertruida H.; Hollema, Harry

    2013-01-01

    Serous endometrial intraepithelial carcinoma has been proposed to be a potential precursor lesion of pelvic high-grade serous carcinoma. If true, an increased incidence of uterine papillary serous carcinomas would be expected in BRCA1 and BRCA2 mutation carriers, who are at high-risk of developing p

  6. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclova, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Diez, Orland; Ramon y Cajal, Teresa; Konstantopoulou, Irene; Martinez-Bouzas, Cristina; Conejero, Raquel Andres; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas V. O.; Jonson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herraez, Belen; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Joerg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodriguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldes, Trinidad; Nevanlinna, Heli; Aittomaki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gomez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collee, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; Olah, Edith; Lazaro, Conxi; Teule, Alex; Menendez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the c

  7. Refined histopathological predictors of BRCA1 and BRCA2 mutation status: A large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia

    NARCIS (Netherlands)

    A.B. Spurdle (Amanda); F.J. Couch (Fergus); M. Parsons (Marilyn); L. McGuffog (Lesley); D. Barrowdale (Daniel); M.K. Bolla (Manjeet); Q. Wang (Qing); S. Healey (Sue); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); K. Rhiem (Kerstin); E. Hahnen (Eric); C. Engel (Christoph); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); D. Niederacher (Dieter); C. Sutter (Christian); S. Wang-Gohrke (Shan); D. Steinemann (Doris); S. Preisler-Adams (Sabine); K. Kast (Karin); R. Varon-Mateeva (Raymonda); S.D. Ellis (Steve); D. Frost (Debra); R. Platte (Radka); J. Perkins (Jo); D.G. Evans (Gareth); L. Izatt (Louise); R. Eeles (Rosalind); L. Adlard; R. Davidson (Rosemarie); T.J. Cole (Trevor); G. Scuvera (Giulietta); S. Manoukian (Siranoush); B. Bonnani (Bernardo); F. Mariette (F.); S. Fortuzzi (S.); A. Viel (Alessandra); B. Pasini (Barbara); L. Papi (Laura); L. Varesco (Liliana); R. Balleine (Rosemary); K.L. Nathanson (Katherine); S.M. Domchek (Susan); K. Offitt (Kenneth); A. Jakubowska (Anna); N.M. Lindor (Noralane); M. Thomassen (Mads); U.B. Jensen; J. Rantala (Johanna); Å. Borg (Åke); I.L. Andrulis (Irene); A. Miron (Alexander); T.V.O. Hansen (Thomas); T. Caldes (Trinidad); S.L. Neuhausen (Susan); A.E. Toland (Amanda); H. Nevanlinna (Heli); M. Montagna (Marco); J. Garber (Judy); A.K. Godwin (Andrew); A. Osorio (Ana); R.E. Factor (Rachel E.); M.B. Terry (Mary B.); R. Rebbeck (Timothy); B. Karlan; M.C. Southey (Melissa); M.U. Rashid (Muhammad); N. Tung (Nadine); P.D.P. Pharoah (Paul); F. Blows (Fiona); A.M. Dunning (Alison); E. Provenzano (Elena); P. Hall (Per); K. Czene (Kamila); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Cornelissen (Sten); S. Verhoef; P.A. Fasching (Peter); M.W. Beckmann (Matthias); A.B. Ekici (Arif); D.J. Slamon (Dennis); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); P. Seibold (Petra); K. Aittomäki (Kristiina); T.A. Muranen (Taru); P. Heikkilä (Päivi); C. Blomqvist (Carl); J.D. Figueroa (Jonine); S.J. Chanock (Stephen); L.A. Brinton (Louise); J. Lissowska (Jolanta); J.E. Olson (Janet); V.S. Pankratz (Shane); E.M. John (Esther); A.S. Whittemore (Alice); D. van West; U. Hamann (Ute); D. Torres (Diana); H.U. Ulmer (Hans); T. Rud̈iger (Thomas); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); D. Eccles (Diana); W. Tapper (William); L. Durcan (Lorraine); L. Jones (Louise); J. Peto (Julian); I. dos Santos Silva (Isabel); O. Fletcher (Olivia); N. Johnson (Nichola); M. Dwek (Miriam); R. Swann (Ruth); A.L. Bane (Anita L.); G. Glendon (Gord); A.M. Mulligan (Anna Marie); G.G. Giles (Graham); R.L. Milne (Roger); L. Baglietto (Laura); C.A. McLean (Catriona Ann); J. Carpenter (Jane); C. Clarke (Christine); R.J. Scott (Rodney); H. Brauch (Hiltrud); T. Brüning (Thomas); Y-D. Ko (Yon-Dschun); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); J. Gronwald (Jacek); T. Dörk (Thilo); N.V. Bogdanova (Natalia); T.-W. Park-Simon; P. Hillemanns (Peter); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L. Le Marchand (Loic); B. Burwinkel (Barbara); F. Marme (Federick); H. Surovy (Harald); R. Yang (Rongxi); H. Anton-Culver (Hoda); A. Ziogas (Argyrios); M.J. Hooning (Maartje); J.M. Collee (Margriet); J.W.M. Martens (John); M.M.A. Tilanus-Linthorst (Madeleine); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); A. Lindblom (Annika); S. Margolin (Sara); V. Joseph (Vijai); M. Robson (Mark); R. Rau-Murthy (Rohini); A. González-Neira (Anna); J.I. Arias Pérez (José Ignacio); P. Zamora (Pilar); J. Benítez (Javier); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Peterlongo (Paolo); D. Zaffaroni (D.); M. Barile (Monica); F. Capra (Fabio); P. Radice (Paolo); S.-H. Teo; D.F. Easton (Douglas); A.C. Antoniou (Antonis C.); G. Chenevix-Trench (Georgia); D. Goldgar (David)

    2014-01-01

    textabstractIntroduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modelin

  8. Mutational analyses of BRCA1 and BRCA2 with Ashkenazi and non-Ashkenazi Jewish women with familial breast and ovarian cancer

    NARCIS (Netherlands)

    Shiri-Sverdlov, R; Oefner, P; Green, L; Baruch, RG; Wagner, T; Kruglikova, A; Haitchick, S; Hofstra, RMW; Papa, MZ; Mulder, [No Value; Rizel, S; Sade, RBB; Dagan, E; Abdeen, Z; Goldman, B; Friedman, E

    2000-01-01

    In Ashkenazi (East European) Jews, three predominant mutations in BRCA1 (185delAG and 5382insC) and BRCA2 (6174-delT) account for the majority of germline mutations in high risk breast and/or ovarian cancer families. Among non-Ashkenazi Jews, the 185delAG, Tyr978Ter, and a handful of "private" mutat

  9. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Wang, Xianshu; Pankratz, V. Shane; Fredericksen, Zachary; Tarrell, Robert; Karaus, Mary; McGuffog, Lesley; Pharaoh, Paul D. P.; Ponder, Bruce A. J.; Dunning, Alison M.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Sinilnikova, Olga M.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Houdayer, Claude; Hogervorst, Frans B. L.; Hooning, Maartje J.; Ligtenberg, Marjolijn J.; Spurdle, Amanda; Chenevix-Trench, Georgia; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Singer, Christian F.; Gschwantler-Kaulich, Daphne; Dressler, Catherina; Fink, Anneliese; Szabo, Csilla I.; Zikan, Michal; Foretova, Lenka; Claes, Kathleen; Thomas, Gilles; Hoover, Robert N.; Hunter, David J.; Chanock, Stephen J.; Easton, Douglas F.; Antoniou, Antonis C.; Couch, Fergus J.

    2010-01-01

    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additio

  10. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers.

    NARCIS (Netherlands)

    Wang, X.; Pankratz, V.S.; Fredericksen, Z.; Tarrell, R.; Karaus, M.; McGuffog, L.; Pharaoh, P.D.; Ponder, B.A.J.; Dunning, A.M.; Peock, S.; Cook, M.; Oliver, C.; Frost, D.; Sinilnikova, O.M.; Stoppa-Lyonnet, D.; Mazoyer, S.; Houdayer, C.; Hogervorst, F.B.L.; Hooning, M.J.; Ligtenberg, M.J.L.; Spurdle, A.; Chenevix-Trench, G.; Schmutzler, R.K.; Wappenschmidt, B.; Engel, C.; Meindl, A.; Domchek, S.M.; Nathanson, K.L.; Rebbeck, T.R.; Singer, C.F.; Gschwantler-Kaulich, D.; Dressler, C.; Fink, A.; Szabo, C.I.; Zikan, M.; Foretova, L.; Claes, K.; Thomas, G.; Hoover, R.N.; Hunter, D.J.; Chanock, S.J.; Easton, D.F.; Antoniou, A.C.; Couch, F.J.

    2010-01-01

    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additio

  11. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of th...

  12. BRCA1, BRCA2 and CHEK2 (1100 del C) germline mutations in hereditary breast and ovarian cancer families in South India.

    Science.gov (United States)

    Rajkumar, Thangarajan; Soumittra, Nagasamy; Nancy, Nirmala Karunakaran; Swaminathan, Rajaraman; Sridevi, Veluswami; Shanta, Vishwanathan

    2003-01-01

    Cancer of the breast is the second most common cancer seen among Indian women. This study describes the use of DHPLC for mutation analysis for BRCA1, BRCA2 and CHEK2 (1100delC) in 22 patients with a family history of breast and/or ovarian cancer and early onset breast cancer (codon, potentially leading to a truncated protein. Two of these were in BRCA1 (one was a novel 5 base deletion) and one in the BRCA2 gene. No patient was found in our series to have the CHEK2 (1100delC) mutation. DNA from a healthy blood donor and all but one of the 22 patients, demonstrated polymorphisms in BRCA1 and/or BRCA2 genes. This is the first study from South India, on BRCA1, BRCA2 & CHEK2 (1100 del C) mutations in patients with a family history of breast and/or ovarian cancer and early onset breast/ovarian cancer, using the sensitive DHPLC approach.

  13. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: Implications for risk prediction

    NARCIS (Netherlands)

    A.C. Antoniou (Antonis); J. Beesley (Jonathan); L. McGuffog (Lesley); O. Sinilnikova (Olga); S. Healey (Sue); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); R. Rebbeck (Timothy); J.N. Weitzel (Jeffrey); H. Lynch (Henry); C. Isaacs (Claudine); P.A. Ganz (Patricia); G. Tomlinson (Gail); O.I. Olopade (Olofunmilayo); F.J. Couch (Fergus); X. Wang (Xing); N.M. Lindor (Noralane); V.S. Pankratz (Shane); P. Radice (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); M. Barile (Monica); A. Viel (Alessandra); A. Allavena (Anna); V. Dall'Olio (Valentina); P. Peterlongo (Paolo); C. Szabo (Csilla); M. Zikan (Michal); K. Claes (Kathleen); B. Poppe (Bruce); L. Foretova (Lenka); P.L. Mai (Phuong); M.H. Greene (Mark); G. Rennert (Gad); F. Lejbkowicz (Flavio); G. Glendon (Gord); H. Ozcelik (Hilmi); I.L. Andrulis (Irene); M. Thomassen (Mads); A-M. Gerdes (Anne-Marie); L. Sunde (Lone); D. Cruger (Dorthe); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); B. Kaufman (Bella); Y. Laitman (Yael); R. Milgrom (Roni); M. Dubrovsky (Maya); S. Cohen (Shimrit); Å. Borg (Åke); H. Jernström (H.); A. Lindblom (Annika); J. Rantala (Johanna); M. Stenmark-Askmalm (M.); B. Melin (Beatrice); K.L. Nathanson (Katherine); S.M. Domchek (Susan); A. Jakubowska (Anna); J. Lubinski (Jan); T. Huzarski (Tomasz); A. Osorio (Ana); A. Lasa (Adriana); M. Durán (Mercedes); M.I. Tejada; J. Godino (Javier); J. Benitez (Javier); U. Hamann (Ute); M. Kriege (Mieke); N. Hoogerbrugge (Nicoline); R.B. van der Luijt (Rob); C.J. van Asperen (Christi); P. Devilee (Peter); E.J. Meijers-Heijboer (Hanne); M.J. Blok (Marinus); C.M. Aalfs (Cora); F.B.L. Hogervorst (Frans); M.A. Rookus (Matti); M. Cook (Margaret); C.T. Oliver (Clare); D. Frost (Debra); D. Conroy (Don); D.G. Evans (Gareth); F. Lalloo (Fiona); G. Pichert (Gabriella); R. Davidson (Rosemarie); T.J. Cole (Trevor); J. Paterson (Joan); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); M.E. Porteous (Mary); L.J. Walker (Lisa); M.J. Kennedy (John); H. Dorkins (Huw); S. Peock (Susan); A.K. Godwin (Andrew); D. Stoppa-Lyonnet (Dominique); A. de Pauw (Antoine); S. Mazoyer (Sylvie); V. Bonadona (Valérie); C. Lasset (Christine); H. Dreyfus (Hélène); D. Leroux (Dominique); A. hardouin (Agnès); P. Berthet (Pascaline); L. Faivre (Laurence); C. Loustalot (Catherine); T. Noguchi (Tetsuro); H. Sobol (Hagay); E. Rouleau (Etienne); C. Nogues (Catherine); M. Frenay (Marc); L. Vénat-Bouvet (Laurence); J. Hopper (John); M.J. Daly (Mark); M-B. Terry (Mary-beth); E.M. John (Esther); S.S. Buys (Saundra); Y. Yassin (Yosuf); A. Miron (Alexander); D. Goldgar (David); C.F. Singer (Christian); C. Dressler (Catherina); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); T.V.O. Hansen (Thomas); L. Jnson (Lars); B.A. Agnarsson (Bjarni); T. Kircchoff (Tomas); K. Offit (Kenneth); V. Devlin (Vincent); A. Dutra-Clarke (Ana); M. Piedmonte (Marion); G.C. Rodriguez (Gustavo); K. Wakeley (Katie); J.F. Boggess (John); J. Basil (Jack); P.E. Schwartz (Peter); S.V. Blank (Stephanie); A.E. Toland (Amanda); M. Montagna (Marco); C. Casella (Cinzia); E.N. Imyanitov (Evgeny); L. Tihomirova (Laima); I. Blanco (Ignacio); C. Lazaro (Conxi); S.J. Ramus (Susan); L. Sucheston (Lara); B.Y. Karlan (Beth); J. Gross (Jenny); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); C. Engel (Christoph); A. Meindl (Alfons); M. Lochmann (Magdalena); N. Arnold (Norbert); S. Heidemann (Simone); R. Varon-Mateeva (Raymonda); D. Niederacher (Dieter); C. Sutter (Christian); H. Deissler (Helmut); D. Gadzicki (Dorothea); S. Preisler-Adams (Sabine); K. Kast (Karin); I. Schönbuchner (Ines); T. Caldes (Trinidad); M. de La Hoya (Miguel); K. Aittomäki (Kristiina); H. Nevanlinna (Heli); J. Simard (Jacques); A.B. Spurdle (Amanda); H. Holland (Helene); G. Chenevix-Trench (Georgia); R. Platte (Radka); D.F. Easton (Douglas)

    2010-01-01

    textabstractThe known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10,

  14. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Beesley, Jonathan; McGuffog, Lesley;

    2010-01-01

    The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs650495...

  15. Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers : Implications for Risk Prediction

    NARCIS (Netherlands)

    Antoniou, Antonis C.; Beesley, Jonathan; McGuffog, Lesley; Sinilnikova, Olga M.; Healey, Sue; Neuhausen, Susan L.; Ding, Yuan Chun; Rebbeck, Timothy R.; Weitzel, Jeffrey N.; Lynch, Henry T.; Isaacs, Claudine; Ganz, Patricia A.; Tomlinson, Gail; Olopade, Olufunmilayo I.; Couch, Fergus J.; Wang, Xianshu; Lindor, Noralane M.; Pankratz, Vernon S.; Radice, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Barile, Monica; Viel, Alessandra; Allavena, Anna; Dall'Olio, Valentina; Peterlongo, Paolo; Szabo, Csilla I.; Zikan, Michal; Claes, Kathleen; Poppe, Bruce; Foretova, Lenka; Mai, Phuong L.; Greene, Mark H.; Rennert, Gad; Lejbkowicz, Flavio; Glendon, Gord; Ozcelik, Hilmi; Andrulis, Irene L.; Thomassen, Mads; Gerdes, Anne-Marie; Sunde, Lone; Cruger, Dorthe; Jensen, Uffe Birk; Caligo, Maria; Friedman, Eitan; Kaufman, Bella; Laitman, Yael; Milgrom, Roni; Dubrovsky, Maya; Cohen, Shimrit; Borg, Ake; Jernstroem, Helena; Lindblom, Annika; Rantala, Johanna; Stenmark-Askmalm, Marie; Melin, Beatrice; Nathanson, Kate; Domchek, Susan; Jakubowska, Ania; Lubinski, Jan; Huzarski, Tomasz; Osorio, Ana; Lasa, Adriana; Duran, Mercedes; Tejada, Maria-Isabel; Godino, Javier; Benitez, Javier; Hamann, Ute; Kriege, Mieke; Hoogerbrugge, Nicoline; van der Luijt, Rob B.; van Asperen, Christi J.; Devilee, Peter; Meijers-Heijboer, E. J.; Blok, Marinus J.; Aalfs, Cora M.; Hogervorst, Frans; Rookus, Matti; Cook, Margaret; Oliver, Clare; Frost, Debra; Conroy, Don; Evans, D. Gareth; Lalloo, Fiona; Pichert, Gabriella; Davidson, Rosemarie; Cole, Trevor; Cook, Jackie; Paterson, Joan; Hodgson, Shirley; Morrison, Patrick J.; Porteous, Mary E.; Walker, Lisa; Kennedy, M. John; Dorkins, Huw; Peock, Susan; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; de Pauw, Antoine; Mazoyer, Sylvie; Bonadona, Valerie; Lasset, Christine; Dreyfus, Helene; Leroux, Dominique; Hardouin, Agnes; Berthet, Pascaline; Faivre, Laurence; Loustalot, Catherine; Noguchi, Tetsuro; Sobol, Hagay; Rouleau, Etienne; Nogues, Catherine; Frenay, Marc; Venat-Bouvet, Laurence; Hopper, John L.; Daly, Mary B.; Terry, Mary B.; John, Esther M.; Buys, Saundra S.; Yassin, Yosuf; Miron, Alexander; Goldgar, David; Singer, Christian F.; Dressler, Anne Catharina; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Hansen, Thomas V. O.; Jnson, Lars; Agnarsson, Bjarni A.; Kirchhoff, Tomas; Offit, Kenneth; Devlin, Vincent; Dutra-Clarke, Ana; Piedmonte, Marion; Rodriguez, Gustavo C.; Wakeley, Katie; Boggess, John F.; Basil, Jack; Schwartz, Peter E.; Blank, Stephanie V.; Toland, Amanda Ewart; Montagna, Marco; Casella, Cinzia; Imyanitov, Evgeny; Tihomirova, Laima; Blanco, Ignacio; Lazaro, Conxi; Ramus, Susan J.; Sucheston, Lara; Karlan, Beth Y.; Gross, Jenny; Schmutzler, Rita; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Lochmann, Magdalena; Arnold, Norbert; Heidemann, Simone; Varon-Mateeva, Raymonda; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Dorothea; Preisler-Adams, Sabine; Kast, Karin; Schoenbuchner, Ines; Caldes, Trinidad; de la Hoya, Miguel; Aittomaeki, Kristiina; Nevanlinna, Heli; Simard, Jacques; Spurdle, Amanda B.; Holland, Helene; Chen, Xiaoqing; Platte, Radka; Chenevix-Trench, Georgia; Easton, Douglas F.

    2010-01-01

    The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 i

  16. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    K.B. Kuchenbaecker (Karoline); S.L. Neuhausen (Susan); M. Robson (Mark); D. Barrowdale (Daniel); L. McGuffog (Lesley); A.M. Mulligan (Anna Marie); I.L. Andrulis (Irene); A.B. Spurdle (Amanda); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); C. Engel (Christoph); B. Wapenschmidt (Barbara); H. Nevanlinna (Heli); M. Thomassen (Mads); M.C. Southey (Melissa); P. Radice (Paolo); S.J. Ramus (Susan); S.M. Domchek (Susan); K.L. Nathanson (Katherine); A. Lee (Andrew); S. Healey (Sue); R. Nussbaum (Robert); R. Rebbeck (Timothy); B.K. Arun (Banu); M. James (Margaret); B. Karlan; K.J. Lester (Kathryn); I. Cass (Ilana); M.B. Terry (Mary Beth); M.J. Daly (Mark); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); T. v O Hansen (Thomas); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); F. Nielsen (Finn); J. Dennis (Joe); J.M. Cunningham (Julie); S. Hart (Stewart); S. Slager (Susan); A. Osorio (Ana); J. Benítez (Javier); M. Duran (Mercedes); J.N. Weitzel (Jeffrey); I. Tafur (Isaac); M. Hander (Mary); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); G. Roversi (Gaia); G. Scuvera (Giulietta); B. Bonnani (Bernardo); P. Mariani (Paolo); S. Volorio (Sara); R. Dolcetti (Riccardo); L. Varesco (Liliana); L. Papi (Laura); M.G. Tibiletti (Maria Grazia); G. Giannini (Giuseppe); F. Fostira (Florentia); I. Konstantopoulou (I.); J. Garber (Judy); U. Hamann (Ute); A. Donaldson (Alan); C. Brewer (Carole); C. Foo (Claire); D.G. Evans (Gareth); D. Frost (Debra); D. Eccles (Diana); F. Douglas (Fiona); A. Brady (A.); J. Cook (Jackie); M. Tischkowitz (Marc); L. Adlard; J. Barwell (Julian); K. Ong; L.J. Walker (Lisa); L. Izatt (Louise); L. Side (Lucy); M.J. Kennedy (John); M.T. Rogers (Mark); M.E. Porteous (Mary); P.J. Morrison (Patrick); R. Platte (Radka); R. Eeles (Ros); R. Davidson (Rosemarie); S. Hodgson (Shirley); S.D. Ellis (Steve); A.K. Godwin (Andrew); K. Rhiem (Kerstin); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); D. Niederacher (Dieter); C. Sutter (Christian); D. Steinemann (Doris); N. Bogdanova-Markov (Nadja); K. Kast (Karin); R. Varon-Mateeva (Raymonda); S. Wang-Gohrke (Shan); P.A. Gehrig (Paola A.); B. Markiefka (Birgid); B. Buecher (Bruno); C. Lefol (Cédrick); D. Stoppa-Lyonnet (Dominique); E. Rouleau (Etienne); F. Prieur (Fabienne); F. Damiola (Francesca); L. Barjhoux (Laure); L. Faivre (Laurence); M. Longy (Michel); N. Sevenet (Nicolas); O. Sinilnikova (Olga); S. Mazoyer (Sylvie); V. Bonadona (Valérie); V. Caux-Moncoutier (Virginie); C. Isaacs (Claudine); T. Van Maerken (Tom); K.B.M. Claes (Kathleen B.M.); M. Piedmonte (Marion); L. Andrews (Lesley); J. Hays (John); G.C. Rodriguez (Gustavo); T. Caldes (Trinidad); M. de La Hoya (Miguel); S. Khan (Sofia); F.B.L. Hogervorst (Frans); C.M. Aalfs (Cora); J.L. de Lange (J.); E.J. Meijers-Heijboer (Hanne); A.H. van der Hout (Annemarie); J.T. Wijnen (Juul); K.E. van Roozendaal (Kees); A.R. Mensenkamp (Arjen); A.M.W. van den Ouweland (Ans); C.H.M. van Deurzen (Carolien); R.B. van der Luijt (Rob); E. Olah; O. Díez (Orland); C. Lazaro (Conxi); I. Blanco (Ignacio); A. Teulé (A.); M. Menéndez (Mireia); A. Jakubowska (Anna); J. Lubinski (Jan); C. Cybulski (Cezary); J. Gronwald (Jacek); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); A. Arason (Adalgeir); C. Maugard; P. Soucy (Penny); M. Montagna (Marco); S. Agata (Simona); P.J. Teixeira; C. Olswold (Curtis); N.M. Lindor (Noralane); V.S. Pankratz (Shane); B. Hallberg (Boubou); X. Wang (Xianshu); C. Szabo (Csilla); J. Vijai (Joseph); L. Jacobs (Lauren); M. Corines (Marina); A. Lincoln (Anne); A. Berger (Andreas); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D.G. Kaulich (Daphne Gschwantler); G. Pfeiler (Georg); M.-K. Tea; C. Phelan (Catherine); P.L. Mai (Phuong); M.H. Greene (Mark); G. Rennert (Gad); E.N. Imyanitov (Evgeny); G. Glendon (Gord); A.E. Toland (Amanda); A. Bojesen (Anders); I.S. Pedersen (Inge Sokilde); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); R. Berger (Raanan); Y. Laitman (Yael); J. Rantala (Johanna); B. Arver (Brita Wasteson); N. Loman (Niklas); Å. Borg (Åke); H. Ehrencrona (Hans); O.I. Olopade (Olofunmilayo); J. Simard (Jacques); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); K. Offit (Kenneth); F.J. Couch (Fergus); A.C. Antoniou (Antonis C.); CIMBA; EMBRACE Study; Breast Cancer Family; GEMO Study Collaborators; HEBON; KConFab Investigators

    2014-01-01

    textabstractIntroduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 muta

  17. Development and validation of a new algorithm for the reclassification of genetic variants identified in the BRCA1 and BRCA2 genes.

    Science.gov (United States)

    Pruss, Dmitry; Morris, Brian; Hughes, Elisha; Eggington, Julie M; Esterling, Lisa; Robinson, Brandon S; van Kan, Aric; Fernandes, Priscilla H; Roa, Benjamin B; Gutin, Alexander; Wenstrup, Richard J; Bowles, Karla R

    2014-08-01

    BRCA1 and BRCA2 sequencing analysis detects variants of uncertain clinical significance in approximately 2 % of patients undergoing clinical diagnostic testing in our laboratory. The reclassification of these variants into either a pathogenic or benign clinical interpretation is critical for improved patient management. We developed a statistical variant reclassification tool based on the premise that probands with disease-causing mutations are expected to have more severe personal and family histories than those having benign variants. The algorithm was validated using simulated variants based on approximately 145,000 probands, as well as 286 BRCA1 and 303 BRCA2 true variants. Positive and negative predictive values of ≥99 % were obtained for each gene. Although the history weighting algorithm was not designed to detect alleles of lower penetrance, analysis of the hypomorphic mutations c.5096G>A (p.Arg1699Gln; BRCA1) and c.7878G>C (p.Trp2626Cys; BRCA2) indicated that the history weighting algorithm is able to identify some lower penetrance alleles. The history weighting algorithm is a powerful tool that accurately assigns actionable clinical classifications to variants of uncertain clinical significance. While being developed for reclassification of BRCA1 and BRCA2 variants, the history weighting algorithm is expected to be applicable to other cancer- and non-cancer-related genes.

  18. DHPLC/SURVEYOR nuclease: a sensitive, rapid and affordable method to analyze BRCA1 and BRCA2 mutations in breast cancer families.

    Science.gov (United States)

    Pilato, Brunella; De Summa, Simona; Danza, Katia; Papadimitriou, Stavros; Zaccagna, Paolo; Paradiso, Angelo; Tommasi, Stefania

    2012-09-01

    Hereditary breast cancer accounts for about 10% of all breast cancers and BRCA1 and BRCA2 genes have been identified as validated susceptibility genes for this pathology. Testing for BRCA gene mutations is usually based on a pre-screening approach, such as the partial denaturation DHPLC method, and capillary direct sequencing. However, this approach is time consuming due to the large size of BRCA1 and BRCA2 genes. Recently, a new low cost and time saving DHPLC protocol has been developed to analyze gene mutations by using SURVEYOR(®) Nuclease digestion and DHPLC analysis. A subset of 90 patients, enrolled in the Genetic Counseling Program of the National Cancer Centre of Bari (Italy), was performed to validate this approach. Previous retrospective analysis showed that 9/90 patients (10%) were mutated in BRCA1 and BRCA2 genes and these data were confirmed by the present approach. DNA samples underwent touchdown PCR and, subsequently, SURVEYOR(®) nuclease digestion. BRCA1 and BRCA2 amplicons were divided into groups depending on amplicon size to allow multiamplicon digestion. The product of this reaction were analyzed on Transgenomic WAVE Nucleic Acid High Sensitivity Fragment Analysis System. The operator who performed the DHPLC surveyor approach did not know the sequencing results at that time. The SURVEYOR(®) Nuclease DHPLC approach was able to detect all alterations with a sensitivity of 95%. Furthermore, in order to save time and reagents, a multiamplicon setting preparation was validated.

  19. Mutation analysis of BRCA1, BRCA2, PALB2 and BRD7 in a hospital-based series of German patients with triple-negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Franziska Pern

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive form of breast carcinoma with a poor prognosis. Recent evidence suggests that some patients with TNBC harbour germ-line mutations in DNA repair genes which may render their tumours susceptible to novel therapies such as treatment with PARP inhibitors. In the present study, we have investigated a hospital-based series of 40 German patients with TNBC for the presence of germ-line mutations in BRCA1, BRCA2, PALB2, and BRD7 genes. Microfluidic array PCR and next-generation sequencing was used for BRCA1 and BRCA2 analysis while conventional high-resolution melting and Sanger sequencing was applied to study the coding regions of PALB2 and BRD7, respectively. Truncating mutations in BRCA1 were found in six patients, and truncating mutations in BRCA2 and PALB2 were detected in one patient each, whereas no truncating mutation was identified in BRD7. One patient was a double heterozygote for the PALB2 mutation, c.758insT, and a BRCA1 mutation, c.927delA. Our results confirm in a hospital-based setting that a substantial proportion of German TNBC patients (17.5% harbour germ-line mutations in genes involved in homology-directed DNA repair, with a preponderance of BRCA1 mutations. Triple-negative breast cancer should be considered as an additional criterion for future genetic counselling and diagnostic sequencing.

  20. VEGFR3 Inhibition Chemosensitizes Ovarian Cancer Stemlike Cells through Down-Regulation of BRCA1 and BRCA2

    Directory of Open Access Journals (Sweden)

    Jaeyoung Lim

    2014-04-01

    Full Text Available In ovarian cancer, loss of BRCA gene expression in tumors is associated with improved response to chemotherapy and increased survival. A means to pharmacologically downregulate BRCA gene expression could improve the outcomes of patients with BRCA wild-type tumors. We report that vascular endothelial growth factor receptor 3 (VEGFR3 inhibition in ovarian cancer cells is associated with decreased levels of both BRCA1 and BRCA2. Inhibition of VEGFR3 in ovarian tumor cells was associated with growth arrest. CD133+ ovarian cancer stemlike cells were preferentially susceptible to VEGFR3-mediated growth inhibition. VEGFR3 inhibition–mediated down-regulation of BRCA gene expression reversed chemotherapy resistance and restored chemosensitivity in resistant cell lines in which a BRCA2 mutation had reverted to wild type. Finally, we demonstrate that tumor-associated macrophages are a primary source of VEGF-C in the tumor microenvironment. Our studies suggest that VEGFR3 inhibition may be a pharmacologic means to downregulate BRCA genes and improve the outcomes of patients with BRCA wild-type tumors.

  1. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Wang, Xianshu; Pankratz, V Shane; Fredericksen, Zachary; Tarrell, Robert; Karaus, Mary; McGuffog, Lesley; Pharaoh, Paul D P; Ponder, Bruce A J; Dunning, Alison M; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Sinilnikova, Olga M; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Houdayer, Claude; Hogervorst, Frans B L; Hooning, Maartje J; Ligtenberg, Marjolijn J; Spurdle, Amanda; Chenevix-Trench, Georgia; Schmutzler, Rita K; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Timothy R; Singer, Christian F; Gschwantler-Kaulich, Daphne; Dressler, Catherina; Fink, Anneliese; Szabo, Csilla I; Zikan, Michal; Foretova, Lenka; Claes, Kathleen; Thomas, Gilles; Hoover, Robert N; Hunter, David J; Chanock, Stephen J; Easton, Douglas F; Antoniou, Antonis C; Couch, Fergus J

    2010-07-15

    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additional risk modifiers for BRCA1 and BRCA2 may be identified from promising signals discovered in breast cancer GWAS. A total of 350 SNPs identified as candidate breast cancer risk factors (P CAMK1D displayed the strongest associations in BRCA1 carriers (HR = 0.78, 95% CI: 0.69-0.90, P(trend) = 3.6 x 10(-4) and HR = 1.25, 95% CI: 1.10-1.41, P(trend) = 4.2 x 10(-4)), whereas rs9393597 in LOC134997 and rs12652447 in FBXL7 showed the strongest associations in BRCA2 carriers (HR = 1.55, 95% CI: 1.25-1.92, P(trend) = 6 x 10(-5) and HR = 1.37, 95% CI: 1.16-1.62, P(trend) = 1.7 x 10(-4)). The magnitude and direction of the associations were consistent with the original GWAS. In subsequent risk assessment studies, the loci appeared to interact multiplicatively for breast cancer risk in BRCA1 and BRCA2 carriers. Promising candidate SNPs from GWAS were identified as modifiers of breast cancer risk in BRCA1 and BRCA2 carriers. Upon further validation, these SNPs together with other genetic and environmental factors may improve breast cancer risk assessment in these populations.

  2. The rate of recurrent BRCA1, BRCA2, and TP53 mutations in the general population, and unselected ovarian cancer cases, in Belo Horizonte, Brazil.

    Science.gov (United States)

    Schayek, Hagit; De Marco, Luiz; Starinsky-Elbaz, Sigal; Rossette, Mariana; Laitman, Yael; Bastos-Rodrigues, Luciana; da Silva Filho, Agnaldo Lopes; Friedman, Eitan

    2016-01-01

    In Brazil, several recurring mutations in BRCA1 and BRCA2 and a TP53 mutation (R337H) have been reported in high risk breast cancer cases. We hypothesized that these recurring mutations may also be detected in the general population and ovarian cancer cases in the state of Minas Gerais. To test this notion, participants were recruited from the outpatient and the Gynecological clinic in the UFMG Medical Center in Belo Horizonte, Minas Gerais, Brazil. BRCA1 (c.68_69delAG, c.5266dupC, c.181T>G, c.4034delA, c.5123C>A), BRCA2 (c.5946delT, c.8537_8538delAG, 4936_4939delGAAA), the c.156_157insAlu* BRCA2 and the c.1010G>A *TP53 mutation were genotyped using validated techniques. Overall, 513 cancer free participants (273 men) (mean age 47.7 ± 15.1 years) and 103 ovarian cancer cases (mean age at diagnosis 58.7 ± 9.6 years) were studied. None of the participants were found to carry any of the genotyped mutations. We conclude that the recurring mutations in BRCA1, BRCA2 and TP53 cannot be detected in the general population or consecutive ovarian cancer cases in this geographical region in Brazil.

  3. Clinical follow up of Mexican women with early onset of breast cancer and mutations in the BRCA1 and BRCA2 genes Estudio de seguimiento clínico de mujeres mexicanas con cáncer de mama de inicio temprano y mutaciones en los genes BRCA1 y BRCA2

    Directory of Open Access Journals (Sweden)

    Ana Laura Calderón-Garcidueñas

    2005-04-01

    Full Text Available OBJECTIVE: This study describes the presence of mutations in BRCA1 and BRCA2 genes in a group of Mexican women and the clinical evolution of early onset breast cancer (EOBC. MATERIAL AND METHODS: A prospective hospital-based study was performed in a sample of 22 women with EOBC (7 in clinical stage IIA, 8 in IIB, and 7 in IIIA. The patients attended a tertiary care hospital in northeastern Mexico in 1997 and were followed up over a 5-year period. Molecular analysis included: 1 a mutation screening by heteroduplex analysis (HA of BRCA1 and BRCA2 genes and 2 a sequence analysis. RESULTS: Of 22 patients, 14 (63.6% showed a variant band detected by heteroduplex analysis of the BRCA1 and BRCA2 genes: 8 polymorphisms, 4 mutations of uncertain significance, and 2 novel truncated protein mutations, one in BRCA1 (exon 11, 3587delT and the other in the BRCA2 gene (exon 11, 2664InsA. CONCLUSIONS: These findings support future studies to determine the significance and impact of the genetic factor in this Mexican women population.OBJETIVO: Describir la presencia de mutaciones en los genes BRCA1 y BRCA2 y la evolución clínica de un grupo de mujeres con carcinoma mamario de inicio temprano (CMIT. MATERIAL Y MÉTODOS: Se realizó un estudio hospitalario, prospectivo, en una muestra de 22 pacientes con CMIT (siete en etapa clínica IIA, ocho en la IIB y siete en etapa IIIA. Las pacientes fueron atendidas en un hospital del noreste de México en 1997 y se realizó un seguimiento clínico durante cinco años. El análisis molecular incluyó: 1 análisis heterodúplex (AH para detectar bandas variantes en la secuencia de ADN de los genes BRCA1 y BRCA2, y 2 análisis de secuenciación. RESULTADOS: De 22 pacientes, 14 (63.6% mostraron banda variante por AH en los genes BRCA1 y BRCA2: ocho polimorfismos, cuatro mutaciones de significado incierto y dos mutaciones noveles con proteína truncada, una en BRCA1 (exón 11, 3587delT y otra en BRCA2 (exón 11, 2664Ins

  4. The impact of pregnancy on breast cancer survival in women who carry a BRCA1 or BRCA2 mutation.

    Science.gov (United States)

    Valentini, Adriana; Lubinski, Jan; Byrski, Tomasz; Ghadirian, Parviz; Moller, Pal; Lynch, Henry T; Ainsworth, Peter; Neuhausen, Susan L; Weitzel, Jeffrey; Singer, Christian F; Olopade, Olufunmilayo I; Saal, Howard; Lyonnet, Dominique Stoppa; Foulkes, William D; Kim-Sing, Charmaine; Manoukian, Siranoush; Zakalik, Dana; Armel, Susan; Senter, Leigha; Eng, Charis; Grunfeld, Eva; Chiarelli, Anna M; Poll, Aletta; Sun, Ping; Narod, Steven A

    2013-11-01

    Physicians are often approached by young women with a BRCA mutation and a recent history of breast cancer who wish to have a baby. They wish to know if pregnancy impacts upon their future risks of cancer recurrence and survival. To date, there is little information on the survival experience of women who carry a mutation in one of the BRCA genes and who become pregnant. From an international multi-center cohort study of 12,084 women with a BRCA1 or BRCA2 mutation, we identified 128 case subjects who were diagnosed with breast cancer while pregnant or who became pregnant after a diagnosis of breast cancer. These women were age-matched to 269 mutation carriers with breast cancer who did not become pregnant (controls). Subjects were followed from the date of breast cancer diagnosis until the date of last follow-up or death from breast cancer. The Kaplan-Meier method was used to estimate 15-year survival rates. The hazard ratio for survival associated with pregnancy was calculated using a left-truncated Cox proportional hazard model, adjusting for other prognostic factors. Among women who were diagnosed with breast cancer when pregnant or who became pregnant thereafter, the 15-year survival rate was 91.5 %, compared to a survival of 88.6 % for women who did not become pregnant (adjusted hazard ratio = 0.76; 95 % CI 0.31-1.91; p = 0.56). Pregnancy concurrent with or after a diagnosis of breast cancer does not appear to adversely affect survival among BRCA1/2 mutation carriers.

  5. BRCA1 and BRCA2 germline mutation analysis among Indian women from south India: identification of four novel mutations and high-frequency occurrence of 185delAG mutation

    Indian Academy of Sciences (India)

    Kannan Vaidyanathan; Smita Lakhotia; H M Ravishankar; Umaira Tabassum; Geetashree Mukherjee; Kumaravel Somasundaram

    2009-09-01

    Mutations in the BRCA1 and BRCA2 genes profoundly increase the risk of developing breast and/or ovarian cancer among women. To explore the contribution of BRCA1 and BRCA2 mutations in the development of hereditary breast cancer among Indian women, we carried out mutation analysis of the BRCA1 and BRCA2 genes in 61 breast or ovarian cancer patients from south India with a positive family history of breast and/or ovarian cancer. Mutation analysis was carried out using conformation-sensitive gel electrophoresis (CSGE) followed by sequencing. Mutations were identified in 17 patients (28.0%); 15 (24.6%) had BRCA1 mutations and two (3.28%) had BRCA2 mutations. While no specific association between BRCA1 or BRCA2 mutations with cancer type was seen, mutations were more often seen in families with ovarian cancer. While 40% (4/10) and 30.8% (4/12) of families with ovarian or breast and ovarian cancer had mutations, only 23.1% (9/39) of families with breast cancer carried mutations in the BRCA1 and BRCA2 genes. In addition, while BRCA1 mutations were found in all age groups, BRCA2 mutations were found only in the age group of ≤ 40 years. Of the BRCA1 mutations, there were three novel mutations (295delCA; 4213T → A; 5267T → G) and three mutations that have been reported earlier. Interestingly, 185delAG, a BRCA1 mutation which occurs at a very high frequency in Ashkenazi Jews, was found at a frequency of 16.4% (10/61). There was one novel mutation (4866insT) and one reported mutation in BRCA2. Thus, our study emphasizes the importance of mutation screening in familial breast and/or ovarian cancers, and the potential implications of these findings in genetic counselling and preventive therapy.

  6. The spectrum of BRCA1 and BRCA2 alleles in Latin America and the Caribbean: a clinical perspective.

    Science.gov (United States)

    Dutil, Julie; Golubeva, Volha A; Pacheco-Torres, Alba L; Diaz-Zabala, Hector J; Matta, Jaime L; Monteiro, Alvaro N

    2015-12-01

    Hereditary cancer predisposition gene testing allows the identification of individuals at high risk of cancer that may benefit from increased surveillance, chemoprevention, and prophylactic surgery. In order to implement clinical genetic strategies adapted to each population's needs and intrinsic genetic characteristic, this review aims to present the current status of knowledge about the spectrum of BRCA pathogenic variants in Latin American populations. We have conducted a comprehensive review of 33 studies published between 1994 and 2015 reporting the prevalence and/or spectrum of BRCA1 (OMIM 113705) and BRCA2 (OMIM 600185) variants. The combined sample size for these studies consisted of 4835 individuals from 13 countries in Latin America and the Caribbean, as well as in Hispanics in the United States. A total of 167 unique pathogenic variants have been reported in the existing literature. In unselected breast cancer cases, the prevalence ranged from 1.2 to 27.1%. Some countries presented a few recurrent pathogenic variants, while others were characterized by diverse, non-recurrent variants. The proportion of BRCA pathogenic variants shared between Hispanics in the United States and Latin American populations was estimated at 10.4%. Within Latin America and the Caribbean, 8.2% of the BRCA variants reported were present in more than one country. Countries with high prevalence of BRCA pathogenic variants may benefit from more aggressive testing strategies, while testing of recurrent variant panels might present a cost-effective solution for improving genetic testing in some, but not all, countries.

  7. Phenocopy breast cancer rates in Israeli BRCA1 BRCA2 mutation carrier families: is the risk increased in non-carriers?

    Science.gov (United States)

    Bernholtz, Shiri; Laitman, Yael; Kaufman, Bella; Shimon-Paluch, Shnai; Friedman, Eitan

    2012-04-01

    BRCA1 and BRCA2 mutation carriers have an increased risk for developing breast (and ovarian) cancer. Non-carriers from within such families (=true negatives) are counseled that their risk for developing breast cancer is similar to that of the average-risk population. Breast cancer diagnosed in a non-carrier from a family with a known mutation is coined phenocopy. The rate of breast cancer phenocopy and the risk for breast cancer in true negatives are unsettled. The rate of phenocopy breast cancer was assessed in non-carriers from Jewish families with a BRCA1 or BRCA2 mutation, identified at the Sheba medical center. Analysis was performed by t test for comparison of mean age at counseling or breast cancer diagnosis, and by calculating a standardized incidence ratio (SIR). Overall, 1318 females from 884 mutation carrying families (620 with BRCA1 264 with BRCA2 mutations) were genotyped, of whom 307 women from 245 families were assigned a true negative status (mean age at counseling 43.01 ± 13.03 years (range 19.7-92.8 years). Of these true negatives, 20 women (6.51-2.26% of families) developed breast cancer at a mean age of 54.1 ± 12.9 years (range 48.1 -60.1 years). The SIR for breast cancer in true negatives was not significantly different than the expected in the average-risk Israeli population [observed 20-expected 23.8 cases SIR = 0.84, 95% CI (0.51, 1.30)]. The rate of phenocopy breast cancer in non-carriers from Israeli BRCA1 BRCA2 mutation carrier families is 2.26% with no increased breast cancer risk over the average-risk population.

  8. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    OpenAIRE

    2014-01-01

    This is the final version of the article. It was first published by BioMed Central at http://www.breast-cancer-research.com/content/16/6/3416 Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loc...

  9. The variants BRCA1 IVS6-1G>A and BRCA2 IVS15+1G>A lead to aberrant splicing of the transcripts.

    Science.gov (United States)

    Gutiérrez-Enríquez, Sara; Coderch, Verònica; Masas, Miriam; Balmaña, Judith; Diez, Orland

    2009-09-01

    The majority of BRCA1 and BRCA2 deleterious mutations and variants of unknown significance have been identified in genomic DNA and their effects at the mRNA level have not been reported. Our aim was to ascertain the pathological effect of the BRCA1 IVS6-1G>A (c. 302-1G>A) and the BRCA2 IVS15+1G>A (c. 7617+1G>A) variants detected in Spanish breast/ovarian cancer families. Sequencing of cDNA from the BRCA1 IVS6-1G>A allele revealed an inappropriate splicing of exon 7. The analysis of the BRCA2 IVS15+1G>A allele showed the skipping of exon 15. Both alterations predicted the appearance of premature stop codons. Our findings highlight the importance of studying mutations at DNA and RNA levels in order to clarify the effect of the suspected mutation and to provide adequate counseling for breast/ovarian cancer families.

  10. Worse breast cancer prognosis of BRCA1/BRCA2 mutation carriers: what's the evidence? A systematic review with meta-analysis.

    Directory of Open Access Journals (Sweden)

    Alexandra J van den Broek

    Full Text Available Conflicting conclusions have been published regarding breast cancer survival of BRCA1/2 mutation carriers. Here we provide an evidence-based systematic literature review.Eligible publications were observational studies assessing the survival of breast cancer patients carrying a BRCA1/2 mutation compared to non-carriers or the general breast cancer population. We performed meta-analyses and best-evidence syntheses for survival outcomes taking into account study quality assessed by selection bias, misclassification bias and confounding.Sixty-six relevant studies were identified. Moderate evidence for a worse unadjusted recurrence-free survival for BRCA1 mutation carriers was found. For BRCA1 and BRCA2 there was a tendency towards a worse breast cancer-specific and overall survival, however, results were heterogeneous and the evidence was judged to be indecisive. Surprisingly, only 8 studies considered adjuvant treatment as a confounder or effect modifier while only two studies took prophylactic surgery into account. Adjustment for tumour characteristics tended to shift the observed risk estimates towards a relatively more favourable survival.In contrast to currently held beliefs of some oncologists, current evidence does not support worse breast cancer survival of BRCA1/2 mutation carriers in the adjuvant setting; differences if any are likely to be small. More well-designed studies are awaited.

  11. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Kartsonaki, Christiana; Sinilnikova, Olga M

    2011-01-01

    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs......11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers......% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead...

  12. Prognosis of probability of BRCA1 and BRCA2 mutations carriage in women with compromised family history of breast and/or ovarian cancer.

    Science.gov (United States)

    Rybchenko, L A; Bychkova, A M; Skyban, G V; Klymenko, S V

    2013-01-01

    Obtjazhenist' simejnogo anamnezu shhodo raku molochnoi' zalozy ta/abo raku jajechnykiv mozhe svidchyty pro nosijstvo mutacii' v BRCA1 ta BRCA2 genah. Meta: ocinyty ta porivnjaty mozhlyvosti Manchesters'koi' bal'noi' systemy, algorytmu Penn II ta Myriad na indyvidual'nomu rivni vidriznjaty pacijentiv z mutacijeju BRCA1/2 ta osib bez mutantnyh alelej sered ukrai'ns'kyh zhinok z rannim rozvytkom raku molochnoi' zalozy ta/abo obtjazhenym simejnym anamnezom shhodo raku molochnoi' zalozy ta/abo raku jajechnykiv. Material ta metody doslidzhennja. Materialom doslidzhennja sluguvaly rezul'taty genealogichnogo, molekuljarno-genetychnogo ta kliniko-morfologichnogo obstezhennja 44 osib, hvoryh na rak molochnoi' zalozy, z rannim rozvytkom zahvorjuvannja abo z obtjazhenym simejnym anamnezom shhodo onkologichnoi' patologii' molochnoi' zalozy ta/abo jajechnykiv. Vyznachennja najbil'sh imovirnyh nosii'v mutacij BRCA1 i BRCA2 sered obstezhenyh zhinok provodyly za dopomogoju tr'oh vyshhezgadanyh algorytmiv. Rezul'taty ta vysnovky. Manchesters'ka bal'na systema maje krashhu zdatnist' na indyvidual'nomu rivni vidriznjaty pacijentiv z mutacijeju ta osib bez mutantnyh alelej. Ploshha pid kryvoju Manchesters'koi' bal'noi' systemy skladaje 0,84, Penn II – 0,66, Myriad – 0,68.

  13. BRCA1BRCA2基因突变的女性预防措施的成本-效果分析%Cost-Effectiveness of Preventive Strategies for Women with a BRCA1 or a BRCA2 Mutation

    Institute of Scientific and Technical Information of China (English)

    Kristin; Anderson; Judith; S.; Jacobson; Daniel; F.; Heitjan

    2006-01-01

    背景:对于BRCAI与BRCA2基因突变的女性,现有的资料显示预防性的外科手术或化学药物预防比单纯检测有更高的生存率。目的:评价对于单一的BRCA1BRCA2基因突变、有较高的肿瘤外显率的未发病女性预防性措施的成本一效果。

  14. Whole exome sequencing suggests much of non-BRCA1/BRCA2 familial breast cancer is due to moderate and low penetrance susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gracia-Aznarez

    Full Text Available The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10 diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.

  15. Does the age of breast cancer diagnosis in first-degree relatives impact on the risk of breast cancer in BRCA1 and BRCA2 mutation carriers?

    Science.gov (United States)

    Semple, John; Metcalfe, Kelly A; Lubinski, Jan; Huzarski, Tomasz; Gronwald, Jacek; Armel, Susan; Lynch, Henry T; Karlan, Beth; Foulkes, William; Singer, Christian F; Neuhausen, Susan L; Eng, Charis; Iqbal, Javaid; Narod, Steven A

    2015-11-01

    The purpose of this study is to estimate the age-specific annual risks of breast cancer in a woman with a germline BRCA mutation and an affected first-degree relative according to the age of breast cancer diagnosis in the relative. Women with BRCA mutations with no previous diagnosis of breast cancer and with one first-degree relative with breast cancer were followed for breast cancers for a mean of 5.9 years (minimum 2 years). Age-specific annual breast cancer risks were calculated, according to the age of breast cancer diagnosis in the proband and the first-degree relative. 1114 cancer-free women with a BRCA mutation with a single first-degree relative with breast cancer were eligible for the study. 122 women (11.0 %) were diagnosed with incident breast cancer. The annual risk of breast cancer was 2.0 % for women with BRCA1 mutations and was 1.6 % for women with BRCA2 mutations. The age of breast cancer diagnosis in the first-degree relative did not affect the annual breast cancer risks for BRCA1 mutation carriers. For BRCA2 mutation carriers, the annual breast cancer risk was 4.5 % for women with a first-degree relative diagnosed with breast cancer under the age of 30 years and was 0.7 % for women with a relative diagnosed over the age of 60. Among women with BRCA2 mutations, a family history of early-onset breast cancer is a risk factor for developing breast cancer. Risk assessment for healthy BRCA2 mutation carriers should consider the ages of breast cancers diagnosed in first-degree relatives.

  16. Comparative in vitro and in silico analyses of variants in splicing regions of BRCA1 and BRCA2 genes and characterization of novel pathogenic mutations.

    Directory of Open Access Journals (Sweden)

    Mara Colombo

    Full Text Available Several unclassified variants (UVs have been identified in splicing regions of disease-associated genes and their characterization as pathogenic mutations or benign polymorphisms is crucial for the understanding of their role in disease development. In this study, 24 UVs located at BRCA1 and BRCA2 splice sites were characterized by transcripts analysis. These results were used to evaluate the ability of nine bioinformatics programs in predicting genetic variants causing aberrant splicing (spliceogenic variants and the nature of aberrant transcripts. Eleven variants in BRCA1 and 8 in BRCA2, including 8 not previously characterized at transcript level, were ascertained to affect mRNA splicing. Of these, 16 led to the synthesis of aberrant transcripts containing premature termination codons (PTCs, 2 to the up-regulation of naturally occurring alternative transcripts containing PTCs, and one to an in-frame deletion within the region coding for the DNA binding domain of BRCA2, causing the loss of the ability to bind the partner protein DSS1 and ssDNA. For each computational program, we evaluated the rate of non-informative analyses, i.e. those that did not recognize the natural splice sites in the wild-type sequence, and the rate of false positive predictions, i.e., variants incorrectly classified as spliceogenic, as a measure of their specificity, under conditions setting sensitivity of predictions to 100%. The programs that performed better were Human Splicing Finder and Automated Splice Site Analyses, both exhibiting 100% informativeness and specificity. For 10 mutations the activation of cryptic splice sites was observed, but we were unable to derive simple criteria to select, among the different cryptic sites predicted by the bioinformatics analyses, those actually used. Consistent with previous reports, our study provides evidences that in silico tools can be used for selecting splice site variants for in vitro analyses. However, the latter

  17. ENIGMA-Evidence-based network for the interpretation of germline mutant alleles: An international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes

    DEFF Research Database (Denmark)

    Spurdle, Amanda B; Healey, Sue; Devereau, Andrew;

    2012-01-01

    As genetic testing for predisposition to human diseases has become an increasingly common practice in medicine, the need for clear interpretation of the test results is apparent. However, for many disease genes, including the breast cancer susceptibility genes BRCA1 and BRCA2, a significant......, and coordinately develop and apply algorithms for classification of variants in BRCA1 and BRCA2. It is envisaged that the research and clinical application of models developed by ENIGMA will be relevant to the interpretation of sequence variants in other disease genes....

  18. Spectrum and characterisation of BRCA1 and BRCA2 deleterious mutations in high-risk Czech patients with breast and/or ovarian cancer

    OpenAIRE

    Kosinova Veronika; Pavlu Hana; Coene Ilse; Navratilova Marie; Vasickova Petra; Lukesova Mirka; Foretova Lenka; Machackova Eva; Kuklova Jitka; Claes Kathleen

    2008-01-01

    Abstract Background The incidence of breast cancer has doubled over the past 20 years in the Czech Republic. Hereditary factors may be a cause of young onset, bilateral breast or ovarian cancer, and familial accumulation of the disease. BRCA1 and BRCA2 mutations account for an important fraction of hereditary breast and ovarian cancer cases. One thousand and ten unrelated high-risk probands with breast and/or ovarian cancer were analysed for the presence of a BRCA1 or BRCA2 gene mutation at t...

  19. Assessment of the Prognostic Value of Two Common Variants of BRCA1 and BRCA2 Genes in Ovarian Cancer Patients Treated with Cisplatin and Paclitaxel: A Gynecologic Oncology Group Study

    Directory of Open Access Journals (Sweden)

    Chunqiao eTian

    2013-08-01

    Full Text Available Purpose: BRCA1/BRCA2 germline mutations appear to enhance the platinum-sensitivity, but little is known about the prognostic relevance of polymorphisms in BRCA1/BRCA2 in epithelial ovarian cancer (EOC. This study evaluated whether common variants of BRCA1/BRCA2 are associated with progression-free survival (PFS and overall survival (OS in patients with advanced stage sporadic EOC.Experimental Design: The allelic frequency of BRCA1 (2612C>T, P871L-rs799917 and BRCA2 (114A>C, N372H-rs144848 were determined in normal blood DNA from women in Gynecologic Oncology Group (GOG protocol #172 phase III trial with optimally-resected stage III EOC treated with intraperitoneal or intravenous cisplatin and paclitaxel (C+P. Associations between polymorphisms and PFS or OS were assessed. Results: 232 women were included for analyses. African Americans (AA had different distributions for the two polymorphisms from Caucasians and others. For non-AA patients, the genotype for BRCA1 P871L was distributed as 38% for CC, 49% for CT and 13% for TT. Median PFS was estimated to be 31, 21 and 21 months, respectively. After adjusting for cell type, residual disease and chemotherapy regimen, CT/TT genotypes were associated with a 1.40-fold increased risk of disease progression (95% confidence interval [CI]=1.00-1.95, p=0.049. After removing 7 patients with known BRCA1 germline mutations, the hazard ratio (HR was 1.36 (95% CI=0.97-1.91, p=0.073. The association between BRCA1 P871L and OS was not significant (HR =1.25, 95% CI=0.88-1.76, p=0.212. Genotype distribution of BRCA2 N372H among non-AA patients was 50%, 44% and 6% for AA, AC and CC, respectively and there is no evidence that this BRCA2 polymorphism was related to PFS or OS. Conclusion: Polymorphisms in BRCA1 P871L or in BRCA2 N372H were not associated with either PFS or OS in women with optimally-resected, stage III EOC treated with cisplatin and paclitaxel.

  20. Individual and Combined Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predict Shorter Survival of Soft Tissue Sarcoma Patients

    Science.gov (United States)

    Park, See-Hyoung; Park, Hye Jeong; Wang, Sung Il; Park, Ho Sung; Lee, Ho; Kwon, Keun Sang; Moon, Woo Sung; Lee, Dong Geun; Kim, Jung Ryul; Jang, Kyu Yun

    2016-01-01

    DNA damage response (DDR) molecules are protective against genotoxic stresses. DDR molecules are also involved in the survival of cancer cells in patients undergoing anti-cancer therapies. Therefore, DDR molecules are potential markers of cancer progression in addition to being potential therapeutic targets. In this study, we evaluated the immunohistochemical expression of PARP1, γH2AX, BRCA1, and BRCA2 and their prognostic significance in 112 cases of soft tissue sarcoma (STS). The expression of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with each other and were associated with higher tumor stage and presence of distant metastasis. The expression of PARP1, γH2AX, and BRCA2 were significantly associated with shorter disease-specific survival (DSS) and event-free survival (EFS) by univariate analysis. BRCA1 expression was associated with shorter DSS. Multivariate analysis revealed the expression of PARP1 and γH2AX to be independent indicators of poor prognosis of DSS and EFS. BRCA2 expression was an independent indicator of poor prognosis of DSS. In addition, the combined expressional patterns of PARP1, γH2AX, BRCA1, and BRCA2 (CSddrm) were independent prognostic predictors of DSS (P DSS rate of the CSddrm-low, CSddrm-intermediate, and CSddrm-high subgroups were 81%, 26%, and 0%, respectively. In conclusion, this study demonstrates that the individual and combined expression patterns of the DDR molecules PARP1, γH2AX, BRCA1, and BRCA2 could be predictive of the prognosis of STS patients and suggests that controlling the activity of these DDR molecules could be employed in new therapeutic stratagems for the treatment of STS. PMID:27643881

  1. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B

    2017-01-01

    1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast...

  2. IMPLICATION DE CERTAINES MUTATIONS DANS LES GENES BRCA1 ET BRCA2 SUR LA PRÉDISPOSITION AU CANCER DU SEIN ET AU CANCER OVARIEN

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2007-08-01

    Full Text Available Le cancer du sein, ainsi que celui ovarien, est une maladie fréquente chez les femmes, ayant un traitement assez difficile et, malheureusement, de sérieuses répercutions sur le physique ; c’est pourquoi il s’avère essentiel que la maladie soit dépistée dès les phases précoces. La prédisposition génétique est responsable de 5% des cancers et de 25% des cas apparus avant l’age de 30 ans [Breast Cancer Linkage Consortium, 1997]. Nous présentons ici l’implication des gènes suppresseurs des tumeurs BRCA1 et BRCA2 sur cette prédisposition.

  3. Signalni put HH-GLI i njegova interakcija s genima BRCA1 i BRCA2 u zloćudnim epitelnim novotvorinama jajnika [Interaction of the Hh-Gli signaling pathway with BRCA1 and BRCA2 gene in ovarian cancer

    OpenAIRE

    Maurac, Ivana

    2011-01-01

    Uvod: Zloćudna novotvorina jajnika ili karcinom jajnika je sedmi po redu karcinom u žena, čineći 3% svih maligniteta i 6% svih smrtnosti od karcinoma u žena. Uzrok nastanka karcinoma jajnika, još uvijek, nije razjašnjen. Postoji nekoliko čimbenika koji su povezani s povećanom ili smanjenom opasnošću od nastanka zloćudnog tumora (rađanje, dojenje, neplodnost, oralna kontracepcija, hormonsko nadomjesno liječenje, K-ras i HER-2/neu onkogeni, BRCA1 i BRCA2 te p53 tumor supresor gen...

  4. Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers

    NARCIS (Netherlands)

    Antoniou, Antonis C.; Kuchenbaecker, Karoline B.; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Lee, Andrew; Barrowdale, Daniel; Healey, Sue; Sinilnikova, Olga M.; Caligo, Maria A.; Loman, Niklas; Harbst, Katja; Lindblom, Annika; Arver, Brita; Rosenquist, Richard; Karlsson, Per; Nathanson, Kate; Domchek, Susan; Rebbeck, Tim; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Zlowowcka-Perlowska, Elzbieta; Osorio, Ana; Duran, Mercedes; Andres, Raquel; Benitez, Javier; Hamann, Ute; Hogervorst, Frans B.; van Os, Theo A.; Verhoef, Senno; Meijers-Heijboer, Hanne E. J.; Wijnen, Juul; Garcia, Encarna B. Gomez; Ligtenberg, Marjolijn J.; Kriege, Mieke; Collee, Margriet; Ausems, Margreet G. E. M.; Oosterwijk, Jan C.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Jacobs, Chris; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Cook, Jackie; Paterson, Joan; Douglas, Fiona; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Walker, Lisa; Rogers, Mark T.; Donaldson, Alan; Dorkins, Huw; Godwin, Andrew K.; Bove, Betsy; Stoppa-Lyonnet, Dominique; Houdayer, Claude; Buecher, Bruno; de Pauw, Antoine; Mazoyer, Sylvie; Calender, Alain; Leone, Melanie; Bressac-de Paillerets, Brigitte; Caron, Olivier; Sobol, Hagay; Frenay, Marc; Prieur, Fabienne; Ferrer, Sandra Fert; Mortemousque, Isabelle; Buys, Saundra; Daly, Mary; Miron, Alexander; Terry, Mary Beth; Hopper, John L.; John, Esther M.; Southey, Melissa; Goldgar, David; Singer, Christian F.; Fink-Retter, Anneliese; Tea, Muy-Kheng; Kaulich, Daphne Geschwantler; Hansen, Thomas V. O.; Nielsen, Finn C.; Barkardottir, Rosa B.; Gaudet, Mia; Kirchhoff, Tomas; Joseph, Vijai; Dutra-Clarke, Ana; Offit, Kenneth; Piedmonte, Marion; Kirk, Judy; Cohn, David; Hurteau, Jean; Byron, John; Fiorica, James; Toland, Amanda E.; Montagna, Marco; Oliani, Cristina; Imyanitov, Evgeny; Isaacs, Claudine; Tihomirova, Laima; Blanco, Ignacio; Lazaro, Conxi; Teule, Alex; Del Valle, J.; Gayther, Simon A.; Odunsi, Kunle; Gross, Jenny; Karlan, Beth Y.; Olah, Edith; Teo, Soo-Hwang; Ganz, Patricia A.; Beattie, Mary S.; Dorfling, Cecelia M.; van Rensburg, Elizabeth Jansen; Diez, Orland; Kwong, Ava; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorothea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Schaefer, Dieter; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Muranen, Taru A.; Lesperance, Bernard; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan C.; Wang, Xianshu; Fredericksen, Zachary; Pankratz, Vernon S.; Lindor, Noralane M.; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Bonanni, Bernardo; Bernard, Loris; Dolcetti, Riccardo; Papi, Laura; Ottini, Laura; Radice, Paolo; Greene, Mark H.; Loud, Jennifer T.; Andrulis, Irene L.; Ozcelik, Hilmi; Mulligan, Anna Marie; Glendon, Gord; Thomassen, Mads; Gerdes, Anne-Marie; Jensen, Uffe B.; Skytte, Anne-Bine; Kruse, Torben A.; Chenevix-Trench, Georgia; Couch, Fergus J.; Simard, Jacques; Easton, Douglas F.

    2012-01-01

    Introduction: Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B),

  5. Common variants at the 19p13.1 and ZNF365 loci are associated with ER subtypes of breast cancer and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    F.J. Couch (Fergus); M.M. Gaudet (Mia); A.C. Antoniou (Antonis); S.J. Ramus (Susan); K.B. Kuchenbaecker (Karoline); P. Soucy (Penny); J. Beesley (Jonathan); X. Chen (Xiaoqing); X. Wang (Xing); T. Kircchoff (Tomas); L. McGuffog (Lesley); D. Barrowdale (Daniel); A. Lee (Andrew); S. Healey (Sue); O. Sinilnikova (Olga); I.L. Andrulis (Irene); H. Ozcelik (Hilmi); A.M. Mulligan (Anna Marie); M. Thomassen (Mads); A-M. Gerdes (Anne-Marie); U.B. Jensen; A.-B. Skytte (Anne-Bine); T.A. Kruse (Torben); M.A. Caligo (Maria); A. von Wachenfeldt (Anna); G. Barbany-Bustinza (Gisela); N. Loman (Niklas); M. Soller (Maria); H. Ehrencrona (Hans); P. Karlsson (Per); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); S.M. Domchek (Susan); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); K. Durda (Katarzyna); E. Zołwocka (Elzbieta); T. Huzarski (Tomasz); T. Byrski (Tomasz); J. Gronwald (Jacek); C. Cybulski (Cezary); B. Górski (Bohdan); A. Osorio (Ana); M. Durán (Mercedes); M.I. Tejada; J. Benítez (Javier); U. Hamann (Ute); F.B.L. Hogervorst (Frans); T.A.M. van Os (Theo); F.E. van Leeuwen (Flora); E.J. Meijers-Heijboer (Hanne); J.T. Wijnen (Juul); M.J. Blok (Marinus); C.M. Kets; M.J. Hooning (Maartje); R.A. Oldenburg (Rogier); M.G.E.M. Ausems (Margreet); S. Peock (Susan); D. Frost (Debra); S.D. Ellis (Steve); R. Platte (Radka); E. Fineberg (Elena); D.G. Evans (Gareth); C. Jacobs (Chris); R. Eeles (Rosalind); J.W. Adlard (Julian); R. Davidson (Rosemarie); D. Eccles (Diana); T.J. Cole (Trevor); J. Cook (Jackie); J. Paterson (Joan); C. Brewer (Carole); F. Douglas (Fiona); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); L.J. Walker (Lisa); M.E. Porteous (Mary); M.J. Kennedy (John); L. Side (Lucy); B. Bove (B.); A.K. Godwin (Andrew); D. Stoppa-Lyonnet (Dominique); M. Fassy-Colcombet (Marion); L. Castera (Laurent); F. Cornelis (Franco̧is); S. Mazoyer (Sylvie); M. Léone (Mélanie); N. Boutry-Kryza (N.); B. Bressac-de Paillerets (Brigitte); O. Caron (Olivier); P. Pujol (Pascal); I. Coupier (Isabelle); C.D. Delnatte (Capucine); L. Akloul (Linda); H. Lynch (Henry); C.L. Snyder (Carrie); S.S. Buys (Saundra); M.B. Daly (Mary); M.-B. Terry (Mary-Beth); W. Chung (Wendy); E.M. John (Esther); A. Miron (Alexander); M.C. Southey (Melissa); J.L. Hopper (John); D. Goldgar (David); C.F. Singer (Christian); C. Rappaport (Christine); M.-K. Tea; A. Fink-Retter (Anneliese); T.V.O. Hansen (Thomas); F.C. Nielsen (Finn); A. Arason (Adalgeir); J. Vijai (Joseph); S. Shah (Sonia); K. Sarrel (Kara); M. Robson (Mark); M. Piedmonte (Marion); K. Phillips (Kelly); J. Basil (Jack); W.S. Rubinstein (Wendy); J.F. Boggess (John); K. Wakeley (Katie); A. Ewart-Toland (Amanda); M. Montagna (Marco); S. Agata (Simona); E.N. Imyanitov (Evgeny); C. Isaacs (Claudine); R. Janavicius (Ramunas); C. Lazaro (Conxi); I. Blanco (Ignacio); L. Feliubadaló (L.); J. Brunet (Joan); S.A. Gayther (Simon); P.D.P. Pharoah (Paul); K. Odunsi (Kunle); B. Karlan; C.S. Walsh (Christine); E. Olah; S.-H. Teo; P.A. Ganz (Patricia); M.S. Beattie (Mary); E.J. van Rensburg (Elizabeth); C.M. Dorfling (Cecelia); O. Diez (Orland); A. Kwong (Ava); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); C. Engel (Christoph); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); S. Heidemann (Simone); D. Niederacher (Dieter); S. Preisler-Adams (Sabine); D. Gadzicki (Dorothea); R. Varon-Mateeva (Raymonda); H. Deissler (Helmut); P.A. Gehrig (Paola A.); C. Sutter (Christian); K. Kast (Karin); B. Fiebig (Britta); W. Heinritz (Wolfram); T. Caldes (Trinidad); M. de La Hoya (Miguel); T.A. Muranen (Taru); H. Nevanlinna (Heli); M. Tischkowitz (Marc); A.B. Spurdle (Amanda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); N.M. Lindor (Noralane); Z. Fredericksen (Zachary); V.S. Pankratz (Shane); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); M. Barile (Monica); L. Bernard (Loris); A. Viel (Alessandra); G. Giannini (Giuseppe); L. Varesco (Liliana); P. Radice (Paolo); M.H. Greene (Mark); P.L. Mai (Phuong); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); K. Offit (Kenneth); J. Simard (Jacques)

    2012-01-01

    textabstractBackground: Genome-wide association studies (GWAS) identified variants at 19p13.1 and ZNF365 (10q21.2) as risk factors for breast cancer among BRCA1 and BRCA2 mutation carriers, respectively. We explored associations with ovarian cancer and with breast cancer by tumor histopathology for

  6. Common variants at the 19p13.1 and ZNF365 loci are associated with ER subtypes of breast cancer and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Couch, Fergus J; Gaudet, Mia M; Antoniou, Antonis C

    2012-01-01

    Genome-wide association studies (GWAS) identified variants at 19p13.1 and ZNF365 (10q21.2) as risk factors for breast cancer among BRCA1 and BRCA2 mutation carriers, respectively. We explored associations with ovarian cancer and with breast cancer by tumor histopathology for these variants in mut...

  7. Common Variants at the 19p13.1 and ZNF365 Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Couch, Fergus J.; Gaudet, Mia M.; Antoniou, Antonis C.; Ramus, Susan J.; Kuchenbaecker, Karoline B.; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; Wang, Xianshu; Kirchhoff, Tomas; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Healey, Sue; Sinilnikova, Olga M.; Andrulis, Irene L.; Ozcelik, Hilmi; Mulligan, Anna Marie; Thomassen, Mads; Gerdes, Anne-Marie; Jensen, Uffe Birk; Skytte, Anne-Bine; Kruse, Torben A.; Caligo, Maria A.; von Wachenfeldt, Anna; Barbany-Bustinza, Gisela; Loman, Niklas; Soller, Maria; Ehrencrona, Hans; Karlsson, Per; Nathanson, Katherine L.; Rebbeck, Timothy R.; Domchek, Susan M.; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Zlowocka, Elzbieta; Huzarski, Tomasz; Byrski, Tomasz; Gronwald, Jacek; Cybulski, Cezary; Gorski, Bohdan; Osorio, Ana; Duran, Mercedes; Isabel Tejada, Maria; Benitez, Javier; Hamann, Ute; Hogervorst, Frans B. L.; van Os, Theo A.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Wijnen, Juul; Blok, Marinus J.; Kets, Marleen; Hooning, Maartje J.; Oldenburg, Rogier A.; Ausems, Margreet G. E. M.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Jacobs, Chris; Eeles, Rosalind A.; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana M.; Cole, Trevor; Cook, Jackie; Paterson, Joan; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley V.; Morrison, Patrick J.; Walker, Lisa; Porteous, Mary E.; Kennedy, M. John; Side, Lucy E.; Bove, Betsy; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; Fassy-Colcombet, Marion; Castera, Laurent; Cornelis, Francois; Mazoyer, Sylvie; Leone, Melanie; Boutry-Kryza, Nadia; Bressac-de Paillerets, Brigitte; Caron, Olivier; Pujol, Pascal; Coupier, Isabelle; Delnatte, Capucine; Akloul, Linda; Lynch, Henry T.; Snyder, Carrie L.; Buys, Saundra S.; Daly, Mary B.; Terry, MaryBeth; Chung, Wendy K.; John, Esther M.; Miron, Alexander; Southey, Melissa C.; Hopper, John L.; Goldgar, David E.; Singer, Christian F.; Rappaport, Christine; Tea, Muy-Kheng M.; Fink-Retter, Anneliese; Hansen, Thomas V. O.; Nielsen, Finn C.; Arason, Adalgeir; Vijai, Joseph; Shah, Sohela; Sarrel, Kara; Robson, Mark E.; Piedmonte, Marion; Phillips, Kelly; Basil, Jack; Rubinstein, Wendy S.; Boggess, John; Wakeley, Katie; Ewart-Toland, Amanda; Montagna, Marco; Agata, Simona; Imyanitov, Evgeny N.; Isaacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Feliubadalo, Lidia; Brunet, Joan; Gayther, Simon A.; Pharoah, Paul P. D.; Odunsi, Kunle O.; Karlan, Beth Y.; Walsh, Christine S.; Olah, Edith; Teo, Soo Hwang; Ganz, Patricia A.; Beattie, Mary S.; van Rensburg, Elizabeth J.; Dorfling, Cecelia M.; Diez, Orland; Kwong, Ava; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorothea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Heinritz, Wolfram; Caldes, Trinidad; de la Hoya, Miguel; Muranen, Taru A.; Nevanlinna, Heli; Tischkowitz, Marcd.; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan Chun; Lindor, Noralane M.; Fredericksen, Zachary; Pankratz, V. Shane; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Barile, Monica; Bernard, Loris; Viel, Alessandra; Giannini, Giuseppe; Varesco, Liliana; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Easton, Douglas F.; Chenevix-Trench, Georgia; Offit, Kenneth; Simard, Jacques

    2012-01-01

    Background: Genome-wide association studies (GWAS) identified variants at 19p13.1 and ZNF365 (10q21.2) as risk factors for breast cancer among BRCA1 and BRCA2 mutation carriers, respectively. We explored associations with ovarian cancer and with breast cancer by tumor histopathology for these varian

  8. Common variants at the 19p13.1 and ZNF365 loci are associated with ER subtypes of breast cancer and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Couch, F.J.; Gaudet, M.M.; Antoniou, A.C.; Ramus, S.J.; Kuchenbaecker, K.B.; Soucy, P.; Beesley, J.; Chen, X.; Wang, X.; Kirchhoff, T.; McGuffog, L.; Barrowdale, D.; Lee, A.; Healey, S.; Sinilnikova, O.M.; Andrulis, I.L.; Ocgn, .; Ozcelik, H.; Mulligan, A.M.; Thomassen, M.; Gerdes, A.M.; Jensen, U.B.; Skytte, A.B.; Kruse, T.A.; Caligo, M.A.; Wachenfeldt, A. von; Barbany-Bustinza, G.; Loman, N.; Soller, M.; Ehrencrona, H.; Karlsson, P.; Swe, B.; Nathanson, K.L.; Rebbeck, T.R.; Domchek, S.M.; Jakubowska, A.; Lubinski, J.; Jaworska, K.; Durda, K.; Zlowocka, E.; Huzarski, T.; Byrski, T.; Gronwald, J.; Cybulski, C.; Gorski, B.; Osorio, A.; Duran, M.; Tejada, M.I.; Benitez, J.; Hamann, U.; Hogervorst, F.B.; Hebon, .; Os, T.A. van; Leeuwen, F.E. van; Meijers-Heijboer, H.E.; Wijnen, J.; Blok, M.J.; Kets, M.; Hooning, M.J.; Oldenburg, R.A.; Ausems, M.G.; Peock, S.; Frost, D.; Ellis, S.D.; Platte, R.; Fineberg, E.; Evans, D.G.; Jacobs, C.; Eeles, R.A.; Adlard, J.; Davidson, R.; Eccles, D.M.; Cole, T.; Cook, J.; Paterson, J.; Brewer, C.; Douglas, F.; Hodgson, S.V.; Morrison, P.J.; Walker, L.; Porteous, M.E.; Kennedy, M.J.; Side, L.E.; Embrace, .; Bove, B.; Godwin, A.K.; Stoppa-Lyonnet, D.; Collaborators, G.S.; Fassy-Colcombet, M.; Castera, L.; Cornelis, F.; Mazoyer, S.; Leone, M.; Boutry-Kryza, N.; Bressac-de Paillerets, B.; Caron, O.; Pujol, P.; Coupier, I.; Delnatte, C.; Akloul, L.; Ligtenberg, M.J.; Hoogerbrugge, N.

    2012-01-01

    BACKGROUND: Genome-wide association studies (GWAS) identified variants at 19p13.1 and ZNF365 (10q21.2) as risk factors for breast cancer among BRCA1 and BRCA2 mutation carriers, respectively. We explored associations with ovarian cancer and with breast cancer by tumor histopathology for these varian

  9. Prevalence of 185delAG and 5382insC mutations in BRCA1, and 6174delT in BRCA2 in women of Ashkenazi Jewish origin in southern Brazil

    Directory of Open Access Journals (Sweden)

    Crisle Vignol Dillenburg

    2012-01-01

    Full Text Available Certain mutations in BRCA1 and BRCA2 genes are frequent in the Ashkenazi Jewish population. Several factors contribute to this increased frequency, including consanguineous marriages and an event known as a "bottleneck', which occurred in the past and caused a drastic reduction in the genetic variability of this population. Several studies were performed over the years in an attempt to elucidate the role of BRCA1 and BRCA2 genes in susceptibility to breast cancer. The aim of this study was to estimate the carrier frequency of certain common mutations in the BRCA1 (185delAG and 5382insC and BRCA2 (6174delT genes in an Ashkenazi Jewish population from Porto Alegre, Brazil. Molecular analyses were done by PCR followed by RFLP (ACRS. The carrier frequencies for BRCA1 185delAG and 5382insC were 0.78 and 0 respectively, and 0.4 for the BRCA2 6174deT mutation. These findings are similar to those of some prior studies but differ from others, possibly due to excluding individuals with a personal or family history of cancer. Our sample was drawn from the community group and included individuals with or without a family or personal history of cancer. Furthermore, increased dispersion among Ashkenazi subpopulations may be the result of strong genetic drift and/or admixture. It is therefore necessary to consider the effects of local admixture on the mismatch distributions of various Jewish populations.

  10. Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Kuchenbaecker, Karoline B; Soucy, Penny

    2012-01-01

    Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190...

  11. Quantitative analysis of γ-H2AX and p53 nuclear expression levels in ovarian and fallopian tube epithelium from risk-reducing salpingo-oophorectomies in BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Staff, Synnöve; Tolonen, Teemu; Laasanen, Satu-Leena; Mecklin, Jukka-Pekka; Isola, Jorma; Mäenpää, Johanna

    2014-05-01

    Mutations in BRCA1 and BRCA2 genes confer an increased lifetime risk for breast and ovarian cancer. Increased lifetime ovarian cancer risk among BRCA1/BRCA2 mutation carriers can be substantially decreased by risk-reducing salpingo-oophorectomy (RRSO), which also provides material for molecular research on early pathogenesis of serous ovarian cancer. RRSO studies have suggested fallopian tube as a primary site of serous high-grade ovarian cancer. In this study, the nuclear expression levels of γ-H2AX and p53 using immunohistochemical (IHC) study was quantitatively assessed in ovarian and fallopian tube epithelium derived from RRSOs in 29 BRCA1 and BRCA2 mutation carriers and in 1 patient with a strong family history of breast and ovarian cancer but showing an unknown BRCA status. Both p53 and γ-H2AX nuclear staining levels were significantly higher in BRCA1/2 mutation-positive fallopian tube epithelium compared with the control fallopian tube epithelium (Pepithelium and controls. Both γ-H2AX and p53 showed significantly higher nuclear expression levels in BRCA1/2 mutation-positive fallopian tube epithelium compared with BRCA1/2 mutation-positive ovarian epithelium (Pepithelium showed a positive correlation between the γ-H2AX and p53 nuclear expression levels (Pearson r=0.508, P=0.003). Our results of quantitative nuclear p53 and γ-H2AX expression levels in ovarian and fallopian tube epithelium derived from RRSO in high-risk patients support the previously suggested role of fallopian tube epithelium serving as a possible site of initial serous ovarian carcinogenesis.

  12. High rate of mutations in the BRCA1, BRCA2, CHEK2, NBN, and BLM genes in Russian ovarian cancer patients

    Directory of Open Access Journals (Sweden)

    Ye. I. Bateneva

    2014-01-01

    Full Text Available Background. The early diagnosis of ovarian cancer (OC is an important problem in modern gynecological oncology due to significant detection rates for late-stage tumors. Intensive screening of patients from high-risk groups that include OC predisposition gene mutation carriers is indicated.Subjects and methods. An unselected group of 202 patients with OC and two control groups of blood donors: 591 healthy females; 1197 persons (including 591 females, 606 males were examined. Patients and healthy individuals who identified themselves as ethnic Russians and residents of the Russian Federation participated in the study. Whole peripheral blood samples were collected at the Clinical Subdivisions of the N.N. Blokhin Russian Cancer Research Center and at the Department of Transfusiology of the Acad. B.V. Petrovsky Russian Research Center of Surgery in 2012–2013. Informed consent was obtained from all the participants. DNA was extracted using a Prep-GS-Genetics reagent kit. Real-time polymerase chain reaction genotyping assay was carried out by melting-curve analysis employing an BRCA SNP genotyping kit(BRCA1 and BRCA2 gene mutations and original oligonucleotides (CHEK2, NBN, and BLM gene mutations. Thirteen population-specific mutations, including 7 (185delAG, 4153delA, 5382insC, 3819delGTAAA, 3875delGTCT, 300T>G, and 2080delA in the BRCA1 gene, 1 (6174delT in the BRCA2 gene, 3 (1100delC, IVS2+1G>A, and 470T>C in the CHEK2 gene, 1 (657delACAAA in the NBN gene, and 1 (1642C>T in the BLM gene, were genotyped. Polymerase chain reaction was performed using a DTprime real-time detection thermal cycler.Results and discussion. BRCA1 and BRCA2 gene mutations were detected in 46 (22.8 % patients with OC; the prevailing mutation in the BRCA1 gene was 5382insC (58.7 %. OC was diagnosed in 32.6 % of the patients aged 51 years or older. The rate of moderate-penetrance mutations (1100delC and IVS2+1G>A in the CHEK2 gene, 657del5 in the NBN gene, and 1642

  13. Nedd8-activating enzyme inhibitor MLN4924 provides synergy with mitomycin C through interactions with ATR, BRCA1/BRCA2, and chromatin dynamics pathways.

    Science.gov (United States)

    Garcia, Khristofer; Blank, Jonathan L; Bouck, David C; Liu, Xiaozhen J; Sappal, Darshan S; Hather, Greg; Cosmopoulos, Katherine; Thomas, Michael P; Kuranda, Mike; Pickard, Michael D; Liu, Ray; Bandi, Syamala; Smith, Peter G; Lightcap, Eric S

    2014-06-01

    MLN4924 is an investigational small-molecule inhibitor of the Nedd8-activating enzyme currently in phase I clinical trials. MLN4924 induces DNA damage via rereplication in most cell lines. This distinct mechanism of DNA damage may affect its ability to combine with standard-of-care agents and may affect the clinical development of MLN4924. As such, we studied its interaction with other DNA-damaging agents. Mitomycin C, cisplatin, cytarabine, UV radiation, SN-38, and gemcitabine demonstrated synergy in combination with MLN4924 in vitro. The combination of mitomycin C and MLN4924 was shown to be synergistic in a mouse xenograft model. Importantly, depletion of genes within the ataxia telangiectasia and Rad3 related (ATR) and BRCA1/BRCA2 pathways, chromatin modification, and transcription-coupled repair reduced the synergy between mitomycin C and MLN4924. In addition, comet assay demonstrated increased DNA strand breaks with the combination of MLN4924 and mitomycin C. Our data suggest that mitomycin C causes stalled replication forks, which when combined with rereplication induced by MLN4924 results in frequent replication fork collisions, leading to cell death. This study provides a straightforward approach to understand the mechanism of synergy, which may provide useful information for the clinical development of these combinations.

  14. Next-generation sequencing meets genetic diagnostics: development of a comprehensive workflow for the analysis of BRCA1 and BRCA2 genes

    Science.gov (United States)

    Feliubadaló, Lídia; Lopez-Doriga, Adriana; Castellsagué, Ester; del Valle, Jesús; Menéndez, Mireia; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Gómez, Carolina; Campos, Olga; Pineda, Marta; González, Sara; Moreno, Victor; Brunet, Joan; Blanco, Ignacio; Serra, Eduard; Capellá, Gabriel; Lázaro, Conxi

    2013-01-01

    Next-generation sequencing (NGS) is changing genetic diagnosis due to its huge sequencing capacity and cost-effectiveness. The aim of this study was to develop an NGS-based workflow for routine diagnostics for hereditary breast and ovarian cancer syndrome (HBOCS), to improve genetic testing for BRCA1 and BRCA2. A NGS-based workflow was designed using BRCA MASTR kit amplicon libraries followed by GS Junior pyrosequencing. Data analysis combined Variant Identification Pipeline freely available software and ad hoc R scripts, including a cascade of filters to generate coverage and variant calling reports. A BRCA homopolymer assay was performed in parallel. A research scheme was designed in two parts. A Training Set of 28 DNA samples containing 23 unique pathogenic mutations and 213 other variants (33 unique) was used. The workflow was validated in a set of 14 samples from HBOCS families in parallel with the current diagnostic workflow (Validation Set). The NGS-based workflow developed permitted the identification of all pathogenic mutations and genetic variants, including those located in or close to homopolymers. The use of NGS for detecting copy-number alterations was also investigated. The workflow meets the sensitivity and specificity requirements for the genetic diagnosis of HBOCS and improves on the cost-effectiveness of current approaches. PMID:23249957

  15. Screening for BRCA1 and BRCA2 mutations in breast cancer patients from mexico: the public health perspective Tamizaje de BRCA1 y BRCA2 en pacientes con cáncerde mama en méxico: perspectiva de la salud pública

    Directory of Open Access Journals (Sweden)

    Steven A Narod

    2009-01-01

    Full Text Available Genetic testing for mutations in BRCA1 and BRCA2 has potentially important public health implications. Through judicious testing of women believed to be at high risk for early-onset breast cancer and for ovarian cancer, it is possible to identify highly-predisposed women prior to the development of cancer. Current preventive options include preventive mastectomy, preventive oophorectomy, tamoxifen and oral contraceptives. The ability to offer genetic testing in Mexico on a widespread level is enhanced if the common founder mutations in the two genes can be discovered or if the cost of genetic sequencing is reduced. It is important that a genetic testing service be a multi-disciplinary effort with co-ordinated follow-up.Los exámenes genéticos para las mutaciones en el BRCA 1 y el BRCA 2 tienen potencialmente una importante implicación en materia de salud pública. A través de exámenes juiciosos en mujeres en las que se cree que tienen un riesgo alto de padecer cáncer de mama y de ovario de inicio temprano, es posible identificar mujeres con una alta predisposición antes de que éstas desarrollen el cáncer de mama. Dentro de las medidas preventivas actuales se incluyen la mastectomía, la ooforectomía, el tamoxifen y los anticonceptivos orales. En México, la habilidad para ofrecer exámenes genéticos a nivel poblacional se vería favorecida si se pudiesen descubrir las mutaciones fundadoras en los dos genes o si el costo del secuenciamiento genético fuese reducido. Es muy importante que el servicio de los exámenes genéticos sea el resultado de un esfuerzo multidisciplinario con seguimiento coordinado de los pacientes.

  16. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic hybridizat......Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic...... from several 100 kb, including large flanking regions, to convenient design...

  17. β-HPV 5 and 8 E6 disrupt homology dependent double strand break repair by attenuating BRCA1 and BRCA2 expression and foci formation.

    Directory of Open Access Journals (Sweden)

    Nicholas A Wallace

    2015-03-01

    Full Text Available Recent work has explored a putative role for the E6 protein from some β-human papillomavirus genus (β-HPVs in the development of non-melanoma skin cancers, specifically β-HPV 5 and 8 E6. Because these viruses are not required for tumor maintenance, they are hypothesized to act as co-factors that enhance the mutagenic capacity of UV-exposure by disrupting the repair of the resulting DNA damage. Supporting this proposal, we have previously demonstrated that UV damage signaling is hindered by β-HPV 5 and 8 E6 resulting in an increase in both thymine dimers and UV-induced double strand breaks (DSBs. Here we show that β-HPV 5 and 8 E6 further disrupt the repair of these DSBs and provide a mechanism for this attenuation. By binding and destabilizing a histone acetyltransferase, p300, β-HPV 5 and 8 E6 reduce the enrichment of the transcription factor at the promoter of two genes critical to the homology dependent repair of DSBs (BRCA1 and BRCA2. The resulting diminished BRCA1/2 transcription not only leads to lower protein levels but also curtails the ability of these proteins to form repair foci at DSBs. Using a GFP-based reporter, we confirm that this reduced foci formation leads to significantly diminished homology dependent repair of DSBs. By deleting the p300 binding domain of β-HPV 8 E6, we demonstrate that the loss of robust repair is dependent on viral-mediated degradation of p300 and confirm this observation using a combination of p300 mutants that are β-HPV 8 E6 destabilization resistant and p300 knock-out cells. In conclusion, this work establishes an expanded ability of β-HPV 5 and 8 E6 to attenuate UV damage repair, thus adding further support to the hypothesis that β-HPV infections play a role in skin cancer development by increasing the oncogenic potential of UV exposure.

  18. A phase I followed by a randomized phase II trial of two cycles carboplatin-olaparib followed by olaparib monotherapy versus capecitabine in BRCA1- or BRCA2-mutated HER2-negative advanced breast cancer as first line treatment (REVIVAL) : Study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Schouten, Philip C.; Dackus, Gwen M H E; Marchetti, Serena; van Tinteren, Harm; Sonke, Gabe S.; Schellens, Jan H M; Linn, Sabine C.

    2016-01-01

    Background: Preclinical studies in breast cancer models showed that BRCA1 or BRCA2 deficient cell lines, when compared to BRCA proficient cell lines, are extremely sensitive to PARP1 inhibition. When combining the PARP1 inhibitor olaparib with cisplatin in a BRCA1-mutated breast cancer mouse model,

  19. A phase I followed by a randomized phase II trial of two cycles carboplatin-olaparib followed by olaparib monotherapy versus capecitabine in BRCA1- or BRCA2-mutated HER2-negative advanced breast cancer as first line treatment (REVIVAL) : study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Schouten, Philip C.; Dackus, Gwen M.H.E.; Marchetti, Serena; van Tinteren, Harm; Sonke, Gabe S.; Schellens, J.H.M.; Linn, S.C.

    2016-01-01

    BACKGROUND: Preclinical studies in breast cancer models showed that BRCA1 or BRCA2 deficient cell lines, when compared to BRCA proficient cell lines, are extremely sensitive to PARP1 inhibition. When combining the PARP1 inhibitor olaparib with cisplatin in a BRCA1-mutated breast cancer mouse model,

  20. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes.

    Science.gov (United States)

    Easton, Douglas F; Deffenbaugh, Amie M; Pruss, Dmitry; Frye, Cynthia; Wenstrup, Richard J; Allen-Brady, Kristina; Tavtigian, Sean V; Monteiro, Alvaro N A; Iversen, Edwin S; Couch, Fergus J; Goldgar, David E

    2007-11-01

    Mutation screening of the breast and ovarian cancer-predisposition genes BRCA1 and BRCA2 is becoming an increasingly important part of clinical practice. Classification of rare nontruncating sequence variants in these genes is problematic, because it is not known whether these subtle changes alter function sufficiently to predispose cells to cancer development. Using data from the Myriad Genetic Laboratories database of nearly 70,000 full-sequence tests, we assessed the clinical significance of 1,433 sequence variants of unknown significance (VUSs) in the BRCA genes. Three independent measures were employed in the assessment: co-occurrence in trans of a VUS with known deleterious mutations; detailed analysis, by logistic regression, of personal and family history of cancer in VUS-carrying probands; and, in a subset of probands, an analysis of cosegregation with disease in pedigrees. For each of these factors, a likelihood ratio was computed under the hypothesis that the VUSs were equivalent to an "average" deleterious mutation, compared with neutral, with respect to risk. The likelihood ratios derived from each component were combined to provide an overall assessment for each VUS. A total of 133 VUSs had odds of at least 100 : 1 in favor of neutrality with respect to risk, whereas 43 had odds of at least 20 : 1 in favor of being deleterious. VUSs with evidence in favor of causality were those that were predicted to affect splicing, fell at positions that are highly conserved among BRCA orthologs, and were more likely to be located in specific domains of the proteins. In addition to their utility for improved genetics counseling of patients and their families, the global assessment reported here will be invaluable for validation of functional assays, structural models, and in silico analyses.

  1. Penetrance of breast cancer, ovarian cancer and contralateral breast cancer in BRCA1 and BRCA2 families : high cancer incidence at older age

    NARCIS (Netherlands)

    van der Kolk, Dorina M.; de Bock, Geertruida H.; Leegte, Beike K.; Schaapveld, Michael; Mourits, Marian J. E.; de Vries, J; van der Hout, Annemieke H.; Oosterwijk, Jan C.

    2010-01-01

    Accurate estimations of lifetime risks of breast and ovarian cancer are crucial for counselling women from BRCA1/2 families. We therefore determined breast and ovarian cancer penetrance in BRCA1/2 mutation families in the northern Netherlands and compared them with the incidence of cancers in the ge

  2. All in the family: evaluation of the process and content of sisters' communication about BRCA1 and BRCA2 genetic test results.

    Science.gov (United States)

    Hughes, Chanita; Lerman, Caryn; Schwartz, Marc; Peshkin, Beth N; Wenzel, Lari; Narod, Steven; Corio, Camille; Tercyak, Kenneth P; Hanna, Danielle; Isaacs, Claudine; Main, David

    2002-01-15

    Despite the potential importance of family communication, little is known about the process and content of communicating BRCA1/2 test results to relatives. The objectives of this observational study were to describe the process and content of communicating BRCA1/2 test results to sisters, and to evaluate whether the proband's carrier status influenced communication outcomes. Participants were 43 women who were the first family member to have genetic testing (probands). Probands reported on communication outcomes for 81 sisters. Process and content variables were evaluated 1-month after receipt of BRCA1/2 test results using the Family Communication Questionnaire (FCQ). Overall, BRCA1/2 test results were communicated to 85% of sisters, and carriers communicated their results to significantly more sisters compared to uninformative (96% vs. 76%, FET = 0.02). The most important reason for communicating results was to provide genetic risk information; however, compared to uninformatives, carriers communicated their results to significantly more sisters to obtain emotional support (74%) and to get advice about medical decisions (42%) (FET = 0.001). Carriers also discussed the possibility of discrimination and recommendations for cancer management with significantly more sisters. Among sisters to whom BRCA1/2 test results were not communicated, the most important reason for not sharing test results was because of emotionally distant relationships. The results of this study suggest that probands are likely to quickly communicate their BRCA1/2 test results to relatives and that although needs for social support may motivate family communication, emotionally distant relationships may be a barrier to communication with relatives.

  3. A nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Ding, Yuan C; McGuffog, Lesley; Healey, Sue

    2012-01-01

    We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were associated...

  4. gDNA Enrichment by a Transposase-based Technology for NGS Analysis of the Whole Sequence of BRCA1, BRCA2, and 9 Genes Involved in DNA Damage Repair

    Science.gov (United States)

    Chevrier, Sandy; Boidot, Romain

    2014-01-01

    The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3'-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA. PMID:25350069

  5. LE RÔLE DES PROTÉINES BRCA1 ET BRCA2 DANS LA RÉPARATION DES ALTÉRATIONS MOLÉCULAIRES DE L’ADN

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2007-08-01

    Full Text Available Les gènes BRCA1 et BRCA2 sont des suppresseurs tumoraux dont les phénotypes mutants prédisposent au cancer mammaire et ovarien. Ce sont des gènes nouveaux et peu d’informations concernant leurs fonctions ont été apportées par leur séquence. Cependant, de nombreuses études sur les protéines BRCA et leurs partenaires moléculaires ont montré l’implication dans une multitude de processus cellulaires fondamentaux, incluant la réponse cellulaire aux altérations de l’ADN. Nous présentons quelques unes des plus récentes connaissances dans ce domaine.

  6. Prevalencia de mutaciones patogénicas de los genes BRCA1 y BRCA2 en pacientes con cáncer de mama esporádico. Puesta a punto de un método de cribado basado en el análisis de las curvas de fusión de alta resolución

    OpenAIRE

    2015-01-01

    INTRODUCCIÓN: El cáncer de mama (CM) es la principal causa de morbimortalidad en la mujer con una incidencia mundial de 1.384.155 casos nuevos por año [1]. Aproximadamente, entre el 5-15% de los CM responden al síndrome del cáncer de mama y de ovario hereditario (CMOH) que se debe principalmente a la presencia de mutaciones en los genes BRCA1 (AY273801.1, GI: 30039658) [2] y BRCA2 (AY436640.1 GI: 37675288) [3], (BRCA1/2). La herencia de una única mutación en cualquiera de estos dos...

  7. BRCA1 and BRCA2 Mutations

    Science.gov (United States)

    ... have genetic testing, a health care provider with expertise in cancer genetics can help you understand how ... the risks and benefits. You should discuss the psychological effects as well as short- and long-term ...

  8. Age at menarche and menopause and breast cancer risk in the International BRCA1/2 Carrier Cohort Study.

    NARCIS (Netherlands)

    Chang-Claude, J.; Andrieu, N.; Rookus, M.A.; Brohet, R.M.; Antoniou, A.C.; Peock, S.; Davidson, R.; Izatt, L.; Cole, T.; Nogues, C.; Luporsi, E.; Huiart, L.; Hoogerbrugge, N.; Leeuwen, F.E. van; Osorio, A.; Eyfjord, J.; Radice, P.; Goldgar, D.E.; Easton, D.F.

    2007-01-01

    BACKGROUND: Early menarche and late menopause are important risk factors for breast cancer, but their effects on breast cancer risk in BRCA1 and BRCA2 carriers are unknown. METHODS: We assessed breast cancer risk in a large series of 1,187 BRCA1 and 414 BRCA2 carriers from the International BRCA1/2

  9. Breast cancer risk and the BRCA1 interacting protein CTIP.

    Science.gov (United States)

    Gorringe, Kylie L; Choong, David Y H; Lindeman, Geoffrey J; Visvader, Jane E; Campbell, Ian G

    2008-11-01

    Mutations in BRCA1 predispose to breast cancer. CTIP interacts with BRCA1 and so could also be associated with increased risk. We screened CTIP for germline mutations in 210 probands of breast cancer families including 129 families with no mutations in BRCA1 or BRCA2. No coding variants were detected in CTIP, therefore, it is unlikely to be involved in breast cancer risk.

  10. Identification of BRCA1-deficient ovarian cancers

    DEFF Research Database (Denmark)

    Skytte, Anne-Bine; Waldstrøm, Marianne; Rasmussen, Anders Aamann;

    2011-01-01

    Objective. It is believed that 24 - 40% of ovarian cancers have dysfunction in the BRCA1 or BRCA2 (BRCAness) genes, either due to inherited or somatic mutations or due to epigenetic inactivation. Demonstration of ovarian cancers with BRCAness is becoming important both due to the possibility...... of offering genetic counseling and due to beneficial effects of PARP inhibitor treatment in this group. Since DNA sequencing is expensive and time-consuming efforts have been devoted to develop more indirect methods for BRCA screening that can improve the selection of patients for sequence-based BRCA testing....... Design. BRCA1-immunohistochemistry (IHC), fluorescence in-situ hybridization (FISH) and methylation analyses were performed on formalin-fixed, paraffin-embedded ovarian cancer tissue. Sample: 54 ovarian cancers; 15 BRCA1 cancers, 4 BRCA2 cancers, 10 cancers from patients with a family history...

  11. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    Directory of Open Access Journals (Sweden)

    Miller Dianne M

    2008-01-01

    Full Text Available Background Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH, and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. Methods A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Results Eighteen (37% of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumours were high-grade serous or undifferentiated type. None of the endometrioid (n = 5, clear cell (n = 4, or low grade serous (n = 2 carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumours with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. Conclusion High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic, BRCA1 loss (epigenetic, and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  12. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Gilks, C. Blake; Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E.; Blood, Katherine A.; Smith, Margaret; Spellman, Paul T.; Wang, Yuker; Miller, Dianne M.; Horsman, Doug; Faham, Malek; Gilks, C. Blake; Gray, Joe; Huntsman, David G.

    2008-05-02

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n=5), clear cell (n=4), or low grade serous (n=2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  13. Ovarian carcinomas with genetic and epigenetic BRCA1 loss havedistinct molecular abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E.; Blood, Katherine A.; Smith, Margaret; Spellman, Paul T.; Wang, Yuker; Miller, Dianne M.; Horsman, Doug; Faham, Malek; Gilks, C. Blake; Gray,Joe; Huntsman, David G.

    2007-07-23

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  14. A common Greenlandic Inuit BRCA1 RING domain founder mutation

    DEFF Research Database (Denmark)

    Hansen, T.v.O.; Ejlertsen, B.; Albrechtsen, Anders;

    2009-01-01

    Germ-line mutations in the tumour suppressor proteins BRCA1 and BRCA2 predispose to breast and ovarian cancer. We examined 32 breast and/or ovarian cancer patients from Greenland for mutations in BRCA1 and BRCA2. Whereas no mutations were identified in 19 families, 13 families exhibited a BRCA1...... exon 3 nucleotide 234 T > G mutation, which has not previously been reported in the breast cancer information core (BIC) database. The mutation changes a conserved cysteine 39 to a glycine in the Zn(2+) site II of the RING domain, which is essential for BRCA1 ubiquitin ligase activity. Eight...... of the families had members with ovarian cancer, suggesting that the RING domain may be an ovarian cancer hotspot. By SNP array analysis, we find that all 13 families share a 4.5 Mb genomic fragment containing the BRCA1 gene, showing that the mutation originates from a founder. Finally, analysis of 1152 Inuit...

  15. BRCA1-mediated repression of select X chromosome genes

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2004-09-01

    Full Text Available Abstract Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling. Significance was determined using parametric statistics with P

  16. СПЕКТР ПОЛИМОРФИЗМОВ ГЕНА BRCA1 И ГЕНА BRCA2 У ЖЕНСКОГО НАСЕЛЕНИЯ Г. ОМСКА

    OpenAIRE

    Ширлина, Наталья; Стасенко, Владимир; Долгих, Татьяна

    2012-01-01

    В работе представлены результаты исследования распространенности ассоциированных с раком молочной железы (РМЖ) полиморфизмов гена BRCA1 и гена BRCA2 среди различных возрастных групп женского населения Омска. Распространенность 185delAG, 4153delA, 5382insC, Cys61Gly(T181G) полиморфизмов гена BRCA1 и 6174delT полиморфизма гена BRCA2, ассоциированных с РМЖ, составила 7%, что согласуется с литературными данными. В общей выборке достоверных признаков преобладания какого-либо полиморфизма не обнару...

  17. BRCA1 R1699Q variant displaying ambiguous functional abrogation confers intermediate breast and ovarian cancer risk

    DEFF Research Database (Denmark)

    Spurdle, Amanda B; Whiley, Phillip J; Thompson, Bryony

    2012-01-01

    Clinical classification of rare sequence changes identified in the breast cancer susceptibility genes BRCA1 and BRCA2 is essential for appropriate genetic counselling of individuals carrying these variants. We previously showed that variant BRCA1 c.5096G>A p.Arg1699Gln in the BRCA1 transcriptional...

  18. Factors forming the BRCA1-A complex orchestrate BRCA1 recruitment to the sites of DNA damage

    Institute of Scientific and Technical Information of China (English)

    Joonyoung Her; Nam Soo Lee; Yonghwan Kim; Hongtae Kim

    2016-01-01

    Sustaining genomic integrity is essential for preventing onset of cancers.Therefore,human cells evolve to have refined biological pathways to defend genetic materials from various genomic insults.DNA damage response and DNA repair pathways essential for genome maintenance are accomplished by cooperative executions of multiple factors including breast cancer type 1 susceptibility protein (BRCA1).BRCAI is initially identified as an altered gene in the hereditary breast cancer patients.Since then,tremendous efforts to understand the functions of BRAC1 reveal that BRCA1 is found in distinct complexes,including BRCA1-A,BRCA1-B,BRCA1-C,and the BRCA1a PALB2aBRCA2 complex,and plays diverse roles in a context-dependent manner.Among the complexes,BRCA1-A is critical for BRCA1 recruitment to the sites of DNA damage.Factors comprising the BRCA1-A include RAP80,CCDC98aAbraxas,BRCC36,BRCC45,BARD1,BRCA1,and MERIT40,a RAP80-associated factor.In this review,we summarize recent findings of the factors that form the BRCA1-A complex.

  19. Functional Study of the Human BRCA2 Tumor Suppressor

    Science.gov (United States)

    2005-08-01

    Wang, Y., Lee, M. & Venkitaraman, A. R. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306, 876...tumor suppressor genes in mitotic and meiotic cells. Mol Cell 2, 317-28 (1998). 28. Fuks, F., Milner, J. & Kouzarides, T. BRCA2 associates with...Scully, R. et al. Association of BRCA1 with Rad5l in mitotic and meiotic cells. Cell 88, 265-75 (1997). 49. Nakanishi, K. et al. Human Fanconi anemia

  20. A New Cell-Free System to Study BRCA1 Function

    Science.gov (United States)

    2015-05-01

    suppress genome instability by promoting homologous recombination , which it does in part by helping to recruit BRCA2 and the RAD51 recombinase to...BRCA1S1379F-BARD1, BRCA1I26A-BARD1, or BRCA1ΔCC-BARD1 and measure the effects on ICL repair. Re-addition of recombinant wild type BRCA1-BARD1 to...has been assumed that BRCA1’s primary role in ICL repair is to support homologous recombination . However, our data strongly support the novel concept

  1. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    NARCIS (Netherlands)

    S. Blein (Sophie); C. Bardel (Claire); V. Danjean (Vincent); L. McGuffog (Lesley); S. Healey (Sue); D. Barrowdale (Daniel); A. Lee (Andrew); J. Dennis (Joe); K.B. Kuchenbaecker (Karoline); P. Soucy (Penny); M.B. Terry (Mary Beth); W. Chung (Wendy); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); L. Tihomirova (Laima); N. Tung (Nadine); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); A-M. Gerdes (Anne-Marie); B. Ejlertsen (Bent); F. Nielsen (Finn); T.V.O. Hansen (Thomas); A. Osorio (Ana); J. Benítez (Javier); R.A. Conejero (Raquel Andrés); E. Segota (Ena); J.N. Weitzel (Jeffrey); M. Thelander (Margo); P. Peterlongo (Paolo); P. Radice (Paolo); V. Pensotti (Valeria); R. Dolcetti (Riccardo); B. Bonnani (Bernardo); B. Peissel (Bernard); D. Zaffaroni (D.); G. Scuvera (Giulietta); S. Manoukian (Siranoush); L. Varesco (Liliana); G.L. Capone (Gabriele L.); L. Papi (Laura); L. Ottini (Laura); D. Yannoukakos (Drakoulis); I. Konstantopoulou (I.); J. Garber (Judy); U. Hamann (Ute); A. Donaldson (Alan); A. Brady (A.); C. Brewer (Carole); C. Foo (Claire); D.G. Evans (Gareth); D. Frost (Debra); D. Eccles (Diana); F. Douglas (Fiona); J. Cook (Jackie); L. Adlard; J. Barwell (Julian); L.J. Walker (Lisa); L. Izatt (Louise); L. Side (Lucy); M.J. Kennedy (John); M. Tischkowitz (Marc); M.T. Rogers (Mark); M.E. Porteous (Mary); P.J. Morrison (Patrick); R. Platte (Radka); R. Eeles (Ros); R. Davidson (Rosemarie); S. Hodgson (Shirley); T.J. Cole (Trevor); A.K. Godwin (Andrew); C. Isaacs (Claudine); K.B.M. Claes (Kathleen B.M.); K. De Leeneer (Kim); A. Meindl (Alfons); P.A. Gehrig (Paola A.); B. Wapenschmidt (Barbara); C. Sutter (Christian); C. Engel (Christoph); D. Niederacher (Dieter); D. Steinemann (Doris); H. Plendl (Hansjoerg); K. Kast (Karin); K. Rhiem (Kerstin); N. Ditsch (Nina); N. Arnold (Norbert); R. Varon-Mateeva (Raymonda); R.K. Schmutzler (Rita); S. Preisler-Adams (Sabine); N.B. Markov (Nadja Bogdanova); S. Wang-Gohrke (Shan); A. de Pauw (Antoine); C. Lefol (Cédrick); C. Lasset (Christine); D. Leroux (Dominique); E. Rouleau (Etienne); F. Damiola (Francesca); H. Dreyfus (Hélène); L. Barjhoux (Laure); L. Golmard (Lisa); N. Uhrhammer (Nancy); V. Bonadona (Valérie); V. Sornin (Valérie); Y.-J. Bignon (Yves-Jean); J. Carter (Jonathan); L. van Le (Linda); M. Piedmonte (Marion); P. DiSilvestro (Paul); M. de La Hoya (Miguel); T. Caldes (Trinidad); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); A. Jager (Agnes); A.M.W. van den Ouweland (Ans); C.M. Kets; C.M. Aalfs (Cora); F.E. van Leeuwen (F.); F.B.L. Hogervorst (Frans); E.J. Meijers-Heijboer (Hanne); J.C. Oosterwijk (Jan); K.E. van Roozendaal (Kees); M.A. Rookus (M.); P. Devilee (Peter); R.B. van der Luijt (Rob); E. Olah; O. Díez (Orland); A. Teulé (A.); C. Lazaro (Conxi); I. Blanco (Ignacio); J. Del Valle (Jesús); A. Jakubowska (Anna); G. Sukiennicki (Grzegorz); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska-Bieniek (Katarzyna); B.A. Agnarsson (Bjarni); C. Maugard; A. Amadori (Alberto); M. Montagna (Marco); P.J. Teixeira; A.B. Spurdle (Amanda); W.D. Foulkes (William); C. Olswold (Curtis); N.M. Lindor (Noralane); V.S. Pankratz (Shane); C. Szabo (Csilla); A. Lincoln (Anne); L. Jacobs (Lauren); M. Corines (Marina); M. Robson (Mark); J. Vijai (Joseph); A. Berger (Andreas); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D.G. Kaulich (Daphne Gschwantler); G. Pfeiler (Georg); M.-K. Tea; M.H. Greene (Mark); P.L. Mai (Phuong); G. Rennert (Gad); E.N. Imyanitov (Evgeny); A.M. Mulligan (Anna Marie); G. Glendon (Gord); I.L. Andrulis (Irene); S. Tchatchou (Sandrine); A.E. Toland (Amanda); I.S. Pedersen (Inge Sokilde); M. Thomassen (Mads); T.A. Kruse (Torben); U.B. Jensen; M.A. Caligo (Maria); E. Friedman (Eitan); J. Zidan (Jamal); Y. Laitman (Yael); A. Lindblom (Annika); B. Melin (Beatrice); B. Arver (Brita Wasteson); N. Loman (Niklas); R. Rosenquist (R.); O.I. Olopade (Olofunmilayo); R. Nussbaum (Robert); S.J. Ramus (Susan); K.L. Nathanson (Katherine); S.M. Domchek (Susan); R. Rebbeck (Timothy); B.K. Arun (Banu); G. Mitchell (Gillian); B. Karlan; K.J. Lester (Kathryn); S. Orsulic (Sandra); D. Stoppa-Lyonnet (Dominique); G. Thomas (Gilles); J. Simard (Jacques); F.J. Couch (Fergus); K. Offit (Kenneth); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis C.); S. Mazoyer (Sylvie); C. Phelan (Catherine); O. Sinilnikova (Olga); D.G. Cox (David)

    2015-01-01

    textabstractIntroduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of whi

  2. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers.

    NARCIS (Netherlands)

    Blein, S.; Bardel, C.; Danjean, V.; McGuffog, L.; Healey, S.; Barrowdale, D.; Lee, A.; Dennis, J.; Kuchenbaecker, K.B.; Soucy, P.; Terry, M.B.; Chung, W.K.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Tihomirova, L.; Tung, N.; Dorfling, C.M.; Rensburg, E.J. van; Neuhausen, S.L.; Ding, Y.C.; Gerdes, A.M.; Ejlertsen, B.; Nielsen, F.C.; Hansen, T.V.; Osorio, A.; Benitez, J.; Conejero, R.A.; Segota, E.; Weitzel, J.N.; Thelander, M.; Peterlongo, P.; Radice, P.; Pensotti, V.; Dolcetti, R.; Bonanni, B.; Peissel, B.; Zaffaroni, D.; Scuvera, G.; Manoukian, S.; Varesco, L.; Capone, G.L.; Papi, L.; Ottini, L.; Yannoukakos, D.; Konstantopoulou, I.; Garber, J.; Hamann, U.; Donaldson, A.; Brady, A.; Brewer, C.; Foo, C.; Evans, D.G.; Frost, D.; Eccles, D.; Douglas, F.; Cook, J.; Adlard, J.; Barwell, J.; Walker, L.; Izatt, L.; Side, L.E.; Kennedy, M.J.; Tischkowitz, M.; Rogers, M.T.; Porteous, M.E.; Morrison, P.J.; Platte, R.; Eeles, R.; Davidson, R.; Hodgson, S.; Cole, T.; Godwin, A.K.; Isaacs, C.; Claes, K.; Leeneer, K. De; Meindl, A.; Gehrig, A.; Wappenschmidt, B.; Sutter, C.; Engel, C.; Niederacher, D.; Steinemann, D.; Plendl, H.; Kast, K.; Rhiem, K.; Ditsch, N.; Arnold, N.; Varon-Mateeva, R.; Schmutzler, R.K.; Preisler-Adams, S.; Markov, N.B.; Wang-Gohrke, S.; Pauw, A. de; Lefol, C.; Lasset, C.; Leroux, D.; Rouleau, E.; Damiola, F.; Dreyfus, H.; Barjhoux, L.; Golmard, L.; Uhrhammer, N.; Bonadona, V.; Sornin, V.; Bignon, Y.J.; Carter, J.; Le, L; Piedmonte, M.; DiSilvestro, P.A.; Hoya, M. de la; Caldes, T.; Nevanlinna, H.; Aittomaki, K.; Jager, A.; Ouweland, A.M. van den; Kets, C.M.; Aalfs, C.M.; Leeuwen, F.E. van; Hogervorst, F.B.; Meijers-Heijboer, H.E.; Oosterwijk, J.C.; Roozendaal, K.E. van; Rookus, M.A.; Devilee, P.; Luijt, R.B. van der; Olah, E.; Diez, O.; Teule, A.; Lazaro, C.; Blanco, I.; Valle, J.; Jakubowska, A.; Sukiennicki, G.; Gronwald, J.; Lubinski, J.; Durda, K.; Jaworska-Bieniek, K.; Agnarsson, B.A.; Maugard, C.; Amadori, A.; Montagna, M.; Teixeira, M.R.; Spurdle, A.B.; Foulkes, W.; Olswold, C.; Lindor, N.M.; Pankratz, V.S.; Szabo, C.I.; Lincoln, A.; Jacobs, L.; Corines, M.; Robson, M.; Vijai, J.; Berger, A.; Fink-Retter, A.; Singer, C.F.; Rappaport, C.; Kaulich, D.G.; Pfeiler, G.; Tea, M.K.; Greene, M.H.; Mai, P.L.; Rennert, G.; Imyanitov, E.N.; Mulligan, A.M.; Glendon, G.; Andrulis, I.L.; Tchatchou, S.; Toland, A.E.; Pedersen, I.S.; Thomassen, M.; Kruse, T.A.; Jensen, U.B.; Caligo, M.A.; Friedman, E.; Zidan, J.; Laitman, Y.; Lindblom, A.; Melin, B.; Arver, B.; Loman, N.; Rosenquist, R.; Olopade, O.I.; Nussbaum, R.L.; Ramus, S.J.; Nathanson, K.L.; Domchek, S.M.; Rebbeck, T.R.; Arun, B.K.; Mitchell, G.; Karlan, B.Y.; Lester, J.; Orsulic, S.; Stoppa-Lyonnet, D.; Thomas, G; Simard, J.; Couch, F.J.; Offit, K.; Easton, D.F.; Chenevix-Trench, G.; Antoniou, A.C.; Mazoyer, S.; Phelan, C.M.; Sinilnikova, O.M.; Cox, D.G.

    2015-01-01

    INTRODUCTION: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitoc

  3. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    NARCIS (Netherlands)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent; McGuffog, Lesley; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Dennis, Joe; Kuchenbaecker, Karoline B.; Soucy, Penny; Terry, Mary Beth; Chung, Wendy K.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Neuhausen, Susan L.; Ding, Yuan Chun; Gerdes, Anne-Marie; Ejlertsen, Bent; Nielsen, Finn C.; Hansen, Thomas V. O.; Osorio, Ana; Benitez, Javier; Andres Conejero, Raquel; Segota, Ena; Weitzel, Jeffrey N.; Thelander, Margo; Peterlongo, Paolo; Radice, Paolo; Pensotti, Valeria; Dolcetti, Riccardo; Bonanni, Bernardo; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Manoukian, Siranoush; Varesco, Liliana; Capone, Gabriele L.; Papi, Laura; Ottini, Laura; Yannoukakos, Drakoulis; Konstantopoulou, Irene; Garber, Judy; Hamann, Ute; Donaldson, Alan; Brady, Angela; Brewer, Carole; Foo, Claire; Evans, D. Gareth; Frost, Debra; Eccles, Diana; Douglas, Fiona; Cook, Jackie; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Tischkowitz, Marc; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Cole, Trevor; Godwin, Andrew K.; Isaacs, Claudine; Claes, Kathleen; De Leeneer, Kim; Meindl, Alfons; Gehrig, Andrea; Wappenschmidt, Barbara; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Schmutzler, Rita K.; Preisler-Adams, Sabine; Markov, Nadja Bogdanova; Wang-Gohrke, Shan; de Pauw, Antoine; Lefol, Cedrick; Lasset, Christine; Leroux, Dominique; Rouleau, Etienne; Damiola, Francesca; Dreyfus, Helene; Barjhoux, Laure; Golmard, Lisa; Uhrhammer, Nancy; Bonadona, Valerie; Sornin, Valerie; Bignon, Yves-Jean; Carter, Jonathan; Van Le, Linda; Piedmonte, Marion; DiSilvestro, Paul A.; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Aittomaki, Kristiina; Jager, Agnes; van den Ouweland, Ans M. W.; Kets, Carolien M.; Aalfs, Cora M.; van Leeuwen, Flora E.; Hogervorst, Frans B. L.; Meijers-Heijboer, Hanne E. J.; Oosterwijk, Jan C.; van Roozendaal, Kees E. P.; Rookus, Matti A.; Devilee, Peter; van der Luijt, Rob B.; Olah, Edith; Diez, Orland; Teule, Alex; Lazaro, Conxi; Blanco, Ignacio; Del Valle, Jesus; Jakubowska, Anna; Sukiennicki, Grzegorz; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Agnarsson, Bjarni A.; Maugard, Christine; Amadori, Alberto; Montagna, Marco; Teixeira, Manuel R.; Spurdle, Amanda B.; Foulkes, William; Olswold, Curtis; Lindor, Noralane M.; Pankratz, Vernon S.; Szabo, Csilla I.; Lincoln, Anne; Jacobs, Lauren; Corines, Marina; Robson, Mark; Vijai, Joseph; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Imyanitov, Evgeny N.; Mulligan, Anna Marie; Glendon, Gord; Andrulis, Irene L.; Tchatchou, Sandrine; Toland, Amanda Ewart; Pedersen, Inge Sokilde; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Caligo, Maria A.; Friedman, Eitan; Zidan, Jamal; Laitman, Yael; Lindblom, Annika; Melin, Beatrice; Arver, Brita; Loman, Niklas; Rosenquist, Richard; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Ramus, Susan J.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Mitchell, Gillian; Karlan, Beth Y.; Lester, Jenny; Orsulic, Sandra; Stoppa-Lyonnet, Dominique; Thomas, Gilles; Simard, Jacques; Couch, Fergus J.; Offit, Kenneth; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Mazoyer, Sylvie; Phelan, Catherine M.; Sinilnikova, Olga M.; Cox, David G.

    2015-01-01

    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitoc

  4. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  5. The founder mutations 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 appear in 60% of ovarian cancer and 30% of early-onset breast cancer patients among Ashkenazi women

    Energy Technology Data Exchange (ETDEWEB)

    Abeliovich, D.; Lerer, I.; Weinberg, N. [Hebrew Univ. Medical School, Jerusalem (Israel)

    1997-03-01

    The mutations 185delAG, 188del11, and 5382insC in the BRCA1 gene and 6174delT in the BRCA2 gene were analyzed in 199 Ashkenazi and 44 non-Ashkenazi Jewish unrelated patients with breast and/or ovarian cancer. Of the Jewish Ashkenazi women with ovarian cancer, 62% (13/21) had one of the target mutations, as did 30% (13/43) of women with breast cancer alone diagnosed before the age 40 years and 10% (15/141) of those with breast cancer diagnosed after the age 40 years. Age at ovarian cancer diagnosis was not associated with carrier status. Of 99 Ashkenazi patients with no family history of breast and/or ovarian cancer, 10% carried one of the mutations; in two of them the mutation was proved to be paternally transmitted. One non-Ashkenazi Jewish ovarian cancer patient from Iraq carried the 185delAG mutation. Individual mutation frequencies among breast cancer Ashkenazi patients were 6.7% for 185delAG, 2.2% for 5382insC, and 4.5% for 6174delT, among ovarian cancer patients; 185delAG and 6174delT were about equally common (33% and 29%, respectively), but no ovarian cancer patient carried the 5382insC. More mutations responsible for inherited breast and ovarian cancer probably remain to be found in this population, since 79% of high-incidence breast cancer families and 35% of high-incidence breast/ovarian cancer families had none of the three known founder mutations. 25 refs., 3 figs., 6 tabs.

  6. Susceptibility of BRCA2 Heterozygous Normal Mammary Epithelial Cells to Radiation-Induced Transformation

    Science.gov (United States)

    2005-10-01

    mouse embryonic fibroblasts (MEF) with less severe BRCA2 truncations (22-24). Particularly, spontaneous accumulation of chromosomal abnormalities ...Scully, R. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells, Mol Cell. 2: 317-28

  7. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples

    DEFF Research Database (Denmark)

    Fackenthal, James D; Yoshimatsu, Toshio; Zhang, Bifeng

    2016-01-01

    BACKGROUND: BRCA1 and BRCA2 are the two principal tumour suppressor genes associated with inherited high risk of breast and ovarian cancer. Genetic testing of BRCA1/2 will often reveal one or more sequence variants of uncertain clinical significance, some of which may affect normal splicing patte...

  8. BRCA1 and BRCA2 Mutations in African Americans

    Science.gov (United States)

    2002-04-01

    Foncillas J, de Al~P1 mRNA and expression pattern were not variety. In the result of sequencing Cuevillas Matozzi F. Clinica Ruber Internacional, Madrid... Laboratorio Dr. Echevame, nudy suggests that BAP1 mutations are not common in breast and lung cancers Barcelona, Spain.xc that allelic deletions of

  9. BRCA1 and BRCA2: Cancer Risk and Genetic Testing

    Science.gov (United States)

    ... Resources Conducting Clinical Trials Statistical Tools and Data Terminology Resources NCI Data Catalog Cryo-EM NCI's Role ... Report (RPPR) Grant Closeout Grant Resources NCI Grants Management Legal Requirements NCI Grant Policies Grants Management Contacts ...

  10. BRCA1/2 associated hereditary breast cancer

    Institute of Scientific and Technical Information of China (English)

    Li-song TENG; Yi ZHENG; Hao-hao WANG

    2008-01-01

    Breast cancer is one of the leading causes of death in women today. Some of the patients are hereditary, with a large proportion characterized by mutation in BRCA1 and/or BRCA2 genes. In this review, we provide an overview of these two genes,focusing on their relationship with hereditary breast cancers. BRCA1/2 associated hereditary breast cancers have unique features that differ from the general breast cancers, including alterations in cellular molecules, pathological bases, biological behavior, and a different prevention strategy. But the outcome of BRCA1/2 associated hereditary breast cancers still remains controversial;further studies are needed to elucidate the nature of BRCA1/2 associated hereditary breast cancers.

  11. Assessment of the InSiGHT Interpretation Criteria for the Clinical Classification of 24 MLH1 and MSH2 Gene Variants.

    Science.gov (United States)

    Tricarico, Rossella; Kasela, Mariann; Mareni, Cristina; Thompson, Bryony A; Drouet, Aurélie; Staderini, Lucia; Gorelli, Greta; Crucianelli, Francesca; Ingrosso, Valentina; Kantelinen, Jukka; Papi, Laura; De Angioletti, Maria; Berardi, Margherita; Gaildrat, Pascaline; Soukarieh, Omar; Turchetti, Daniela; Martins, Alexandra; Spurdle, Amanda B; Nyström, Minna; Genuardi, Maurizio

    2017-01-01

    Pathogenicity assessment of DNA variants in disease genes to explain their clinical consequences is an integral component of diagnostic molecular testing. The International Society for Gastrointestinal Hereditary Tumors (InSiGHT) has developed specific criteria for the interpretation of mismatch repair (MMR) gene variants. Here, we performed a systematic investigation of 24 MLH1 and MSH2 variants. The assessments were done by analyzing population frequency, segregation, tumor molecular characteristics, RNA effects, protein expression levels, and in vitro MMR activity. Classifications were confirmed for 15 variants and changed for three, and for the first time determined for six novel variants. Overall, based on our results, we propose the introduction of some refinements to the InSiGHT classification rules. The proposed changes have the advantage of homogenizing the InSIGHT interpretation criteria with those set out by the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium for the BRCA1/BRCA2 genes. We also observed that the addition of only few clinical data was sufficient to obtain a more stable classification for variants considered as "likely pathogenic" or "likely nonpathogenic." This shows the importance of obtaining as many as possible points of evidence for variant interpretation, especially from the clinical setting.

  12. Novel BRCA1 deleterious mutation (c.1949_1950delTA) in a woman of Senegalese descent with triple-negative early-onset breast cancer.

    Science.gov (United States)

    Diez, Orland; Pelegrí, Amadeu; Gadea, Neus; Gutiérrez-Enríquez, Sara; Masas, Miriam; Tenés, Anna; Bosch, Nina; Balmaña, Judith; Graña, Begoña

    2011-11-01

    Limited information exists regarding BRCA1 and BRCA2 genetic testing and genetic diversity in BRCA1 and BRCA2 in sub-Saharan African populations. We report a novel mutation that consists of a deletion of 2 bp (c.1949_1950delTA) in the exon 11 of the BRCA1 gene. This is a frameshift mutation that causes the disruption of the translational reading frame resulting in a premature stop codon downstream in the BRCA1 protein. The mutation was present in a Senegalese woman with a triple-negative breast tumor and a family history of breast cancer.

  13. Limited significance of family history for presence of BRCA1 gene mutation in Polish breast and ovarian cancer cases

    OpenAIRE

    Brozek, Izabela; Ratajska, Magdalena; Piatkowska, Magdalena; Kluska, Anna; Balabas, Aneta; Dabrowska, Michalina; Nowakowska, Dorota; Niwinska, Anna; Rachtan, Jadwiga; Steffen, Jan; Limon, Janusz

    2012-01-01

    It is estimated that about 5–10% of ovarian and 2–5% of all breast cancer patients are carriers of a germline BRCA1 or BRCA2 gene mutation. Most families with detected BRCA1 or BRCA2 gene mutation are qualified for molecular testing on the basis of family history of breast or ovarian cancers. The purpose of our study was to establish the frequency of positive family history of cancer in a series of Polish consecutive breast and ovarian cancer patients in two groups, with and without the BRCA1...

  14. Screening of BRCA1 sequence variants within exon 11 by heteroduplex analysis

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2013-03-01

    Full Text Available Germ-line mutations of either BRCA1 or BRCA2 represents the major hereditary risk to breast and ovariancancer. Screening for mutations in these genes is now standard practice in molecular diagnosis, opening the way tooncogenetic counselling and follow-up. Because mutations in both BRCA1 and BRCA2 are distributed throughout theloci, accepted clinical protocols involve screening their entire coding regions. Systematic Sanger sequencing is time andmoney consuming. Therefore, a lot of pre-screening techniques evolved over time in order to identify anomalousamplicons prior to sequencing. Because BRCA mutations are always heterozygous, heteroduplex analysis proved to be asuitable pre-screening step. We previously implemented mismatch specific endonuclease heteroduplex analysis forBRCA1 exon7. Here we show the utility of the same method for mutations and SNPs found in BRCA1 exon 11

  15. A BRCA2 mutation incorrectly mapped in the original BRCA2 reference sequence, is a common West Danish founder mutation disrupting mRNA splicing

    DEFF Research Database (Denmark)

    Thomassen, Mads; Pedersen, Inge Søkilde; Vogel, Ida;

    2011-01-01

    Inherited mutations in the tumor suppressor genes BRCA1 and BRCA2 predispose carriers to breast and ovarian cancer. The authors have identified a mutation in BRCA2, 7845+1G>A (c.7617+1G>A), not previously regarded as deleterious because of incorrect mapping of the splice junction in the originally...... common BRCA2 mutation in West Denmark, while it is rare in Central and East Denmark and not identified in South Sweden. Haplotype analysis using dense SNP arrays indicated a common founder of the mutation approximately 1,500 years ago....

  16. Clinical outcomes in pancreatic adenocarcinoma associated with BRCA-2 mutation.

    Science.gov (United States)

    Vyas, Ojas; Leung, Keith; Ledbetter, Leslie; Kaley, Kristin; Rodriguez, Teresa; Garcon, Marie C; Saif, Muhammad W

    2015-02-01

    Patients with BRCA-1 and BRCA-2 germ line mutations are at an increased risk of developing pancreatic adenocarcinoma (PAC). In particular, the BRCA-2 mutation has been associated with a relative risk of developing PAC of 3.51. The BRCA-2 protein is involved in repair of double-stranded DNA breaks. Recent reports have suggested that in the setting of impaired DNA repair, chemotherapeutic agents that induce DNA damage, such as platinum-based antineoplastic drugs (platins) and poly(ADP-ribose) polymerase inhibitors (PARP inhibitors), have improved efficacy. However, because of the relative rarity of BRCA-related PAC, studies evaluating such agents in this setting are scarce. Patients with a known BRCA-2 mutation and PAC were retrospectively reviewed. Ten patients with PAC and BRCA-2 mutation were identified. Four patients (40%) were of Ashkenazi Jewish descent. Seven patients (70%) received platinum agents, two (20%) received mitomycin-C, one (10%) received a PARP inhibitor, and seven (70%) received a topoisomerase-I inhibitor. Overall, chemotherapy was well tolerated with expected side effects. Patients with a BRCA-2 mutation and PAC represent a group with a unique biology underlying their cancer. Chemotherapies such as platinum derivatives, mitomycin-C, topoisomerase-I inhibitors, and PARP inhibitors targeting DNA require further investigation in this population. Genetic testing may guide therapy in the future.

  17. BRCA1/2 predictive testing and gender: uptake, motivation and psychological characteristics.

    Science.gov (United States)

    Denayer, L; Boogaerts, A; Philippe, K; Legius, E; Evers-Kiebooms, G

    2009-01-01

    BRCA1/2 predictive testing and gender: Uptake, motivation and psychological characteristics: Data on male uptake of BRCA1/2 predictive testing and psychological characteristics of males in comparison to females are scarce. We investigated gender differences in the cohort tested at the Center for Human Genetics in Leuven during a 10-year period (1998-2007). Males were significantly older than females. Breast cancer related distress (IES) was significantly lower in men and was not associated with BRCA1 or BRCA2. The groups of both males and females were psychologically stronger than average (SCL-90, UCL) and self-selected. Men were unanimously motivated (personal relevance of 12 motives rated on a Likert scale) by concern for their daughters, and significantly more so than women. One third of them (versus 12% women) referred to child-bearing decisions. Considering all unaffected siblings in the family of origin, uptake of predictive testing was significantly higher in females. Moreover, uptake was significantly higher in women belonging to a BRCA2 than to a BRCA1 family. In the descendants of identified carriers, uptake was predicted by gender and age, but not by the parent's gender or by BRCA1 or BRCA2 status.

  18. Will Chinese ovarian cancer patients benefit from knowing the BRCA2 mutation status?

    Institute of Scientific and Technical Information of China (English)

    Guo-Yan Liu; Wei Zhang

    2012-01-01

    In Western countries,the mutation status of the BRCA1 and BRCA2 genes is commonly determined for genetic counseling among members of families with a history of breast or ovarian cancer,especially for women of the Ashkenazi Jewish ethnicity.Recent studies in the Cancer Genome Atlas project have demonstrated that BRCA2 mutation carriers are more responsive to platinum-based chemotherapy among high-grade serous ovarian cancer patients.Thus,in Western countries,the mutation status of BRCA1 and BRCA2 is recognized to have an important value with which to assess cancer risk and therapeutic response.However,very limited studies of BRCA1 and BRCA2 mutations and their implications for counseling and therapeutic prediction have been conducted in China.Therefore,a potentially important genetic test that is technically simple has not benefited Chinese women with an increased risk of breast or ovarian cancer.This article summarizes the current progress in the study of BRCA1/2 mutation in China and recommends an increased effort in applying advances in genetic testing to the clinical management of Chinese patients with ovarian cancer.

  19. Mutation screening of MIR146A/B and BRCA1/2 3'-UTRs in the GENESIS study.

    Science.gov (United States)

    Garcia, Amandine I; Buisson, Monique; Damiola, Francesca; Tessereau, Chloé; Barjhoux, Laure; Verny-Pierre, Carole; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Caron, Olivier; Gautier-Villars, Marion; Coupier, Isabelle; Buecher, Bruno; Vennin, Philippe; Belotti, Muriel; Lortholary, Alain; Gesta, Paul; Dugast, Catherine; Noguès, Catherine; Fricker, Jean-Pierre; Faivre, Laurence; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Sinilnikova, Olga M; Mazoyer, Sylvie

    2016-08-01

    Although a wide number of breast cancer susceptibility alleles associated with various levels of risk have been identified to date, about 50% of the heritability is still missing. Although the major BRCA1 and BRCA2 genes are being extensively screened for truncating and missense variants in breast and/or ovarian cancer families, potential regulatory variants affecting their expression remain largely unexplored. In an attempt to identify such variants, we focused our attention on gene regulation mediated by microRNAs (miRs). We screened two genes, MIR146A and MIR146B, producing miR-146a and miR-146b-5p, respectively, that regulate BRCA1, and the 3'- untranslated regions (3'-UTRs) of BRCA1 and BRCA2 in the GENESIS French national case/control study (BRCA1- and BRCA2-negative breast cancer cases with at least one sister with breast cancer and matched controls). We identified one rare variant in MIR146A, four in MIR146B, five in BRCA1 3'-UTR and one in BRCA2 3'-UTR in 716 index cases and 619 controls. Among these 11 rare variants, 7 were identified each in 1 index case. None of the three relevant MIR146A/MIR146B variants affected the pre-miR sequences. The potential causality of the four relevant BRCA1/BRCA2 3'-UTRs variants was evaluated with luciferase reporter assays and co-segregation studies, as well as with bioinformatics analyses to predict miRs-binding sites, RNA secondary structures and RNA accessibility. This is the first study to report the screening of miR genes and of BRCA2 3'-UTR in a large series of familial breast cancer cases. None of the variant identified in this study gave convincing evidence of potential pathogenicity.

  20. BRCA1 and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yong Weon Yi

    2014-04-01

    Full Text Available The breast cancer susceptibility gene 1 (BRCA1 has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  1. The epistatic relationship between BRCA2 and the other RAD51 mediators in homologous recombination.

    Directory of Open Access Journals (Sweden)

    Yong Qing

    2011-07-01

    Full Text Available RAD51 recombinase polymerizes at the site of double-strand breaks (DSBs where it performs DSB repair. The loss of RAD51 causes extensive chromosomal breaks, leading to apoptosis. The polymerization of RAD51 is regulated by a number of RAD51 mediators, such as BRCA1, BRCA2, RAD52, SFR1, SWS1, and the five RAD51 paralogs, including XRCC3. We here show that brca2-null mutant cells were able to proliferate, indicating that RAD51 can perform DSB repair in the absence of BRCA2. We disrupted the BRCA1, RAD52, SFR1, SWS1, and XRCC3 genes in the brca2-null cells. All the resulting double-mutant cells displayed a phenotype that was very similar to that of the brca2-null cells. We suggest that BRCA2 might thus serve as a platform to recruit various RAD51 mediators at the appropriate position at the DNA-damage site.

  2. Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers

    OpenAIRE

    2015-01-01

    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRC...

  3. A Study on BRCA1/2 Mutations, Hormone Status and HER-2 Status in Korean Women with Early-onset Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Doo Ho; Jin, So Young; Lee, Dong Wha; Kim, Eun Seog; Kim, Yong Ho [Soonchunhyang University College of Medicine, Seoul (Korea, Republic of)

    2008-03-15

    Women with breast cancer diagnosed at an age of 40 years or younger have a greater prevalence of germline BRCA1 and BRCA2 mutations than the prevalence of women with breast cancer diagnosed at older ages. Several immunohistochemical characteristics have been identified in breast cancers from studies of Caucasian women with BRCA1/2 mutations having familial or early-onset breast cancers. The aim of this study is to determine whether early-onset breast cancer in BRCA1 or BRCA2 mutation carriers, who were not selected from a family history, could be distinguished by the use of immunohistochemical methods and could be distinguished from breast cancer in women of a similar age without a germline BRCA1 or BRCA2 mutation. We also analyzed the prognostic difference between BRCA1/2 related and BRCA1/2 non-related patients by the use of univariate and multivariate analysis. Breast cancer tissue specimens from Korean women with early-onset breast cancers were studied using a tumor tissue microarray. Immunohistochemical staining of estrogen receptor (ER), progesterone receptor (PR) and HER-2, as well as the histology and grade of these specimens, were compared. The prognostic impact of immunohistochemical and histological factors as well as the BRCA1/2 mutation status was investigated separately. There were 14 cases and 16 deleterious BRCA1/2 mutations among 101 patients tested. A family history (4/14) and bilateral breast cancers (3/9) were high risk factors for BRCA1/2 mutations. BRCA1/2- associated cancers demonstrated more expression of ER-negative (19.4% versus 5.1%, p=0.038) and HER-2 negative than BRCA1/2 negative tumors, especially for tumors with BRCA1 tumors The BRCA1/2 mutation rate for patients with triple negative tumors (negative expression of ER, PR and HER-2) was 24.2%. Tumor size, nodal status, and HER-2 expression status were significantly associated with disease free survival, as determined by univariate and multivariate analysis, but the BRCA1/2 status was

  4. High frequency of BRCA1, but not CHEK2 or NBS1 (NBN, founder mutations in Russian ovarian cancer patients

    Directory of Open Access Journals (Sweden)

    Suspitsin Evgeny N

    2009-02-01

    Full Text Available Abstract Background A significant portion of ovarian cancer (OC cases is caused by germ-line mutations in BRCA1 or BRCA2 genes. BRCA testing is cheap in populations with founder effect and therefore recommended for all patients with OC diagnosis. Recurrent mutations constitute the vast majority of BRCA defects in Russia, however their impact in OC morbidity has not been yet systematically studied. Furthermore, Russian population is characterized by a relatively high frequency of CHEK2 and NBS1 (NBN heterozygotes, but it remains unclear whether these two genes contribute to the OC risk. Methods The study included 354 OC patients from 2 distinct, geographically remote regions (290 from North-Western Russia (St.-Petersburg and 64 from the south of the country (Krasnodar. DNA samples were tested by allele-specific PCR for the presence of 8 founder mutations (BRCA1 5382insC, BRCA1 4153delA, BRCA1 185delAG, BRCA1 300T>G, BRCA2 6174delT, CHEK2 1100delC, CHEK2 IVS2+1G>A, NBS1 657del5. In addition, literature data on the occurrence of BRCA1, BRCA2, CHEK2 and NBS1 mutations in non-selected ovarian cancer patients were reviewed. Results BRCA1 5382insC allele was detected in 28/290 (9.7% OC cases from the North-West and 11/64 (17.2% OC patients from the South of Russia. In addition, 4 BRCA1 185delAG, 2 BRCA1 4153delA, 1 BRCA2 6174delT, 2 CHEK2 1100delC and 1 NBS1 657del5 mutation were detected. 1 patient from Krasnodar was heterozygous for both BRCA1 5382insC and NBS1 657del5 variants. Conclusion Founder BRCA1 mutations, especially BRCA1 5382insC variant, are responsible for substantial share of OC morbidity in Russia, therefore DNA testing has to be considered for every OC patient of Russian origin. Taken together with literature data, this study does not support the contribution of CHEK2 in OC risk, while the role of NBS1 heterozygosity may require further clarification.

  5. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer

    Directory of Open Access Journals (Sweden)

    DeSai Damini

    2009-03-01

    Full Text Available Abstract Background Molecular screening for BRCA1 and BRCA2 mutations is now an established component of risk evaluation and management of familial breast cancer. Features of hereditary breast cancer include an early age-of-onset and over-representation of the 'triple-negative' phenotype (negative for estrogen-receptor, progesterone-receptor and HER2. The decision to offer genetic testing to a breast cancer patient is usually based on her family history, but in the absence of a family history of cancer, some women may qualify for testing based on the age-of-onset and/or the pathologic features of the breast cancer. Methods We studied 54 women who were diagnosed with high-grade, triple-negative invasive breast cancer at or before age 40. These women were selected for study because they had little or no family history of breast or ovarian cancer and they did not qualify for genetic testing using conventional family history criteria. BRCA1 screening was performed using a combination of fluorescent multiplexed-PCR analysis, BRCA1 exon-13 6 kb duplication screening, the protein truncation test (PTT and fluorescent multiplexed denaturing gradient gel electrophoresis (DGGE. All coding exons of BRCA1 were screened. The two large exons of BRCA2 were also screened using PTT. All mutations were confirmed with direct sequencing. Results Five deleterious BRCA1 mutations and one deleterious BRCA2 mutation were identified in the 54 patients with early-onset, triple-negative breast cancer (11%. Conclusion Women with early-onset triple-negative breast cancer are candidates for genetic testing for BRCA1, even in the absence of a family history of breast or ovarian cancer.

  6. RANKL/RANK control Brca1 mutation-driven mammary tumors.

    Science.gov (United States)

    Sigl, Verena; Owusu-Boaitey, Kwadwo; Joshi, Purna A; Kavirayani, Anoop; Wirnsberger, Gerald; Novatchkova, Maria; Kozieradzki, Ivona; Schramek, Daniel; Edokobi, Nnamdi; Hersl, Jerome; Sampson, Aishia; Odai-Afotey, Ashley; Lazaro, Conxi; Gonzalez-Suarez, Eva; Pujana, Miguel A; Cimba, For; Heyn, Holger; Vidal, Enrique; Cruickshank, Jennifer; Berman, Hal; Sarao, Renu; Ticevic, Melita; Uribesalgo, Iris; Tortola, Luigi; Rao, Shuan; Tan, Yen; Pfeiler, Georg; Lee, Eva Yhp; Bago-Horvath, Zsuzsanna; Kenner, Lukas; Popper, Helmuth; Singer, Christian; Khokha, Rama; Jones, Laundette P; Penninger, Josef M

    2016-07-01

    Breast cancer is the most common female cancer, affecting approximately one in eight women during their life-time. Besides environmental triggers and hormones, inherited mutations in the breast cancer 1 (BRCA1) or BRCA2 genes markedly increase the risk for the development of breast cancer. Here, using two different mouse models, we show that genetic inactivation of the key osteoclast differentiation factor RANK in the mammary epithelium markedly delayed onset, reduced incidence, and attenuated progression of Brca1;p53 mutation-driven mammary cancer. Long-term pharmacological inhibition of the RANK ligand RANKL in mice abolished the occurrence of Brca1 mutation-driven pre-neoplastic lesions. Mechanistically, genetic inactivation of Rank or RANKL/RANK blockade impaired proliferation and expansion of both murine Brca1;p53 mutant mammary stem cells and mammary progenitors from human BRCA1 mutation carriers. In addition, genome variations within the RANK locus were significantly associated with risk of developing breast cancer in women with BRCA1 mutations. Thus, RANKL/RANK control progenitor cell expansion and tumorigenesis in inherited breast cancer. These results present a viable strategy for the possible prevention of breast cancer in BRCA1 mutant patients.

  7. Removal of Ovaries and Fallopian Tubes Cuts Cancer Risk for BRCA1/2 Carriers | Division of Cancer Prevention

    Science.gov (United States)

    Surgery that removes the ovaries and fallopian tubes, called salpingo-oophorectomy, is one of the most effective ways to decrease a woman's risk of breast and gynecologic cancer if she carries aBRCA1 or BRCA2 gene mutation. However, the true degree of risk reduction has not been precisely defined. |

  8. Description and interpretation of various SNPs identified by BRCA2 gene sequencing

    Directory of Open Access Journals (Sweden)

    Anca Negura

    2011-12-01

    Full Text Available Molecular diagnosis for hereditary breast and ovarian cancer (HBOC involves systematic DNA sequencing of predisposition genes like BRCA1 or BRCA2. Deleterious mutations within such genes are responsible for developing the disease, but other sequence variants can also be identified. Common Single Nucleotide Polymorphisms (SNPs are usually present in human genome, defining alleles whose frequencies widely vary in different populations. Either intragenic or intronic, silent or generating aminoacid substitutions, SNPs cannot be afforded themselves a predisposition status. However, prevalent SNPs can be used to define gene haplotypes, with also various frequencies. Since some mutation can easily be assigned to haplotypes (such is the case for BRCA1 gene, SNPs can therefore provide usual information in interpreting gene mutations effects on hereditary predisposition to cancer. Here we describe 10 BRCA2 SNPs identified by complete gene sequencing

  9. A novel de novo BRCA2 mutation of paternal origin identified in a Spanish woman with early onset bilateral breast cancer.

    Science.gov (United States)

    Diez, Orland; Gutiérrez-Enríquez, Sara; Mediano, Carmen; Masas, Miriam; Saura, Cristina; Gadea, Neus; Balmaña, Judith

    2010-05-01

    Germ line mutations in either of the two major breast cancer predisposition genes, BRCA1 and BRCA2, account for a significant proportion of hereditary breast/ovarian cancer. Identification of breast cancer patients carrying mutations in any of these genes is primarily based on a positive family history of breast/ovarian cancer or early onset of the disease. In the course of mutation screening of the BRCA1 and BRCA2 genes in a hospital based series of patients with risk factors for hereditary breast/ovarian cancer, we identified a novel germ line mutation in the BRCA2 gene (c.51dupA) in a patient with early onset bilateral breast cancer and no family history of the disease. None of her parents carried the mutation, and paternity was confirmed. Subsequent molecular analysis demonstrated that the mutation was a novel de novo germ line mutation located in the paternal allele of the BRCA2 gene.

  10. BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development.

    Directory of Open Access Journals (Sweden)

    Harriet E Feilotter

    Full Text Available The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.

  11. Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers.

    Directory of Open Access Journals (Sweden)

    Ignacio Blanco

    Full Text Available While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR = 1.10, 95% confidence interval (CI 1.04-1.15, p = 1.9 x 10(-4 (false discovery rate (FDR-adjusted p = 0.043. Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045. Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05 for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.

  12. Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers

    Science.gov (United States)

    Blanco, Ignacio; Kuchenbaecker, Karoline; Cuadras, Daniel; Wang, Xianshu; Barrowdale, Daniel; de Garibay, Gorka Ruiz; Librado, Pablo; Sánchez-Gracia, Alejandro; Rozas, Julio; Bonifaci, Núria; McGuffog, Lesley; Pankratz, Vernon S.; Islam, Abul; Mateo, Francesca; Berenguer, Antoni; Petit, Anna; Català, Isabel; Brunet, Joan; Feliubadaló, Lidia; Tornero, Eva; Benítez, Javier; Osorio, Ana; Cajal, Teresa Ramón y; Nevanlinna, Heli; Aittomäki, Kristiina; Arun, Banu K.; Toland, Amanda E.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Greene, Mark H.; Mai, Phuong L.; Nussbaum, Robert L.; Andrulis, Irene L.; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Barkardottir, Rosa B.; Jakubowska, Anna; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Claes, Kathleen; Van Maerken, Tom; Díez, Orland; Hansen, Thomas V.; Jønson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; de la Hoya, Miguel; Caldés, Trinidad; Dunning, Alison M.; Oliver, Clare; Fineberg, Elena; Cook, Margaret; Peock, Susan; McCann, Emma; Murray, Alex; Jacobs, Chris; Pichert, Gabriella; Lalloo, Fiona; Chu, Carol; Dorkins, Huw; Paterson, Joan; Ong, Kai-Ren; Teixeira, Manuel R.; Hogervorst, Frans B. L.; van der Hout, Annemarie H.; Seynaeve, Caroline; van der Luijt, Rob B.; Ligtenberg, Marjolijn J. L.; Devilee, Peter; Wijnen, Juul T.; Rookus, Matti A.; Meijers-Heijboer, Hanne E. J.; Blok, Marinus J.; van den Ouweland, Ans M. W.; Aalfs, Cora M.; Rodriguez, Gustavo C.; Phillips, Kelly-Anne A.; Piedmonte, Marion; Nerenstone, Stacy R.; Bae-Jump, Victoria L.; O'Malley, David M.; Ratner, Elena S.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hansjoerg J.; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Jensen, Uffe Birk; Thomassen, Mads; Kruse, Torben A.; Foretova, Lenka; Peterlongo, Paolo; Bernard, Loris; Peissel, Bernard; Scuvera, Giulietta; Manoukian, Siranoush; Radice, Paolo; Ottini, Laura; Montagna, Marco; Agata, Simona; Maugard, Christine; Simard, Jacques; Soucy, Penny; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler-Kaulich, Daphne; Tea, Muy-Kheng; Pfeiler, Georg; John, Esther M.; Miron, Alex; Neuhausen, Susan L.; Terry, Mary Beth; Chung, Wendy K.; Daly, Mary B.; Goldgar, David E.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elisabeth J.; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Godwin, Andrew K.; Olah, Edith; Narod, Steven A.; Rennert, Gad; Paluch, Shani Shimon; Laitman, Yael; Friedman, Eitan; Liljegren, Annelie; Rantala, Johanna; Stenmark-Askmalm, Marie; Loman, Niklas; Imyanitov, Evgeny N.; Hamann, Ute; Spurdle, Amanda B.; Healey, Sue; Weitzel, Jeffrey N.; Herzog, Josef; Margileth, David; Gorrini, Chiara; Esteller, Manel; Gómez, Antonio; Sayols, Sergi; Vidal, Enrique; Heyn, Holger; Stoppa-Lyonnet, Dominique; Léoné, Melanie; Barjhoux, Laure; Fassy-Colcombet, Marion; de Pauw, Antoine; Lasset, Christine; Ferrer, Sandra Fert; Castera, Laurent; Berthet, Pascaline; Cornelis, François; Bignon, Yves-Jean; Damiola, Francesca; Mazoyer, Sylvie; Maxwell, Christopher A.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Corines, Marina J.; Villano, Danylko; Cunningham, Julie; Lee, Adam; Lindor, Noralane; Lázaro, Conxi; Easton, Douglas F.; Offit, Kenneth; Chenevix-Trench, Georgia; Couch, Fergus J.; Antoniou, Antonis C.; Pujana, Miguel Angel

    2015-01-01

    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04 – 1.15, p = 1.9 x 10−4 (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03 – 1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients’ survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers. PMID:25830658

  13. Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers.

    Science.gov (United States)

    Blanco, Ignacio; Kuchenbaecker, Karoline; Cuadras, Daniel; Wang, Xianshu; Barrowdale, Daniel; de Garibay, Gorka Ruiz; Librado, Pablo; Sánchez-Gracia, Alejandro; Rozas, Julio; Bonifaci, Núria; McGuffog, Lesley; Pankratz, Vernon S; Islam, Abul; Mateo, Francesca; Berenguer, Antoni; Petit, Anna; Català, Isabel; Brunet, Joan; Feliubadaló, Lidia; Tornero, Eva; Benítez, Javier; Osorio, Ana; Ramón y Cajal, Teresa; Nevanlinna, Heli; Aittomäki, Kristiina; Arun, Banu K; Toland, Amanda E; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Greene, Mark H; Mai, Phuong L; Nussbaum, Robert L; Andrulis, Irene L; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Timothy R; Barkardottir, Rosa B; Jakubowska, Anna; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Claes, Kathleen; Van Maerken, Tom; Díez, Orland; Hansen, Thomas V; Jønson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; de la Hoya, Miguel; Caldés, Trinidad; Dunning, Alison M; Oliver, Clare; Fineberg, Elena; Cook, Margaret; Peock, Susan; McCann, Emma; Murray, Alex; Jacobs, Chris; Pichert, Gabriella; Lalloo, Fiona; Chu, Carol; Dorkins, Huw; Paterson, Joan; Ong, Kai-Ren; Teixeira, Manuel R; Hogervorst, Frans B L; van der Hout, Annemarie H; Seynaeve, Caroline; van der Luijt, Rob B; Ligtenberg, Marjolijn J L; Devilee, Peter; Wijnen, Juul T; Rookus, Matti A; Meijers-Heijboer, Hanne E J; Blok, Marinus J; van den Ouweland, Ans M W; Aalfs, Cora M; Rodriguez, Gustavo C; Phillips, Kelly-Anne A; Piedmonte, Marion; Nerenstone, Stacy R; Bae-Jump, Victoria L; O'Malley, David M; Ratner, Elena S; Schmutzler, Rita K; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hansjoerg J; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Jensen, Uffe Birk; Thomassen, Mads; Kruse, Torben A; Foretova, Lenka; Peterlongo, Paolo; Bernard, Loris; Peissel, Bernard; Scuvera, Giulietta; Manoukian, Siranoush; Radice, Paolo; Ottini, Laura; Montagna, Marco; Agata, Simona; Maugard, Christine; Simard, Jacques; Soucy, Penny; Berger, Andreas; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler-Kaulich, Daphne; Tea, Muy-Kheng; Pfeiler, Georg; John, Esther M; Miron, Alex; Neuhausen, Susan L; Terry, Mary Beth; Chung, Wendy K; Daly, Mary B; Goldgar, David E; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elisabeth J; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Godwin, Andrew K; Olah, Edith; Narod, Steven A; Rennert, Gad; Paluch, Shani Shimon; Laitman, Yael; Friedman, Eitan; Liljegren, Annelie; Rantala, Johanna; Stenmark-Askmalm, Marie; Loman, Niklas; Imyanitov, Evgeny N; Hamann, Ute; Spurdle, Amanda B; Healey, Sue; Weitzel, Jeffrey N; Herzog, Josef; Margileth, David; Gorrini, Chiara; Esteller, Manel; Gómez, Antonio; Sayols, Sergi; Vidal, Enrique; Heyn, Holger; Stoppa-Lyonnet, Dominique; Léoné, Melanie; Barjhoux, Laure; Fassy-Colcombet, Marion; de Pauw, Antoine; Lasset, Christine; Ferrer, Sandra Fert; Castera, Laurent; Berthet, Pascaline; Cornelis, François; Bignon, Yves-Jean; Damiola, Francesca; Mazoyer, Sylvie; Sinilnikova, Olga M; Maxwell, Christopher A; Vijai, Joseph; Robson, Mark; Kauff, Noah; Corines, Marina J; Villano, Danylko; Cunningham, Julie; Lee, Adam; Lindor, Noralane; Lázaro, Conxi; Easton, Douglas F; Offit, Kenneth; Chenevix-Trench, Georgia; Couch, Fergus J; Antoniou, Antonis C; Pujana, Miguel Angel

    2015-01-01

    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04-1.15, p = 1.9 x 10(-4) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.

  14. Mutational analysis of the BRCA1 gene in 30 Czech ovarian cancer patients

    Indian Academy of Sciences (India)

    M. Zikan; P. Pohlreich; J. Stribrna

    2005-04-01

    Ovarian cancer is one of the most severe of oncological diseases. Inherited mutations in cancer susceptibility genes play a causal role in 5–10% of newly diagnosed tumours. BRCA1 and BRCA2 gene alterations are found in the majority of these cases. The aim of this study was to analyse the BRCA1 gene in the ovarian cancer risk group to characterize the spectrum of its mutations in the Czech Republic. Five overlapping fragments amplified on both genomic DNA and cDNA were used to screen for the whole protein-coding sequence of the BRCA1 gene. These fragments were analysed by the protein truncation test (PTT) and direct sequencing. Three inactivating mutations were identified in the group of 30 Czech ovarian cancer patients: the 5382insC mutation in two unrelated patients and a deletion of exons 21 and 22 in another patient. In addition, we have found an alternatively spliced product lacking exon 5 in two other unrelated patients. The 5382insC is the most frequent alteration of the BRCA1 gene in Central and Eastern Europe. The deletion of exons 21 and 22 affects the BRCT functional domain of the BRCA1 protein. Although large genomic rearragements are known to be relatively frequent in Western European populations, no analyses have been performed in our region yet.

  15. Identification of patients at high risk of psychological distress after BRCA1 genetic testing.

    Science.gov (United States)

    Ertmański, Sławomir; Metcalfe, Kelly; Trempała, Janusz; Głowacka, Maria Danuta; Lubiński, Jan; Narod, Steven A; Gronwald, Jacek

    2009-06-01

    To predict which women might suffer from abnormally high levels of anxiety and depression after receiving a positive genetic BRCA1 test result, series of pregenetic testing and postgenetic testing psychological measurements were performed. Of 3524 women who returned the psychological test sheets before receiving their genetic test result, 111 women were found to carry a BRCA1 mutation. We found that overall, anxiety does not increase in women who receive a positive BRCA1 genetic test result; however, women who experience high levels of anxiety before genetic testing continue to experience high levels of anxiety up to 1 year posttesting. There were differences in cancer-related distress in affected and unaffected women. BRCA1 carriers with a previous diagnosis of cancer had significantly higher levels of cancer-related distress at 1 month posttest than those without cancer. Our findings suggest that healthcare providers should consider including a brief pretest psychological assessment before initiating genetic testing for BRCA1 and BRCA2.

  16. BRCA1 mutations in Algerian breast cancer patients: high frequency in young, sporadic cases

    Directory of Open Access Journals (Sweden)

    Nancy Uhrhammer, Amina Abdelouahab, Laurence Lafarge, Viviane Feillel, Ahmed Ben Dib, Yves-Jean Bignon

    2008-01-01

    Full Text Available Breast cancer rates and median age of onset differ between Western Europe and North Africa. In Western populations, 5 to 10 % of breast cancer cases can be attributed to major genetic factors such as BRCA1 and BRCA2, while this attribution is not yet well defined among Africans. To help determine the contribution of BRCA1 mutations to breast cancer in a North African population, we analysed genomic DNA from breast cancer cases ascertained in Algiers. Both familial cases (at least three breast cancers in the same familial branch, or two with one bilateral or diagnosed before age 40 and sporadic cases less than 38 years of age were studied. Complete sequencing plus quantitative analysis of the BRCA1 gene was performed. 9.8 % (5/51 of early-onset sporadic and 36.4 % (4/11 of familial cases were found to be associated with BRCA1 mutations. This is in contrast 10.3 % of French HBOC families exhibiting a BRCA1 mutation. One mutation, c.798_799delTT, was observed in two Algerian families and in two families from Tunisia, suggesting a North African founder allele. Algerian non-BRCA1 tumors were of significantly higher grade than French non-BRCA tumors, and the age at diagnosis for Algerian familial cases was much younger than that for French non-BRCA familial cases. In conclusion, we observed a much higher frequency of BRCA1 mutations among young breast cancer patients than observed in Europe, suggesting biological differences and that the inclusion criterea for analysis in Western Europe may not be applicable for the Northern African population.

  17. Evaluation of chromosome 6p22 as a breast cancer risk modifier locus in a follow-up study of BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Stevens, Kristen N; Wang, Xianshu; Fredericksen, Zachary;

    2012-01-01

    Several common germline variants identified through genome-wide association studies of breast cancer risk in the general population have recently been shown to be associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. When combined, these variants can identify marked differe...

  18. The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers

    Directory of Open Access Journals (Sweden)

    Friedenson Bernard

    2007-08-01

    Full Text Available Abstract Background The present study was designed to test the hypothesis that inactivation of virtually any component within the pathway containing the BRCA1 and BRCA2 proteins would increase the risks for lymphomas and leukemias. In people who do not have BRCA1 or BRCA2 gene mutations, the encoded proteins prevent breast/ovarian cancer. However BRCA1 and BRCA2 proteins have multiple functions including participating in a pathway that mediates repair of DNA double strand breaks by error-free methods. Inactivation of BRCA1, BRCA2 or any other critical protein within this "BRCA pathway" due to a gene mutation should inactivate this error-free repair process. DNA fragments produced by double strand breaks are then left to non-specific processes that rejoin them without regard for preserving normal gene regulation or function, so rearrangements of DNA segments are more likely. These kinds of rearrangements are typically associated with some lymphomas and leukemias. Methods Literature searches produced about 2500 epidemiology and basic science articles related to the BRCA pathway. These articles were reviewed and copied to a database to facilitate access. Meta-analyses of statistical information compared risks for hematologic cancers vs. mutations for the components in a model pathway containing BRCA1/2 gene products. Results Deleterious mutations of genes encoding proteins virtually anywhere within the BRCA pathway increased risks up to nearly 2000 fold for certain leukemias and lymphomas. Cancers with large increases in risk included mantle cell lymphoma, acute myeloid leukemia, acute lymphocytic leukemia, chronic lymphocytic leukemia, and prolymphocytic leukemia. Mantle cell lymphoma is defined by a characteristic rearrangement of DNA fragments interchanged between chromosomes 11 and 14. DNA translocations or rearrangements also occur in significant percentages of the other cancers. Conclusion An important function of the BRCA pathway is to

  19. Double Heterozygosity of BRCA2 and STK11 in Familial Breast Cancer Detected by Exome Sequencing

    Directory of Open Access Journals (Sweden)

    Mojgan ATAEI-KACHOUEI

    2015-10-01

    Full Text Available Background: Germ-line mutations of BRCA1 and BRCA2 genes are responsible for approximately 25-30% of dominantly inherited familial breast cancers; still a big part of genetic component is unknown. The aim of this study was to investigate genetic causes of familial breast cancer in a pedigree with recessive pattern of inheritance.Methods: We applied exome sequencing as a useful approach in heterogeneous diseases gene identification in present study for familial breast cancer. Sanger sequencing was applied for validation and segregation analysis of mutations.Results: Here, we describe a family with three affected sisters of early-onset invasive ductal carcinoma due to heterozygous frame shift mutation rs80359352 in BRCA2 gene as the first report in Iranian patients in association with a novel missense SNP of STK11 (p.S422G. These mutations are inherited from their normal father.Conclusion: Despite apparent recessive pattern of inheritance a dominant gene (here BRCA2 can be involved in pathogenesis of hereditary breast cancer which can be explained by incomplete penetrance of BRCA2 mutations. Keywords: BRCA2, Familial breast cancer, rs80359352, STK11, Iran

  20. Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Christopher A Maxwell

    2011-11-01

    Full Text Available Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((wHR = 1.09 (95% CI 1.02-1.16, p(trend = 0.017; and n = 3,965, (wHR = 1.04 (95% CI 0.94-1.16, p(trend = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.

  1. Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer.

    Science.gov (United States)

    Maxwell, Christopher A; Benítez, Javier; Gómez-Baldó, Laia; Osorio, Ana; Bonifaci, Núria; Fernández-Ramires, Ricardo; Costes, Sylvain V; Guinó, Elisabet; Chen, Helen; Evans, Gareth J R; Mohan, Pooja; Català, Isabel; Petit, Anna; Aguilar, Helena; Villanueva, Alberto; Aytes, Alvaro; Serra-Musach, Jordi; Rennert, Gad; Lejbkowicz, Flavio; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Ripamonti, Carla B; Bonanni, Bernardo; Viel, Alessandra; Allavena, Anna; Bernard, Loris; Radice, Paolo; Friedman, Eitan; Kaufman, Bella; Laitman, Yael; Dubrovsky, Maya; Milgrom, Roni; Jakubowska, Anna; Cybulski, Cezary; Gorski, Bohdan; Jaworska, Katarzyna; Durda, Katarzyna; Sukiennicki, Grzegorz; Lubiński, Jan; Shugart, Yin Yao; Domchek, Susan M; Letrero, Richard; Weber, Barbara L; Hogervorst, Frans B L; Rookus, Matti A; Collee, J Margriet; Devilee, Peter; Ligtenberg, Marjolijn J; Luijt, Rob B van der; Aalfs, Cora M; Waisfisz, Quinten; Wijnen, Juul; Roozendaal, Cornelis E P van; Easton, Douglas F; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Harrington, Patricia; Evans, D Gareth; Lalloo, Fiona; Eeles, Rosalind; Izatt, Louise; Chu, Carol; Eccles, Diana; Douglas, Fiona; Brewer, Carole; Nevanlinna, Heli; Heikkinen, Tuomas; Couch, Fergus J; Lindor, Noralane M; Wang, Xianshu; Godwin, Andrew K; Caligo, Maria A; Lombardi, Grazia; Loman, Niklas; Karlsson, Per; Ehrencrona, Hans; Wachenfeldt, Anna von; Barkardottir, Rosa Bjork; Hamann, Ute; Rashid, Muhammad U; Lasa, Adriana; Caldés, Trinidad; Andrés, Raquel; Schmitt, Michael; Assmann, Volker; Stevens, Kristen; Offit, Kenneth; Curado, João; Tilgner, Hagen; Guigó, Roderic; Aiza, Gemma; Brunet, Joan; Castellsagué, Joan; Martrat, Griselda; Urruticoechea, Ander; Blanco, Ignacio; Tihomirova, Laima; Goldgar, David E; Buys, Saundra; John, Esther M; Miron, Alexander; Southey, Melissa; Daly, Mary B; Schmutzler, Rita K; Wappenschmidt, Barbara; Meindl, Alfons; Arnold, Norbert; Deissler, Helmut; Varon-Mateeva, Raymonda; Sutter, Christian; Niederacher, Dieter; Imyamitov, Evgeny; Sinilnikova, Olga M; Stoppa-Lyonne, Dominique; Mazoyer, Sylvie; Verny-Pierre, Carole; Castera, Laurent; de Pauw, Antoine; Bignon, Yves-Jean; Uhrhammer, Nancy; Peyrat, Jean-Philippe; Vennin, Philippe; Fert Ferrer, Sandra; Collonge-Rame, Marie-Agnès; Mortemousque, Isabelle; Spurdle, Amanda B; Beesley, Jonathan; Chen, Xiaoqing; Healey, Sue; Barcellos-Hoff, Mary Helen; Vidal, Marc; Gruber, Stephen B; Lázaro, Conxi; Capellá, Gabriel; McGuffog, Lesley; Nathanson, Katherine L; Antoniou, Antonis C; Chenevix-Trench, Georgia; Fleisch, Markus C; Moreno, Víctor; Pujana, Miguel Angel

    2011-11-01

    Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.

  2. Use of Gene Expression Profiles of Peripheral Blood Lymphocytes to Distinguish BRCA1 Mutation Carriers in High Risk Breast Cancer Families

    Directory of Open Access Journals (Sweden)

    Marie-Laure Vuillaume

    2009-01-01

    Full Text Available Mutations in two major genes, BRCA1 and BRCA2, account for up to 30% of families with hereditary breast cancer. Unfortunately, in most families there is little to indicate which gene should be targeted first for mutation screening, which is labor intensive, time consuming and often prohibitively expensive. As BRCA1 is a tumor suppressor gene involved in various cellular processes, heterozygous mutations could deregulate dependent pathways, such as DNA damage response, and disturb transcriptional activity of genes involved in the downstream signaling cascade. We investigated gene expression profiling in peripheral blood lymphocytes to evaluate this strategy for distinguishing BRCA1 mutation carriers from non-carriers. RNA from whole blood samples of 15 BRCA1 mutation carriers and 15 non-carriers from BRCA1 or BRCA2 families were hybridized to Agilent Technologies Whole Human Genome OligoMicroarrays (4 × 44 K multiplex format containing 41,000 unique human genes and transcripts. Gene expression data were analyzed with Welch’s t-tests and submitted to hierarchical clustering (GeneSpring GX software, Agilent Technologies. Statistical analysis revealed a slight tendency for 133 genes to be differentially expressed between BRCA1 mutation carriers and non-carriers. However, hierarchical clustering of these genes did not accurately discriminate BRCA1 mutation carriers from non-carriers. Expression variation for these genes according to BRCA1 mutation status was weak. In summary, microarray profiling of untreated whole blood does not appear to be informative in identifying breast cancer risk due to BRCA1 mutation.

  3. BRCA1-2 diagnostic workflow from next-generation sequencing technologies to variant identification and final report.

    Science.gov (United States)

    Pilato, Brunella; Pinto, Rosamaria; De Summa, Simona; Petriella, Daniela; Lacalamita, Rosanna; Danza, Katia; Paradiso, Angelo; Tommasi, Stefania

    2016-10-01

    The BRCA1-BRCA2 genes predispose to hereditary breast and ovarian cancer, and the germline and mutational status of these genes defines a target population that can benefit from PARP inhibitor treatments. To respond to the increasing number of BRCA1-BRCA2 tests, it is necessary to shift to high-throughput technologies that are reliable and less time consuming. Different methodological platforms are dedicated to this purpose with different approaches and algorithms for analysis. Our aim was to set up a cost-effective and low time-consuming BRCA1-BRCA2 mutation detection workflow using the Ion Torrent PGM technology. A retrospective cohort of 40 patients with familial breast/ovarian cancer previously tested by Sanger sequencing and a prospective cohort of 72 patients (validation set) were analyzed. The validation set included 64 patients affected by familial breast/ovarian cancer and eight sporadic ovarian cancer cases, who are potential candidates for PARPi treatments. A complete and standardized workflow easily usable and suitable in a certified laboratory has been proved and validated. This includes all steps from library preparation to the final report. The use of next-generation sequencing will be of benefit for patients enrolled in the genetic counseling process and, moreover, will enhance the process of selecting patients eligible for personalized treatments. © 2016 Wiley Periodicals, Inc.

  4. Transactivation of repair genes by BRCA1.

    Science.gov (United States)

    El-Deiry, Wafik S

    2002-01-01

    Recent studies have identified a link between the BRCA1 tumor suppressor and transcriptional regulation of a group of genes involved in nucleotide excision repair. There is some controversy regarding the precise mechanism of upregulation of XPE DDB2 or XPC by BRCA1, with some evidence suggesting that p53 is involved in their regulation. Some evidence suggests BRCA1 may stabilize p53 and direct regulation of DNA repair genes, although how BRCA1 stabilizes p53 remains unclear and whether BRCA1 can upregulate DNA repair genes in a p53-independent manner remains a possibility. A transcriptional component to the action of BRCA1 and involvement of XP genes brings up new and interesting questions about breast cancer development and therapy.

  5. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Science.gov (United States)

    Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Investigators, kConFab; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Ewart Toland, Amanda; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  6. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

    Directory of Open Access Journals (Sweden)

    Fergus J Couch

    Full Text Available BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer, with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8, HR = 1.14, 95% CI: 1.09-1.20. In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8, HR = 1.27, 95% CI: 1.17-1.38 and 4q32.3 (rs4691139, P = 3.4 × 10(-8, HR = 1.20, 95% CI: 1.17-1.38. The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4. These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.

  7. Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds

    OpenAIRE

    Zimmer, J.; Tacconi, EM; Folio, C; Badie, S; Porru, M.; Klare, K; Tumiati, M; Markkanen, E; Halder, S.; Ryan, A; Jackson, SP; Ramadan, K; Kuznetsov, SG; Biroccio, A.; Sale, JE

    2015-01-01

    This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.molcel.2015.12.004 G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demons...

  8. The CASP8 rs3834129 polymorphism and breast cancer risk in BRCA1 mutation carriers

    OpenAIRE

    2010-01-01

    Abstract The rs3834129 polymorphism, in the promoter of CASP8 gene, has been recently reported as associated with breast cancer risk in the general population, with the minor allele del having a protective effect. Some of the genetic variants found associated with breast cancer risk were reported as risk modifiers in individuals with mutations in BRCA1 and BRCA2 genes. Here, we tested the effect of the rs3834129 del allele on breast cancer risk in BRCA mutation carriers. The rs3834...

  9. Two different BRCA2 mutations found in a multigenerational family with a history of breast, prostate, and lung cancers

    Directory of Open Access Journals (Sweden)

    Caporale DA

    2014-06-01

    Full Text Available Diane A Caporale, Erica E SwensonDepartment of Biology, University of Wisconsin – Stevens Point, Stevens Point, WI, USAAbstract: Breast and lung cancer are two of the most common malignancies in the United States, causing approximately 40,000 and 160,000 deaths each year, respectively. Over 80% of hereditary breast cancer cases are due to mutations in two breast cancer predisposition genes, BRCA1 and BRCA2. These are tumor-suppressor genes associated with DNA repair. Since the discovery of these two genes in the mid-1990s, several other breast cancer predisposition genes have been identified, such as the CHEK2 gene encoding a regulator of BRCA1. Recently, studies have begun investigating the roles of BRCA1 and BRCA2 gene expression in lung cancer. We conducted a family-based case study that included a bloodline of Italian heritage with several cases of breast cancer and associated cancers (prostate and stomach through multiple generations and on a nonblood relative of Scottish/Irish descent who was consecutively diagnosed with breast and lung cancer. Cancer history and environmental risk factors were recorded for each family member. To investigate possible genetic risks, we screened for mutations in specific hypervariable regions of the BRCA1, BRCA2, and CHEK2 genes. DNA was extracted and isolated from the individuals' hair follicles and cheek cells. Polymerase chain reaction (PCR, allele-specific PCR, and DNA sequencing were performed to identify and verify the presence or absence of mutations in these regions. Genotypes of several family members were determined and carriers of mutations were identified. Here we report for the first time the occurrence of two different BRCA2 frameshift mutations within the same family. Specifically, three Italian family members were found to be carriers of the BRCA2-c.2808_2811delACAA (3036delACAA mutation, a 4-nucleotide deletion in exon 11, which is a truncated mutation that causes deleterious function of

  10. Novel de novo BRCA2 mutation in a patient with a family history of breast cancer

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Bisgaard, Marie Luise; Jønson, Lars

    2008-01-01

    exhibiting a ductal carcinoma at the age of 40. METHODS: Variations were identified by denaturing high performance liquid chromatography (dHPLC) and sequencing of the BRCA1 and BRCA2 genes. The effect of the mutation on splicing was examined by exon trapping in COS-7 cells and by RT-PCR on RNA isolated from...... leucocytes and carcinoma tissue. RESULTS: A novel BRCA2 variant in the splice donor site of exon 21 (nucleotide 8982+1 G-->A/c.8754+1 G-->A) was identified. Exon trapping showed that the mutation activates a cryptic splice site 46 base pairs 3' of exon 21, resulting in the inclusion of a premature stop codon...

  11. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies.

    Science.gov (United States)

    Antoniou, Antonis C; Sinilnikova, Olga M; Simard, Jacques; Léoné, Mélanie; Dumont, Martine; Neuhausen, Susan L; Struewing, Jeffery P; Stoppa-Lyonnet, Dominique; Barjhoux, Laure; Hughes, David J; Coupier, Isabelle; Belotti, Muriel; Lasset, Christine; Bonadona, Valérie; Bignon, Yves-Jean; Rebbeck, Timothy R; Wagner, Theresa; Lynch, Henry T; Domchek, Susan M; Nathanson, Katherine L; Garber, Judy E; Weitzel, Jeffrey; Narod, Steven A; Tomlinson, Gail; Olopade, Olufunmilayo I; Godwin, Andrew; Isaacs, Claudine; Jakubowska, Anna; Lubinski, Jan; Gronwald, Jacek; Górski, Bohdan; Byrski, Tomasz; Huzarski, Tomasz; Peock, Susan; Cook, Margaret; Baynes, Caroline; Murray, Alexandra; Rogers, Mark; Daly, Peter A; Dorkins, Huw; Schmutzler, Rita K; Versmold, Beatrix; Engel, Christoph; Meindl, Alfons; Arnold, Norbert; Niederacher, Dieter; Deissler, Helmut; Spurdle, Amanda B; Chen, Xiaoqing; Waddell, Nicola; Cloonan, Nicole; Kirchhoff, Tomas; Offit, Kenneth; Friedman, Eitan; Kaufmann, Bella; Laitman, Yael; Galore, Gilli; Rennert, Gad; Lejbkowicz, Flavio; Raskin, Leon; Andrulis, Irene L; Ilyushik, Eduard; Ozcelik, Hilmi; Devilee, Peter; Vreeswijk, Maaike P G; Greene, Mark H; Prindiville, Sheila A; Osorio, Ana; Benitez, Javier; Zikan, Michal; Szabo, Csilla I; Kilpivaara, Outi; Nevanlinna, Heli; Hamann, Ute; Durocher, Francine; Arason, Adalgeir; Couch, Fergus J; Easton, Douglas F; Chenevix-Trench, Georgia

    2007-12-01

    RAD51 is an important component of double-stranded DNA-repair mechanisms that interacts with both BRCA1 and BRCA2. A single-nucleotide polymorphism (SNP) in the 5' untranslated region (UTR) of RAD51, 135G-->C, has been suggested as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers. We pooled genotype data for 8,512 female mutation carriers from 19 studies for the RAD51 135G-->C SNP. We found evidence of an increased breast cancer risk in CC homozygotes (hazard ratio [HR] 1.92 [95% confidence interval {CI} 1.25-2.94) but not in heterozygotes (HR 0.95 [95% CI 0.83-1.07]; P=.002, by heterogeneity test with 2 degrees of freedom [df]). When BRCA1 and BRCA2 mutation carriers were analyzed separately, the increased risk was statistically significant only among BRCA2 mutation carriers, in whom we observed HRs of 1.17 (95% CI 0.91-1.51) among heterozygotes and 3.18 (95% CI 1.39-7.27) among rare homozygotes (P=.0007, by heterogeneity test with 2 df). In addition, we determined that the 135G-->C variant affects RAD51 splicing within the 5' UTR. Thus, 135G-->C may modify the risk of breast cancer in BRCA2 mutation carriers by altering the expression of RAD51. RAD51 is the first gene to be reliably identified as a modifier of risk among BRCA1/2 mutation carriers.

  12. RAD51 135G→C Modifies Breast Cancer Risk among BRCA2 Mutation Carriers: Results from a Combined Analysis of 19 Studies

    Science.gov (United States)

    Antoniou, Antonis C. ; Sinilnikova, Olga M. ; Simard, Jacques ; Léoné, Mélanie ; Dumont, Martine ; Neuhausen, Susan L. ; Struewing, Jeffery P. ; Stoppa-Lyonnet, Dominique ; Barjhoux, Laure ; Hughes, David J. ; Coupier, Isabelle ; Belotti, Muriel ; Lasset, Christine ; Bonadona, Valérie ; Bignon, Yves-Jean ; Rebbeck, Timothy R. ; Wagner, Theresa ; Lynch, Henry T. ; Domchek, Susan M. ; Nathanson, Katherine L. ; Garber, Judy E. ; Weitzel, Jeffrey ; Narod, Steven A. ; Tomlinson, Gail ; Olopade, Olufunmilayo I. ; Godwin, Andrew ; Isaacs, Claudine ; Jakubowska, Anna ; Lubinski, Jan ; Gronwald, Jacek ; Górski, Bohdan ; Byrski, Tomasz ; Huzarski, Tomasz ; Peock, Susan ; Cook, Margaret ; Baynes, Caroline ; Murray, Alexandra ; Rogers, Mark ; Daly, Peter A. ; Dorkins, Huw ; Schmutzler, Rita K. ; Versmold, Beatrix ; Engel, Christoph ; Meindl, Alfons ; Arnold, Norbert ; Niederacher, Dieter ; Deissler, Helmut ; Spurdle, Amanda B. ; Chen, Xiaoqing ; Waddell, Nicola ; Cloonan, Nicole ; Kirchhoff, Tomas ; Offit, Kenneth ; Friedman, Eitan ; Kaufmann, Bella ; Laitman, Yael ; Galore, Gilli ; Rennert, Gad ; Lejbkowicz, Flavio ; Raskin, Leon ; Andrulis, Irene L. ; Ilyushik, Eduard ; Ozcelik, Hilmi ; Devilee, Peter ; Vreeswijk, Maaike P. G. ; Greene, Mark H. ; Prindiville, Sheila A. ; Osorio, Ana ; Benítez, Javier ; Zikan, Michal ; Szabo, Csilla I. ; Kilpivaara, Outi ; Nevanlinna, Heli ; Hamann, Ute ; Durocher, Francine ; Arason, Adalgeir ; Couch, Fergus J. ; Easton, Douglas F. ; Chenevix-Trench, Georgia 

    2007-01-01

    RAD51 is an important component of double-stranded DNA–repair mechanisms that interacts with both BRCA1 and BRCA2. A single-nucleotide polymorphism (SNP) in the 5′ untranslated region (UTR) of RAD51, 135G→C, has been suggested as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers. We pooled genotype data for 8,512 female mutation carriers from 19 studies for the RAD51 135G→C SNP. We found evidence of an increased breast cancer risk in CC homozygotes (hazard ratio [HR] 1.92 [95% confidence interval {CI} 1.25–2.94) but not in heterozygotes (HR 0.95 [95% CI 0.83–1.07]; P=.002, by heterogeneity test with 2 degrees of freedom [df]). When BRCA1 and BRCA2 mutation carriers were analyzed separately, the increased risk was statistically significant only among BRCA2 mutation carriers, in whom we observed HRs of 1.17 (95% CI 0.91–1.51) among heterozygotes and 3.18 (95% CI 1.39–7.27) among rare homozygotes (P=.0007, by heterogeneity test with 2 df). In addition, we determined that the 135G→C variant affects RAD51 splicing within the 5′ UTR. Thus, 135G→C may modify the risk of breast cancer in BRCA2 mutation carriers by altering the expression of RAD51. RAD51 is the first gene to be reliably identified as a modifier of risk among BRCA1/2 mutation carriers. PMID:17999359

  13. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Couch, Fergus J; Wang, Xianshu; McGuffog, Lesley;

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer......), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303......, P = 1.4 × 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 × 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also...

  14. Analysis of chromosomal radiosensitivity of healthy BRCA2 mutation carriers and non-carriers in BRCA families with the G2 micronucleus assay

    Science.gov (United States)

    Baert, Annelot; Depuydt, Julie; Van Maerken, Tom; Poppe, Bruce; Malfait, Fransiska; Van Damme, Tim; De Nobele, Sylvia; Perletti, Gianpaolo; De Leeneer, Kim; Claes, Kathleen B.M.; Vral, Anne

    2017-01-01

    Breast cancer risk drastically increases in individuals with a heterozygous germline BRCA1 or BRCA2 mutation, while it is estimated to equal the population risk for relatives without the familial mutation (non-carriers). The aim of the present study was to use a G2 phase-specific micronucleus assay to investigate whether lymphocytes of healthy BRCA2 mutation carriers are characterized by increased radiosensitivity compared to controls without a family history of breast/ovarian cancer and how this relates to healthy non-carrier relatives. BRCA2 is active in homologous recombination, a DNA damage repair pathway, specifically active in the late S/G2 phase of the cell cycle. We found a significantly increased radiosensitivity in a cohort of healthy BRCA2 mutation carriers compared to individuals without a familial history of breast cancer (P=0.046; Mann-Whitney U test). At the individual level, 50% of healthy BRCA2 mutation carriers showed a radiosensitive phenotype (radiosensitivity score of 1 or 2), whereas 83% of the controls showed no radiosensitivity (P=0.038; one-tailed Fishers exact test). An odds ratio of 5 (95% CI, 1.07–23.47) indicated an association between the BRCA2 mutation and radiosensitivity in healthy mutation carriers. These results indicate the need for the gentle use of ionizing radiation for either diagnostic or therapeutic use in BRCA2 mutation carriers. We detected no increased radiosensitivity in the non-carrier relatives. PMID:28184943

  15. International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation

    DEFF Research Database (Denmark)

    Peixoto, Ana; Santos, Catarina; Pinheiro, Manuela;

    2011-01-01

    The c.156_157insAlu BRCA2 mutation has so far only been reported in hereditary breast/ovarian cancer (HBOC) families of Portuguese origin. Since this mutation is not detectable using the commonly used screening methodologies and must be specifically sought, we screened for this rearrangement...... in a total of 5,443 suspected HBOC families from several countries. Whereas the c.156_157insAlu BRCA2 mutation was detected in 11 of 149 suspected HBOC families from Portugal, representing 37.9% of all deleterious mutations, in other countries it was detected only in one proband living in France and in four...... regarding the production of the BRCA2 full length RNA and the transcript lacking exon 3 in c.156_157insAlu BRCA2 mutation carriers and in controls. The cumulative incidence of breast cancer in carriers did not differ from that of other BRCA2 and BRCA1 pathogenic mutations. We recommend that all suspected...

  16. International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation.

    Science.gov (United States)

    Peixoto, Ana; Santos, Catarina; Pinheiro, Manuela; Pinto, Pedro; Soares, Maria José; Rocha, Patrícia; Gusmão, Leonor; Amorim, António; van der Hout, Annemarie; Gerdes, Anne-Marie; Thomassen, Mads; Kruse, Torben A; Cruger, Dorthe; Sunde, Lone; Bignon, Yves-Jean; Uhrhammer, Nancy; Cornil, Lucie; Rouleau, Etienne; Lidereau, Rosette; Yannoukakos, Drakoulis; Pertesi, Maroulio; Narod, Steven; Royer, Robert; Costa, Maurício M; Lazaro, Conxi; Feliubadaló, Lidia; Graña, Begoña; Blanco, Ignacio; de la Hoya, Miguel; Caldés, Trinidad; Maillet, Philippe; Benais-Pont, Gaelle; Pardo, Bruno; Laitman, Yael; Friedman, Eitan; Velasco, Eladio A; Durán, Mercedes; Miramar, Maria-Dolores; Valle, Ana Rodriguez; Calvo, María-Teresa; Vega, Ana; Blanco, Ana; Diez, Orland; Gutiérrez-Enríquez, Sara; Balmaña, Judith; Ramon y Cajal, Teresa; Alonso, Carmen; Baiget, Montserrat; Foulkes, William; Tischkowitz, Marc; Kyle, Rachel; Sabbaghian, Nelly; Ashton-Prolla, Patricia; Ewald, Ingrid P; Rajkumar, Thangarajan; Mota-Vieira, Luisa; Giannini, Giuseppe; Gulino, Alberto; Achatz, Maria I; Carraro, Dirce M; de Paillerets, Brigitte Bressac; Remenieras, Audrey; Benson, Cindy; Casadei, Silvia; King, Mary-Claire; Teugels, Erik; Teixeira, Manuel R

    2011-06-01

    The c.156_157insAlu BRCA2 mutation has so far only been reported in hereditary breast/ovarian cancer (HBOC) families of Portuguese origin. Since this mutation is not detectable using the commonly used screening methodologies and must be specifically sought, we screened for this rearrangement in a total of 5,443 suspected HBOC families from several countries. Whereas the c.156_157insAlu BRCA2 mutation was detected in 11 of 149 suspected HBOC families from Portugal, representing 37.9% of all deleterious mutations, in other countries it was detected only in one proband living in France and in four individuals requesting predictive testing living in France and in the USA, all being Portuguese immigrants. After performing an extensive haplotype study in carrier families, we estimate that this founder mutation occurred 558 ± 215 years ago. We further demonstrate significant quantitative differences regarding the production of the BRCA2 full length RNA and the transcript lacking exon 3 in c.156_157insAlu BRCA2 mutation carriers and in controls. The cumulative incidence of breast cancer in carriers did not differ from that of other BRCA2 and BRCA1 pathogenic mutations. We recommend that all suspected HBOC families from Portugal or with Portuguese ancestry are specifically tested for this rearrangement.

  17. Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families

    Directory of Open Access Journals (Sweden)

    Novakovic Srdjan

    2008-09-01

    Full Text Available Abstract Background Both recurrent and population specific mutations have been found in different areas of the world and more specifically in ethnically defined or isolated populations. The population of Slovenia has over several centuries undergone limited mixing with surrounding populations. The current study was aimed at establishing the mutation spectrum of BRCA1/2 in the Slovenian breast/ovarian cancer families taking advantage of a complete cancer registration database. A second objective was to determine the cancer phenotype of these families. Methods The original population database was composed of cancer patients from the Institute of Oncology Ljubljana in Slovenia which also includes current follow-up status on these patients. The inclusion criteria for the BRCA1/2 screening were: (i probands with at least two first degree relatives with breast and ovarian cancer; (ii probands with only two first degree relatives of breast cancer where one must be diagnosed less than 50 years of age; and (iii individual patients with breast and ovarian cancer, bilateral breast cancer, breast cancer diagnosed before the age of 40 and male breast cancer without any other cancer in the family. Results Probands from 150 different families met the inclusion criteria for mutation analysis of which 145 consented to testing. A BRCA1/2 mutation was found in 56 (39%. Two novel large deletions covering consecutive exons of BRCA1 were found. Five highly recurrent specific mutations were identified (1806C>T, 300T>G, 300T>A, 5382insC in the BRCA1 gene and IVS16-2A>G in the BRCA2 gene. The IVS16-2A>G in the BRCA2 gene appears to be a unique founder mutation in the Slovenian population. A practical implication is that only 4 PCR fragments can be used in a first screen and reveal the cancer predisposing mutation in 67% of the BRCA1/2 positive families. We also observed an exceptionally high frequency of 4 different pathogenic missense mutations, all affecting one of

  18. Post-mortem testing; germline BRCA1/2 variant detection using archival FFPE non-tumor tissue. A new paradigm in genetic counseling.

    Science.gov (United States)

    Petersen, Annabeth Høgh; Aagaard, Mads Malik; Nielsen, Henriette Roed; Steffensen, Karina Dahl; Waldstrøm, Marianne; Bojesen, Anders

    2016-08-01

    Accurate estimation of cancer risk in HBOC families often requires BRCA1/2 testing, but this may be impossible in deceased family members. Previous, testing archival formalin-fixed, paraffin-embedded (FFPE) tissue for germline BRCA1/2 variants was unsuccessful, except for the Jewish founder mutations. A high-throughput method to systematically test for variants in all coding regions of BRCA1/2 in archival FFPE samples of non-tumor tissue is described, using HaloPlex target enrichment and next-generation sequencing. In a validation study, correct identification of variants or wild-type was possible in 25 out of 30 (83%) FFPE samples (age range 1-14 years), with a known variant status in BRCA1/2. No false positive was found. Unsuccessful identification was due to highly degraded DNA or presence of large intragenic deletions. In clinical use, a total of 201 FFPE samples (aged 0-43 years) were processed. Thirty-six samples were rejected because of highly degraded DNA or failed library preparation. Fifteen samples were investigated to search for a known variant. In the remaining 150 samples (aged 0-38 years), three variants known to affect function and one variant likely to affect function in BRCA1, six variants known to affect function and one variant likely to affect function in BRCA2, as well as four variants of unknown significance (VUS) in BRCA1 and three VUS in BRCA2 were discovered. It is now possible to test for germline BRCA1/2 variants in deceased persons, using archival FFPE samples from non-tumor tissue. Accurate genetic counseling is achievable in families where variant testing would otherwise be impossible.

  19. Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk.

    Directory of Open Access Journals (Sweden)

    Mia M Gaudet

    Full Text Available Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS. To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9 × 10(-8. This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for

  20.  Poly(ADP-ribose polymerase (PARP inhibitors in BRCA1/2 cancer therapy

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluzek

    2012-06-01

    Full Text Available  A majority of currently used anticancer drugs belong to a group of chemical agents that damage DNA. The efficiency of the treatment is limited by effective DNA repair systems functioning in cancer cells. Many chemotherapeutic compounds cause strong systemic toxicity. Therefore, there is still a need for new anticancer agents which are less toxic for nontransformed cells and selectively kill cancer cells. One of the most promising molecular targets in cancer therapy is poly(ADP-ribose polymerases (PARP. PARP play an essential role in repairing DNA strand breaks. Small molecule inhibitors of these enzymes have been developed and have proved to be extremely toxic for cancer cells that lack the functional BRCA1 and BRCA2 proteins that are involved in homologous recombination, a complex repair mechanism of DNA double strand breaks. Mutations in BRCA1/2 genes are associated with genetically inherited breast and ovarian cancers. Therefore PARP inhibitors may prove to be very effective and selective in the treatment of these cancer types. This review is focused on the function of BRCA1/2 proteins and poly(ADP-ribose polymerases in DNA repair systems, especially in the homologous recombination process. A short history of the studies that led to synthesis of high specificity small molecule PARP inhibitors is also presented, as well as the results of clinical trials concerning the most effective PARP inhibitors in view of their potential application in oncological treatment, particularly breast cancers.

  1. Prevalence of the BRCA1 founder mutation c.5266dupin Brazilian individuals at-risk for the hereditary breast and ovarian cancer syndrome

    Directory of Open Access Journals (Sweden)

    Ewald Ingrid P

    2011-12-01

    Full Text Available Abstract About 5-10% of breast and ovarian carcinomas are hereditary and most of these result from germline mutations in the BRCA1 and BRCA2 genes. In women of Ashkenazi Jewish ascendance, up to 30% of breast and ovarian carcinomas may be attributable to mutations in these genes, where 3 founder mutations, c.68_69del (185delAG and c.5266dup (5382insC in BRCA1 and c.5946del (6174delT in BRCA2, are commonly encountered. It has been suggested by some authors that screening for founder mutations should be undertaken in all Brazilian women with breast cancer. Thus, the goal of this study was to determine the prevalence of three founder mutations, commonly identified in Ashkenazi individuals in a sample of non-Ashkenazi cancer-affected Brazilian women with clearly defined risk factors for hereditary breast and ovarian cancer (HBOC syndrome. Among 137 unrelated Brazilian women from HBOC families, the BRCA1c.5266dup mutation was identified in seven individuals (5%. This prevalence is similar to that encountered in non-Ashkenazi HBOC families in other populations. However, among patients with bilateral breast cancer, the frequency of c.5266dup was significantly higher when compared to patients with unilateral breast tumors (12.1% vs 1.2%, p = 0.023. The BRCA1 c.68_69del and BRCA2 c.5946del mutations did not occur in this sample. We conclude that screening non-Ashkenazi breast cancer-affected women from the ethnically heterogeneous Brazilian populations for the BRCA1 c.68_69del and BRCA2 c.5946del is not justified, and that screening for BRCA1c.5266dup should be considered in high risk patients, given its prevalence as a single mutation. In high-risk patients, a negative screening result should always be followed by comprehensive BRCA gene testing. The finding of a significantly higher frequency of BRCA1 c.5266dup in women with bilateral breast cancer, as well as existence of other as yet unidentified founder mutations in this population, should be

  2. Study on mutation test of BRCA1/2 gene of hereditary breast cancer in Xinj iang%新疆遗传性乳腺癌BRCA1/2基因突变检测的研究

    Institute of Scientific and Technical Information of China (English)

    吴涛; 欧江华; 哈木拉提·吾甫尔; 许文婷; 陈玲; 倪多

    2013-01-01

    Objective Knowing the BRCA gene mutation’s locus and carrying situation of hereditary breast cancer of BRCA1/2 in Xinjiang by means of BRCA gene mutation testing for 82 cases of hereditary breast cancer of BRCA in Xinjiang.Methods 82 cases of hereditary breast cancer from Xinjiang are studied.All the coded sequences of BRCA1/2 gene were amplified by means of extracting genomic DNA from peripheral venous blood.BRCA1/2 gene mutation analysis was prescreened through DHPLC.Then,the result was verified by DNA sequencing.The situation of BRCA gene mutation was statistically analyzed. Results In the 82 cases of hereditary breast cancer in Xinjiang,there were 8 cases of gene mutation (8/82,9.76%);4 cases of BRCA mutation;4 case of BRCA 2 mutation;and 4 cases of BRCA mutation (2073delA frameshift mutation,W372X nonsense mutation,6873delCTCC frameshift mutation,9481delA frameshift mutation)have not been reported in BIC data base.The mutation rate of BRCA1 is (4/30,13. 3%)in triple negative breast cancer.Conclusion The mutation rate of BRCA gene of hereditary breast cancer is higher than sporadic breast cancer;the rate of BRCA1’s mutation of triple negative breast cancer is high;no BRCA gene mutation hot spots have been found in multi-national region in Xinjiang.%目的通过对新疆82例遗传性乳腺癌 BRCA基因突变检测,了解新疆遗传性乳腺癌 BRCA1/2基因突变位点及携带情况。方法以来自新疆地区的82例符合遗传性乳腺癌标准的患者为研究对象,通过外周静脉血提取基因组 DNA,对 BRCA1/2基因的全部编码序列进行扩增。BRCA1/2基因突变分析由变性高效液相色谱分析(DHPLC)进行预筛,结果进行DNA测序证实。统计分析 BRCA1/2基因突变情况。结果82例遗传性乳腺癌,共发现8例(9.76%)BRCA基因突变,其中 BRCA1突变4例,BRCA2突变4例;4例 BRCA突变(2073delA移码突变、W372X无义突变、6873delCTCC移码突变、9481delA移码突变)

  3. Characterizing a Rat Brca2 Knockout Model

    Science.gov (United States)

    2007-05-01

    this treatment (Figure 2b). Aspermatogenesis Meiosis in Brca2/ rats proceeds normally through leptotene and early zygotene (Figure 3a) with 40...Zygotene Late Zygotene Scp3Scp3 Scp3 Scp3 Scp1 CREST CRESTCREST Merge a b Figure 3 (a) Meiosis in Brca2/ spermatocytes does not progress beyond late...control of noncrossover and crossover recombination during meiosis . Cell 106: 47–57. Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K

  4. RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families

    DEFF Research Database (Denmark)

    Larsen, Martin J; Thomassen, Mads; Tan, Qihua

    2014-01-01

    BACKGROUND: In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar...... underlying pathophysiological mechanisms. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer...... patients within the same family. METHODS: In the current study we analyzed a collection of 70 frozen breast tumor biopsies from a total of 58 families by global RNA profiling and promoter methylation analysis. RESULTS: We show that distinct functional subgroupings, similar to the intrinsic molecular breast...

  5. NGS-based BRCA1/2 mutation testing of high-grade serous ovarian cancer tissue: results and conclusions of the first international round robin trial.

    Science.gov (United States)

    Endris, Volker; Stenzinger, Albrecht; Pfarr, Nicole; Penzel, Roland; Möbs, Markus; Lenze, Dido; Darb-Esfahani, Silvia; Hummel, Michael; Sabine-Merkelbach-Bruse; Jung, Andreas; Lehmann, Ulrich; Kreipe, Hans; Kirchner, Thomas; Büttner, Reinhard; Jochum, Wolfram; Höfler, Gerald; Dietel, Manfred; Weichert, Wilko; Schirmacher, Peter

    2016-06-01

    With the approval of olaparib as monotherapy treatment in platinum-sensitive, relapsed high-grade serous ovarian cancer by the European Medical Agency (EMA), comprehensive genotyping of BRCA1 and BRCA2 in tumor tissue has become a mandatory pre-therapeutic test. This requires significant advances in routine tumor test methodologies due to the large size of both genes and the lack of mutational hot spots. Classical focused screening approaches, like Sanger sequencing, do not allow for a sensitive, rapid, and economic analysis of tumor tissue. Next-generation sequencing (NGS) approaches employing targeted panels for BRCA1/2 to interrogate formalin-fixed and paraffin-embedded tumor samples from either surgical resection or biopsy specimens can overcome these limitations. Although focused NGS methods have been implemented by few centers in routine molecular diagnostics for the analysis of some druggable oncogenic mutations, the reliable diagnostic testing of the entire coding regions of BRCA1 and BRCA2 was a new challenge requiring extensive technological improvement and quality management. Here, we describe the implementation and results of the first round robin trial for BRCA1/2 mutation testing in tumor tissue that was conducted in central Europe on May 2015, shortly after the approval and prior to the official release of olaparib. The high success rate of 81 % (21/26 test centers) demonstrates that BRCA1/2 multicenter mutation testing is well feasible in FFPE tumor tissue, extending to other tumor entities beyond ovarian cancer. The high number of test centers passing the trial demonstrates the success of the concerted efforts by German, Swiss, and Austrian pathology centers to ensure quality-controlled NGS-based testing and proves the potential of this technology in routine molecular pathology. On the basis of our results, we provide recommendations for predictive testing of tumor tissue for BRCA1/2 to clinical decision making in ovarian cancer patients.

  6. Revertant mosaicism for family mutations is not observed in BRCA1/2 phenocopies

    Science.gov (United States)

    Azzollini, Jacopo; Pesenti, Chiara; Ferrari, Luca; Fontana, Laura; Calvello, Mariarosaria; Peissel, Bernard; Portera, Giorgio; Tabano, Silvia; Carcangiu, Maria Luisa; Riva, Paola; Manoukian, Siranoush

    2017-01-01

    In BRCA1/2 families, early-onset breast cancer (BrCa) cases may be also observed among non-carrier relatives. These women are considered phenocopies and raise difficult counselling issues concerning the selection of the index case and the residual risks estimate in negative family members. Few studies investigated the presence of potential genetic susceptibility factors in phenocopies, mainly focussing on BrCa-associated single-nucleotide polymorphisms. We hypothesized that, as for other Mendelian diseases, a revertant somatic mosaicism, resulting from spontaneous correction of a pathogenic mutation, might occur also in BRCA pedigrees. A putative low-level mosaicism in phenocopies, which has never been investigated, might be the causal factor undetected by standard diagnostic testing. We selected 16 non-carriers BrCa-affected from 15 BRCA1/2 families, and investigated the presence of mosaicism through MALDI-TOF mass spectrometry. The analyses were performed on available tumour samples (7 cases), blood leukocytes, buccal mucosa and urine samples (2 cases) or on blood only (7 cases). In one family (n.8), real-time PCR was also performed to analyse the phenocopy and her healthy parents. On the 16 phenocopies we did not detect the family mutations neither in the tumour, expected to display the highest mutation frequency, nor in the other analysed tissues. In family 8, all the genotyping assays did not detect mosaicism in the phenocopy or her healthy parents, supporting the hypothesis of a de novo occurrence of the BRCA2 mutation identified in the proband. These results suggest that somatic mosaicism is not likely to be a common phenomenon in BRCA1/2 families. As our families fulfilled high-risk selection criteria, other genetic factors might be responsible for most of these cases and have a significant impact on risk assessment in BRCA1/2 families. Finally, we found a de novo BRCA2 mutation, suggesting that, although rare, this event should be taken into account in the

  7. Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisong [ORNL; Liu, Yie [ORNL

    2006-01-01

    Msh2 is a key mammalian DNA mismatch repair (MMR) gene and mutations or deficiencies in mammalian Msh2 gene result in microsatellite instability (MSI+) and the development of cancer. Here, we report that primary mouse embryonic fibroblasts (MEFs) deficient in the murine MMR gene Msh2 (Msh2-/-) showed a significant increase in chromosome aneuploidy, centrosome amplification, and defective mitotic spindle organization and unequal chromosome segregation. Although Msh2-/- mouse tissues or primary MEFs had no apparent change in telomerase activity, telomere length, or recombination at telomeres, Msh2-/- MEFs showed an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA. These data suggest that MSH2 helps to maintain genomic stability through the regulation of the centrosome and normal telomere capping in vivo and that defects in MMR can contribute to oncogenesis through multiple pathways.

  8. Cycling with BRCA2 from DNA repair to mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunsook, E-mail: HL212@snu.ac.kr

    2014-11-15

    Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner in the maintenance of genomic integrity. - Highlights: • BRCA2 is a multifaceted tumor suppressor and is crucial in genetic integrity. • BRCA2 exerts distinct functions in cell cycle-specific manner. • Mitotic kinases regulate diverse functions of BRCA2 in mitosis and cytokinesis.

  9. DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition.

    Science.gov (United States)

    Ollier, Marie; Radosevic-Robin, Nina; Kwiatkowski, Fabrice; Ponelle, Flora; Viala, Sandrine; Privat, Maud; Uhrhammer, Nancy; Bernard-Gallon, Dominique; Penault-Llorca, Frédérique; Bignon, Yves-Jean; Bidet, Yannick

    2015-01-01

    Among breast cancers, 10 to 15% of cases would be due to hereditary risk. In these familial cases, mutations in BRCA1 and BRCA2 are found in only 15% to 20%, meaning that new susceptibility genes remain to be found. Triple-negative breast cancers represent 15% of all breast cancers, and are generally aggressive tumours without targeted therapies available. Our hypothesis is that some patients with triple negative breast cancer could share a genetic susceptibility different from other types of breast cancers. We screened 36 candidate genes, using pyrosequencing, in all the 50 triple negative breast cancer patients with familial history of cancer but no BRCA1 or BRCA2 mutation of a population of 3000 families who had consulted for a familial breast cancer between 2005 and 2013. Any mutations were also sequenced in available relatives of cases. Protein expression and loss of heterozygosity were explored in tumours. Seven deleterious mutations in 6 different genes (RAD51D, MRE11A, CHEK2, MLH1, MSH6, PALB2) were observed in one patient each, except the RAD51D mutation found in two cases. Loss of heterozygosity in the tumour was found for 2 of the 7 mutations. Protein expression was absent in tumour tissue for 5 mutations. Taking into consideration a specific subtype of tumour has revealed susceptibility genes, most of them in the homologous recombination DNA repair pathway. This may provide new possibilities for targeted therapies, along with better screening and care of patients.

  10. Analysis list: BRCA1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available BRCA1 Blood,Breast,Digestive tract,Liver,Pluripotent stem cell,Uterus + hg19 http:/.../dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/BRCA1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/BRCA...1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/BRCA1.10.tsv http://dbarchive.bio...sciencedbc.jp/kyushu-u/hg19/colo/BRCA1.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/BRCA...1.Breast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/BRCA1.Digestive_t

  11. NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair.

    Science.gov (United States)

    Bone, K M; Wang, P; Wu, F; Wu, C; Li, L; Bacani, J T; Andrew, S E; Lai, R

    2015-05-15

    The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography-mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2(Y238F) mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2(Y238F) into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2(Y238F) abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2(Y238F) into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR.

  12. The mechanism of BRCA1 participate sporadic breast carcinomas genesis

    Institute of Scientific and Technical Information of China (English)

    WEI Min-jie; REN Jie

    2008-01-01

    Objective To elucidate the BRCA1 participated mechanism of genesis and development of sporadic breast cancer through detect the statues of BRCA1 and analysis the relationship with the pathologic and clinic parameters. Methods BRCA1 statues were respectively analyzed in frozen samples or paraffine fixed sporadic breast carcinoma and benign breast tissues by three methods: protein expression by immunohistochemistry (IHC), the methylation of BRCA 1 promoter by methylation specific PCR (MSP), gene copy number by interphase fluorescence in situ hybridization (FISH). Results 14.2 % (29/204) cases were detected hypermethylation of BRCA1 promoter in sporadic breast cancer. BRCA1 mean copy number in sporadic breast cancer (1.70±0.14) less than those in benign tissues (2.03±0.08, P<0.05), and in sporadic breast cancer with hypermethylation of BRCA1 (1.62±0.09) significantly less than in those without hypermethylation (1.84±0.26, P<0.05). The loss copy related to the methylation of BRCA1 promoter. There were significant of 41.1% (88/214) cases no BRCA1 nuclei expression in sporadic breast cancers. Loss expression of BRCA1 had significant correlation with higher histological stages, axillary' s lymph nodal metastasis (P<0.01), lower expression of ERα, and overexpression of HER-2 protein( P<0.01). Conclusions There are BRCA 1 methylations, loss BRCA 1 gene copy and loss protein expression in the sporadic breast cancer, the three statues of BRCA1 is correlated to each other;and the loss expression of BRCA1 protein related to part of pathology and clinic parameters.

  13. Establishment of a PCR analysis method for canine BRCA2

    Directory of Open Access Journals (Sweden)

    Yoshikawa Yasunaga

    2012-04-01

    Full Text Available Abstract Background Mammary tumors are the most common tumor type in both human and canine females. In women, carriers of mutations in BRCA2, a tumor suppressor gene product, have a higher risk of breast cancer. Canine BRCA2 has also been suggested to have a relationship with mammary tumors. However, clearly deleterious BRCA2 mutations have not been identified in any canine mammary tumors, as appropriate methods to detect mutations or a consensus BRCA2 sequence have not been reported. Findings For amplification and sequencing of BRCA2, we designed 14 and 20 PCR primer sets corresponding to the BRCA2 open reading frame (ORF and all 27 exons, respectively, including exon-intron boundaries of the canine BRCA2 regions, respectively. To define the consensus canine BRCA2 ORF sequence, we used established methods to sequence the full-length canine BRCA2 ORF sequence from two ovaries and a testis obtained from individual healthy mongrel dogs and partially sequence BRCA2 genomic sequences in 20-56 tumor-free dogs, each aged over 6 years. Subsequently, we compared these sequences and seven previously reported sequences, and defined the most common base sequences as the consensus canine BRCA2 ORF sequence. Moreover, we established a detection method for identifying splicing variants. Unexpectedly, we also identified novel splicing variants in normal testes during establishment of these methods. Conclusions The present analysis methods for determining the BRCA2 base sequence and for detecting BRCA2 splicing variants and the BRCA2 ORF consensus sequence are useful for better understanding the relationship between canine BRCA2 mutation status and cancer risk.

  14. BRCA1-IRIS overexpression promotes formation of aggressive breast cancers.

    Directory of Open Access Journals (Sweden)

    Yoshiko Shimizu

    Full Text Available INTRODUCTION: Women with HER2(+ or triple negative/basal-like (TN/BL breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2(+ and/or TN/BL tumors. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/Ras(V12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU, followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors. High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2(+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA. CONCLUSION/SIGNIFICANCE: BRCA1-IRIS overexpression triggers aggressive

  15. Hypoxia and Human Genome Stability: Downregulation of BRCA2 Expression in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2013-01-01

    Full Text Available Previously, it has been reported that hypoxia causes increased mutagenesis and alteration in DNA repair mechanisms. In 2005, an interesting study showed that hypoxia-induced decreases in BRCA1 expression and the consequent suppression of homologous recombination may lead to genetic instability. However, nothing is yet known about the involvement of BRCA2 in hypoxic conditions in breast cancer. Initially, a cell proliferation assay allowed us to hypothesize that hypoxia could negatively regulate the breast cancer cell growth in short term in vitro studies. Subsequently, we analyzed gene expression in breast cancer cell lines exposed to hypoxic condition by microarray analysis. Interestingly, genes involved in DNA damage repair pathways such as mismatch repair, nucleotide excision repair, nonhomologous end-joining and homologous recombination repair were downregulated. In particular, we focused on the BRCA2 downregulation which was confirmed at mRNA and protein level. In addition, breast cancer cells were treated with dimethyloxalylglycine (DMOG, a cell-permeable inhibitor of both proline and asparaginyl hydroxylases able to induce HIF-1α stabilization in normoxia, providing results comparable to those previously described. These findings may provide new insights into the mechanisms underlying genetic instability mediated by hypoxia and BRCA involvement in sporadic breast cancers.

  16. Evidence for clinical efficacy of mitomycin C in heavily pretreated ovarian cancer patients carrying germ-line BRCA1 mutation.

    Science.gov (United States)

    Moiseyenko, Vladimir M; Chubenko, Vyacheslav A; Moiseyenko, Fedor V; Zhabina, Albina S; Gorodnova, Tatiana V; Komarov, Yuri I; Bogdanov, Alexey A; Sokolenko, Anna P; Imyanitov, Evgeny N

    2014-10-01

    Ovarian carcinomas (OC) arising in BRCA1 and BRCA2 mutation carriers demonstrate pronounced sensitivity to platinum-based therapy due to deficiency of double-strand break DNA repair. However, the choice of subsequent treatment lines for this category of women remains complicated. We considered mitomycin C for heavily pretreated hereditary OC patients, based on multiple evidence for BRCA-specific activity of this drug. Twelve patients carrying BRCA1 germ-line mutation were included in the study. All women had a history of surgical intervention followed by adjuvant platinum-based therapy; three patients also received platinating agents prior the operation. The number of preceding treatment lines for metastatic disease was one for three patients, two for four patients, three for two patients, four for two patients and six for one woman. Administration of mitomycin C (10 mg/m2, every 4 weeks) resulted in one complete response (duration 36 weeks), two partial responses (duration 36 and 48 weeks) and six instances of disease stabilization (duration 12, 16, 20, 24, 24 and 24 weeks). In addition, three patients with the stable disease showed a decline of CA-125 level. We conclude that mitomycin C may deserve further evaluation in clinical trials involving BRCA1/2-related cancers.

  17. Immunohistochemical expression of BRCA1 and lethal prostate cancer

    Science.gov (United States)

    Fiorentino, Michelangelo; Judson, Gregory; Penney, Kathryn; Flavin, Richard; Stark, Jennifer; Fiore, Christopher; Fall, Katja; Martin, Neil; Ma, Jing; Sinnott, Jennifer; Giovannucci, Edward; Stampfer, Meir; Sesso, Howard D.; Kantoff, Philip W.; Finn, Stephen; Loda, Massimo; Mucci, Lorelei

    2011-01-01

    BRCA1 functions as a tumor suppressor; recent work suggests that BRCA1 may also induce cell-cycle arrest to allow for DNA repair. We hypothesized that BRCA1 expression in prostate tumor tissue may be associated with prostate cancer progression through regulation of the cell-cycle. We used immunohistochemistry to evaluate BRCA1 protein expression in archival tumors samples from 393 prostate cancer cases in the Physicians' Health Study. The men were followed prospectively from diagnosis to development of metastases and mortality. Fifteen percent of tumors stained positive for BRCA1. BRCA1 positive tumors had substantially increased tumor proliferation index compared to negative tumors (47.0 Ki67 positive nuclei vs. 10.3, p=0.0016), and were more likely to develop lethal cancer compared to BRCA1 negative tumors (Hazard ratio=4.6; 95% Confidence interval: 2.4, 8.7). These findings strengthen the hypothesis that BRCA1 plays a role in cell-cycle control and demonstrate that BRCA1 is a marker of clinical prostate cancer prognosis. PMID:20388772

  18. Analysis list: Brca1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Brca1 Blood + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Brca1.1.tsv... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Brca1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Br...ca1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Brca1.Blood.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Blood.gml ...

  19. Optimal selection for BRCA1 and BRCA2 mutation testing using a combination of 'easy to apply' probability models.

    NARCIS (Netherlands)

    Bodmer, D.; Ligtenberg, M.J.L.; Hout, A.H. van der; Gloudemans, S.; Ansink, K.; Oosterwijk-Wakka, J.C.; Hoogerbrugge-van der Linden, N.

    2006-01-01

    To establish an efficient, reliable and easy to apply risk assessment tool to select families with breast and/or ovarian cancer patients for BRCA mutation testing, using available probability models. In a retrospective study of 263 families with breast and/or ovarian cancer patients, the utility of

  20. Optimal selection for BRCA1 and BRCA2 mutation testing using a combination of ' easy to apply ' probability models

    NARCIS (Netherlands)

    Bodmer, D.; Ligtenberg, M. J. L.; van der Hout, A. H.; Gloudemans, S.; Ansink, K.; Oosterwijk, J. C.; Hoogerbrugge, N.

    2006-01-01

    To establish an efficient, reliable and easy to apply risk assessment tool to select families with breast and/or ovarian cancer patients for BRCA mutation testing, using available probability models. In a retrospective study of 263 families with breast and/or ovarian cancer patients, the utility of

  1. Oncological and genetic aspects of heriditary breast cancer associated with mutations in BRCA1 and BRCA2

    NARCIS (Netherlands)

    L.C. Verhoog (Leon)

    2003-01-01

    textabstractIn western countries breast cancer affects approximately 1 in every 10 to 12 women. It is the leading cause of cancer death in women in these countries and the leading cause of overall mortality in women aged 35 to 55 years. Many risk factors for breast cancer have been identified includ

  2. Genomic patterns resembling BRCA1- and BRCA2-mutated breast cancers predict benefit of intensified carboplatin-based chemotherapy

    NARCIS (Netherlands)

    Vollebergh, Marieke A.; Lips, Esther H.; Nederlof, Petra M.; Wessels, Lodewyk F. A.; Wesseling, Jelle; Vijver, Marc J. vd; de Vries, Elisabeth G. E.; van Tinteren, Harm; Jonkers, Jos; Hauptmann, Michael; Rodenhuis, Sjoerd; Linn, Sabine C.

    2014-01-01

    Introduction: BRCA-mutated breast cancer cells lack the DNA-repair mechanism homologous recombination that is required for error-free DNA double-strand break (DSB) repair. Homologous recombination deficiency (HRD) may cause hypersensitivity to DNA DSB-inducing agents, such as bifunctional alkylating

  3. MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Stéphanie Tomé

    2009-05-01

    Full Text Available Myotonic dystrophy type 1 (DM1 is associated with one of the most highly unstable CTG*CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG*CAG tracts requires the mismatch repair (MMR proteins MSH2 and MSH3, forming the MutSbeta complex. It has been proposed that binding of MutSbeta to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSbeta is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG(300 repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base-base MMR, but does not affect the ability of MSH2 (associated with MSH6 to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2(G674 mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system.

  4. Prediction of MLH1 and MSH2 mutations in lynch syndrome

    NARCIS (Netherlands)

    J. Balmana (Judith); D.H. Stockwell (David); E.W. Steyerberg (Ewout); E.M. Stoffel (Elena); A.M. Deffenbaugh (Amie); J.E. Reid (Julia); B. Ward (Brian); T. Scholl (Thomas); B. Hendrickson (Brant); J. Tazelaar (John); L.A. Burbidge (Lynn); S. Syngal (Sapna)

    2006-01-01

    textabstractContext: Lynch syndrome is caused primarily by mutations in the mismatch repair genes MLH1 and MSH2. Objectives: To analyze MLH1/MSH2 mutation prevalence in a large cohort of patients undergoing genetic testing and to develop a clinical model to predict the likelihood of finding a mutati

  5. BRCA1 in the DNA damage response and at telomeres

    Directory of Open Access Journals (Sweden)

    Eliot Michael Rosen

    2013-06-01

    Full Text Available Abstract. Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1 account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s is (are most important for tumor suppression, nor is it clear why BRCA1 mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR, which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.

  6. The Role of BRCA1 in Lethal Prostate Cancer

    Science.gov (United States)

    2013-08-01

    Burga LN, Tung NM, Troyan SL, et al. Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation...apoptosis. Cancer Res. 2003;63:6221-8. 26. Wang L, Wei J, Qian X, Yin H, Zhao Y, Yu L, et al. ERCC1 and BRCA1 mRNA expression levels in metastatic

  7. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

    LENUS (Irish Health Repository)

    Stordal, Britta

    2013-06-01

    Mutations in BRCA1\\/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1\\/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1\\/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1\\/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1\\/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1\\/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G > A, and is the only deleterious BRCA1\\/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1\\/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1\\/2 deleterious mutations 1\\/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective

  8. Mapping of the methylation pattern of the hMSH2 promoter in colon cancer, using bisulfite genomic sequencing

    Directory of Open Access Journals (Sweden)

    Zhang Hua

    2006-08-01

    Full Text Available Abstract The detailed methylation status of CpG sites in the promoter region of hMSH2 gene has yet not to be reported. We have mapped the complete methylation status of the hMSH2 promoter, a region that contains 75 CpG sites, using bisulfite genomic sequencing in 60 primary colorectal cancers. And the expression of hMSH2 was detected by immunohistochemistry. The hypermethylation of hMSH2 was detected in 18.33% (11/60 of tumor tissues. The protein of hMSH2 was detected in 41.67% (25/60 of tumor tissues. No hypermethylation of hMSH2 was detected in normal tissues. The protein of hMSH2 was detected in all normal tissues. Our study demonstrated that hMSH2 hypermethylation and protein expression were associated with the development of colorectal cancer.

  9. Absence of loss of heterozygosity of BRCA1 in a renal tumor from a BRCA1 germline mutation carrier

    OpenAIRE

    Alanee, Shaheen; Shah, Sohela; Murali, Rajmohan; Rau-Murthy, Rohini; Kasmintan A Schrader; Offit, Kenneth

    2013-01-01

    BRCA1 functions as a tumor suppressor gene and germline and somatic mutations in this gene have been shown to be associated with many types of cancer. We report the first tumor study of renal cell carcinoma in a carrier of the deleterious BRCA1 mutation-c.68_69delAG.

  10. Expression of hMSH2 gene and mutant p53 in sporadic digestive tract tumors

    Institute of Scientific and Technical Information of China (English)

    康燕婕; 张振科; 王俊霞; 陈静; 彭勃; 康萍

    2003-01-01

    Objective To investigate the role of mutated mismatch repair gene hMSH2 and mutant p53 gene in the carcinogenesis and development of sporadic digestive tract tumors. Methods hMSH2 gene in normal and tumor tissue of 30 digestive tract tumor specimens was examined using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) silver staining. The PCR product with an abnormal strand was sequenced directly. Mutant p53 protein in the tumor tissue was analyzed immunohistochemically. Results Six patients were identified as having mutated strands, three on hMSH2 exon 1 and three on hMSH2 exon 5. DNA sequencing revealed that all 6 patients had mutated basic groups that led to decrease in function of the hMSH2 protein. Forty percent (12/30) of patients were p53 positive. The frequency of mutated hMSH2 in p53 positive patients (41.7%) was significantly higher than in p53 negative patients (5.6%, P<0.05). Conclusion The mutation of hMSH2 plays an important role in the carcinogenesis and development of digestive tract tumors through stimulating p53 mutation.

  11. BRCA1 tumor suppressor network: focusing on its tail

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2012-02-01

    Full Text Available Abstract Germline mutations of the BRCA1 tumor suppressor gene are a major cause of familial breast and ovarian cancer. BRCA1 plays critical roles in the DNA damage response that regulates activities of multiple repair and checkpoint pathways for maintaining genome stability. The BRCT domains of BRCA1 constitute a phospho-peptide binding domain recognizing a phospho-SPxF motif (S, serine; P, proline; × varies; F, phenylalanine. The BRCT domains are frequently targeted by clinically important mutations and most of these mutations disrupt the binding surface of the BRCT domains to phosphorylated peptides. The BRCT domain and its capability to bind phosphorylated protein is required for the tumor suppressor function of BRCA1. Through its BRCT phospho-binding ability BRCA1 forms at least three mutually exclusive complexes by binding to phosphorylated proteins Abraxas, Bach1 and CTIP. The A, B and C complexes, at lease partially undertake BRCA1's role in mechanisms of cell cycle checkpoint and DNA repair that maintain genome stability, thus may play important roles in BRCA1's tumor suppressor function.

  12. Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers

    DEFF Research Database (Denmark)

    Cox, David G; Simard, Jacques; Sinnett, Daniel

    2011-01-01

    Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly...... instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of BRCA1 carried on the wild-type (non-mutated) copy of the BRCA1 gene would modify the risk of breast cancer in carriers of BRCA1 mutations. A total of 9874 BRCA1 mutation...... carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence...

  13. Identification of recurrent BRCA1 mutation and its clinical relevance in Chinese Triple-negative breast cancer cohort.

    Science.gov (United States)

    Liu, Xiaoran; Li, Huiping; Shao, Bin; Wu, Jianmin; Kong, Weiyao; Song, Guohong; Jiang, Hanfang; Wang, Jing; Wan, Fengling

    2017-03-01

    Triple-negative breast cancer (TNBC) accounts for 15-20% of all newly diagnosed breast cancers, and is enriched for germline mutation of BRCA. In Asian patients diagnosed with breast cancer, 268 deleterious mutations of BRCA1 and 242 of BRCA2 have been identified so far, including a reported BRCA1 frameshift mutation (rs80350973), apparently found only in Asian people, with a low prevalence of 0.3-1.7% in different breast cancer cohorts. Here, we reported the high prevalence (7.2%) of rs80350973 among 125 Chinese patients with TNBC, which implies its mutational predilection for certain breast cancer subtypes. Although its low prevalence had not indicated any particular clinical significance in previous studies, our results associated rs80350973 mutation with cell checkpoint malfunction, and was found to be more common in TNBC patients with high Ki-67 indices (P = 0.004). As Ki-67 overexpression is a predictor of poor prognosis in TNBC, inclusion of this mutation into genetic assessments may improve the clinical management of Chinese patients with TNBC.

  14. Epidemiology of Patients with Ovarian Cancer with and Without a BRCA1/2 Mutation.

    Science.gov (United States)

    Weiderpass, Elisabete; Tyczynski, Jerzy E

    2015-12-01

    Ovarian cancer survival rates have improved only slightly in recent decades; however, treatment of this disease is expected to undergo rapid change as strategies incorporating molecular-targeted therapies enter clinical practice. Carriers of deleterious mutations (defined as a harmful mutation) in either the BRCA1 or BRCA2 gene (BRCAm) have a significantly increased risk of developing ovarian cancer. Epidemiology data in large (>500 patients) unselected ovarian cancer populations suggest that the expected incidence rate for BRCAm in this population is 12-14 %. Patients with a BRCAm are typically diagnosed at a younger age than those without a BRCAm. Associations with BRCAm vary according to ethnicity, with women of Ashkenazi Jewish descent being 10 times more likely to have a BRCAm than the general population. In terms of survival, patients with invasive epithelial ovarian cancer who have a BRCAm may have improved overall survival compared with patients who do not carry a BRCAm. Although genetic testing for BRCAm remains relatively uncommon in ovarian cancer patients, testing is becoming cheaper and increasingly accessible; however, this approach is not without numerous social, ethical and policy issues. Current guidelines recommend BRCAm testing in specific ovarian cancer patients only; however, with the emergence of treatments that are targeted at patients with a BRCAm, genetic testing of all patients with high-grade serous ovarian cancer may lead to improved patient outcomes in this patient population. Knowledge of BRCAm status could, therefore, help to inform treatment decisions and identify relatives at increased risk of developing cancer.

  15. Survival in Norwegian BRCA1 mutation carriers with breast cancer

    Directory of Open Access Journals (Sweden)

    Hagen Anne

    2009-04-01

    Full Text Available Abstract Several studies of survival in women with BRCA1 mutations have shown either reduced survival or no difference compared to controls. Programmes for early detection and treatment of inherited breast cancer, have failed to demonstrate a significant improvement in survival in BRCA1 mutation carriers. One hundred and sixty-seven women with disease-associated germline BRCA1 mutations and breast cancer from 1980 to 2001 were identified. Tumour characteristics, treatment given and survival were recorded. A control group comprising three hundred and four women matched for age, time of diagnosis and stage were used to compare survival. BRCA1 mutation carriers were found to have a poorer prognosis, which could be explained by neither the mode of surgical treatment nor the use of adjuvant chemotherapy. BRCA1 mutation carriers with node negative breast cancer had worse overall survival than controls. Our findings confirm the serious prognosis of BRCA1-associated breast cancer even when diagnosed at an early stage, and that type of treatment does not influence prognosis.

  16. BRCA2 Variants and cardiovascular disease in a multi-ethnic study

    Directory of Open Access Journals (Sweden)

    Zbuk Kevin

    2012-07-01

    Full Text Available Abstract Background Germline mutations of BRCA1/2 are associated with hereditary breast and ovarian cancer. Recent data suggests excess mortality in mutation carriers beyond that conferred by neoplasia, and recent in vivo and in vitro studies suggest a modulatory role for BRCA proteins in endothelial and cardiomyocyte function. We therefore tested the association of BRCA2 variants with clinical cardiovascular disease (CVD. Methods Using data from 1,170 individuals included in two multi-ethnic population-based studies (SHARE and SHARE-AP, the association between BRCA2 variants and CVD was evaluated. 15 SNPs in BRCA2 with minor allele frequencies (MAF > 0.01 had been previously genotyped using the cardiovascular gene-centric 50 k SNP array. 115 individuals (9.8% reported a CVD event, defined as myocardial infarction (MI, angina, silent MI, stroke, and angioplasty or coronary artery bypass surgery. Analyses were adjusted for age and sex. The SNPs rs11571836 and rs1799943 were subsequently genotyped using the MassARRAY platform in 1,045 cases of incident MI and 1,135 controls from the South Asian subset of an international case-control study of acute MI (INTERHEART, and rs11571836 was imputed in 4,686 cases and 4500 controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS. Results Two BRCA2 SNPs, rs11571836 and rs1799943, both located in untranslated regions, were associated with lower risk of CVD (OR 0.47 p = 0.01 and OR 0.56 p = 0.03 respectively in the SHARE studies. Analysis by specific ethnicities demonstrated an association with CVD for both SNPs in Aboriginal People, and for rs11571836 only in South Asians. No association was observed in the European and Chinese subgroups. A non-significant trend towards an association between rs11571836 and lower risk of MI was observed in South Asians from INTERHEART [OR = 0.87 (95% CI: 0.75-1.01 p = 0.068], but was not evident in PROMIS [OR = 0.96 (95% CI: 0

  17. Genomewide high-density SNP linkage analysis of non-BRCA1/2 breast cancer families identifies various candidate regions and has greater power than microsatellite studies

    Directory of Open Access Journals (Sweden)

    Gonzalez-Neira Anna

    2007-08-01

    Full Text Available Abstract Background The recent development of new high-throughput technologies for SNP genotyping has opened the possibility of taking a genome-wide linkage approach to the search for new candidate genes involved in heredity diseases. The two major breast cancer susceptibility genes BRCA1 and BRCA2 are involved in 30% of hereditary breast cancer cases, but the discovery of additional breast cancer predisposition genes for the non-BRCA1/2 breast cancer families has so far been unsuccessful. Results In order to evaluate the power improvement provided by using SNP markers in a real situation, we have performed a whole genome screen of 19 non-BRCA1/2 breast cancer families using 4720 genomewide SNPs with Illumina technology (Illumina's Linkage III Panel, with an average distance of 615 Kb/SNP. We identified six regions on chromosomes 2, 3, 4, 7, 11 and 14 as candidates to contain genes involved in breast cancer susceptibility, and additional fine mapping genotyping using microsatellite markers around linkage peaks confirmed five of them, excluding the region on chromosome 3. These results were consistent in analyses that excluded SNPs in high linkage disequilibrium. The results were compared with those obtained previously using a 10 cM microsatellite scan (STR-GWS and we found lower or not significant linkage signals with STR-GWS data compared to SNP data in all cases. Conclusion Our results show the power increase that SNPs can supply in linkage studies.

  18. Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers

    DEFF Research Database (Denmark)

    Cox, David G; Simard, Jacques; Sinnett, Daniel

    2011-01-01

    carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence...

  19. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Charlene; Zhang, Junran, E-mail: Junran.zhang@case.edu

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.

  20. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression.

    Science.gov (United States)

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin

    2009-08-21

    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.

  1. Effects of MSH2 gene re-expression on estrogen induced-apoptosis of colon cancer cells LOVO

    Institute of Scientific and Technical Information of China (English)

    吕晨曦

    2014-01-01

    Objective To observe the effects of MSH2 gene reexpression on estrogen-induced apoptosis of colon cancer cells LOVO,and to explore its mechanisms.Methods According to different plasmid and whether with estradiol intervention,colon cancer LOVO cells were divided into empty plasmid with ethanol group,empty plasmid with estradiol group,MSH2 with ethanol group,MSH2 with

  2. Haploinsufficiency for BRCA1 is associated with normal levels of DNA nucleotide excision repair in breast tissue and blood lymphocytes

    Directory of Open Access Journals (Sweden)

    Johnson Jennifer M

    2005-06-01

    Full Text Available Abstract Background Screening mammography has had a positive impact on breast cancer mortality but cannot detect all breast tumors. In a small study, we confirmed that low power magnetic resonance imaging (MRI could identify mammographically undetectable tumors by applying it to a high risk population. Tumors detected by this new technology could have unique etiologies and/or presentations, and may represent an increasing proportion of clinical practice as new screening methods are validated and applied. A very important aspect of this etiology is genomic instability, which is associated with the loss of activity of the breast cancer-predisposing genes BRCA1 and BRCA2. In sporadic breast cancer, however, there is evidence for the involvement of a different pathway of DNA repair, nucleotide excision repair (NER, which remediates lesions that cause a distortion of the DNA helix, including DNA cross-links. Case presentation We describe a breast cancer patient with a mammographically undetectable stage I tumor identified in our MRI screening study. She was originally considered to be at high risk due to the familial occurrence of breast and other types of cancer, and after diagnosis was confirmed as a carrier of a Q1200X mutation in the BRCA1 gene. In vitro analysis of her normal breast tissue showed no differences in growth rate or differentiation potential from disease-free controls. Analysis of cultured blood lymphocyte and breast epithelial cell samples with the unscheduled DNA synthesis (UDS assay revealed no deficiency in NER. Conclusion As new breast cancer screening methods become available and cost effective, patients such as this one will constitute an increasing proportion of the incident population, so it is important to determine whether they differ from current patients in any clinically important ways. Despite her status as a BRCA1 mutation carrier, and her mammographically dense breast tissue, we did not find increased cell

  3. In their own words: treating very young BRCA1/2 mutation-positive women with care and caution.

    Directory of Open Access Journals (Sweden)

    Lindsey M Hoskins

    Full Text Available PURPOSE: Young women who have been identified as carrying a deleterious mutation in BRCA1 or BRCA2 face a unique set of challenges related to managing cancer risk during a demographically-dense stage of life. They may struggle with decision-making in the absence of clear age-specific guidelines for medical management and because they have not yet fully developed the capacity to make life-altering decisions confidently. This study sought a patient-centered perspective on the dilemmas faced by 18-24 year olds who completed BRCA1/2 gene mutation testing prior to their 25(th birthdays. PATIENTS AND METHOD: This study integrated qualitative data from three independent investigations of BRCA1/2-positive women recruited through cancer risk clinics, hospital-based research centers, and online organizations. All 32 participants were women aged 21-25 who tested positive for a BRCA1/2 gene mutation between 2 and 60 months prior to data collection. Investigators used techniques of grounded theory and interpretive description to conduct both within and cross-study analysis. RESULTS: Participants expressed needs for (1 greater clarity in recommendations for screening and prevention before age 25, especially with consideration of early and regular exposure to radiation associated with mammography or to hormones used in birth control, and (2 ongoing contact with providers to discuss risk management protocols as they become available. CONCLUSIONS: Health care needs during the young adult years evolve with the cognitive capacity to address abrupt and pressing change. Specific needs of women in this population include a desire to balance autonomous decision-making with supportive guidance, a need for clear, accurate and consistent medical recommendations. Optimally, these women are best cared for by a team of genetically-oriented providers as part of a sustained program of ongoing support, rather than seen in an episodic, crisis-driven fashion. A discussion of

  4. BRCA1 founder mutations compared to ovarian cancer in Belarus.

    Science.gov (United States)

    Savanevich, Alena; Oszurek, Oleg; Lubiński, Jan; Cybulski, Cezary; Dębniak, Tadeusz; Narod, Steven A; Gronwald, Jacek

    2014-09-01

    In Belarus and other Slavic countries, founder mutations in the BRCA1 gene are responsible for a significant proportion of breast cancer cases, but the data on contribution of these mutations to ovarian cancers are limited. To estimate the proportion of ovarian cancers in Belarus, which are dependent on BRCA1 Slavic founder mutations, we sought the presence of three most frequent mutations (BRCA1: 5382insC, C61G and, 4153delA) in 158 consecutive unselected cases of ovarian cancer. One of the three founder mutations was present in 25 of 158 unselected cases of ovarian cancer (15.8 %). We recommend that all cases of ovarian cancer in Belarus be offered genetic testing for these founder mutations. Furthermore, genetic testing of the Belarusian population will provide the opportunity to prevent a significant proportion of ovarian cancer.

  5. Biologic characteristic studies of DNA mismatch—repair enzyme hMSH2—deficient cell strain

    Institute of Scientific and Technical Information of China (English)

    HeY; ZhuaZX

    2002-01-01

    The effect of hMSH2 enzyme-deficiency on the cell growing phenotypes,cell ultrastructure,growth character and cell cycle were observed with electronic microscopy examination,cell counting and flow cytometry.hMSH2-deficient cell strain was constructed by transfecting hMSH2 recombination plasmid of antisense RNA into human embryo lung fibroblasts(HLF).In hMSH2-deficient cells,there were a lot of morphological changes under electronic microscopy,such as irregular shape,a lot of protuberances on the surface of cell,the enlarged nuclei.The average time of double increment of HLF and hMSH2-deficient cells were 1.0d and 0.78d,respectively.This suggested that the cell proliferation of hMSH2-deficient cells was greater than that of HLF.The distribution of HLF and hMSH2-deficient cells in G1,G2 and S phases was different.A large part of hMSH2-deficient cells was blocked in G1 phase.hMSH2-deficient cells increased,but it is still not a typical malignant cells.Thus,this cell strain could be used as biologic material to detect mutagenesis of environmental chemicals.

  6. Msh2-Msh3 Interferes with Okazaki Fragment Processing to Promote Trinucleotide Repeat Expansions

    Directory of Open Access Journals (Sweden)

    Athena Kantartzis

    2012-08-01

    Full Text Available Trinucleotide repeat (TNR expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington’s disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. Furthermore, we provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27 and DNA ligase I (Cdc9 in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging-strand DNA replication.

  7. Predictive value of MSH2 gene expression in colorectal cancer treated with capecitabine

    DEFF Research Database (Denmark)

    Jensen, Lars H; Danenberg, Kathleen D; Danenberg, Peter V;

    2007-01-01

    was associated with a hazard ratio of 0.5 (95% confidence interval, 0.23-1.11; P = 0.083) in survival analysis. CONCLUSION: The higher gene expression of MSH2 in responders and the trend for predicting overall survival indicates a predictive value of this marker in the treatment of advanced CRC with capecitabine.......PURPOSE: The objective of the present study was to evaluate the gene expression of the DNA mismatch repair gene MSH2 as a predictive marker in advanced colorectal cancer (CRC) treated with first-line capecitabine. PATIENTS AND METHODS: Microdissection of paraffin-embedded tumor tissue, RNA...

  8. BRCA2 Mutations in 154 Finnish Male Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Kirsi Syrjäkoski

    2004-09-01

    Full Text Available The etiology and pathogenesis of male breast cancer (MBC are poorly known. This is due to the fact that the disease is rare, and large-scale genetic epidemiologic studies have been difficult to carry out. Here, we studied the frequency of eight recurrent Finnish BRCA2 founder mutations in a large cohort of 154 MBC patients (65% diagnosed in Finland from 1967 to 1996. Founder mutations were detected in 10 patients (6.5%, eight of whom carried the 9346(-2 A>G mutation. Two novel mutations (4075 delGT and 5808 del5 were discovered in a screening of the entire BRCA2 coding region in 34 samples. However, these mutations were not found in the rest of the 120 patients studied. Patients with positive family history of breast and/or ovarian cancer were often BRCA2 mutation carriers (44%, whereas those with no family history showed a low frequency of involvement (3.6%; P < .0001. Finally, we found only one Finnish MBC patient with 999 dell, the most common founder mutation in Finnish female breast cancer (FBC patients, and one that explains most of the hereditary FBC and MBC cases in Iceland. The variation in BRCA2 mutation spectrum between Finnish MBC patients and FBC patients in Finland and breast cancer patients in Iceland suggests that modifying genetic and environmental factors may significantly influence the penetrance of MBC and FBC in individuals carrying germline BRCA2 mutations in some populations.

  9. Kin-cohort estimates for familial breast cancer risk in relation to variants in DNA base excision repair, BRCA1 interacting and growth factor genes

    Directory of Open Access Journals (Sweden)

    Rutter Joni L

    2004-03-01

    Full Text Available Abstract Background Subtle functional deficiencies in highly conserved DNA repair or growth regulatory processes resulting from polymorphic variation may increase genetic susceptibility to breast cancer. Polymorphisms in DNA repair genes can impact protein function leading to genomic instability facilitated by growth stimulation and increased cancer risk. Thus, 19 single nucleotide polymorphisms (SNPs in eight genes involved in base excision repair (XRCC1, APEX, POLD1, BRCA1 protein interaction (BRIP1, ZNF350, BRCA2, and growth regulation (TGFß1, IGFBP3 were evaluated. Methods Genomic DNA samples were used in Taqman 5'-nuclease assays for most SNPs. Breast cancer risk to ages 50 and 70 were estimated using the kin-cohort method in which genotypes of relatives are inferred based on the known genotype of the index subject and Mendelian inheritance patterns. Family cancer history data was collected from a series of genotyped breast cancer cases (N = 748 identified within a cohort of female US radiologic technologists. Among 2,430 female first-degree relatives of cases, 190 breast cancers were reported. Results Genotypes associated with increased risk were: XRCC1 R194W (WW and RW vs. RR, cumulative risk up to age 70, risk ratio (RR = 2.3; 95% CI 1.3–3.8; XRCC1 R399Q (QQ vs. RR, cumulative risk up to age 70, RR = 1.9; 1.1–3.9; and BRIP1 (or BACH1 P919S (SS vs. PP, cumulative risk up to age 50, RR = 6.9; 1.6–29.3. The risk for those heterozygous for BRCA2 N372H and APEX D148E were significantly lower than risks for homozygotes of either allele, and these were the only two results that remained significant after adjusting for multiple comparisons. No associations with breast cancer were observed for: APEX Q51H; XRCC1 R280H; IGFPB3 -202A>C; TGFß1 L10P, P25R, and T263I; BRCA2 N289H and T1915M; BRIP1 -64A>C; and ZNF350 (or ZBRK1 1845C>T, L66P, R501S, and S472P. Conclusion Some variants in genes within the base-excision repair pathway (XRCC1 and

  10. "Ring-fencing" BRCA1 tumor suppressor activity.

    Science.gov (United States)

    Patel, Ketan J; Crossan, Gerry P; Hodskinson, Michael R G

    2011-12-13

    BRCA1 is a crucial human breast and ovarian cancer tumor suppressor gene. The article by Drost et al. in this issue of Cancer Cell together with a recent paper in Science now provide a clearer picture of how this large and complex protein suppresses tumorigenesis.

  11. File list: Oth.ALL.10.BRCA1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.BRCA1.AllCell hg19 TFs and others BRCA1 All cell types SRX182682,SRX1506...31,SRX150596,SRX150457,SRX150688,SRX481566,SRX359987 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.10.BRCA1.AllCell.bed ...

  12. File list: Oth.ALL.05.BRCA1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.BRCA1.AllCell hg19 TFs and others BRCA1 All cell types SRX182682,SRX1506...31,SRX150596,SRX150457,SRX150688,SRX481566,SRX359987 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.05.BRCA1.AllCell.bed ...

  13. File list: Oth.ALL.20.BRCA1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.BRCA1.AllCell hg19 TFs and others BRCA1 All cell types SRX182682,SRX1506...31,SRX150596,SRX150457,SRX150688,SRX481566,SRX359987 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.20.BRCA1.AllCell.bed ...

  14. File list: Oth.ALL.50.BRCA1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.BRCA1.AllCell hg19 TFs and others BRCA1 All cell types SRX182682,SRX1506...31,SRX150596,SRX150457,SRX150688,SRX481566,SRX359987 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.50.BRCA1.AllCell.bed ...

  15. Germline mutations in the breast cancer susceptibility gene PTEN are rare in high-risk non-BRCA1/2 French Canadian breast cancer families.

    Science.gov (United States)

    Guénard, Frédéric; Labrie, Yvan; Ouellette, Geneviève; Beauparlant, Charles Joly; Bessette, Paul; Chiquette, Jocelyne; Laframboise, Rachel; Lépine, Jean; Lespérance, Bernard; Pichette, Roxane; Plante, Marie; Durocher, Francine

    2007-01-01

    Cowden syndrome is a disease associated with an increase in breast cancer susceptibility. Alleles in PTEN and other breast cancer susceptibility genes would be responsible for approximately 25% of the familial component of breast cancer risk, BRCA1 and BRCA2 being the two major genes responsible for this inherited risk. In order to evaluate the proportion of high-risk French Canadian non-BRCA1/BRCA2 breast/ovarian cancer families potentially harboring a PTEN germline mutation, the whole coding and flanking intronic sequences were analyzed in a series of 98 breast cancer cases. Although no germline mutation has been identified in the coding region, our study led to the identification of four intronic variants. Further investigations were performed to analyze the effect of these variants, alone and/or in combination, on splicing and PTEN protein levels. Despite suggestive evidence emerging from in silico analyses, the presence of these intronic variants do not seem to alter RNA splicing or PTEN protein levels. In addition, as loss of PTEN or part of it has been reported, Western blot analysis has also been performed. No major deletion could be identified in our cohort. Therefore, assuming a Poisson distribution for the frequency of deleterious mutation in our cohort, if the frequency of such deleterious mutation was 2%, we would have had a 90% or greater chance of observing at least one such mutation. These results suggest that PTEN germline mutations are rare and are unlikely to account for a significant proportion of familial breast cancer cases in the French Canadian population.

  16. BRCA2 Heterozygosity Delays Cytokinesis in Primary Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Asta Björk Jonsdottir

    2009-01-01

    Full Text Available Background: Inherited mutations in the tumour suppressor gene BRCA2 greatly increase the risk of developing breast, ovarian and other types of cancers. So far, most studies have focused on the role of BRCA-pathways in the maintenance of genomic stability.

  17. Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer

    NARCIS (Netherlands)

    Gaudet, Mia M.; Kirchhoff, Tomas; Green, Todd; Vijai, Joseph; Korn, Joshua M.; Guiducci, Candace; Segre, Ayellet V.; McGee, Kate; McGuffog, Lesley; Kartsonaki, Christiana; Morrison, Jonathan; Healey, Sue; Sinilnikova, Olga M.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Gauthier-Villars, Marion; Sobol, Hagay; Longy, Michel; Frenay, Marc; Hogervorst, Frans B. L.; Rookus, Matti A.; Collee, J. Margriet; Hoogerbrugge, Nicoline; van Roozendaal, Kees E. P.; Piedmonte, Marion; Rubinstein, Wendy; Nerenstone, Stacy; Van Le, Linda; Blank, Stephanie V.; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomaki, Kristiina; Lazaro, Conxi; Blanco, Ignacio; Arason, Adalgeir; Johannsson, Oskar T.; Barkardottir, Rosa B.; Devilee, Peter; Olopade, Olofunmilayo I.; Neuhausen, Susan L.; Wang, Xianshu; Fredericksen, Zachary S.; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Viel, Alessandra; Radice, Paolo; Phelan, Catherine M.; Narod, Steven; Rennert, Gad; Lejbkowicz, Flavio; Flugelman, Anath; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Toland, Amanda E.; Montagna, Marco; D'Andrea, Emma; Friedman, Eitan; Laitman, Yael; Borg, Ake; Beattie, Mary; Ramus, Susan J.; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Tim; Spurdle, Amanda B.; Chen, Xiaoqing; Holland, Helene; John, Esther M.; Hopper, John L.; Buys, Saundra S.; Daly, Mary B.; Southey, Melissa C.; Terry, Mary Beth; Tung, Nadine; Hansen, Thomas V. Overeem; Nielsen, Finn C.; Greene, Mark I.; Mai, Phuong L.; Osorio, Ana; Duran, Mercedes; Andres, Raquel; Benitez, Javier; Weitzel, Jeffrey N.; Garber, Judy; Hamann, Ute; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Platte, Radka; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Walker, Lisa; Eason, Jacqueline; Barwell, Julian; Godwin, Andrew K.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engert, Stefanie; Arnold, Norbert; Gadzicki, Dorothea; Dean, Michael; Gold, Bert; Klein, Robert J.; Couch, Fergus J.; Chenevix-Trench, Georgia; Easton, Douglas F.; Daly, Mark J.; Antoniou, Antonis C.; Altshuler, David M.; Offit, Kenneth

    2010-01-01

    The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers

  18. Common genetic variants and modification of penetrance of BRCA2-associated breast cancer

    NARCIS (Netherlands)

    M.M. Gaudet (Mia); T. Kircchoff (Tomas); T. Green (Todd); J. Vijai (Joseph); J.M. Korn (Joshua); C. Guiducci (Candace); A.V. Segrè (Ayellet); K. McGee (Kate); L. McGuffog (Lesley); C. Kartsonaki (Christiana); J. Morrison (Jonathan); S. Healey (Sue); O. Sinilnikova (Olga); D. Stoppa-Lyonnet (Dominique); S. Mazoyer (Sylvie); M. Gauthier-Villars (Marion); H. Sobol (Hagay); M. Longy (Michel); M. Frenay (Marc); F.B.L. Hogervorst (Frans); M.A. Rookus (Matti); J.M. Collée (Margriet); N. Hoogerbrugge (Nicoline); K.E. van Roozendaal (Kees); M. Piedemonte (Marion); W.S. Rubinstein (Wendy); S. Nerenstone (Stacy); L. van Le (Linda); S.V. Blank (Stephanie); T. Caldes (Trinidad); M. de La Hoya (Miguel); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); C. Lazaro (Conxi); I. Blanco (Ignacio); A. Arason (Adalgeir); O.T. Johannson (Oskar); R.B. Barkardottir (Rosa); P. Devilee (Peter); O.I. Olopade (Olofunmilayo); S.L. Neuhausen (Susan); X. Wang (Xianshu); Z. Fredericksen (Zachary); P. Peterlongo (Paolo); S. Manoukian (Siranoush); M. Barile (Monica); A. Viel (Alessandra); P. Radice (Paolo); C. Phelan (Catherine); S. Narod (Steven); G. Rennert (Gad); F. Lejbkowicz (Flavio); A. Flugelman (Anath); I.L. Andrulis (Irene); G. Glendon (Gord); H. Ozcelik (Hilmi); A.E. Toland (Amanda); M. Montagna (Marco); E. D'Andrea (Emma); E. Friedman (Eitan); Y. Laitman (Yael); Å. Borg (Åke); M.S. Beattie (Mary); S.J. Ramus (Susan); S.M. Domchek (Susan); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); A.B. Spurdle (Amanda); X. Chen (Xiaoqing); H. Holland (Helene); E.M. John (Esther); J. Hopper (John); S.S. Buys (Saundra); M.B. Daly (Mary); M.C. Southey (Melissa); M-B. Terry (Mary-beth); N. Tung (Nadine); T.V.O. Hansen (Thomas); F.C. Nielsen (Finn); M.H. Greene (Mark); P.L. Mai (Phuong); A. Osorio (Ana); M. Duran; R. Andres (Raquel); J. Benítez (Javier); J.N. Weitzel (Jeffrey); J. Garber (Judy); U. Hamann (Ute); S. Peock (Susan); M. Cook (Margaret); C.T. Oliver (Clare); D. Frost (Debra); R. Platte (Radka); D.G. Evans (Gareth); F. Lalloo (Fiona); R. Eeles (Rosalind); L. Izatt (Louise); L.J. Walker (Lisa); J. Eason (Jacqueline); J. Barwell (Julian); A.K. Godwin (Andrew); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); S. Engert (Stefanie); N. Arnold (Norbert); D. Gadzicki (Dorothea); M. Dean (Michael Emmans); B. Gold (Bert); R.J. Klein (Robert); F.J. Couch (Fergus); G. Chenevix-Trench (Georgia); D.F. Easton (Douglas); M.J. Daly (Mark); A.C. Antoniou (Antonis); D. Altshuler (David); K. Offit (Kenneth)

    2010-01-01

    textabstractThe considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutat

  19. Common genetic variants and modification of penetrance of BRCA2-associated breast cancer

    DEFF Research Database (Denmark)

    Gaudet, Mia M; Kirchhoff, Tomas; Green, Todd

    2010-01-01

    The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carri...

  20. Common genetic variants and modification of penetrance of BRCA2-associated breast cancer

    DEFF Research Database (Denmark)

    Gaudet, Mia M; Kirchhoff, Tomas; Green, Todd;

    2010-01-01

    The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation...

  1. Effect of the BRCA1-SIRT1-EGFR axis on cisplatin sensitivity in ovarian cancer.

    Science.gov (United States)

    Li, Da; Wu, Qi-Jun; Bi, Fang-Fang; Chen, Si-Lei; Zhou, Yi-Ming; Zhao, Yue; Yang, Qing

    2016-01-01

    There is accumulating evidence that breast cancer 1 (BRCA1), sirtuin 1 (SIRT1), and epidermal growth factor receptor (EGFR) help to modulate cisplatin cytotoxicity. The role of dynamic crosstalk among BRCA1, SIRT1, and EGFR in cisplatin sensitivity remains largely unknown. We found that BRCA1, SIRT1, and EGFR levels were increased in cisplatin-resistant ovarian cancers compared with those in cisplatin-sensitive ovarian cancers. Hypomethylation in the BRCA1 promoter was associated with BRCA1 activation, significantly elevated SIRT1 levels, decreased nicotinamide adenine dinucleotide (NAD)-mediated SIRT1 activity, and decreased EGFR levels. Treatment with 5 and 10 μg/ml cisplatin induced a gradual increase in BRCA1 and SIRT1 levels and a gradual decrease in NAD levels and NAD-mediated SIRT1 activity, whereas EGFR levels were increased or decreased by treatment with 5 or 10 μg/ml cisplatin, respectively. The overexpression of SIRT1 or the enhancement of SIRT1 activity synergistically enhanced the BRCA1-mediated effects on EGFR transcription. In contrast, the knockdown of SIRT1 or the inhibition of SIRT1 activity inhibited the BRCA1-mediated effects on EGFR transcription. BRCA1 regulates EGFR through a BRCA1-mediated balance between SIRT1 expression and activity. Those results improve our understanding of the basic molecular mechanism underlying BRCA1-related cisplatin resistance in ovarian cancer.

  2. Efficiency of BRCAPRO and Myriad II mutation probability thresholds versus cancer history criteria alone for BRCA1/2 mutation detection.

    Science.gov (United States)

    van Harssel, J J T; van Roozendaal, C E P; Detisch, Y; Brandão, R D; Paulussen, A D C; Zeegers, M; Blok, M J; Gómez García, E B

    2010-06-01

    Considerable differences exist amongst countries in the mutation probability methods and thresholds used to select patients for BRCA1/2 genetic screening. In order to assess the added value of mutation probability methods, we have retrospectively calculated the BRCAPRO and Myriad II probabilities in 306 probands who had previously been selected for DNA-analysis according to criteria based on familial history of cancer. DNA-analysis identified 52 mutations (16.9%) and 11 unclassified variants (UVs, 3.6%). Compared to cancer history, a threshold > or = 10% with BRCAPRO or with Myriad II excluded about 40% of the patients from analysis, including four with a mutation and probabilities 20% with BRCAPRO and Myriad II. In summary, BRCAPRO and Myriad II are more efficient than cancer history alone to exclude patients without a mutation. BRCAPRO performs better for the detection of BRCA1 mutations than of BRCA2 mutations. The Myriad II scores provided no additional information than the BRCAPRO scores alone for the detection of patients with a mutation. The use of thresholds excluded from analysis the majority of patients carrying an UV.

  3. A diagnostic dilemma following risk-reducing surgery for BRCA1 mutation – a case report of primary papillary serous carcinoma presenting as sigmoid cancer

    Directory of Open Access Journals (Sweden)

    Nash Guy F

    2007-09-01

    Full Text Available Abstract Background Women that carry germ-line mutations for BRCA1 or BRCA2 genes are at an increased risk of developing breast, ovarian and peritoneal cancer. Primary peritoneal carcinoma is a rare tumour histologically identical to papillary serous ovarian carcinoma. Risk-reducing surgery in the form of mastectomy and oophorectomy in premenopausal women has been recommended to prevent breast and ovarian cancer occurrence and decrease the risk of developing primary peritoneal cancer. Case presentation We present a case report of a woman with a strong family history of breast cancer who underwent risk-reducing surgery in the form of bilateral salpingo-oophorectomy following a mastectomy for a right-sided breast tumour. Following the finding of a BRCA1 mutation, a prophylactic left-sided mastectomy was performed. After remaining well for twenty-seven years, she presented with rectal bleeding and altered bowel habit, and was found to have a secondary cancer of the sigmoid colon. She was finally diagnosed with primary papillary serous carcinoma of the peritoneum (PSCP. Conclusion PSCP can present many years after risk-reducing surgery and be difficult to detect. Surveillance remains the best course of management for patients with known BRCA mutations.

  4. BP1, an Isoform of DLX4 Homeoprotein, Negatively Regulates BRCA1 in Sporadic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Brian J. Kluk, Yebo Fu, Trina A. Formolo, Lei Zhang, Anne K. Hindle, Yan-gao Man, Robert S. Siegel, Patricia E. Berg, Chuxia Deng, Timothy A. McCaffrey, Sidney W. Fu

    2010-01-01

    Full Text Available Introduction: Several lines of evidence point to an important role for BP1, an isoform of DLX4 homeobox gene, in breast carcinogenesis and progression. BRCA1 is a well-known player in the etiology of breast cancer. While familial breast cancer is often marked by BRCA1 mutation and subsequent loss of heterozygosity, sporadic breast cancers exhibit reduced expression of wild type BRCA1, and loss of BRCA1 expression may result in tumor development and progression.Methods: The Cister algorithm and Genomatix program were used to identify potential BP1 binding sites in BRCA1 gene. Real-time PCR, Western blot and immunohistochemistry analysis were performed to verify the expression of BRCA1 and BP1 in cell lines and breast cancer tissues. Double-stranded siRNA transfection was carried out for silencing BP1 expression. ChIP and EMSA were used to confirm that BP1 specifically binds to BRCA1.Results: A putative BP1 binding site was identified in the first intron of BRCA1, which was confirmed by chromatin immunoprecipiation and electrophoresis mobility shift assay. BP1 and BRCA1 expression were inversely correlated in breast cancer cell lines and tissues, suggesting that BP1 may suppress BRCA1 transcription through consensus sequence binding.Conclusions: BP1 homeoprotein represses BRCA1 expression through direct binding to its first intron, which is consistent with a previous study which identified a novel transcriptional repressor element located more than 500 base pairs into the first intron of BRCA1, suggesting that the first intron plays an important role in the negative regulation of BRCA1. Although further functional studies are necessary to confirm its repressor activity towards BRCA1, the elucidation of the role of BP1 in breast tumorigenesis holds great promise in establishing BP1 as a novel target for drug therapy.

  5. Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers.

    Science.gov (United States)

    Burga, Laura N; Tung, Nadine M; Troyan, Susan L; Bostina, Mihnea; Konstantinopoulos, Panagiotis A; Fountzilas, Helena; Spentzos, Dimitrios; Miron, Alexander; Yassin, Yosuf A; Lee, Bernard T; Wulf, Gerburg M

    2009-02-15

    Female BRCA1 mutation carriers have a nearly 80% probability of developing breast cancer during their life-time. We hypothesized that the breast epithelium at risk in BRCA1 mutation carriers harbors mammary epithelial cells (MEC) with altered proliferation and differentiation properties. Using a three-dimensional culture technique to grow MECs ex vivo, we found that the ability to form colonies, an indication of clonality, was restricted to the aldehyde dehydrogenase 1-positive fraction in MECs but not in HCC1937 BRCA1-mutant cancer cells. Primary MECs from BRCA1 mutation carriers (n = 9) had a 28% greater ability for clonal growth compared with normal controls (n = 6; P = 0.006), and their colonies were significantly larger. Colonies in controls and BRCA1 mutation carriers stained positive for BRCA1 by immunohistochemistry, and 79% of the examined single colonies from BRCA1 carriers retained heterozygosity for BRCA1 (ROH). Colonies from BRCA1 mutation carriers frequently showed high epidermal growth factor receptor (EGFR) expression (71% EGFR positive versus 44% in controls) and were negative for estrogen receptor (ERalpha; 32% ER negative, 44% mixed, 24% ER positive versus 90% ER positive in controls). Expression of CK14 and p63 were not significantly different. Microarray studies revealed that colonies from BRCA1-mutant PMECs anticipate expression profiles found in BRCA1-related tumors, and that the EGFR pathway is up-regulated. We conclude that BRCA1 haploinsufficiency leads to an increased ability for clonal growth and proliferation in the PMECs of BRCA1 mutation carriers, possibly as a result of EGFR pathway activation. These altered growth and differentiation properties may render BRCA1-mutant PMECs vulnerable to transformation and predispose to the development of ER-negative, EGFR-positive breast cancers.

  6. Synchronous lung tumours in a patient with metachronous colorectal carcinoma and a germline MSH2 mutation.

    LENUS (Irish Health Repository)

    Canney, A

    2012-02-01

    Mutations of DNA mismatch repair genes are characterised by microsatellite instability and are implicated in carcinogenesis. This mutation susceptible phenotype has been extensively studied in patients with hereditary non-polyposis colon carcinoma, but little is known of the contribution of such mutations in other tumour types, particularly non-small-cell lung carcinoma. This report describes the occurrence of two synchronous lung tumours, one mimicking a metastatic colon carcinoma, in a male patient with a history of metachronous colonic carcinoma. Immunohistochemistry supported a pulmonary origin for both lesions. Mismatch repair protein immunohistochemistry showed loss of MSH2 and MSH6 expression in both colonic tumours and in one lung tumour showing enteric differentiation. Subsequent mutational analysis demonstrated a deleterious germline mutation of the MSH2 mismatch repair gene. The significance of these findings and the practical diagnostic difficulties encountered in this case are discussed.

  7. Functional characterization of rare missense mutations in MLH1 and MSH2 identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Kariola, Reetta; Korhonen, Mari K;

    2009-01-01

    of the missense mutations were located in conserved regions in the MLH1 and MSH2 proteins indicating a relation to disease development. In the present study, we functionally characterized 10 rare missense mutations in MLH1 and MSH2 identified in 13 Danish CRC families. To elucidate the pathogenicity......Recently, we have performed a population based study to analyse the frequency of colorectal cancer related MLH1 and MSH2 missense mutations in the Danish population. Half of the analyzed mutations were rare and most likely only present in the families where they were identified originally. Some...

  8. Breast cancer risk and 6q22.33: combined results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2.

    Directory of Open Access Journals (Sweden)

    Tomas Kirchhoff

    Full Text Available Recently, a locus on chromosome 6q22.33 (rs2180341 was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC. In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA. Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR = 1.03, 95% CI 1.00-1.06, p = 0.023. There was evidence for heterogeneity in the ORs among studies (I(2 = 49.3%; p = <0.004. In CIMBA, we observed an inverse association with the minor allele of rs2180341 and breast cancer risk in BRCA1 mutation carriers (per-allele OR = 0.89, 95%CI 0.80-1.00, p = 0.048, indicating a potential protective effect of this allele. These data suggest that that 6q22.33 confers a weak effect on breast cancer risk.

  9. Exome sequencing of germline DNA from non-BRCA1/2 familial breast cancer cases selected on the basis of aCGH tumor profiling.

    Directory of Open Access Journals (Sweden)

    Florentine S Hilbers

    Full Text Available The bulk of familial breast cancer risk (∼70% cannot be explained by mutations in the known predisposition genes, primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array comparative genomic hybridization (aCGH. Linkage analysis in these families revealed a region on chromosome 4 with a LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2 hereditary breast cancer families have a very heterogeneous genetic basis.

  10. Germline mutation analysis of MLH1 and MSH2 in Malaysian Lynch syndrome patients

    Institute of Scientific and Technical Information of China (English)

    Mohd Nizam Zahary; Gurjeet Kaur; Muhammad Radzi Abu Hassan; Harjinder Singh; Venkatesh R Naik; Ravindran Ankathil

    2012-01-01

    AIM:To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations.METHODS:Immunohistochemical analysis of tumor samples was performed to determine the protein expression profile of MMR protein.Germline mutation screening was carried out on peripheral blood samples.The entire exon regions of MLH1 and MSH2 genes were amplified by polymerase chain reaction,screened by denaturing high performance liquid chromatography (dHPLC) and analyzed by DNA sequencing to characterize the germline mutations.RESULTS:Three out of 34 tissue samples (8.8%) and four out of 34 tissue samples (11.8%) showed loss of nuclear staining by immunohistochemistry,indicating the absence of MLH1 and MSH2 protein expression in carcinoma cells,respectively.dHPLC analysis followed by DNA sequencing showed these samples to have germline mutations of MSH2 gene.However,no deleterious mutations were identified in any of the 19 exons or coding regions of MLH1 gene,but we were able to identify MLH1 promoter polymorphism,-93G >A (rs1800734),in 21 out of 34 patients (61.8%).We identified one novel mutation,transversion mutation c.2005G > C,which resulted in a missense mutation (Gly669Arg),a transversion mutation in exon 1,c.142G > T,which resulted in a nonsense mutation (Glu48Stop)and splice-site mutation,c.2006-6T > C,which was adjacent to exon 13 of MSH2 gene.CONCLUSION:Germline mutations were identified in four Malaysian Lynch syndrome patients.Immunohistochemical analysis of tumor tissue proved to be a good pre-screening test before proceeding to germline mutation analysis of DNA MMR genes.

  11. A Mononucleotide Markers Panel to Identify hMLH1/hMSH2 Germline Mutations

    Directory of Open Access Journals (Sweden)

    M. Pedroni

    2007-01-01

    Full Text Available Hereditary NonPolyposis Colorectal Cancer (Lynch syndrome is an autosomal dominant disease caused by germline mutations in a class of genes deputed to maintain genomic integrity during cell replication, mutations result in a generalized genomic instability, particularly evident at microsatellite loci (Microsatellite Instability, MSI. MSI is present in 85–90% of colorectal cancers that occur in Lynch Syndrome. To standardize the molecular diagnosis of MSI, a panel of 5 microsatellite markers was proposed (known as the “Bethesda panel”. Aim of our study is to evaluate if MSI testing with two mononucleotide markers, such as BAT25 and BAT26, was sufficient to identify patients with hMLH1/hMSH2 germline mutations. We tested 105 tumours for MSI using both the Bethesda markers and the two mononucleotide markers BAT25 and BAT26. Moreover, immunohistochemical evaluation of MLH1 and MSH2 proteins was executed on the tumours with at least one unstable microsatellite, whereas germline hMLH1/hMSH2 mutations were searched for all cases showing two or more unstable microsatellites.

  12. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    Science.gov (United States)

    Moreno-Ortiz, Jose Miguel; Ayala-Madrigal, María de la Luz; Corona-Rivera, Jorge Román; Maciel-Gutiérrez, Víctor; Franco-Topete, Ramón Antonio; Armendáriz-Borunda, Juan; Pérez-Carbonell, Lucia; Rhees, Jennifer; Gutiérrez-Angulo, Melva

    2016-01-01

    Background. Lynch Syndrome (LS) is characterized by germline mutations in the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC) and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC), and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del) and c.1852_1853delinsGC (p.K618A) in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs) in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel. PMID:27247567

  13. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    Directory of Open Access Journals (Sweden)

    Jose Miguel Moreno-Ortiz

    2016-01-01

    Full Text Available Background. Lynch Syndrome (LS is characterized by germline mutations in the DNA mismatch repair (MMR genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC, and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del and c.1852_1853delinsGC (p.K618A in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel.

  14. Correlation between cell cycle proteins and hMSH2 in actinic cheilitis and lip cancer.

    Science.gov (United States)

    Lopes, Maria Luiza Diniz de Sousa; de Oliveira, Denise Hélen Imaculada Pereira; Sarmento, Dmitry José de Santana; Queiroz, Lélia Maria Guedes; Miguel, Márcia Cristina da Costa; da Silveira, Éricka Janine Dantas

    2016-04-01

    This study aims to evaluate and verify the relationship between the immunoexpression of hMSH2, p53 and p21 in actinic cheilitis (AC) and lower lip squamous cell carcinoma (SCC) cases. Forty AC and 40 SCC cases were submitted to immunoperoxidase method and quantitatively analyzed. Expression was compared by Mann-Whitney test, Student t test or one-way ANOVA. To correlate the variables, Pearson's correlation coefficient was calculated. The expression of p53 and p21 showed no significant differences between histopathological grades of AC or lower lip SCC (p > 0.05). Immunoexpression of p53 was higher in SCC than in AC (p < 0.001), while p21 expression was more observed in AC when compared to SCC group (p = 0.006). The AC group revealed an inverse correlation between p53 and hMSH2 expression (r = -0.30, p = 0.006). Alterations in p53 and p21 expression suggest that these proteins are involved in lower lip carcinogenesis. Moreover, p53 and hMSH2 seem to be interrelated in early events of this process.

  15. Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers

    NARCIS (Netherlands)

    Cox, David G.; Simard, Jacques; Sinnett, Daniel; Hamdi, Yosr; Soucy, Penny; Ouimet, Manon; Barjhoux, Laure; Verny-Pierre, Carole; McGuffog, Lesley; Healey, Sue; Szabo, Csilla; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Thomassen, Mads; Gerdes, Anne-Marie; Caligo, Maria A.; Friedman, Eitan; Laitman, Yael; Kaufman, Bella; Paluch, Shani S.; Borg, Ake; Karlsson, Per; Askmalm, Marie Stenmark; Bustinza, Gisela Barbany; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Benitez, Javier; Hamann, Ute; Rookus, Matti A.; van den Ouweland, Ans M. W.; Ausems, Margreet G. E. M.; Aalfs, Cora M.; van Asperen, Christi J.; Devilee, Peter; Gille, Hans J. J. P.; Peock, Susan; Frost, Debra; Evans, D. Gareth; Eeles, Ros; Izatt, Louise; Adlard, Julian; Paterson, Joan; Eason, Jacqueline; Godwin, Andrew K.; Remon, Marie-Alice; Moncoutier, Virginie; Gauthier-Villars, Marion; Lasset, Christine; Giraud, Sophie; Hardouin, Agnes; Berthet, Pascaline; Sobol, Hagay; Eisinger, Francois; de Paillerets, Brigitte Bressac; Caron, Olivier; Delnatte, Capucine; Goldgar, David; Miron, Alex; Ozcelik, Hilmi; Buys, Saundra; Southey, Melissa C.; Terry, Mary Beth; Singer, Christian F.; Dressler, Anne-Catharina; Tea, Muy-Kheng; Hansen, Thomas V. O.; Johannsson, Oskar; Piedmonte, Marion; Rodriguez, Gustavo C.; Basil, Jack B.; Blank, Stephanie; Toland, Amanda E.; Montagna, Marco; Isaacs, Claudine; Blanco, Ignacio; Gayther, Simon A.; Moysich, Kirsten B.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Gadzicki, Dorothea; Fiebig, Britta; Caldes, Trinidad; Laframboise, Rachel; Nevanlinna, Heli; Chen, Xiaoqing; Beesley, Jonathan; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan C.; Couch, Fergus J.; Wang, Xianshu; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Radice, Paolo; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Sinilnikova, Olga M.

    2011-01-01

    Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly in

  16. BRCA1-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1 mutations and pathological characteristics.

    Science.gov (United States)

    Wagner, T M; Möslinger, R A; Muhr, D; Langbauer, G; Hirtenlehner, K; Concin, H; Doeller, W; Haid, A; Lang, A H; Mayer, P; Ropp, E; Kubista, E; Amirimani, B; Helbich, T; Becherer, A; Scheiner, O; Breiteneder, H; Borg, A; Devilee, P; Oefner, P; Zielinski, C

    1998-07-29

    We identified 17 BRCA1 mutations in 86 Austrian breast and ovarian cancer families (20%) that were screened for mutations by denaturing high-performance liquid chromatography (DHPLC) and the protein truncation test (PTT). Eleven distinct mutations were detected, 4 of them (962del4, 2795del4, 3135del4 and L3376stop) not previously reported in families of non-Austrian origin. In addition, 6 rare missense mutations (allele frequency Cys61Gly (3 times) 5382insC (2 times) and Q1806stop (2 times). Haplotype analysis of the 4 recurrent mutations suggested a common ancestor for each of these. Thirty-four breast cancer cases from 17 families with BRCA1 mutations were further analyzed. We observed a low median age of onset (39.5 years). Sixty-eight percent of all BRCA1 breast cancer cases had negative axillary lymph nodes. This group showed a significant prevalence of a negative estrogen and progesterone receptor status and stage I tumors compared with an age-related, node-negative control group. The prevalence of grade III tumors was marginally significant. Survival analysis either with a control group matched for age (within 5 years), grade, histologic subtype and estrogen receptor status, or with an age-related, node-negative comparison group, showed no statistical difference.

  17. Small-molecule inhibitors identify the RAD52-ssDNA interaction as critical for recovery from replication stress and for survival of BRCA2 deficient cells

    Science.gov (United States)

    Hengel, Sarah R; Malacaria, Eva; Folly da Silva Constantino, Laura; Bain, Fletcher E; Diaz, Andrea; Koch, Brandon G; Yu, Liping; Wu, Meng; Pichierri, Pietro; Spies, M Ashley; Spies, Maria

    2016-01-01

    The DNA repair protein RAD52 is an emerging therapeutic target of high importance for BRCA-deficient tumors. Depletion of RAD52 is synthetically lethal with defects in tumor suppressors BRCA1, BRCA2 and PALB2. RAD52 also participates in the recovery of the stalled replication forks. Anticipating that ssDNA binding activity underlies the RAD52 cellular functions, we carried out a high throughput screening campaign to identify compounds that disrupt the RAD52-ssDNA interaction. Lead compounds were confirmed as RAD52 inhibitors in biochemical assays. Computational analysis predicted that these inhibitors bind within the ssDNA-binding groove of the RAD52 oligomeric ring. The nature of the inhibitor-RAD52 complex was validated through an in silico screening campaign, culminating in the discovery of an additional RAD52 inhibitor. Cellular studies with our inhibitors showed that the RAD52-ssDNA interaction enables its function at stalled replication forks, and that the inhibition of RAD52-ssDNA binding acts additively with BRCA2 or MUS81 depletion in cell killing. DOI: http://dx.doi.org/10.7554/eLife.14740.001 PMID:27434671

  18. Prolactin inhibits a major tumor-suppressive function of wild type BRCA1.

    Science.gov (United States)

    Chen, Kuan-Hui Ethan; Walker, Ameae M

    2016-06-01

    Even though mutations in the tumor suppressor, BRCA1, markedly increase the risk of breast and ovarian cancer, most breast and ovarian cancers express wild type BRCA1. An important question is therefore how the tumor-suppressive function of normal BRCA1 is overcome during development of most cancers. Because prolactin promotes these and other cancers, we investigated the hypothesis that prolactin interferes with the ability of BRCA1 to inhibit the cell cycle. Examining six different cancer cell lines with wild type BRCA1, and making use of both prolactin and the growth-inhibiting selective prolactin receptor modulator, S179D PRL, we demonstrate that prolactin activation of Stat5 results in the formation of a complex between phospho-Stat5 and BRCA1. Formation of this complex does not interfere with nuclear translocation or binding of BRCA1 to the p21 promoter, but does interfere with the ability of BRCA1 to transactivate the p21 promoter. Overexpression of a dominant-negative Stat5 in prolactin-stimulated cells resulted in increased p21 expression. We conclude that prolactin inhibits a major tumor-suppressive function of BRCA1 by interfering with BRCA1's upregulation of expression of the cell cycle inhibitor, p21.

  19. The role of the breast cancer susceptibility gene 1 (BRCA1 in sporadic epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Mueller Christopher R

    2003-10-01

    Full Text Available Abstract Mutations within the BRCA1 tumor suppressor gene occur frequently in familial epithelial ovarian carcinomas but they are a rare event in the much more prevalent sporadic form of the disease. However, decreased BRCA1 expression occurs frequently in sporadic tumors, and the magnitude of this decrease has been correlated with increased disease progression. The near absence of somatic mutations consequently suggests that there are alternative mechanisms that may contribute to the observed loss of BRCA1 in sporadic tumors. Indeed, both allelic loss at the BRCA1 locus and epigenetic hypermethylation of the BRCA1 promoter play an important role in BRCA1 down-regulation; yet these mechanisms alone or in combination do not always account for the reduced BRCA1 expression. Alternatively, misregulation of specific upstream factors that control BRCA1 transcription may be a crucial means by which BRCA1 is lost. Therefore, determining how regulators of BRCA1 expression may be co-opted during sporadic ovarian tumorigenesis will lead to a better understanding of ovarian cancer etiology and it may help foster the future development of novel therapeutic strategies aimed at halting ovarian tumor progression.

  20. BRCA1 and its phosphorylation involved in caffeine-inhibitable event upstream of G2 checkpoint

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Caffeine,which specifically inhibits ATM/ATR kinases,efficiently abrogates the ionizing radiation(IR)-induced G2 arrest and increases the sensitivity of various tumor cells to IR.Mechanisms for the effect of caffeine remain to be elucidated.As a target of ATM/ATR kinases,BRCA1 becomes activated and phosphorylated in response to IR.Thus,in this work,we investigated the possible role of BRCA1 in the effect of caffeine on G2 checkpoint and observed how BRCA1 phosphorylation was regulated in this process.For these purposes,the BRCA1 protein level and the phosphorylation states were analyzed by Western blotting by using an antibody against BRCA1 and phospho-specific antibodies against Ser-1423 and Ser-1524 residues in cells exposed to a combination of IR and caffeine.The results showed that caffeine down-regulated IR-induced BRCA1 expression and specifically abolished BRCA1 phosphorylation of Ser-1524,which was followed by an override of G2 arrest by caffeine.In addition,the ability of BRCA1 to transactivate p21 may be required for MCF-7 but not necessary for Hela response to caffeine.These data suggest that BRCA1 may be a potential target of caffeine.BRCA1 and its phosphorylation are most likely to be involved in the caffeine-inhibitable event upstream of G2 arrest.

  1. Transgenic expression of BRCA1 disturbs hematopoietic stem and progenitor cells quiescence and function

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Lin; Shi, Guiying; Zhang, Xu; Dong, Wei; Zhang, Lianfeng, E-mail: zhanglf@cnilas.org

    2013-10-15

    The balance between quiescence and proliferation of HSCs is an important regulator of hematopoiesis. Loss of quiescence frequently results in HSCs exhaustion, which underscores the importance of tight regulation of proliferation in these cells. Studies have indicated that cyclin-dependent kinases are involved in the regulation of quiescence in HSCs. BRCA1 plays an important role in the repair of DNA double-stranded breaks, cell cycle, apoptosis and transcription. BRCA1 is expressed in the bone marrow. However, the function of BRCA1 in HSCs is unknown. In our study, we generated BRCA1 transgenic mice to investigate the effects of BRCA1 on the mechanisms of quiescence and differentiation in HSCs. The results demonstrate that over-expression of BRCA1 in the bone marrow impairs the development of B lymphocytes. Furthermore, BRCA1 induced an increase in the number of LSKs, LT-HSCs, ST-HSCs and MPPs. A competitive transplantation assay found that BRCA1 transgenic mice failed to reconstitute hematopoiesis. Moreover, BRCA1 regulates the expression of p21{sup waf1}/cip1 and p57{sup kip2}, which results in a loss of quiescence in LSKs. Together, over-expression of BRCA1 in bone marrow disrupted the quiescent of LSKs, induced excessive accumulation of LSKs, and disrupted differentiation of the HSCs, which acts through the down-regulated of p21{sup waf1}/cip1 and p57{sup kip2}. - Highlights: • Over-expression of BRCA1 results in impaired B lymphocyte development. • BRCA1 transgenic mice disrupted the quiescent of LSKs, induced excessive accumulation of LSKs. • BRCA1 impairs the function of HSCs through the down-regulated of p21{sup waf1/cip1} and p57{sup kip2}.

  2. The highly prevalent BRCA2 mutation c.2808_2811del (3036delACAA) is located in a mutational hotspot and has multiple origins.

    Science.gov (United States)

    Infante, Mar; Durán, Mercedes; Acedo, Alberto; Sánchez-Tapia, Eva María; Díez-Gómez, Beatriz; Barroso, Alicia; García-González, María; Feliubadaló, Lídia; Lasa, Adriana; de la Hoya, Miguel; Esteban-Cardeñosa, Eva; Díez, Orland; Martínez-Bouzas, Cristina; Godino, Javier; Teulé, Alexandre; Osorio, Ana; Lastra, Enrique; González-Sarmiento, Rogelio; Miner, Cristina; Velasco, Eladio A

    2013-11-01

    BRCA2-c.2808_2811del (3036delACAA) is one of the most reported germ line mutations in non-Ashkenazi breast cancer patients. We investigated its genetic origin in 51 Spanish carrier families that were genotyped with 11 13q polymorphic markers. Three independent associated haplotypes were clearly distinguished accounting for 23 [west Castilla y León (WCL)], 20 [east Castilla y León (ECL)] and 6 (South of Spain) families. Mutation age was estimated with the Disequilibrium Mapping using Likelihood Estimation software in a range of 45-68 and 45-71 generations for WCL and ECL haplotypes, respectively. The most prevalent variants, c.2808_2811del and c.2803G > A, were located in a double-hairpin loop structure (c.2794-c.2825) predicted by Quikfold that was proposed as a mutational hotspot. To check this hypothesis, random mutagenesis was performed over a 923 bp fragment of BRCA2, and 86 DNA variants were characterized. Interestingly, three mutations reported in the mutation databases (c.2680G > A, c.2944del and c.2957dup) were replicated and 20 affected the same position with different nucleotide changes. Moreover, five variants were placed in the same hairpin loop of c.2808_2811del, and one affected the same position (c.2808A > G). In conclusion, our results support that at least three different mutational events occurred to generate c.2808_2811del. Other highly prevalent DNA variants, such as BRCA1-c.68_69delAG, BRCA2-c.5946delT and c.8537delAG, are concentrated in hairpin loops, suggesting that these structures may represent mutational hotspots.

  3. Carboplatin and taxol resistance develops more rapidly in functional BRCA1 compared to dysfunctional BRCA1 ovarian cancer cells.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-08-01

    A major risk factor for ovarian cancer is germline mutations of BRCA1/2. It has been found that (80%) of cellular models with acquired platinum or taxane resistance display an inverse resistance relationship, that is collateral sensitivity to the other agent. We used a clinically relevant comparative selection strategy to develop novel chemoresistant cell lines which aim to investigate the mechanisms of resistance that arise from different exposures of carboplatin and taxol on cells having BRCA1 function (UPN251) or dysfunction (OVCAR8). Resistance to carboplatin and taxol developed quicker and more stably in UPN251 (BRCA1-wildtype) compared to OVCAR8 (BRCA1-methylated). Alternating carboplatin and taxol treatment delayed but did not prevent resistance development when compared to single-agent administration. Interestingly, the sequence of drug exposure influenced the resistance mechanism produced. UPN251-6CALT (carboplatin first) and UPN251-6TALT (taxol first) have different profiles of cross resistance. UPN251-6CALT displays significant resistance to CuSO4 (2.3-fold, p=0.004) while UPN251-6TALT shows significant sensitivity to oxaliplatin (0.6-fold, p=0.01). P-glycoprotein is the main mechanism of taxol resistance found in the UPN251 taxane-resistant sublines. UPN251 cells increase cellular glutathione levels (3.0-fold, p=0.02) in response to carboplatin treatment. However, increased glutathione is not maintained in the carboplatin-resistant sublines. UPN251-7C and UPN251-6CALT are low-level resistant to CuSO4 suggesting alterations in copper metabolism. However, none of the UPN251 sublines have alterations in the protein expression of ATP7A or CTR1. The protein expression of BRCA1 and MRP2 is unchanged in the UPN251 sublines. The UPN251 sublines remain sensitive to parp inhibitors veliparib and CEP8983 suggesting that these agents are candidates for the treatment of platinum/taxane resistant ovarian cancer patients.

  4. Msh2 blocks an alternative mechanism for non-homologous tail removal during single-strand annealing in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Glenn M Manthey

    Full Text Available Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs, such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA. Among the factors important for translocation formation by SSA is the central mismatch repair (MMR and homologous recombination (HR factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage.

  5. DNA damage repair is unaffected by mimicked heterozygous levels of BRCA2 in HT-29 cells

    Directory of Open Access Journals (Sweden)

    Brian Tannenbaum, Tobechukwu Mofunanya, Alan R. Schoenfeld

    2007-01-01

    Full Text Available Functional loss of both alleles of the breast cancer susceptibility gene, BRCA2, facilitates tumorigenesis. However, the direct effects of BRCA2 heterozygosity remain unclear. Here, BRCA2 heterozygosity was mimicked in HT-29 colon cells by reducing levels of BRCA2 through stable RNA interference. No difference in RAD51 subcellular localization and focus formation was observed between control and mimicked heterozygous cell lines. DNA repair ability, as measured by colony survival following mitomycin C treatment and ultraviolet radiation exposure, was also unaffected by reduced levels of BRCA2. Interestingly, the growth rate of the mimicked BRCA2 heterozygous cell line was significantly lower than that of control cells. Increased expression of p53 in the mimicked heterozygous cells was observed, perhaps in response to BRCA2 deficiency. Levels of p27 were also found to be slightly increased in cells with reduced BRCA2, perhaps contributing to the slower growth rate. Overall, these results suggest that tumors are unlikely to arise directly from BRCA2 heterozygous cells without other genetic events such as loss of the wild-type BRCA2 allele and/or loss of p53 function or other cell cycle inhibitors.

  6. BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer.

    Science.gov (United States)

    Gorski, Julia J; James, Colin R; Quinn, Jennifer E; Stewart, Gail E; Staunton, Kieran Crosbie; Buckley, Niamh E; McDyer, Fionnuala A; Kennedy, Richard D; Wilson, Richard H; Mullan, Paul B; Harkin, D Paul

    2010-08-01

    Expression profiling of BRCA1-deficient tumours has identified a pattern of gene expression similar to basal-like breast tumours. In this study, we examine whether a BRCA1-dependent transcriptional mechanism may underpin the link between BRCA1 and basal-like phenotype. In methods section, the mRNA and protein were harvested from a number of BRCA1 mutant and wild-type breast cancer cell lines and from matched isogenic controls. Microarray-based expression profiling was used to identify potential BRCA1-regulated transcripts. These gene targets were then validated (by in silico analysis of tumour samples) by real-time PCR and Western blot analysis. Chromatin immunoprecipitation (ChIP) assays were used to confirm recruitment of BRCA1 to specific promoters. In results, we demonstrate that functional BRCA1 represses the expression of cytokeratins 5(KRT5) and 17(KRT17) and p-Cadherin (CDH3) in HCC1937 and T47D breast cancer cell lines at both mRNA and protein level. ChIP assays demonstrate that BRCA1 is recruited to the promoters of KRT5, KRT17 and CDH3, and re-ChIP assays confirm that BRCA1 is recruited independently to form c-Myc and Sp1 complexes on the CDH3 promoter. We show that siRNA-mediated inhibition of endogenous c-Myc (and not Sp1) results in a marked increase in CDH3 expression analogous to that observed following the inhibition of endogenous BRCA1. The data provided suggest a model whereby BRCA1 and c-Myc form a repressor complex on the promoters of specific basal genes and represent a potential mechanism to explain the observed overexpression of key basal markers in BRCA1-deficient tumours.

  7. BRCA1在胃癌中的研究进展%Progress in research of the BRCA1 gene in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    钟国栋; 余英豪

    2013-01-01

    Chemotherapy occupies an important position in the treatment of gastric cancer.Platinum drugs are commonly chemotherapy drugs for gastric cancer; however,sensitivity to these drugs varies among different patients.The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene that is associated with sensitivity to platinum drugs.At present,the research on the BRCA1 gene is mainly focused on breast cancer,and there have been fewer studies on gastric cancer.This paper will give an overview of the structure and function of the BRCA1 gene and the relationship between BRCA1 and gastric cancer.%化疗在胃癌的治疗中占有重要地位,铂类药物是常用的胃癌化疗药物之一,不同个体对铂类药物的敏感性差异很大.乳腺癌易感基因l(breast cancer susceptibility gene 1,BRCA1)是一种抑癌基因,与铂类药物的敏感性有关.目前针对BRCA1的研究多集于乳腺癌方面,而在胃癌中的研究很少.本文就BRCA1的结构与功能,BR CA1与胃癌关系的相关研究进展进行综述.

  8. Oral contraceptives and breast cancer risk in the international BRCA1/2 carrier cohort study

    DEFF Research Database (Denmark)

    Brohet, Richard M; Goldgar, David E; Easton, Douglas F

    2007-01-01

    oral contraceptive use and risk of breast cancer among BRCA1/2 carriers. PATIENTS AND METHODS In the International BRCA1/2 Carrier Cohort study (IBCCS), a retrospective cohort of 1,593 BRCA1/2 mutation carriers was analyzed with a weighted Cox regression analysis. Results We found an increased risk...... was found among BRCA1/2 mutation carriers that current use of oral contraceptives is associated with risk of breast cancer more strongly than is past use, as is found in the general population. However, duration of use, especially before first full-term pregnancy, may be associated with an increasing risk...

  9. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    A.C. Antoniou (Antonis); C. Kartsonaki (Christiana); O. Sinilnikova (Olga); P. Soucy (Penny); L. McGuffog (Lesley); S. Healey (Sue); A. Lee (Andrew); P. Peterlongo (Paolo); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); E. Cattaneo (Elisa); M. Barile (Monica); V. Pensotti (Valeria); B. Pasini (Barbara); R. Dolcetti (Riccardo); G. Giannini (Giuseppe); A.L. Putignano; L. Varesco (Liliana); P. Radice (Paolo); P.L. Mai (Phuong); M.H. Greene (Mark); I.L. Andrulis (Irene); G. Glendon (Gord); H. Ozcelik (Hilmi); M. Thomassen (Mads); A-M. Gerdes (Anne-Marie); T.A. Kruse (Torben); U.B. Jensen; D. Cruger (Dorthe); M.A. Caligo (Maria); Y. Laitman (Yael); R. Milgrom (Roni); B. Kaufman (Bella); S. Paluch-Shimon (Shani); E. Friedman (Eitan); N. Loman (Niklas); K. Harbst (Katja); A. Lindblom (Annika); B. Melin (Beatrice); K.L. Nathanson (Katherine); S.M. Domchek (Susan); R. Rebbeck (Timothy); A. Jakubowska (Anna); J. Lubinski (Jan); J. Gronwald (Jacek); T. Huzarski (Tomasz); T. Byrski (Tomasz); C. Cybulski (Cezary); B. Górski (Bohdan); A. Osorio (Ana); T.R. Cajal; F. Fostira (Florentia); R. Andres (Raquel); J. Benitez (Javier); U. Hamann (Ute); F.B.L. Hogervorst (Frans); M.A. Rookus (Matti); M.J. Hooning (Maartje); M.R. Nelen (Marcel); R.B. van der Luijt (Rob); T.A.M. van Os (Theo); C.J. van Asperen (Christi); P. Devilee (Peter); H. Meijers-Heijboer (Hanne); E.B.G. Garcia; S. Peock (Susan); M. Cook (Margaret); D. Frost; R. Platte (Radka); J. Leyland (Jean); D.G. Evans (Gareth); F. Lalloo (Fiona); R. Eeles (Rosalind); L. Izatt (Louise); R. Davidson (Rosemarie); D. Eccles (Diana); K.-R. Ong; F. Douglas (Fiona); J. Paterson (Joan); M.J. Kennedy (John); Z. Miedzybrodzka (Zosia); A.K. Godwin (Andrew); D. Stoppa-Lyonnet (Dominique); B. Buecher (Bruno); M. Belotti (Muriel); C. Tirapo (Carole); S. Mazoyer (Sylvie); L. Barjhoux (Laure); C. Lasset (Christine); D. Leroux (Dominique); L. Faivre (Laurence); M. Bronner (Myriam); F. Prieur (Fabienne); C. Nogues (Catherine); E. Rouleau (Etienne); P. Pujol (Pascal); I. Coupier (Isabelle); M. Frenay (Marc); J. Hopper (John); M.J. Daly (Mark); M-B. Terry (Mary-beth); E.M. John (Esther); S.S. Buys (Saundra); Y. Yassin (Yosuf); A. Miron (Alexander); D. Goldgar (David); C.F. Singer (Christian); M.-K. Tea; G. Pfeiler (Georg); C. Dressler (Catherina); T.V.O. Hansen (Thomas); L. Jønson (Lars); B. Ejlertsen (Bent); R.B. Barkardottir (Rosa); T. Kircchoff (Tomas); K. Offit (Kenneth); M. Piedmonte (Marion); G.C. Rodriguez (Gustavo); L. Small (Laurie); J.F. Boggess (John); S.V. Blank (Stephanie); J. Basil (Jack); M. Azodi (Masoud); A.E. Toland (Amanda); M. Montagna (Marco); S. Tognazzo (Silvia); S. Agata (Simona); E.N. Imyanitov (Evgeny); R. Janavicius (Ramunas); C. Lazaro (Conxi); I. Blanco (Ignacio); P.D.P. Pharoah (Paul); L. Sucheston (Lara); B.Y. Karlan (Beth); C.S. Walsh (Christine); E. Olah (Edith); A. Bozsik (Aniko); S.-H. Teo; J.L. Seldon (Joyce); M.S. Beattie (Mary); E.J. van Rensburg (Elizabeth); M.D. Sluiter (Michelle); O. Diez (Orland); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); C. Engel (Christoph); A. Meindl (Alfons); I. Ruehl (Ina); R. Varon-Mateeva (Raymonda); K. Kast (Karin); H. Deissler (Helmut); D. Niederacher (Dieter); N. Arnold (Norbert); D. Gadzicki (Dorothea); I. Schönbuchner (Ines); T. Caldes (Trinidad); M. de La Hoya (Miguel); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); M. Dumont (Martine); J. Chiquette (Jocelyne); M. Tischkowitz (Marc); G. Chenevix-Trench (Georgia); J. Beesley (Jonathan); A.B. Spurdle (Amanda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); Z. Fredericksen (Zachary); X. Wang (Xing); V.S. Pankratz (Shane); F.J. Couch (Fergus); J. Simard (Jacques); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); P. Karlsson (Per); M. Nordling (Margareta); A. Bergman (Annika); Z. Einbeigi (Zakaria); M. Stenmark-Askmalm (M.); S. Liedgren (Sigrun); Å. Borg (Åke); H. Olsson (Hans); U. Kristoffersson (Ulf); H. Jernström (H.); K. Henriksson (Karin); A. von Wachenfeldt (Anna); A. Liljegren (Annelie); G. Barbany-Bustinza (Gisela); J. Rantala (Johanna); H. Grönberg (Henrik); E.-L. Stattin; M. Emanuelsson (Monica); R.R. Brandell; N. Dahl (Niklas); S. Verhoef; M. Verheus (Martijn); L.J. van 't Veer (Laura); F.E. van Leeuwen; J.M. Collee (Margriet); A.M.W. van den Ouweland (Ans); A. Jager (Agnes); M.M.A. Tilanus-Linthorst (Madeleine); C.M. Seynaeve (Caroline); J.T. Wijnen (Juul); M.P. Vreeswijk (Maaike); R.A.E.M. Tollenaar (Rob); M.J. Ligtenberg (Marjolijn); N. Hoogerbrugge (Nicoline); M.G.E.M. Ausems (Margreet); C.M. Aalfs (Cora); J.J.P. Gille (Jan); Q. Waisfisz (Quinten); E.B. Gómez García (Encarna); C.E. van Roozendaal (Cees); M.J. Blok (Marinus); B. Caanen; J.C. Oosterwijk; A.H. van der Hout (Annemarie); M.J. Mourits; H.F. Vasen (Hans); H. Gregory (Helen); P.J. Morrison (Patrick); L. Jeffers (Lisa); T.J. Cole (Trevor); C. McKeown (Carole); J. Hoffman (Jonathan); A. Donaldson (Alan); S. Downing (Sarah); A. Taylor (Amy); A. Murray (Alexandra); M.T. Rogers (Mark); E. McCann (Emma); M.E. Porteous (Mary); S. Drummond (Sarah); C. Brewer (Carole); E. Kivuva (Emma); A. Searle (Anne); S. Goodman (Selina); K. Hill (Kathryn); V. Murday (Victoria); N. Bradshaw (Nicola); L. Snadden (Lesley); M. Longmuir (Mark); C. Watt (Catherine); S. Gibson (Sarah); E. Haque (Eshika); E. Tobias (Ed); A. Duncan (Alexis); C. Jacobs (Chris); C. Langman (Caroline); A. Whaite (Anna); H. Dorkins (Huw); J. Barwell (Julian); C. Chu (Chengbin); J. Miller (Julie); I.O. Ellis (Ian); C. Houghton (Catherine); L. Side (Lucy); A. Male (Alison); C. Berlin (Cheryl); J. Eason (Jacqueline); R. Collier (Rebecca); O. Claber (Oonagh); I. Jobson (Irene); L.J. Walker (Lisa); D. McLeod (Diane); D. Halliday (Dorothy); S. Durell (Sarah); B. Stayner (Barbara); S. Shanley (Susan); N. Rahman (Nazneen); R. Houlston (Richard); E. Bancroft (Elizabeth); L. D'Mello (Lucia); E. Page (Elizabeth); A. Ardern-Jones (Audrey); K. Kohut (Kelly); J. Wiggins (Jennifer); E. Castro (Elena); A. Mitra (Anita); L. Robertson (Lisa); O. Quarrell (Oliver); C. Bardsley (Cathryn); H. Ehrencrona (Hans); S.V. Hodgson (Shirley); D.E. Barton (David); S. Goff (Sheila); G. Brice (Glen); L. Winchester (Lizzie); C. Eddy (Charlotte); V. Tripathi (Vishakha); V. Attard (Virginia); A. Lucassen (Anneke); G. Crawford (Gillian); D. McBride (Donna); S. Smalley (Sarah); J.W. Adlard (Julian); B. Arver (Brita Wasteson)

    2011-01-01

    textabstractTwo single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility var

  10. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Antoniou, Antonis C; Kartsonaki, Christiana; Sinilnikova, Olga M

    2011-01-01

    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs...... to a better understanding of the biology of tumour development in these women....

  11. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Antoniou, Antonis C.; Kartsonaki, Christiana; Sinilnikova, Olga M.; Soucy, Penny; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Cattaneo, Elisa; Barile, Monica; Pensotti, Valeria; Pasini, Barbara; Dolcetti, Riccardo; Giannini, Giuseppe; Putignano, Anna Laura; Varesco, Liliana; Radice, Paolo; Mai, Phuong L.; Greene, Mark H.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Jensen, Uffe Birk; Crueger, Dorthe G.; Caligo, Maria A.; Laitman, Yael; Milgrom, Roni; Kaufman, Bella; Paluch-Shimon, Shani; Friedman, Eitan; Loman, Niklas; Harbst, Katja; Lindblom, Annika; Arver, Brita; Ehrencrona, Hans; Melin, Beatrice; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy; Jakubowska, Ania; Lubinski, Jan; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Gorski, Bohdan; Osorio, Ana; Ramon y Cajal, Teresa; Fostira, Florentia; Andres, Raquel; Benitez, Javier; Hamann, Ute; Hogervorst, Frans B.; Rookus, Matti A.; Hooning, Maartje J.; Nelen, Marcel R.; van der Luijt, Rob B.; van Os, Theo A. M.; van Asperen, Christi J.; Devilee, Peter; Meijers-Heijboer, Hanne E. J.; Garcia, Encarna B. Gomez; Peock, Susan; Cook, Margaret; Frost, Debra; Platte, Radka; Leyland, Jean; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Ong, Kai-ren; Cook, Jackie; Douglas, Fiona; Paterson, Joan; Kennedy, M. John; Miedzybrodzka, Zosia; Godwin, Andrew; Stoppa-Lyonnet, Dominique; Buecher, Bruno; Belotti, Muriel; Tirapo, Carole; Mazoyer, Sylvie; Barjhoux, Laure; Lasset, Christine; Leroux, Dominique; Faivre, Laurence; Bronner, Myriam; Prieur, Fabienne; Nogues, Catherine; Rouleau, Etienne; Pujol, Pascal; Coupier, Isabelle; Frenay, Marc; Hopper, John L.; Daly, Mary B.; Terry, Mary B.; John, Esther M.; Buys, Saundra S.; Yassin, Yosuf; Miron, Alexander; Goldgar, David; Singer, Christian F.; Tea, Muy-Kheng; Pfeiler, Georg; Dressler, Anne Catharina; Hansen, Thomas v. O.; Jonson, Lars; Ejlertsen, Bent; Barkardottir, Rosa Bjork; Kirchhoff, Tomas; Offit, Kenneth; Piedmonte, Marion; Rodriguez, Gustavo; Small, Laurie; Boggess, John; Blank, Stephanie; Basil, Jack; Azodi, Masoud; Toland, Amanda Ewart; Montagna, Marco; Tognazzo, Silvia; Agata, Simona; Imyanitov, Evgeny; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Pharoah, Paul D. P.; Sucheston, Lara; Karlan, Beth Y.; Walsh, Christine S.; Olah, Edith; Bozsik, Aniko; Teo, Soo-Hwang; Seldon, Joyce L.; Beattie, Mary S.; van Rensburg, Elizabeth J.; Sluiter, Michelle D.; Diez, Orland; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ruehl, Ina; Varon-Mateeva, Raymonda; Kast, Karin; Deissler, Helmut; Niederacher, Dieter; Arnold, Norbert; Gadzicki, Dorothea; Schoenbuchner, Ines; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomaki, Kristiina; Dumont, Martine; Chiquette, Jocelyne; Tischkowitz, Marc; Chen, Xiaoqing; Beesley, Jonathan; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan Chun; Fredericksen, Zachary; Wang, Xianshu; Pankratz, Vernon S.; Couch, Fergus; Simard, Jacques; Easton, Douglas F.; Chenevix-Trench, Georgia

    2011-01-01

    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs112

  12. Modifiers of the Efficacy of Risk-Reducing Salpingo-Oophorectomy for the Prevention of Breast and Ovarian Cancer in Carriers of BRCA1 and BRCA2 Mutations

    Science.gov (United States)

    2008-05-01

    Demographics of Participants With Ovarian Tissue at Risk Characteristic RRSO Group (n 509) Observation/Surveillance Group (n 283) PNo . % No. % Age at start...Breast and Ovarian Tissue at Risk Characteristic RRSO Group (n 303) Observation/Surveillance Group (n 294) PNo . % No. % Age at start of follow-up

  13. Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Antoniou, Antonis C.; Sinilnikova, Olga M.; McGuffog, Lesley; Healey, Sue; Nevanlinna, Heli; Heikkinen, Tuomas; Simard, Jacques; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Neuhausen, Susan L.; Ding, Yuan C.; Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary; Peterlongo, Paolo; Peissel, Bernard; Bonanni, Bernardo; Viel, Alessandra; Bernard, Loris; Radice, Paolo; Szabo, Csilla I.; Foretova, Lenka; Zikan, Michal; Claes, Kathleen; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Lejbkowicz, Flavio; Andrulis, Irene L.; Ozcelik, Hilmi; Glendon, Gord; Gerdes, Anne-Marie; Thomassen, Mads; Sunde, Lone; Caligo, Maria A.; Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Kaufman, Bella; Dagan, Efrat; Baruch, Ruth Gershoni; Friedman, Eitan; Harbst, Katja; Barbany-Bustinza, Gisela; Rantala, Johanna; Ehrencrona, Hans; Karlsson, Per; Domchek, Susan M.; Nathanson, Katherine L.; Osorio, Ana; Blanco, Ignacio; Lasa, Adriana; Benitez, Javier; Hamann, Ute; Hogervorst, Frans B. L.; Rookus, Matti A.; Collee, J. Margriet; Devilee, Peter; Ligtenberg, Marjolijn J.; van der Luijt, Rob B.; Aalfs, Cora M.; Waisfisz, Quinten; Wijnen, Juul; van Roozendaal, Cornelis E. P.; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Evans, D. Gareth; Lalloo, Fiona; Eeles, Rosalind; Izatt, Louise; Davidson, Rosemarie; Chu, Carol; Eccles, Diana; Cole, Trevor; Hodgson, Shirley; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; Buecher, Bruno; Leone, Melanie; Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Caron, Olivier; Lenoir, Gilbert M.; Sevenet, Nicolas; Longy, Michel; Ferrer, Sandra Fert; Prieur, Fabienne; Goldgar, David; Miron, Alexander; John, Esther M.; Buys, Saundra S.; Daly, Mary B.; Hopper, John L.; Terry, Mary Beth; Yassin, Yosuf; Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine; Hansen, Thomas V. O.; Barkardottir, Rosa Bjork; Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth; Piedmonte, Marion; Rodriguez, Gustavo C.; Wakeley, Katie; Boggess, John F.; Basil, Jack; Schwartz, Peter E.; Blank, Stephanie V.; Toland, Amanda E.; Montagna, Marco; Casella, Cinzia; Imyanitov, Evgeny N.; Allavena, Anna; Schmutzler, Rita K.; Versmold, Beatrix; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Niederacher, Dieter; Deissler, Helmut; Fiebig, Britta; Suttner, Christian; Schoenbuchner, Ines; Gadzicki, Dorothea; Caldes, Trinidad; de la Hoya, Miguel; Pooley, Karen A.; Easton, Douglas F.; Chenevix-Trench, Georgia

    2009-01-01

    Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and M

  14. Functional Analysis of Variants of Unknown Significance in BRCA1 and BRCA2 Using Complementation of a Synthetic Lethal Interaction with PARP Inhibition

    Science.gov (United States)

    2014-12-01

    BRCA constructs carrying missense mutations of unknown functional consequences. We suspect there are two reasons for this: (1) The sheer size of...H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. Apr 14 2005;434(7035):917-921

  15. Interaction and Localization of Centrobin and BRCA2 in Centrosome%Centrobin与BRCA2蛋白间相互作用及其细胞定位

    Institute of Scientific and Technical Information of China (English)

    薛丽; 杨芳; 张贺龙; 赵锦荣; 张文红; 白玉杰

    2009-01-01

    To investigate the protein-protein interactions and cellular spatial location between breast cancer susceptibility gene 2 ( BRCA2) and centromal BRCA2 interacting protein (centrobin) , as well as their functional association, the mammalian two-hybrid assay was performed to determine the binding in vivo and BRCA2 potent binding domain; the co-immunoprecipitation and GST-pulldown methods were used to confirm this binding in vitro and in vivo . The cellular location of BRCA2 and dynamic distribution of centrobin have been observed with immunohistochemistry staining. The results showed that the binding in vivo and in vitro between BRCA2 and centrobin was mediated via binding region (2 393 ~ 2 952 amino acid residues) of BRCA2. In both exogenous BRCA2 and mitotic phase centrobin were overlap expressed tn an overlapping way in centrosome. These results indicated that the direct interaction of BRCA2 and centrobin occurs in both in vivo and in vitro, BRCA2 may regulate centrosome duplication and mitosis, probably through its interacting proteins such as centrobin.%为分析乳腺癌易感基因2(breast cancer snsceptibility gene 2,BRCA2)蛋白与中心体BRCA2相互作用蛋白(centromal BRCA2 interacting protein,centrobin)间相互作用及其细胞定位的关系,探讨二者功能上的联系,本研究采用哺乳细胞双杂交实验检测体内结合并初步判定BRCA2分子上的结合区域;免疫共沉淀实验进一步验证其体内结合活性,GST-pulldown法检测其体外结合活性,免疫组织化学染色观测BRCA2蛋白的细胞定位及在有丝分裂各期centrobin的细胞定位.结果显示,BRCA2与centrobin间存在体内和体外结合,且BRCA2分子的结合区域主要位于2 393~2 952氨基酸残基处;外源表达BRCA2定位于中心体,在有丝分裂各时相centrobin均定位于中心体.BRCA2与centrobin在体内形成复合物,并存在直接物理结合作用,二者存在细胞空间定位的一致性.该结果为进一步研究BRCA2

  16. BRCA1 Gene Mutations in Chinese Families with Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Yurong Shi; Chenbin Li; Ruifang Niu; Xishan Hao; Xiangcheng Zhi; Liansheng Ning

    2005-01-01

    OBJECTIVE To investigate the frequency of BRCA1 gene mutations in breast cancer families in China.METHODS Genomic DNA was obtained by conventional techniques from the peripheral blood mononuclear cells collected from 94 persons derived from 45 breast cancer families. All participants gave written informed consent. The mutations in the BRCA1 gene were detected by the polymerase chain reaction and single stranded conformation polymorphism(PCR-SSCP). Then , the samples of interest were sent for direct DNA sequencing.RESULTS No mutation sites were found in exon 2 or 20 by DNA sequencing.Eight sites were found in exon 11 such as 2201C>T (Ser694Ser),3232A>G(Glu 1038Gly), 2201C >A/G (Ser694Arg), 2731C >T (Pro871Leu),2086A >T(Asn591lle) and three sites of 1584G>T (Glu424Stop). Three mutation sites were found in exon 16 which included 5106A >G (Met1663Val),5208delT(Stop 1639) and 4956A>G (Ser 1613Gly).CONCLUSION These mutation sites may be related to breast cancer, but more investigation is needed to determine whether the mutation sites are hot spots of mutations in Chinese familial breast cancer patients.

  17. Significance of gene product expressions of hMSH2 and MGMT in gastric carcinogenesis%hMSH2蛋白和MGMT蛋白在胃癌发病中的意义

    Institute of Scientific and Technical Information of China (English)

    刘志敏; 王丽宏; 李梅; 吕申

    2007-01-01

    [目的]探讨错配修复基因hMSH2和DNA修复酶MGMT异常表达在胃癌发病中的意义.[方法]采用免疫组织化学方法检测40例胃癌组织和38例胃炎组织hMSH2和MGMT蛋白的表达情况.[结果]胃癌组的hMSH2蛋白阳性表达率为75.0%(30/40),显著高于胃炎组的28.9%(11/38)(P<0.05);胃癌组的MGMT蛋白阳性表达率为20.0%(8/40),显著低于胃炎组的65.8%(25/38)(P<0.05).胃癌及胃炎两组中hMSH2蛋白和MGMT蛋白表达均正相关(P<0.05).[结论]胃癌的发生可能与错配修复基因hMSH2和DNA修复酶MGMT的功能下降有关.

  18. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: a.jha@plymouth.ac.uk [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2016-02-15

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  19. BRCA1/2-negative hereditary triple-negative breast cancers exhibit BRCAness.

    Science.gov (United States)

    Domagala, Pawel; Hybiak, Jolanta; Cybulski, Cezary; Lubinski, Jan

    2017-04-01

    BRCA1/2-associated breast cancers are sensitive to poly(ADPribose) polymerase (PARP) inhibitors and platinum compounds mainly due to their deficiency in DNA repair via homologous recombination (HR). However, approximately only 15% of triple-negative breast cancers (TNBCs) are BRCA1/2-associated. TNBCs that exhibit BRCAness (a phenotype reflecting impaired HR in BRCA1/2-negative tumors) are also regarded sensitive to PARP inhibitors and platinum compounds. Thus, we hypothesized that hereditary BRCA1/2-negative TNBCs may exhibit BRCAness. To find a subset of hereditary BRCA1/2-negative TNBCs among 360 TNBCs, we first identified a group of 41 hereditary TNBCs by analyzing the family histories of the patients. Next, we tested this group for the presence of germline BRCA1/2 mutations, and finally, we compared the expression levels of 120 genes involved in HR and five other major mechanisms of DNA damage repair between BRCA1/2-associated and BRCA1/2-negative subgroups of hereditary TNBCs using real-time PCR arrays. Approximately 73% of the hereditary TNBCs were BRCA1/2-associated and 27% were BRCA1/2-negative. The expression levels of the analyzed genes showed no significant differences between these two subgroups indicating the BRCAness of the BRCA1/2-negative hereditary TNBCs and thereby distinguishing a novel subset of TNBCs as a potential target for PARP inhibitors or platinum-based therapy. The results show the significance of family history in selecting patients with TNBC for therapies directed at incompetent DNA repair (e.g., PARP inhibitors and/or platinum-based therapies) and indicate that a relatively simple strategy for broadening the target group for these modes of treatment is to identify patients with hereditary TNBCs.

  20. Seven new mutations in hMSH2, an HNPCC Gene, identified by denaturing gradient-gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Wijnen, J.; Vasen, H.; Khan, P.M.; Klift, H. van der; Leeuwen, C. van; Broek, M. van den; Leeuwen-Cornelisse, I. van; Fodde, R.; Menko, F.H. [Univ. Medical Center, Leiden (Netherlands); Nagengast, F. [Free Univ. Hospital, Amsterdam (Netherlands)

    1995-05-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is a relatively common autosomal dominant cancer-susceptibility condition. The recent isolation of the DNA mismatch repair genes (hMSH2, hMLH1, hPMS1, and hPMS2) responsible for HNPCC has allowed the search for germ-line mutations in affected individuals. In this study we used denaturing gradient-gel electrophoresis to screen for mutations in the hMSH2 gene. Analysis of all the 16 exons of HMSH2, in 34 unrelated HNPCC kindreds, has revealed seven novel pathogenic germ-line mutations resulting in stop codons either directly or through frameshifts. Additionally, nucleotide substitutions giving rise to one missense, two silent, and one useful polymorphism have been identified. The proportion of families in which hMSH2 mutations were found is 21%. Although the spectrum of mutations spread at the hMSH2 gene among HNPCC patients appears extremely heterogeneous, we were not able to establish any correlation between the site of the individual mutations and the corresponding tumor spectrum. Our results indicate that, given the genomic size and organization of the hMSH2 gene and the heterogeneity of its mutation spectrum, a rapid and efficient mutation detection procedure is necessary for routine molecular diagnosis and presymptomatic detection of the disease in a clinical setup. 34 refs., 2 figs., 3 tabs.

  1. Minor Changes in Expression of the Mismatch Repair Protein MSH2 Exert a Major Impact on Glioblastoma Response to Temozolomide.

    Science.gov (United States)

    McFaline-Figueroa, José L; Braun, Christian J; Stanciu, Monica; Nagel, Zachary D; Mazzucato, Patrizia; Sangaraju, Dewakar; Cerniauskas, Edvinas; Barford, Kelly; Vargas, Amanda; Chen, Yimin; Tretyakova, Natalia; Lees, Jacqueline A; Hemann, Michael T; White, Forest M; Samson, Leona D

    2015-08-01

    Glioblastoma (GBM) is often treated with the cytotoxic drug temozolomide, but the disease inevitably recurs in a drug-resistant form after initial treatment. Here, we report that in GBM cells, even a modest decrease in the mismatch repair (MMR) components MSH2 and MSH6 have profound effects on temozolomide sensitivity. RNAi-mediated attenuation of MSH2 and MSH6 showed that such modest decreases provided an unexpectedly strong mechanism of temozolomide resistance. In a mouse xenograft model of human GBM, small changes in MSH2 were sufficient to suppress temozolomide-induced tumor regression. Using The Cancer Genome Atlas to analyze mRNA expression patterns in tumors from temozolomide-treated GBM patients, we found that MSH2 transcripts in primary GBM could predict patient responses to initial temozolomide therapy. In recurrent disease, the absence of microsatellite instability (the standard marker for MMR deficiency) suggests a lack of involvement of MMR in the resistant phenotype of recurrent disease. However, more recent studies reveal that decreased MMR protein levels occur often in recurrent GBM. In accordance with our findings, these reported decreases may constitute a mechanism by which GBM evades temozolomide sensitivity while maintaining microsatellite stability. Overall, our results highlight the powerful effects of MSH2 attenuation as a potent mediator of temozolomide resistance and argue that MMR activity offers a predictive marker for initial therapeutic response to temozolomide treatment.

  2. Should we screen BRCA1 mutation carriers only with MRI? A multicenter study

    NARCIS (Netherlands)

    Obdeijn, I.-M.; Winter-Warnars, G.A.O.; Mann, R.M.; Hooning, M.J.; Hunink, M.G.M.; Tilanus-Linthorst, M.M.

    2014-01-01

    BRCA1 mutation carriers are offered screening with MRI and mammography. Aim of the study was to investigate the additional value of digital mammography over MRI screening. BRCA1 mutation carriers, who developed breast cancer since the introduction of digital mammography between January 2003 and Marc

  3. Promoter mutation and reduced expression of BRCA1 in canine mammary tumors.

    Science.gov (United States)

    Qiu, H B; Sun, W D; Yang, X; Jiang, Q Y; Chen, S; Lin, D G

    2015-12-01

    Breast cancer 1, early onset (BRCA1) is one of the most important genes in human familial breast cancer, which also plays an important role in canine mammary tumors. The objectives of this study were to determine the promoter sequence of canine BRCA1, to investigate its promoter mutation status and to describe BRCA1 expression pattern in canine mammary tumors. The promoter sequence of canine BRCA1 was acquired by aligning human BRCA1 promoter sequence with canine genomic sequence and confirmed by standard promoter activity analysis. Same as human BRCA1 promoter, the CAAT box and G/C box were found in canine BRCA1 promoter. In order to explore the mutation status of the promoter region and to investigate the expression pattern of this gene, 10 normal canine mammary tissues, 15 benign mammary tumors and 15 malignant mammary tumors were used. By sequencing, 46.7% of the malignant mammary tumors were found with a deletion of one cytosine in the promoter region. The mRNA expression of BRCA1 was significantly reduced in benign and malignant mammary tumors (Ppromoter sequence and to describe the promoter mutation status in canine mammary tumors.

  4. Relationship between BRCA1 Expression and Efifcacy of Platinum-based Chemotherapy in Colorectal Cancer

    Institute of Scientific and Technical Information of China (English)

    Xu Guanghui; Li Yu; Liu Yi

    2014-01-01

    Objective:To explore the expression of breast cancer susceptibility gene 1 (BRCA1) in human colorectal cancer and its correlation with efifcacy of platinum-based chemotherapy. Methods:A total of 78 samples from patients with colorectal cancer and receiving platinum-based chemotherapy were selected, and meanwhile 14 cases of normal colonic mucosa samples were selected as a normal control, 12 cases of non-cancerous tissue in colorectal cancer samples were selected as a pericarcinorma control. The expression of BRCA1 in these tissues was detected using immunohistochemical S-P method, and all patients treated with drugs were followed-up for survival time. Results: The positive rate of BRCA1 expression in colorectal cancer tissue was 52.6%, signiifcantly lower than that in the control groups. BRCA1 expression was closely associated with histological differentiation degrees (χ2=14.16,P=0.001), but not with the age, gender, local inifltration, lymph node metastasis and TNM staging. Comparing with those with positive BRCA1 expression, the patients with negative BRCA1 expression after oxaliplatin-based chemotherapy had signiifcantly longer disease-free survival (DFS) (P=0.032). Conclusion:Application of oxaliplatin-based chemotherapy in the patients with negative BRCA1 expression can obtain the survival beneift, and the level of BRCA1 expression can be useful in the selection of chemotherapy regimens and evaluation of prognosis for patients with colorectal cancer after surgery.

  5. EGFR Expression Predicts BRCA1 Status in Patients with Breast Cancer

    NARCIS (Netherlands)

    Diest, P.J. van; Groep, P. van der; Wall, E. van der

    2006-01-01

    In their article, Lakhani et al. (1) report on the value of basal phenotype markers for the prediction of BRCA1 status. One of the useful features pointing to ‘‘BRCA1-ness’’ appeared to be high expression of the epidermal growth factor receptor (EGFR). No rationale is given by the authors for includ

  6. Scientists find a new function for breast cancer gene BRCA1

    Science.gov (United States)

    Scientists at the National Cancer Institute (NCI) have uncovered a new function for BRCA1, a gene most commonly associated with hereditary breast and ovarian cancer. Working on mouse cells in the lab, they discovered that BRCA1 suppresses the expression o

  7. BRCA1-Associated Triple-Negative Breast Cancer and Potential Treatment for Ruthenium-Based Compounds.

    Science.gov (United States)

    Hongthong, Khwanjira; Ratanaphan, Adisorn

    2016-01-01

    Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor (ER), progesterone receptor (PR), and a lack of overexpression or amplification of human epidermal growth factor receptor 2 (HER2). The clinicopathological characteristics of TNBC include a high grading, a high rate of cell proliferation and a greater degree of chromosomal rearrangement. Patients with triple-negative breast cancer are more likely to be drug resistant and more difficult to treat, and are also frequently BRCA1 mutants. Methylation of the BRCA1 promoter region is associated with a reduction of the BRCA1 mRNA level. TNBC patients with a methylated BRCA1 had a better disease-free survival compared with those with non-methylated BRCA1. From a therapeutic perspective, the expression level of BRCA1 has been a major determinant of the responses to different classes of chemotherapy. BRCA1-dysfunctional tumors are hypersensitive to DNA damaging chemotherapeutic agents like platinum drugs. Although platinum based drugs are currently widely used as conventional chemotherapeutic drugs in breast cancer chemotherapy, their use has several disadvantages. It is therefore of interest to seek out alternative therapeutic metal-based compounds that could overcome the limitations of these platinum based drugs. Ruthenium-based compounds could be the most promising alternative to the platinum drugs. This review highlights the use of BRCA1 as a predictive marker as well as for a potential drug target for anticancer ruthenium compounds.

  8. BRCA1--conductor of the breast stem cell orchestra: the role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer.

    Science.gov (United States)

    Buckley, Niamh E; Mullan, Paul B

    2012-09-01

    Breast cancer treatment has been increasingly successful over the last 20 years due in large part to targeted therapies directed against different subtypes. However, basal-like breast cancers still represent a considerable challenge to clinicians and scientists alike since the pathogenesis underlying the disease and the target cell for transformation of this subtype is still undetermined. The considerable similarities between basal-like and BRCA1 mutant breast cancers led to the hypothesis that these cancers arise from transformation of a basal cell within the normal breast epithelium through BRCA1 dysfunction. Recently, however, a number of studies have called this hypothesis into question. This review summarises the initial findings which implicated the basal cell as the cell of origin of BRCA1 related basal-like breast cancers, as well as the more recent data which identifies the luminal progenitor cells as the likely target of transformation. We compare a number of key studies in this area and identify the differences that could explain some of the contradictory findings. In addition, we highlight the role of BRCA1 in breast cell differentiation and lineage determination by reviewing recent findings in the field and our own observations suggesting a role for BRCA1 in stem cell regulation through activation of the p63 and Notch pathways. We hope that through an increased understanding of the BRCA1 role in breast differentiation and the identification of the cell(s) of origin we can improve treatment options for both BRCA1 mutant and basal-like breast cancer subgroups.

  9. Large family with both parents affected by distinct BRCA1 mutations: implications for genetic testing

    Directory of Open Access Journals (Sweden)

    Sokolenko Anna P

    2009-01-01

    Full Text Available Abstract Although the probability of both parents being affected by BRCA1 mutations is not negligible, such families have not been systematically described in the literature. Here we present a large breast-ovarian cancer family, where 3 sisters and 1 half-sister inherited maternal BRCA1 5382insC mutation while the remaining 2 sisters carried paternal BRCA1 1629delC allele. No BRCA1 homozygous mutations has been detected, that is consistent with the data on lethality of BRCA1 knockout mice. This report exemplifies that the identification of a single cancer-predisposing mutation within the index patient may not be sufficient in some circumstances. Ideally, all family members affected by breast or ovarian tumor disease have to be subjected to the DNA testing, and failure to detect the mutation in any of them calls for the search of the second cancer-associated allele.

  10. Large family with both parents affected by distinct BRCA1 mutations: implications for genetic testing

    Science.gov (United States)

    Sokolenko, Anna P; Voskresenskiy, Dmitry A; Iyevleva, Aglaya G; Bit-Sava, Elena M; Gutkina, Nadezhda I; Anisimenko, Maxim S; Yu Sherina, Nathalia; Mitiushkina, Nathalia V; Ulibina, Yulia M; Yatsuk, Olga S; Zaitseva, Olga A; Suspitsin, Evgeny N; Togo, Alexandr V; Pospelov, Valery A; Kovalenko, Sergey P; Semiglazov, Vladimir F; Imyanitov, Evgeny N

    2009-01-01

    Although the probability of both parents being affected by BRCA1 mutations is not negligible, such families have not been systematically described in the literature. Here we present a large breast-ovarian cancer family, where 3 sisters and 1 half-sister inherited maternal BRCA1 5382insC mutation while the remaining 2 sisters carried paternal BRCA1 1629delC allele. No BRCA1 homozygous mutations has been detected, that is consistent with the data on lethality of BRCA1 knockout mice. This report exemplifies that the identification of a single cancer-predisposing mutation within the index patient may not be sufficient in some circumstances. Ideally, all family members affected by breast or ovarian tumor disease have to be subjected to the DNA testing, and failure to detect the mutation in any of them calls for the search of the second cancer-associated allele. PMID:19338681

  11. Inhibition of E2-induced expression of BRCA1 by persistent organochlorines

    DEFF Research Database (Denmark)

    Rattenborg, Thomas; Gjermandsen, Irene; Bonefeld-Jørgensen, Eva Cecilie

    2002-01-01

    in the initiation and progression of human breast cancer. The tumor suppressor gene BRCA1 plays a role in cell-cycle control, in DNA repair, and in genomic stability, and it is often downregulated in sporadic mammary cancers. The aim of the present study was to elucidate whether POCs have the potential to alter...... the expression of BRCA1. METHODS: Using human breast cancer cell lines MCF-7 and MDA-MB-231, the effect on BRCA1 expression of chemicals belonging to different classes of organochlorine chemicals (the pesticide toxaphene, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and three polychlorinated biphenyls [PCB#138, PCB#153...... and PCB#180]) was measured by a reporter gene construct carrying 267 bp of the BRCA1 promoter. A twofold concentration range was analyzed in MCF-7, and the results were supported by northern blot analysis of BRCA1 mRNA using the highest concentrations of the chemicals. RESULTS: All three polychlorinated...

  12. DNA mismatch repair protein MSH2 dictates cellular survival in response to low dose radiation in endometrial carcinoma cells.

    LENUS (Irish Health Repository)

    Martin, Lynn M

    2013-07-10

    DNA repair and G2-phase cell cycle checkpoint responses are involved in the manifestation of hyper-radiosensitivity (HRS). The low-dose radioresponse of MSH2 isogenic endometrial carcinoma cell lines was examined. Defects in cell cycle checkpoint activation and the DNA damage response in irradiated cells (0.2 Gy) were evaluated. HRS was expressed solely in MSH2+ cells and was associated with efficient activation of the early G2-phase cell cycle checkpoint. Maintenance of the arrest was associated with persistent MRE11, γH2AX, RAD51 foci at 2 h after irradiation. Persistent MRE11 and RAD51 foci were also evident 24 h after 0.2 Gy. MSH2 significantly enhances cell radiosensitivity to low dose IR.

  13. Psychological Distress, Anxiety, and Depression of Cancer-Affected BRCA1/2 Mutation Carriers: a Systematic Review.

    Science.gov (United States)

    Ringwald, Johanna; Wochnowski, Christina; Bosse, Kristin; Giel, Katrin Elisabeth; Schäffeler, Norbert; Zipfel, Stephan; Teufel, Martin

    2016-10-01

    Understanding the intermediate- and long-term psychological consequences of genetic testing for cancer patients has led to encouraging research, but a clear consensus of the psychosocial impact and clinical routine for cancer-affected BRCA1 and BRCA2 mutation carriers is still missing. We performed a systematic review of intermediate- and long-term studies investigating the psychological impact like psychological distress, anxiety, and depression in cancer-affected BRCA mutation carriers compared to unaffected mutation carriers. This review included the screening of 1243 studies. Eight intermediate- and long-term studies focusing on distress, anxiety, and depression symptoms among cancer-affected mutation carriers at least six months after the disclosure of genetic testing results were included. Studies reported a great variety of designs, methods, and patient outcomes. We found evidence indicating that cancer-affected mutation carriers experienced a negative effect in relation to psychological well-being in terms of an increase in symptoms of distress, anxiety, and depression in the first months after test disclosure. In the intermediate- and long-term, no significant clinical relevant symptoms occurred. However, none of the included studies used specific measurements, which can clearly identify psychological burdens of cancer-affected mutation carriers. We concluded that current well-implemented distress screening instruments are not sufficient for precisely identifying the psychological burden of genetic testing. Therefore, future studies should implement coping strategies, specific personality structures, the impact of genetic testing, supportive care needs and disease management behaviour to clearly screen for the possible intermediate- and long-term psychological impact of a positive test disclosure.

  14. Genetic variants and haplotype analyses of the ZBRK1/ZNF350 gene in high-risk non BRCA1/2 French Canadian breast and ovarian cancer families.

    Science.gov (United States)

    Desjardins, Sylvie; Belleau, Pascal; Labrie, Yvan; Ouellette, Geneviève; Bessette, Paul; Chiquette, Jocelyne; Laframboise, Rachel; Lépine, Jean; Lespérance, Bernard; Pichette, Roxane; Plante, Marie; Durocher, Francine

    2008-01-01

    Our current understanding of breast cancer susceptibility involves mutations in the 2 major genes BRCA1 and BRCA2, found in about 25% of high-risk families, as well as few other low penetrance genes such as ATM and CHEK2. Approximately two-thirds of the multiple cases families remain to be explained by mutations in still unknown genes. In a candidate gene approach to identify new genes potentially involved in breast cancer susceptibility, we analyzed genomic variants in the ZBRK1 gene, a co-repressor implicated in BRCA1-mediated repression of GADD45. Direct sequencing of ZBRK1 entire coding region in affected breast cancer individuals from 97 high-risk French Canadian breast/ovarian cancer families and 94 healthy controls led to the identification of 18 genomic variants. Haplotype analyses, using PHASE, COCAPHASE and HaploStats programs, put in evidence 3 specific haplotypes which could potentially modulate breast cancer risk, and among which 2 that are associated with a potential protective effect (p = 0.01135 and p = 0.00268), while another haplotype is over-represented in the case group (p = 0.00143). Further analyses of these haplotypes indicated that a strong component of the observed difference between both groups emerge from the first 5 variants (out of 12 used for haplotype determination). The present study also permitted to determine a set of tagging SNPs that could be useful for subsequent analyses in large scale association studies. Additional studies in large cohorts and other populations will however be needed to further evaluate if common and/or rare ZBRK1 sequence variants and haplotypes could be associated with a modest/intermediate breast cancer risk.

  15. Evolutionary constraint helps unmask a splicing regulatory region in BRCA1 exon 11.

    Directory of Open Access Journals (Sweden)

    Michela Raponi

    Full Text Available BACKGROUND: Alternative splicing across exon 11 produces several BRCA1 isoforms. Their proportion varies during the cell cycle, between tissues and in cancer suggesting functional importance of BRCA1 splicing regulation around this exon. Although the regulatory elements driving exon 11 splicing have never been identified, a selective constraint against synonymous substitutions (silent nucleotide variations that do not alter the amino acid residue sequence in a critical region of BRCA1 exon 11 has been reported to be associated with the necessity to maintain regulatory sequences. METHODOLOGY/PRINCIPAL FINDINGS: Here we have designed a specific minigene to investigate the possibility that this bias in synonymous codon usage reflects the need to preserve the BRCA1 alternative splicing program. We report that in-frame deletions and translationally silent nucleotide substitutions in the critical region affect splicing regulation of BRCA1 exon 11. CONCLUSIONS/SIGNIFICANCE: Using a hybrid minigene approach, we have experimentally validated the hypothesis that the need to maintain correct alternative splicing is a selective pressure against translationally silent sequence variations in the critical region of BRCA1 exon 11. Identification of the trans-acting factors involved in regulating exon 11 alternative splicing will be important in understanding BRCA1-associated tumorigenesis.

  16. Mechanisms of increased risk of tumorigenesis in Atm and Brca1 double heterozygosity

    Directory of Open Access Journals (Sweden)

    Wang Jufang

    2011-08-01

    Full Text Available Abstract Background Both epidemiological and experimental studies suggest that heterozygosity for a single gene is linked with tumorigenesis and heterozygosity for two genes increases the risk of tumor incidence. Our previous work has demonstrated that Atm/Brca1 double heterozygosity leads to higher cell transformation rate than single heterozygosity. However, the underlying mechanisms have not been fully understood yet. In the present study, a series of pathways were investigated to clarify the possible mechanisms of increased risk of tumorigenesis in Atm and Brca1 heterozygosity. Methods Wild type cells, Atm or Brca1 single heterozygous cells, and Atm/Brca1 double heterozygous cells were used to investigate DNA damage and repair, cell cycle, micronuclei, and cell transformation after photon irradiation. Results Remarkable high transformation frequency was confirmed in Atm/Brca1 double heterozygous cells compared to wild type cells. It was observed that delayed DNA damage recognition, disturbed cell cycle checkpoint, incomplete DNA repair, and increased genomic instability were involved in the biological networks. Haploinsufficiency of either ATM or BRCA1 negatively impacts these pathways. Conclusions The quantity of critical proteins such as ATM and BRCA1 plays an important role in determination of the fate of cells exposed to ionizing radiation and double heterozygosity increases the risk of tumorigenesis. These findings also benefit understanding of the individual susceptibility to tumor initiation.

  17. Molecular evolution of a Drosophila homolog of human BRCA2.

    Science.gov (United States)

    Bennett, Sarah M; Noor, Mohamed A F

    2009-11-01

    The human cancer susceptibility gene, BRCA2, functions in double-strand break repair by homologous recombination, and it appears to function via interaction of a repetitive region ("BRC repeats") with RAD-51. A putatively simpler homolog, dmbrca2, was identified in Drosophila melanogaster recently and also affects mitotic and meiotic double-strand break repair. In this study, we examined patterns of repeat variation both within Drosophila pseudoobscura and among available Drosophila genome sequences. We identified extensive variation within and among closely related Drosophila species in BRC repeat number, to the extent that variation within this genus recapitulates the extent of variation found across the entire animal kingdom. We describe patterns of evolution across species by documenting recent repeat expansions (sometimes in tandem arrays) and homogenizations within available genome sequences. Overall, we have documented patterns and modes of evolution in a new model system of a gene which is important to human health.

  18. Bcl-2 inhibits nuclear homologous recombination by localizing BRCA1 to the endomembranes.

    Science.gov (United States)

    Laulier, Corentin; Barascu, Aurélia; Guirouilh-Barbat, Josée; Pennarun, Gaëlle; Le Chalony, Catherine; Chevalier, François; Palierne, Gaëlle; Bertrand, Pascale; Verbavatz, Jean Marc; Lopez, Bernard S

    2011-05-15

    Genetic stability requires coordination of a network of pathways including DNA repair/recombination and apoptosis. In addition to its canonical anti-apoptotic role, Bcl-2 negatively impacts genome stability. In this study, we identified the breast cancer tumor suppressor BRCA1, which plays an essential role in homologous recombination (HR), as a target for Bcl-2 in the repression of HR. Indeed, ionizing radiation-induced BRCA1 foci assembly was repressed when Bcl-2 was expressed ectopically, in human SV40 fibroblasts, or spontaneously, in lymphoma t(14:18) cells and in HeLa and H460 cancer cell lines. Moreover, we showed that the transmembrane (TM) domain of Bcl-2 was required for both inhibition of BRCA1 foci assembly and the inhibition of HR induced by a double-strand break targeted into an intrachromosomal HR substrate by the meganuclease I-SceI. Fluorescence confocal microscopy, proximity ligation assay, and electron microscopy analyses as well as Western blot analysis of subcellular fractions showed that Bcl-2 and BRCA1 colocalized to mitochondria and endoplasmic reticulum in a process requiring the TM domain of Bcl-2. Targeting BRCA1 to the endomembranes depletes BRCA1 from the nucleus and, thus, accounts for the inhibition of HR. Furthermore, our findings support an apoptosis-stimulatory role for the cytosolic form of BRCA1, suggesting a new tumor suppressor function of BRCA1. Together, our results reveal a new mode of BRCA1 regulation and for HR in the maintenance of genome stability.

  19. Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk

    DEFF Research Database (Denmark)

    Gaudet, Mia M; Kuchenbaecker, Karoline B; Vijai, Joseph

    2013-01-01

    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation...... of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer....

  20. Mutational Screening of BRCA1 in Breast Cancer Patients%乳腺癌BRCA1基因突变的筛查研究

    Institute of Scientific and Technical Information of China (English)

    张海添; 陆云飞; 曾健; 廖清华; 林坚

    2005-01-01

    目的研究BRCA1基因在散发性乳腺癌中的突变情况,探讨BRCA1基因突变与乳腺癌的关系.方法应用PCP-SSCP(single-strand conformation polymorphism analysis)分析和DNA直接测序法,检测65例散发性乳腺癌BRCA1第2,3,5,8,10,12,13,14,15,16,17,18,19,20和21外显子基因突变情况.结果65例中共检测出4例突变,其中1例为5外显子的错义突变(287 A>T),1例为12外显子的错义突变(4 285 G>A),1例为17外显子的错义突变(5 115 T>C),1例为18外显子的错义突变(5 206 T>A).乳腺癌BRCA1的基因突变率为6.2%(4/65).结论BRCA1基因突变与散发性乳腺癌有密切关系.

  1. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a brca1 transgene.

    Science.gov (United States)

    Snouwaert, J N; Gowen, L C; Latour, A M; Mohn, A R; Xiao, A; DiBiase, L; Koller, B H

    1999-12-20

    BRCA1 is a nuclear phosphoprotein that has been classified as a tumor suppressor based on the fact that women carrying a mutated copy of the BRCA1 gene are at increased risk of developing breast and ovarian cancer. The association of BRCA1 with RAD51 has led to the hypothesis that BRCA1 is involved in DNA repair. We describe here the generation and analysis of murine embryonic stem (ES) cell lines in which both copies of the murine homologue of the human BRCA1 gene have been disrupted by gene targeting. We show that exogenous DNA introduced into these BRCA1 deficient cells by electroporation is randomly integrated into the genome at a significantly higher rate than in wild type ES cells. In contrast, integration of exogenous DNA by homologous recombination occurs in BRCA1 deficient cells at a significantly lower rate than in wild type controls. When BRCA1 expression is re-established at 5-10% of normal levels by introduction of a Brca1 transgene into BRCA1 deficient ES cells, the frequency of random integration is reduced to wild type levels, although the frequency of homologous recombination is not significantly improved. These results suggest that BRCA1 plays a role in determining the response of cells to double stranded DNA breaks.

  2. BRCA1 Accelerates CtIP-Mediated DNA-End Resection

    Directory of Open Access Journals (Sweden)

    Andrés Cruz-García

    2014-10-01

    Full Text Available DNA-end resection is a highly regulated and critical step in the response and repair of DNA double-strand breaks. In higher eukaryotes, CtIP regulates resection by integrating cellular signals via its posttranslational modifications and protein-protein interactions, including cell-cycle-controlled interaction with BRCA1. The role of BRCA1 in DNA-end resection is not clear. Here, we develop an assay to study DNA resection in higher eukaryotes at high resolution. We demonstrate that the BRCA1-CtIP interaction, albeit not essential for resection, modulates the speed at which this process takes place.

  3. The Prognostic Value of BRCA1 and PARP Expression in Epithelial Ovarian Carcinoma

    DEFF Research Database (Denmark)

    Hjortkjær, Mette; Waldstrøm, Marianne; Jakobsen, Anders

    2017-01-01

    BRCA1/2 mutation status in epithelial ovarian cancer (EOC) presently relies on genetic testing which is resource consuming. Immunohistochemistry is cheap, fairly reproducible, and may identify gene product alterations due to both germline and somatic mutations and other defects along the BRCA gene...... tissue from 170 patients with EOC was stained immunohistochemically with BRCA1 and PARP antibodies. Semiquantitative analyses were performed to determine loss of, equivocal, and retained BRCA1 and high versus low PARP protein expression. These parameters were analyzed for relation with patient...

  4. New founding mutation in MSH2 associated with hereditary nonpolyposis colorectal cancer syndrome on the Island of Tenerife.

    Science.gov (United States)

    Medina-Arana, Vicente; Barrios, Ysamar; Fernández-Peralta, Antonia; Herrera, Mercedes; Chinea, Nancy; Lorenzo, Nieves; Jiménez, Alejandro; Martín-López, Juana Victoria; González-Hermoso, Fernando; Salido, Eduardo; González-Aguilera, Juan J

    2006-12-01

    Lynch syndrome or hereditary nonpolyposis colorectal cancer (HNPCC) is a hereditary syndrome with genetic heterogeneity. The disease is caused by mutations or epigenetic silencing in DNA mismatch repair genes, MLH1, MSH2, MSH6, PMS2 and MLH3, although the vast majority of cases correspond to mutations of MLH1 and MSH2. We herein describe a nucleotide change, c.2063T>G in exon 13 of the MSH2 gene, present in families that fulfill the Amsterdam criteria for Lynch syndrome and originate from northern Tenerife (Canary Islands-Spain). This mutation is expected to result in a nonconservative amino acid change, M688R, at the ATPase domain of the MSH2 protein. We found five large families with this mutation, and about half the individuals heterozygous for M688R developed malignancies by the sixth decade of life. In many cases analyzed, their tumors revealed loss of the normal allele, being homozygous for M688R. There is an evidence of historical isolation for the population studied, which could have favored a considerable genetic drift. The presence of the same mutation and the disease associated-haplotype conservation in families not directly related can be probably the consequence of a bottleneck in the founding of this population (rather than a relatively recent founding of the mutation).

  5. Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response.

    Science.gov (United States)

    Lario, Luciana D; Ramirez-Parra, Elena; Gutierrez, Crisanto; Casati, Paula; Spampinato, Claudia P

    2011-05-01

    Deleterious effects of UV-B radiation on DNA include the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). These lesions must be repaired to maintain the integrity of DNA and provide genetic stability. Of the several repair systems involved in the recognition and removal of UV-B-induced lesions in DNA, the focus in the present study was on the mismatch repair system (MMR). The contribution of MutSα (MSH2-MSH6) to UV-induced DNA lesion repair and cell cycle regulation was investigated. MSH2 and MSH6 genes in Arabidopsis and maize are up-regulated by UV-B, indicating that MMR may have a role in UV-B-induced DNA damage responses. Analysis of promoter sequences identified MSH6 as a target of the E2F transcription factors. Using electrophoretic mobility shift assays, MSH6 was experimentally validated as an E2F target gene, suggesting an interaction between MMR genes and the cell cycle control. Mutations in MSH2 or MSH6 caused an increased accumulation of CPDs relative to wild-type plants. In addition, msh2 mutant plants showed a different expression pattern of cell cycle marker genes after the UV-B treatment when compared with wild-type plants. Taken together, these data provide evidence that plant MutSα is involved in a UV-B-induced DNA damage response pathway.

  6. Genotype and phenotype of a new 2-bp deletion of hMSH2 at codon 233.

    Science.gov (United States)

    Müller, A; Beyser, K; Arps, H; Bolander, S; Becker, H; Rüschhoff, J

    2001-08-01

    Germline mutations within mismatch repair genes, such as hMSH2, hMLH1, and hMSH6, have been shown to be the hallmark of the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome. The spectrum of tumors associated with mismatch repair gene defects and the possible relationship between genotype and phenotype are still unclear. Therefore, the spectrum of tumors and the possible genotype-phenotype relationship are still under discussion. Here, we report on a family with a new germline mutation in the hMSH2 gene with a 2-bp deletion at codons 232 and 233 leading to a frame shift and a stop at codon 254. Accordingly, immunohistochemistry revealed loss of hMSH2 expression in colorectal carcinomas of three affected family members. In this one family, there was a high penetrance. Interestingly, mutational screening of the family revealed a high penetrance of the mutation affecting four of five tested people at risk, with a high mortality rate and a trend toward lower age of onset in subsequent generations. Finally, a metachronous breast cancer in one patient turned out to be a tumor unrelated to microsatellite instability phenocopy, i.e., a sporadic tumor unrelated to HNPCC that expressed the hMSH2 gene and did not show any microsatellite instability.

  7. Proliferation and ovarian hormone signaling are impaired in normal breast tissues from women with BRCA1 mutations: benefit of a progesterone receptor modulator treatment as a breast cancer preventive strategy in women with inherited BRCA1 mutations

    Science.gov (United States)

    Communal, Laudine; Courtin, Aurélie; Mourra, Najat; Lahlou, Najiba; Le Guillou, Morwenna; de Jotemps, Muriel Perrault; Chauvet, Marie-Pierre; Chaouat, Marc; Pujol, Pascal; Feunteun, Jean; Delaloge, Suzette; Forgez, Patricia; Gompel, Anne

    2016-01-01

    Women with inherited BRCA1 mutations have an elevated risk (40-80%) for developing breast and ovarian cancers. Reproductive history has been reported to alter this risk, suggesting a relationship between ovarian hormone signaling and BRCA1-related tumor development. BRCA1 interactions with estrogen receptor (ER) and progesterone receptor (PR) signaling were previously described in human breast cancer cell lines and mouse models. However, few studies have examined the effect of ovarian hormone regulation in normal human breast tissues bearing a heterozygous BRCA1 mutation. This study compares the proliferation level (Ki67) and the expression of ER, PR, and of the PR target gene, fatty acid synthase (FASN), in histologically normal breast tissues from women with BRCA1 mutations (BRCA1+/mut, n=23) or without BRCA1 mutations (BRCA1+/+, n=28). BRCA1+/mut tissues showed an increased proliferation and impaired hormone receptor expression with a marked loss of the PR isoform, PR-B. Responses to estradiol and progesterone treatments in BRCA1+/mut and BRCA1+/+ breast tissues were studied in a mouse xenograft model, and showed that PR and FASN expression were deregulated in BRCA1+/mut breast tissues. Progesterone added to estradiol treatment increased the proliferation in a subset of BRCA1+/mut breast tissues. The PR inhibitor, ulipristal acetate (UPA), was able to reverse this aberrant progesterone-induced proliferation. This study suggests that a subset of women with BRCA1 mutations could be candidates for a UPA treatment as a preventive breast cancer strategy. PMID:27246982

  8. BRCA1 Expression is an Important Biomarker for Chemosensitivity: Suppression of BRCA1 Increases the Apoptosis via Up-regulation of p53 and p21 During Cisplatin Treatment in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ikuo Konishi

    2006-01-01

    Full Text Available BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no signifi cant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma.

  9. Long-term prognosis of early-onset breast cancer in a population-based cohort with a known BRCA1/2 mutation status.

    Science.gov (United States)

    Nilsson, Martin P; Hartman, Linda; Idvall, Ingrid; Kristoffersson, Ulf; Johannsson, Oskar T; Loman, Niklas

    2014-02-01

    All women in the South Sweden Health Care Region with breast cancer diagnosed aged less than 41 during the period between 1990 and 1995 were contacted in 1996 and offered germline mutation analysis of the BRCA1 and BRCA2 genes. Mutation carriers (n = 20) were compared with noncarriers (n = 201) for overall survival (OS) and risk of contralateral breast cancer (CBC). Mutation carriers were younger at diagnosis and more likely to have ER-negative, PgR-negative and grade III tumors. Median follow-up was 19 years. The 5-, 10-, 15-, and 20-year OS were 60, 45, 39, and 39 % for mutation carriers and 82, 70, 59, and 53 % for noncarriers, respectively (5-year log-rank P = 0.013; 10-year P = 0.008; 15-year P = 0.020; and 20-year P = 0.046). In univariable analysis, there was a trend for an inferior OS for mutation carriers (HR 1.8; 95 % CI 1.0-3.3). When stratified for use of (neo)adjuvant chemotherapy, an inferior OS was significant only for the subgroup of patients who did not receive chemotherapy (HR 3.0; 95 % CI 1.2-7.7). In multivarible analysis, BRCA1/2 mutation status was a significant predictor of OS when adjusting for tumor stage, age, and use of chemotherapy, but not when ER status was also included in the model. The 15-year cumulative risk of CBC was 53 % for mutation carriers and 10 % for noncarriers (HR 5.9; 95 % CI 1.9-18.6); among the noncarriers the risks were 5, 22, and 30 % for patients without close relatives having breast cancer, with second-degree relatives having breast cancer, and with firstdegree relatives with breast cancer, respectively. In conclusion, the poor prognosis of young BRCA1/2 mutation carriers with breast cancer is mainly explained by the prevalent occurrence of negative prognostic factors rather than mutation status per se, and can to at least some extent be abrogated by the use of chemotherapy.

  10. Genomic aberrations of BRCA1-mutated fallopian tube carcinomas.

    Science.gov (United States)

    Hunter, Sally M; Ryland, Georgina L; Moss, Phillip; Gorringe, Kylie L; Campbell, Ian G

    2014-06-01

    Intraepithelial carcinomas of the fallopian tube are putative precursors to high-grade serous carcinomas of the ovary and peritoneum. Molecular characterization of these early precursors is limited but could be the key to identifying tumor biomarkers for early detection. This study presents a genome-wide copy number analysis of occult fallopian tube carcinomas identified through risk-reducing prophylactic oophorectomy from three women with germline BRCA1 mutations, demonstrating that extensive genomic aberrations are already established at this early stage. We found no indication of a difference in the level of genomic aberration observed in fallopian tube carcinomas compared with high-grade serous ovarian carcinomas. These findings suggest that spread to the peritoneal cavity may require no or very little further tumor evolution, which raises the question of what is the real window of opportunity to detect high-grade serous peritoneal carcinoma arising from the fallopian tube before it spreads. Nonetheless, the similarity of the genomic aberrations to those observed in high-grade serous ovarian carcinomas suggests that genetic biomarkers identified in late-stage disease may be relevant for early detection.

  11. Brca2 and Trp53 deficiency cooperate in the progression of mouse prostate tumourigenesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Francis

    2010-06-01

    Full Text Available Epidemiological studies have shown that one of the strongest risk factors for prostate cancer is a family history of the disease, suggesting that inherited factors play a major role in prostate cancer susceptibility. Germline mutations in BRCA2 predispose to breast and ovarian cancer with its predominant tumour suppressor function thought to be the repair of DNA double-strand breaks. BRCA2 has also been implicated in prostate cancer etiology, but it is unclear the impact that mutations in this gene have on prostate tumourigenesis. Here we have undertaken a genetic analysis in the mouse to determine the role of Brca2 in the adult prostate. We show that deletion of Brca2 specifically in prostate epithelia results in focal hyperplasia and low-grade prostate intraepithelial neoplasia (PIN in animals over 12 months of age. Simultaneous deletion of Brca2 and the tumour suppressor Trp53 in prostate epithelia gave rise to focal hyperplasia and atypical cells at 6 months, leading to high-grade PIN in animals from 12 months. Epithelial cells in these lesions show an increase in DNA damage and have higher levels of proliferation, but also elevated apoptosis. Castration of Brca2;Trp53 mutant animals led to regression of PIN lesions, but atypical cells persisted that continued to proliferate and express nuclear androgen receptor. This study provides evidence that Brca2 can act as a tumour suppressor in the prostate, and the model we describe should prove useful in the development of new therapeutic approaches.

  12. Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Godthelp, Barbara C. [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Buul, Paul P.W. van [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Jaspers, Nicolaas G.J. [Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam (Netherlands); Elghalbzouri-Maghrani, Elhaam [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Duijn-Goedhart, Annemarie van [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Arwert, Fre [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Amsterdam (Netherlands); Joenje, Hans [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Amsterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands) and Department of Molecular Cell Genetics, Collegium Medicum, N.Copernicus University, Bydgoszcz (Poland)]. E-mail: M.Z.Zdzienicka@LUMC.nl

    2006-10-10

    Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability and hypersensitivity to DNA cross-linking agents. The discovery of biallelic BRCA2 mutations in the FA-D1 complementation group allows for the first time to study the characteristics of primary BRCA2-deficient human cells. FANCD1/BRCA2-deficient fibroblasts appeared hypersensitive to mitomycin C (MMC), slightly sensitive to methyl methane sulfonate (MMS), and like cells derived from other FA complementation groups, not sensitive to X-ray irradiation. However, unlike other FA cells, FA-D1 cells were slightly sensitive to UV irradiation. Despite the observed lack of X-ray sensitivity in cell survival, significant radioresistant DNA synthesis (RDS) was observed in the BRCA2-deficient fibroblasts but also in the FANCA-deficient fibroblasts, suggesting an impaired S-phase checkpoint. FA-D1/BRCA2 cells displayed greatly enhanced levels of spontaneous as well as MMC-induced chromosomal aberrations (Canada), similar to cells deficient in homologous recombination (HR) and non-D1 FA cells. In contrast to Brca2-deficient rodent cells, FA-D1/BRCA2 cells showed normal sister chromatid exchange (SCE) levels, both spontaneous as well as after MMC treatment. Hence, these data indicate that human cells with biallelic BRCA2 mutations display typical features of both FA- and HR-deficient cells, which suggests that FANCD1/BRCA2 is part of the integrated FA/BRCA DNA damage response pathway but also controls other functions outside the FA pathway.

  13. Risk modeling and screening for BRCA1 mutations among Filipino breast cancer patients

    CERN Document Server

    Nato, A Q J

    2003-01-01

    Breast cancer susceptibility gene, type 1(BRCA1) has been thought to be responsible for approx 45% of families with multiple breast carcinomas and for approx 80% of breast and ovarian cancer families. In this study, we investigated 34 familial Filipino breast cancer (BC) patients to: (a) estimate breast cancer risks and BRCA1/2 mutation carrier probabilities using risk assessment and prior probability models, respectively; (b) screen for putative polymorphisms at selected smaller exons of BRCA1 by single-strand conformation polymorphism (SSCP) analysis; (c) screen for truncated mutations at BRCA1 exon 11 by radioactive protein truncation test (PTT); and (d) estimate posterior probabilities upon incorporation of screening results. SSCP analysis revealed 8 unique putative polymorphisms. Low prevalence of unique putative polymorphisms at exon 2, 5, 17, and 22 may indicate probable mutations. Contrastingly, high prevalence of unique putative polymorphisms at exons 13, 15, and 16 may suggest true polymorphisms whi...

  14. Mutation Analysis in the BRCA1 Gene in Chinese Breast Cancer Families

    Institute of Scientific and Technical Information of China (English)

    WUZhengyan; ZHENLinlin; FANPing

    2003-01-01

    Objective: To study the mutation of BRCA1 gene in Chinese breast cancer families. Methods:Fifteen families were selected, involving 41 members, consisting of 23 breast cancer patients. Using poly-merase chain reaction and single stranded conformation polymorphism (PCR-SSCP), and subsequent DNA sequencing, the mutation of BRCA1 genes were analyzed. Results: Four mutations were found in all fam-ilies, and the proportion of mutation was 26.7% (4/15) in breast cancer families. One of the 4 mutations was 2228 insC, resulting in chain termination at codon 711. The remaining 3 mutations were 1884A→T and 3232A→G, resulting in single amino acid change respectively. Conclusion: BRCA1 is a breast cancer susceptibility gene. The relatively low proportion and frequency of BRCA1 mutations in our study hints additional BRCA genes existed.

  15. Analysis of BRCA1 involvement in breast cancer in Indian women

    Indian Academy of Sciences (India)

    P H Pestonjamasp; I Mittra

    2000-03-01

    The involvement of the familial breast-ovarian cancer gene (BRCA1) in the molecular pathogenesis of breast cancer among Indian women is unknown. We have used a set of microsatellite polymorphisms to examine the frequency of allele loss at the BRCA1 region on chromosome 17q21, in a panel of 80 human breast tumours. Tumour and blood leukocyte/normal tissue DNA from a series of 80 patients with primary breast cancer was screened by PCR-amplified microsatellite length polymorphisms to detect deletions at three polymorphic BRCA1 loci. PCR-allelotype was valuable in examining allele losses from archival and small tumour samples. Loss of alleles at BRCA1 in the patient set, confirmed a noteworthy role of this gene in the molecular pathogenesis of breast cancer and was in accordance with its well-documented tumour suppressive function.

  16. High SINE RNA Expression Correlates with Post-Transcriptional Downregulation of BRCA1

    Directory of Open Access Journals (Sweden)

    Giovanni Bosco

    2013-04-01

    Full Text Available Short Interspersed Nuclear Elements (SINEs are non-autonomous retrotransposons that comprise a large fraction of the human genome. SINEs are demethylated in human disease, but whether SINEs become transcriptionally induced and how the resulting transcripts may affect the expression of protein coding genes is unknown. Here, we show that downregulation of the mRNA of the tumor suppressor gene BRCA1 is associated with increased transcription of SINEs and production of sense and antisense SINE small RNAs. We find that BRCA1 mRNA is post-transcriptionally down-regulated in a Dicer and Drosha dependent manner and that expression of a SINE inverted repeat with sequence identity to a BRCA1 intron is sufficient for downregulation of BRCA1 mRNA. These observations suggest that transcriptional activation of SINEs could contribute to a novel mechanism of RNA mediated post-transcriptional silencing of human genes.

  17. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1.

    Science.gov (United States)

    Xu, Xingzhi; Lee, Juhie; Stern, David F

    2004-08-13

    Microcephalin (MCPH1) is the first gene identified among at least six loci that contribute to the autosomal recessive disease, primary microcephaly. MCPH1, like NFBD1/MDC1, 53BP1, and BRCA1, encodes a protein with twin carboxyl-terminal BRCT domains (PTCB). Here, we report that Mcph1 forms ionizing radiation-induced foci. Down-regulation of Mcph1, like other PTCBs, by siRNA, impairs ionizing radiation-induced intra-S-phase and G(2)/M checkpoints. Inhibition of the expression of Mcph1 decreases both protein and transcript levels of endogenous Brca1 but not exogenous Brca1. Mcph1 inhibition also decreases both endogenous and heterologous Chk1 transcripts and protein. We conclude that Mcph1 is involved in DNA damage-induced cellular responses, and we propose that regulation of Brca1 and/or Chk1 by Mcph1 may contribute to these cellular responses.

  18. A guide for functional analysis of BRCA1 variants of uncertain significance

    DEFF Research Database (Denmark)

    Millot, Gaël A; Carvalho, Marcelo A; Caputo, Sandrine M;

    2012-01-01

    Germline mutations in the tumor suppressor gene BRCA1 confer an estimated lifetime risk of 56-80% for breast cancer and 15-60% for ovarian cancer. Since the mid 1990s when BRCA1 was identified, genetic testing has revealed over 1,500 unique germline variants. However, for a significant number...... of these variants, the effect on protein function is unknown making it difficult to infer the consequences on risks of breast and ovarian cancers. Thus, many individuals undergoing genetic testing for BRCA1 mutations receive test results reporting a variant of uncertain clinical significance (VUS), leading...... to issues in risk assessment, counseling, and preventive care. Here, we describe functional assays for BRCA1 to directly or indirectly assess the impact of a variant on protein conformation or function and how these results can be used to complement genetic data to classify a VUS as to its clinical...

  19. BRCA1, microRNAs and cancer predisposition : challenging the dogma

    OpenAIRE

    Almeida, Maria Inês; Reis,R.M.; Calin, George A

    2011-01-01

    The importance of SNPs in conveying susceptibility to different kinds of cancer. The study by Pelletier et al. (2011) is particularly vital because it describes new genetic markers in BRCA1 3’UTR noncoding regions that can improve our determination of breast cancer susceptibility. Inclusion of these SNPs in BRCA1 haplotypes that are associated with breast cancer risk may guide future studies of functional miRNA interactions and their cellular consequences. This has the...

  20. Characterization of RACK7 as a Novel Factor Involved in BRCA1 Mutation Mediated Breast Cancer

    Science.gov (United States)

    2012-10-01

    control for the restriction digestion. Fig. 2. Library screening and cloning of the gene(s) involved in BRCA-1 mediated DNA damage...hypersensitivity. A. A diagram of the library screening procedure. B. Isolation of the gene candidates that confer the resistance to DNA damage hypersensitivity...in HCC1937 cells. Fig 3. Effect of BRCA1, Noc-4, PKCBP and H3.3 on protection from irradiation hypersensitivity. A. . A diagram of the library

  1. The Role of BRCA1 Domains and Motifs in Tumor Suppression

    Science.gov (United States)

    2010-08-01

    poorly characterized but conserved domains in BRCA1 directly participate in its tumor suppression function. To test this hypothesis we choose a global ...after ionizing radiation than HCC1937 e xpressing lacZ, delta 12/13, C61G or M1775 R mutants. This suggests that the RING, coiled-coil and BRCT...conserved domains in BRCA1 dire ctly participate in its tumor suppression fun ction. To te st this hypothesis we choose a global ap proach

  2. Microglandular adenosis of the breast in a BRCA1 mutation carrier: radiological features

    Energy Technology Data Exchange (ETDEWEB)

    Sabate, J.M.; Gomez, A.; Torrubia, S. [Department of Diagnostic Radiology, Hospital de Sant Pau, Universitat Autonoma de Barcelona (Spain); Matias-Guiu, X. [Department of Pathology, Hospital de Sant Pau, Universitat Autonoma de Barcelona (Spain); Alonso, C.; Pericay, C. [Department of Oncology, Hospital de Sant Pau, Universitat Autonoma de Barcelona, Sant Antoni M. Claret, 167, 08025 Barcelona (Spain); Diaz, O. [Department of Genetics, Hospital de Sant Pau, Universitat Autonoma de Barcelona (Spain)

    2002-06-01

    Microglandular adenosis is a very uncommon benign proliferative disorder of the breast that may mimic tubular carcinoma radiologically and pathologically. We describe the radiological features of this rare condition in a patient with BRCA 1 mutation. To our knowledge, this is the first case of microglandular adenosis reported in the radiology literature. The relationship between microglandular adenosis and malignancy and the association between BRCA 1 and proliferative benign disorders are also discussed. (orig.)

  3. Unsolved mystery: the role of BRCA1 in DNA end-joining.

    Science.gov (United States)

    Saha, Janapriya; Davis, Anthony J

    2016-08-01

    Heritable mutations in the tumor suppressor gene BRCA1 increase a woman's lifetime risk of developing breast and ovarian cancer. BRCA1's tumor suppressor function is directly linked to its myriad of functions in the cellular response to DNA double-strand breaks (DSBs). BRCA1 interacts with an extensive array of DNA damage responsive proteins and plays important roles in DSB repair, mediated by the homologous recombination pathway, and in the activation of cell cycle checkpoints. However, the role of BRCA1 in the other two DSB repair pathways, classical non-homologous end-joining (C-NHEJ) and alternative NHEJ (A-NHEJ), remains unclear. In this review, we will discuss the current literature on BRCA1's potential role(s) in modulating both C-NHEJ and A-NHEJ. We also present a model showing that BRCA1 contributes to genomic maintenance by promoting precise DNA repair across all cell cycle phases via the direct modulation of DNA end-joining.

  4. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155

    Science.gov (United States)

    Chang, Suhwan; Wang, Rui-Hong; Akagi, Keiko; Kim, Kyung-Ae; Martin, Betty K; Cavallone, Luca; Haines, Diana C; Basik, Mark; Mai, Phuong; Poggi, Elizabeth; Isaacs, Claudine; Looi, Lai M; Mun, Kein S; Greene, Mark H; Byers, Stephen W; Teo, Soo H; Deng, Chu-Xia; Sharan, Shyam K

    2012-01-01

    BRCA1, a well-known tumor suppressor with multiple interacting partners, is predicted to have diverse biological functions. However, so far its only well-established role is in the repair of damaged DNA and cell cycle regulation. In this regard, the etiopathological study of low-penetrant variants of BRCA1 provides an opportunity to uncover its other physiologically important functions. Using this rationale, we studied the R1699Q variant of BRCA1, a potentially moderate-risk variant, and found that it does not impair DNA damage repair but abrogates the repression of microRNA-155 (miR-155), a bona fide oncomir. Mechanistically, we found that BRCA1 epigenetically represses miR-155 expression via its association with HDAC2, which deacetylates histones H2A and H3 on the miR-155 promoter. We show that overexpression of miR-155 accelerates whereas the knockdown of miR-155 attenuates the growth of tumor cell lines in vivo. Our findings demonstrate a new mode of tumor suppression by BRCA1 and suggest that miR-155 is a potential therapeutic target for BRCA1-deficient tumors. PMID:21946536

  5. Ovarian Cancer and BRCA1/2 Testing: Opportunities to improve clinical care and disease prevention

    Directory of Open Access Journals (Sweden)

    Katherine eKarakasis

    2016-05-01

    Full Text Available Without prevention or screening options available, ovarian cancer is the most lethal malignancy of the female reproductive tract. High grade serous ovarian cancer (HGSOC is the most common histologic subtype, and the role of germline BRCA1/2 mutation in predisposition and prognosis is established. Given the targeted treatment opportunities with PARP inhibitors, a predictive role for BRCA1/2 mutation has emerged. Despite recommendations to provide BRCA1/2 testing to all women with histologically confirmed HGSOC, uniform implementation remains challenging. The opportunity to review and revise genetic screening and testing practices will identify opportunities where universal adoption of BRCA1/2 mutation testing will impact and improve treatment of women with ovarian cancer. Improving education and awareness of genetic testing for women with cancer, as well as the broader general community, will help focus much needed attention on opportunities to advance prevention and screening programs in ovarian cancer. This is imperative not only for women with cancer, those at risk of developing cancer, but also for their first-degree relatives. In addition, BRCA1/2 testing may have direct implications for patients with other types of cancers, many which are now being found to have BRCA1/2 involvement.

  6. The DNA-mismatch repair enzyme hMSH2 modulates UV-B-induced cell cycle arrest and apoptosis in melanoma cells.

    Science.gov (United States)

    Seifert, Markus; Scherer, Stefan J; Edelmann, Wilfried; Böhm, Markus; Meineke, Viktor; Löbrich, Markus; Tilgen, Wolfgang; Reichrath, Jörg

    2008-01-01

    The mechanisms by which the post-replicative DNA mismatch repair (MMR) enzyme MSH2 is involved in the complex response mechanisms to UV damage are yet to be clarified. Here, we show increased levels of MSH2 mRNA in malignant melanoma, metastases of melanoma, and melanoma cell (MeWo) lines as compared with melanocytic nevi or primary cultured benign melanocytes. UV-B treatment modulated MSH2 expression and silencing of MSH2 gene expression using small interfering RNA technology regulated UV-B-induced cell cycle arrest and apoptosis in human MeWo. We show that MSH2-deficient non-malignant mouse fibroblasts (MEF-/-) are partially resistant against UV-B-induced apoptosis and show reduced S-Phase accumulation. In addition, we show that an Msh2 point mutation (MEFGA) that affects MMR does not affect UV-B-induced apoptosis. In conclusion, we demonstrate that MSH2 modulates in human melanocytes both UV-B-induced cell cycle regulation and apoptosis, most likely via independent, uncoupled mechanisms.

  7. Fusion tyrosine kinase NPM-ALK Deregulates MSH2 and suppresses DNA mismatch repair function novel insights into a potent oncoprotein.

    Science.gov (United States)

    Young, Leah C; Bone, Kathleen M; Wang, Peng; Wu, Fang; Adam, Benjamin A; Hegazy, Samar; Gelebart, Pascal; Holovati, Jelena; Li, Liang; Andrew, Susan E; Lai, Raymond

    2011-07-01

    The fusion tyrosine kinase NPM-ALK is central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL). We recently identified that MSH2, a key DNA mismatch repair (MMR) protein integral to the suppression of tumorigenesis, is an NPM-ALK-interacting protein. In this study, we found in vitro evidence that enforced expression of NPM-ALK in HEK293 cells suppressed MMR function. Correlating with these findings, six of nine ALK(+)ALCL tumors displayed evidence of microsatellite instability, as opposed to none of the eight normal DNA control samples (P = 0.007, Student's t-test). Using co-immunoprecipitation, we found that increasing levels of NPM-ALK expression in HEK293 cells resulted in decreased levels of MSH6 bound to MSH2, whereas MSH2·NPM-ALK binding was increased. The NPM-ALK·MSH2 interaction was dependent on the activation/autophosphorylation of NPM-ALK, and the Y191 residue of NPM-ALK was a crucial site for this interaction and NPM-ALK-mediated MMR suppression. MSH2 was found to be tyrosine phosphorylated in the presence of NPM-ALK. Finally, NPM-ALK impeded the expected DNA damage-induced translocation of MSH2 out of the cytoplasm. To conclude, our data support a model in which the suppression of MMR by NPM-ALK is attributed to its ability to interfere with normal MSH2 biochemistry and function.

  8. Origin and distribution of the BRCA2-8765delAG mutation in breast cancer

    Directory of Open Access Journals (Sweden)

    Baldinu Paola

    2007-07-01

    Full Text Available Abstract Background The BRCA2-8765delAG mutation was firstly described in breast cancer families from French-Canadian and Jewish-Yemenite populations; it was then reported as a founder mutation in Sardinian families. We evaluated both the prevalence of the BRCA2-8765delAG variant in Sardinia and the putative existence of a common ancestral origin through a haplotype analysis of breast cancer family members carrying such a mutation. Methods Eight polymorphic microsatellite markers (D13S1250, centromeric, to D13S267, telomeric spanning the BRCA2 gene locus were used for the haplotype analysis. Screening for the 8765delAG mutation was performed by PCR-based amplification of BRCA2-exon 20, followed by automated sequencing. Results Among families with high recurrence of breast cancer (≥ 3 cases in first-degree relatives, those from North Sardinia shared the same haplotype whereas the families from French Canadian and Jewish-Yemenite populations presented distinct genetic assets at the BRCA2 locus. Screening for the BRCA2-8765delAG variant among unselected and consecutively-collected breast cancer patients originating from the entire Sardinia revealed that such a mutation is present in the northern part of the island only [9/648 (1.4% among cases from North Sardinia versus 0/493 among cases from South Sardinia]. Conclusion The BRCA2-8765delAG has an independent origin in geographically and ethnically distinct populations, acting as a founder mutation in North but not in South Sardinia. Since BRCA2-8765delAG occurs within a triplet repeat sequence of AGAGAG, our study further confirmed the existence of a mutational hot-spot at this genomic position (additional genetic factors within each single population might be involved in generating such a mutation.

  9. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsdottir, Sigridur K., E-mail: skb@hi.is [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland); Steinarsdottir, Margret [Chromosome Laboratory, Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik (Iceland); Bjarnason, Hordur; Eyfjord, Jorunn E. [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland)

    2012-01-03

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and {gamma}-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  10. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients

    DEFF Research Database (Denmark)

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J

    2013-01-01

    Germ-line mutations in the