WorldWideScience

Sample records for brazed plate heat

  1. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    Directory of Open Access Journals (Sweden)

    S. Muthuraman

    2013-08-01

    Full Text Available - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressure drop increased proportionally with the mass flux and the vapor quality and inversely with the condensation temperature and the chevron angle.

  2. Brazed aluminum, Plate-fin heat exchangers for OTEC

    Energy Technology Data Exchange (ETDEWEB)

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  3. Oil Circulation Effects on Evaporation Heat Transfer in Brazed Plate Heat Exchanger using R134A

    OpenAIRE

    Jang, Jaekyoo; Chang, Youngsoo; Kang, Byungha

    2012-01-01

    Experimental study was performed for oil circulation effects on evaporation heat transfer in the brazed type plate heat exchangers using R134A. In this study, distribution device was installed to ensure uniform flow distribution in the refrigerant flow passage, which enhances heat transfer performance of plate type heat exchanger. Tests were conducted for three evaporation temperature; 33℃, 37℃, and 41℃ and several oil circulation conditions. The nominal conditions of refrigerant are as follo...

  4. Experimental results for hydrocarbon refrigerant vaporization inside brazed plate heat exchangers at high pressure

    DEFF Research Database (Denmark)

    Desideri, Adriano; Ommen, Torben Schmidt; Wronski, Jorrit;

    2016-01-01

    In recent years the interest in small capacity organic Rankine cycle (ORC) power systems for harvesting low qualitywaste thermal energy from industrial processes has been steadily growing. Micro ORC systems are normally equippedwith brazed plate heat exchangers which allows for efficient heat tra...

  5. Spot brazing of aluminum to copper with a cover plate

    Science.gov (United States)

    Hayashi, Junya; Miyazawa, Yasuyuki

    2014-08-01

    It is difficult to join dissimilar metals when an intermetallic compound is formed at the joining interface. Spot brazing can be accomplished in a short time by resistance heating. Therefore, it is said that the formation of a intermetallic compound can be prevented. In this study, aluminum and copper were joined by spot brazing with a cover plate. The cover plate was used to supply heat to base metals and prevent heat dissipation from the base metals. The ability to braze Al and Cu was investigated by observation and analysis. Pure aluminum (A1050) plate and oxygen-free copper (C1020) plate were used as base metals. Cu-Ni-Sn-P brazing filler was used as the brazing filler metal. SPCC was employed as cover plate. Brazing was done with a micro spot welder under an argon gas atmosphere. Brazing ability was estimated by tensile shear strength and cross sectional microstructure observation. Al and Cu can be joined by spot brazing with Cu-Ni-Sn-P brazing filler and cover plate.

  6. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  7. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    Science.gov (United States)

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2017-01-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  8. HFO1234ze(Z) saturated vapour condensation inside a brazed plate heat exchanger

    OpenAIRE

    Longo, Giovanni A.; Zilio, Claudio; Righetti, Giulia; Brown, J. Steven

    2014-01-01

    All commonly used Hydro-Fluoro-Carbon (HFC) refrigerants have a high Global Warming Potential (GWP), higher than 1000, and some countries have already enacted legislative measures towards a limitation in the use or a gradual phase-out of HFCs. HFO1234ze(Z) was identified as a new low GWP refrigerant, which has the potential to be a global sustainable solution particularly for heat pump application. HFO1234ze(Z) is a pure compound which exhibits low pressure and is classified by ANSI / ASHRAE ...

  9. Application of Induction Heating for Brazing Parts of Solar Collectors

    Directory of Open Access Journals (Sweden)

    Kristína Demianová

    2012-01-01

    Full Text Available This paper reports on the application of induction heating for brazing parts of solar collectors made of Al alloys. The tube-flange joint is a part of the collecting pipe of a solar collector. The main task was to design an induction coil for this type of joint, and to select the optimum brazing parameters. Brazing was performed with AlSi12 brazing alloy, and corrosive and non-corrosive flux types were also applied. The optimum brazing parameters were determined on the basis of testing the fabricated brazed joints by visual inspection, by leakage tests, and by macro- and micro-analysis of the joint boundary. The following conditions can be considered to be the best for brazing Al materials: power 2.69 kW,brazing time 24 s, flux BrazeTec F32/80.

  10. Brazing

    CERN Document Server

    Schwartz, Mel M

    2003-01-01

    Text provides information needed to braze materials that will be used in the 21st century. Revised to include lessons learned on tooling, design, materials, atmospheres, processing, and equipment. For brazing technologists and engineers.

  11. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    . The method has proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel. A new design of an adjustable flux concentrator for induction heating tube-to-plate joints is proposed and tested on a variety......Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other...... materials has large influence on the heating time and temperature distribution in induction heating. In order to ensure high and uniform temperature distribution near the interface of a joint between dissimilar materials the precise coil geometry and position is of great importance. The present report...

  12. Novel high chromium containing braze filler metals for heat exchanger applications

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, S.; Fortuna, D. [Sulzer Metco, Troy (United States)

    2007-07-01

    A new family of boron-free, high chromium containing braze filler metal compositions were developed (Amdry 105, Amdry 108, Amdry 805). Filler metal properties including metallurgical phases, melting range, flow, corrosion resistance and high temperature oxidation resistance are reported. Additionally, the technical and economical advantages of using these new filler metals in fabricating flat plate type of heat exchangers and metallic catalytic converters is discussed. (orig.)

  13. Effect of Heat Treatment on High Temperature Stress Rupture Strength of Brazing Seam for Nickel-base Superalloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to enhance the high-temperature stress rupture strength of brazing seam by heat treatment, it was diffusion treated, then solution heat treated, and finally aging treated. The microstructure of brazing seam especially morphology of phase and boride was observed and the strength of brazing seam was measured in this process. The results show that heat treatment can enhance high-temperature stress rupture strength by improving the microstructure of brazing seam. The strength of brazing seam after solution heat treatment decreases in comparison with that only after diffusion treatment while aging treatment after solution heat treatment increases the strength of brazing seam.

  14. Simulation on Thermal Integrity of the Fin/Tube Brazed Joint of Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yiyu QIAN; Feng GAO; Fengjiang WANG; Hui ZHAO

    2003-01-01

    In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simulated results showedthat the therma

  15. Laser Brazing of High Temperature Braze Alloy

    Science.gov (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  16. The Integration of Vacuum Brazing into Heat Treatment - A Progressive Combined Process

    Institute of Scientific and Technical Information of China (English)

    Ingo Reinkensmeier; Henkjan Buursen

    2004-01-01

    The continuous constructive challenge to improve the functionality and efficiency of components always results in higher demands on production engineering, against the background of the generally increasing cost pressure. In many cases, you will just succeed in producing competitive and innovative products by combining and coupling of different procedures to an independent (hybrid) technology. The use of hybrid procedures for metal joining and heat treatment of metallic materials finds more and more industrial fields of application. Modern vacuum lines with integrated pressurized gas quenching are considered high-performance and flexible means of production for brazing and heat treatment tasks as well in the turbine industry as in the mould making and tool manufacturing industry. In doing so, the heat treatment is coupled with the brazing cycle in a combined process so that the brazing temperatures and soak times are adapted to the necessary temperatures and times for solution heat treatment and austeniting. This user-oriented article describes on the one hand examples of brazing of turbine components, but above all the practical experience from the plastics processing industry, where the requirement for a high-efficient cooling of injection moulding dies gains more and more importance.The combined procedure "Vacuum Brazing and Hardening" offers plenty of possibilities to produce mould inserts with an efficient tempering system in an economic way.

  17. Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2016-09-01

    Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.

  18. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    Science.gov (United States)

    Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan

    2011-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.

  19. Surface development of an aluminum brazing sheet during heating studied by XPEEM and XPS

    Science.gov (United States)

    Rullik, L.; Bertram, F.; Niu, Y. R.; Evertsson, J.; Stenqvist, T.; Zakharov, A. A.; Mikkelsen, A.; Lundgren, E.

    2016-10-01

    X-ray photoelectron emission microscopy (XPEEM) was used in combination with other microscopic and spectroscopic techniques to follow the surface development of an aluminum brazing sheet during heating. The studied aluminum alloy sheet is a composite material designed for vacuum brazing. Its surface is covered with a native aluminum oxide film. Changes in the chemical state of the alloying elements and the composition of the surface layer were detected during heating to the melting temperature. It was found that Mg segregates to the surface upon heating, and the measurements indicate the formation of magnesium aluminate. During the heating the aluminum oxide as well as the silicon is observed to disappear from the surface. Our measurements is in agreement with previous studies observing a break-up of the oxide and the outflow of the braze cladding onto the surface, a process assisted by the Mg segregation and reaction with surface oxygen. This study also demonstrates how XPEEM can be utilized to study complex industrial materials.

  20. 钛热交换器的真空钎焊%Vacuum Brazing of Titanium Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    梁海

    2015-01-01

    Vacuum brazing process of CP Ti-tanium TA2 heat exchangers was investigated. The effect of filler metals composition, use form, clearance, braz-ing temperature and hold time on braze joint forming and microstructure was studied. The test results showed that desirable isothermal-solidiifed braze microstructure can be produced more easily by use of Ti-Zr-Ni-Cu ifller metals than pure copper filler metal when vacuum brazing tita-nium. Whereas low price pure copper rolled foil as filler metal for brazing titanium can also result in tight and good look brazed joints, but at the cost of low plasticity of joints.%研究了不同的钎料成分和使用形式、钎焊间隙、钎焊温度和保温时间对TA2纯钛钎焊接头的成形和钎缝组织形态的影响。试验结果表明,与用纯Cu钎料相比,用Ti-Zr-Ni-Cu钎料可以更容易得到好的等温凝固钎缝组织。而用纯Cu钎料,则价格低,也可得到致密的成形漂亮的钎焊接头,但代价是接头的塑性较低。

  1. Brazing handbook

    CERN Document Server

    American Welding Society

    2007-01-01

    By agreement between the American Welding Society C3 Committee on Brazing and Soldering and the ASM Handbook Committee, the AWS Brazing Handbook has been formally adopted as part of the ASM Handbook Series. Through this agreement, the brazing content in the ASM Handbook is significantly updated and expanded. The AWS Brazing Handbook, 5th Edition provides a comprehensive, organized survey of the basics of brazing, processes, and applications. Addresses the fundamentals of brazing, brazement design, brazing filler metals and fluxes, safety and health, and many other topics. Includes new chapters on induction brazing and diamond brazing.

  2. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  3. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  4. Reduction of liquid metal embrittlement in copper-brazed stainless steel joints

    Science.gov (United States)

    Uhlig, T.; Fedorov, V.; Elßner, M.; Wagner, G.; Weis, S.

    2017-03-01

    Due to its very good formability and the low raw material cost, pure copper in form of foils is commonly used to braze plate heat exchangers made of stainless steel. The difference in the electrochemical potentials of brazing filler and base material leads to corrosion effects in contact with electrolytes. This may lead to leakages, which decrease the reliability of the heat exchanger during service in potable water. The dissolution of the emerging corrosion products of brazing filler and base material induces the migration of heavy metal ions, such as Cu2+ and Ni2+, into the potable water. The so-called liquid metal embrittlement, which takes place during the brazing process, may intensify the corrosion. The brazing filler infiltrates the stainless steel along the grain boundaries and causes an embrittlement. This paper deals with the determination of the grain boundary erosion dependent on the degree of deformation and heat treatment of the stainless steel AISI 316L.

  5. Effect of Filler and Heat Treatment on the Physical and Mechanical Properties of the Brazed Joint between Carbide Tip and Steel

    Science.gov (United States)

    Winardi, Y.; Triyono; Wijayanta, A. T.

    2017-02-01

    In this study, the effect of filler and heat treatment on the physical and mechanical properties of the brazed joint carbide tip and steel was investigated. Tip carbide YG6 and low carbon steel (SS400) is joining by torch brazing with two filler metals, silver, and copper filler. Heat treatment was performed in induction furnace. Microstructure and shear strength of the brazed joint have been investigated. Many silver filler layer are formed on the surface of the base metal rather then using copper filler. The highest shear strength is achieved using a silver filler metal at temperatur 725°C. The highest shear load is 18.62 kN.

  6. Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads

    Science.gov (United States)

    Chen, Lei; Lian, Youyun; Liu, Xiang

    2014-03-01

    In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequently, the reliability of the joints should be verified by a great number of high-heat-flux (HHF) tests to simulate the real load conditions. W/Cu brazed joint technology with sliver free filler metal CuMnNi has been developed at Southwestern Institute of Physics (SWIP). Screening and thermal fatigue tests of one small-scale flat tile W/CuCrZr mockup were performed on a 60 kW electron-beam Material testing scenario (EMS-60) constructed recently at SWIP. The module successfully survived screening test with the absorbed power density (Pabs) of 2 MW/m2 to 10 MW/m2 and the following 1000 cycles at Pabs of 7.2 MW/m2 without hot spots and overheating zones during the whole test campaign. Metallurgy and SEM observations did not find any cracks at both sides and the interface, indicating a good bonding of W and CuCrZr alloy. In addition, finite element simulations by ANSYS 12.0 under experimental load conditions were performed and compared with experimental results.

  7. Induction brazing of complex joints

    DEFF Research Database (Denmark)

    Henningsen, Poul; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other......, or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...

  8. Investigation of the corrosion performance of different braze fillers fused onto stainless steel type 1.4401 (UNS S31600)

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.; Eklund, T.; Persson, O. [Alfa Laval Corporate AB, Tumba (Sweden)

    2004-07-01

    Corrosion measurements were performed on a new iron based braze filler, AlfaNova{sup 1} developed by Alfa Laval. The braze filler was fused onto stainless steel type EN 1.4401 (UNS S31600). The susceptibility to general corrosion, intergranular corrosion and pitting corrosion was evaluated by gravimetrical and electrochemical methods as well as metallographical examination of the samples. Different sample configurations were utilised, which simulate the geometry of a braze joint in a plate heat exchange. The results were compared with a selection of commercial nickel-based braze fillers. It was shown that the newly developed iron-based braze filler had similar corrosion resistance as the commercially available nickel-based fillers. It was seen that the precipitation of intermetallic phases due to melting point depressants had a governing effect on the corrosion resistance of the braze joint. (orig.)

  9. Three-dimensional structural analysis of the plate-fin heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, T.; Sou, T.

    1984-06-01

    The Brazed aluminum plate-fin heat exchanger is a complex structure consisting of a core, headers and nozzles. The core is built of many layers of flat parting sheets and corrugated fins, and is sealed by side bars. Stress patterns in this type of heat exchanger have so far not been accurately analyzed, due to the complexity of the structure. A three dimensional structural analysis of such a core-header-nozzle structure subject to internal pressure is performed herein, using the finite element method, in order to investigate the mechanical characteristics of the structure. In the analysis, the corrugated fin is modeled by an equivalent anisotropic continuum element, to save on the computational cost. The adequacy of the analysis is then verified by performing a strain measurement test on the actual plate-fin heat exchanger. On the basis of the analytical results, it becomes clear that some critical parts need special attention when designing such structures.

  10. The effects of fillet formation on the strength of braze pressure welded joint with high frequency induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Suzumura, A.; Inagaki, Y.; Ikeshoji, T.T.; Yamazaki, T. [Graduate School of Tokyo, Tokyo (Japan)

    2004-07-01

    Braze Pressure Welding (BPW) with high frequency induction heating had been invented as the new joining method for bonding general steel pipes for on-site piping without danger of fire and the dispersion in joint properties due to welder's skill. In the BPW, brazing filler is interlaid between the mating surfaces to be joined. The filler melts by heating up to joining temperature, then the welding pressure discharges it from the joining interface. At the same time, the base metals are pressure-welded to each other, and that the discharged liquid filler forms fillets around the joining area. The fillets have the effects both on relaxing the stress concentration at the joint and on increasing the joining area, which contributes to the strengthening of joint. And the pressure is comparatively low, so the deformation of joint is little. In this paper, in order to investigate the effects of fillet on strengthening the joint, the stress state around the joint area and the degree of the effect of stress concentration relaxation were analyzed by finite element analysis. So it was revealed that the fillets reduced the stress concentration and separated the maximum stress site from the edge of the joining interface. Experimentally, the fillet formation was confirmed around the BPW joining area and that BPW joint had the superior tensile strength to brazed or pressure-welded joints by tensile test of joints. (orig.)

  11. Ion plating with an induction heating source

    Science.gov (United States)

    Spalvins, T.; Brainard, W. A.

    1976-01-01

    Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.

  12. A Review on Heat Transfer Improvent of Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Abhishek Nandan

    2015-03-01

    Full Text Available Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a lack in data and generalized equations for the calculation of different parameters in the heat exchanger. It requires more attention to find out various possible correlations and generalized solutions for the performance improvement of plate heat exchanger.

  13. Temperature Uniformity of Heated Mold Plate by Oscillating Heat Pipe

    Directory of Open Access Journals (Sweden)

    Kamonpet Patrapon

    2015-01-01

    Full Text Available Uniformity of the temperature in the mold plate is of paramount important since it will affect the dimensional stability of the part produced. To provide uniform temperature to the metal plate, many factors need to be considered such as choice of heating technology, uniformity of a heat source, a type of control, etc. This paper aims to study the temperature uniformity of metal plate using closed-loop oscillating heat pipe (CLOHP as a heat transfer device. The metal plates which were P-20 with the size of 306 x 130 mm2 were used. Metal plate was gouged to a depth of 3 mm for installing the CLOHP. Distances from the heating device to the metal plate surface were 5 and 10 mm. The surface temperatures of the metal plate were controlled at 80, 90, 100, 110, 120, and 130°C. Sixteen pointa of temperature were recorded. The results were then compared to those using the heat source as the cartridge heater arranged in the similar way with the same heating capacity. Once the system entered the steady state, it was found that the temperature distribution of metal plate using the CLOHP has a deviation in the range of ± 1.00°C and ± 0.94°C at the CLOHP depth of 5 mm. and 10 mm., respectively. While those of using cartridge heater deviated in the range of ± 1.35°C and ± 1.16°C. Compare to the recommended value from the ASTM Standard that the mold surface temperature need to be in the range of ± 2.0°C, the CLOHP shows the very promising results.

  14. The Effect of Post-grinding Heat Treatment of Alumina and Ag-Cu-Ti Braze Preform Thickness on the Microstructure and Mechanical Properties of Alumina-to-Alumina-Brazed Joints

    Science.gov (United States)

    Kassam, Tahsin Ali; Nadendla, Hari Babu; Ludford, Nicholas; Buisman, Iris

    2016-08-01

    Alumina-to-alumina-brazed joints were formed using 96.0 and 99.7 wt.% Al2O3 and TICUSIL® (68.8Ag-26.7Cu-4.5Ti wt.%) preforms of different thicknesses. Brazing was conducted in a vacuum of 1 × 10-5 mbar at 850 °C for 10 minutes. Joint strengths were evaluated using four-point bend testing and were compared to flexural strengths of standard test bars. Post-grinding heat treatment, performed at 1550 °C for 1 hour, did not affect the average surface roughness or grain size of either grades of alumina but affected their average flexural strengths with a small increase for 96.0 wt.% Al2O3 and a small decrease for 99.7 wt.% Al2O3. As the TICUSIL® preform thickness was increased from 50 to 100 µm, the average strengths of both 96.0 and 99.7 wt.% Al2O3 brazed joints improved. Joints made using 100-µm-thick TICUSIL® preforms predominantly consisted of Cu-Ti phases which formed due to excess Ti in the interlayers and non-uniform Ag-rich outflow. Brazed joints of 96.0 wt.% Al2O3 made using 100-µm-thick TICUSIL® preforms achieved an average joint strength of 238 MPa with consistent failure in the ceramic.

  15. New application of plate-fin heat exchanger with regenerative cryocoolers

    Science.gov (United States)

    Chang, Ho-Myung; Gwak, Kyung Hyun

    2015-09-01

    A design idea is newly proposed and investigated for the application of plate-fin heat exchanger (PFHX) with regenerative cryocoolers. The role of this heat exchanger is to effectively absorb heat from the stream of coolant and deliver it to the cold-head of a cryocooler. While various types of tubular HX's have been developed so far, a small PFHX could be more useful for this purpose by taking advantage of compactness and design flexibility. In order to confirm the feasibility and effectiveness, a prototype of aluminum-brazed PFHX is designed, fabricated, and tested with a single-stage GM cryocooler in experiments for subcooling liquid nitrogen from 78 K to 65-70 K. The results show that the PFHX is 30-50% more effective in cooling rate than the tubular HX's. Several potential applications of PFHX are presented and discussed with specific design concepts.

  16. RFQ Vacuum brazing at CERN

    CERN Document Server

    Mathot, S

    2008-01-01

    The aim of this paper is to describe the vacuum brazing procedure used at CERN for the brazing of Radio Frequency Quadrupole (RFQ). The RFQ is made of high precision machined OFE copper pieces assembled together. Vacuum brazing is one of the most promising techniques used to join the individual components leading to vacuum tightness and high precision alignment. The RFQ modules brazed at CERN are made of four 100 or 120 cm long vanes (two major and two minor vanes). Our brazing procedure consists of two steps. The first step involves the brazing of the four vanes in a horizontal position. The second step consists of brazing the vacuum stainless steel flanges to the copper structure in a vertical position. The paper describes the problems encountered with the alignment and the vacuum tightness. The difficulties related to the stress relaxation of the machined copper pieces during the brazing heat treatment are discussed. In addition, the solutions developed to improve the alignment of the brazed RFQ’s are...

  17. High-strength braze joints between copper and steel

    Science.gov (United States)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  18. Design of convex hull plate forming by pure line heating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-biao; JI Zhuo-shang; LIU Yu-jun

    2004-01-01

    This paper presents a ship-hull plate forming way by pure line heating. The heating lines forming the required bending angle is determined by curvature analysis method. Heating along the calculated heating lines results in bland plate with initial transverse curvature. Then, the plate with desired convex shape can be obtained by heating in the longitudinal edge. This is the whole forming process by pure line heating. This paper presents a method of plane development for ship-hull plate with B-spline surface representation, and provides the shrinkage heating lines in the forming process. This forming way would facilitate temperature control and make plate forming automatically easy.

  19. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    Science.gov (United States)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  20. An experimental study on the thermal and fouling characteristics in a washable shell and helically coiled heat exchanger by the Wilson plot method

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kyoung Min; Ahn, Young Chull [Pusan National University, Busan (Korea, Republic of); Hwang, Jun Hyeon; Hur, Hyun; Na, Byung Chul; Hwang, Yoon Jae; Kim, Byung Soon [LG Electronics, Changwon (Korea, Republic of); Lee, Jae Keun [EcoEnergy Research Institute, Busan (Korea, Republic of)

    2016-06-15

    Brazed plate heat exchangers (BPHEX) are broadly used in water source heat pump systems for their large heat transfer capacity. Despite their high heat transfer rate, their high-performance rate tends to decrease sharply, due to fouling and they cannot be cleaned. So the thermal and fouling resistances of washable Shell and helically coiled tube heat exchangers (SCHEX) are designed and experimentally investigated in this study. Heat exchangers with two different tube types are studied and compared with a brazed plate heat exchanger. The overall thermal resistance coefficient of the heat exchangers as determined by using Wilson plots is 38% lower than that of the brazed plate heat exchanger at a Reynolds number of 2460. Fouling test results revealed that regular maintenance and physical cleaning can be used to maintain the thermal resistance of fouling of the washable heat exchanger at a level equal to or less than that of the brazed plate heat exchanger.

  1. Vacuum Brazing of Accelerator Components

    Science.gov (United States)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  2. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    Science.gov (United States)

    Kılıç, Bayram; İpek, Osman

    2017-02-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  3. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  4. Performance Investigation of Plate Type Heat Exchanger (A Case Study

    Directory of Open Access Journals (Sweden)

    Simarpreet Singh

    2014-04-01

    Full Text Available Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness factor. In process plants, this type of heat exchange is generally used for recovering heat content of exhaust steam. However, with the flow of fluid for a long period, fouling occurs on the plate surface. Therefore, it is required to investigate the effect of fouling, wherever the heat exchanger is installed. An extensive experimental investigation has been carried out under clean and dirty condition of the said plate type heat exchanger. Heat transfer and flow data were collected in experiment. From collected data heat transfer rate, overall heat transfer coefficient, fouling factor and cleanliness factor were evaluated. Based upon the cleanliness factor data, next date of cleanliness for plate type heat exchanger was predicted. It is felt that the outcome of the present research work may be quite useful for efficient operation of plate type heat exchanger installed in Process plants.

  5. Plates of the dinosaur stegosaurus: forced convection heat loss fins?

    Science.gov (United States)

    Farlow, J O; Thompson, C V; Rosner, D E

    1976-06-11

    It is suggested that the plates along the arched back and tail of Stegosaurus served an important thermoregulatory function as forced convection "fins." Wind tunnel experiments on finned models, internal heat conduction calculations, and direct observations of the morphology and internal structure of stegosaur plates support this hypothesis, demonstrating the comparative effectiveness of the plates as heat dissipaters, controllable through input blood flow rate, temperature, and body orientation (with respect to wind).

  6. Numerical Methods for Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard

    2000-01-01

    Line heating is the process of forming originally flat plates into a desired shape by means of heat treatment. Parameter studies are carried out on a finite element model to provide knowledge of how the process behaves with varying heating conditions. For verification purposes, experiments are ca...... are carried out; one set of experiments investigates the actual heat flux distribution from a gas torch and another verifies the validty of the FE calculations. Finally, a method to predict the heating pattern is described....

  7. Line Heat-Source Guarded Hot Plate

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...

  8. Line Heat-Source Guarded Hot Plate

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...

  9. An Alternative Algorithm for Optimal Design of Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Seyyed Morteza Javid

    2015-02-01

    Full Text Available Due to the complex geometry of plate heat exchangers and thus a large number of variables affecting the performance of the exchangers, the design of these types of exchangers is quiet difficult. However, unlike the shell and tube heat exchangers which contain available data of design procedures, the design of plate heat exchanger is a monopoly of some certain manufacturing companies that make the problem even worse. In this paper, the objective is to minimize the number of plates in plate heat exchanger; in order to achieve that, a simple and yet efficient mathematical model is introduced for determination of the pressure drop and heat capacity of a plate heat exchanger in single- and multipass state and also a program was defined for determination of optimal solution based on this simple mathematical model for given operational constraints and plate type. In the end, the optimal solution will be compared to the answer of CAS200 commercial software and also it is shown that the effect of the start and end plates and transverse distribution in optimal solution is considerable.

  10. Modeling natural convection heat transfer from perforated plates

    Institute of Scientific and Technical Information of China (English)

    Zan WU; Wei LI; Zhi-jian SUN; Rong-hua HONG

    2012-01-01

    Staggered pattern perforations are introduced to isolated isothermal plates,vertical parallel isothermal plates,and vertical rectangular isothermal fins under natural convection conditions.The performance of perforations was evaluated theoretically based on existing correlations by considering effects of ratios of open area,inclined angles,and other geometric parameters.It was found that staggered pattern perforations can increase the total heat transfer rate for isolated isothermal plates and vertical parallel plates,with low ratios of plate height to wall-to-wall spacing (H/s),by a factor of 1.07 to 1.21,while only by a factor of 1.03 to 1.07 for vertical rectangular isothermal fins,and the magnitude of enhancement is proportional to the ratio of open area.However,staggered pattern perforations are detrimental to heat transfer enhancement of vertical parallel plates with large H/s ratios.

  11. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  12. HFO1234ze(E) Boiling Inside a Brazed Plate Heat Exchanger

    OpenAIRE

    Longo, Giovanni A.; Mancin, Simone; Righetti, Giulia; Zilio, Claudio

    2016-01-01

    HFC134a has been probably the most important refrigerant of the two past decades as it dominated the application in domestic refrigeration, mobile air conditioning and large chillers and it took part as component in several refrigerant mixtures such as HFC404A, and HFC407C. Unfortunately HFC134a exhibits a relatively large Global Warming Potential (GWP), and it will be subjected to a gradual reduce in the use up to a complete phase out in the next future according to the different national an...

  13. Novel approach of LY12 alloy brazing

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 钱乙余; 董健; 吕晓春

    2003-01-01

    The LY12 Al alloy was brazed with the adoption of the improved KF-CsF-AlF3 flux matching Ag-Al-Cu-Zn filler metal. The shear strength of brazed joint could reach 80% of that of the substrate and the tensile strength of butt brazed joint will be 70% of that of the substrate. This was the great progress against the traditional claim that Al alloy reinforced by heat treatment could not be brazed. The experimental results and theoretical analysis had proved that it was the key issue to remove the MgO oxide film below 503℃. The addition of rare earth La was the effective way to obtain better mechanical properties of the filler metal as well as brazed joints.

  14. A concept of PWR using plate and shell heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  15. Laser Brazing of Aluminum with a New Filler Wire AlZn13Si10Cu4

    Science.gov (United States)

    Tang, Z.; Seefeld, T.; Vollertsen, F.

    Laser brazing processes of aluminum with both single beam and double beam techniques were developed using a new AlZn13Si10Cu4 filler wire which has a lower solidification range comparing to normal AlSi12 filler wire and the base material. Brazing experiments on both bead on plate and flange joints showed that the new wire has a very good wettability on the aluminum samples. Comparing to the AlSi12 wire one needs a lower heat input (in some cases 73% less heat input) for joining the same samples with the new filler wire and reaches a high hardness value in the joint. In addition, brazing with double beam technique showed its potential to increase the joint quality.

  16. Enhanced radiative heat transfer between nanostructured gold plates

    CERN Document Server

    Guérout, R; Rosa, F S S; Hugonin, J -P; Dalvit, D A R; Greffet, J -J; Lambrecht, A; Reynaud, S

    2012-01-01

    We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

  17. New terrestrial heat flow measurements on the Nazca Plate

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.N. (Columbia Univ., Palisades, NY); Langseth, M.G.; Vacquier, V.; Francheteau, J.

    1976-03-01

    Sixty-seven new heat flow measurements on the Nazca Plate are reported, and the thermal regimes of three specific areas on the plate are examined. The Nazca Ridge is an aseismic ridge which may have been generated as an ''island trail'' from the Easter Island ''hot spot'' and/or may be a fossil transform fault. The Nazca Ridge has lower heat flow than the surrounding sea floor implying that the ridge might have low ''effective'' thermal conductivity causing heat to preferentially flow or refract to surrounding ocean crust which has higher conductivity, or, the low heat flow values may be caused by hydrothermal circulation on the ridge. The Carnegie Plateau is an elevated region south of the Carnegie Ridge on the northeastern Nazca Plate with high heat flow and shallow topography consistent with an age of less than 20 m.y. B.P. The central Nazca Plate is an area of highly variable heat flow which is possibly related to thin sediment and to rough regional topography.

  18. Lateral heat transfer in conducting and mutually irradiating plates

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaprakas, C.K.; Badari Narayana, K. [Thermal Systems Group, ISRO Satellite Centre, Bangalore 560 017 (India)

    2004-05-01

    Lateral heat transfer effect in conducting and mutually irradiating parallel plates has been investigated. The effect of reflection in the diffuse-specular regime has been included. The governing equation of this problem is a complicated integro-differential equation, and this has been solved using the accurate Gauss-Jacobi orthogonal collocation method. The effective thermal conductivity along the lateral direction increases with decreasing conduction-radiation number, increasing emittance of the plates and increasing spacing. Specular reflection effects are insignificant. (orig.)

  19. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Matthew (DOE/NNSA Kansas City Plant (United States)); Weyant, J.; Garner, S. (Advanced Cooling Technologies, Inc. (Lancaster, PA (United States)); Occhionero, M. (CPS Technologies Corporation, Norton, MA (United States))

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  20. Heat transport in the Hadean mantle: From heat pipes to plates

    Science.gov (United States)

    Kankanamge, Duminda G. J.; Moore, William B.

    2016-04-01

    Plate tectonics is a unique feature of Earth, and it plays a dominant role in transporting Earth's internally generated heat. It also governs the nature, shape, and the motion of the surface of Earth. The initiation of plate tectonics on Earth has been difficult to establish observationally, and modeling of the plate breaking process has not consistently accounted for the nature of the preplate tectonic Earth. We have performed numerical simulations of heat transport in the preplate tectonic Earth to understand the transition to plate tectonic behavior. This period of time is dominated by volcanic heat transport called the heat pipe mode of planetary cooling. These simulations of Earth's mantle include heat transport by melting and melt segregation (volcanism), Newtonian temperature-dependent viscosity, and internal heating. We show that when heat pipes are active, the lithosphere thickens and lithospheric isotherms are kept flat by the solidus. Both of these effects act to suppress plate tectonics. As volcanism wanes, conduction begins to control lithospheric thickness, and large slopes arise at the base of the lithosphere. This produces large lithospheric stress and focuses it on the thinner regions of the lithosphere resulting in plate breaking events.

  1. INFLUENCE OF REFRACTORY FILLERS ON THE PROCESS OF COMPOSITE BRAZING OF DIAMOND-ABRASIVE TOOLS

    Directory of Open Access Journals (Sweden)

    Kozachenko A. D.

    2015-04-01

    Full Text Available Brazes with increased viscosity are needed for brazing of abrasive diamond tools with working surface of complex contoured shape. It’s known that high viscosity is a property of composite brazes consisting of fusible matrix and refractory filler that is not melting during brazing. Goal of the work is to research the influence of refractory fillers on the process of composite brazing of diamond-abrasive tools and on that basis discover the optimal composition of braze. Composite brazes Sn-Cu-Co were researched in the work. It is determined that at least 26-28% (by mass of cobalt powder should be included in brazes for giving the braze Sn-Cu-Co necessary viscosity and for creation of uniform diamond-comprising layers with thickness up to 2.5 mm on the vertical layers and sharp edges of tools. It is determined that solid-state sintering of powders on the initial stage of heating the composite braze leads to emerging of internal stresses and forming cracks. Inert additions that prevent solid-state sintering should be include in braze to prevent cracking. Optimal inert addition for brazes Sn-Cu-Co is the tungsten powder. Minimum content of tungsten needed to prevent cracking is 6% (by mass. Optimal content of components in composition braze for brazing shaped diamond-abrasive tools is (% by mass: 30 Co, 20 Sn, 43 Cu, 7 W

  2. Microstructural Changes in Brazing Sheet due to Solid-Liquid Interaction

    NARCIS (Netherlands)

    Wittebrood, A.J.

    2009-01-01

    Aluminium brazing sheet is the material of choice to produce automotive heat exchangers. Although in Dutch the official translation of aluminium brazing sheet is “aluminium hardsoldeerplaat” the English name is used in the industry. Aluminium brazing sheet is basically a sandwich material and consis

  3. Vibrations and instabilities of thin rectangular plates separated by fluid medium with applications to the plate type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Gi-Man, Kim [Kum-Oh National Univ., Taegu (Korea, Republic of)

    1994-12-31

    Due to the prohibition law for using preon gas, many items in engineering field, specially heat exchanger, should be redesigned. The newly designed heat exchanger such a plate type heat exchanger is known to have a good efficiency in exchanging heat. From view of structures of a plate type heat exchanger, thin tube are used instead of circular pipe and the path of the fluid is developed for the high efficiency of the heat exchange by varying the array of tubes. The principal problem in the design of the plate heat exchanger is the potentiality of structural instabilities due to the fluid loading effect during operations. Excessive plate deflections would eventually result in permanent deformation or collapse which would cause an obstruction of the fluid flow in the narrow channels. In this study, a fluid-structural interaction model was developed to investigate analytically the static and dynamic instabilities that have been observed in flat plate heat exchanger. The model consist of two flat plates separated by water. The effects of the internal fluid in the channel was studied. As results, the natural frequency coefficients were investigated for the plate aspect ratios, channel heights, and boundary conditions. For the design criteria in plate type heat exchanger, the critical flow velocities which cause the responses of a plate were defined for divergence, resonance and flutter phenomena. (author). 25 refs. 2 tabs. 48 figs.

  4. Numerical evaluation of plate heat exchanger performance in geothermal district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, T. [Iceland Univ., Reykjavik (Iceland)

    1996-12-31

    This paper describes the performance of plate heat exchangers in residential water radiator heating systems receiving their heat from geothermal resources. Radiator theory is reviewed and determination of annual hot water requirements for space heating is discussed. Performance evaluation is made of plate heat exchangers and results obtained by means of two equations commonly used for this purpose, the Sieder-Tate and the Dittus-Boelter equations, compared to results obtained with a simplified equation where heat transfer in the heat exchanger is assumed to depend only on the fluid mass flow on both sides. It is found that for prevailing temperature ranges in Icelandic geothermal systems the mass pow approximation gives results very close to those determined by the more complicated conventional equations. (UK)

  5. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  6. Forced Convective Heat Transfer in a Porous Plate Channel

    Institute of Scientific and Technical Information of China (English)

    PeixueJiang; ZhanWang; 等

    1997-01-01

    Fored convective heat transfer in a plate channel filled with metallic spherical particales was investigated experimentally and numerically.The test section ,58mm×80mm×50mm in size,was heated by a 0.4mm thick plate electrical heater,The coolant water flow rate ranged from 0.015 to 0.833 kg/s.The local wall temperature distribution was measured along with the inlet and outlet fliud temperatures and pressures.The results illustrate the heat transfer augmentation and increased pressure drop caused by the porous medium.The heat transfer coefficient was increased 5-12 times by the porous media although the hydraulic resistance was increased even more.The Nusselt number and the heat transfer coefficient increased with decreasing particle diameter,while the pressure drop decreased as the particle diameter increased.It was found that,for the conditions studied(metallic packed bed),the effect of thermal dispersion did not need to be considered in the physical model,as opposed to a non-metallic packed bed,where thermal dispersion is important.

  7. Effect of Corrugation Angle on Heat Transfer Studies of Viscous Fluids in Corrugated Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    B Sreedhara Rao

    2015-04-01

    Full Text Available In the present investigation heat transfer studies are conducted in corrugated plate heat exchangers (PHEs having three different corrugation angles of 300, 400 and 500. The plate heat exchangers have a length of 30 cm and a width of 10 cm with a spacing of 5 mm. Water and 20% glycerol solution are taken as test fluids and hot fluid is considered as heating medium. The wall temperatures are measured along the length of exchanger at seven different locations by means of thermocouples. The inlet and outlet temperatures of test fluid and hot fluid are measured by means of four more thermocouples. The experiments are conducted at a flowrate ranging from 0.5 lpm to 6 lpm with the test fluid. Film heat transfer coefficient and Nusselt number are determined from the experimental data. These values are compared with different corrugation angles. The effects of corrugation angles on heat transfer rates are discussed.

  8. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  9. Brazing of stainless steel; Stainless ko no rozuke

    Energy Technology Data Exchange (ETDEWEB)

    Matsu, T.

    1996-04-01

    This paper explains brazing of stainless steel as to its processing materials, brazing materials, brazing methods, and brazing works. When performing brazing at higher than 800{degree}C on a martensite-based stainless steel represented by the 13Cr steel, attention is required on cracking caused by quenching. When a ferrite-based stainless steel represented by the 18Cr steel is heated above 900{degree}C, crystalline particles grow coarser, causing their tenacity and corrosion resistance to decline. High-temperature long-time heating in brazing in a furnace demands cautions. Austenite-based stainless steel represented by the 18Cr-8Ni steel has the best brazing performance. However, since the steel has large thermal expansion coefficient and low thermal conductivity, attention is required on strain and deformation due to heating, and on localized overheating. Deposition hardened stainless steel made of the Cr-Ni alloy steel added with aluminum and titanium has poor wettability in a brazing work, hence pretreatment is required for the purpose of activation. 9 figs., 7 tabs.

  10. Assessment of Real Heat Transfer Coefficients through Shell and Tube and Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Dan CONSTANTINESCU

    2011-07-01

    Full Text Available The purpose of this paper is to present a procedure used in the assessment of the real heat transfer characteristic of shell and tube and plate heat exchangers. The theoretical fundamentals of the procedure are introduced as well as the measured data collection and processing. The theoretical analysis is focused on the adoption of criterial equations which, subjected to certain verification criteria presented in the paper, provide the most credible value of the convection heat transfer coefficients inside the circular and flat tubes. In the end two case studies are presented, one concerning a shell and tube heat exchanger operational at INCERC Thermal Substation and the other concerning a plate heat exchanger tested on the Laboratory Stand of the Department of Building Services and Efficient Use of Energy in Buildings of INCERC Bucharest.

  11. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  12. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-Carbon Composites

    Science.gov (United States)

    Singh, M.; Shpargel, T. P.; Morscher, G. N.; Asthana, R.

    2006-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSiI. The joint microstructures were examined using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading. A tube-on-plate tensile test was used to evaluate joint strength of Ti-tube/ C-C composite joints. The load-carrying ability was greatest for the Cu-ABA braze joint structures. This system appeared to have the best braze spreading which resulted in a larger braze/C-C composite bonded area compared to the other two braze materials. Also, joint loadcarrying ability was found to be higher for joint structures where the fiber tows in the outer ply of the C-C composite were aligned perpendicular to the tube axis when compared to the case where fiber tows were aligned parallel to the tube axis.

  13. Theoretical investigation on thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger

    Science.gov (United States)

    Xiao, Lan; Wu, Shuang-Ying; Zhang, Qiao-Ling; Li, You-Rong

    2012-07-01

    Based on the heat transfer characteristics of absorber plate and the heat transfer effectiveness-number of heat transfer unit method of heat exchanger, a new theoretical method of analyzing the thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger has been put forward and validated by comparisons with the experimental and numerical results in pre-existing literature. The proposed theoretical method can be used to analyze and discuss the influence of relevant parameters on the thermal performance of heat pipe flat plate solar collector.

  14. Effect of nozzle-to-plate spacing on the development of a plane jet impinging on a heated plate

    Science.gov (United States)

    Rim, Ben Kalifa; Saïd, Nejla Mahjoub; Bournot, Hervé; Le Palec, Georges

    2016-09-01

    An experimental investigation was carried out to study the behavior of a turbulent air jet impinging on a heated plate. The study of the flow field was performed using a particle image velocimetry. A three-dimensional numerical model with Reynolds stress model has been conducted to examine the global flow. Numerical results agree well with experimental data. The main properties of the fluid occurring between the nozzle and the flat plate are presented. In addition, the effect of the distance between the nozzle exit and the plate (h/e = 14 and 28) were investigated and detailed analysis of the dynamic, turbulent distribution and temperature fields were performed. The wall shear stress and the pressure fields near the heated plate are then explored. Results showed that the mean velocity and the heat transfer characteristics of small nozzle-to-plate spacing are significantly different from those of large nozzle-to-plate spacing.

  15. Thermal response of ceramic components during electron beam brazing

    Energy Technology Data Exchange (ETDEWEB)

    Voth, T.E.; Gianoulakis, S.E.; Halbleib, J.A.

    1996-03-01

    Ceramics are being used increasingly in applications where high temperatures are encountered such as automobile and gas turbine engines. However, the use of ceramics is limited by a lack of methods capable of producing strong, high temperature joints. This is because most ceramic-ceramic joining techniques, such as brazing, require that the entire assembly be exposed to high temperatures in order to assure that the braze material melts. Alternatively, localized heating using high energy electron beams may be used to selectively heat the braze material. In this work, high energy electron beam brazing of a ceramic part is modeled numerically. The part considered consists of a ceramic cylinder and disk between which is sandwiched an annular washer of braze material. An electron beam impinges on the disk, melting the braze metal. The resulting coupled electron and thermal transport equations are solved using Monte Carlo and finite element techniques. Results indicate that increased electron beam current decreases time to melt as well as required cooling time. Vacuum furnace brazing was also simulated and predicted results indicate increased processing times relative to electron beam brazing.

  16. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.

    Science.gov (United States)

    Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H

    2011-07-01

    In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.

  17. Brazing diamond grits onto a steel substrate using copper alloys as the filler metals

    Science.gov (United States)

    Chen, S.-M.; Lin, S.-T.

    1996-12-01

    Surface-set diamond tools were fabricated by an active metal brazing process, using bronze (Cu-8.9Sn) powder and 316L stainless steel powder mixed to various ratios as the braze filler metals. The diamond grits were brazed onto a steel substrate at 1050 °C for 30 min in a dry hydrogen atmosphere. After brazing practice, an intermediate layer rich in chromium formed between the braze filler metal and diamond. A braze filler metal composed of 70 wt % bronze powder and 30 wt % stainless steel powder was found to be optimum in that the diamond grits were strongly impregnated in the filler metal by both mechanical and chemical types of holding. The diamond tools thus fabricated performed better than conventional nickel-plated diamond tools. In service, the braze filler metal wore at almost the same rate as the diamond grits, and no pullout of diamond grits or peeling of the filler metal layer took place.

  18. Brazing titanium structures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pressly, H.B.

    1977-03-01

    A vacuum furnace brazing process using Ag-5A1-0.5Mn brazing alloy has been developed for joining titanium alloy Ti-6Al-4V structures. Lap-shear strengths of the braze joints and the effects of the brazing thermal cycle on the tensile and bending properties of mill-annealed Ti-6Al-4V alloy sheet are reported. Nondestructive test methods were evaluated for detecting defects in these braze joints.

  19. Investigation of a wire plate micro heat pipe array

    Energy Technology Data Exchange (ETDEWEB)

    Launay, Stephane; Sartre, Valerie; Lallemand, Monique [CETHIL, UMR CNRS 5008, INSA, 20, av. A. Einstein, 69621 Cedex, Villeurbanne (France); Mantelli, Marcia B.H.; Paiva, Kleber Vieira de [Mechanical Engineering Department, Federal University of Santa Catarina UFSC, P.O. Box 476, 88040-900, SC, Florianopolis (Brazil)

    2004-05-01

    In the present work, experimental and theoretical investigations have been conducted on a copper/water wire plate micro heat pipe (MHP). The experimental results show that its effective thermal conductivity is improved by a factor 1.3 as compared to the empty MHP array. A numerical model is used to predict the fluid distribution along the MHP axis, the temperature field and the maximum heat flux corresponding to the MHP capillary limit. The 1D, steady-state hydrodynamic model is based on the conservation equations for the liquid and vapour phases. The wall temperatures are calculated from the thermal resistance network of the wall and the liquid film. A good agreement between the theoretical and experimental data is achieved. The effect of various parameters - contact angle, fluid type, corner angle, fill charge - is theoretically investigated. (authors)

  20. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    Science.gov (United States)

    Grabenstein, V.; Kabelac, S.

    2012-11-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the "Temperature Oscillation InfraRed Thermography" (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  1. Dissimilar joint characteristics of SiC and WC-Co alloy by laser brazing

    Science.gov (United States)

    Nagatsuka, K.; Sechi, Y.; Nakata, K.

    2012-08-01

    SiC and WC-Co alloys were joined by laser brazing with an active braze metal. The braze metal based on eutectic Ag-Cu alloy with additional Ti as an active element ranging from 0 to 2.8 mass% was sandwiched by the SiC block and WC-Co alloy plate. The brazing was carried out by selective laser beam irradiation on the WC-Co alloy plate. The content of Ti in the braze metal was required to exceed 0.6 mass% in order to form a brazed joint with a measurable shear strength. The shear strength increased with increasing Ti content up to 2.3 mass%Ti and decreased with a higher content.

  2. Experimental study and analysis of a novel multi-media plate heat exchanger

    Institute of Scientific and Technical Information of China (English)

    SONG JiWei; WANG Fei; CHENG Lin

    2012-01-01

    The experimental study and analysis of a novel multi-media plate heat exchanger were performed in this paper.This novel multi-media plate heat exchanger was self-developed during the process of the investigation and design of the alpha magnetic spectrometer (AMS) thermal system.The plate of this kind of novel plate heat exchanger is formed by discontinuous structure wave consisting of convex sphere and concave sphere,its heat transfer performance is better than that of the BRI chevron plate heat exchanger,and its resistance characteristics are superior to those of the nornally used 60-degree plate heat exchanger.Furthermore,the mechanism analysis of heat transfer enhancement shows that the spherical wave structure can reduce the local field synergy angle,so as to improve the field synergy degree of velocity vector and temperature gradient vector.

  3. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2017-01-01

    Full Text Available Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an important role in lightweight structures. In the present paper, three arc brazing variants of galvanized structured sheet metals were validated in terms of the corrosion behavior. The standard gas metal arc brazing, the pulsed arc brazing, and the cold metal transfer (CMT® in combination with a pulsed cycle were investigated. In experimental climate change tests, the influence of the brazing processes on the corrosion behavior of galvanized structured sheet metals was investigated. After that, the corrosion behavior of brazed structured and flat sheet metals was compared. Because of the selected lap joint, the valuation of damage between sheet metals was conducted. The pulsed CMT brazing has been derived from the results as the best brazing method for the joining process of galvanized structured sheet metals.

  4. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  5. FLOW RESISTANCE AND HEAT TRANSFER CHARACTERISTICS OF A NEW-TYPE PLATE HEAT EXCHANGER

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhi-jian; ZHANG Guan-min; TIAN Mao-cheng; FAN Ming-xiu

    2008-01-01

    A new-type corrugation Plate Heat Exchanger (PHE) was designed. Results from both numerical simulations and experiments showed that the flow resistance of the working fluid in this new corrugation PHE, compared with the traditional chevron-type one, was decreased by more than 50%, and corresponding heat transfer performance was decreased by about 25%. The flow field of the working fluid in the corrugation PHE was transformed and hence performance difference in both flow resistance and heat transfer was generated. Such a novel plate, consisting of longitudinal and transverse corrugations, can effectively avoid the problem of flow path blockage, which will help to extend the application of PHEs to the situation with unclean working fluids.

  6. 防锈铝板/镀锌钢板异种金属冷金属过渡熔钎焊接头的组织与抗拉强度%Microstructure and Tensile Strength of Rust-Proof Aluminum Plate and Zinc-Coated Steel Plates Braze-Weld Joint Prepared by Cold Metal Transfer

    Institute of Scientific and Technical Information of China (English)

    冯曰海; 王克鸿; 高飞; 杜刚

    2013-01-01

    The cold metal transfer (CMT) brazing-welding process was used to weld dissimilar metals of LF21 rust-proof aluminum plate and DD51D+Z zinc-coated steel plate,and the microstructure and tensile strength of the joint were studied.The results show that the compound layer of middle interface zone of the braze-weld joint was intermetallic compound FeAla with thickness of 4-6 μm.The average transverse tensile strength of the joint was up to 77 MPa and strength coefficient was 0.6.%采用冷金属过渡(CMT)熔钎焊接工艺,对LF21防锈铝板和DD51D+Z镀锌钢板进行了异种金属的连接,对接头的显微组织和抗拉强度进行了研究.结果表明:防锈铝板和镀锌钢板的熔钎焊接头的中间界面区化合物为4~6 μm厚的FeAl3金属间化合物,接头的平均横向抗拉强度为77MPa,接头的强度系数为0.6.

  7. Non-newtonian heat transfer on a plate heat exchanger with generalized configurations

    Energy Technology Data Exchange (ETDEWEB)

    Carezzato, A.; Tadini, C.C.; Gut, J.A.W. [Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo (Brazil); Alcantara, M.R. [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo (Brazil); Telis-Romero, J. [Department of Food Engineering and Technology, Universidade Estadual Paulista, Sao Jose do Rio Preto (Brazil)

    2007-01-15

    For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Development of optimization method for plate heat exchanger with undulation

    Directory of Open Access Journals (Sweden)

    Dvořák Václav

    2016-01-01

    Full Text Available The article deals with optimization of undulated heat transfer surface of plate heat exchanger. The goal of optimization is not only to increase effectiveness of heat transfer but also to reduce the pressure drop. A combined pattern of undulation which combines herringbone pattern and wavy pattern was optimized and best values of four parameters were found; angle of herringbone pattern, number, phase and amplitude of longitudinal waves of wavy pattern. The optimization procedure looked for maximum of objective function which was a linear combination of effectiveness and pressure drop. We used simple Monte Carlo method and the optimum was searched for four values of reference pressure drop. Four different optimization were run and we investigated the effect of various definition of objective function and parameters of undulation. It was found that during optimization of combined pattern, the herringbone pattern is more favoured than wavy pattern. It is caused by the fact that herringbone pattern was described by the only one free parameter, which was the angle of undulation, and therefore it is more likely to be found by a stochastic method. This assumption was confirmed when simple wavy pattern was optimized and higher values of objective function and effectiveness were found.

  9. Heat transfer to immiscible liquid mixtures in a spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    S. Sathiyan

    2013-06-01

    Full Text Available This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each composition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range, while the hot fluid flow was turbulent. Calculations of the LMTD (log mean temperature difference correction factor showed that the flow was countercurrent. Heat transfer coefficients of the two-phase liquids were found to be strongly dependent on the composition of the liquid mixture and exhibited abrupt transitions as a function of the compositions. Given the absence of predictive correlations in the literature that sufficiently capture this compositiondependence, new empirical correlations were developed using part of the experimental data, with the composition of the cold fluid as an explicit variable. Statistical analysis of the regression yielded satisfactory results. The correlations were tested against the rest of the experimental data and were found to predict heat transfer coefficients within ± 15%. These preliminary studies should be useful in designing compact exchangers for handling two-phase water-organics mixtures.

  10. Effect of Localized Heating on Three-Dimensional Flat-Plate Oscillating Heat Pipe

    Directory of Open Access Journals (Sweden)

    S. M. Thompson

    2010-01-01

    Full Text Available An experimental investigation was conducted, both thermally and visually, on a three-dimensional flat-plate oscillating heat pipe (3D FP-OHP to characterize its performance under localized heat fluxes while operating in the bottom heating mode and charged with acetone at a filling ratio of 0.73. The cooling area was held constant and three heating areas of 20.16 cm2, 11.29 cm2, and 1.00 cm2 were investigated, respectively. It was found that as the heating area was reduced and higher heat fluxes were imposed, the thermal resistance increased and the amplitude of thermal oscillations in the evaporator increased and became more chaotic. Using neutron radiography, it was observed that fluid oscillations did not occur in outer channels located away from the region of local heating. Although the thermal resistance increased during localized heating, a maximum heat flux of 180 W/cm2 was achieved with the average evaporator temperature not exceeding 90∘C.

  11. Estimation of pressure drop in gasket plate heat exchangers

    Directory of Open Access Journals (Sweden)

    Neagu Anisoara Arleziana

    2016-06-01

    Full Text Available In this paper, we present comparatively different methods of pressure drop calculation in the gasket plate heat exchangers (PHEs, using correlations recommended in literature on industrial data collected from a vegetable oil refinery. The goal of this study was to compare the results obtained with these correlations, in order to choose one or two for practical purpose of pumping power calculations. We concluded that pressure drop values calculated with Mulley relationship and Buonopane & Troupe correlation were close and also Bond’s equation gave results pretty close to these but the pressure drop is slightly underestimated. Kumar correlation gave results far from all the others and its application will lead to oversize. In conclusion, for further calculations we will chose either the Mulley relationship or the Buonopane & Troupe correlation.

  12. A Novel Heat Pipe Plate for Passive Thermal Control of Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project aims to develop a lightweight, highly thermally and electrically conductive heat pipe plate for passive removal of the heat from the individual...

  13. XRD and TEM analysis of the microstructure in the brazing joint of 3003 cladding aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Tao Feng; Songnian Lou; Luhai Wu; Yajiang Li

    2005-01-01

    The material used in this experiment was 3003 cladding aluminum alloy, the cladding metal was 4004 aluminum alloy.The aluminum plate was brazed by means of vacuum brazing. The microstructure in the brazing joint was studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The test result indicates that the suitable brazing technique parameters are brazing temperature, 628℃; keeping time, 10 min; vacuum degree, 6.5×10-4 Pa. XRD test indicates that there are new intermetallic compounds different from the base metal. TEM analysis indicates that Cu2Mg and Cu3Mn2Mg are formed in the brazing joint. The shape of Cu2Mg is irregular and the shape of Cu3Mn2Mg is circle, and there are tiny particles in it.

  14. Heat Conduction in a Functionally Graded Plate Subjected to Finite Cooling/Heating Rates: An Asymptotic Solution

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2011-12-01

    Full Text Available This work investigates transient heat conduction in a functionally graded plate (FGM plate subjected to gradual cooling/heating at its boundaries. The thermal properties of the FGM are assumed to be continuous and piecewise differentiable functions of the coordinate in the plate thickness direction. A linear ramp function describes the cooling/heating rates at the plate boundaries. A multi-layered material model and Laplace transform are employed to obtain the transformed temperatures at the interfaces between the layers. An asymptotic analysis and an integration technique are then used to obtain a closed form asymptotic solution of the temperature field in the FGM plate for short times. The thermal stress intensity factor (TSIF for an edge crack in the FGM plate calculated based on the asymptotic temperature solution shows that the asymptotic solution can capture the peak TSIFs under the finite cooling rate conditions.

  15. Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV)

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Mahlia, T. M. I.; Sheng, J. L. Y.

    2016-03-01

    A liquid cooled plate heat exchanger was designed to improve the battery life of an electric vehicle which suffers from premature aging or degradation due to the heat generation during discharging and charging period. Computational fluid dynamics (CFD) was used as a tool to analyse the temperature distribution when a constant surface heat flux was set at the bottom surface of the battery. Several initial and boundary conditions were set based on the past studies on the plate heat exchanger in the simulation software. The design of the plate heat exchanger was based on the Nissan Leaf battery pack to analyse the temperature patterns. Water at different mass flow rates was used as heat transfer fluid. The analysis revealed the designed plate heat exchanger could maintain the surface temperature within the range of 20 to 40°C which is within the safe operating temperature of the battery.

  16. Study on the automatic process of line heating for pillow shape plate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper focuses on the process for pillow shape plate by line heating technique, which is widely applied in the production of ship hull. Based on the analysis of primary parameters and experimental data in line heating process, the amount of local contraction generated by line heating has been illustrated. Then, combining with the computational result of local deformation determined by shell plate development, an optimization method for line heating parameters has been studied. This prediction system may provide rational arrangements of heating lines and technical parameters of process. By integrating the prediction system into the line heating robot for pillow shape plate, the automatic process of line heating for pillow shape plate can be achieved.

  17. Comparative study of Nusselt number for a single phase fluid flow using plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Shanmugam Rajasekaran

    2016-01-01

    Full Text Available In this study, the plate heat exchangers are used for various applications in the industries for heat exchange process such as heating, cooling and condensation. The performance of plate heat exchanger depends on many factors such as flow arrangements, plate design, chevron angle, enlargement factor, type of fluid used, etc. The various Nusselt number correlations are developed by considering that the water as a working fluid. The main objective of the present work is to design the experimental set-up for a single phase fluid flow using plate heat exchanger and studied the heat transfer performance. The experiments are carried out for various Reynolds number between 500 and 2200, the heat transfer coefficients are estimated. Based on the experimental results the new correlation is developed for Nusselt number and compared with an existing correlation.

  18. NUMERICAL STUDY ON FLOW DISTRIBUTION IN PLATE-FIN HEAT EXCHANGERS

    Institute of Scientific and Technical Information of China (English)

    张哲; 厉彦忠

    2003-01-01

    Objective To investigate the flow distribution in plate-fin heat exchangers and optimize the design of header configuration for plate-fin heat exchangers. Methods A mathematical model of header was proposed. The effects of the header configuration on the flow distribution in plate-fin heat exchangers were investigated by CFD. The second header configuration with a two-stage-distributing structure was brought forward to improve the performance of flow distribution. Results It is found that the flow maldistribution is very serious in the direction of header length for the conventional header used in industry. The numerical predictions indicate that the improved header configurations can effectively improve the performance of flow distribution in plate-fin heat exchangers. Conclusion The numerical simulation confirms that CFD should be a suitable tool for predicting the flow distribution. The method has a wide variety of applications in the design of plate-fin heat exchangers.

  19. Enhanced corrosion protection by microstructural control of aluminium brazing sheet

    NARCIS (Netherlands)

    Norouzi Afshar, F.

    2013-01-01

    Aluminium brazing sheet is a sandwich material made out of two aluminium alloys (AA4xxx/AA3xxx) and is widely used in automotive heat exchangers. One of the main performance criteria for heat exchanger units is the lifetime of the product. The lifetime of the heat exchanger units is determined by th

  20. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  1. Online monitoring of the laser brazing of titanium overlap joints

    Science.gov (United States)

    Schmitt, R.; Vielhaber, K.; Donst, D.; Klocke, F.

    2007-06-01

    Image processing and thermography for its own are very versatile and established measurement techniques for many years. However, the combination of these two measurement technologies opens a new field of applications. The online monitoring of the laser-brazing of titanium overlap joints is such a new application. The laser brazing process for overlap joining of formed titanium sheets for the production of heat exchangers is presently being investigated at the Fraunhofer IPT. In comparison to conventional furnace brazing the laser brazing technology decreases substantially the heat impact and thus reduces the thermal material damage in the parts due to local selective heating in a laser beam focal spot. Even though the process is stable, errors in the brazing seam such as pores or unacceptable material oxidation can occur. To ensure a high quality an online process monitoring or even process control is necessary. But since the surface remains unchanged during this brazing process no geometrical inspection of the surface can be conducted. Therefore today's quality assurance performs x-ray or destructive testing. This paper demonstrates how the use of thermography in combination with image processing allows a machine integrated online monitoring of the laser brazing process. First the basic principals are presented which cover the fields of heat coupling, heat transmission and heat distribution as well as the temperature emission of light and the spectral properties of the laser beam shaping optic and so lead to the optical set-up. Then analysis algorithms are derived which characterize the process, detect process failures and make a seam tracking possible.

  2. Analysis of Heat Transfer Behaviour of the Conduction Cold Plate System

    Institute of Scientific and Technical Information of China (English)

    YangChun-xin; DangChao-Bin

    1995-01-01

    The heat-transfer behaviour of the conduction cold plate system used for avionics is investigated in this paper.The steady-state temperature profile for the cold plate is derived and the relationship between the coolant mass flowrate,the heat load and the highest cold plate temperature is established.A model is proposed to describe the transient thermal rosponse of the cold plate under thermal shock condition.The analytic solution of the transient heat transfer within the cold plate is provided.The results of this paper agree with those of the finite element method and can be used for the structural design and performance evaluation of cold plate system.

  3. Laser brazing with filler wire for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaosong; Li Liqun; Chen Yanbin; Zhou Shanbao

    2005-01-01

    The process properties and interface behavior of CO2 laser brazing with automatic wire feed for galvanized steel sheets were investigated , in which the brazing filler metal was CuSi3 and no flux was used. As to the appearance quality of the brazing seams, the roles of the processing parameters, such as brazing speed, wire feeding rate, inclination and feeding direction of the wire, laser power, spot diameter and heating position, were assessed. The further investigation indicates that the behavior of the active elements Si, Mn and Zn are significantly influenced by energy input. At the interface, the microstructure of the base metal was composed of columnar crystals and the acicalar α solid solution was found on the filler metal side.

  4. 铝与钢、不锈钢、铜焊接,复合板制备及匙孔填充新技术——搅拌摩擦钎焊(FSB)的系列应用%New Techniques for Joining Aluminum/Steel, Aluminum/Stainless Steel and Aluminum/Copper, Fabricating Bimetallic Composite Plate and Filling Keyhole Based on Friction Stir Brazing (FSB)

    Institute of Scientific and Technical Information of China (English)

    张贵锋; 焦伟民; 张建勋; 王士元

    2013-01-01

    In order to overcome the wear of pin by the hard parent metal during friction stir welding (FSW), a novel process of friction stir brazing (FSB) was developed by Welding Research Institute, XPan Jiaotong University.Using the novel process,lap joints of Al/steel, Al/Cu , Al/stainless steel, and Al/steel, Al/stainless steel bimetallic composite plates were successfully prepared.Compared with furnace brazing, FSB has the following advantages: atmospheric environment, clean frictional heat source, the tool without pin and suitable filler metal beneficial to oxide film removal. While comparing with traditional FSW,the characteristics of FSB Can be summarized as follows;rapid dissolution of base metals, instead of the deformation of hard parent metal; multiple mechanisms of interfacial extruding and torsion action, undermining (with aid of filler metal) and extrusion of liquid phase to remove the oxide film; elimination wear of the pin by steel parent metal and no keyhole.%对传统搅拌摩擦焊因针的磨损而难以适应较硬金属材料的不足,西安交通大学开发了一种“搅拌摩擦钎焊(friction stir brazing:FSB)”专利技术,并利用该技术成功焊接了铝/钢、铝/铜和铝/不锈钢异种金属搭接接头,且成功焊接了铝/钢和铝/不锈钢双金属复合板.该技术以洁净高效的摩擦热为热源,采用无针柱状搅拌头,并预置合适钎料在大气环境下施焊.与传统炉中钎焊相比,因工具对界面的挤压与扭转作用,具有明显的去膜优势;与传统搅拌摩擦焊相比,该技术用母材的快速溶解代替较硬材料的塑性变形,通过“界面扭转、挤压+膜下潜流(钎料的加入)+加压挤出”多种机制有效去除母材表面的氧化膜,且可以避免较硬材料对搅拌头针端的磨损,不产生匙孔.

  5. Heat transfer in flow past a continuously moving semi-infinite flat plate in transverse magnetic field with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.

    Thermal boundary layer on a continuously moving semi-infinite flat plate in the presence of transverse magnetic field with heat flux has been examined. Similarity solutions have been derived and the resulting equations are integrated numerically...

  6. Heat Transfer Modeling of Phase Change Materials in Multiple Plates Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Alipanah

    2013-12-01

    Full Text Available Nowadays, given the increasing importance of energy sources, the possibility of energy storage in the heat exchangers through the Phase Change Materials (PCM and releasing it when needed have been extremely essential. This study seeks to model the domestic water heat system in which the paraffin is as the phase change material and it stores the solar energy. The behavior of a PCM plate was studied by writing the governing equations and solving them as the one-dimensional, implicit method and through numerical calculation of the method equations. Given the confirmed accuracy of performed modeling by the results of similar studies for the complete melting and solidification of PCM, the application of this system seems appropriate for the solar domestic water heaters.

  7. Induction brazing manual

    Science.gov (United States)

    1971-01-01

    Manual presents standards and techniques which are known or are particular to specific industry, and is useful as guide in closing tolerance brazing. Material and equipment specifications, tool setting tables, and quality control data and instructions are included. Since similar standards are available, manual is supplementary reference.

  8. Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties

    CERN Document Server

    Hansen, B J; Klebaner, A; 10.1063/1.4706971

    2012-01-01

    Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger ...

  9. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  10. HEAT TRANSFER PERFORMANCE OF AN OIL JET IMPINGING ON A DOWNWARD-FACING STAINLESS STEEL PLATE

    Directory of Open Access Journals (Sweden)

    Roy J Issa

    2011-01-01

    Full Text Available An experimental study is carried out for the quenching of a stainless steel plate using a single oil jet impinging on the bottom surface of the plate. The objective of this study is to investigate the effect of the oil jet flow operating conditions onto the heat transfer effectiveness when the plate is heated to temperatures ranging from around 115 to 630 oC, and the oil is heated to temperatures ranging from 60 to 75 oC. Tests are conducted on the oil at various temperatures to determine its viscosity. Experiments are conducted for nozzle exit flow rates ranging from 113 to 381 ml/min, oil jet pressures from 3.1 to 12 psi, and nozzle-to-plate surface distances of 0.6 and 1 cm. The variation of the oil heat flux and heat transfer coefficient with the surface temperature for the different quenching parameters is calculated from the acquired temperature data. Tests results show the oil heat transfer effectiveness keeps increasing for increasing plate temperature. Oil jet pressure is shown to have a considerable effect on the oil heat transfer, while the nozzle-to-plate surface distance is shown to have a lesser effect. The results of this study shall lead to a better understanding of the parameters that play an important role in oil quenching for applications that are of interest to the metal process industry.

  11. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  12. Role of plate-driven mantle flow in distribution of the global heat flow

    Institute of Scientific and Technical Information of China (English)

    叶正仁; 安镇文

    1999-01-01

    Heat flow in the Earth, from its hot interior to its relatively cool exterior, is the primary energy flow responsible for the dynamic nature of our planet. The motion of the plates excites a forced convective motion in the mantle, and this plate-driven mantle flow will strongly modulate the temperature field in the mantle because of the relatively high Peeler number of the mantle dynamic system. Here the role of the plate-driven mantle flow in the observed global heat flow is examined. The result reveals that the main feature of the distribution of the observed heat flow at the surface of the Earth matches well with the prediction and nearly one half of the average heat flow can be attributed to the thermal effect of the plate-driven mantle flow.

  13. Annular beam shaping system for advanced 3D laser brazing

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  14. Advances in brazing science, technology and applications

    CERN Document Server

    2013-01-01

    Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing. Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, alon...

  15. Performing multiobjective optimization on perforated plate matrix heat exchanger surfaces using genetic algorithm

    Directory of Open Access Journals (Sweden)

    John Anish K.

    2017-01-01

    Full Text Available Matrix Heat Exchanger is having wide spread applications in cryogenics and aerospace, where high effectiveness and compactness is essential. This can be achieved by providing high thermal conductive plates and low thermal conductive spacers alternately. These perforated plate matrix heat exchangers have near to 100% efficiency due to low longitudinal heat transfer. The heat transfer and flow friction characteristics of a perforated plate matrix heat exchanger can be represented using Colburn factor and friction factor. In this paper, dimensionless parameters like Reynolds number (Re, porosity (p, perforation perimeter factor (P f, plate thickness to pore diameter ratio (l/d and spacer thickness to plate thickness ratio (s/l have been optimized for maximum Colburn factor and minimum friction factor using genetic algorithm. Two algorithms, one for single objective and the other for multi-objective problems, which are believed to be more efficient, are described. The algorithms coded with MATLAB, is used to perform multi-objective optimization on perforated plate matrix heat exchanger surfaces. The results show promising results.

  16. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    OpenAIRE

    Thirumarimurugan, M.; Kannadasan, T.; E. Ramasamy

    2008-01-01

    Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in...

  17. Simulation and Experimental Investigation of Thermal Performance of a Miniature Flat Plate Heat Pipe

    Directory of Open Access Journals (Sweden)

    R. Boukhanouf

    2013-01-01

    Full Text Available This paper presents the results of a CFD analysis and experimental tests of two identical miniature flat plate heat pipes (FPHP using sintered and screen mesh wicks and a comparative analysis and measurement of two solid copper base plates 1 mm and 3 mm thick. It was shown that the design of the miniature FPHP with sintered wick would achieve the specific temperature gradients threshold for heat dissipation rates of up to 80 W. The experimental results also revealed that for localised heat sources of up to 40 W, a solid copper base plate 3 mm thick would have comparable heat transfer performances to that of the sintered wick FPHP. In addition, a marginal effect on the thermal performance of the sintered wick FPHP was recorded when its orientation was held at 0°, 90°, and 180° and for heat dissipation rates ranging from 0 to 100 W.

  18. Radiative and free-convective heat transfer from a finite horizontal plate inside an enclosure

    Science.gov (United States)

    Hrycak, Peter; Sandman, D. J.

    1986-01-01

    An experimental and analytical investigation of heat transfer from a horizontal, thin, square plate inside of an enclosure was carried out. Experimental results were obtained from both the upward-facing and the downward-facing sides of the heated plate. Starting with the integrated momentum and energy equations, approximate solutions were obtained for heat transfer in the laminar and the turbulent regime that correlate well with experimental data. Radiative heat transfer correction was given special attention. Effects of the enclosure-related recirculation of the test fluid, as well as effects of simultaneous heat transfer on both sides of the plate, caused an early transition, and indicated a high level of internal turbulence.

  19. CFD SIMULATION OF THE HEAT TRANSFER PROCESS IN A CHEVRON PLATE HEAT EXCHANGER USING THE SST TURBULENCE MODEL

    Directory of Open Access Journals (Sweden)

    Jan Skočilas

    2015-08-01

    Full Text Available This paper deals with a computational fluid dynamics (CFD simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST k-! model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.

  20. Brazing zone structure at active brazing of alumina ceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Nowadays one of the most effective methods of joining of oxide ceramics with other elements of construction is active brazing based on using of active metals (Ti, Zr), which increase reactivity of brazing alloy relative to ceramic element of a joining.

  1. Brazing zone structure at active brazing of alumina ceramics

    Institute of Scientific and Technical Information of China (English)

    Demchuk; V.; A.; Kalinichenko; B.; B.

    2005-01-01

    Nowadays one of the most effective methods of joining of oxide ceramics with other elements of construction is active brazing based on using of active metals (Ti, Zr), which increase reactivity of brazing alloy relative to ceramic element of a joining.……

  2. Thermal Stresses in an Anisotropic Thin Plate Subjected to Moving Plane Heat Sources

    Directory of Open Access Journals (Sweden)

    Malak Naji

    2014-04-01

    Full Text Available The aim of this study is to numerically simulate the plane moving heat source through anisotropic mild steal thin plate. Heat conduction problems in anisotropic material, where the thermal conductivity varies with direction and involving a moving heat source have several industrial applications, such like metal cutting, flame or laser hardening of metals, welding and others. The parabolic heat conduction model is used for the prediction of the temperature history. The temperature distribution inside the plate is determined from the solution of heat equation. Thus, the heat equation is solved numerically using finite deference method and the temperature distributions are determined. The thermal stresses in this case are, also, investigated and computed numerically. It is found that the thermal conductivity ratio affect in both temperature and thermal stresses distributions, in additional to the speed and heat source intensity.

  3. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat...... heat sink configurations reduces the coolant pumping power in the system....

  4. Natural Convection Heat Transfer From a Hot Rectangular and a Square Corrugated Plate to a Cold Flat Plate

    Institute of Scientific and Technical Information of China (English)

    M.A.R.Akhanda

    2000-01-01

    Experimental study of natural convection heat transfer across air layers bounded by a lower hot rectangular and a square corrugated plates to an upper cold flat plate has been carried out.The surroundings of this space are adiabatic.The effect of the angle of inclination,the aspect ratio,the temperature potential and the Rayleigh number on average heat transfer coefficients are investigated within a range of 0°≤θ≤75°,2.33≤A≤6.33,10°≤ΔT≤35°,and 3.29×104≤RaL≤2.29×106,The developed correlation predicts well the experimental data within an error of ±15%.

  5. Cathodic ARC surface cleaning prior to brazing

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V. R. (Vivek R.); Hollis, K. J. (Kendall J.); Castro, R. G. (Richard G.); Smith, F. M. (Frank M.); Javernick, D. A. (Daniel A.)

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  6. Atomistic-Continuum Hybrid Simulation of Heat Transfer between Argon Flow and Copper Plates

    CERN Document Server

    Mao, Yijin; Chen, C L

    2016-01-01

    A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that, heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.

  7. Heat transfer and energy analysis of a solar air collector with smooth plate

    Science.gov (United States)

    Chabane, Foued; Moummi, Noureddine

    2014-04-01

    The heat transfer and thermal performance of a single pass solar air heater a smooth plate was investigated experimentally. In the present paper, energy and heat transfer analysis of a solar air collector with smooth plate, this technique is used to determine the optimal thermal performance of flat plate solar air heater by considering the different system and operating parameters to obtain maximum thermal performance. Thermal performance is obtained for different mass flow rate varying in the array 0.0108-0.0202 kg/s with five values, solar intensity; tilt angle and ambient temperature. We discuss the thermal behavior of this type of collector with new design and with my proper construction. An experimental study was carried out on a prototype installed on the experimental tests platform within the University of Biskra in the Algeria. The effects of air mass flow rate, emissivity of channel plates and wind heat transfer coefficient on the accuracy of the criterion are also investigated.

  8. A diagram for defined flat plate solar collector area for solar floor heating

    Energy Technology Data Exchange (ETDEWEB)

    Altuntop, N.; Tekin, Y. [Erciyes University, Dept. of Mechanical Engineering (Turkey); Cengel, Y.A. [Nevada Reno University, Dept. of Mechanical Engineering, NV (United States)

    2000-07-01

    In winters, one of the best ways to heat living areas by using the low- temperature - water obtained from flat-plate solar collectors is the floor heating. In floor heating, low temperature-water (30 + 60 deg C) can be used and heat can be stored in water when solar radiation is not possible. In this study, it is aimed to define collector surface needed to supply heat for floor heating. It is also aimed to define and explain the diagram developed for every heating months. The calculations about the sun geometry are used to define the amount of radiation coming in to the collectors. Formulations are made about the definition of solar radiation absorbed by the collectors, the total heat loss coefficient, and the collector plate surface temperature. These formulations are transformed in to the diagram. In addition, the studies, heat transfer calculations and design parameters about the floor of the heating areas are used. A combined collector floor heating diagram is obtained. This diagram is used to define collector surface area necessary to supply heat for floor heated places. In this diagram, the collector surface area is obtained by giving the heat capacity of the place area, floor surface temperature, approximate modulation distance of the floor, the elevation of city, collector slope angle, wind speed, sun shine lime and the amount of the solar radiation obtained from the solar radiation diagram. (authors)

  9. The Role of Zinc Layer During Wetting of Aluminium on Zinc-coated Steel in Laser Brazing and Welding

    Science.gov (United States)

    Gatzen, M.; Radel, T.; Thomy, C.; Vollertsen, F.

    The zinc layer of zinc-coated steel is known to be a crucial factor for the spreading of liquid aluminium on the coated surface. For industrial brazing and welding processes these zinc-coatings enable a fluxless joining between aluminium and steel in many cases. Yet, the reason for the beneficial effect of the zinc to the wetting process is not completely understood. Fundamental investigations on the wetting behaviour of single aluminium droplets on different zinc-coated steel surfaces have revealed a distinct difference between coated surfaces at room temperature and at elevated temperature regarding the influence of different coating thicknesses. In this paper the case of continuous laser brazing and welding processes of aluminium and commercial galvanized zinc-coated steel sheets are presented. It is shown that in the case of bead-on-plate laser beam brazing, the coating thickness has a measureable effect on the resulting wetting angle and length but does not have a significant impact in case of overlap laser beam welding. This might be linked to different heat transfer conditions. The results also strongly indicate that proper initialbreakup of oxide layers is still required to accomplish good wetting on zinc-coated surfaces.

  10. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  11. Numerical Methods for Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard

    2000-01-01

    Few researchers have addressed so far the topic Line Heating in the search for better control of the process. Various methods to help understanding the mechanics have been used, including beam analysis approximation, equivalent force calculation and three-dimensional finite element analysis. I...... consider here finite element methods to model the behaviour and to predict the heating paths....

  12. Forced convection heat transfer of Couette-Poiseuille flow of nonlinear viscoelastic fluids between parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Hashemabadi, S.H. [Iran Univ. of Science and Technology, Dept. of Chemical Engineering, Tehran (Iran); Etemad, S.Gh. [Isfahan Univ. of Technology, Dept. of Chemical Engineering, Isfahan (Israel); Thibault, J. [Ottawa Univ., Dept. of Chemical Engineering, Ottawa, ON (Canada)

    2004-08-01

    Heat transfer to viscoelastic fluids is frequently encountered in various industrial processing. In this investigation an analytical solution was obtained to predict the fully developed, steady and laminar heat transfer of viscoelastic fluids between parallel plates. One of the plates was stationary and was subjected to a constant heat flux. The other plate moved with constant velocity and was insulated. The simplified Phan-Thien-Tanner (SPTT) model, believed to be a more realistic model for viscoelastic fluids, was used to represent the rheological behavior of the fluid. The energy equation was solved for a wide range of Brinkman number, dimensionless viscoelastic group, and dimensionless pressure drop. Results highlight the strong effects of these parameters on the heat transfer rate. (Author)

  13. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt;

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...... to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  14. Thermal Stresses in an Anisotropic Thin Plate Subjected to Moving Line Heat Sources

    Directory of Open Access Journals (Sweden)

    Malak Naji

    2014-02-01

    Full Text Available The aim of this present study is to investigate thermal stresses inside a thin anisotropic mild steal plate during moving line heat source. The parabolic heat conduction model is used for the prediction of the temperature history. The temperature distributions are determined numerically using finite difference method. Thermal stresses are computed numerically. It is found that the thermal conductivity ratio affect in both temperature and thermal stresses distributions, in additional to the speed and heat source intensity.

  15. Parametric Influence on Thermal Performance of Flat Plate Closed Loop Pulsating Heat Pipes

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-hai; KHANDEKAR Sameer; GROLL Manfred

    2006-01-01

    This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm2, 165 mm long) machined directly on an aluminum plate(180× 120×3mm3 ), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general,increasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved.

  16. Design of Shell Plates Minimizing the Heat Input

    DEFF Research Database (Denmark)

    Randrup, Thomas; Basu, Nemai

    1998-01-01

    It is the purpose of this paper to present a current research project at Odense Steel Shipyard Ltd., Denmark. The objective of the research is to find new mathematical methods for the design of shell plates and apply these methods at the shipyard. The focus is on double-curved plates...... as they are the most difficult to design and produce, and often gives rise to gaps in the final assembly stage requiring great expenditure of efforts to rectify.The project aims at approximating a double-curved surface with a (developable) cylinder surface using a new method for approximation. By use of the Gaussian...... image of a given surface, we determine a projection plane. In the orthogonal projection of the surface onto this plane, a reference curve is determined by use of methods for thinning of binary images. The cylinder surface then can be derived with its directrix in the projected area and rulings...

  17. Combined radiative and natural or forced convective heat transfer between parallel vertical plates with two-dimensional discrete heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, T.W.

    1988-01-01

    This study numerically analyzes combined radiative and natural or forced convective heat transfer between vertical parallel plates with two-dimensional discrete heat sources. The numerical method was verified by comparing its results with other published experimental data and the agreement was excellent. It is shown that radiative heat transfer is a significant and useful mode of heat transfer in combination with both natural and forced convection in this situation and cannot be neglected. Radiative heat transfer accounted for 50-60% or more of the total heat transfer in some cases, and usually approximately 30-35% on the top of a discrete heat source. This fact can be used to advantage in the thermal design of electronic circuit boards.

  18. Vacuum Brazing of Beryllium Copper Components for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tyhurst, C.C.; Cunningham, M.A.

    2002-06-04

    A process for vacuum brazing beryllium copper anode assemblies was required for the Plasma Electrode Pockels Cell System, or PEPC, a component for the National Ignition Facility (NIF). Initial problems with the joint design and wettability of the beryllium copper drove some minor design changes. Brazing was facilitated by plating the joint surface of the beryllium copper rod with silver 0.0006 inch thick. Individual air sampling during processing and swipe tests of the furnace interior after brazing revealed no traceable levels of beryllium.

  19. Computer fluid dynamics (CFD) study of a plate heat exchanger working with nanofluids

    Science.gov (United States)

    Stan, Liviu-Constantin; Cǎlimǎnescu, Ioan

    2016-12-01

    The industry fosters many types of heat exchangers such double pipe or plate heat exchangers (HX), but lately the plate HX are gaining the high ground in many applications. Such a plate HX is made out of serial plate modules packed together allowing the warm and cold fluids to pass through and exchange the heat. The paper is demonstrating the functioning of a medium sized plate HX functioning with 10% Al2O3 and water nanofluids flowing in both cold and warm sides of the HX. The influence of the nanofluid properties will be investigated as impact upon the outlet temperature of the fluid leaving the HX. Using the RSM methodology. The main conclusion of this study is that there is a balance between the nanofluids increased conductivity and their increased viscosity. The nanofluids are working well for those applications where the flow is not impeded by narrow fluid passages where the bigger influence of the viscosity is actually worsening the heat transfer conditions instead of increasing it, since the influence of viscosity in that kind of applications is three time bigger. A nanofluid conductivity threshold was also detected over which the nanofluids say with 15$ or 20% alumina content is useless for the overall heat transfer conditions.

  20. Neutral beam heating of the TFTR vacuum vessel protective plates

    Energy Technology Data Exchange (ETDEWEB)

    Sink, D.A.

    1976-04-01

    The transmission of neutral beams through plasmas expected in the Tokamak Fusion Test Reactor (TFTR) has been investigated. An analytical expression for the transmission coefficient of a 120 keV deuterium beam through a tritium plasma was used and a model for the flux profile of the TFTR Neutral Beam System designed by LBL/LLL was developed and incorporated. The plasma is assumed to have a parabolic profile and is characterized by a major radius of 310 cm, a minor radius of 57 cm, and a central plasma density of greater than or equal to 0.4 x 10/sup 14/ cm-/sup 3/. To protect the stainless steel vacuum vessel walls of the TFTR device, tungsten plates are located inside the vessel. The loading of the tungsten protective plates during normal operation is well below the neutral beam fluxes which would melt the tungsten. The TFTR Neutral Beam System will inject a total of 20 MW of 120 keV deuterium atoms from twelve sources, as well as approximately 12 MW of 60 keV deuterium atoms. The fluxes anticipated on the tungsten plates due to an unattenuated beam which would be incident at an angle of 45/sup 0/ are less than or equal to 6.5 kW/cm/sup 2/. The fluxes due to an attenuated beam are calculated to be less than or equal to 0.35 kW/cm/sup 2/. For the maximum injection time of 0.5 second, a fault condition in which the plasma was not formed at the time of injection could induce a surface temperature very near the melting point of tungsten. For the standard 0.1 second injection time anticipated for TFTR, a similar fault condition would not cause the temperature to rise to more than 2000 K which is well below the melting point (3640 K) of tungsten.

  1. Concept for support and heating of plate-like samples in the ultra-high vacuum

    Science.gov (United States)

    Tröger, L.; Pieper, H. H.; Reichling, M.

    2013-01-01

    We present the concept for a sample holder designed for mounting and heating of plate-like samples that is based on a clamping mechanism for easy handling. The clamping mechanism consists of a U-shaped bracket encompassing the sample support plate from the rear. Two spring wires are fixed in the walls of the bracket spanning the sample to secure it with only two point contacts. This enables the sample to freely expand or contract during heating and cooling. To accommodate for a large variety in sample size, shape, and quality, we introduce two designs differing in the generation of the clamping force: One pressing the sample against the spring wires, the other one pulling the spring wires onto the sample. Both designs yield an automatically even alignment of the sample during the mounting process to achieve an even load distribution and reliable fixation specifically for brittle samples. For high temperature treatment, the sample holders are enhanced by a resistive heating plate. As only the sample and a small fraction of the sample holder are heated, temperatures of 1300 °C are reached with only 8 W heating power. The sample support and heating components are mounted on a 11 mm × 13 mm base plate with a handle that can be transferred between the sample entry stage, the preparation stage, and surface science experiments in the ultra-high vacuum system.

  2. Experimental Simulation of Natural Heat Convection from Finned Vertical Plate with Different Inclinations

    Directory of Open Access Journals (Sweden)

    Saad Najeeb Shehab

    2016-09-01

    Full Text Available In this work an experimental simulation is made to predict the performance of steady-state natural heat convection along heated finned vertical base plate to ambient air with different inclination angles and configurations of fin array. Two types of fin arrays namely vertical fins array and V-fins array on heated vertical base plate are used with different heights and spaces. The influence of inclination angle of the plate , configuration of fins array and fin geometrical parameters such as fin height and fin spacing on the temperature distribution, base convection heat transfer coefficient and average Nusselt number have been plotted and discussed. The experimental data are correlated to a formula between average Nusselt number versus Rayleigh number for vertical plate and vertical fins array. The results indicate that the configuration of V-fins array gave best natural-convection heat transfer performance as base heat transfer coefficient about 20% greater compared with vertical fins array. Experimental simulation data and correlations of the present work are compared with a previous works shows good agreement

  3. Numerical Model on Frost Height of Round Plate Fin Used for Outdoor Heat Exchanger of Mobile Electric Heat Pumps

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available The objective of this study is to provide the numerical model for prediction of the frost growth of the round plate fin for the purpose of using it as a round plate fin-tube heat exchanger (evaporator under frosting conditions. In this study, numerical model was considering the frost density change with time, and it showed better agreement with experimental data of Sahin (1994 than that of the Kim model (2004 and the Jonse and Parker model (1975. This is because the prediction on the frost height with time was improved by using the frost thermal conductivity reflecting the void fraction and density of ice crystal with frost growth. Therefore, the developed numerical model could be used for frosting performance prediction of the round plate fin-tube heat exchanger.

  4. Conjugate heat transfer study of a turbulent slot jet impinging on a moving plate

    Science.gov (United States)

    Achari, A. Madhusudana; Das, Manab Kumar

    2017-03-01

    Numerical simulation of the flow field and conjugate heat transfer in an impinging jet with moving impingement plate is one of the important problems as it mimics closely with practical applications in industries. The Yang-Shih version of low Reynolds number k-ɛ model has been used to resolve the flow field and the temperature field in a two-dimensional, steady, incompressible, confined, turbulent slot jet impinging normally on a moving flat plate of finite thickness. The turbulence intensity and the Reynolds number considered at the inlet are 2 % and 15,000, respectively. The bottom face of the impingement plate has been maintained at a constant temperature higher than the nozzle exit temperature. The confinement plate has been considered to be adiabatic. The nozzle-to-surface spacing for the above study has been taken to be 6 and the surface-to-jet velocity ratios have been taken over a range of 0.25-1. The effects of impingement plate motion on the flow field and temperature field have been discussed elaborately with reference to stationary impingement plate. The dependence of flow field and fluid temperature field on impingement plate motion has been analyzed by plotting streamlines, isotherms for different plate speeds. A thorough study of flow characteristics for different surface-to-jet velocity ratios has been carried out by plotting profiles of mean vertical and horizontal components of velocity, pressure distribution, local shear stress distribution. The isotherms in the impingement plate of finite thickness, the distributions of solid-fluid interface temperature, the local Nusselt number, and the local heat flux for different surface-to-jet velocity ratios added to the understanding of conjugate heat transfer phenomenon.

  5. Development of a micro-heat exchanger with stacked plates using LTCC technology

    Directory of Open Access Journals (Sweden)

    E. Vásquez-Alvarez

    2010-09-01

    Full Text Available A green ceramic tape micro-heat exchanger was developed using Low Temperature Co-fired Ceramics technology (LTCC. The device was designed by using Computational Aided Design software and simulations were made using a Computational Fluid Dynamics package (COMSOL Multiphysics to evaluate the homogeneity of fluid distribution in the microchannels. Four geometries were proposed and simulated in two and three dimensions to show that geometric details directly affect the distribution of velocity in the micro-heat exchanger channels. The simulation results were quite useful for the design of the microfluidic device. The micro-heat exchanger was then constructed using the LTCC technology and is composed of five thermal exchange plates in cross-flow arrangement and two connecting plates, with all plates stacked to form a device with external dimensions of 26 x 26 x 6 mm³.

  6. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  7. Investigation of CaCO3 fouling in plate heat exchangers

    Science.gov (United States)

    Li, Wei; Zhou, Kan; Manglik, Raj M.; Li, Guan-Qiu; Bergles, Arthur E.

    2016-11-01

    An experimental investigation, coupled with theoretical modeling of CaCO3 fouling in plate-and-frame type heat exchangers (PHEs) have been conducted. Four different plates, made of SS-304, are used in two different surface patterns (chevron and zig-zag) of varying corrugation severity (waviness depth and pitch) and area enhancement. They were further characterized in clean, non-fouled convection by their measured heat transfer coefficients and friction factors in the Reynolds number range of 600-6000. The flow-fouling experiments delineate the effects of temperature and plate-surface geometry on growth rates and stabilization of fouling resistance, along with the anti-fouling behavior of plates coated with a hydrophobic PTFE (Teflon) film. Moreover, the microscopic structure of fouling deposits is mapped in a scanning-electron microscope. Corrugated plates with the largest height-to-pitch ratio and hydraulic diameter are found to have the lowest fouling growth rate and resistance; Teflon-film coating of plate surface is also found to mitigate fouling relative to the performance of bare stainless steel plates. Finally, a semi-empirical fouling model, based on the Prandtl-Taylor analogy, has been devised to describe the experimental data and provide a predictive tool.

  8. Mechanical properties of Inconel 718 and Nickel 201 alloys after thermal histories simulating brazing and high temperature service

    Science.gov (United States)

    James, W. F.

    1985-01-01

    An experimental investigation was made to evaluate two nickel base alloys (Nickel-201 and Inconel-718) in three heat treated conditions. These conditions were: (1) annealed; (2) after thermal exposure simulating a braze cycle; and (3) after a thermal exposure simulating a braze cycle plus one operational lifetime of high temperature service. For the Nickel-201, two different braze cycle temperatures were evaluated. A braze cycle utilizing a lower braze temperature resulted in less grain growth for Nickel-201 than the standard braze cycle used for joining Nickel-201 to Inconel-718. It was determined, however, that Nickel-201, was marginal for temperatures investigated due to large grain growth. After the thermal exposures described above, the mechanical properties of Nickel-201 were degraded, whereas similar exposure on Inconel-718 actually strengthened the material compared with the annealed condition. The investigation included tensile tests at both room temperature and elevated temperatures, stress-rupture tests, and metallographic examination.

  9. Study on vacuum induction brazing of SiCp/LY12 composite using Al-Cu-Si-Mg filler metal

    Institute of Scientific and Technical Information of China (English)

    邹家生; 许如强; 赵其章; 陈铮

    2003-01-01

    The vacuum induction brazing of SiC particulate reinforced LY12 alloy matrix composite using Al-28Cu-5Si-2Mg filler metal has been carried out. The micrograph of the joint interface was observed by scanning electron microscopy. The joint strength was determined by shear tests. The results show that brazing temperature, holding time, SiC particle volume percentage and post heat treatment influence joint strength. SiC particles happen in the brazing seam and the distribution of SiC particles in the joint is not uniform. Particle-poor zones in the joint exist near the base metal, and particle concentrate zones exist in the center of the brazing seam. In addition, the failure of the composite is predominantly initiated by the rooting of SiC particle in the brazing seam and the micro-crack expanded along the brazing seam with low energy.

  10. Experimental investigations and validation of two dimensional model for multistream plate fin heat exchangers

    Science.gov (United States)

    Goyal, Mukesh; Chakravarty, Anindya; Atrey, M. D.

    2017-03-01

    Experimental investigations are carried out using a specially developed three-layer plate fin heat exchanger (PFHE), with helium as the working fluid cooled to cryogenic temperatures using liquid nitrogen (LN2) as a coolant. These results are used for validation of an already proposed and reported numerical model based on finite volume analysis for multistream (MS) plate fin heat exchangers (PFHE) for cryogenic applications (Goyal et al., 2014). The results from the experiments are presented and a reasonable agreement is observed with the already reported numerical model.

  11. Heat transfer from impinging jets to a flat plate with conical and ring protuberances

    Science.gov (United States)

    Hrycak, P.

    1984-01-01

    An experimental investigation of heat transfer from round jets, impinging normally on a flat plate with exchangeable, heat transfer enhancing protuberances, has been carried out, and the pertinent literature surveyed, for Reynolds numbers ranging from 14,000 to 67,000, and nozzle diameters from 3.18 to 9.52 mm. The experimental data at the stagnation point indicated laminar flow, and a significant enhancement of heat transfer there, due to the introduction of the spike protuberance; the ring protuberance reduced the local heat flux somewhat. Data have also been correlated by means of dimensional analysis and compared with the conical flow theory.

  12. Using the heat flow plate method for determining thermal conductivity of building materials

    Science.gov (United States)

    Flori, M.; Puţan, V.; Vîlceanu, L.

    2017-01-01

    The heat flow plate method is used to determine thermal conductivity of a building material sample made of Rohacell (insulating foam). Experimental technique consists in placing the sample with a reference material on top (polystyrene sample) in a calorimetric chamber and heating from underside. Considering that the heat flux which passes through the two layers is constant and knowing thermal conductivity of the reference material, the sample thermal conductivity is determined. The temperature difference between the two opposite sample’s sides is recorded only when the steady state is achieved (constant heat flux).

  13. Development of a Resistive Plate Chamber with heat strengthened glass

    Science.gov (United States)

    Majumder, G.; Datar, V. M.; Kalmani, S. D.; Mondal, N. K.; Mondal, S.; Satyanarayana, B.; Shinde, R. R.

    2016-09-01

    The INO-ICAL is a proposed neutrino physics experiment, in which RPCs will be used as active detectors. The Iron Calorimeter (ICAL) detector will be made of 50 kTon of low carbon magnetized steel layers, tiled with 4 m × 2 m × 56 mm thick plates, alternating with layers of RPCs. The total number of 2 × 2 m2 RPCs required will be about 29000. However, during the assembly of RPCs, handling the 2 × 2 m2 normal float glass of thickness 3 mm is both difficult and risky. This prompted us to make RPCs with toughened glass and to characterize them. Toughened and tempered glass have higher mechanical strength compared to normal float glass and their processing involves controlled thermal or chemical treatment during the industrial production. This paper presents a comparison of the characteristics, such as noise rate, dark current, particle detection efficiency and time resolution, of normal and hardened glass RPCs.

  14. Development of optimum process parameters and a study of the effects of surface roughness on brazing of copper

    Energy Technology Data Exchange (ETDEWEB)

    Zaharinie, Tuan [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Huda, Zainul, E-mail: drzainulhuda@hotmail.com [Department of Engineering, Nilai University, Nilai, 71800 Malaysia (Malaysia); Izuan, Mohd Faaliq; Hamdi, Mohammed [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia)

    2015-03-15

    Highlights: • New brazing process parameters corresponding to the greatest shear strength have been developed. • An effective interaction of brazing filler metal (BFM) and base metal was observed at the interface for the sample brazed at 650 °C/5 min. • The possibility of formation of hard intermetallic compounds of Cu, Sn, and P have been justified in view of high-strength braze joint. • The surface roughness with an average R{sub a} value of around 0.20 μm was found to be the most appropriate for brazing of copper conducted at the specified process parameters. - Abstract: Brazing experiments on commercially-pure copper plates, using brazing filler metal (MBF-2005), are conducted at temperatures in the range of 650–750 °C for time-durations in the range of 5–15 min. Shear tests for braze-joints involved use of a universal testing machine. Based on the shear-test results, a new brazing cycle has been developed that corresponds to the greatest shear strength of the braze-joint. The brazing cycle has been performed under a controlled dry-argon atmosphere in a tube furnace. Microscopic observations were made by use of both optical and electron microscopes; whereas surface roughness measurements were made by using a TR100 Surface Roughness Tester. It is found that successful brazing and good wetting can be achieved by the least voids by using an average surface roughness (R{sub a} value) for the base material.

  15. Performance Evaluation of Plate-Fin-And Tube Heat Exchanger with Wavy Fins- A Review

    Directory of Open Access Journals (Sweden)

    Sandip S. Kale

    2014-09-01

    Full Text Available The plate fin-and-tube heat exchangers are widely used in variety of industrial applications, particularly in the heating, air-conditioning and refrigeration, HVAC industries. In most cases the working fluid is liquid on the tube side exchanging heat with a gas, usually air. It is seen that the performance of heat exchangers can be greatly increased with the use of unconventionally shaped flow passages such as plain, perforated offset strip, louvered, wavy, vortex generator and pin. The current study is focused on wavy-fin. The wavy surface can lengthen the path of airflow and cause better airflow mixing. In order to design better heat exchangers and come up with efficient designs, a thorough understanding of the flow of air in these channels is required. Hence this study focuses on the heat transfer and friction characteristics of the air side for wavy fin and tube heat exchanger.

  16. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    Science.gov (United States)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  17. Flat plate heat transfer for laminar transition and turbulent boundary layers using a shock tube

    Science.gov (United States)

    Brostmeyer, J. D.; Nagamatsu, H. T.

    1984-01-01

    Heat transfer results are presented for laminar, transition, and turbulent boundary layers for a Mach number of 0.12 with gas temperatures of 425 K and 1000 K over a flat plate at room temperature. The measurements were made in air for a Reynolds number range of 600 to 6 million. The heat transfer measurements were conducted in a 70-ft long, 4 in. diameter shock tube. Reflecting wedges were used to reflect the incident shock wave to produce a flow Mach number of 0.12 behind the reflected shock wave. Thin film platinum heat gages were mounted on the plate surface to measure the local heat flux. The laminar results for gas temperatures of 425 K to 1000 K agree well with theory. The turbulent results are also close to incompressible theory, with the 1000 K flow case being slightly higher. The transition results lie between the laminar and turbulent predictions.

  18. The influence of flow maldistribution on the performance of inhomogeneous parallel plate heat exhangers

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian R.H.

    2013-01-01

    of 50 random stacks having equal average channel thicknesses with 20 channels each are used to provide a statistical base. The standard deviation of the stacks is varied as are the flow rate (Reynolds number) and the thermal conductivity of the solid heat exchanger material. It is found that the heat......The heat transfer performance of inhomogeneous parallel plate heat exchangers in transient operation is investigated using an established model. A performance parameter, denoted the Nusselt-scaling factor, is used as benchmark and calculated using a well-established single blow technique. A sample...... transfer performance of inhomogeneous stacks of parallel plates may be reduced significantly due to the maldistribution of the fluid flow compared to the ideal homogeneous case. The individual channels experience different flow velocities and this further induces an inter-channel thermal cross talk....

  19. On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Hernando, N.; de Vega, M. [Energy System Engineering (ISE), Departamento de Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganes, Madrid (Spain); Almendros-Ibanez, J.A. [Escuela de Ingenieros Industriales de Albacete, Departamento de Mecanica Aplicada e Ingenieria de Proyectos, Universidad de Castilla La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Renewable Energy Research Institute, c/de la Investigacion s/n, 02071 Albacete (Spain); Ruiz, G. [Energy Efficiency and Renewables Department, Tecnicas Reunidas S.A., C/Arapiles No. 13, 10a, 28015 Madrid (Spain)

    2011-02-15

    The influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr-H{sub 2}O and NH{sub 3}-H{sub 2}O solutions is studied. For the NH{sub 3}-H{sub 2}O solution, the pressure drop-temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr-H{sub 2}O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed. (author)

  20. Experimental testing of various heat transfer structures in a flat plate thermal energy storage unit

    Science.gov (United States)

    Johnson, Maike; Fiß, Michael; Klemm, Torsten

    2016-05-01

    For solar process heat applications with steam as the working fluid and varying application parameters, a novel latent heat storage concept has been developed using an adaptation of a flat plate heat exchanger as the storage concept. Since the pressure level in these applications usually does not exceed 30 bar, an adaptation with storage material chambers arranged between heat transfer medium chambers is possible. Phase change materials are used as the storage medium, so that the isothermal evaporation of steam during discharging of the storage is paired with the isothermal solidification of the storage material. Heat transfer structures can be inserted into the chambers to adjust the power level for a given application. By combining the required number of flat plate heat exchanger compartments and inserting the appropriate heat transfer structure, the design can easily be adjusted for the required power level and capacity for a specific application. Within this work, the technical feasibility of this concept is proven. The dependence of the operating characteristics on the geometry of the heat exchanger is identified. A focus is on varying the power density by integrating conductive heat structures in the PCM.

  1. Skin friction and heat transfer of liquid jet over a continuous moving horizontal hot plate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The skin friction and heat transfer occurring in the laminarboundary layer which caused by a vertical liquid jet impinging on a continuously moving horizontal plate were studied. Similarity solutionsfor shear stress and heat distribution were obtained by using the shooting technique. The results shows that the skin friction decreases with an increase of velocity parameter, the evolving of thermal boundarydecrease with increasing in Prandtl number, but increase with increasing of velocity parameter.

  2. Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, A.M. [Pennsylvania State University, York Campus, York, PA 17403 (United States); Zeb, A. [COMSATS Institute of Information Technology, 30 H-8/1, Islamabad (Pakistan)], E-mail: amtaz56@yahoo.co.uk; Ghori, Q.K. [COMSATS Institute of Information Technology, 30 H-8/1, Islamabad (Pakistan); Benharbit, A.M. [Pennsylvania State University, York Campus, York, PA 17403 (United States)

    2008-04-15

    The present paper studies the heat transfer flow of a third grade fluid between two heated parallel plates for the constant viscosity model. Three flow problems, namely plane Couette flow, plane Poiseuille flow and plane Couette-Poiseuille flow have been considered. In each case the non-linear momentum equation and the energy equation have been solved using the homotopy perturbation method. Explicit analytical expressions for the velocity field and the temperature distribution have been derived.

  3. Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks with Various Pin Cross-Sections

    OpenAIRE

    Zhou, Feng; Catton, Ivan

    2011-01-01

    A numerical investigation of the thermal and hydraulic performance of twenty different plate-pin fin heat sinks with various shapes of pin cross-section (square, circular, elliptic, NACA profile and dropform) and different ratios of pin widths to plate fin spacing (0.3, 0.4, 0.5 and 0.6) was performed. Finite Volume Method based CFD software, Ansys CFX, was used as the 3-D Reynolds-averaged Navier-Stokes Solver. A k-ω based Shear-Stress-Transport model was used to predict the turbulent flow a...

  4. Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab

    2011-06-10

    Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger

  5. MHD Stagnation Flow of a Newtonian Fluid towards a Uniformly Heated and Moving Vertical Plate

    Directory of Open Access Journals (Sweden)

    Mehmet Şirin Demir

    2016-01-01

    Full Text Available Stagnation flow of an electrically conducting incompressible viscous fluid towards a moving vertical plate in the presence of a constant magnetic field is investigated. By using the appropriate transformations for the velocity components and temperature, the partial differential equations governing flow and heat transfer are reduced to a set of nonlinear ordinary differential equations. These equations are solved approximately using a numerical technique for the following two problems: (i two-dimensional stagnation-point flow on a moving vertical plate, (ii axisymmetric stagnation-point flow on a moving vertical plate. The effects of non-dimensional parameters on the velocity components, wall shear stresses, temperature and heat transfer are examined carefully.

  6. Thermal deformation in a thin circular plate due to a partially distributed heat supply

    Indian Academy of Sciences (India)

    N L Khobragade; K C Deshmukh

    2005-08-01

    In this paper, we develop an integral transform to determine temperature distribution in a thin circular plate, subjected to a partially distributed and axisymmetric heat supply on the curved surface, and study the thermal deformation. The results, obtained in series form in terms of Bessel’s functions, are illustrated numerically.

  7. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya; Swati Mukhopadhyay; G.C.Layek

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.%@@ An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented.A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method.In the boundary slip condition no local similarity occurs.Velocity and temperature distributions within the boundary layer are presented.Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.

  8. Performance measurement of plate fin heat exchanger by exploration: ANN, ANFIS, GA, and SA

    Directory of Open Access Journals (Sweden)

    A.K. Gupta

    2017-01-01

    Full Text Available An experimental work is conducted on counter flow plate fin compact heat exchanger using offset strip fin under different mass flow rates. The training, testing, and validation set of data has been collected by conducting experiments. Next, artificial neural network merged with Genetic Algorithm (GA utilized to measure the performance of plate-fin compact heat exchanger. The main aim of present research is to measure the performance of plate-fin compact heat exchanger and to provide full explanations. An artificial neural network predicted simulated data, which verified with experimental data under 10–20% error. Then, the authors examined two well-known global search techniques, simulated annealing and the genetic algorithm. The proposed genetic algorithm and Simulated Annealing (SA results have been summarized. The parameters are impartially important for good results. With the emergence of a new data-driven modeling technique, Neuro-fuzzy based systems are established in academic and practical applications. The neuro-fuzzy interference system (ANFIS has also been examined to undertake the problem related to plate-fin heat exchanger performance measurement under various parameters. Moreover, Parallel with ANFIS model and Artificial Neural Network (ANN model has been created with emphasizing the accuracy of the different techniques. A wide range of statistical indicators used to assess the performance of the models. Based on the comparison, it was revealed that technical ANFIS improve the accuracy of estimates in the small pool and tropical ANN.

  9. Non-newtonian flow and pressure drop of pineapple juice in a plate heat exchanger

    Directory of Open Access Journals (Sweden)

    R. A. F. Cabral

    2010-12-01

    Full Text Available The study of non-Newtonian flow in plate heat exchangers (PHEs is of great importance for the food industry. The objective of this work was to study the pressure drop of pineapple juice in a PHE with 50º chevron plates. Density and flow properties of pineapple juice were determined and correlated with temperature (17.4 < T < 85.8ºC and soluble solids content (11.0 < Xs < 52.4 ºBrix. The Ostwald-de Waele (power law model described well the rheological behavior. The friction factor for non-isothermal flow of pineapple juice in the PHE was obtained for diagonal and parallel/side flow. Experimental results were well correlated with the generalized Reynolds number (20 < Re g < 1230 and were compared with predictions from equations from the literature. The mean absolute error for pressure drop prediction was 4% for the diagonal plate and 10% for the parallel plate.

  10. Experimental study on condensation heat transfer of steam on vertical titanium plates with different surface energies

    Energy Technology Data Exchange (ETDEWEB)

    Baojin, Qi; Li, Zhang; Hong, Xu; Yan, Sun [State-Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-01-15

    Visual experiments were employed to investigate heat transfer characteristics of steam on vertical titanium plates with/without surface modifications for different surface energies. Stable dropwise condensation and filmwise condensation were achieved on two surface modification titanium plates, respectively. Dropwise and rivulet filmwise co-existing condensation form of steam was observed on unmodified titanium surfaces. With increase in the surface subcooling, the ratio of area ({eta}) covered by drops decreased and departure diameter of droplets increased, resulting in a decrease in condensation heat transfer coefficient. Condensation heat transfer coefficient decreased sharply with the values of {eta} decreasing when the fraction of the surface area covered by drops was greater than that covered by rivulets. Otherwise, the value of {eta} had little effect on the heat transfer performance. Based on the experimental phenomena observed, the heat flux through the surface was proposed to express as the sum of the heat flux through the dropwise region and rivulet filmwise region. The heat flux through the whole surface was the weighted mean value of the two regions mentioned above. The model presented explains the gradual change of heat transfer coefficient for transition condensation with the ratio of area covered by drops. The simulation results agreed well with the present experimental data when the subcooling temperature is lower than 10 C. (author)

  11. Analytical Thermal and Cost Optimization of Micro-Structured Plate-Fin Heat Sink

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse

    Microchannel heat sinks have been widely used in the field of thermo-fluids due to the rapid growth in technological applications which require high rates of heat transfer in relatively small spaces and volumes. In this work, a micro plate-fin heat sink is optimized parametrically, to minimize...... the thermal resistance and to maximize the cost performance of the heat sink. The width and the height of the microchannels, and the fin thickness are analytically optimized at a wide range of pumping power. Using an effective numeric test, the generated equations also discuss the optimum parameters at three...... sizes of the substrate plat of the heat sink. Results show that, at any pumping power there are specific values of the channel width and fin thickness which produce minimum thermal resistance in the heat sink. The results also illustrate that, a larger channel width and a smaller fin thickness lead...

  12. The thermal state of the Arabian plate derived from heat flow measurements in Oman and Yemen

    Science.gov (United States)

    Rolandone, Frederique; Lucazeau, Francis; Leroy, Sylvie; Mareschal, Jean-Claude; Jorand, Rachel; Goutorbe, Bruno; Bouquerel, Hélène

    2013-04-01

    The dynamics of the Afar plume and the rifting of the Red Sea and the Gulf of Aden affect the present-day thermal regime of the Arabian plate. However, the Arabian plate is a Precambrian shield covered on its eastern part by a Phanerozoic platform and its thermal regime, before the plume and rifting activities, should be similar to that of other Precambrian shields with a thick and stable lithosphere. The first heat flow measurements in the shield, in Saudi Arabia, yielded low values (35-44 mW/m2), similar to the typical shields values. Recent heat flow measurements in Jordan indicate higher values (56-66 mW/m2). As part of the YOCMAL project (YOung Conjugate MArgins Laboratory), we have conducted heat flow measurements in southern and northern Oman to obtain 10 new heat flux values in the eastern Arabian plate. We also derived 20 heat flux values in Yemen and Oman by processing thermal data from oil exploration wells. The surface heat flux in these different locations is uniformly low (45 mW/m2). The heat production in samples from the Dhofar and Socotra Precambrian basement is also low (0.7 µW/m3). Differences in heat flow between the eastern (60 mW/m2) and the western (45 mW/m2) parts of Arabia reflect differences in crustal heat production as well as a higher mantle heat flux in the west. We have calculated a steady state geotherm for the Arabian platform that intersects the isentropic temperature profile at a depth of about 150 km, consistent with the seismic observations. Seismic tomography studies of the mantle beneath Arabia also show this east-west contrast. Seismic studies have shown that the lithosphere is rather thin, 100 km or less below the shield and 150 km below the platform. The lithospheric thickness for the Arabian plate is 150 km, and the progressive thinning near the Red Sea, caused by the thermal erosion of the plume material, is too recent to be detected at the surface. The Afar plume mostly affects the base of the Arabian lithosphere along

  13. Eddy current heating of irregularly shaped plates by slow ramped fields

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1979-09-01

    Eddy current heating of thin conducting plates of various shapes by a perpendicular field is studied, assuming that the magnetic field created by the eddy currents is negligible in comparison with the external field. The method is to introduce the stream function of the eddy currents, which is shown to satisfy Poisson's equation, and then employ a pair of complementary variational principles (i.e., a minimum principle and a maximum principle), the extrema of which equal the eddy current heating. Two such complementary principles give not only an estimate of the eddy current heating, but a bound on the error of the estimate as well.

  14. Operational demonstration of a field of high performance flat plate collectors with isothermal heat transport

    Science.gov (United States)

    Merges, V.; Klippel, E.

    1983-12-01

    A solar plant with 21 sq m of highly efficient flat plate collectors and which requires no electricity is described. Heat transport is provided by saturated steam that condenses in a four cubic meter storage tank. The operation temperature is set by the buffer gas pressure between 100 and 140 C, and an absorption chiller is simulated as a heat consumer. The solar collectors were observed to exhibit high performance. Heat transport and temperature control offered high reliability and the thermal stratification in the tank was satisfactory. The positive result permits the design and construction of larger solar plants following the same technical principles.

  15. Studi Eksperimen Analisa Performa Compact Heat Exchanger Circular Tubes Continuous Plate Fin Untuk Pemanfaatan Waste Energy

    Directory of Open Access Journals (Sweden)

    Rachmadi Gewa Saputra

    2014-03-01

    Full Text Available Harga minyak dunia cenderung mengalami peningkatan dalam beberapa tahun terakhir sehingga manusia berfikir untuk memanfaatkan setiap penggunaan minyak bumi. Dengan berkembangnya teknologi saat ini waste energy yang berupa gas hasil pembakaran pada engine dapat dimanfaatkan menjadi bentuk energi lain menggunakan heat recovery system. Pada tugas akhir ini dilakukan desain sebuah heat exchanger tipe circular tubes continuous plate fin dengan susunan tube aligned yang digunakan untuk menyerap waste energy yang berupa exhaust gas. Untuk mendapatkan dimensi desain yang sesuai digunakan metode ΔTLMTD. Metode ini digunakan untuk menentukan nilai dari overall heat transfer  desain dari heat exchanger, kemudian dilakukan perhitungan untuk nilai overall heat transfer hitung. Setelah didapatkan nilai dari overall heat transfer secara desain dan hitung maka dilakukan iterasi untuk mendapatkan dimensi heat exchanger yang memiliki nilai error paling kecil antara nilai overall heat transfer desain dan hitung. Untuk pengujian performa dari heat exchanger yang telah didesain maka dilakukan variasi kacepatan exhaust gas yang melewati heat exchanger, yaitu 0.4 m/s, 0.3 m/s, dan 0.2 m/s. Exhaust gas yang digunakan memiliki temperatur 280oC. Pada tugas akhir ini didapatkan desain compact heat exchanger dengan dimensi panjang 0.38 m, lebar 0.45 m, dan tebal 0.04m. Setelah dilakukan pengujian dengan memvariasikan kecepatan dari exhaust gas yang melewati heat exchanger maka didapatkan bahwa nilai dari qaktual dari heat exchanger mengalami kenaikan dengan bertambahnya reynolds number akibat bertambahnya kecepatan exhaust gas, kemudian nilai dari effectiveness akan mengalami penurunan untuk setiap kenaikan dari reynold number exhaust gas. Selain itu nilai dari NTU heat exchanger juga mengalami penurunan dengan bertambahnya reynold number exhaust gas. Untuk nilai overall heat transfer dari heat exchanger yang didesain akan mengalami kenaikan akibat bertambahnya nilai

  16. Study of Dynamic Buckling of FG Plate Due to Heat Flux Pulse

    Directory of Open Access Journals (Sweden)

    Czechowski L.

    2015-02-01

    Full Text Available The paper deals with a FEM analysis of dynamic buckling of functionally graded clamped plates under heat flux loading with huge power. The materials of structures as well as their properties are varying in each layer across the plate thickness formulated by the power law distribution. The heat flux was applied evenly to the whole ceramic surface. The analysis was developed in the ANSYS 14.5 software. The duration of the heat flux loading equal to a period of natural fundamental flexural vibrations of given structures was taken into consideration. To implement large deflections of structures, the Green-Lagrange nonlinear-displacement equations and the incremental Newton-Raphson algorithm were applied. An evaluation of the dynamic response of structures was carried out on basis of the Budiansky-Hutchinson criterion. The studies were conducted for different volume fraction distributions and different shapes of the heat flux loading. The computation results of the heat flux versus maximal plate deflection are shown and discussed.

  17. Mean heat transfer coefficients during the evaporation of 1,1,1,2-tetrafluoroethane (R-134a) in a plate heat exchanger

    OpenAIRE

    EMILA DJORDJEVIC; STEPHAN KABELAC; SLOBODAN SERBANOVIC

    2007-01-01

    In this study the transfer coefficient of evaporation heat of the refrigerant 1,1,1,2-tetrafluoroethane (R-134a) in a vertical plate heat exchanger was experimentally investigated. The results are presented as the dependancy of the mean heat transfer coefficient for the whole heat exchanger on the mean vapor quality. The influences of mass flux, heat flux and flow configuration on the heat transfer coefficient were also taken into account and a comparison with previously published experimenta...

  18. Laser beam active brazing of metal ceramic joints

    Science.gov (United States)

    Haferkamp, Heinz; Bach, Friedrich W.; von Alvensleben, Ferdinand; Kreutzburg, K.

    1996-04-01

    The use of engineering ceramics is becoming more and more important. Reasons for this are the specific properties of these materials, such as high strength, corrosion resistance and wear resistance. To apply the advantages of ceramics, joining techniques of metal ceramic parts are required. In this paper, joining of metal ceramic joints by laser beam brazing is presented. This joining technique is characterized by local heat input, and the minimal thermal stress of the brazed components. During the investigations, an Nd:YAG laser and a vacuum chamber were applied. The advantages of Nd:YAG lasers are the simple mechanical construction, and laser beam guidance via quartz glass fibers, which leads to high handling flexibility. In addition, most of the materials show a high absorption rate for this kind of radiation. As materials, ceramic Al2O3 with a purity of 99.4% and metals such as X5CrNi189 and Fe54Ni29Co17 were used. As a filler material, commercially available silver and silver- copper brazes with chemically active elements like titanium were employed. During this study, the brazing wetting behavior and the formation of diffusion layers in dependence on processing parameters were investigated. The results have shown that high brazing qualities can be achieved by means of the laser beam brazing process. Crack-free joining of metal ceramic parts is currently only possible by the use of metals such as Fe54Ni29Co17 because of its low thermal expansion coefficient, which reduces thermal stresses within the joining zone.

  19. Structural Performance of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2016-12-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S-N curve, providing a design curve for any joint configuration in fatigue solicitation.

  20. HYSYS Automation and Its Application on Evaluation of Plate Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    Dai Yuqiang; Liu Wenwei; Wang Shaomin; Hu Dapeng

    2008-01-01

    When simulating or designing plate heat exchangers for multicomponent mixtures, most de-signers are often perplexed with the question on how to choose or estimate the physical property param-eters and hope to have a reliable database that could be adopted. The commercial codes HYSYS supply the physical property package on over 1500 pure substances and over 16 000 binary coefficients for them.This work has briefly presented an efficient communication interface based on the Microsoft Component Object Model (COM) between inner plate heat exchanger simulation codes and the HYSYS package. The application of a custom-made HYSYS-COM interface has shown high efficiency, such as significant re-duction of time needed for evaluating each process stream's properties. This automation method can be conveniently extended to further optimization study for any specific operation device such as heat transfers,columns, and other facilities.

  1. Natural COnvective Heat and Mass Transfer on a Vertical Heated Plate for Water Flow Containing Metal Corrosion Particles

    Institute of Scientific and Technical Information of China (English)

    Pei-xueJiang; Ze-peiRen; 等

    1992-01-01

    Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with dimeter about 10-3-10-1um,Deposits of such corrosion products on tube surfaces under high pressure will jeopardize the operating economy of power plant equipment and even esult in accidents.A numerical study is reported in this paper of the natural convective heat and mass transfer on a vertical heated plate subject to the flrst or mixed kind of boundary conditions for high-pressure water(P=17MPa) containing metal corrosion products with consideration of varialbe thermophysical properties.

  2. Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions

    Science.gov (United States)

    Kaniowski, Robert; Poniewski, Mieczysław

    2013-12-01

    Heat exchangers of different types find application in power systems based on solid oxide fuel cells (SOFC). Compact plate fin heat exchangers are typically found to perfectly fit systems with power output under 5 kWel. Micro-combined heat and power (micro-CHP) units with solid oxide fuel cells can exhibit high electrical and overall efficiencies, exceeding 85%, respectively. These values can be achieved only when high thermal integration of a system is assured. Selection and sizing of heat exchangers play a crucial role and should be done with caution. Moreover, performance of heat exchangers under variable operating conditions can strongly influence efficiency of the complete system. For that reason, it becomes important to develop high fidelity mathematical models allowing evaluation of heat exchangers under modified operating conditions, in high temperature regimes. Prediction of pressure and temperatures drops at the exit of cold and hot sides are important for system-level studies. Paper presents dedicated mathematical model used for evaluation of a plate fin heat exchanger, operating as a part of micro-CHP unit with solid oxide fuel cells.

  3. Investigation of one-dimensional heat flow in a solarflat plate collector with sun tracing system

    Directory of Open Access Journals (Sweden)

    H Samimi Akhijahani

    2016-09-01

    Full Text Available Introduction Drying is one of the most common methods for storing food and agricultural products. During drying process, free water that causes the growth of microorganisms and spoilage of products is removed from the product. There are several methods for drying of agricultural products. one of the most important methods of investment is drying by using sunlight. Iran is situated at 25- 43oE longitude and mean solar radiation is about 4.9 kwh.m-2.d-1. Because of the proper solar radiations in 95% of the agricultural areas in Iran, solar drying is widely used for drying of fruits and vegetables. The use of solar dryer causes saving in energy consumption and processing costs for drying of products in farms and gardens. Several researchers investigated heat transfer and heat flow in dryers. Selection of appropriate method was carried out for drying of agricultural products using heat pump. Experiments were done and mathematical relationships were estimated to obtain correlation parameters between Reynolds number and Nusselt number for the three cases of solar dryer (cabinet, indirect and combination.The best working conditions were determined for three types of solar collectors (flat, finned and corrugated. In this study, the process of heat transfer and heat transfer coefficient of a solar dryer with and without rotation of absorber plate was compared. Materials and Methods The experiments were conducted in Azarshahr, East Azarbayjan province, Iran in September 2014. Newton's law of thermodynamic was used to analyze the working condition of solar absorber. For this purpose the absorber plate was divided into four equal parts. According to the thermal equations and related boundary conditions as well as the relationship between heat transfer coefficient and the temperature gradient, equation 1 for the Nusselet number obtained: 1 Beside the relationship between Nusselt number and heat transfer coefficient is defined as equation 2: 2 Finally

  4. Impact of the filling level on the global heat transfer coefficient of a plate cross section for sorption heat pumps

    Science.gov (United States)

    Giraud, Florine; Hamitouche, Yacine; Vallon, Pierrick; Tremeac, Brice

    2017-02-01

    Compact evaporator like plate heat exchangers can play a significant role in reducing the investment cost of low cooling power sorption systems. However, when water is used as refrigerant, the working pressure is very low and vaporization phenomena are really different than vaporization phenomena occurring at higher pressures. Few studies focus on this subject and there is a lack of knowledge about vaporization (boiling or evaporation) phenomena occurring in compact evaporators at low pressure. The design of such evaporators remain manly empirical. There is thus a need of better characterization of the influence of the driving parameters in order to optimize the evaporator design. The objective of this article is thus to go further in the understanding of phenomena occurring in compact plate-type evaporators. In that goal, an experimental campaign was conducted to study continuously the performance of a smooth plate type evaporator as a function of the filling levels. The influence of the saturation pressure and the secondary fluid temperature on an overall heat transfer coefficient is studied. It is show that there is a dependence of the maximal overall heat transfer coefficient to these parameters. It is also shown that there seems to be a strong dependence between phenomena observed and phenomena that happens before. Thus, dynamic and inertia effects must be taken into account and model developed in absorption configuration cannot be applied for this study.

  5. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu, E-mail: wanghongyu07010310@163.com; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-11-01

    Co coated carbonyl iron particles (Co (CI)) are fabricated through electroless plating method, and the electromagnetic microwave absorbing properties are investigated in the frequencies during 8.2–12.4 GHz. The complex permittivity of CI particles after electroless plating Co is higher than that of raw CI particles due to improvment of the polarization process. Furthermore, according to the XRD and TG results, the Co layer can enhance the heat resistance of CI particles. The bandwidth below −10 dB can reach 3.9 GHz for the Co(CI) absorbent. The results indicate that the electroless plating Co not only enhances the absorbing properties but also improves the heat resistance of CI. - Highlights: • The Co-coated carbonyl iron Co(CI) particles were prepared by electroless plating. • The electromagnetic wave absorbing properties of Co(CI) particles were studied. • The heat treatment on the absorbing property of Co(CI) particles was studied. • The Co(CI) particles have good absorbing property when compared with CI.

  6. Preparation of zeolite a coatings on copper plates by using the substrate heating method

    Directory of Open Access Journals (Sweden)

    S. Teber

    2010-12-01

    Full Text Available The substrate heating method was used to grow zeolite 4A coatings on copper plates. The reaction mixture was kept at 25º C, while the plate was heated to a higher temperature. In some of the synthesis experiments performed, the reaction mixture was circulated in the system. The coatings prepared were characterized by X-ray diffraction and scanning electron microscopy. It was demonstrated that crystalline and pure zeolite 4A coatings could be formed on copper by using the substrate heating method from a highly alkaline solution, in which dissolution and oxidation of the copper plates took place. A coating with about 310 µm mass equivalent thickness could be grown on copper after 72 h of synthesis. The thickness decreased when circulation was applied. Compared to coatings previously prepared on stainless steel plates under similar experimental conditions, thicker coatings were grown on copper. It is possible that the roughened surface of copper in the highly alkaline reaction mixture provided a higher number of nucleation sites.

  7. Developments in convective heat transfer models featuring seamless and selected detail surfaces, employing electroless plating

    Science.gov (United States)

    Stalmach, C. J., Jr.

    1975-01-01

    Several model/instrument concepts employing electroless metallic skin were considered for improvement of surface condition, accuracy, and cost of contoured-geometry convective heat transfer models. A plated semi-infinite slab approach was chosen for development and evaluation in a hypersonic wind tunnel. The plated slab model consists of an epoxy casting containing fine constantan wires accurately placed at specified surface locations. An electroless alloy was deposited on the plastic surface that provides a hard, uniformly thick, seamless skin. The chosen alloy forms a high-output thermocouple junction with each exposed constantan wire, providing means of determining heat transfer during tunnel testing of the model. A selective electroless plating procedure was used to deposit scaled heatshield tiles on the lower surface of a 0.0175-scale shuttle orbiter model. Twenty-five percent of the tiles were randomly selected and plated to a height of 0.001-inch. The purpose was to assess the heating effects of surface roughness simulating misalignment of tiles that may occur during manufacture of the spacecraft.

  8. Couette and Poiseuille flows in a low viscosity asthenosphere: Effects of internal heating rate, Rayleigh number, and plate representation

    Science.gov (United States)

    Shiels, C.; Butler, S. L.

    2015-09-01

    Mantle convection models with a low viscosity asthenosphere and high viscosity surface plates have been shown to produce very large aspect ratio convection cells like those inferred to exist in Earth's mantle and to exhibit two asthenospheric flow regimes. When the surface plate is highly mobile, the plate velocity exceeds the flow velocities in the asthenosphere and the plate drives a Couette-type flow in the asthenospheric channel. For sluggish plates, the flow velocities in the asthenosphere exceed the plate velocity and the asthenospheric flow is more Poiseuille-like. It has been shown that under certain circumstances, flows become increasingly Couette-like as the aspect ratio of the plate is increased in numerical simulations. These models also show an increase in the average surface heat flux with aspect ratio which is counterintuitive, as one would expect that large aspect ratio models would result in older and colder oceanic lithosphere. Previous investigations have used single internal heating rates and Rayleigh numbers and a plate formulation that did not preclude significant deformation within the plate. In this paper, we investigate the conditions necessary for Couette and Poiseuille asthenospheric flows and for surface heat flux to increase with plate aspect ratio by varying the internal heating rate, the Rayleigh number and the representation of surface plates in 2D mantle convection models Plates are represented as a high viscosity layer with (1) a free-slip top surface boundary condition and (2) a force-balance boundary condition that imposes a constant surface velocity within the plate. We find that for models with a free-slip surface boundary condition, the internal heating rate and Rayleigh number do not strongly affect the dominance of Couette or Poiseuille flows in the asthenosphere but the increase in surface heat flux with model aspect ratio in the Poiseuille asthenospheric flow regime increases with internal heating rate. For models using

  9. Forced Convection Heat Transfer in Plate Channels Filled with Packed Beds or Sintered Porous Media

    Institute of Scientific and Technical Information of China (English)

    姜培学; 李勐; 任泽霈

    2002-01-01

    In the present work, forced convection heat transfer in plate channels filled with metallic or non-metallic particles (packed beds) or sintered porous media is simulated numerically using a thermal non-equilibrium model. The numerical simulation results are compared with experimental data. The difference between convection heat transfer in packed beds and in sintered porous media and the effects of the boundary condition assumptions are investigated. The results show that the numerical simulation of convection heat transfer of air or water in packed beds using the local thermal non-equilibrium model and the variable porosity model agrees well with the experimental data. The convection heat transfer coefficient in sintered porous media is much higher than that in packed beds. In the numerical simulation of convection heat transfer in sintered porous media, the boundary conditions on the wall should be that the particle temperatures are equal to the fluid temperature.

  10. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-03-01

    Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.

  11. Non-newtonian flow and pressure drop of pineapple juice in a plate heat exchanger

    OpenAIRE

    CABRAL, R. A. F.; GUT, J. A. W.; V. R. N. Telis; Telis-Romero, J. [UNESP

    2010-01-01

    The study of non-Newtonian flow in plate heat exchangers (PHEs) is of great importance for the food industry. The objective of this work was to study the pressure drop of pineapple juice in a PHE with 50º chevron plates. Density and flow properties of pineapple juice were determined and correlated with temperature (17.4 < T < 85.8ºC) and soluble solids content (11.0 < Xs < 52.4 ºBrix). The Ostwald-de Waele (power law) model described well the rheological behavior. The friction factor for non-...

  12. Experimental determination of correlations for mean heat transfer coefficients in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid

    2012-09-01

    This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.

  13. The Development of Welded Plate Heat Exchanger with Tube Plates%焊接式板式换热器带管板片的研制

    Institute of Scientific and Technical Information of China (English)

    杨国庆; 王頠; 杨刚

    2016-01-01

    In order to analyse the heat transfer effect of welded plate heat exchangers more intuitively,and to improve the heat transfer efficiency,this article tends to developed a welded plate heat exchanger with a tube plate. After the application of the tube plate,it can help to measure the temperature distribution between the plates in the flow channel and the related data of the medium in the heat transfer process. Through the analysis of measured data,it is aim to optimize the combination form of the product flow process,and to give a guidance in heat transfer scheme with reasonable selections.%为更加直观的分析焊接式板式换热器的换热效果并提高其换热效率,研制了一种焊接式板式换热器带管板片。带管板片在焊接式板式换热器中应用后,可协助测量换热器在换热过程中板间流道的温度分布情况和介质的相关数据,通过对测量数据的分析,以期达到优化产品流程组合形式,为合理选择换热方案起指导作用。

  14. On applicability of plate and shell heat exchangers for steam generation in naval PWR

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir, E-mail: luciano.ondir@gmail.com; Andrade, Delvonei Alves de, E-mail: delvonei@ipen.br

    2014-12-15

    Highlights: • Given emissions restrictions, nuclear propulsion may be an alternative. • Plate and shell heat exchangers (PSHE) are a mature technology on market. • PSHE are compact and could be used as steam generators. • Preliminary calculations to obtain a PWR for a large container ship are performed. • Results suggest PSHE improve overall compactness and cost. - Abstract: The pressure on reduction of gas emissions is going to raise the price of fossil fuels and an alternative to fossil fuels is nuclear energy. Naval reactors have some differences from stationary PWR because they have limitations on volume and weight, requiring compact solutions. On the other hand, a source of problems in naval reactors across history is the steam generation function. In order to reduce nuclear containment footprint, it is desirable to employ integral designs, which, however, poses complications and design constraints for recirculation type steam generators, being interesting to employ once through steam generators, whose historic at Babcock and Wilcox is better than recirculation steam generators. Plate and shell heat exchangers are a mature technology made available by many suppliers which allows heat exchange at high temperature and pressure. This work investigates the feasibility of the use of an array of welded plate heat exchangers of a material approved by ASME for pressure barrier (Ti-3Al-2.5V) in a hypothetical naval reactor. It was found it is feasible from thermal-hydraulic point of view and presents advantages over other steam generator designs.

  15. Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium.

    Science.gov (United States)

    Uddin, Ziya; Harmand, Souad

    2013-02-07

    The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size.

  16. Estimation of spatially varying heat transfer coefficient from a flat plate with flush mounted heat sources using Bayesian inference

    Science.gov (United States)

    Jakkareddy, Pradeep S.; Balaji, C.

    2016-09-01

    This paper employs the Bayesian based Metropolis Hasting - Markov Chain Monte Carlo algorithm to solve inverse heat transfer problem of determining the spatially varying heat transfer coefficient from a flat plate with flush mounted discrete heat sources with measured temperatures at the bottom of the plate. The Nusselt number is assumed to be of the form Nu = aReb(x/l)c . To input reasonable values of ’a’ and ‘b’ into the inverse problem, first limited two dimensional conjugate convection simulations were done with Comsol. Based on the guidance from this different values of ‘a’ and ‘b’ are input to a computationally less complex problem of conjugate conduction in the flat plate (15mm thickness) and temperature distributions at the bottom of the plate which is a more convenient location for measuring the temperatures without disturbing the flow were obtained. Since the goal of this work is to demonstrate the eficiacy of the Bayesian approach to accurately retrieve ‘a’ and ‘b’, numerically generated temperatures with known values of ‘a’ and ‘b’ are treated as ‘surrogate’ experimental data. The inverse problem is then solved by repeatedly using the forward solutions together with the MH-MCMC aprroach. To speed up the estimation, the forward model is replaced by an artificial neural network. The mean, maximum-a-posteriori and standard deviation of the estimated parameters ‘a’ and ‘b’ are reported. The robustness of the proposed method is examined, by synthetically adding noise to the temperatures.

  17. Experimental Study on Frost Height of Round Plate Fin-Tube Heat Exchangers for Mobile Heat Pumps

    Directory of Open Access Journals (Sweden)

    Dong-Yeon Lee

    2012-09-01

    Full Text Available The objective of this study was to provide experimental data that could be used to predict frost growth and frost performance of a round plate fin-tube heat exchanger for low temperature heat pumps used in zero emission vehicles under cold weather conditions. In this study, round plate fin-tube heat exchangers were tested with variation of the fin space, air flow rate, relative humidity, and inlet air temperature. Frost height was measured and considered with the boundary layer interruption between fins. Frost height for 8.0 mm of fin space was increased by approximately 91.9% with an increase of relative humidity from 50.0% to 80.0%. The growth rate of frost height at 1.2 m3/min was observed to be 13.0% greater than that at 0.8 m3/min. Finally, the variation of the blockage ratio with fin space would be an important reference for designing advanced heat exchangers that operate under cold weather conditions.

  18. Oceanic corrosion test of bare and zinc-protected aluminum alloys for seawater heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Sasscer, D.S.; Ernst, R.; Morgan, T.O.; Rivera, C.; Scott, A.C.; Summerson, T.J.

    1984-01-01

    In a cooperative research effort between The Puerto Rico Center of Energy and Environment Research, Kaiser Aluminum and Chemical Corporation and The Trane Company, a six month study was made of the seawater corrosion performance of various aluminum materials to test their suitability for use in seawater heat exchangers. The materials tested included bare 3004 tubes, 7072 Alclad 3004 tubes and bare and zinc diffusion treated 3003 extrusions from a brazed aluminum, plate-fin heat exchanger extrusions from a brazed aluminium, plate-fin heat exchanger developed by The Trane Company. The test materials were exposed to 1.8 m/sec flowing seawater aboard an open ocean test facility moored 3.4 km off the southeast coast of Puerto Rico. After six months exposure, the average corrosion rates for most varieties of aluminum materials converged to a low value of 0.015 mm/yr (0.6 mils/yr).

  19. Determination Global Heat Transfer Coefficient in Shell and Tube Type and Plates Heat Exchangers

    OpenAIRE

    Duarte, José Arnaldo

    2012-01-01

    The literature on heat exchangers is very wide because of numerous existing configurations, several types of fluids used, as well as the variety of applications. On the other hand, when we need to calculate a heat exchanger, a similar procedure is hardly found. Therefore, we propose this educational work in order to facilitate the calculation procedures, when the student or the professional in the area needs a script for its design. The heat exchanger is installed in the Laboratory of Thermal...

  20. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Science.gov (United States)

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  1. Local heat transfer coefficients during the evaporation of 1,1,1,2-tetrafluoroethane (R-134a in a plate heat exchanger

    Directory of Open Access Journals (Sweden)

    EMILA ŽIVKOVIĆ

    2009-04-01

    Full Text Available The evaporation heat transfer coefficient of the refrigerant R-134a in a vertical plate heat exchanger was investigated experimentally. The area of the plate was divided into several segments along the vertical axis. For each of the segments, the local value of the heat transfer coefficient was calculated and presented as a function of the mean vapor quality in the segment. Owing to the thermocouples installed along the plate surface, it was possible to determine the temperature distribution and vapor quality profile inside the plate. The influences of the mass flux, heat flux, pressure of system and the flow configuration on the heat transfer coefficient were also taken into account and a comparison with literature data was performed.

  2. Natural Convection Heat and Mass Transfer Flow with Hall Current, Rotation, Radiation and Heat Absorption Past an Accelerated Moving Vertical Plate with Ramped Temperature

    Directory of Open Access Journals (Sweden)

    Gauri Shanker Seth

    2015-01-01

    Full Text Available An investigation of unsteady hydromagnetic natural convection heat and mass trans fer flow with Hall current of a viscous, incompressible, electrically conducting, heat absorbing and optically thin radiating fluid past an accelerated moving vertical plate through fluid saturated porous medium in a rotating environment is carried out when temperature of the plate has a temporarily ramped profile. The exact solutions of momentum, energy and concentration equations are obtained in closed form by Laplace transform technique. The expressions of skin friction, Nusselt number and Sherwood number are also derived. For both ramped temperature and isothermal plates, Hall current tends to accelerate primary and secondary fluid velocities whereas heat absorption and radiation have reverse effect on it. Rotation tends to retard primary fluid velocity whereas it has a reverse effect on secondary fluid velocity. Heat absorption and radiation have tendency to enhance rate of heat transfer at the plate.

  3. UNSTEADY FREE CONVECTIVE FLOW PAST A MOVING VERTICAL POROUS PLATE WITH NEWTONIAN HEATING

    Directory of Open Access Journals (Sweden)

    SANKAR KUMAR GUCHHAIT

    2012-07-01

    Full Text Available The unsteady free convective flow past a vertical porous plate with Newtonian heating has been studied. The governing equations have been solved numerically by Crank-Nicolson implicit finite-difference scheme. The variations of velocity and fluid temperature are presented graphically. It is found that the fluid velocity decreases with an increase in Prandtl number. Both the fluid velocity and the fluid temperature increase with an increase in suction parameter. An increase in Grashof number leads to rise in the fluid velocity. Further, it is observed that the shear stress and the rate of heat transfer at the plate increase with an increase in either Prandtlnumber or suction parameter or time.

  4. Magnetohydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-06-01

    Full Text Available The combined effects of viscous dissipation and Joule heating on the momentum and thermal transport for the magnetohydrodynamic flow past an inclined plate in both aiding and opposing buoyancy situations have been carried out. The governing non-linear partial differential equations are transformed into a system of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using the Runge–Kutta fourth order method with shooting technique. Numerical results are obtained for the fluid velocity, temperature as well as the shear stress and the rate of heat transfer at the plate. The results show that there are significant effects of pertinent parameters on the flow fields.

  5. Exact microscopic theory of electromagnetic heat transfer between a dielectric sphere and plate

    CERN Document Server

    Otey, Clayton

    2011-01-01

    Near-field electromagnetic heat transfer holds great potential for the advancement of nanotechnology. Whereas far-field electromagnetic heat transfer is constrained by Planck's blackbody limit, the increased density of states in the near-field enhances heat transfer rates by orders of magnitude relative to the conventional limit. Such enhancement opens new possibilities in numerous applications, including thermal-photo-voltaics, nano-patterning, and imaging. The advancement in this area, however, has been hampered by the lack of rigorous theoretical treatment, especially for geometries that are of direct experimental relevance. Here we introduce an efficient computational strategy, and present the first rigorous calculation of electromagnetic heat transfer in a sphere-plate geometry, the only geometry where transfer rate beyond blackbody limit has been quantitatively probed at room temperature. Our approach results in a definitive picture unifying various approximations previously used to treat this problem, ...

  6. NATURAL CONVECTION IN MHD TRANSIENT FLOW PAST AN ACCELERATED VERTICAL PLATE WITH HEAT SINK

    Directory of Open Access Journals (Sweden)

    N. AHMED

    2014-09-01

    Full Text Available The problem of an MHD heat and mass transfer flow past an accelerated infinite vertical plate in a porous medium in presence of chemical reaction, thermal diffusion and first order heat sink is studied. A magnetic field of uniform strength is assumed to be applied normal to the field directed to the fluid region. The resulting system of equations governing the fluid motion is solved by adopting Laplace Transform technique in closed form. The effects of the physical parameters involved in the problem on the flow and the transport characteristics are studied graphs.

  7. Marangoni effect of cracked liquid film of an aqueous electrolyte flowing over a vertical heated plate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An experimental investigation was performed on Marangoni effect of cracked liquid film of aqueous Na2SO4 flowing over a vertical heated plate by using a sensitive infrared imaging technique. The results show that the thermal and solutal Marangoni effects, which result from the non-uniform distributions of surface temperature and concentration of the film, respectively, occur in the streamwise and transverse directions of the film, generating different influences on the film heat transfer. Taking account of the Marangoni number (Ma) and the solution concentration (c0), a correlation of the Nusselt number (Nu) for the cracked liquid film is proposed.

  8. Real-time simulation of thermal stresses and creep in plates subjected to transient heat input

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Jacobsen, Torben Krogsdal; Hansen, P.N.

    1997-01-01

    This paper presents a novel numerical technique for solving the temperature and stress fields in a plate subjected to arbitrarily varying transient boundary conditions (transient temperature and heat-flux variations) on a surface. The numerical method is based on the control-volume finite......-difference approach. It applies a general formulation which takes into account nonconstant material properties (e.g. temperature, material, or time dependency), heat-transfer coefficients, and creep. The temperature calculation applies a one-dimensional numerical model, whereas the stress analysis is semi...

  9. Superconducting aluminum heat switch and plated press-contacts for use at ultralow temperatures.

    Science.gov (United States)

    Mueller, R M; Buchal, C; Oversluizen, T; Pobell, F

    1978-04-01

    We have measured the thermal conductivity of a 0.1-mm-thick Al foil in the normal and superconducting state down to 58 mK. At this temperature, our data give a ratio for the conductivities of k(n)/k(s)=1600 T(-2). They show that Al is a better material for a heat switch than the usually used superconductors because of its large k(n) and large Debye temperature (reducing the lattice conductivity k(s)). In addition, we describe the design of a heat switch and an excellent performing demountable press-contact between Al and Cu, both gold plated, as joint to the switch.

  10. Effect of two steel plate's interface on heat transfer under laser beam irradiation

    CERN Document Server

    Zhao Jian Heng; Zhang Shi Wen; Gui Yuan Zhen; Wang Chun Yan; Tang Xiao Song; Zhang Da Yong

    2002-01-01

    It is supposed that there is a gap in the interface of two contacting steel plates due to thermal deformation under laser beam irradiation, and this gap will affect heat transfer in this interface obviously. This supposition is testified by experiments and simulation. This work is helpful to the study of the destruction mechanism under high power laser loading, and provides an effective way for anti-laser research

  11. Heat Transfer on Steady MHD rotating flow through porous medium in a parallel plate channel

    Directory of Open Access Journals (Sweden)

    Dr. G. Prabhakara Rao,

    2015-04-01

    Full Text Available We discussed the combined effects of radiative heat transfer and a transverse magnetic field on steady rotating flow of an electrically conducting optically thin fluid through a porous medium in a parallel plate channel and non-uniform temperatures at the walls. The analytical solutions are obtained from coupled nonlinear partial differential equations for the problem. The computational results are discussed quantitatively with the aid of the dimensionless parameters entering in the solution.

  12. Laminar film condensation heat transfer on a vertical, non-isothermal, semi-infinite plate

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    This paper gives similarity transformations for laminar film condensation on a vertical flat plate with variable temperature distribution and finds analytical solutions for arbitrary Prandtl numbers and condensation rates. The work contrasts with Sparrow and Gregg's assertion that wall temperature variation does not permit similarity solutions. To resolve the long debatable issue regarding heat transfer of non-isothermal case, some useful formulas are obtained, including significant correlations for varying Prandtl numbers. Results are compared with the available experimental data.

  13. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    OpenAIRE

    M. Ghalambaz; Noghrehabadi,A.; Ghanbarzadeh, A.

    2014-01-01

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis param...

  14. Thermal performance of plate-fin heat exchanger using passive techniques: vortex-generator and nanofluid

    Science.gov (United States)

    Khoshvaght-Aliabadi, Morteza

    2016-04-01

    This experimental study investigates the effects of vortex-generator (VG) and Cu/water nanofluid flow on performance of plate-fin heat exchangers. The Cu/water nanofluids are produced by using a one-step method, namely electro-exploded wire technique, with four nanoparticles weight fractions (i.e. 0.1, 0.2, 0.3, and 0.4 %). Required properties of nanofluids are systematically measured, and empirical correlations are developed. A highly precise test loop is fabricated to obtain accurate results of the heat transfer and pressure drop characteristics. Experiments are conducted for nanofluids flow inside the plain and VG channels. Based on the experimental results, utilizing the VG channel instead of the plain channel enhances the heat transfer rate, remarkably. Also, the results show that the VG channel is more effective than the nanofluid on the performance of plate-fin heat exchangers. It is observed that the combination of the two heat transfer enhancement techniques has a noticeably high thermal-hydraulic performance, about 1.67. Finally, correlations are developed to predict Nusselt number and friction factor of nanofluids flow inside the VG channel.

  15. Microstructure and characteristics of high dimension brazed joints of cermets and steel

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2009-12-01

    Full Text Available Purpose: In the article a state of the question concerning stresses in brazing joints of different physical and mechanical properties was appraised as well as possibility of their decrease due to use of different techniques from technological experiments to numerical methods. Evaluation of microstructure and mechanical properties of large dimensional vacuum brazed joints of WC – Co and Ferro Titanit Nicro 128 sinters and precipitation hardened stainless steel of 14 –5 PH (X5CrNiMoCuNb14-5 using copper and silver – copper as the brazing filler metal.Design/methodology/approach: Microscopic examinations with the use of scanning electron microscope (SEM were performed to establish microstructure and diffusion influences on creation of intermetallic phases in the joint. Shear strength Rt and tensile strength Rm of the joints have been defined. It have been state, that the basic factors decreasing quality of the joint, which can occur during vacuum brazing of the WC - Co ISO K05 sinter – Cu or Ag - Cu brazing filler metal – 14 -5 PH steel joints are diffusive processes leading to exchange of the cermets and brazing filler metal elements and creation of intermetallic in the joint. It can have an unfavourable influence on ductility and quality of the joint.Findings: Results of numerical calculations of two-dimensional models of brazed joints for different sizes of surfaces brazed at a constant width of solder gap are presented. Particular attention was paid to stresses occurring in joints of large brazing surfaces.Results of the investigate proved that joints microstructure and mechanical properties depend on filler and parent materials, diffusion process during brazing, leading to exchange of the cermets components and filler metal as well as joint geometry (mainly gap thickness.Practical implications: The results have been applied in surfaces are used in large dimension spinning nozzles of a die for polyethylene granulation, in that

  16. Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions

    Science.gov (United States)

    Wajs, J.; Mikielewicz, D.; Fornalik-Wajs, E.

    2016-09-01

    To solve the problem and to meet the requirements of customers in the field of high heat fluxes transfer in compact units, a new design of plate heat exchanger with minichannels (minichannels PHE) was proposed. The aim was to construct a compact heat exchanger of high effectiveness for the purpose of household cogeneration ORC system. In this paper the experimental analysis of an assembled prototype of such compact heat exchanger was described. The attention was paid to its thermal performance and the heat transfer coefficients under the boiling conditions. Water and ethanol were chosen as working fluids. The maximal value of transferred heat flux was about 84 kW/m2, while of the overall heat transfer coefficient was about 4000 W/(m2K). Estimated values of heat transfer coefficient on the ethanol (boiling) side reached the level of 7500 W/(m2K). The results are promising in the light of future applications, for example in cogeneration ORC systems, however further systematic investigations are necessary.

  17. Experimental study on Transient Natural Convection in a Cube Enclosure with an Isolated Vertical Cyclically Heated Plate

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The low frequency cyclical transient natural convection in a cube enclosure with an internal isolated vertical heated plate was investigated experimentally.A computer-aided experimental system was designed to generate the cyclical heating power input and also used for data reduction.The effects of the cyclic heating power input amplitude(from 0 to 8 W) and frequency(form 1/5400s-1 to 1/600s-1) as well as the per-cycle time-average power input(from 8 to 24 W)on the transient and time-average Nusselt number were parametrically studied.It was found that for such cyclical transient natural convection with low frequency,the plate heating power input amplitude and frequency have little effects on the time-average Nusselt number as long as the cyclical time-average heating power input remains the same,although the transient Nusselt number may be significantly affected.Therefore,the modified Grashof number based on the plate average heat flux can be used to characterize the time-average heat transfer process.The plate time-average Nusselt number is about 15% less than the infinite-space Nusselt number,The location of the isolated plate in enclosure does not appreciably influence the time-average heat transfer characteristics of the plate.

  18. Heat Transfer Analysis of a Flat-plate Solar Collector Running a Solid Adsorption Refrigerator

    Directory of Open Access Journals (Sweden)

    S. Thiao

    2014-05-01

    Full Text Available Adsorption solar cooling appears to have prospect in the tropical countries. The present study is a theoretical investigation of the performance of a solar adsorption refrigerator using a flat-plate solar collector. The values of glass cover and absorber plate temperatures obtained from numerical solutions of heat balance equations are used to predict the solar coefficient of performance of the solar refrigerator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. The effects of optical parameters of the glass cover such as absorption and transmission coefficients on glass cover and absorber plate temperatures and consequently on the coefficient of performance are analyzed. As a result, it is found that the absorber plate temperature is less to the absorption coefficient than the cover glass temperature. Also the thermal radiation exchange has more effect on the cover glass temperature. The higher values of COP are obtained between 11 and 13 h during the morning when the temperatures of the absorber plate and the ambient temperatures increase. Moreover the COP increases with the coefficient of transmission of the glass cover but the main parameter acting on the variations of the COP remains the temperature of the evaporator.

  19. Surface treatment to improve corrosion resistance of A1 plate heat exchangers

    Institute of Scientific and Technical Information of China (English)

    Jong-Soon KIM; Tae-Ho KANG; In-Kwan KIM

    2009-01-01

    The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3-5, 2.0-9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.

  20. Effect of different heating methods on deformation of metal plate under upsetting mechanism in laser forming

    Science.gov (United States)

    Shi, Yongjun; Liu, Yancong; Yi, Peng; Hu, Jun

    2012-03-01

    In a laser forming process, different forming mechanisms have different deformation behaviors. The aim of laser forming is to acquire plane strain under an upsetting mechanism, while a plate undergoes a small bending deformation. In some industrial applications, the bending strain should not occur. To achieve high-precision forming, the deformation behaviors of a metal plate when an upsetting mechanism plays a dominant role are studied in the paper. Several heating methods are proposed to reduce the plane strain difference along the thickness direction and little bending deformation resulting from a small temperature difference between the top and bottom surfaces of the plate. The results show that negligible bending deformation and a uniform plastic plane strain field can be obtained by simultaneously heating the top and bottom surfaces with the same process parameters. A conventional scanning method needs a larger spot diameter and slower scanning speed under the upsetting mechanism, but a smaller spot diameter and quicker scanning speed may be selected using the simultaneous heating method, which can greatly widen the potential scope of process parameters.

  1. Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer

    Directory of Open Access Journals (Sweden)

    M. Das

    2015-12-01

    Full Text Available The influence of Newtonian heating on heat and mass transfer in unsteady hydromagnetic flow of a Casson fluid past a vertical plate in the presence of thermal radiation and chemical reaction is studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behavior. The fluid flow is induced due to periodic oscillations of the plate along its length and a uniform transverse magnetic field is applied in a direction which is normal to the direction of fluid flow. The partial differential equations governing the flow, heat, and mass transfer are transformed to non-dimensional form using suitable non-dimensional variables which are then solved analytically by using Laplace transform technique. The numerical values of the fluid velocity, fluid temperature, and species concentration are depicted graphically whereas the values of skin-friction, Nusselt number, and Sherwood number are presented in tabular form. It is noticed that the fluid velocity and temperature decrease with increasing values of Casson parameter while concentration decreases with increasing values of chemical reaction parameter and Schmidt number. Such a fluid flow model has several industrial and medical applications such as in glass manufacturing, paper production, purification of crude oil and study of blood flow in the cardiovascular system.

  2. MICROSTRUCTURE AND PROPERTIES OF 5A03 AND SUS304 IN TRANSITIONAL BRAZING

    Institute of Scientific and Technical Information of China (English)

    Lu Xueqin; Yang Shanglei; Wu Yixiong

    2005-01-01

    Stainless steel is so different from aluminum alloys in physical and chemical characters.When they are welded directly, there tend to be Al-Fe brittle compounds on the joint. This paper investigates the processing performance, interface microstructures and mechanical properties of aluminum alloys/stainless steel by way of brazing after brush plating a Ni/Cu transitional layer on stainless steel. After the joints are brazed with Al-Si-Cu-Mg~Zn foil brazing filler metal on different brazing parameters, both the mechanical properties and the microstructures are satisfactory for application.And the influence of the brazing parameters on bonding quality of the brazed joints is discussed in detail. The results reveal that no brittle Al-Fe intermetallic Compound is found in the interfaces. The Ni/Cu electroplating layer effectively hinders the diffusion of Fe atoms from SUS304 to 5A03.Though a little AlCu3 brittle compound is produced, its quantity is too small to affect the strength of the joint.

  3. JOINING OF MOLYBDENUM DISILICIDE TO STAINLESS STEEL USING AMORPHOUS METAL BRAZES-RESIDUAL STRESS ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    VAIDYA, RAJENDRA U [Los Alamos National Laboratory; KAUTZ, DOUGLAS D. [Los Alamos National Laboratory; GALLEGOS, DAVID E. [Los Alamos National Laboratory

    2007-01-30

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L jOints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS{trademark} 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainiess steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses In the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze).

  4. Heat Transfer with Flow and Phase Change in an Evaporator of Miniature Flat Plate Capillary Pumped Loop

    Institute of Scientific and Technical Information of China (English)

    Zhongmin WAN; Wei LIU; Zhaoqing ZHENG; A. Nakayama

    2007-01-01

    An overall two-dimensional numerical model of the miniature flat plate capillary pumped loop (CPL) evaporator is developed to describe the liquid and vapor flow, heat transfer and phase change in the porous wick structure,liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and metallic wall.The entire evaporator is solved with SIMPLE algorithm as a conjugate problem. The effect of heat conduction of metallic side wall on the performance of miniature flat plate CPL evaporator is analyzed, and side wall effect heat transfer limit is introduced to estimate the performance of evaporator. The shape and location of vapor-liquid interface inside the wick are calculated and the influences of applied heat flux, liquid subcooling, wick material and metallic wall material on the evaporator performance are investigated in detail. The numerical results obtained are useful for the miniature flat plate evaporator performance optimization and design of CPL.

  5. Heat transfer coefficient distribution over the inconel plate cooled from high temperature by the array of water jets

    Science.gov (United States)

    Malinowski, Z.; Telejko, T.; Cebo-Rudnicka, A.; Szajding, A.; Rywotycki, M.; Hadała, B.

    2016-09-01

    The industrial rolling mills are equipped with systems for controlled water cooling of hot steel products. A cooling rate affects the final mechanical properties of steel which are strongly dependent on microstructure evolution processes. In case of water jets cooling the heat transfer boundary condition can be defined by the heat transfer coefficient. In the present study one and three dimensional heat conduction models have been employed in the inverse solution to heat transfer coefficient. The inconel plate has been heated to about 900oC and then cooled by one, two and six water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient distributions at plate surface have been determined in time of cooling.

  6. 316L stainless steel silver plated plate vacuum heat treatment technology%316L不锈钢镀银板的真空热处理工艺

    Institute of Scientific and Technical Information of China (English)

    王红涛

    2012-01-01

      本文分别通过探讨真空环境下热处理温度和热处理时间对316L不锈钢镀银板性能的影响,从而确定316L不锈钢镀银板的最佳真空热处理工艺。%  This paper through the study of the vacuum heat treatment temperature on properties of 316L stainless steel silver plate, so as to determine the optimal 316L stainless steel silver plated vacuum heat treatment technology.

  7. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    OpenAIRE

    Nikitin, A.; L. Schleuss; R. Ossenbrink; V. Michailov

    2017-01-01

    Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an importan...

  8. A simple method to definethe heat conductivity of a limited plate

    Directory of Open Access Journals (Sweden)

    Evdokimov Andrey Sergeevich

    2014-02-01

    Full Text Available To the present moment there are a lot of ways to define heat conductivity and thermal diffusivity of solid bodies. The schemes of determining heat conductivity, which use transient methods, usually include a heater and a cooler. The sample is placed in between them. The temperature and temperature differential is determined using several thermocouples.The authors present a method of determining the thermal characteristics of a sample in the form of a rectangular plate, allowing to apply only one thermocouple, which leads to a simple analytical expression for thermal diffusivity. The described method provides high-precision determination of thermal diffusivity of the body of small size and with the accuracy sufficient for practice — conductivity coefficient. The method uses a simple mathematical model and minimal hardware resources compared to other methods. The exception is the heat-insulating materials. The determination of their thermal conductivity using this method can lead to poor accuracy.

  9. Thermal stresses induced by a point heat source in a circular plate by quasi-static approach

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength g_(pi) situated at certain circle along the radial direction of the circular plate and releasing its heat spontaneously at time t=τ.A circular plate is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary of r=b.The governing heat conduction equation is solved by using the integral transform method,and res...

  10. Effect of controlling parameters on heat transfer during spray impingement cooling of steel plate

    Directory of Open Access Journals (Sweden)

    Purna C. Mishra

    2013-09-01

    Full Text Available The heat transfer characteristics of air-water spray impingement cooling of stationary steel plate was experimentally investigated. Experiments were conducted on an electrically heated flat stationary steel plate of dimension 120 mm x 120 mm x 4 mm. The controlling parameters taken during the experiments were airwater pressures, water flow rate, nozzle tip to target distance and mass impingement density. The effects of the controlling parameters on the cooling rates were critically examined during spray impingement cooling. Air assisted DM water was used as the quenchant media in the work. The cooling rates were calculated from the time dependent temperature profiles were recorded by NI-cRIO DAS at the desired locations of the bottom surface of the plate embedded with K-type thermocouples. By using MS-EXCEL the effects of these cooling rate parameters were analysed The results obtained in the study confirmed the higher efficiency of the spray cooling system and the cooling strategy was found advantageous over the conventional cooling methods in the present steel industries

  11. Heat transfer and pressure drop of a gasket-sealed plate heat exchanger depending on operating conditions across hot and cold sides

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Hyouck Ju [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-05-15

    In a gas engine based cogeneration system, heat may be recovered from two parts: Jacket water and exhaust gas. The heat from the jacket water is often recovered using a plate-type heat exchanger, and is used for room heating and/or hot water supply applications. Depending on the operating conditions of an engine and heat recovery system, there may be an imbalance in the flow rate and supply pressure between the engine side and the heat-recovery side of the heat exchanger. This imbalance causes deformation of the plate, which affects heat transfer and pressure drop characteristics. In the present study, the heat transfer and pressure drop inside a heat exchanger were investigated under varying hot-side and cold-side operating conditions. Thermal efficiency of the plate heat exchanger decreases up to 30% with an operating engine load of 50%. A correction factor for the pressure drop correlation is proposed to account for the deformation caused by an imbalance between the two sides of a heat exchanger.

  12. Numerical simulation of side heating for controlling angular distortion in multipass MMAW butt welded plates

    Indian Academy of Sciences (India)

    Adinath V Damale; Keshav N Nandurkar

    2015-04-01

    Distortion is a severe problem in weld products.It depends on various process parameters like plate thickness, current, voltage, type of weld joint and restraints put on. If distortion is not properly dealt during welding then the product may become useless from geometric accuracy point of view. In the present study, a 3-D coupled transient thermal analysis model with auxiliary side heating (parallel heating) is developed to control angular distortion. During analysis, parallel heating flames are placed at several locations from weld line in cross direction. A user defined subroutine is used to apply transient heat source and side heating flames. Element birth and death technique is used to simulate the filler material deposition. One side multipass 'V' butt weld configuration is used for this study. A series of observational tests are done with a special experimental fixture using Manual Metal Arc Welding (MMAW) to validate the proposed FEA model. It is found that the angular distortion has decreased from 2 mm to 0.4 mm with change in side heating distance from 50 to 90 mm from the weld line.

  13. Ohmic Heating and Viscous Dissipation Effects over a Vertical Plate in the Presence of Porous Medium

    Directory of Open Access Journals (Sweden)

    LOGANATHAN PARASURAM

    2016-01-01

    Full Text Available An analysis is performed to investigate the ohmic heating and viscous dissipation effects on an unsteady natural convective flow over an impulsively started vertical plate in the presence of porous medium with radiation and chemical reaction. Numerical solutions for the governing boundary layer equations are presented by finite difference scheme of the Crank Nicolson type. The influence of various parameters on the velocity, the temperature, the concentration, the skin friction, the Nusselt number and the Sherwood number are discussed. It is observed that velocity and temperature increases with increasing values of permeability and increasing values of Eckert number, whereas it decreases with increasing values of magnetic parameter. An increase in ohmic heating and viscous heating increases the velocity boundary layer. An increase in ohmic heating decreases the temperature. An increase in magnetic field reduces the temperature profile. The velocity profile is highly influenced by the increasing values of permeability. It is observed that permeability has strong effect on velocity. An enhancement in ohmic heating increases the shear stress, decreases the rate of heat transfer and induces the rate of mass transfer.

  14. Natural Convection Flow along an Isothermal Vertical Flat Plate with Temperature Dependent Viscosity and Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Mamun Molla

    2014-01-01

    Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.

  15. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  16. Numerical estimation of heat transfer characteristics for two-row plate-finned tube heat exchangers with experimental data

    Science.gov (United States)

    Chen, Han-Taw; Lu, Chih-Han; Huang, Yao-Sheng; Liu, Kuo-Chi

    2016-05-01

    This study applies a three-dimensional computational fluid dynamics commercial software in conjunction with various flow models to estimate the heat transfer and fluid flow characteristics of the two-row plate-finned tube heat exchanger in staggered arrangement. The effect of air speed and fin spacing on the results obtained is investigated. Temperature and velocity distributions of air between the two fins and heat transfer coefficient on the fins are determined using the laminar flow and RNG k-ɛ turbulence models. More accurate results can be obtained, if the heat transfer coefficient obtained is close to the inverse results and matches existing correlations. Furthermore, the fin temperature measured at the selected locations also coincides with the experimental temperature data. The results obtained using the RNG k-ɛ turbulence model are more accurate than those using the laminar flow model. An interesting finding is the number of grid points may also need to change with fin spacing and air speed.

  17. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps

    Science.gov (United States)

    Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar

    2016-06-01

    Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2-SiO2, Au-Au, SiO2-Au and Au-Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification.

  18. Desain Compact Heat Exchanger Tipe Plate Fin Sebagai Pendingin Motor Pada Boiler Feed Pump

    Directory of Open Access Journals (Sweden)

    Nur Sapti Marsheliyana

    2013-12-01

    Full Text Available Listrik meringankan pekerjaan manusia. Dalam mengalirkan listrik pembangkit listrik tenaga uap menggunakan motor listrik sebagai starting awal. Untuk menjaga motor listrik tetap bekerja maksimal diperlukan proses pendinginan. Selama ini motor listrik hanya didinginkan menggunakan fan, namun masalah lain muncul ketika udara luar lembab atau saat udara mengandung debu/partikulat. Hal ini menyebabkan dinding motor listrik ditempeli oleh debu/partikulat yang akan menyebabkan panas tidak bisa keluar dari motor, sehingga terjadi overheating dan motor mudah mengalami kerusakan. Tujuan dari penelitian ini adalah merancang sebuah alat pendingin motor dengan menggunakan alat penukar panas compact tipe plate fin. Pada penelitian ini data operasi diperoleh dari pembangkit listrik tenaga uap dan perancangan desain alat penukar panas berdasarkan spesifikasi yang ada pada buku Kays and London. Setelah dihitung akan dibandingkan nilai UALMTD dengan UAdesain. Variasi pada penelitian ini adalah beban yang harus didinginkan oleh heat exchanger fungsi temperatur masuk dan keluar dari heat exchanger.  Hasil dari penelitian diperoleh dimensi plate fin heat exchanger yang memiliki spesifikasi sesuai desain permukaan 5.3 dari buku Kays and London dengan panjang 1,556 m, lebar 0,897 m, dan tinggi 1,299 m. Sedangkan nilai UALMTD sebesar 17,364 kW/K dan UAdesain sebesar 17,599 kW/K. Kesimpulannya pada analisa performa terhadap variasi beban yang harus didinginkan yaitu semakin tinggi beban yang didinginkan semakin tinggi pula nilai effectiveness. Hal ini terlihat pada beban 105 % dengan efektivitas 0,8845.

  19. Computational heat transfer analysis and combined ANN–GA optimization of hollow cylindrical pin fin on a vertical base plate

    Indian Academy of Sciences (India)

    C Balachandar; S Arunkumar; M Venkatesan

    2015-09-01

    In the devices like laptops, microprocessors, the electric circuits generate heat while performing work which necessitates the use of fins. In the present work, the heat transfer characteristics of hollow cylindrical pin fin array on a vertical rectangular base plate is studied using commercial CFD code ANSYS FLUENT© . The hollow cylindrical pin fins are arranged inline. The heat transfer augmentation is studied for different parameters such as inner radius, outer radius, height of the fins and number of pin fins. The base plate is supplied with a constant heat flux in the range of 20–500W. The base plate dimensions are kept constant. The base plate temperature is predicted using Artificial Neural Network (ANN) by training the network based on the results of numerical simulation. The trained ANN is used to analyse the fin in terms of enhanced heat transfer and weight reduction when compared to solid pin fin. Optimization of the hollow cylindrical pin fin parameters to obtain maximum heat transfer from the base plate is carried out using Genetic Algorithm (GA) applied on the trained neural network. The analysis using the numerical simulation and neural network shows that the hollow fins provide an increased heat transfer and a weight reduction of about 90% when compared to solid cylindrical pin fins.

  20. Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport

    Science.gov (United States)

    Becker, Thorsten W.; Conrad, Clinton P.; Buffett, Bruce; Müller, R. Dietmar

    2009-02-01

    Variations in Earth's rates of seafloor generation and recycling have far-reaching consequences for sea level, ocean chemistry, and climate. However, there is little agreement on the correct parameterization for the time-dependent evolution of plate motions. A strong constraint is given by seafloor age distributions, which are affected by variations in average spreading rate, ridge length, and the age distribution of seafloor being removed by subduction. Using a simplified evolution model, we explore which physical parameterizations of these quantities are compatible with broad trends in the area per seafloor age statistics for the present-day and back to 140 Ma from paleo-age reconstructions. We show that a probability of subduction based on plate buoyancy (slab-pull, or "sqrt(age)") and a time-varying spreading rate fits the observed age distributions as well as, or better than, a subduction probability consistent with an unvarying "triangular" age distribution and age-independent destruction of ocean floor. Instead, we interpret the present near-triangular distribution of ages as a snapshot of a transient state of the evolving oceanic plate system. Current seafloor ages still contain hints of a ˜ 60 Myr periodicity in seafloor production, and using paleoages, we find that a ˜ 250 Myr period variation is consistent with geologically-based reconstructions of production rate variations. These long-period variations also imply a decrease of oceanic heat flow by ˜ - 0.25%/Ma during the last 140 Ma, caused by a 25-50% decrease in the rate of seafloor production. Our study offers an improved understanding of the non-uniformitarian evolution of plate tectonics and the interplay between continental cycles and the self-organization of the oceanic plates.

  1. Laser brazing of inconel 718 alloy with a silver based filler metal

    Science.gov (United States)

    Khorram, A.; Ghoreishi, M.; Torkamany, M. J.; Bali, M. M.

    2014-03-01

    In the presented study laser brazing of an inconel 718 alloy with silver based filler metal using 400 W pulsed Nd:YAG laser is investigated. Laser brazing was performed with varying laser frequency, pulse width, process speed and gap distance. The effect of preheating on wetting and spreading also was studied. Brazing geometrical images were observed using an optical microscope. The composition analysis and microstructure of the filler metal and brazed joints were examined using X-ray diffraction analyzer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Micro-hardness and tensile test were performed for investigation of mechanical properties. The experimental observations show that filler metal consist of α-Ag solid solution, ά-Cu solid solution surround by the α-Ag solid solution and eutectic structure. Phases of the brazed joint are similar to the filler metal. The results indicate that the filler metal has adequate wetting and spreading on inconel 718 and the wetting angle depends on the heat input significantly. Interdiffusion occurs in laser brazing and the average thickness of reaction layer is approximately 2.5 μm. Whenever the gap is big, it is needed to use longer pulse width in order to have a better melting flow. Preheating has significant influence on wetting and spreading of the filler metal.

  2. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids

    Directory of Open Access Journals (Sweden)

    Azher M. Abed

    2015-03-01

    Full Text Available The heat transfer and flow characteristics in corrugated with V-shape lower plate using nanofluids are numerically studied. The computations are performed on uniform heat flux over a range of Reynolds number (Re 8000–20,000. The governing equations are numerically solved in the domain by a finite volume method (FVM using the k–ε standard turbulent model. Studies are carried out for different types of nanoparticles Al2O3,CuO, SiO2 and ZnO with different volume fractions in the range of 0–4%. Three different types of base fluid (water, glycerin, ethylene glycol are also examined. Results indicated that the average Nusselt number for nanofluids is greater than that of the base liquid. The SiO2 nanofluid yields the best heat transfer enhancement among all other type of nanofluids. Heat transfer enhancement increase with increases the volumetric concentration, but it is accompanied by increasing pressure drop values. Moreover, the average Nusselt number increases with an increase in Reynolds number and volume concentration. The SiO2–glycerin nanofluid has the highest Nusselt number compared with other base fluids. The present study shows that these V-shaped wavy channels have advantages by using nanofluids and thus serve as promising candidates for incorporation into efficient heat transfer devices.

  3. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  4. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Directory of Open Access Journals (Sweden)

    M. Ghalambaz

    2014-06-01

    Full Text Available In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb, thermophoresis parameter (Nt and the convective heating parameter (Nc on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc, as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases.

  5. GEH-4-63, 64: Proposal for irradiation of production brazed Zircaloy-2 clad fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Tverberg, J.C.

    1961-05-18

    A brazed end closure is currently being used on prototypical NPR fuel elements. The production closure will use a braze alloy composed of 5% Be + 95% Zry-2 to braze the Zircaloy-2 cap to the jacket and to the metallic uranium core. A similar MTR test, a GEH-4-57, 58, used a braze alloy of the composition 4% Be + 12% Fe + 84% Zry-2 which melts at a lower temperature. In this previous test, element GEH-4-57 failed through a cladding defect located at the base of the braze heat affected zone. Because of this failure it would be desirable to subject a fuel element, which had been subjected to more severe brazing conditions, to the same conditions as GEH-4-57, 58. For this reason the thermal conditions of this test essentially match those of GEH-4-57, 58. This irradiation test consists of two identical fuel elements. The fuel material is normal metallic uranium, Zircaloy-2 clad of the tubular geometry, NPR inner size. The fuel was coextruded at Hanford by General Electric`s Fuels Preparation Department. Each element is 10.8 inches in length with flat Zircaloy-2 end caps brazed to the jacket and uranium core with the 5 Be + 95 Zry-2 brazing alloy, then TIG welded to further insure closure integrity. The elements ar 1.254 inches OD and 0.439 inches ID. For hydraulic purposes a 0.343 inch diamater flow restrictor has been fitted into the central flow channel of both elements.

  6. Strength of vacuum brazed joints for repair; Haallfasthet hos reparationer utfoerda med vakuumloedning

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Leif [Siemens Industrial Turbomachinery AB, Finspaang (Sweden)

    2005-04-01

    Strength data are missing for braze joints. Repaired components cannot fully make use of the strength of the braze, and lifetime will be underestimated. The goal of the project was to generate material data to be able to prolong the lifetime of the components. Two different material combinations were tested, 12% Chromium steel brazed with BNi-2, and a nickel base alloy, IN792 brazed with BNi-5. Tensile testing at room temperature and elevated temperature was performed in the project. Target group is purchasers and suppliers of repaired components. A tensile test specimen with butt joint was developed in the project. The used test specimen worked well for the 12% Chromium steel. The results from testing show that proof stress and tensile strength are strongly depending on the joint gap, particularly at room temperature. High strength, close to base material strength, was achieved with joint gaps smaller than 50{mu}m. For wider joint gaps, strength was lower. Strength was approximately 25% of base material strength for joint gaps over 100{mu}m. The results can be explained by changes in microstructure. Joint gaps wider than 50{mu}m showed evidence of two-phase structure. At 500 deg C, the results also showed a connection between joint gap, microstructure and strength. The generated strength data can be used for calculations of lifetime for repaired components. Two different process errors were discovered in the manufacturing process of the brazed IN792 test specimens. The generated material data are therefor erroneous. The reason for this was two manufacturing errors. The tack welding was done with too high heat input. The surfaces of the joint gap became oxidised and the oxide hindered wetting of the braze. The second reason was that the brazing was done without the prescribed hold time at maximum temperature. The melting of the braze was therefor not completed when cooling started. As a result, the strength of the IN792 specimens was low at both temperatures.

  7. Heat Transfer Characteristics of Dropwise Condensation of Steam on Vertical Polymer Coated Plates

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The plasma polymerization method and dynamic ion-beam mixed implantation method were employed to coat ultra-thin polymer films on copper plates. Experiments indicated that steady dropwise condensation of steam at atmospheric pressure occurred. The condensation heat transfer coefficients increased by approximately 3 and 5-7 times for the polytrimethylvinylsilane film and polytetrafluoroethylene film respectively, compared with the value for film condensation under the same experimental conditions. The temperatures on the condensing surface and inside the test block were found to be rapidly and randomly fluctuated. The properties of the coated films and advantages of the methods used in this investigation were discussed briefly.

  8. The influence of heat treatment by annealing on clad plates residual stresses

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2011-10-01

    Full Text Available The influence of applied clad procedure as well as heat treatment by annealing (650 °C/2h on level and nature of residual stresses was researched. Three clad procedures are used i.e. hot rolling, submerged arc welding (SAW with strip electrode and explosion welding. The relaxed deformation measurement on clad plate surfaces was performed by applying centre-hole drilling method using special measuring electrical resistance strain gauges (rosettes. After performed measuring, size and nature of residual stresses were determined using analytical method. Depending of residual stresses on depth of drilled blind-hole is studied.

  9. Solution of the two- dimensional heat equation for a rectangular plate

    Directory of Open Access Journals (Sweden)

    Nurcan BAYKUŞ SAVAŞANERİL

    2015-11-01

    Full Text Available Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function, and therefore on elliptic functions.

  10. Monitoring of a flat plate solar thermal field supplying process heat

    Directory of Open Access Journals (Sweden)

    Cozzini Marco

    2016-01-01

    Full Text Available The article reports the performance data of a flat plate collector field installed in Austria and supplying process heat to a meat factory, up to a temperature of about 95 °C. The presented data span an entire year, thereby including seasonal effects and allowing for a full characterization of the system performances. Sensor uncertainty is also discussed in detail. Finally, a bin method analysis of the field efficiency is provided. To this purpose, different operating conditions are concisely represented by the so-called reduced temperature, typically used in solar collector applications.

  11. Brazing Inconel 625 Using the Copper Foil

    Science.gov (United States)

    Chen, Wen-Shiang; Wang, Cheng-Yen; Shiue, Ren-Kae

    2013-12-01

    Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μm in thickness is enough for the joint filling. However, the application of Cu foil 100 μm in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μm. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.

  12. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    Science.gov (United States)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  13. Experimental Study on Heat Transfer and Pressure Drop Characteristics of Four Types of Plate Fin-and-Tube Heat Exchanger Surfaces

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    In this paper,air side heat transfer and pressure drop characteristics of twelve three-row plate fin-and-tube heat exchanger cores of four types of fin configurations have been experimentally investigated .The heat transfer and friction factor correlations for the twelve cores are provided in a wide range of Reynolds number.It is found that in the range of Reynolds number tested.the Nusselt number of the slotted fin surface is the largest and that of the plain plate fin is the lowest while the Nusselt numbers of two types of wavy fins are somewhere in between.

  14. Analysis of transient thermal stress in heat-generating plates and hollow cylinders caused by sudden environmental temperature changes

    Science.gov (United States)

    Rosenberg, G. S.; Schoeberle, D. F.; Valentin, R. A.

    1969-01-01

    Analysis and solution are presented for transient thermal stresses in a free heat-generating flat plate and a free, hollow-generating cylinder as a result of sudden environmental changes. The technique used and graphical results obtained are of interest to the heat transfer industry.

  15. Plasma arc brazing - a low energy joining technology for steel sheets; Plasmalichtbogenloeten - eine energiearme Fuegetechnik fuer Feinblechwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Bouaifi, B.; Draugelates, U.; Helmich, A.; Ouaissa, B. [TU Clausthal, Clausthal-Zellerfeld (Germany)

    2001-07-01

    Mild and high strength steel sheets are comparatively difficult to weld. The heat input in the case of conventional welding processes is too high, so that plasma brazing is an attractive alternative and complementary joining process. One characteristic of the process is the independent input of energy and filler material. In addition, the process is practically spatter-free. Plasma brazing reduces joint and panel distortion and is tolerant to surface contamination and metallic surface coatings. The brazed seams are aesthetic in appearance and clear good mechanical properties. (orig.)

  16. Design of plate directional heat transmission structure based on layered thermal metamaterials

    Directory of Open Access Journals (Sweden)

    L. K. Sun

    2016-02-01

    Full Text Available Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an “open cloak”, called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO2 aerogel thermal insulation material. Our results are expected to markedly enhance capabilities in thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.

  17. Numerical analysis on thermal hydraulic performance of a flat plate heat pipe with wick column

    Science.gov (United States)

    Lu, Longsheng; Liao, Huosheng; Liu, Xiaokang; Tang, Yong

    2015-08-01

    A simplified thermal hydraulic model is developed to investigate the influence of wick column on the performance of a flat plate heat pipe (FPHP). The governing equations of the FPHP are solved by using the computational fluid dynamics package FLUENT. The temperature, velocity and pressure fields are obtained. The validity of the model is confirmed by comparing the present solutions with the open literature data. The numerical results show that with the increase of the wick column size, the maximum velocity of the liquid and vapor decreases while the total thermal resistance and capillary heat transfer limit of the FPHP increases gradually. The performance of the FPHP may degrade if the wick column is placed inside the vapor core asymmetrically.

  18. Analytical and Numerical Solutions of Vapor Flow in a Flat Plate Heat Pipe

    Directory of Open Access Journals (Sweden)

    Mohsen GOODARZI

    2012-03-01

    Full Text Available In this paper, the optimal homotopy analysis method (OHAM and differential transform method (DTM were applied to solve the problem of 2D vapor flow in flat plate heat pipes. The governing partial differential equations for this problem were reduced to a non-linear ordinary differential equation, and then non-dimensional velocity profiles and axial pressure distributions along the entire length of the heat pipe were obtained using homotopy analysis, differential transform, and numerical fourth-order Runge-Kutta methods. The reliability of the two analytical methods was examined by comparing the analytical results with numerical ones. A brief discussion about the advantages of the two applied analytical methods relative to each other is presented. Furthermore, the effects of the Reynolds number and the ratio of condenser to evaporator lengths on the flow variables were discussed.Graphical abstract

  19. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Hamidreza; Najafi, Behzad [K. N. Toosi University of Technology, Department of Mechanical Engineering, Tehran (Iran)

    2010-06-15

    In the present paper, a plate and frame heat exchanger is considered. Multi-objective optimization using genetic algorithm is developed in order to obtain a set of geometric design parameters, which lead to minimum pressure drop and the maximum overall heat transfer coefficient. Vividly, considered objective functions are conflicting and no single solution can satisfy both objectives simultaneously. Multi-objective optimization procedure yields a set of optimal solutions, called Pareto front, each of which is a trade-off between objectives and can be selected by the user, regarding the application and the project's limits. The presented work takes care of numerous geometric parameters in the presence of logical constraints. A sensitivity analysis is also carried out to study the effects of different geometric parameters on the considered objective functions. Modeling the system and implementing the multi-objective optimization via genetic algorithm has been performed by MATLAB. (orig.)

  20. The influence of distance between heat sources in hybrid welded plate on fusion zone geometry

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2011-04-01

    Full Text Available Results of numerical analysis into temperature field in hybrid laser-arc welding process with motion of liquid material taken intoaccount are presented in this study. On the basis of obtained results the influence of the distance between the arc foot point and the laserbeam focal point on the shape and size of fusion zone in hybrid butt welded plate. Temperature field was calculated on the basis ofsolution of transient heat transfer equation. The solution of Navier-Stokes equation allowed for simulation of fluid flow in the fusion zone.Fuzzy solidification front was assumed in calculations with linear approximation of solid fraction in solid-liquid region where liquidmaterial flow through porous medium is taken into consideration. Numerical solution algorithms were developed for three-dimensionalproblem. Established numerical model of hybrid welding process takes into account different electric arc and laser beam heat sourcespower distributions.

  1. Design of plate directional heat transmission structure based on layered thermal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L. K.; Yu, Z. F.; Huang, J., E-mail: slk-0-1999@163.com [China Aerodynamics Research and Development Center, Mianyang 621000 (China)

    2016-02-15

    Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an “open cloak”, called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO{sub 2} aerogel thermal insulation material. Our results are expected to markedly enhance capabilities in thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.

  2. Experiments on forced convection form a horizontal heated plate in a packed bed of glass spheres

    Energy Technology Data Exchange (ETDEWEB)

    Renken, K.J. (Univ. of Wisconsin, Milwaukee (USA)); Poulikakos, D. (Univ. of Illinois, Chicago (USA))

    1989-02-01

    This paper presents an experimental investigation of boundary-layer forced convective heat transfer from a flat isothermal plate in a packed bed of spheres. Extensive experimental results are reported for the thermal boundary-layer thickness, the temperature field, and the local wall heat flux (represented by the local Nusselt number). Theoretical findings of previous investigations using the Darcy flow model as well as a general model for themomentum equation accouting for flow inertia and macroscopic shear wtih and without variable porosity are used to evaluate the theoretical models. Several trends are revealed regarding the conditions of validity of these flow models. Overall the general flow model including variable porosity appears to perform better, even through the need for serious improvements in modeling becomes apparent.

  3. Flux-free brazing of Mg-containing aluminium alloys by means of cold spraying

    Institute of Scientific and Technical Information of China (English)

    Kirsten BOBZIN; Lidong ZHAO; Felix ERNST; Katharina RICHARDT

    2008-01-01

    In the present study, AlSi12 and AlSi10Cu4 were deposited onto Mg-containing aluminium alloys 6063 and 5754 by cold spraying. The influences of the two brazing alloys and spray parameters on coating formation were investigated. The microstructure of the coatings was characterized. Some coated samples were heat-treated at 590℃ and 560℃ in air to investigate the effect of the rupture of oxide scales on the diffusion of elements during heat-treatment. Some coated samples were brazed under argon atmosphere without any fluxes. The results show that AlSi12 had much better deposition behaviour than AlSi10Cu4. Due to the rupture of oxide scales, Cu and Si diffused into the substrate and a metal-lurgical bond formed between the brazing alloys and the substrates during heat-treatment. The coated samples could be brazed without any fluxes. Because the oxide scales prevented the formation of a metallurgical bond locally, the brazed samples had relatively low shear strengths of up to 43 MPa.

  4. Brazed Joints Design and Allowables: Discuss Margins of Safety in Critical Brazed Structures

    Science.gov (United States)

    FLom, Yury

    2009-01-01

    This slide presentation tutorial discusses margins of safety in critical brazed structures. It reviews: (1) the present situation (2) definition of strength (3) margins of safety (4) design allowables (5) mechanical testing (6) failure criteria (7) design flowchart (8) braze gap (9) residual stresses and (10) delayed failures. This presentation addresses the strength of the brazed joints, the methods of mechanical testing, and our ability to evaluate the margins of safety of the brazed joints as it applies to the design of critical and expensive brazed assemblies.

  5. A Compendium of Brazed Microstructures For Fission Power Systems Applications

    Science.gov (United States)

    Locci, Ivan E.; Bowman, Cheryl L.

    2012-01-01

    NASA has been supporting design studies and technology development for fission-based power systems that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. This investigation is part of the development of several braze joints crucial for the heat exchanger transfer path from a hot-side heat exchanger to a Stirling engine heat acceptor. Dissimilar metal joints are required to impart both mechanical strength and thermal path integrity for a heater head of interest. Preliminary design work for the heat exchanger involved joints between low carbon stainless steel to Inconel 718, where the 316L stainless steel would contain flowing liquid metal NaK while Inconel 718, a stronger alloy, would be used as structural reinforcement. This paper addressed the long-term microstructural stability of various braze alloys used to join 316L stainless steel heater head to the high conductivity oxygen-free copper acceptor to ensure the endurance of the critical metallic components of this sophisticated heat exchanger. The bonding of the 316L stainless steel heater head material to a copper heat acceptor is required to increase the heat-transfer surface area in contact with flowing He, which is the Stirling engine working fluid.

  6. Forced convection on a heated horizontal flat plate with finite thermal conductivity in a non-Darcian porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Direccion de Operacion Petrolera, Direccion General de Exploracion y Explotacion de Hidrocarburos, Secretaria de Energia, 03100 Mexico DF (Mexico); Mendez, F. [Facultad de Ingenieria, UNAM, 04510 Mexico DF (Mexico)

    2005-07-01

    The steady-state analysis of conjugated heat transfer process for the hydrodynamically developed forced convection flow on a heated flat plate embedded in a porous medium is studied. The governing equations for the fluid-saturated porous medium are solved analytically using the integral boundary layer approximation. This integral solution is coupled to the energy equation for the flat plate, where the longitudinal heat conduction effects are taken into account. The resulting equations are then reduced to an integro-differential equation which is solved by regular perturbation techniques and numerical methods. The analytical and numerical predictions for the temperature profile of the plate and appropriate local and average Nusselt numbers are plotted for finite values of the conduction parameter, {alpha}, which represents the presence of the longitudinal heat conduction effects. (authors)

  7. Feasibility study of fluxless brazing cemented carbides to steel

    Science.gov (United States)

    Tillmann, W.; Sievers, N.

    2017-03-01

    One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.

  8. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  9. Effect of alumina nanofluid jet on the enhancement of heat transfer from a steel plate

    Science.gov (United States)

    Tiara, A. M.; Chakraborty, Samarshi; Sarkar, Ishita; Pal, Surjya K.; Chakraborty, Sudipto

    2016-12-01

    Low thermal conductivity has been found to be a major constraint in developing energy efficient heat transfer fluids in several industrial applications. Nanofluids, prepared by the suspension of nanoparticles in water, have been found to enhance the thermal conductivity of the base fluid, and thereby the cooling rate of the steel surface. In this study, alumina nanofluid has been used to enhance the rate of cooling of a steel surface of dimension 100 mm × 100 mm × 6 mm, from an initial surface temperature of 900 °C. The sub-surface temperature data collected through thermocouple was used for inverse heat conduction calculation in order to estimate the temperature histories and heat flux at the surface. TEM analysis revealed that the nanoparticles were spherical in shape, having an average size of 14 nm. The concentration of the nanofluids was varied from 1 to 20 ppm in this study. A maximum cooling rate of 104 °C/s and critical heat flux (CHF) of 2.10 MW/m2 was obtained for a concentration of 10 ppm, which was 1.2 times and 1.5 times that attained in case of pure water, as depicted by the enhancement in thermal conductivity. Lower concentrations are used in order to strike a balance between surface roughness study and cooling applications. The surface roughness of the plate after the nanofluid jet impingement depicted an enhancement of 7.74%, thereby enhancing the number of nucleation sites and augmenting the value of CHF.

  10. Forced Convective Heat Transfer in a Plate Channel Filled with Solid Particles

    Institute of Scientific and Technical Information of China (English)

    Pei-XueJiang; Ze-PeiRen; 等

    1996-01-01

    A numerical study of fluid flow and convective heat transfer in a plate channel filled with solid(metallic)perticles is presented in this paper,The study uses the thermal equilibrium model and a newly developed numerical model which does not assume idealized local thermal equilibrium between the solid particles and the fluid.The numerical simulation results are compared with the experimental data in reference[2].The paper investigates the effects of the assumption of local thermal equilibrium versus non-thermal equilibrium,the thermal conductivity of the solid particles and the particle diameter on convective heat transfer.For the conditions studied.the convective heat transfer and the temperature filed assuming local thermal equilibrium are much different from that for the non-thermal equilibrium assumption when the difference between the solid and fluid thermal conductivities is large,The relative values of the thermal conductivities of the solid particles and the fluid also have a profound effect on the temperature distribution in the channel.The pressure drop decreases as the particle diameter increases and the convective heat transfer coefficient may decrease of increase as the particle diameter increasws depending on the values of ε,λs,λf,λd,αu,ρu.

  11. Heat Flux Characterization of DC Laminar-plasma Jets Impinging on a Flat Plate at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    孟显; 潘文霞; 张文宏; 吴承康

    2001-01-01

    By using steady and transient methods, the total heat fluxes and the distributions of the heat flux were measured experimentally for an argon DC laminar plasma jet impinging normally on a flat plate at atmospheric pressure. Results show that the total heat fluxes measured with a steady method are a little bit higher than those with a transient method. Numerical simulation work was executed to compare with the experimental results.

  12. Inline Array Jet Impingement Cooling Using Al2O3 / Water Nanofluid In A Plate Finned Electronic Heat Sink

    Directory of Open Access Journals (Sweden)

    R. Reji Kumar

    2016-07-01

    Full Text Available - Jet impingement cooling is a technique used for cooling the electronic systems. In this work, heat transfer and pressure drop characteristics of deionized water and Al2O3/water nanofluid in an electronic heat sink having aluminium plate fins and provision for jet impingement cooling have been studied. A novel heat sink contains two rows of plate fins of size 29mm x 24mm x 0.56mm. A thin plate having 110 holes of diameter 2.5 mm is used to produce number of jets. The plate is kept inside the heat sink in such a way that H/dn is 5.2 mm and adjacent jet spacing is 2mm. The overall dimension of the heat sink is 60x60x 65 mm. For this work we prepared a Al2O3/water nanofluid by dispersing specified quantity of nanoparticles in to deionized water by using a ultrasonic bath. Experiments were conducted under constant heat flux condition and the volume flow rate of the fluid was in the range of 1.315 to 2.778. It is found from the results that the nanofluid removes heat better than water in the jet impingement cooling with very low rise in pressure drop.

  13. Experimental investigation of heat transfer and friction factor in a corrugated plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Shive Dayal Pandey, V.K. Nema

    2011-03-01

    Full Text Available Experiments are conducted to determine the heat transfer characteristics for fully developed flow of air and water flowing in alternate corrugated ducts with an inter-wall spacing equal to the corrugation height. The friction factor is found for air channel. The test section was formed by three identical corrugated channels having corrugation angle of 30 degree with cold air flowing in the middle one and hot water equally divided in the adjacent channels. Sinusoidal wavy arcs connected with tangential flat portions make the said corrugation angle with transverse direction. The Reynolds number based on hydraulic diameter varied from 750 to 3200 for water and from 16900 to 68000 for air by changing the mass flow rates of the two fluids. The Prandtl numbers were approximately constant at 2.55 for water and 0.7 for air. The various correlations are obtained Num=0.247Re^0.83 for water, Num=66.686Re^0.18 and friction factor f = 0.644 / Re^0.18 for air.

  14. Thermal elasto-plastic stress analysis during laser heating of a metal plate

    Science.gov (United States)

    Chen, Yanbei; Lu, Jian; Ni, Xiaowu

    2008-03-01

    During laser heating of a metal material, the continuity of material confines its free expansion, thermal stresses arise. On one hand the thermal expansion of the heated zone of the material increases with the increase of temperature, the thermal stress level increases correspondingly; on the other hand the mechanical properties of the material will change with the increase of temperature, especially the elastic modulus, yield strength and tensile strength drop significantly, which is the so-called thermal softening problem. Due to the effect of the two factors, as the heating time or the intensity of the laser beam increases, it is possible that the stress levels of the heated zone of the material exceed the yield strength, which leads the material to come into a plastic stage. Thus, a thermal plastic problem occurs. In this study, thermal elasto-plastic stresses during laser heating of a metal plate are computed by the finite element method (FEM) based on thermal elasto-plastic constitutive theory. The mechanical behaviors of the metal material during the laser heating are analyzed. By the analysis of the results, it is found that thermal expansion leads to the increase of stress level early during the laser irradiating, and thermal softening causes the decrease of stress levels in the plastic zone and the slow growth and even decrease of stress levels in elastic zone later. The radial stresses are all compressive stresses, and the hoop stresses are compressive stresses within about the laser spot and are tensile stresses at other place. This work may be beneficial to the laser processing of metal materials.

  15. Modeling the dynamic operation of a small fin plate heat exchanger - parametric analysis

    Science.gov (United States)

    Motyliński, Konrad; Kupecki, Jakub

    2015-09-01

    Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC) offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP) units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700-900 °C) is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the cold sides

  16. Modeling the dynamic operation of a small fin plate heat exchanger – parametric analysis

    Directory of Open Access Journals (Sweden)

    Motyliński Konrad

    2015-09-01

    Full Text Available Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700–900 °C is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the

  17. Braze/Rebraze process for CRES steel

    Science.gov (United States)

    Silverman, C. E.

    1976-01-01

    Using induction brazing process with 8.5-Au/16.5-Cu/2.0-Ni braze alloy, joints in 21-6-9 CRES steel tubing can be reworked up to seven times, thus significantly reducing cost of fabrication, repair, and part replacement.

  18. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...... plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance...... on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact...

  19. Free Convective Fluctuating MHD Flow through Porous Media Past a Vertical Porous Plate with Variable Temperature and Heat Source

    Directory of Open Access Journals (Sweden)

    A. K. Acharya

    2014-01-01

    Full Text Available Free convective magnetohydrodynamics (MHD flow of a viscous incompressible and electrically conducting fluid past a hot vertical porous plate embedded in a porous medium in the presence of heat source has been studied in this paper. The temperature of the plate varies both in space and time. The main objective of this paper is to study the effect of porosity of the medium coupled with the variation of plate temperature with regard to space and in time. The effect of pertinent parameters characterizing the flow has been presented through the graphs. It is important to record that the presence of porous media has no significant contribution to the flow characteristics and viscous dissipation compensates for the heating and cooling of the plate due to convective current.

  20. Automatic-Control System for Safer Brazing

    Science.gov (United States)

    Stein, J. A.; Vanasse, M. A.

    1986-01-01

    Automatic-control system for radio-frequency (RF) induction brazing of metal tubing reduces probability of operator errors, increases safety, and ensures high-quality brazed joints. Unit combines functions of gas control and electric-power control. Minimizes unnecessary flow of argon gas into work area and prevents electrical shocks from RF terminals. Controller will not allow power to flow from RF generator to brazing head unless work has been firmly attached to head and has actuated micro-switch. Potential shock hazard eliminated. Flow of argon for purging and cooling must be turned on and adjusted before brazing power applied. Provision ensures power not applied prematurely, causing damaged work or poor-quality joints. Controller automatically turns off argon flow at conclusion of brazing so potentially suffocating gas does not accumulate in confined areas.

  1. A core alternative[Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, R.H. [Chart Heat Exchangers, Wisconsin (United States)

    2001-09-01

    The development of the efficient Core-in-kettle heat exchangers by Chart Heat Exchangers as an alternative to shell and tube exchangers is reported, and its use as condensers and reboilers in ethylene plants and refrigerant condensers and chillers in natural gas processing and liquid natural gas (LNG) plants are discussed. The novel technology is described with details given of the replacement of the tube bundle with a Chart brazed aluminium plate-fin heat exchanger core, the operation of the exchanger, the savings achieved by installing these heat exchangers in new or existing plants, and Core-in-Kettle retrofits of existing shell and tube heat exchangers. The limitations of the use of Core-in-Kettle heat exchangers to clean fluids typical of hydrocarbon processing, and temperature and pressure limitations are noted.

  2. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application

    DEFF Research Database (Denmark)

    Rezania, Alireza; Rosendahl, L. A.

    2015-01-01

    Heat sink configuration has strong impact on net power output from thermoelectric generators (TEGs). A weak cooling strategy can even cause negative net power output from the thermoelectric device. However, the net power output can be significantly improved by optimal design of the heat sink....... In this study, a micro-structured plate-fin heat sink is compared to a modified design of cross-cut heat sink applied to TEGs over a range of temperatures and thermal conductivities. The particular focus of this study is to explore the net power output from the TEG module. The three-dimensional governing...... equations for the flow and heat transfer are solved using computational fluid dynamics (CFD) in conjunction with the thermoelectric characteristics of the TEG over a wide range of flow inlet velocities. The results show that at small flow inlet velocity, the maximum net power output in TEG with plate...

  3. Numerical Study Of The Heat Transfer Phenomenon Of A Rectangular Plate Including Void, Notch Using Finite Difference Technique

    Directory of Open Access Journals (Sweden)

    Deb Nath S.K.

    2015-12-01

    Full Text Available In the present study, we have developed a code using Matlab software for solving a rectangular aluminum plate having void, notch, at different boundary conditions discretizing a two dimensional (2D heat conduction equation by the finite difference technique. We have solved a 2D mixed boundary heat conduction problem analytically using Fourier integrals (Deb Nath et al., 2006; 2007; 2007; Deb Nath and Ahmed, 2008; Deb Nath, 2008; Deb Nath and Afsar, 2009; Deb Nath and Ahmed, 2009; 2009; Deb Nath et al., 2010; Deb Nath, 2013 and the same problem is also solved using the present code developed by the finite difference technique (Ahmed et al., 2005; Deb Nath, 2002; Deb Nath et al., 2008; Ahmed and Deb Nath, 2009; Deb Nath et al., 2011; Mohiuddin et al., 2012. To verify the soundness of the present heat conduction code results using the finite difference method, the distribution of temperature at some sections of a 2D heated plate obtained by the analytical method is compared with those of the plate obtained by the present finite difference method. Interpolation technique is used as an example when the boundary of the plate does not pass through the discretized grid points of the plate. Sometimes hot and cold fluids are passed through rectangular channels in industries and many types of technical equipment. The distribution of temperature of plates including notches, slots with different temperature boundary conditions are studied. Transient heat transfer in several pure metallic plates is also studied to find out the required time to reach equilibrium temperature. So, this study will help find design parameters of such structures.

  4. Numerical Study Of The Heat Transfer Phenomenon Of A Rectangular Plate Including Void, Notch Using Finite Difference Technique

    Science.gov (United States)

    Deb Nath, S. K.; Peyada, N. K.

    2015-12-01

    In the present study, we have developed a code using Matlab software for solving a rectangular aluminum plate having void, notch, at different boundary conditions discretizing a two dimensional (2D) heat conduction equation by the finite difference technique. We have solved a 2D mixed boundary heat conduction problem analytically using Fourier integrals (Deb Nath et al., 2006; 2007; 2007; Deb Nath and Ahmed, 2008; Deb Nath, 2008; Deb Nath and Afsar, 2009; Deb Nath and Ahmed, 2009; 2009; Deb Nath et al., 2010; Deb Nath, 2013) and the same problem is also solved using the present code developed by the finite difference technique (Ahmed et al., 2005; Deb Nath, 2002; Deb Nath et al., 2008; Ahmed and Deb Nath, 2009; Deb Nath et al., 2011; Mohiuddin et al., 2012). To verify the soundness of the present heat conduction code results using the finite difference method, the distribution of temperature at some sections of a 2D heated plate obtained by the analytical method is compared with those of the plate obtained by the present finite difference method. Interpolation technique is used as an example when the boundary of the plate does not pass through the discretized grid points of the plate. Sometimes hot and cold fluids are passed through rectangular channels in industries and many types of technical equipment. The distribution of temperature of plates including notches, slots with different temperature boundary conditions are studied. Transient heat transfer in several pure metallic plates is also studied to find out the required time to reach equilibrium temperature. So, this study will help find design parameters of such structures.

  5. Mechanistic understanding of aerosol emissions from a brazing operation.

    Science.gov (United States)

    Zimmer, A T; Biswas, P

    2000-01-01

    Welding operations produce gaseous and aerosol by-products that can have adverse health effects. A laboratory furnace study was conducted to aid understanding of the chemical and aerosol behavior of a widely used, self-fluxing brazing alloy (89% Cu, 6% Ag, 5% P) that is also used with a supplemental fluxing compound to prevent oxidation at the molten metal surface. The results indicate that the aerosols generated by the alloy are transient (produced over a short duration of time) and are associated with mass transfer of phosphorus species from the molten metal surface to the surrounding gas. In contrast, when the alloy was used in conjunction with the supplemental fluxing compound, a relatively nontransient, submicron-size aerosol was generated that was several orders of magnitude higher in concentration. Thermodynamic equilibrium analysis suggests that fluoride (a major constituent in the fluxing compound) played a significant role in reacting with the brazing alloy metals to form gas phase metal fluoride compounds that had high vapor pressures when compared with their elemental or oxide forms. As these metal-fluoride vapors cooled, submicron-size particles were formed mainly through nucleation and condensation growth processes. In addition, the equilibrium results revealed the potential formation of severe pulmonary irritants (HF and BF3) from heating the supplemental fluxing compound. These results demonstrated the importance of fluxing compounds in the formation of brazing fumes, and suggest that fluxing compounds could be selected that serve their metallurgical intention and suppress the formation of aerosols.

  6. A screening method for the optimal selection of plate heat exchanger configurations

    Directory of Open Access Journals (Sweden)

    Pinto J.M.

    2002-01-01

    Full Text Available An optimization method for determining the best configuration(s of gasketed plate heat exchangers is presented. The objective is to select the configuration(s with the minimum heat transfer area that still satisfies constraints on the number of channels, the pressure drop of both fluids, the channel flow velocities and the exchanger thermal effectiveness. The configuration of the exchanger is defined by six parameters, which are as follows: the number of channels, the numbers of passes on each side, the fluid locations, the feed positions and the type of flow in the channels. The resulting configuration optimization problem is formulated as the minimization of the exchanger heat transfer area and a screening procedure is proposed for its solution. In this procedure, subsets of constraints are successively applied to eliminate infeasible and nonoptimal solutions. Examples show that the optimization method is able to successfully determine a set of optimal configurations with a minimum number of exchanger evaluations. Approximately 5 % of the pressure drop and channel velocity calculations and 1 % of the thermal simulations are required for the solution.

  7. Heat transfer in a low latitude flat-plate solar collector

    Directory of Open Access Journals (Sweden)

    Oko C.O.C.

    2012-01-01

    Full Text Available Study of rate of heat transfer in a flat-plate solar collector is the main subject of this paper. Measurements of collector and working fluid temperatures were carried out for one year covering the harmattan and rainy seasons in Port Harcourt, Nigeria, which is situated at the latitude of 4.858oN and longitude of 8.372oE. Energy balance equations for heat exchanger were employed to develop a mathematical model which relates the working fluid temperature with the vital collector geometric and physical design parameters. The exit fluid temperature was used to compute the rate of heat transfer to the working fluid and the efficiency of the transfer. The optimum fluid temperatures obtained for the harmattan, rainy and yearly (or combined seasons were: 317.4, 314.9 and 316.2 [K], respectively. The corresponding insolation utilized were: 83.23, 76.61 and 79.92 [W/m2], respectively, with the corresponding mean collector efficiency of 0.190, 0.205 and 0.197 [-], respectively. The working fluid flowrate, the collector length and the range of time that gave rise to maximum results were: 0.0093 [kg/s], 2.0 [m] and 12PM - 13.00PM, respectively. There was good agreement between the computed and the measured working fluid temperatures. The results obtained are useful for the optimal design of the solar collector and its operations.

  8. Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, Sepehr; Hajabdollahi, Hassan [Energy Systems Improvement Laboratory (ESIL), Department of Mechanical Engineering, Iran University of Science and Technology (IUST) (Iran)

    2010-06-15

    Thermal modeling and optimal design of compact heat exchangers are presented in this paper. {epsilon}NTU method was applied to estimate the heat exchanger pressure drop and effectiveness. Fin pitch, fin height, fin offset length, cold stream flow length, no-flow length and hot stream flow length were considered as six design parameters. Fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) was applied to obtain the maximum effectiveness and the minimum total annual cost (sum of investment and operation costs) as two objective functions. The results of optimal designs were a set of multiple optimum solutions, called 'Pareto optimal solutions'. The sensitivity analysis of change in optimum effectiveness and total annual cost with change in design parameters of the plate fin heat exchanger was also performed and the results are reported. As a short cut for choosing the system optimal design parameters the correlations between two objectives and six decision variables with acceptable precision were presented using artificial neural network analysis. (author)

  9. Evaluation of crack arrest fracture toughness of parent plate, weld metal and heat affected zone of BIS 812 EMA ship plate steel

    Science.gov (United States)

    Burch, I. A.

    1993-10-01

    The steel chosen for the pressure hull of the Collins class submarine has undergone evaluation to compare the crack arrest fracture toughness, K(Ia), of the parent plate with that of weld metal and heat affected zone. The tests were conducted over a range of subzero temperatures on specimens slightly outside the ASTM standard test method specimen configuration. Shallow face grooved specimens were used to vary the propagating crack velocity from that of non face grooved specimens and determine if K(Ia), is sensitive to changes in crack velocity. The weld metal, heat affected zone (HAZ), and parent plate were assessed to determine if the welding process had a deleterious effect on the crack arrest properties of this particular steel. Tests on each of these regions revealed that, for the combination of parent plate, welding procedure and consumables, no adverse effect on crack arrest properties was encountered. Crack arrest fracture toughness of the weld metal and HAZ was superior to that of the parent plate at comparable temperatures.

  10. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    Science.gov (United States)

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  11. Heat Flow on the Incoming Plate Offshore Nicoya, Costa Rica margin: Implications for Hydrothermal Circulation and the Thermal State of the Subducting Plate

    Science.gov (United States)

    Fisher, A. T.; Harris, R. N.; Stein, C.; Wang, K.; Hutnak, M.; Cherkaoui, A.; Pfender, M.; Cleary, R.; Silver, E.; Wheat, C. G.; Bodzin, R.; Underwood, M.; Moser, C.; Kelly, R.; Friedmann, P.; Stewart, Y.; Jones, K.

    2001-12-01

    The TicoFlux I expedition was intended to determine the nature of hydrothermal activity and its influence on subduction processes offshore of the Nicoya Peninsula, Costa Rica margin, on 20-25 Ma lithosphere. Prior coverage in this region was sparse, but suggested that heat flow from crust created at the East Pacific Rise (EPR) as generally lower (by 50-70%) than expected for seafloor of 20-25 Ma. In contrast, heat flow through similarly-aged seafloor created at the Cocos-Nazca Ridge was at or greater than values predicted by standard lithospheric cooling models. One goal of our expedition was to confirm this overall pattern through collection of modern data at higher resolution along a series of transects coinciding with newly-acquired seismic profiles. A second goal was to determine the cause for the difference in heat flow, through evaluation of the lateral scale of the transition between higher and lower values. If the difference in heat flow is caused by variations in heat input at the base of the plate, the transition should be broad and gradual, with a wavelength that scales with plate thickness. If the difference in seafloor heat flow results from advective mining of heat from EPR-generated lithosphere, the transition should be abrupt, with a wavelength that scales with the depth of hydrothermal cooling. We crossed the transition in three places and in each case, the change from normal to anomalously-low heat flow values occurred over a distance of just a few kilometers, consistent with a shallow, fluid flow explanation. In addition, the survey identified an area of anomalously high heat flow (640 mW/m2) immediately above a deep, low-angle reflection that may be a crust-penetrating fault. High heat flow in this area may result from fluid circulation along the fault, carrying heat from depth. The heat flow survey also demonstrated that a low-heat flow area identified during an earlier survey, and drilled during ODP Leg 170, is surrounded on three sides by

  12. MHD FREE CONVECTION FLOW PAST AN INFINITE VERTICAL PLATE WITH FIRST ORDER CHEMICAL REACTION AND HEAT SOURCE/SINK

    Directory of Open Access Journals (Sweden)

    Dr.Abhay Kumar Jha

    2012-07-01

    Full Text Available The objective of this paper is to study heat and mass transfer on an unsteady two dimensional hydromagnetic laminar mixed convective boundary layer flow of an incompressible fluid past a semi-infinite vertical plate with heat source/ sink. The plate moves with constant velocity in the direction of fluid flow while the free stream velocity follows an exponentially increasing small perturbation law. The dimensionless governing equations are solved analytically using two terms harmonic and non-harmonic functions .the results obtainedand discussed with help of graphs and tables to observe the effect of various parameter concerned in the problem under investigation.

  13. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  14. Laminar Forced Convection Heat and Mass Transfer of Humid Air across a Vertical Plate with Condensation

    Institute of Scientific and Technical Information of China (English)

    李成; 李俊明

    2011-01-01

    Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations.

  15. Hall Effects on Mhd Flow Past an Accelerated Plate with Heat Transfer

    Directory of Open Access Journals (Sweden)

    Sundarnath J.K.

    2015-02-01

    Full Text Available Hall current and rotation on an MHD flow past an accelerated horizontal plate relative to a rotating fluid, in the presence of heat transfer has been analyzed. The effects of the Hall parameter, Hartmann number, rotation parameter (non-dimensional angular velocity, Grashof’s number and Prandtl number on axial and transverse velocity profiles are presented graphically. It is found that with the increase in the Hartmann number, the axial and transverse velocity components increase in a direction opposite to that of obtained by increasing the Hall parameter and rotation parameter. Also, when Ω=M2m /(1 + m2 , it is observed that the transverse velocity component vanishes and axial velocity attains a maximum value.

  16. Heat transfer between two parallel porous plates for Couette flow under pressure gradient and Hall current

    Indian Academy of Sciences (India)

    Hazem A Attia; W Abbas; Mostafa A M Abdeen; Ahmed A M Said

    2015-02-01

    The aim of the present paper is to study the unsteady magneto-hydrodynamic viscous Couette flow with heat transfer in a Darcy porous medium between two infinite parallel porous plates considering Hall effect, and temperature dependent physical properties under constant pressure gradient. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is flowing through a porous medium that is assumed to obey Darcy’s law. A numerical solution for the governing nonlinear partial differential equations coupled with set of momentum equations and the energy equation including the viscous and Joule dissipations is adopted. The effect of the porosity of the medium, the Hall current and the temperature dependent viscosity and thermal conductivity on both the velocity and temperature distributions are investigated. It is found that the porosity numberMhas a marked effect on decreasing the velocity distribution (owing to a simultaneous increase in Darcy porous drag). Also the temperature T is decreased considerably with increasing porosity number.With increasing Hall current parameter m, the velocity component u (x-direction) is considerably increased, whereas velocity component w (z-direction) is reduced. Temperatures are decreased in the early stages of flow but effectively increased in the steady state with increasing m.

  17. Study of Transition from Laminar to Turbulent Boundary Layer on a Tilted Flat Plate Using Heat Transfer Measurements

    Institute of Scientific and Technical Information of China (English)

    E.Sanz; C.Nicot; R.Point; F.Plaza

    2007-01-01

    The boundary layer transition over a flat tilted plate has been studied by means of heat transfer measurements. A heat flux sensor has been developed, in order to measure the efficiency of convective heat transfer for various types of surfaces or flows. Its operation at constant temperature allows direct and fast measurements of heat flux. The present paper reports the development of the sensor and presents its application to the study of transition in a boundary layer depending on the angle of incidence of the external flow. An exponential relationship between critical Reynolds number and pressure gradient parameter has been found.

  18. Enhancement of Heat Transfer in a Liquid Metal Flow past a Thermally Conducting and Oscillating Infinite Flat Plate

    Directory of Open Access Journals (Sweden)

    Puvaneswari Puvaneswari

    2016-01-01

    Full Text Available The effect of conjugation on the enhancement of heat transfer in a liquid metal flow past a thermally conducting and sinusoidally oscillating infinite flat plate, when a constant temperature gradient is superimposed on the fluid, is investigated. The plate is made up of the materials compatible with the liquid metals used and is considered to be of finite thickness. Analytical solutions for the velocity and the temperature of the fluid and the solid are obtained. The effects of thermal conductivity and the thickness of the plate on the total time averaged heat flux transported and the thermal boundary layer thickness are investigated in detail. It is found that the effects of wall thickness and wall thermal conductivity on the heat flux transported depend on their effects on the transverse temperature gradient at any frequency. The optimum value of wall thickness at which the net heat flux transported attains the maximum value, for each fluid and for each wall material under consideration, is reported. A maximum increase of 46.14 % in the heat flux transported can be achieved by optimizing the wall thickness. A maximum convective heat flux of 1.87 × 108W/m2 is achieved using Na with AISI 316 wall. All the results obtained have been compared with the experimental and analytical results reported in the literature and are found to be in good agreement. It is believed that the new insights gained will be of significant use while designing liquid metal heat transfer systems.

  19. 板式脉动热管强化传热方法研究%Research on Enhancing Heat Transfer of Flat Plate Loop Pulsating Heat Pipe

    Institute of Scientific and Technical Information of China (English)

    陈陶菲; 徐德好; 刘向东

    2011-01-01

    To research the method of enhancing heat transfer of flat plate loop pulsating heat pipe,the article compares the heat transfer character of the original heat pipe and the improved one by numerical simulation.Based on the VOF(volume of fluid) method,a three-dimensional unsteady mathematical model was developed to describe the vapor-liquid two-phase flow and phase change heat transfer in the flat plate loop pulsating heat pipe.The two-phase flow pattern transition and the temperature distribution in the flat plate loop pulsating heat pipe under different heat load conditions was numerically investigated using the developed model.The result shows that the heat transfer character of the improved heat pipe can be enhanced under high heat load condition.%为了研究板式脉动热管的传热性能强化的方法,对原型和改进型两种不同板式脉动热管传热特性进行数值分析比较。基于VOF方法建立板式脉动热管汽液两相流动及相变传热三维非稳态数学模型,仿真得到不同加热功率条件下热管内流型演化和温度分布。仿真结果表明,改进型脉动热管在高功率阶段,整体等效热阻小于原型。

  20. Theory and modeling of active brazing.

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.

    2013-09-01

    Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.

  1. Structural Characterization and Mechanical Properties of As-plated and Heat Treated Electroless Ni-B-P Alloy Coatings

    Directory of Open Access Journals (Sweden)

    P. G. Venkatakrishnan

    2014-05-01

    Full Text Available The Ni-B-P alloy coatings were made autocatalytically (electroless using an alkaline plating bath with nickel chloride hexahydrate (NiCl2.6H2O as the source of nickel ions, sodium borohydride (NaBH4 and sodium hypophosphite (NaH2PO2 as reducing agents and source of boron and phosphorous ions, respectively. The effects of bath concentrations on the plating rate, composition of coating, surface morphology, structural features and microhardness have been studied by varying NaBH4 concentration in the plating bath from 0.2 to 0.8 g/l while keeping NaH2PO2 concentration constant (12 g/l. The plating rate and boron content of the electroless Ni-B-P ternary alloy coatings increased with increasing NaBH4 concentration in the plating bath. The scanning electron microscopic images revealed that the morphology of the coating changed from corn cob structure to coarse cauliflower structure with increasing borohydride concentration in the plating bath. Broadening of X-ray diffraction peak is observed, as the borohydride concentration is increased in the plating bath, which is attributed to the large reduction in the crystallite size of the Ni-B-P alloy coatings. The microhardness values of the coating increased with increasing borohydride concentration in the plating bath. The as-plated Ni-B-P alloy coating containing higher boron content (3.2 wt% shows higher hardness of 700 HV compared to other Ni-B-P alloy coatings. The XRD patterns of heat treated Ni-B-P alloy coatings (500 °C show Ni3B intermetallic peaks along with Ni peaks. The presence of Ni3B intermetallic compound significantly increases the microhardness values of the heat treated Ni-B-P alloy coatings.

  2. Influence of filling ratio and working fluid thermal properties on starting up and heat transferring performance of closed loop plate oscillating heat pipe with parallel channels

    Science.gov (United States)

    Shi, Weixiu; Pan, Lisheng

    2017-02-01

    Using ethanol or acetone as the working fluid, the performance of starting up and heat transfer of closed-loop plate oscillating heat pipe with parallel channels (POHP-PC) were experimentally investigated by varying filling ratio, inclination, working fluids and heating power. The performance of the tested pulsating heat pipe was mainly evaluated by thermal resistance and wall temperature. Heating copper block and cold water bath were adopted in the experimental investigations. It was found that oscillating heat pipe with filling ratio of 50% started up earlier than that with 70% when heating input was 159.4 W, however, it has similar starting up performance with filling ratio of 50% as compared to 70% on the condition of heat input of 205.4 W. And heat pipe with filling ratio of 10% could not start up but directly transit to dry burning. A reasonable filling ratio range of 35%‒70% was needed in order to achieve better performance, and there are different optimal filling ratios with different heating inputs - the more heating input, the higher optimal filling ratio, and vice versa. However, the dry burning appeared easily with low filling ratio, especially at very low filling ratio, such as 10%. And higher filling ratio, such as 70%, resulted in higher heat transfer ( dry burning ) limit. With filling ratio of 70% and inclination of 75°, oscillating heat pipe with acetone started up with heating input of just 24W, but for ethanol, it needed to be achieved 68 W, Furthermore, the start time with acetone was similar as compared to that with ethanol. For steady operating state, the heating input with acetone was about 80 W, but it transited to dry burning state when heating input was greater than 160 W. However, for ethanol, the heating input was in vicinity of 160 W. Furthermore, thermal resistance with acetone was lower than that with ethanol at the same heating input of 120 W.

  3. Experiment study on heat transfer coefficient in climbing film plate heat exchanger%升膜式板式换热器的换热性能研究

    Institute of Scientific and Technical Information of China (English)

    高晓凯; 陶乐仁; 高立博; 黄理浩

    2013-01-01

    升膜蒸发是在换热器表面形成一层薄液膜,薄膜蒸发能够强化换热.文中研究采用光滑铜板的板式升膜蒸发器,以去离子水作为介质,在不同进水流量、不同加热量(热流密度)下,测定换热器某些点的局部换热系数,计算出总的换热系数,研究影响板式换热器升膜蒸发的因素和变化趋势.%A thin liquid film can be formed on the outer surface in the heat exchanger and can enhance heat transfer. This paper focused on studying smooth plate of copper in plate heat exchanger for deion - water as working fluids. Based on the different inlet - water flow and the different heat - flow density, the heat - transfer coefficients in partial positions were measured and the oveall coefficient could be concluded. The factors of affect the climbing film evaporation in plate heat exchanger and trendency were also analyzed.

  4. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    Science.gov (United States)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  5. Natural convective boundary layer flow of a nano-fluid past a convectively heated vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi 75350 (Pakistan)

    2012-03-15

    Natural convective flow of a nano-fluid over a convectively heated vertical plate is investigated using a similarity analysis of the transport equations followed by their numerical computations. The transport model employed includes the effect of Brownian motion and thermophoresis. The analysis shows that velocity, temperature and solid volume fraction of the nano-fluid profiles in the respective boundary layers depend, besides the Prandtl and Lewis numbers, on four additional dimensionless parameters, namely a Brownian motion parameter Nb, a thermophoresis parameter Nt, a buoyancy-ratio parameter Nr and convective parameter Nc. In addition to the study of these parameters on the boundary layer flow characteristics (velocity, temperature, solid volume fraction of the nano-fluid, skin friction, and heat transfer), correlations for the Nusselt and Sherwood numbers have been developed based on a regression analysis of the data. These linear regression models provide a highly accurate (with a maximum standard error of 0.004) representation of the numerical data and can be conveniently used in engineering practice. (authors)

  6. Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system

    Science.gov (United States)

    Hussain, S. M.; Jain, J.; Seth, G. S.; Rashidi, M. M.

    2017-01-01

    The unsteady MHD free convective heat and mass transfer flow of an electrically conducting, viscous and incompressible fluid over an accelerated moving vertical plate in the presence of heat absorption and chemical reaction with ramped temperature and ramped surface concentration through a porous medium in a rotating system is studied, taking Hall effects into account. The governing equations are solved analytically with the help of Laplace transform technique. The unified closed-form expressions are obtained for fluid velocity, fluid temperature, species concentration, skin friction, Nusselt number and Sherwood numbers. The effects of various parameters on fluid velocity, fluid temperature and species concentration are discussed by graphs whereas numerical values of skin friction, Nusselt and Sherwood numbers are presented in tabular form for different values of pertinent flow parameters. The numerical results are also compared with free convective flow near ramped temperature plate with ramped surface concentration with the corresponding flow near isothermal plate with uniform surface concentration.

  7. Brayton-cycle heat exchanger technology program

    Science.gov (United States)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  8. Failure Assessment Diagram for Titanium Brazed Joints

    Science.gov (United States)

    Flom, Yury; Jones, Justin S.; Powell, Mollie M.; Puckett, David F.

    2011-01-01

    The interaction equation was used to predict failure in Ti-4V-6Al joints brazed with Al 1100 filler metal. The joints used in this study were geometrically similar to the joints in the brazed beryllium metering structure considered for the ATLAS telescope. This study confirmed that the interaction equation R(sub sigma) + R(sub Tau) = 1, where R(sub sigma) and R(sub Tau)are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in ATLAS brazed joints as well as for construction of the Failure Assessment Diagram (FAD).

  9. Heat Treatment Process Research on Plate Heat Exchanger Cold Stamped Corrugated Plate%板式换热器冷冲压波纹板片热处理工艺研究

    Institute of Scientific and Technical Information of China (English)

    孙海生; 常春梅; 姬平如

    2015-01-01

    板式换热器传热元件是通过油压机冷冲压而成的不锈钢波纹板片,奥氏体不锈钢板片冷冲压后存在残余应力并且易产生形变马氏体组织,耐腐蚀性能下降. 对厚度1 mm的321奥氏体不锈钢冷冲压波纹板片进行取样开展热处理试验,研究发现,在1050 ℃下保温5 min后进行水冷或风冷可以消除残余应力与恢复等轴的奥氏体组织,最后对工业实际开展板片热处理工艺中可能遇到的难题进行探讨.%Stainless steel corrugated plates as plate heat exchanger heat transfer components were pro-cessed through cold stamping by oil press.There was residual stress in stamped plates after cold stamping, which induced deformation martensite structure.Sampling from 1 mm thick 321 austenitic stainless steel corrugated plates and carrying out heat treatment tests,the study was found that under 1050 ℃holding 5 min then heat water or air cooling could eliminate residual stress and restore the equiaxial austenite crystal grain organization,finally plate heat treatment process may encountering problems were discussed in the following actual industry.

  10. Interfacial microstructure and mechanical properties of brazed aluminum / stainless steel - joints

    Science.gov (United States)

    Fedorov, V.; Elßner, M.; Uhlig, T.; Wagner, G.

    2017-03-01

    Due to the demand of mass and cost reduction, joints based on dissimilar metals become more and more interesting. Especially there is a high interest for joints between stainless steel and aluminum, often necessary for example for automotive heat exchangers. Brazing offers the possibilities to manufacture several joints in one step at, in comparison to fusion welding, lower temperatures. In the recent work, aluminum / stainless steel - joints are produced by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  11. Corrosion Behavior of MIG Brazed and MIG Welded Joints of Automotive DP600-GI Steel Sheet

    Science.gov (United States)

    Basak, Sushovan; Das, Hrishikesh; Pal, Tapan Kumar; Shome, Mahadev

    2016-12-01

    Galvanized dual-phase steel sheets are extensively used by the auto industry for their corrosion resistance property. Welding by the metal inert gas (MIG) process causes degradation of the steel in the vicinity of the joint due to excessive zinc evaporation. In order to minimize Zn loss, the MIG brazing process has been tried out in lap joint configuration over a heat input range of 136-204 J mm-1. The amount of zinc loss, intermetallic formation and corrosion properties in the joint area has been evaluated for both MIG brazing and MIG welding. Corrosion rate of 21 mm year-1 has been reduced to 2 mm year-1 by adopting MIGB in place MIGW. Impedance study has shown that the corrosion mechanism in base metal, MIG brazed and MIG welded joints is dominated by charge transfer, diffusion and mixed mode control processes, respectively.

  12. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wissink, Jan G. [School of Engineering and Design, Howell Building, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: jan.wissink@brunel.ac.uk; Rodi, Wolfgang [Institute for Hydromechanics, University of Karlsruhe, Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2009-10-15

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  13. Roll-forming tubes to header plates

    Science.gov (United States)

    Kramer, K.

    1976-01-01

    Technique has been developed for attaching and sealing tubes to header plates using a unique roll-forming tool. Technique is useful for attaching small tubes which are difficult to roll into conventional grooves in header plate tube holes, and for attaching when welding, brazing, or soldering is not desirable.

  14. Influence of temperature-dependent material properties on heat transfer in the turbulent flow over a flat plate

    Science.gov (United States)

    Wehle, F.; Brandt, F.

    The influence of temperature dependence of material properties on heat transfer in a turbulent plate boundary layer is investigated using differential equations for the velocity and temperature fields of even, steady, and compressible boundary layer flows. The results are compared with the well-known material property correction factors of Zhukauskas (1966), Sieder and Tate (1936), and Hufschmidt and Bruck (1968).

  15. Numerical analysis on the shoot resistance of heat treated light weight B-grade bulletproof steel plates

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; Zhang Jingwen; Zhang Junping

    2014-01-01

    Bulletproof steel plates are widely used for the safety of special vehicles. This paper mainly resear-ches on the shoot resistance of heat treated light weight B-grade bulletproof steel plates through numerical analy-sis. Based on the flow behavior of bulletproof steel plates and bullet at various high strain rates,finite element (FE) model has been set up using ANSYS/LS-DYNA software. The simulation results are compared with the shooting results,which show a good consistency and a high reliability. Therefore,the simulation results are ef-ficient approaches and strategies to decide and select the mechanical property and thickness of bulletproof steel plates,saving a lot of work and the cost of experiments.

  16. Heat Transfer Performance of a Plate-Finned Tube Heat Exchanger : A Three-Dimensional Steady Numerical Analysis for a Single Row Tube in Low Reynolds Number Range

    OpenAIRE

    1998-01-01

    A three dimensional steady numerical analysis has been made for a one unit of single row plate-finned tube heat exchanger located in a uniform flow. The structures of the flow and thermal fields have been examined for conduction-convection conjugate heat transfer problem of the studied fin-and-tube model. The results of the numerical analysis revealed some important effects of geometric parameters on heat transfer from the fin-and-tube surface. The effects of fin thickness, fin pitch, fin len...

  17. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  18. 46 CFR 56.75-15 - Heating

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heating 56.75-15 Section 56.75-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Brazing § 56.75-15 Heating (a) The joint shall be brought to brazing temperature in as short a time as possible...

  19. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    Science.gov (United States)

    Adimurthy, M.; Katti, Vadiraj V.

    2016-06-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing (Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio (l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  20. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  1. Combined scale effects for effective brazing at low temperatures

    Directory of Open Access Journals (Sweden)

    Bartout D.

    2012-12-01

    Full Text Available In modern joining technology, the focus is on effective brazing and soldering of temperature sensitive materials. Here, as well as in diffusion welding processes the needed thermal energy is externally realized in the joint zone. This produces a heating of the whole joining parts, since in laminar joining the thermal energy is transported in interior by thermal conduction. An excess of critical temperatures or tolerable impact periods in wide parts of materials and respectively components is often not avoidable. This leads to thermal damages. In this point of view nanotechnology shows promising possibilities as scale effects and their resulting thermophysical effects such as melting temperature reduction and high diffusion rates can be used for providing a self-propagating high-temperature synthesis at room temperature. After ignition by an external energy source a self-propagating exothermic reaction is started. By producing a multilayer system with alternately arranged nanoscaled layers of e.g. Al and Ni the resulting thin foil can be used as heat source for melting the braze or solder material within the joining zone without any external preheating. Due to the high process velocities up to 30 m/s and the local heat input significant thermal influences on the joined parts are not detectable.

  2. Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, M., E-mail: m.hatami@tue.nl [Esfarayen University of Technology, Mechanical Engineering Department, Esfarayen, North Khorasan (Iran, Islamic Republic of); Jing, Dengwei; Song, Dongxing [International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi' an 710049 (China); Sheikholeslami, M.; Ganji, D.D. [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2015-12-15

    In this study, effect of variable magnetic field on nanofluid flow and heat transfer analysis between two parallel disks is investigated. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy perturbation method. The analytical investigation is carried out for different governing parameters namely: squeeze number, suction parameter, Hartmann number, Brownian motion parameter, thermophrotic parameter and Lewis number. Results show that Nusselt number has direct relationship with Brownian motion parameter and thermophrotic parameter but it is a decreasing function of squeeze number, suction parameter, Hartmann number and Lewis number. - Highlights: • Heat and mass transfer of nanofluids between parallel plates investigated. • A variable magnetic field is applied on the plates. • Governing equations are solved analytically. • Effects of physical parameters are discussed on the Nusselt number.

  3. The present status of R and D for the muon target at J-PARC: The development of silver-brazing method for graphite

    Energy Technology Data Exchange (ETDEWEB)

    Makimura, Shunsuke [Institute of Materials Structural Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan)], E-mail: shunsuke.makimura@kek.jp; Ozaki, Hidetsugu; Okamura, Hisanori [Kinzoku Giken Co., LTD., 276-21, Motoishikawa, Mito-shi, Ibaraki-ken 310-0843 (Japan); Futakawa, Masatoshi; Naoe, Takashi [Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Miyake, Yasuhiro; Kawamura, Naritoshi; Nishiyama, Kusuo; Kawai, Masayoshi [Institute of Materials Structural Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan)

    2008-06-30

    At the J-PARC muon science facility, the muon target was made of an isotropic graphite (IG-43). The energy deposited by the proton beam is estimated to be 3.3 kW on graphite and 600 W on the copper frame. To alleviate the thermal stress, a titanium stress absorber is inserted between the graphite and the copper. Although graphite is known to be difficult to be brazed, the titanium is attached to the graphite through silver-brazing. In this report, we will describe the development of a silver-brazing method for graphite in the fabrication of the J-PARC muon target. A capillary test between the graphite and the titanium was performed to determine the optimal brazing conditions. The test involved bonding graphite and titanium plates while varying the gap between them in order to determine the brazing material and the optimal surface treatment of graphite. Subsequently, a trial muon-production target was fabricated using this optimized brazing method. Specimens were cut from the trial target, and bending test experiments were performed to determine the tensile and shear strength of the interface. As a result, it was confirmed that graphite could be bonded adequately through the silver-brazing.

  4. The Effect of Heat Treatment on the Microstructure and Properties of Explosively Welded Titanium-Steel Plates

    Science.gov (United States)

    Wachowski, Marcin; Gloc, Michał; Ślęzak, Tomasz; Płociński, Tomasz; Kurzydłowski, Krzysztof Jan

    2017-02-01

    This paper describes a study of explosively welded titanium-carbon steel S355J2+N plates. Following the welding, plates underwent heat treatment at temperature of 600 °C for 90 min with cooling in furnace to 300 °C and in air to room temperature. The structure of the bonding was examined by using light, scanning electron (SEM) and transmission electron microscopy. The mechanical properties before and after heat treatment were examined applying three-point bending tests with cyclic loads and hardness measurements. Fracture surfaces were investigated using computer tomography and SEM. It has been found that the bonding areas are characterized by a specific chemical composition, microstructure and microhardness. Between the steel and the Ti cladding, a strongly defected transition zone was formed and melted areas with altered chemical composition were observed. It was also demonstrated that the heat treatment commonly applied to welded steel-Ti plates had a significant and negative impact on the microstructure and mechanical properties of the welded plates due to formation of brittle intermetallic phases.

  5. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    Science.gov (United States)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  6. The effect of a homogenizing optic on residual stresses and shear strength of laser brazed ceramic/steel-joints

    Science.gov (United States)

    Südmeyer, I.; Rohde, M.; Besser, H.; Grein, M.; Liesching, B.; Schneider, J.

    2011-03-01

    Oxide and non oxide ceramics (Al2O3, SiC) were brazed to commercial steel with active filler alloys using a CO2-laser (l = 10.64 μm). Two different laser intensity profiles were used for heating up the compound: A laser output beam presenting a Gaussian profile and a homogenized, nearly top head profile were applied for joining the compounds in an Argon stream. The temperature distribution with and without the homogenizing optic was measured during the process and compared to the results of a finite element model simulating the brazing process with the different laser intensity profiles. Polished microsections were prepared for characterization of the different joints by scanning electron micrographs and EDXanalysis. In order to evaluate the effects of the different laser intensity profiles on the compound, the shear strengths of the braze-joints were determined. Additionally residual stresses which were caused by the gradient of thermal expansion between ceramic and metal were determined by finite element modeling. The microsections did not exhibit differences between the joints, which were brazed with different laser profiles. However the shear tests proved, that an explicit increase of compound strength up to 34 MPa of the ceramic/metal joints can be achieved with the top head profile, whereas the joints brazed with the Gaussian profile achieved only shear strength values of 24 MPa. Finally tribological pin-on-disc tests proved the capability of the laser brazed joints with regard to the application conditions.

  7. Microstructural Evolution of Infrared Brazed CP-Ti Using Ti-Cu-Ni Brazes

    Institute of Scientific and Technical Information of China (English)

    C.T.Chang; T.Y.Yeh; R.K.Shiue; C.S.Chang

    2011-01-01

    Microstructural evolution of infrared vacuum brazed CP-Ti using two Ti-based braze alloys, Ti-15Cu-15Ni and Ti-15Cu-25Ni, has been investigated. The infrared braze d joint consisted of eutectic Ti2Cu/Ti2Ni intermetallic compounds and Ti-rich matrix. The eutectic Ti2Cu/Ti2Ni intermetallic compounds disappeared from the joint after being annealed at 900℃ for 1 h. In contrast, the depletion rate of both Cu and Ni from the braze alloy into CP-Ti substrate at 750℃ annealing was greatly decreased as compared with that annealed at 900℃. Blocky Ti2Cu/Ti2Ni phases were observed even if the specimen was annealed at 750℃ for 15 h. Because the Ni content of the Ti-15Cu-25Ni braze alloy is much higher than that of the Ti-15Cu-15Ni alloy, the amount of eutectic Ti2Cu/Ti2Ni phases in Ti-15Cu-25Ni brazed joint is more than that in Ti-15Ci-15Ni brazed joint. However, similar microstructural evolution can be obtained from the infrared brazed joint annealed at various temperatures and/or time for both filler metals.

  8. The sizes of Flat Plate and Evacuated Tube Collectors with Heat Pipe area as a function of the share of solar system in the heat demand

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2016-01-01

    Full Text Available The popularity of solar collectors in Poland is still increasing. The correct location of the collectors and a relatively high density of solar radiation allow delivering heat even in spite of relatively low ambient temperature. Moreover, solar systems used for heating domestic heat water (DHW in summer allow nearly complete elimination of conventional energy sources (e.g. gas, coal. That is why more and more house owners in Poland decide to install solar system installations. In Poland the most common types of solar collectors are flat plate collectors (FPC and evacuated tube collectors with heat pipe (ETCHP; both were selected for the analysis. The heat demand related to the preparation of hot water, connected with the size of solar collectors’ area, has been determined. The analysis includes FPC and ETCHP and heat demand of less than 10 000 kWh/year. Simulations were performed with the Matlab software and using data from a typical meteorological year (TMY. In addition, a 126–year period of measurements of insolation for Krakow has been taken into account. The HDKR model (Hay, Davis, Klucher, Reindl was used for the calculation of solar radiation on the absorber surface. The monthly medium temperature of the absorber depends on the amount of solar system heat and on the heat demand. All the previously mentioned data were used to determine solar efficiency. Due to the fact that solar efficiency and solar system heat are connected, the calculations were made with the use of an iterative method. Additionally, the upper limit for monthly useful solar system heat is resulted from the heat demand and thus the authors prepared a model of statistical solar system heat deviations based on the Monte Carlo method. It has been found that an increase in the useful solar system heat in reference to the heat demand is associated with more than proportional increase in the sizes of the analyzed surfaces of solar collector types.

  9. Heat transfer in the flow of a cold, axisymmetric vertical liquid jet against a hot, horizontal plate

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    The paper considers heat transfer characteristics of thin film flow over a hot horizontal flat plate resulting from a cold vertical jet of liquid falling onto the surface. A numerical solution of high accuracy is obtained for large Reynolds numbers using the modified Keller box method. For the flat plate, solutions for axisymmetric jets are obtained. In a parallel approximation theory an advanced polynomial approximation for the velocity and temperature distribution is employed and results are good agreement with those obtained using a simple Pohlhausen polynomial and the numerical solutions.

  10. Denaturation Kinetics of Whey Protein Isolate Solutions and Fouling Mass Distribution in a Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Marwa Khaldi

    2015-01-01

    Full Text Available Few investigations have attempted to connect the mechanism of dairy fouling to the chemical reaction of denaturation (unfolding and aggregation occurring in the bulk. The objective of this study is to contribute to this aspect in order to propose innovative controls to limit fouling deposit formation. Experimental investigations have been carried out to observe the relationship between the deposit mass distribution generated in plate heat exchangers (PHE by a whey protein isolate (WPI mainly composed of β-lactoglobulin (β-Lg and the ratio between the unfolding and aggregation rate constants. Experiments using a PHE were carried out at a pilot scale to identify the deposit distribution of a model fouling solution with different calcium contents. In parallel, laboratory experiments were performed to determine the unfolding/aggregation rate constants. Data analysis showed that (i β-Lg denaturation is highly dependent on the calcium content, (ii for each fouling solution, irrespective of the imposed temperature profile, the deposit mass in each channel and the ratio between the unfolding and aggregation rate constants seem to be well correlated. This study demonstrates that both the knowledge of the thermal profile and the β-Lg denaturation rate constants are required in order to predict accurately the deposit distribution along the PHE.

  11. Tuning of Feedback Decoupling Controller for Two-Dimensional Heat Plate by Using VRFT Method

    Science.gov (United States)

    Matsunaga, Nobutomo; Nakano, Masahiko; Okajima, Hiroshi; Kawaji, Shigeyasu

    In manufacturing processes, inappropriate thermal distribution, which is observed in both steady and transient states of the thermal plant, leads to inferior quality. For a plant with strong thermal interaction, decoupling control is effective in precisely tuning the control system. We proposed the decoupling controller based on the temperature-difference feedback model. However, no parameter-identification method of thermal interaction has been presented so far. Traditionally, iterative tuning by trial and error has been used to tune the controller parameters. In the case of an industrial plant, the tuning time would be long because of the large time constants of the plant. Recently, the virtual reference feedback tuning (VRFT) method, which can be used for off-line tuning of the controller parameters using a set of I/O data, has been studied to examine the possibility of shortening the tuning time. In this paper, a VRFT method for the feedback decoupling controller is proposed for a two-dimensional heat plate by taking consideration the thermal interaction property. The effectiveness of this VRFT method is evaluated by performing an experimental simulation.

  12. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Ulrich E. [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)], E-mail: klotz@fem-online.de; Liu Chunlei [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Khalid, Fazal A. [Faculty of Metallurgy and Materials Engineering, GIK Institute, Topi, NWFP (Pakistan); Elsener, Hans-Rudolf [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2008-11-15

    Active brazing is an effective technique for joining diamond or cBN grit to metallic substrates. This technique is currently used to manufacture superabrasive, high-performance tools. The investigation of interface reactions between diamond and active brazing alloys plays an important role in understanding and improving the brazing process and the resultant tool performance. Focused ion beam (FIB) milling enabled the high resolution investigation of these extremely difficult to prepare metal-diamond joints. The interfacial nanostructure is characterized by the formation of two layers of TiC with different morphologies. First a cuboidal layer forms directly on the diamond and reaches a thickness of approximately 70 nm. Then a second layer with columnar TiC crystals grows on the first layer into the brazing filler metal by a diffusion-controlled process. The combined thickness of both TiC layers varies between 50 nm and 600 nm depending on the brazing temperature and holding time.

  13. Alternative refrigerants performance in plate heat condenser for air conditioning; Scambiatori compatti per il condizionamento ambientale

    Energy Technology Data Exchange (ETDEWEB)

    Boccardi, G.; Celata, G.P.; Marchesi Donati, F. [ENEA, Rome (Italy). Inst. of Thermal-Fluid Dynamics; Cumo, M. [Rome Univ. La Sapienza, Rome (Italy). Dept. of Nuclear Engineering and Energy Conversion; Gerosa, A. [Rome Univ. Tor Vergata, Rome (Italy). Dept. of Mechanical Engineering; Zorzin, A. [R and D Alfa Laval Artec Spa Vicenza, Vicenza (Italy)

    1999-12-01

    An experimental campaign on plate heat exchangers, used as evaporators and condenser in domestic refrigeration loops is presented in this paper. The research's purpose is to test the influence of some thermal-hydraulic parameters on the global overall heat transfer coefficient. R134a, R407C, R410A, and R22 are the fluids tested under reference thermal conditions. The experimental tests allows one to withdraw conclusions on the substitution effect on the thermal and global efficiency of the plant. Also, a new method for calculating the thermodynamical mixture parameters is applied to the condensation of mixtures R407C and R410A and its benefit evaluated. The refrigerant loop overall performance and the condenser global heat transfer coefficient are the parameters chosen to enlighten the characteristics of the alternative refrigerants (R134a, R407C, and R410A) with respect to the fluid that they are supposed to substitute (R22). [Italian] Scambiatori a piastre compatti impiegati come evaporatori e condensatori nei circuiti frigoriferi, sono l'oggetto della ricerca presentata in questo articolo. L'efficienza termica di tali componenti e' valutata in condizioni di riferimento commerciali. I refrigeranti utilizzati sono tre fluidi proposti per sostituire l'R22, un Hcfc, attualmente il refrigerante piu' utilizzato nel condizionamento ambientale. Una serie di prove condotte con quest'ultimo fluido consente di studiare gli effetti della sostituzione del fluido di progetto sulle prestazioni sia degli scambiatori, sia piu' in generale, dell'intero circuito frigorifero. In particolare sono state studiate le prestazioni di due coppie di evaporatori e condensatori in termini di coefficiente globale di scambio termico e di Cop dell'impianto. Nel presente lavoro e' inoltre presentato e utilizzato un metodo termodinamico per il calcolo della temperatura di saturazione per le miscele zeotropiche in bifase; uno dei refrigeranti

  14. Unsteady Hydromagnetic Flow of a Heat Absorbing Dusty Fluid Past a Permeable Vertical Plate with Ramped Temperature

    Directory of Open Access Journals (Sweden)

    m Das

    2014-01-01

    Full Text Available The unsteady flow and heat transfer of a viscous incompressible, electrically conducting dusty fluid past vertical plate under the influence of a transverse magnetic field is studied with a view to examine the combined effects of suction, heat absorption and ramped wall temperature. The temperature of the wall is assumed to have a temporarily ramped profile which goes on increasing up to a certain time limit and then becomes constant. To investigate the effect of rampedness in wall temperature, the solution for the flow past an isothermal wall is also obtained. The governing partial differential equations are solved using Laplace transformation technique in which the inversion is obtained numerically using Matlab. To validate the results of numerical inversion a comparison between the numerical and analytical values of fluid and particle temperatures and Nusselt number is also presented. The effects of pertinent flow parameters affecting the flow and heat transfer are investigated with the help of graphs and tables. It is found that the increase in suction, heat absorption and particle concentration contribute in thinning the thermal and momentum boundary layers and the velocity and temperature for both the fluid and particle phases are higher in the case of a flow past an isothermal plate than that of a flow past a plate with ramped temperature.

  15. Heat Transfer Analysis of Flat Plate Subjected to Multi-Jet Air Impingement using Principal Component Analysis and Computational Technique

    Directory of Open Access Journals (Sweden)

    Palaniappan Chandramohan

    2017-01-01

    Full Text Available The aim of this work is to investigate experimentally the variation in temperature, heat transfer coefficient and Nusselt number of a hot plate subjected to multi-jet air impingement cooling to use the multi-objective optimization technique to arrive at optimum conditions. A flat plate of 15 cm x 10 cm is heated through a heating foil with a constant heat flux of 7667 W/m2. Air jets with and without swirling action are considered, fixing the distance of target surface from nozzle exit at 2D, 4D and 6D. Reynolds numbers 18000, 20000and 22000 and pipe diameters 8mm, 10mm and 12 mm have been considered for investigation. Experiments are designed and analyzed using Taguchi’s technique, coupled with principal component analysis for multi-variate optimization by calculating multi-response performance index (MRPI. Based on the observations made, it is concluded that lower H/D ratio and higher Reynolds number result in higher heat transfer coefficient, in accordance with the first principles. Heat transfer coefficient obtained for jets with swirl is compared with that of jet without swirling for the same Reynolds number and H/D ratio. Furthermore, it is concluded that introducing swirl results in increase of heat transfer coefficients for all the test conditions for 10mm and 12mm diameter jets. However for 8mm jet, introduction of swirl reduced the heat transfer rate for all the test conditions. From Analysis of Variance (ANOVA, it is found that significant contributions on outputs are due to the effect of H/D ratio and Reynolds number. Confirmation experiments with optimum condition result in improved heat transfer coefficient and Nusselt number. Numerical simulation has also been performed with the optimum condition. It is observed that the simulation results are in consistence with the experimental results.

  16. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    Science.gov (United States)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  17. Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    G.S. Seth

    2014-06-01

    Full Text Available An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Exact solution is also obtained in case of unit Schmidt number. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters.

  18. Heat loss coefficients and effective tau-alpha products for flat-plate collectors with diathermanous covers

    Science.gov (United States)

    Hollands, K. G. T.; Wright, J. L.

    1983-01-01

    This paper presents an efficient algorithm for solving the set of nonlinear equations governing the total heat transfer across an arbitrary number of parallel flat plate solar collector covers, each of which can be partly transparent to longwave thermal radiation. The governing equations are sufficiently general to permit each cover to have asymmetric radiative properties and to account for absorption of solar energy on the individual covers. This theory is shown to be in good agreement with the approximate equations of Whillier (provided certain interpretations are placed on his quantities) and with experiments using a plastic inner cover and bounding plates of various emissivities. Using this theory, it is demonstrated that if the absorber plate has a selective surface, an inner cover transparent to long wave radiation is to be preferred over one which is opaque.

  19. Silicon high vacuum brazing study and microstructural analysis of the joint formation; Estudo da brasagem de silicio em alto vacuo e analise microestructural da juncao

    Energy Technology Data Exchange (ETDEWEB)

    Santana, E.C.A. [Universidade Estadual Paulista - UNESP, Campus de Guaratingueta, SP (Brazil); Francisco, F.R.; Bagnato, O.R. [Laboratorio Nacional de Luz Sincrotron - LNLS, Campinas, SP (Brazil)], e-mail: erika.santana@lnls.br

    2010-07-01

    On the project of Synchrotron Light Source, silicon-crystal are often used as monochromator and mirrors, to reflect the electrons beam. Silicon is known as a very fragile material, and its optical elements must be designed carefully. Usually, it is bonded in a cooling support made by copper. Thermal contact between the crystal plate and cooling support is made of In-Ga liquid alloy. Due to the difficult of this bonding, brazing tests are being taken with Fe-Ni alloy, in order to improve the silicon mirrors application and performance. Wet ability tests were performed between the silicon plate and commercial fillers. A brazing test was made of silicon and Al12Si, as filler, with Fe-Ni, as base material. Results of microstructure analysis indicated that the braze of a silicon plate is quite promissory. (author)

  20. Local Non-Similarity Solution of Coupled Heat-Mass Transfer of a Flat Plate with Uniform Heat Flux in a Laminar Parallel Flow

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    The coupled heat and mass transfer problem of gas flow over a UHF flat plate with its wall coated with sublimable substance was been solved by local non-smimilarity method.Considerations have been given also to the effect of non-saturation of the sublimable substance in the oncoming flow and the normal injection velocity at the surface.Analytical results are given for local Noselt and Sherwood Numbers at the various locations.

  1. SIMULATION AND ANALYSIS OF FLOW PATTERN IN CROSS-CORRUGATED PLATE HEAT EXCHANGERS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guan-min; TIAN Mao-cheng; ZHOU Shou-jun

    2006-01-01

    Using numerical methodology, the flow fields between two corrugated plates with different values of the corrugation inclination angle β were simulated.The simulation results directly indicate that β affects the flow pattern between corrugated plates, and the results are in good agreement with the experimental results reported by interrelated literature.The results show that the flow pattern between the two plates changes from "double cross-flow" to "zigzag flow" with the increase in β.The reason for the effect on the flow pattern between the two corrugated plates was discussed from the view of the variation of momentum in the direction of corrugation with the variation in β.

  2. Development of Nusselt number correlation using dimensional analysis for plate heat exchanger with a carboxymethyl cellulose solution

    Science.gov (United States)

    Muthamizhi, Karuppannan; Kalaichelvi, Ponnusamy

    2015-06-01

    Versatile applications of plate heat exchangers (PHE's) in various industrial processes signify their command over other types of heat exchangers. The objective of this work was to derive Nusselt number correlations using dimensional analysis in terms of all the parameters to determine the heat transfer coefficients in a PHE for various concentrations of carboxymethyl cellulose (CMC) solution and it was also compared with the available models in literature. The heat transfer coefficient increases with increase in concentration of CMC from 0.1 to 0.6 %w/w and also increases with increase in mass flow rates of both cold and hot fluids from 0.016 to 0.099 kg/s. The Nusselt number correlation developed using dimensional analysis has predicted the Nusselt number for the given PHE with a RMS deviation of 14.61.

  3. Effect of heat source on MHD free convection flow past an oscillating porous plate in the slip flow regime

    Directory of Open Access Journals (Sweden)

    S. S. Das, L. K. Mishra, P. K. Mishra

    2011-09-01

    Full Text Available This paper investigates the effect of heat source on free convective flow of a viscous incompressible electrically conducting fluid through a porous medium bounded by an oscillating porous plate in the slip flow regime in presence of a transverse magnetic field. The governing equations of the flow field are solved analytically and the expressions for velocity, temperature, skin friction t and the heat flux in terms of Nusselts number Nu are obtained. The effects of the important flow parameters such as magnetic parameter M, permeability parameter Kp, Grashof number for heat transfer Gr, heat source parameter S and rarefaction parameter R on the velocity of the flow field are analyzed quantitatively with the help of figures.

  4. Unsteady Free Convection Flow past a Vertical Plate with Heat and Mass Fluxes in the Presence of Thermal Radiation

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-01-01

    Full Text Available The problem of unsteady free convection flow past an infinite vertical plate with heat and mass fluxes in the presence of thermal radiation is studied. The dimensionless coupled linear partial differential equations governing the flow are solved by employing the Laplace transform technique. Exact solutions have been obtained for the fluid velocity, temperature and mass concentration for the cases of both uniform heat flux (UHF and uniform wall temperature (UWT. The numerical results for the fluid velocity, temperature and mass concentration are presented graphically for various pertinent flow parameters and discussed in detail.

  5. Hydromagnetic convective flow past a vertical porous plate through a porous medium with suction and heat source

    Directory of Open Access Journals (Sweden)

    S.S.Das, U.K.Tripathy, J.K.Das

    2010-05-01

    Full Text Available This paper theoretically analyzes the unsteady hydromagnetic free convective flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous plate through a porous medium in presence of constant suction and heat source. Approximate solutions are obtained for velocity field, temperature field, skin friction and rate of heat transfer using multi-parameter perturbation technique. The effects of the flow parameters on the flow field are analyzed with the aid of figures and tables. The problem has some relevance in the geophysical and astrophysical studies.

  6. Experimental Study of Inducing Compressive Stress by Anti-welding Heating Treatment in a Thin Plate Weldment with Variant Temperatures

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Significant compressive stress may be induced in thin plate weldment by anti-welding heating treatment (AWHT)with a temperature difference above 350℃, and an interesting phenomenon of obvious residual stress reduction on non-treated surface was discovered. The method of AWHT has no great effect on the mechanical properties including hardness, strength and toughness of the metal material. The results in the paper prompt a possibility application in shipbuilding industry.

  7. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat reco

  8. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Science.gov (United States)

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  9. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  10. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  11. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  12. Heat transfer in a compact tubular heat exchanger with helium gas at 3.5 MPa

    Science.gov (United States)

    Olson, Douglas A.; Glover, Michael P.

    1990-01-01

    A compact heat exchanger was constructed consisting of circular tubes in parallel brazed to a grooved base plate. This tube specimen heat exchanger was tested in an apparatus which radiatively heated the specimen on one side at a heat flux of up to 54 W/sq cm, and cooled the specimen with helium gas at 3.5 MPa and Reynolds numbers of 3000 to 35,000. The measured friction factor of the tube specimen was lower than that of a circular tube with fully developed turbulent flow, although the uncertainty was high due to entrance and exit losses. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in circular tubes.

  13. A dynamic performance simulation model of flat-plate solar collectors for a heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Arinze, E.A.; Schoenau, G.J.; Sokhansanj, S. (Saskatchewan Univ., Saskatoon, SK (Canada). College of Engineering); Adefila, S.S.; Mumah, S.M. (Ahmadu Bello Univ., Zaria (Nigeria). Dept. of Chemical Engineering)

    1993-01-01

    Flat-plate collectors are inherently exposed to time-varying meteorological and system parameters. Thus, dynamic modeling, rather than the commonly used steady-state models, is a more accurate approach for the design and performance evaluation of flat-plate solar collectors. The dynamic model presented in this study describes the fluid, plate and cover temperatures of the collector by three different differential equations. Taylor series expansion and the Runge-Kutta method are used in the solution of the differential equations. The accuracy of the dynamic model was tested by comparing the results predicted by the model with experimental performance data obtained for a liquid-cooled flat-plate solar collector with a corrugated transparent fiberglass cover. The predicted results by the dynamic model agreed favorably with the measured experimental data for the flat-plate solar collector. Experimentally determined collector temperatures varied by a maximum of [+-]3[sup o]C from values predicted by the model. (Author)

  14. Numerical 3-D heat flux simulations on flat plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Villar, N. Molero; Lopez, J.M. Cejudo; Munoz, F. Dominguez; Garcia, E. Rodriguez; Andres, A. Carrillo [Grupo de Energetica, Escuela Tecnica Superior de Ingenieros Industriales, UMA, Plaza El Ejido s/n, 29013 Malaga (Spain)

    2009-07-15

    A transient 3-D mathematical model for solar flat plate collectors has been developed. The model is based on setting mass and energy balances on finite volumes. The model allows the comparison of different configurations: parallel tubes collectors (PTC), serpentine tube collectors (STC), two parallel plate collectors (TPPC), and other non-usual possibilities like the use of absorbent fluids with semitransparent or transparent plates. Transparent honeycomb insulation between plate and cover can also be modelled. The effect of temperature on the thermal properties of the materials has also been considered. The model has been validated experimentally with a commercial PTC. The model is a useful tool to improve the design of plate solar collectors and to compare different configurations. In order to show the capabilities of the model, the performance of a PTC collector with non-uniformity flow is analysed and compared with experimental data from literature with good agreement. (author)

  15. Effects of Heat Treatment on Interface Microstructure and Mechanical Properties of Explosively Welded Ck60/St37 Plates

    Science.gov (United States)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2016-12-01

    This study explores the effects of heat treatment on the microstructure and mechanical properties of explosively welded Ck60 steel/St37 steel. The objective is to find an economical way for manufacturing bimetallic plates that can be used in the rolling stand of hot rolling mill units. The explosive ratio and stand-off distance are set at 1.7 and 1.5 t ( t = flyer thickness), respectively. Since explosive welding is accompanied by such undesirable metallurgical effects as remarkable hardening, severe plastic deformation, and even formation of local melted zones near the interface, heat treatment is required to overcome or alleviate these adverse effects. For this purpose, the composites are subjected to heat treatment in a temperature range of 600-700 °C at a rate of 90 °C/h for 1 h. Results demonstrate well-bonded composite plates with a wavy interface. In the as-welded case, vortex zones are formed along the interface; however, they are transformed into fine grains upon heat treatment. Microhardness is also observed to be maximum near the interface in the welded case before it decreases with increasing temperature. Shear strength is the highest in the as-welded specimen, which later decreases as a result of heat treatment. Moreover, the energy absorbed by the heat-treated specimens is observed to increase with increasing temperature so that the lowest value of absorbed energy belongs to the as-welded specimen. Finally, fractography is carried out using the scanning electron microscope to examine the specimens subjected to shear and impact tests. As a result of heat treatment, fracture surfaces exhibit dimpled ruptures and fail in the mixed mode, while failure in the as-welded specimens predominantly occurs in the brittle mode.

  16. Natural convection unsteady magnetohydrodynamic mass transfer flow past an infinite vertical porous plate in presence of suction and heat sink

    Directory of Open Access Journals (Sweden)

    S. S. Das, S. Parija, R. K. Padhy, M. Sahu

    2012-01-01

    Full Text Available This paper investigates the natural convection unsteady magnetohydrodynamic mass transfer flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous flat plate in presence of constant suction and heat sink. Using multi parameter perturbation technique, the governing equations of the flow field are solved and approximate solutions are obtained. The effects of the flow parameters on the velocity, temperature, concentration distribution and also on the skin friction and rate of heat transfer are discussed with the help of figures and table. It is observed that a growing magnetic parameter or Schmidt number or heat sink parameter leads to retard the transient velocity of the flow field at all points, while the Grashof numbers for heat and mass transfer show the reverse effect. It is further found that a growing Prandtl number or heat sink parameter decreases the transient temperature of the flow field at all points while the heat source parameter reverses the effect. The concentration distribution of the flow field suffers a decrease in boundary layer thickness in presence of heavier diffusive species (growing Sc at all points of the flow field. The effect of increasing Prandtl number Pr is to decrease the magnitude of skin-friction and to increase the rate of heat transfer at the wall for MHD flow, while the effect of increasing magnetic parameter M is to decrease their values at all points.

  17. Numerical studies on sizing/ rating of plate fin heat exchangers for a modified Claude cycle based helium liquefier/ refrigerator

    Science.gov (United States)

    Goyal, M.; Chakravarty, A.; Atrey, M. D.

    2017-02-01

    Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.

  18. Heating produced by therapeutic ultrasound in the presence of a metal plate in the femur of canine cadavers

    Directory of Open Access Journals (Sweden)

    A.O. Andrades

    2014-10-01

    Full Text Available The present study aimed to assess the heat generated by a therapeutic ultrasound (TUS in a metal bone plate and adjacent structures after fixation to the femur of canine cadavers. Ten pairs of hind limbs were used, and they were equally distributed between groups that were subjected to 1- and 3-MHz frequencies, with each frequency testing 1- and 2-W/cm² intensities. The right hind limb was defined as the control group (absence of the metal plate, and the left hind limb was the test group (presence of the metal plate. Therefore, the control groups (CG were denominated CGI, using TUS with 1-MHz frequency and 1-W/cm² intensity; CGII, using 1-MHz frequency and 2-W/cm² intensity; CGIII, using 3-MHz frequency and 1-W/cm² intensity; and CGIV, using 3-MHz frequency and 2-W/cm² intensity. For each control group, its respective test group (TG was denominated TGI, TGII, TGIII and TGIV. The TUS was applied to the lateral aspect of the thigh using the continuous mode and a 3.5-cm² transducer in a 6.25-cm² area for 2 minutes. Sensors were coupled to digital thermometers that measured the temperature in different sites before (t0 and after (t1 of the TUS application. The temperatures in t1 were higher in all tested groups. The intramuscular temperature was significantly higher (P<0.05 in the groups used to test the 3-MHz frequency in the presence of the metal plate. The therapeutic ultrasound in the continuous mode using frequencies of 1 and 3 MHz and intensities of 1 and 2 W/cm2 for 2 minutes caused heating of the metal plate and adjacent structures after fixation to the femur of canine cadavers.

  19. High temperature brazing of diamond tools

    Institute of Scientific and Technical Information of China (English)

    YAO Zheng-jun; SU Hong-hua; FU Yu-can; XU Hong-jun

    2005-01-01

    A new brazing technique of diamond was developed. Using this new technique optimum chemical and metallurgical bonding between the diamond grits and the carbon steel can be achieved without any thermal damages to diamond grits. The results of microanalysis and X-ray diffraction analysis reveal that a carbide layer exists between the diamond and the matrix, which consists of Cr3C2, Cr7C3 and Cr23C6. Performance tests show that the brazed diamond core-drill has excellent machining performance. In comparison with traditional electroplated diamond core-drill, the brazed diamond core-drill manufactured using the new developed technique has much higher machining efficiency and much longer operating life.

  20. Brazing of Be with CuCrZr-bronze using copper-based filler metal STEMET

    Directory of Open Access Journals (Sweden)

    B.A. Kalin

    2016-12-01

    Optimization of the composition of the Cu–Ni–Sn–P system filler metals and comparative tests of filler metals of various compositions have been carried out in this paper to reduce the brazing temperature of beryllium with CuCrZr. Alloys of the following compositions Cu–6.4Ni–9.2Sn–6.3P (STEMET 1105 and Cu–9.1Ni–3.6Sn–8.0P (STEMET 1101 were made in the form of rapidly quenched ribbons with a thickness of 50µm and a width of 50mm. They were used to perform furnace brazing by Joule heating (with a rate of 15K/min of beryllium with CuCrZr (Be/CuCrZr at temperatures of 650, 700 and 750°C for 15min. Metallographic investigations of the zone of brazing and mechanical shear tests of joints before and after the heat treatment at 350°C for 30h have been conducted. It was found that the joints of Be/CuCrZr brazed at 650°C using STEMET 1105 (τs=230MPa and at 750°C using STEMET 1101 (τs=260MPa had the best shear strength properties. However, there is a significant decrease of the microhardness of CuCrZr from 1570 to 1140MPa at 750°C, which indicates a significant loss of its strength. The results obtained suggest that the brazing of beryllium with CuCrZr using STEMET 1105 at 650–700°C will not adversely affect the CuCrZr.

  1. Joule heating effects on unsteady natural convection flow near a moving semi-infinite vertical plate with variable heat flux and mass transfer

    Science.gov (United States)

    Narahari, Marneni; Raju, S. Suresh Kumar; Nagarani, P.

    2016-11-01

    The unsteady MHD free convective boundary-layer flow along an impulsively started semi-infinite vertical plate with variable heat flux and mass transfer have been investigated numerically. The effects of chemical reaction, thermal radiation and Joule heating are incorporated in the governing equations. Crank-Nicolson finite-difference method is used to solve the governing coupled non-linear partial differential equations. The influence of thermal radiation, chemical reaction and Joule heating on flow characteristics are presented graphically and discussed in detailed. To validate the present numerical results, a comparison study has been performed with the previously published results and found that the results are in excellent agreement. It is found that the local Nusselt and Sherwood numbers decreases with the intensification of magnetic field and the local Sherwood number slightly decreases with the increase of radiation parameter.

  2. Effects of Radiation and free Convection Currents on Unsteady Couette Flow between two Vertical Parallel Plates with Constant Heat flux and Heat Source Through Porous Medium

    Directory of Open Access Journals (Sweden)

    Damala Ch Kesavaiah

    2013-04-01

    Full Text Available The present study the free convection in unsteady Couette flow of a viscous incompressible fluid confined between two vertical parallel plates in the presence of thermal radiation with heat source in the presence of uniform magnetic field is presented. The flow is induced by means of Couette motion and free convection currents occurring as a result of application of constant heat flux on the wall with a uniform vertical motion in its own plane while constant temperature on the stationary wall. The fluid considered here is a gray, absorbing-emitting but non-scattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the analysis. The dimensionless governing partial differential equations are solved by using regular perturbation technique. The results for the velocity, temperature and the skin-friction are shown graphically. The effects of different parameters are discussed.

  3. Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal

    Institute of Scientific and Technical Information of China (English)

    LI Li-qun; FENG Xiao-song; CHEN Yan-bin

    2008-01-01

    The flange butt joints of 1 mm-thick galvanized steel sheets were brazed with CuSi3 as filler metal at different laser heating modes. The microstructures and element distributions of joint interface were investigated by SEM and EDS. The results show that there is no obvious interface layer with the circular individual beam heating and lamellar Fe-Si intermetallic compound layer is found with dual-beam laser spot heating. With the irradiation of rectangular laser spot, the joint interface layer is also formed. The layer thickness is larger than that of dual-beam brazing and the layer shape is fiat so that intermetallic compounds trend to grow into cellular crystals. Moreover, the interface layer shape also depends on its position in the joint. Under the high heat input, dendritic or granular intermetallic compounds dispersively distribute in brazing seam adjacent to the interface, which is caused by the melting or dissolving of the base metal. According to the results, the brazing quality can be controlled by laser heating mode and processing parameters.

  4. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    Science.gov (United States)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  5. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  6. Experimental Optimization of Passive Cooling of a Heat Source Array Flush-Mounted on a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Antoine Baudoin

    2016-11-01

    Full Text Available Heat sources, such as power electronics for offshore power, could be cooled passively—mainly by conduction and natural convection. The obvious advantage of this strategy is its high reliability. However, it must be implemented in an efficient manner (i.e., the area needs to be kept low to limit the construction costs. In this study, the placement of multiple heat sources mounted on a vertical plate was studied experimentally for optimization purposes. We chose a regular distribution, as this is likely to be the preferred choice in the construction process. We found that optimal spacing can be determined for a targeted source density by tuning the vertical and horizontal spacing between the heat sources. The optimal aspect ratio was estimated to be around two.

  7. Experimental and numerical analyses on a plate heat exchanger with phase change for waste heat recovery at off-design conditions

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Di Battista, Davide; Fatigati, Fabio

    2015-11-01

    This paper analyzes the performances of an evaporator for small scale waste heat recovery applications based on bottoming Organic Rankine Cycles with net output power in the range 2-5 kW. The heat recovery steam generator is a plate heat exchanger with oil as hot stream and an organic fluid on the cold side. An experimental characterization of the heat exchanger was carried out at different operating points measuring temperatures, pressures and flow rates on both sides. The measurement data further allowed to validate a numerical model of the evaporator whereas heat transfer coefficients were evaluated comparing several literature correlations, especially for the phase-change of the organic fluid. With reference to a waste heat recovery application in industrial compressed air systems, multiple off-design conditions were simulated considering the effects of oil mass flow rate and temperature on the superheating of the organic fluid, a key parameter to ensure a proper operation of the expansion machine, thus of the energy recovery process.

  8. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    Science.gov (United States)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-07-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  9. Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.

    2012-03-01

    The objective of this work is to investigate the flame stabilization mechanism and the conditions leading to the blowoff of a laminar premixed flame anchored downstream of a heat-conducting perforated-plate/multi-hole burner, with overall nearly adiabatic conditions. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. Results show a bell-shaped flame stabilizing above the burner plate hole, with a U-shaped section anchored between neighboring holes. The base of the positively curved U-shaped section of the flame is positioned near the stagnation point, at a location where the flame displacement speed is equal to the flow speed. This location is determined by the combined effect of heat loss and flame stretch on the flame displacement speed. As the mass flow rate of the reactants is increased, the flame displacement speed at this location varies non-monotonically. As the inlet velocity is increased, the recirculation zone grows slowly, the flame moves downstream, and the heat loss to the burner decreases, strengthening the flame and increasing its displacement speed. As the inlet velocity is raised, the stagnation point moves downstream, and the flame length grows to accommodate the reactants mass flow. Concomitantly, the radius of curvature of the flame base decreases until it reaches an almost constant value, comparable to the flame thickness. While the heat loss decreases, the higher flame curvature dominates thereby reducing the displacement speed of the flame base. For a stable flame, the gradient of the flame base displacement speed normal to the flame is higher than the gradient of the flow speed along the same direction, leading to dynamic stability. As inlet velocity is raised further, the former decreases while the latter increases until the stability condition is violated, leading to blowoff. The flame speed during blow off is determined by the feedback between the

  10. Methods to Predict Stresses in Cutting Inserts Brazed Using Iron-Carbon Brazing Alloy

    Science.gov (United States)

    Konovodov, V. V.; Valentov, A. V.; Retuynskiy, O. Yu; Esekuev, Sh B.

    2016-04-01

    This work describes a method for predicting residual and operating stresses in a flat-form tool insert made of tungsten free carbides brazed using iron-carbon alloy. According to the studies’ results it is concluded that the recommendations relating to the limitation of a melting point of tool brazing alloys (950-1100°C according to different data) are connected with a negative impact on tools as a composite made of dissimilar materials rather than on hard alloys as a tool material. Due to the cooling process stresses inevitably occur in the brazed joint of dissimilar materials, and these stresses increase with the higher solidification temperature of the brazing alloy.

  11. Improvements in Cold-Plate Fabrication

    Science.gov (United States)

    Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia

    2012-01-01

    Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.

  12. CFD Analysis of Plate Fin Tube Heat Exchanger for Various Fin Inclinations

    OpenAIRE

    2014-01-01

    ANSYS Fluent software is used for three dimensional CFD simulations to investigate heat transfer and fluid flow characteristics of six different fin angles with plain fin tube heat exchangers. The numerical simulation of the fin tube heat exchanger was performed by using a three dimensional numerical computation technique. Geometry of model is created and meshed by using ANSYS Workbench software. To solve the equation for the fluid flow and heat transfer analysis ANSYS FLUENT ...

  13. Investigation of the effect of rapidly solidified braze ribbons on the microstructure of brazed joints

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Wiesner, S.; Rochala, P.; Mayer, J.; Aretz, A.; Iskandar, R.; Schwedt, A.

    2017-03-01

    Shrinkage and warpage due to melting and solidification are crucial for the geometric precision of related components. In order to assure a high geometric precision, the formation of the microstructure in the joint during brazing must be taken into consideration. An extensive interaction can occur between liquid melt and base material, resulting in the formation of distinctive phases. This interaction depends on the parameters of the brazing process. However, the consequences of the interaction between phase formation and process parameters in terms of geometric precision cannot be estimated yet. Insufficient quality of the joint can be a result. In this study, investigations focus on the process of solidification in terms of time dependent diffusion behavior of elements. Therefore, microcrystalline and amorphous braze ribbons based on Ti are produced by rapid solidification and are used for joining. The microstructure of the braze ribbons as well as the melting behavior and phase formation during brazing are considered to be of particular importance for the mechanical properties of the brazed components.

  14. Near-Field Radiative Heat Transfer Between Metasurfaces: A Full-Wave Study Based on 2D Grooved Metal Plates

    CERN Document Server

    Dai, Jin; Bozhevolnyi, Sergey I; Yan, Min

    2016-01-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two 2D grooved metal plates by a full-wave scattering approach. The enhancement originates from both transverse magnetic spoof surface plasmon polaritons and a series of transverse electric bonding- and anti-bonding waveguide modes at surfaces. The RHT spectrum is frequency-selective, and highly geometrically tailorable. Our simulation also reveals thermally excited non-resonant surface waves in constituent materials can play a prevailing role for RHT at an extremely small separation between two plates, rendering metamaterial modes insignificant for the energy transfer process.

  15. Boundary layer flow and heat transfer on a moving plate in a copper-water nanofluid using Buongiorno model

    Science.gov (United States)

    Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.

    2016-06-01

    The study of the steady two dimensional boundary layer flow of a copper (Cu)-water nanofluid on a moving plate is investigated. The assumption is the plate moves in the same or opposite direction to the free stream. The nonlinear partial differential equations are transformed into nonlinear ordinary differential equations using a similarity variables,then a shooting technique is used to solved it numerically. The numerical results for skin friction coefficient, the local Nusselt number, the local Sherwood number as well as the velocity, temperature and concentration profiles are obtained. The effect of nanoparticle volume fraction, Brownian motion and thermophoresis parameters on heat transfer are examined. The results show that the local Nusselt number and the local Sherwood number increase with increasing in the Brownian motion parameter Nb and thermophoresis parameter Nt.

  16. Influence of inclined Lorentz force on micropolar fluids in a square cavity with uniform and nonuniform heated thin plate

    Science.gov (United States)

    Periyadurai, K.; Muthtamilselvan, M.; Doh, Deog-Hee

    2016-12-01

    In the present study, the effect of inclined magnetic field on natural convection of micro-polar fluid in a square cavity with uniform and nonuniform heated thin plate built in centrally is investigated numerically. The vertical walls are cooled while the top and bottom walls are insulated. The thin plate is assumed to be isothermal with a linearly varying temperature. The governing equations were solved by finite volume method using second order central difference scheme and upwind differencing scheme. The numerical investigation is carried out for different governing parameters namely, the Hartmann number, inclination angle of magnetic field, Rayleigh number, vortex viscosity and source non-uniformity parameters. The result shows that the heat transfer rate is decreased when increasing Hartmann number, inclination angle of magnetic field and vortex viscosity parameter. It is found that the non-uniformity parameter affects the fluid flow and temperature distribution especially for the high Rayleigh numbers. Finally, the overall heat transfer rate of micro-polar fluids is found to be smaller than that of Newtonian fluid.

  17. Transient conjugate free convection from a vertical flat plate in a porous medium subjected to a sudden change in surface heat flux

    CERN Document Server

    Shu, Jian-Jun

    2015-01-01

    The paper presents a theoretical study using the Karman-Pohlhausen method for describing the transient heat exchange between the boundary-layer free convection and a vertical flat plate embedded in a porous medium. The unsteady behavior is developed after the generation of an impulsive heat flux step at the right-hand side of the plate. Two cases are considered according to whether the plate has a finite thickness or no thickness. The time and space evolution of the interface temperature is evidenced.

  18. Synthesis and characterization of Ni-Mo filler brazing alloy for Mo-W joining for microwave tube technology

    Directory of Open Access Journals (Sweden)

    Frank Ferrer Sene

    2013-04-01

    Full Text Available A brazing process based on Ni-Mo alloy was developed to join porous tungsten cathode bottom and dense molybdenum cathode body for microwave tubes manufacture. The Ni-Mo alloy was obtained by mixing and milling powders in the eutectic composition, and applied on the surface of the components. The brazing was made at 1400 °C by using induction heating in hydrogen for 5 minutes. Alumina surfaces were coated with the binder and analyzed by Energy Dispersive X-rays Fluorescence. The brazed samples were analyzed by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy. Stress-strain tests were performed to determine the mechanical behavior of the joining. The quality of the brazing was evaluated by assuring the presence of a "meniscus" formed by the Ni-Mo alloy on the border of the tungsten and molybdenum joint, the absence of microstructural defects in the interface between the tungsten and molybdenum alloys, and the adhesion of the brazed components.

  19. Detached Melt Nucleation during Diffusion Brazing of a Technical Ni-based Superalloy: A Phase-Field Study

    Science.gov (United States)

    Böttger, B.; Apel, M.; Laux, B.; Piegert, S.

    2015-06-01

    Advanced solidification processes like welding, soldering, and brazing are often characterized by their specific solidification conditions. But they also may include different types of melting processes which themselves are strongly influenced by the initial microstructures and compositions of the applied materials and therefore are decisive for the final quality and mechanical properties of the joint. Such melting processes are often not well- understood because - compared to other fields of solidification science - relatively little research has been done on melting by now. Also, regarding microstructure simulation, melting has been strongly neglected in the past, although this process is substantially different from solidification due to the reversed diffusivities of the involved phases. In this paper we present phase-field simulations showing melting, solidification and precipitation of intermetallic phases during diffusion brazing of directionally solidified and heat-treated high-alloyed Ni- based gas turbine blade material using different boron containing braze alloys. Contrary to the common belief, melting of the base material is not always planar and can be further accompanied by detached nucleation and growth of a second liquid phase inside the base material leading to polycrystalline morphologies of the joint after solidification. These findings are consistent with results from brazed laboratory samples, which were characterized by EDX and optical microscopy, and can be explained in terms of specific alloy thermodynamics and inter-diffusion kinetics. Consequences of the gained new understanding for brazing of high- alloyed materials are discussed.

  20. Energy efficient design of heating system with plate heat exchangers%板式换热器供热系统的节能设计

    Institute of Scientific and Technical Information of China (English)

    张海宁

    2012-01-01

    By analyzing the operation parameter deviation from the design values, presents the key points of optimization design for plate heat exchangers. Represents the selection of circulating pumps and determination of the system pressure drop.%通过分析供热系统设计工况与运行工况出现偏差的原因,相应提出了换热器优化设计的要点.同时给出了循环水泵的设计选型和系统压降的确定方法.

  1. Free Convection Flow and Heat Transfer of Tangent Hyperbolic past a Vertical Porous Plate with Partial Slip

    Directory of Open Access Journals (Sweden)

    V. Ramachandra Prasad

    2016-01-01

    Full Text Available This article presents the nonlinear free convection boundary layer flow and heat transfer of an incompressible Tangent Hyperbolic non-Newtonian fluid from a vertical porous plate with velocity slip and thermal jump effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We, the power law index (n, Velocity slip (Sf, Thermal jump (ST, Prandtl number (Pr and dimensionless tangential coordinate ( on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, skin friction and heat transfer rate (Nusselt number is increased with increasing Weissenberg number (We, whereas the temperature is decreased. Increasing power law index (n enhances velocity and heat transfer rate but decreases temperature and skin friction. An increase in Thermal jump (ST is observed to decrease velocity, temperature, local skin friction and Nusselt number. Increasing Velocity slip (Sf is observed to increase velocity and heat transfer rate but decreases temperature and local skin friction. An increasing Prandtl number, (Pr, is found to decrease both velocity and temperature. The study is relevant to chemical materials processing applications.

  2. HEAT AND MASS TRANSFER FOR VISCO-ELASTIC MHD BOUNDARY LAYER FLOW PAST A VERTICAL FLAT PLATE

    Directory of Open Access Journals (Sweden)

    Rita Choudhury

    2012-07-01

    Full Text Available The two-dimensional free convection flow of visco-elastic and electrically conducting fluid past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations are reduced to ordinary differential equation by introducing appropriate co-ordinate transformation. The analytical expressions for the velocity, temperature and species concentration fields have been obtained. The corresponding expressions for the non-dimensional rates of heat transfer and mass transfer have beenobtained. The velocity profile and the shearing stress have been illustrated graphically, for various values of flow parameters involved in the solution to observe the effect of visco-elastic parameter.

  3. Computer implementation of the Passage Arrangement for Plate-Fin Heat Exchangers According to Local Balance Principle

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    A two-step method for stacking arrangement of passages in multistream plate-fin heat exchanger is proposed.The first step (predict step)is to initialize the arrangement according to a local-balance principle,and the second step(correct step) is to re-adjust the arrangement according to the results of differential computation of the temperature distribution.The computer implementation process of the local balance principle is described in detail and three examples are illustrated to whos the feasibility of this principle.A subroutine program is provided to facilitate the reader to adopt this principle.

  4. Analysis of the Thermal Performance of a Solar Water Heating System with Flat Plate Collectors in a Temperate Climate

    OpenAIRE

    Ayompe, Lacour; DUFFY Aidan

    2013-01-01

    The thermal performance of a solar water heating system with 4 m2 flat plate collectors in Dublin, Ireland is presented in this paper. The experimental setup consisted of a commercially available forced circulation domestic scale system fitted with an automated sub‐system that controlled hot water draw‐offs and the operation of an auxiliary immersion heater. The system was tested over a year and the maximum recorded collector outlet fluid temperature was 70.4 oC while the maximum water temper...

  5. Thermophoresis on boundary layer heat and mass transfer flow of Walters-B fluid past a radiate plate with heat sink/source

    Science.gov (United States)

    Vasu, B.; Gorla, Rama Subba Reddy; Murthy, P. V. S. N.

    2016-09-01

    The Walters-B liquid model is employed to simulate medical creams and other rheological liquids encountered in biotechnology and chemical engineering. This rheological model introduces supplementary terms into the momentum conservation equation. The combined effects of thermal radiation and heat sink/source on transient free convective, laminar flow and mass transfer in a viscoelastic fluid past a vertical plate are presented by taking thermophoresis effect into account. The transformed conservation equations are solved using a stable, robust finite difference method. A parametric study illustrating the influence of viscoelasticity parameter (Γ), thermophoretic parameter (τ), thermal radiation parameter (F), heat sink/source (ϕ), Prandtl number (Pr), Schmidt number (Sc), thermal Grashof number (Gr), solutal Grashof number (Gm), temperature and concentration profiles as well as local skin-friction, Nusselt and Sherwood number is conducted. The results of this parametric study are shown graphically and inform of table. The study has applications in polymer materials processing.

  6. 太阳能热泵系统中板式换热器模型分析%Plate Heat Exchanger Model Analysis of Solar Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    芮胜军; 卢向华; 梁坤峰; 王志远

    2013-01-01

      The development of new energy and energy saving are two important ways of seeking energy way. The solar energy heat pump system has the vast development foreground with its characteristic of remarkable energy saving and environmental protection. Solar energy heat pump has the advantages of energy saving relative to air source heat pump. The evaporator and condenser of solar energy heat pump system were studied. The mathematical model of the application of solar heat pump system of the plate heat exchanger was discussed. And the calculation program was analyzed. The saving energy characteristic and existing problems of solar heat pump system were also discussed.%  开发新能源和节能是寻求能源出路的两大重要途径,太阳能热泵供热系统以其显著的节能性和环保性具有广阔的发展前景。太阳能热泵相对空气源热泵具有明显的节能优势。以太阳能热泵系统应用的蒸发器和冷凝器为分析研究对象,讨论了板式换热器在太阳能热泵系统中应用的数学模型,并分析了其计算程序。讨论了太阳能热泵系统的节能特点及存在的问题。

  7. Investigation on laser brazing AA6056 Al alloy to XC18 low-carbon steel

    Institute of Scientific and Technical Information of China (English)

    Jianjun Ding; Feiqun Li; Feng Qu; Patrice Peyre; Remy Fabbro

    2005-01-01

    @@ Based on the studies of influence of YAG laser heating conditions for Al alloy melt and steel on wettability,the mechanics of the laser overlap braze welding of 6056 Al and XC18 steel sheet has been investigated.Under the temperature range which is above the melting point of the Al alloy and below the melting point of the steel, two dissimilar metals can be joined by means of laser braze welding. There is no crack observed in the joining area, i.e. Al-Fe intermetallic phase (Fe3Al/FeAl/FeAl3/Fe2Al5) layer formed by solution and diffusion between liquid-solid interface. The temperature range can be defined as the process temperatures of laser braze welding of Al-Fe materials. Selecting a higher laser heating temperature can improve the wettability of Al melt to steel surface, but the intermetallic phase layer is also thicker. When the laser heating temperature is so high that the joining surface of steel is melted, there is a crack trend in the joining area.

  8. Comparison of the performance of a Ciat chiller operating with R 22 and R 407C fitted with Exel plate exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, A.; Jurkowski, R.; Granger, F. [Compagnie Industrielle d' Applications Thermiques CIAT, 01 - Culoz (France)

    1999-07-01

    In this paper we have presented the results of experiments conducted in CIAT's research laboratory in France. The study concerns chillers fitted with brazed plate exchangers and reciprocating compressors, initially operating with R 407C and ester oil, then with R 22. We have compared and estimated several energetic parameters of the installation including the cooling capacity, heating capacity, absorbed power, energy efficiency ratio as well as the variation in the composition and miscibility of the oil. The results of these investigations are of significant importance for users and manufacturers of refrigeration installations operating with R 407C. (authors)

  9. Microstructure of U 3Si 2 fuel plates submitted to a high heat flux

    Science.gov (United States)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Jacquet, P.; Jarousse, C.; Guigon, B.; Ballagny, A.; Sannen, L.

    2004-05-01

    In order to gain insight on the performance limits of U 3Si 2 fuel with Al cladding, fuel plates with a fissile material density of 5.1 and 6.1 g U/cm 3 were irradiated in the BR2 reactor of SCK • CEN in Mol. The plates were intended to be subjected to severe conditions leading to a cladding surface temperature of 180-200 °C and fuel temperatures of 220-240 °C. The irradiation program was stopped after the second cycle based on the visual inspection and wet sipping tests of the elements, correspondingly showing degradations on the outer Al surfaces of the U 3Si 2 plates and the release of fission products. The maximum fuel burn-up was 29% and 25% 235U, respectively. In a PIE program the microstructural causes for this degradation are analysed. It is found that the failure of the plates is entirely related to the corrosion of the Al cladding, which has caused temperatures to rise well beyond the calculated values. In all stages, the fuel grains have retained their integrity and, apart from the formation of an interaction phase with the Al matrix, they do not demonstrate deleterious changes in their physical properties.

  10. Unsteady Hydromagnetic Natural Convection Flow past an Impulsively Moving Vertical Plate with Newtonian Heating in a Rotating System

    Directory of Open Access Journals (Sweden)

    Gauri Shanker Seth

    2015-01-01

    Full Text Available An investigation of unsteady hydromagnetic natural convection flow of a viscous, incompressible, electrically conducting and heat absorbing fluid past an impulsively moving vertical plate with Newtonian heating embedded in a porous medium in a rotating system is carried out. The governing partial differential equations are first subjected to Laplace transformation and then inverted numerically using INVLAP routine of Matlab. The governing partial differential equations are also solved numerically by Crank-Nicolson implicit finite difference scheme and a comparison has been provided between the two solutions. The numerical solution for fluid velocity and fluid temperature are depicted graphically whereas the numerical values of skin friction and Nusselt number are presented in tabular form for various values of pertinent flow parameters. Present solution in special case is compared with previously obtained solution and is found to be in excellent agreement.

  11. Natural convection flow of a nano-fluid over a vertical plate with uniform surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States)

    2011-07-15

    Natural convective flow of a nano-fluid over a vertical plate with a constant surface heat flux is investigated numerically, following a similarity analysis of the transport equations. The transport model employed includes the effect of Brownian motion and thermophoresis. The analysis shows that velocity, temperature and concentration profiles in the respective boundary layers depend, besides the Prandtl and Lewis numbers, on three additional dimensionless parameters, namely a Brownian motion parameter Nb, a thermophoresis parameter Nt, a buoyancy ratio parameter Nr. In addition to the study of these parameters on the boundary layer flow characteristics (velocity, temperature, nano-particle concentration, skin friction, and heat transfer), correlations for the Nusselt and Sherwood numbers have been developed based on a regression analysis of the data. These correlations predict the numerical results with a maximum error of 5.5% for the reduced Nusselt number and 3.2% for the reduced Sherwood number. (authors)

  12. CFD Analysis of Plate Fin Tube Heat Exchanger for Various Fin Inclinations

    Directory of Open Access Journals (Sweden)

    Subodh Bahirat,

    2014-08-01

    Full Text Available ANSYS Fluent software is used for three dimensional CFD simulations to investigate heat transfer and fluid flow characteristics of six different fin angles with plain fin tube heat exchangers. The numerical simulation of the fin tube heat exchanger was performed by using a three dimensional numerical computation technique. Geometry of model is created and meshed by using ANSYS Workbench software. To solve the equation for the fluid flow and heat transfer analysis ANSYS FLUENT was used in the fin-tube heat exchanger. The fluid flow and heat transfer are simulated and result compared for both laminar and turbulent flow models k-epsilon and SST k-omega, with steady state solvers to calculate heat transfer, flow velocity and temperature fields of variable inclined fin angles (Ɵ = 00 ,100 , 200 , 300 , 400 ,500 . Model is validate by comparing the simulated value of velocity, temperature and colburn factor with experimental and numerical results investigated by WANG [1] and GHORI KIRAR [10]. Reasonable agreement is found between the simulations and other results, and the ANSYS Fluent software is sufficient for simulating the flow fields in tube fin heat exchanger.

  13. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  14. Nanoparticle-Assisted Diffusion Brazing of Metal Microchannel Arrays: Nanoparticle Synthesis, Deposition, and Characterization

    Science.gov (United States)

    Eluri, Ravindranadh T.

    Microchannel process technology (MPT) offers several advantages to the field of nanomanufacturing: 1) improved process control over very short time intervals owing to shorter diffusional distances; and 2) reduced reactor size due to high surface area to volume ratios and enhanced heat and mass transfer. The objective of this thesis was to consider how nanomaterials, produced in part using MPT, could be used to solve problems associated with the fabrication of MPT devices. Specifically, many MPT devices are produced using transient liquid-phase brazing involving an electroplated interlayer consisting of a brazing alloy designed for melting temperature suppression. Unfortunately, these alloys can form brittle secondary phases which significantly reduce bond strength. In contrast, prior efforts have shown that it is possible to leverage the size-dependent properties of nanomaterials to suppress brazing temperatures. In this prior work, thin films of off-the-shelf elemental nanoparticles were used as interlayers yielding joints with improved mechanical properties. In the present investigation, efforts have been made to characterize the synthesis and deposition of various elemental nanoparticle suspensions for use in the transient liquid-phase brazing of aluminum and stainless steel. Advances were used to demonstrate the nanoparticle-assisted diffusion brazing of a microchannel array. In the first section, a silver nanoparticle (AgNP) interlayer was produced for the diffusion brazing of heat exchanger aluminum. Efforts are made to examine the effect of braze filler particle size (˜5 nm and ˜50 nm) and processing parameters (heating rate: 5ºC/min and 25ºC/min; brazing temperature: 550ºC and 570ºC) on thin coupons of diffusion-brazed 3003 Al. A tensile strength of 69.7 MPa was achieved for a sample brazed at 570°C for 30 min under 1 MPa with an interlayer thickness of approximately 7 microm. Further suppression of the brazing temperature to 500ºC was achieved by

  15. Heat transfer performance of silver/water nanofluid in a solar flat-plate collector

    OpenAIRE

    Lazarus, Godson; Roy, Siddharth; Kunhappan, Deepak; Cephas, Enoch; Wongwises, Somchai

    2015-01-01

    An experimental study is carried out to investigate the heat transfer characteristics of silver/water nanofluid in a solar flatplate collector. The solar radiation heat flux varies between 800 W/m2and 1000W/m2, and the particle concentration varies between 0.01%, 0.03%, and 0.04%. The fluid Reynolds number varies from 5000 to 25000. The influence of radiation heat flux, mass flow rate of nanofluid, inlet temperature into the solar collector, and volume concentration of the particle on the con...

  16. The Application of Plate Heat Exchanger in EO/EG%板式换热器在 EO/EG 装置中的运用

    Institute of Scientific and Technical Information of China (English)

    徐鹏; 游艺

    2014-01-01

    The structural features of plate heat exchanger , routine maintenance and management of plate heat exchanger , design and selection of the notes of the plate heat exchanger was introduced.Plate heat exchanger was a highly efficient, energy -efficient heat transfer equipment , with a high heat transfer coefficient , compact structure , less supplies, forms, ease of maintenance and many other advantages , the application fields were gradually expanded , which was widely used in machinery, electric power, metallurgy, chemical, textile, beverage, urban heating and other industries and fields , showing a strong competitive edge.%介绍了EO/EG装置中板式换热器的结构特点、板式换热器设计选型时注意的事项及板式换热器的日常维护管理。板式换热器是一种高效、节能的换热设备,具有传热系数高、结构紧凑、耗材少、形式多样、便于维修等诸多优点,应用领域逐渐扩大,已广泛应用于机械、电力、冶金、化工、轻纺、饮料、城镇供热等行业和领域,表现出很强的竞争力。

  17. Electroless-plating technique for fabricating thin-wall convective heat-transfer models

    Science.gov (United States)

    Avery, D. E.; Ballard, G. K.; Wilson, M. L.

    1984-01-01

    A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.

  18. Convective Heat Transfer Enhancement of a Rectangular Flat Plate by an Impinging Jet in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    李国能; 郑友取; 胡桂林; 张治国

    2014-01-01

    Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow. Several parameters including the jet-to-cross-flow mass ratio (X=2%-8%), the Reynolds number (Red=1434-5735) and the jet diameter (d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of en-hancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.

  19. Infrared Brazing Zirconium using Two Silver Based Foils

    Institute of Scientific and Technical Information of China (English)

    Cheng-Han Lee; Ren-Kae Shiue

    2013-01-01

    Ag-based brazing foils,BAg-8 (72Ag-28Cu in wt%) and Ticusil(R) (68.8Ag-26.7Cu-4.5Tiin wt%) were selected to braze Zr.Interfacial AgCu4Zr,CuZr2 reaction layers and Ag-rich matrix dominate BAg-8 brazed joint,and fractograph after shear test shows ductile dimple fracture with plastic sliding marks.Ticusil~ joint brazed at 910℃ for 300 s is comprised of Cu9Zr11 and AgZr intermetallics,and fractograph after shear test displays brittle cleavage fracture.

  20. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units

    DEFF Research Database (Denmark)

    Zhang, Ji; Desideri, Adriano; Kærn, Martin Ryhl

    2017-01-01

    . This paper is aimed at obtaining flow boiling heat transfer and pressure drop characteristics in a plate heat exchanger under the working conditions prevailing in the evaporator of organic Rankine cycle units. Two hydrofluoroolefins R1234yf and R1234ze, and one hydrofluorocarbon R134a, were selected...

  1. Joining of metal bars by a new process of transformation-diffusion brazing

    Institute of Scientific and Technical Information of China (English)

    Zhang Guifeng; Zhang Jianxun; Pei Yi

    2006-01-01

    Within the bonded interface of metal bars joint produced by conventional solid state bonding process (such as flash welding, resistance butt welding, friction welding and so on ), the inclusions are often present, which degrade the ductility of joint. A new process of transformation-diffusion brazing is proposed, in which an amorphous foil containing melting point depressant is preplaced between the interfaces to be joined, and the assembly is repeatedly heated/cooled without holding time at peak temperature. A low carbon steel bars, BNi-2 amorphous foil and resistance butt welding machine were used. The results show that surface contamination can be disrupted by the dissolution of base metal into molten interlayer in comparison with conventional process, and the ductility of joint can be improved by increasing the times of temperature cycles on line. In addition, transformation-diffusion brazing can be done with relatively simple and inexpensive system in comparison with transient liquid phase bonding.

  2. Behavior and influence of Pb and Bi in Ag-Cu-Zn brazing alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of trace content of Pb and Bi elements on the spreading property and the strength of brazed joints of Ag-Cu-Zn filler metal have been studied. The results show that Pb has little effect on both above properties, and Bi has remarkable influence on the spreading property but little effect on the strength of brazed joint. Pb and Bi dissolve into the Ag-Cu-Zn matrix and will melt and gather at lower temperature when that alloy is being heated. Therefore a liquid forms on the surface of the Ag-Cu-Zn alloy and overlays the melting alloy, then keeps the filler metal away from the materials being joined, and so decreases the spreading property.

  3. The story of laser brazing technology

    Science.gov (United States)

    Hoffmann, Peter; Dierken, Roland

    2012-03-01

    This article gives an overview on the development of laser brazing technology as a new joining technique for car body production. The story starts with fundamental research work at German institutes in 1993, continues with the first implementations in automobile production in 1998, gives examples of applications since then and ends with an outlook. Laser brazing adapted design of joints and boundary conditions for a safe processing are discussed. Besides a better understanding for the sensitivity of the process against joint irregularities and misalignment, the key to successful launch was an advanced system technology. Different working heads equipped with wire feeding device, seam tracking system or tactile sensors for an automated teaching are presented in this paper. Novel laser heads providing a two beam technology will allow improved penetration depth of the filler wire and a more ecological processing by means of energy consumption.

  4. Brazing of copper to stainless steel with a low-silver-content brazing filler metal

    Science.gov (United States)

    Fukikoshi, Tatsuya; Watanabe, Yūki; Miyazawa, Yasuyuki; Kanasaki, Fumio

    2014-08-01

    The brazing of copper to stainless steel (SUS304 JIS) was performed using a low- silver-content brazing filler metal, Ag-50Cu, under an Ar gas atmosphere with a conventional furnace, owing to the potential economic benefits of using low-silver-content filler metals. The brazeability of the low-silver-content brazing filler metal to copper and SUS304 was investigated. A good joint was obtained, and a drastic dissolution reaction occurred at the copper side. Molten BAg8 penetrated along the crystal grain boundary of the copper base metal when BAg8 was used as the filler metal. This was caused by the dissolution of Ni from the stainless steel into the molten filler metal. Ag-50Cu, which was investigated in this work, can be used instead of BAg8 filler metal.

  5. Brazing development and interfacial metallurgy study of tungsten and copper joints with eutectic gold copper brazing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Easton, David, E-mail: david.easton@strath.ac.uk [University of Strathclyde, Department of Mechanical Engineering, Glasgow G1 1XJ (United Kingdom); Zhang, Yuxuan; Wood, James; Galloway, Alexander; Robbie, Mikael Olsson [University of Strathclyde, Department of Mechanical Engineering, Glasgow G1 1XJ (United Kingdom); Hardie, Christopher [Culham Centre for Fusion Energy CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • A eutectic gold–copper brazing alloy has been successfully used to produce a highly wetted brazed joint between tungsten and copper. • Relevant materials for fusion applications. • Mechanical testing of W–AuCu–Cu soon to be performed. - Abstract: Current proposals for the divertor component of a thermonuclear fusion reactor include tungsten and copper as potentially suitable materials. This paper presents the procedures developed for the successful brazing of tungsten to oxygen free high conductivity (OFHC) copper using a fusion appropriate gold based brazing alloy, Orobraze 890 (Au80Cu20). The objectives were to develop preparation techniques and brazing procedures in order to produce a repeatable, defect free butt joint for tungsten to copper. Multiple brazing methods were utilised and brazing parameters altered to achieve the best joint possible. Successful and unsuccessful brazed specimens were sectioned and analysed using optical and scanning electron microscopy, EDX analysis and ultrasonic evaluation. It has been determined that brazing with Au80Cu20 has the potential to be a suitable joining method for a tungsten to copper joint.

  6. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  7. Characteristics of dissimilar laser-brazed joints of isotropic graphite to WC-Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nagatsuka, Kimiaki, E-mail: nagatuka@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, Joining and Welding Research Institute, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Sechi, Yoshihisa, E-mail: sechi@kagoshima-it.go.jp [Kagoshima Prefectural Institute of Industrial Technology, 1445-1 Oda, Hayato-cho, Kirishima, Kagoshima 899-5105 (Japan); Miyamoto, Yoshinari, E-mail: y_miyamoto@toyotanso.co.jp [Toyo Tanso Co., Ltd., 5-7-12 Takeshima, Nishiyodgawa-ku, Osaka 555-0011 (Japan); Nakata, Kazuhiro, E-mail: nakata@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2012-04-25

    Highlights: Black-Right-Pointing-Pointer Ti was required in the filler metal for brazing graphite to WC-Co alloy. Black-Right-Pointing-Pointer The shear strength of the joint increased with Ti content up to 1.7 mass%. Black-Right-Pointing-Pointer Ti concentrated at the interface of graphite/filler metal. Black-Right-Pointing-Pointer TiC was formed at the interface of graphite/filler metal. - Abstract: The effect of Ti serving as an activator in a eutectic Ag-Cu alloy filler metal in dissimilar laser-brazed joints of isotropic graphite and a WC-Co alloy on the joint strength and the interface structure of the joint is investigated in this study. To evaluate the joint characteristics, the Ti content in the filler metal was increased from 0 to 2.8 mass%. The laser brazing was carried out by irradiating a laser beam selectively on the WC-Co alloy plate in Ar atmosphere. The threshold content of Ti required to join isotropic graphite to WC-Co alloy was 0.4 mass%. The shear strength at the brazed joint increased rapidly with increasing Ti content up to 1.7 mass%, and a higher Ti content was found to be likely to saturate the shear strength to a constant value of about 14 MPa. The isotropic graphite blocks also fractured at this content. The concentration of Ti observed at the interface between isotropic graphite and the filler metal indicates the formation of an intermetallic layer of TiC.

  8. Effects of Dufour and Modified Forchhemier for Hydromagnetic Free Convective Heat and Mass Transfer Flow along a Permeable Inclined porous Plate with Heat Generation and Thermophoresis

    Directory of Open Access Journals (Sweden)

    M. Enamul Karim

    2013-06-01

    Full Text Available This study presents the numerical simulations to investigate the effects of the magnetic field parameter, Modified Forchhemier number, Prandtl number, Modified Darcy number, the Local Grashof number, the Dufour number and the Schmidt number on steady two-dimensional, laminar, hydromagnetic flow with heat and mass transfer over a semi-infinite, permeable inclined plate in the presence of thermophoresis and heat generation is carefully considered and equipped numerically. A similarity transformation is used to shrink the governing non-linear partial differential equations into ordinary differential equations. The obtained locally similar equations are then solved numerically by applying Nachtsheim-Swigert shooting iteration technique with sixth-order Runge-Kutta integration scheme. Comparisons with previously published study are performed and the results are found to be in very good agreement. Numerical results for the dimensionless velocity, temperature and concentration profiles are reported graphically as well as for the skin-friction coefficient, wall heat transfer and particle deposition rates are investigated for an assortment of values of the parameters inflowing into the problem.

  9. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    Science.gov (United States)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  10. Vacuum brazing of alumina ceramic to titanium for biomedical implants using pure gold as the filler metal

    Science.gov (United States)

    Siddiqui, Mohammad S.

    One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut (brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 x 10-8 atm-cc/ sec on a helium leak detector were measured. Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the

  11. Experimental Research on Flow Maldistribution in Plate-Fin Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    张哲; 厉彦忠; 许箐

    2004-01-01

    The flow maldistribution and the effect of different inlet configuration on the flow distribution in platefin heat exchangers were studied experimentally. It is found that the flow maldistribution is serious because of the defects of inlet configurations, while the inlet configuration and Reynolds number are the main factors affecting the flow distribution. The improved inlet configurations, which are the header with a two-stage distributing configuration and the guide vane with a fluid complementary cavity were proposed and tested in this paper. The experimental results show that the improved inlet configurations can effectively improve the performance of flow distribution in heat exchangers.

  12. Flat plate collectors as facade elements for domestic hot water and heat insulation. Flachkollektoren als Fassadenelemente zur Brauchwassererwaermung und Waermedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Flamm, H.; Lochau, R.; Maeiss, M.; Schiele, J.

    1984-07-01

    In a newly constructed south-west-facade 200 m/sup 2/ of flat plate collectors were integrated as construction elements to heat domestic water. The building needs 5-10 m/sup 3/ of hot water per day, i.e. 250-500 kWh/d. The solar circuit runs with a water-glycol-mixture with a specific volume flow rate of 20-40 l/m/sup 2/h. The storage capacity is 8 m/sup 3/, i.e. 40 l/m/sup 2/ collector area. The heating system is bivalent. The total cost was DM 220.000, excepting the cost of facade construction. The observation period was 2 years. The heat flow balance was measured daily using a microprocessor. As far as the construction was concerned, there were no defects during the observation period. The rooms behind solar collectors showed no additional thermal load. The most favourable season for running solar systems is from April to September. In this period the average efficiencies were 15 to 20%, the net energy yield was 76 kWh/m/sup 2/.

  13. MHD boundary layer slip flow and radiative nonlinear heat transfer over a flat plate with variable fluid properties and thermophoresis

    Directory of Open Access Journals (Sweden)

    S.K. Parida

    2015-12-01

    Full Text Available This work considers the two-dimensional steady MHD boundary layer flow of heat and mass transfer over a flat plate with partial slip at the surface subjected to the convective heat flux. The particular attraction lies in searching the effects of variable viscosity and variable thermal diffusivity on the behavior of the flow. In addition, non-linear thermal radiation effects and thermophoresis are taken into account. The governing nonlinear partial differential equations for the flow, heat and mass transfer are transformed into a set of coupled nonlinear ordinary differential equations by using similarity variable, which are solved numerically by applying Runge–Kutta fourth–fifth order integration scheme in association with quasilinear shooting technique. The novel results for the dimensionless velocity, temperature, concentration and ambient Prandtl number within the boundary layer are displayed graphically for various parameters that characterize the flow. The local skin friction, Nusselt number and Sherwood number are shown graphically. The numerical results obtained for the particular case are fairly in good agreement with the result of Rahman [6].

  14. Finite Difference Analysis of Radiative Free Convection Flow Past an Impulsively Started Vertical Plate with Variable Heat and Mass Flux

    Directory of Open Access Journals (Sweden)

    V. Ramachandra Prasad

    2011-01-01

    Full Text Available A numerical solution of the unsteady radiative free convection flow of an incompressible viscous fluid past an impulsively started vertical plate with variable heat and mass flux is presented here. This type of problem finds application in many technological and engineering fields such as rocket propulsion systems, spacecraft re-entry aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing non-linear, coupled equations are solved using an implicit finite difference scheme. Numerical results for the velocity, temperature, concentration, the local and average skinfriction, the Nusselt and Sherwood number are shown graphically, for different values of Prandtl number, Schmidt number, thermal Grashof number, mass Grashof number, radiation parameter, heat flux exponent and the mass flux exponent. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer. The local and average skin-friction increases with the increase in radiation parameter. For increasing values of radiation parameter the local as well as average Nusselt number increases.

  15. Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone: evidence from a preliminary rock magnetic `geothermometer'

    Science.gov (United States)

    Yang, Tao; Dekkers, Mark J.; Zhang, Bo

    2016-04-01

    Frictional heating during earthquake rupture reveals important information on earthquake mechanisms and energy dissipation. The amount of annealing varies widely and is, as yet, poorly constrained. Here we use magnetic susceptibility versus temperature measurements during cycling to increasingly elevated temperatures to constrain the maximum temperature a slip zone has experienced. The case study comprises sheared clay cored from the Japan Trench subduction plate-boundary fault zone (décollement), which accommodated the large slip of the 2011 Mw 9.0 Tohoku-oki earthquake. The décollement was cored during the Integrated Ocean Drilling Program (IODP) Expedition 343, the Japan Trench Fast Drilling Project (JFAST). Heating signatures with estimated maximum temperatures ranging from ˜300 to over 500 °C are determined close to the multiple slip surfaces within the décollement. Since it is impossible to tie a specific slip surface to a certain earthquake, thermal evidence for the cumulative effect of several earthquakes is unveiled. This as yet preliminary rock magnetic `geothermometer' would be a useful tool to detect seismic heating along faults that experienced medium temperature rise, a range which is difficult to assess with other approaches.

  16. Heat Transfer Model with Two Heat Transfer Coefficients Along a Multiperforated Plate--Application to Combustion Chamber Wall Cooling

    Institute of Scientific and Technical Information of China (English)

    Brice Pêtre; Eva Dorignac; Jean Jacques Vullierme

    2003-01-01

    Walls'cooling of aeronautic propeller combustion chamber is performed with the injection, through the combustion chamber wall, of a part of the air coming from compressors placed upstream. Measurements of the wall thermal fields are made by infrared thermography along the injection wall. This injection wall is pierced by 9 rows of 8 holes (α=90°) in staggered configuration (p/D=s/D=6). We propose a model using two heat transfer coefficients to represent the convective exchanges. The results are non-dimensioned and presented in comparison with the case without holes. The use of this model allows us to define 4 zones. Those 4 zones exist for the 5 blowing rates.

  17. Magnetohydrodynamics effect on three-dimensional viscous incompressible flow between two horizontal parallel porous plates and heat transfer with periodic injection/suction

    Directory of Open Access Journals (Sweden)

    R. C. Chaudhary

    2004-11-01

    Full Text Available We investigate the hydromagnetic effect on viscous incompressible flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the fluid at the stationary plate and its corresponding removal by periodic suction through the plate in uniform motion. The flow becomes three dimensional due to this injection/suction velocity. Approximate solutions are obtained for the flow field, the pressure, the skin-friction, the temperature field, and the rate of heat transfer. The dependence of solution on M (Hartmann number and λ (injection/suction is investigated by the graphs and tables.

  18. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  19. Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas//Experimental heat transfer coefficients for the liquor cooling in plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Enrique Torres‐Tamayo

    2014-01-01

    Full Text Available La pérdida de eficiencia del proceso de enfriamiento del licor amoniacal, mediante el uso de intercambiadores de calor de placas, está asociada a imprecisiones en la estimación de los coeficientes de transferencia de calor y la acumulación de incrustaciones en la superficie de intercambio. El objetivo de la investigación es determinar los coeficientes de transferencia de calor y la influencia de lasincrustaciones en la pérdida de eficiencia de la instalación. Mediante un procedimiento iterativo se estableció la ecuación del número de Nusselt y su relación con el número de Reynolds y Prandtl. Se utilizó un diseño experimental multifactorial. Los resultados predicen el conocimiento de los coeficientespara el cálculo del número de Nusselt en ambos fluidos. Los valores de los coeficientes del licor amoniacal son inferiores, ello se debe a la presencia de componentes gaseosos. La ecuación obtenida muestra correspondencia con el modelo de Buonapane, el error comparativo es del 3,55 %.Palabras claves: intercambiador de calor de placas, coeficientes de transferencia de calor, eficiencia térmica.______________________________________________________________________________AbstractThe loss of efficiency of the ammonia liquor cooling process, by means of the plate heat exchanger, is associated to the incorrect estimate of the heat transfer coefficients and the accumulation of inlays in the exchange surface. The objective of the investigation is to determine the transfer coefficients and the influence of the inlays in the efficiency loss of the installation. By means of an iterative procedure was obtained the Nusselt number equation and the relationship with the Reynolds and Prandtl number, for it was used it a design experimental multifactorial. The results predict the knowledge of the coefficients forthe calculation of the Nusselt number for both fluids. The ammonia liquor coefficients values are inferior, due to the presence of gassy

  20. Effect of Heat Input During Disk Laser Bead-On-Plate Welding of Thermomechanically Rolled Steel on Penetration Characteristics and Porosity Formation in the Weld Metal

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-03-01

    Full Text Available The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.

  1. Mixed convection boundary layer flow past vertical flat plate in nanofluid:case of prescribed wall heat flux

    Institute of Scientific and Technical Information of China (English)

    R. TRˆIMBIT¸AS¸; T.GROSAN; I.POP

    2015-01-01

    An analysis is carried out to investigate the steady mixed convection bound-ary layer flow of a water based nanofluid past a vertical semi-infinite flat plate. Using an appropriate similarity transformation, the governing partial differential equations are transformed into the coupled, nonlinear ordinary (similar) differential equations, which are then solved numerically for the Prandtl number Pr = 6.2. The skin friction coeffi-cient, the local Nusselt number, and the velocity and temperature profiles are presented graphically and discussed. Effects of the solid volume fractionφand the mixed convection parameterλon the fluid flow and heat transfer characteristics are thoroughly examined. Different from an assisting flow, it is found that the solutions for an opposing flow are non-unique. In order to establish which solution branch is stable and physically realizable in practice, a stability analysis is performed.

  2. Transient MHD Free Convection Flow and Heat Transfer of Nanofluid past an Impulsively Started Semi-Infinite Vertical Plate

    Directory of Open Access Journals (Sweden)

    V. Rajesh

    2016-01-01

    Full Text Available In this paper, the problem of nanofluid flow and heat transfer due to the impulsive motion of a semi-infinite vertical plate in its own plane in the presence of magnetic field is analyzed by the implicit finite-difference numerical method. A range of nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. The Tiwari-Das nanofluid model is employed. The velocity and temperature profiles as well as the skin friction coefficient and Nusselt number are examined for different parameters such as nanoparticle volume fraction, nanofluid type, magnetic parameter and thermal Grashof number. The present simulations are relevant to magnetic nanomaterials thermal flow processing in the chemical and metallurgical industries.

  3. Effects of zonal heat treatment on residual stresses and mechanical properties of electron beam welded TC4 alloy plates

    Institute of Scientific and Technical Information of China (English)

    HU Mei-juan; LIU Jin-he

    2009-01-01

    Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses, microstructures and mechanical properties of electron beam welded joints were investigated. Experimental results show residual stresses after welding are mostly relieved through ZHT, and the maximum values of longitudinal tensile stress and transverse compressive stress reduce by 76% and 65%, respectively. The tensile strength and ductility of welded joint after ZHT at slow scanning velocity are improved because of the reduction of residual stress and the microstructural changes of the base and weld metal. ZHT at fast scanning velocity is detrimental to the ductility of welded joint, which is resulted from insufficiently coarsened alpha phase in the fusion zone and the appearance of martensite in the base metal.

  4. Plate-fin Heat-exchangers for a 10 kW Brayton Cryocooler and a 1 km HTS Cable

    Science.gov (United States)

    Chang, Ho-Myung; Gwak, Kyung Hyun; Jung, Seyong; Yang, Hyung Suk; Hwang, Si-Dole

    Plate-fin heat exchangers (PFHX) are designed and fabricated for a cryogenic cooling system, serving for a 10 kW Brayton cryocooler and a 1 km HTS transmission cable under development in Korea. To achieve compactness and thermal efficiency at the same time, a recuperative HX for Brayton cycle and a sub-cooling HX of liquid nitrogen for HTS cable are designed as integrated parts. A key design feature is focused on the coldest part of sub-cooling HX, where the streams of liquid nitrogen and refrigerant (helium gas) are arranged as two-pass cross-flow so that the risk of freeze-out of liquid nitrogen can be reduced. Details of hardware PFHX design are presented and discussed towards its immediate application to the HTS cable system.

  5. Numerical heat and mass transfer analysis of a cross-flow indirect evaporative cooler with plates and flat tubes

    Science.gov (United States)

    Chua, K. J.; Xu, J.; Cui, X.; Ng, K. C.; Islam, M. R.

    2016-09-01

    In this study the performance of an indirect evaporative cooling system (IECS) of cross-flow configuration is numerically investigated. Considering the variation of water film temperature along the flowing path and the wettability of the wet channel, a two-dimensional theoretical model is developed to comprehensively describe the heat and mass transfer process involved in the system. After comparing the simulation results with available experimental data from literature, the deviation within ±5 % proves the accuracy and reliability of the proposed mathematical model. The simulation results of the plate type IECS indicate that the important parameters, such as dimension of plates, air properties, and surface wettability play a great effect on the cooling performance. The investigation of flow pattern shows that cross-flow configuration of primary air with counter-flow of secondary air and water film has a better cooling performance than that of the parallel-flow pattern. Furthermore, the performance of a novel flat tube working as the separating medium is numerically investigated. Simulation results for this novel geometry indicate that the tube number, tube long axis and short axis length as well as tube length remarkably affect its cooling performance.

  6. Stability and coherent structures of the asymptotic suction boundary layer over a heated plate

    CERN Document Server

    Zammert, Stefan; Eckhardt, Bruno

    2016-01-01

    The asymptotic suction boundary layer (ASBL) is a parallel shear flow that becomes turbulent in a bypass transition in parameter regions where the laminar profile is stable. We here add a temperature gradient perpendicular to the plate and explore the interaction between convection and shear in determining the transition. We find that the laminar state becomes unstable in a subcritical bifurcation and that the critical Rayleigh number and wave number depend strongly on the Prandtl number. We also track several secondary bifurcations and identify states that are localized in two directions, showing different symmetries. In the subcritical regime, transient turbulent states which are connected to exact coherent states and follow the same transition scenario as found in linearly stable shear flows are identified and analyzed. The study extends the bypass transition scenario from shear flows to thermal boundary layers and shows the intricate interactions between thermal and shear forces in determining critical po...

  7. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    Science.gov (United States)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  8. Silver-palladium braze alloy recovered from masking materials

    Science.gov (United States)

    Cierniak, R.; Colman, G.; De Carlo, F.

    1966-01-01

    Method for recovering powdered silver-palladium braze alloy from an acrylic spray binder and rubber masking adhesive used in spray brazing is devised. The process involves agitation and dissolution of masking materials and recovery of suspended precious metal particles on a filter.

  9. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  10. Heat and mass transfer with evaporation cooling of a porous plate

    Science.gov (United States)

    Makarova, S. N.; Shibaev, A. A.

    2016-10-01

    In this paper the results of experimental and theoretical investigation of heat and mass transfer with adiabatic evaporation of bicomponent water/ethanol fluid to an air flow are presented. An innovative test section for the wind tunnel with an active thermal stabilization system, maintaining the cuvette temperature equal to the evaporation surface temperature, is used to provide the evaporation adiabatic conditions. The wall temperature obtained experimentally shows the presence of expressed quasi-stationary evaporation area, qualitatively similar to sublimation curves of volatile organometallic compounds. A theoretical model based on the similarity of heat and mass transfer processes for each of the evaporating solution component is suggested. This model allows to determine evaporation surface temperature (sublimation temperature) accounting for radiation effect.

  11. Mathematical Model for Fluid Flow and Heat Transfer Processes in Plate Exchanger

    Directory of Open Access Journals (Sweden)

    Cvete B. Dimitrieska

    2015-11-01

    Full Text Available Within the analytical solution of the system of equations which solve fluid flow and heat transfer processes, the elliptical and parabolic differential equations based on initial and boundary conditions is usually unfamiliar in a closed form. Numerical solution of equation system is necessarily obtained by discretization of equations. When system of equations relate to estimation of two dimensional stationary problems, the applicable method for estimation in basic two – dimensional form is recommended.

  12. Flat Plate and Turbine Vane Cascade Heat Transfer Investigation Using a Shock Tube.

    Science.gov (United States)

    1985-12-01

    piece of -. work would not have been possible without the superior and talented AFIT Shop personnel lead by Mr. Carl Shortt. I would also like to...tube. Curves were presented showing the time required to reach steady state for a given flow condition and model size. Davies and Berstein (1969...inverse of Davies’ and Bersteins ’ I alpha as the transition requirement. Dunn and Stoddard (1977) .. * .conducted heat transfer experiments in a shock

  13. 冲击射流结构中应用粗糙表面的实验研究%Experimental Investigation of Impingement Heat Transfer on Roughened Plates

    Institute of Scientific and Technical Information of China (English)

    邢云绯; 仲峰泉; 张新宇; Bernhard Weigand

    2012-01-01

    在单侧开口的冲击射流冷却结构中,逐步增加的横流将影响冲击板上的对流换热效率,本文提出了压窝板和肋片板两种粗糙冲击板构型,增加横流的扰动以减少对冲击流的影响并且增大横流与壁面的对流换热。实验采用瞬态热敏液晶测量方法,可以得到大尺度壁面的二维对流换热系数分布,可以较为系统地分析压窝及肋片周围的局部换热系数分布。通过实验研究,发现压窝板可以显著增大平均换热系数,而肋片板降低了平均换热系数。%In an impingement cooling system with one exhaust direction, the higher crossflow can influence the heat transfer coefficient on the target plate. There are dimpled plate and rib-roughened plate as the target plate in the present study. The presence of the roughened plates is in order to enhance the turbulent intensity of the crossflow and enhance the heat transfer coetficient on the target plate. The present study has been measured by the transient liquid crystal method. The heat transfer results of the dimpled plate are higher compared to those of the rib-roughened plate.

  14. Thin-film diffusion brazing of titanium alloys

    Science.gov (United States)

    Mikus, E. B.

    1972-01-01

    A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.

  15. Numerical Study of Solidification in a Plate Heat Exchange Device with a Zigzag Configuration Containing Multiple Phase-Change-Materials

    Directory of Open Access Journals (Sweden)

    Peilun Wang

    2016-05-01

    Full Text Available Latent heat thermal energy storage (TES plays an important role in the advocation of TES in contrast to sensible energy storage because of the large storage energy densities per unit mass/volume possible at a nearly constant thermal energy. In the current study, a heat exchange device with a zigzag configuration containing multiple phase-change-materials (m-PCMs was considered, and an experimental system was built to validate the model for a single PCM. A two-dimensional numerical model was developed using the ANSYS Fluent 14.0 software program. The energy fractions method was put forward to calculate the average Ste number and the influence of Re and Ste numbers on the discharge process were studied. The influence of phase change temperature among m-PCMs on the solidification process has also been studied. A new boundary condition was defined to determine the combined effect of the Re and Ste numbers on the discharging process. The modelling results show that for a given input power, the Ste (or Re number has a significant impact on the discharging process; however, the period value of inlet velocity has almost no impact on it. Besides, the zigzag plate with m-PCMs has a good impact on the temperature shock as “filter action” in the discharging process.

  16. Ignition behavior of magnesium powder layers on a plate heated at constant temperature.

    Science.gov (United States)

    Chunmiao, Yuan; Dezheng, Huang; Chang, Li; Gang, Li

    2013-02-15

    The minimum temperature at which dust layers or deposits ignite is considered to be very important in industries where smoldering fires could occur. Experiments were conducted on the self-ignition behavior of magnesium powder layers. The estimated effective thermal conductivity k for modeling is 0.17 W m(-1)K(-1). The minimum ignition temperature (MIT) of magnesium powder layers for four different particle sizes: 6, 47, 104 and 173 μm, are also determined in these experiments. A model was developed describing temperature distribution and its change over time while considering the melting and boiling of magnesium powder. Parameter analysis shown that increasing particle size from 6 to 173 μm increased MIT from 710 to 760 K, and increased thickness of the dust layer led to a decreased MIT. The calculation termination time more than 5000 s didn't significantly impact MIT. Comparing predicted and experimental data showed satisfactory agreement for MIT of magnesium powder layers at various particle sizes. According to the ignition process of magnesium powder layer, a meaningful definition for the most sensitive ignition position (MSIP) was proposed and should be taken into consideration when preventing smoldering fires induced by hot plates.

  17. Investigation into the Influence of Post-Weld Heat Treatment on the Friction Stir Welded AA6061 Al-Alloy Plates with Different Temper Conditions

    Science.gov (United States)

    İpekoğlu, Güven; Erim, Seçil; Çam, Gürel

    2014-02-01

    In this study, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of friction stir butt-joined AA6061 Al-alloy plates both in O and T6-temper conditions was investigated by detailed microstructural investigations and microhardness measurements, in combination with transverse tensile testing. It was determined that the PWHT might result in abnormal grain growth (AGG) in the weld zone particularly in the joints produced in O-temper condition depending on the weld parameters used during friction stir welding. The PWHT generally led to an improvement in the mechanical properties even if AGG took place. Thus, the post-weld heat-treated joints exhibited mechanical properties much higher than those of respective as-welded plates and comparable to those of the respective base plates.

  18. Heat Transfer Calculation on Plate-Type Fuel Assembly of High Flux Research Reactor

    Directory of Open Access Journals (Sweden)

    Daxin Gong

    2015-01-01

    Full Text Available Heat transfer characteristics of fuel assemblies for a high flux research reactor with a neutron trap are numerically investigated in this study. Single-phase turbulence flow is calculated by a commercial code, FLUENT, where the computational objective covers standard and control fuel assemblies. The simulation is carried out with an inlet coolant velocity varying from 4.5 m/s to 7.5 m/s in hot assemblies. The results indicate that the cladding temperature is always lower than the saturation temperature in the calculated ranges. The temperature rise in the control fuel assembly is smaller than that of the standard fuel assembly. Additionally, the assembly with a hot spot is specially studied, and the safety of the research reactor is also approved.

  19. 大型轧制焊接板壳式换热器的研制%A new plate-shell heat exchanger

    Institute of Scientific and Technical Information of China (English)

    张迎恺

    2001-01-01

    新研制的大型轧制焊接板壳式换热器集板式换热器和管壳式换热器的优点于一体,既保留了前者高效传热的特点,又继承了后者压力壳承压能力高和密封性好的长处,增强了对炼油工艺的适用性。这种板壳式换热器的结构研究主要针对板程和壳程的结构形式,管板的分析计算以及板束与壳体热膨胀差的平衡。较长板片的连续压制成型和薄板片间的焊接是制造该换热器的关键技术。这种换热器比立管式换热器的传热效率高2~4倍,占地面积减少50%以上,每年节省加热炉燃油费、电费等约35万元,操作费约76万元。%A new plate-shell heat exchanger with higher adaptability torefinery technology is developed. The new exchanger has both the advantages of plate heat exchanger and tubular heat exchanger. The key technique for manufacturing this heat exchanger is the continuous pressure moulding of long plates and welding of thin plates. The heat transfer efficiency of the new heat exchanger is 2~4 times of that of the vertical tube heat exchanger, and its use-cost is correspondingly lower.

  20. The Finite Element Method Solution of an Unsteady MHD Free Convection Flow Past an Infinite Vertical Plate with Constant Suction and Heat Absorption

    Directory of Open Access Journals (Sweden)

    A Sri Sailam

    2014-04-01

    Full Text Available The study of unsteady hydro magnetic free convective flow of viscous incompressible and electrically conducting fluids past an infinite vertical porous plate in the presence of constant suction and heat absorbing sinks has been made. Appropriate solutions have been derived for the velocity and temperature fields, skin friction and rate of heat transfer using Galerkin finite element method. It is observed that increase in magnetic field strength decreases the velocity of the fluid. Also the skin friction and rate of heat transfer of the conducting fluid decrease with increase in magnetic field strength.

  1. MHD Mixed Convection Flow from a Vertical Plate Embedded in a Saturated Porous Medium with Melting and Heat Source or Sink

    Directory of Open Access Journals (Sweden)

    M.V.D.N.S.Madhavi

    2017-03-01

    Full Text Available We analysed in this paper the problem of MHD mixed convection flow from a vertical plate embedded in a saturated porous medium in the presence of melting, thermal dispersion, radiation and heat absorption or generation effects for aiding and opposing external flows. Similarity solution for the governing equations is obtained for the flow equations in steady state. The equations are numerically solved by Runge-Kutta fourth order method coupled with shooting technique. The effect of melting and heat absorption or generation under different parametric conditions on velocity, temperature and heat transfer was analyzed for both aiding and opposing flows

  2. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    Science.gov (United States)

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.

  3. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    Directory of Open Access Journals (Sweden)

    Meraj Mustafa

    Full Text Available The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.

  4. RADIATION EFFECTS ON MHD FLOW PAST AN IMPULSIVELY STARTED EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE IN THE PRESENCE OF HEAT GENERATION

    Directory of Open Access Journals (Sweden)

    A.G Vijaya Kumar,

    2011-04-01

    Full Text Available The objective of the present study is to investigate Radiation effects on unsteady MHD flow of an electrically conducting radiating, viscous, incompressible fluid past an impulsively started movingexponentially accelerated vertical plate with variable temperature in the presence of heat generation and applied transverse magnetic field. The fluid is considered is gray, absorbing/emitting radiation but a nonscattering medium. At time t > 0, the temperature of the plate raised linearly with time t. The dimensionless governing equations involved in the present analysis are solved using the Laplace transform technique. The velocity, temperature, skin friction and the rate of heat transfer are shown graphically and with some numerical computations in terms of the parameters M(the magnetic fieldparameter, R(the radiation parameter, H(the heat source parameter, Pr(the prendtl number, a(exponential index and t(time.

  5. 板式换热器强化传热数值研究及热阻分析%A Numerical Study and Thermal Resistance Analysis of Heat Transfer Enhancement in Plate Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    吴晶; 夏梦; 叶莉; 韩东

    2012-01-01

    以工业广泛使用的板式换热器为研究对象,模拟了人字型波纹板片和凹坑型板片内的流动和换热,得到了平均努塞尔数Nu、阻力系数和综合传热性能因子随雷诺数Re的变化,分析了凹坑深度对换热性能的影响。相同工况下,人字比凹坑型板片的换热效果好但阻力大,故后者综合性能更优。相同来流速度下,凹坑深度越小,综合传热性能越优。同时,对凹坑板式换热器的热阻分析表明,换热温差给定时,热阻越小,换热量越大,因此热阻也可以评价板式换热器的性能。%The plate heat exchangers have been widely used in industry. This paper presents a numerical simulation of the fluid flow and heat transfer characteristics in cross-corrugated chevron-type plate heat exchangers and dimpled ones. The variations of the overall Nusselt number, resistance coefficient and integrated heat transfer performance factor with the Reynolds number and the dimple depth are obtained. The results show that under the same conditions, both the Nusselt number and the resistance coefficient of the cross-corrugated chevron-type plate are higher than that of the dimpled one. Thus, from the view of the integrated heat transfer performance, the dimpled plate is better. Furthermore, the integrated factor increases as the dimple depth decreases for the studied seven different dimple depths with the same inlet fluid velocity. It is found that the heat transfer processes in plate heat exchangers can be well described by the concept of generalized thermal resistance. Under prescribed temperature boundary conditions, the heat transfer increases with the decrease of the thermal resistance. Therefore, the generalized thermal resistance can be taken as an evaluation standard for the heat transfer performance of a plate heat exchanger.

  6. STUDY ON HEAT TRANSFER AND FLOW CHARACTERISTIC OF REGULAR HEXAGONAL PLATE HEAT EXCHANGER%正六边形板式换热器传热和流动特性研究

    Institute of Scientific and Technical Information of China (English)

    宋继伟; 张士虎; 王飞; 曹兴; 杜文静; 程林

    2011-01-01

    A novel Regular Hexagonal Plate Heat Exchanger was investigated in this paper. Numerical simulation was performed when heat was transferred between two or three fluids. Characteristics on heat transfer and flow were investigated in the case of both parallel-flow and counter-flow. Comparing with the 60° chevron-type plate heat exchanger, the Regular Hexagonal Plate Heat Exchanger is better in the aspect of comprehensive performance with the criterion of the overall heat transfer coefficient per unit pressure drop. Correlations on heat transfer and friction factor were also summarized in the end of this paper. Results indicate that the Regular Hexagonal Plate Heat Exchanger has compact structure, flexible arrangement and good comprehensive performance.Analysis shows that spherical ribs can increase the local field synergy.%本文研究了一种具有球面肋的正六边形板式换热器,分别对其两流体和三流体换热的情况进行数值模拟,讨论了其在顺流和逆流状态下的性能.与60°的人字形板式换热器进行比较,正六边形板式换热器在单位压降下的综合传热性能较优.本文还拟合了传热准则方程式和摩擦系数方程式.结果表明,该种新型板式换热器结构紧凑,布置灵活,具有好的综合传热性能.分析认为球面肋提高了局部场协同的程度.

  7. 用ObjectARX开发板翅式换热器参数化CAD系统%evelopment of CAD System for Plate-Fin Heat Exchanger with ObjectARX

    Institute of Scientific and Technical Information of China (English)

    邹群彩; 凌祥; 涂善东

    2001-01-01

    Based on the characteristics of plate-fin heat exchangers,a CAD system was developed with parametric technique and ObjectARX combined with programming language Visual C++,which has integrated the following two advantages-one is powerful image displaying and compiling functions under AutoCAD ambient,the other is object-oriented programming and high efficiency of Visual C++.Thus,the rapid innovation of plate-fin heat exchanger can be realized by this system in conjunction with heat calculation module and rapid pricing system of plate-fin heat exchanger formerly proposed by the authors.

  8. Development of Heat Exchanger Plate Based on Digital Manufacture Technology%基于数字制造技术的热交换器板片开发

    Institute of Scientific and Technical Information of China (English)

    王新; 胡国栋; 常春梅; 赵亮; 王忠; 殷建刚; 姚小毅

    2012-01-01

    热交换器板片是换热器中的主要换热元件,采用传统板片开发方法的模具返修率较高,尤其是超大型板片的开发.数字制造技术充分利用了计算技术的优势,将传统方法中的样板试制、模具改造两个环节集成为数字制造,使模具的返修变为几何模型的修改,从而极大提高了成形板片的冲压质量和使用性能.%Heat exchanger plate is the main heat-exchange components in the heat exchanger. The method of traditional development plate of the molds is more likely to repair, especially in the development of super large plate. The digital manufacturing technology made full use of the advantages of the computing technology, and integrated the traditional method of making samples and repairing molds are more likely to the digital manufacturing process, and transformed repairing mould to modifying geometric model, thus greatly increase quality and performance of the stamping plate.

  9. Microstructure and Mechanical Performance of Cu-Sn-Ti-Based Active Braze Alloy Containing In Situ Formed Nano-Sized TiC Particles

    Science.gov (United States)

    Leinenbach, Christian; Transchel, Robert; Gorgievski, Klea; Kuster, Friedrich; Elsener, Hans Rudolf; Wegener, Konrad

    2015-05-01

    A Cu-Sn-Ti-based active brazing filler alloy was in situ reinforced with nanosized TiC particles by adding different amounts of a cellulose nitride-based binder. The TiC particles emanate from a reaction of the Ti within the filler alloy with the carbon from the binder that does not decompose completely during heating. The correlation between the microstructure and mechanical performance was studied. In addition, the effect of different binder amounts on the shear strength and cutting performance of brazed diamond grains was studied in shear tests and single grain cutting tests. The results clearly show that the mechanical performance of the brazed diamond grains can be improved by the formation of TiC particles. This is attributed to particle strengthening of the filler alloy matrix as well as to the decreasing grain size and more homogeneous distribution of the (Cu,Sn)3Ti5 phase with increasing amount of binder.

  10. Lie Group Analysis of Natural Convective Flow from a Convectively Heated Upward Facing Radiating Permeable Horizontal Plate in Porous Media Filled with Nanofluid

    Directory of Open Access Journals (Sweden)

    Md. Jashim Uddin

    2012-01-01

    Full Text Available Two-dimensional, steady, laminar and incompressible natural convective flow of a nanofluid over a connectively heated permeable upward facing radiating horizontal plate in porous medium is studied numerically. The present model incorporates Brownian motion and thermophoresis effects. The similarity transformations for the governing equations are developed by Lie group analysis. The transformed equations are solved numerically by Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Effects of the governing parameters on the dimensionless velocity, temperature and nanoparticle volume fraction as well as on the dimensionless rate of heat and mass transfer are presented graphically and the results are compared with the published data for special cases. Good agreement is found between numerical results of the present paper and published results. It is found that Lewis number, Brownian motion and convective heat transfer parameters increase the heat and mass transfer rates whilst thermophoresis decreases both heat and mass transfer rates.

  11. Design of Dynamic Quantizers for 2-DOF IMC and Its Application to the Temperature Control of a Heat Plate

    Science.gov (United States)

    Okajima, Hiroshi; Matsunaga, Nobutomo; Kawaji, Shigeyasu

    It is well known that plants with dead-time are difficult to controll by using traditional control methods. For this, some controllers with dead-time have been proposed for the systems with dead-time, e.g. Internal Model Control (IMC) and the Smith-method. However, these controllers cause another problem, i.e. it would be difficult to realize the dead-time component in controller because of the memory limit of micro control unit (MCU). The sampling time has to be large in applications to the plant with large dead-time when each data size is sufficiently kept. Hence, a trade-off between the sampling time and the maximum quantization error exists by the memory limit. In this paper, a design method of dynamic quantizers is proposed for achieving small quantization error for control systems in MCU. The effectiveness of the proposed method is shown by numerical examples. Moreover, the proposed method is applied to a temperature control of a heat plate. Since the input-output relation of the temperature control system can be written with dead-time, 2-DOF IMC is introduced for this system. It is verified that the output with the proposed quantizer approximates the desired output under the memory limit.

  12. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    Science.gov (United States)

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-01-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically. PMID:28294186

  13. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    Science.gov (United States)

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-03-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.

  14. Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village.

    Science.gov (United States)

    Tian, Lei; Chen, Xiao Dong; Yang, Qian Peng; Chen, Jin Chun; Shi, Lin; Li, Qiong

    2012-06-01

    Heat pump systems using treated sewage water as the heat source were used in the Beijing Olympic Village for domestic heating and cooling. However, considerable biofouling occurred in the plate heat exchangers used in the heat pump system, greatly limiting the system efficiency. This study investigates the biofouling characteristics using a plate heat exchanger in parallel with a flow cell system to focus on the effect of calcium ions on the biofilm development. The interactions between the microorganisms and Ca(2+) enhances both the extent and the rate of biofilm development with increasing Ca(2+) concentration, leading to increased heat transfer and flow resistances. Three stages of biofouling development were identified in the presence of Ca(2+) from different biofouling mass growth rates with an initial stage, a rapid growth stage and an extended growth stage. Each growth stage had different biofouling morphologies influenced by the Ca(2+) concentration. The effects of Ca(2+) on the biofouling heat transfer and flow resistances had a synergistic effect related to both the biofouling mass and the morphology. The effect of Ca(2+) on the biofouling development was most prominent during the rapid growth stage.

  15. 混合工质太阳能平板热管集热器的传热性能%Heat Transfer Performance ofthe Flat Plate Heat Pipe Solar Collector with Mixture Working Fluid

    Institute of Scientific and Technical Information of China (English)

    杜胜华; 苏海鹏

    2014-01-01

    介绍了平板热管的基本结构与原理,在分析乙二醇及其混合工质的热物理学特性的基础上,建立平板热管的物理与数学模型。采用数值计算模拟方法,分析了混合工质平板热管集热器的传热性能,研究了集热器的效率、温升和启动性能随工作时间的变化规律。研究表明,乙二醇水混合工质平板热管集热器适宜于低温寒冷地区,具有较高的集热性能。%The basic structure and principle of flat plate heat pipe were introduced based on thermal physics characteristics analysis of ethylene glycol and mixtures , physical and mathematical models of flat plate heat pipe were established.By the numerical simulation method , the heat transfer performance of the flat heat pipe heat collector with mixture working fluid was analyzed , and the efficiency , temperature collector up and starting performance by time were studied.It showed that flat heat pipe heat collector with ethylene glycol water mixture was suitable for cold area , and the heat collecting performance was high.

  16. Investigation of welding and brazing of molybdenum and TZM alloy tubes

    Science.gov (United States)

    Lundblad, Wayne E.

    1991-01-01

    This effort involved investigating the welding and brazing techniques of molybdenum tubes to be used as cartridges in the crystal growth cartridge. Information is given in the form of charts and photomicrographs. It was found that the recrystallization temperature of molybdenum can be increased by alloying it with 0.5 percent titanium and 0.1 percent zirconium. Recrystallization temperatures for this alloy, known as TZM, become significant around 2500 F. A series of microhardness tests were run on samples of virgin and heat soaked TZM. The test results are given in tabular form. It was concluded that powder metallurgy TZM may be an acceptable cartridge material.

  17. Failure Assessment of Stainless Steel and Titanium Brazed Joints

    Science.gov (United States)

    Flom, Yury A.

    2012-01-01

    Following successful application of Coulomb-Mohr and interaction equations for evaluation of safety margins in Albemet 162 brazed joints, two additional base metal/filler metal systems were investigated. Specimens consisting of stainless steel brazed with silver-base filler metal and titanium brazed with 1100 Al alloy were tested to failure under combined action of tensile, shear, bending and torsion loads. Finite Element Analysis (FEA), hand calculations and digital image comparison (DIC) techniques were used to estimate failure stresses and construct Failure Assessment Diagrams (FAD). This study confirms that interaction equation R(sub sigma) + R(sub tau) = 1, where R(sub sigma) and R(sub t u) are normal and shear stress ratios, can be used as conservative lower bound estimate of the failure criterion in stainless steel and titanium brazed joints.

  18. COMPARATION BETWEEN NONDESTRUCTIVE TESTING METHODS FOR THE ALUMINIUM BRAZED PIECES

    Directory of Open Access Journals (Sweden)

    Dan NIŢOI

    2014-05-01

    Full Text Available Presented paper refers to different control methods used in aluminium brazed joining because of possible defects. Low joining complexity permits exact damages position in relation with materials geometry.

  19. Control of vacuum induction brazing system for sealing of instrumentation feed-through

    Energy Technology Data Exchange (ETDEWEB)

    Sung Ho Ahn; Jintae Hong; Chang Young Joung; Ka Hae Kim; Sung Ho Heo [Korea Atomic Energy Research Institute (Korea, Republic of)

    2015-07-01

    The integrity of instrumentation cables is an important performance parameter in addition to the sealing performance in the brazing process. An accurate brazing control was developed for the brazing of the instrumentation feed-through in the vacuum induction brazing system in this paper. The experimental results show that the accurate brazing temperature control performance is achieved by the developed control scheme. Consequently, the sealing performances of the instrumentation feed-through and the integrities of the instrumentation cables were satisfied after brazing. (authors)

  20. Reduction of Liquid Clad Formation Due to Solid State Diffusion in Clad Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-12-01

    Warm forming operations have shown promise in expanding automotive heat exchanger designs by increasing forming limits of clad brazing sheet. The impact of isothermal holds below the clad melting temperature on subsequent brazeability has not previously been studied in detail. The effect of these holds on brazeability, as measured by the clad thickness loss due to solid state diffusion of Si out of the clad layer prior to clad melting, was assessed through parallel DSC and optical microscopy measurements, as well as through the use of a previously developed model. EPMA measurements were also performed to support the other measures. Overall, the same trends were predicted by DSC, microscopy, and the theoretical model; however, the DSC predictions were unable to accurately predict remaining clad thickness prior to melting, even after correcting the data for clad-core interactions. Microscopy measurements showed very good agreement with the model predictions, although there were slight discrepancies at short hold times due to the inability of the model to account for clad loss during heating to the brazing temperature. Further microscopy measurements showed that when the heating rate is set below a critical value, there is a reduction in the clad thickness from the as-received condition.

  1. Reactive Brazing of Carbon-Carbon Composites to Titanium

    Science.gov (United States)

    Shpargel, Tarah; Singh, M.; Morscher, Gregory; Asthana, Rajiv

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading.

  2. Active Metal Brazing of Carbon-Carbon Composites to Titanium

    Science.gov (United States)

    Singh, M.; Shpargel, T. P.; Morscher, G.; Asthana, R.

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint which led to good wetting, spreading, and metallurgical bond formation via interdiffusion.

  3. Effect of composition of titanium in silver-copper-titanium braze alloy on dissimilar laser brazing of binder-less cubic boron nitride and tungsten carbide

    Science.gov (United States)

    Sechi, Yoshihisa; Nagatsuka, Kimiaki; Nakata, Kazuhiro

    2014-08-01

    Laser brazing with Ti as an active element in silver-copper alloy braze metal has been carried out for binder-less cubic boron nitride and tungsten carbide, using silver-copper- titanium braze alloys with titanium content that varied between 0.28 mass% and 1.68 mass%. Observations of the interface using electron probe microanalysis and scanning acoustic microscopy show that efficient interface adhesion between binder-less cubic boron nitride and the silver-copper-titanium braze alloy was achieved for the braze with a titanium content of 0. 28 mass%.

  4. Comparison of brazed joints made with BNi-1 and BNi-7 nickel-base brazing alloys

    Directory of Open Access Journals (Sweden)

    Zorc, Borut

    2000-04-01

    Full Text Available Kinetics of the processes are different with different types of brazing alloys. Precipitation processes in the parent metal close to the brazing gap are of great importance. They control the mechanical properties of the joint area when the brittle eutectic has disappeared from the gap. A comparative study of brazed joints on austenitic stainless alloys made with BNi-7 (Ni-P type and BNi-1 (Ni-Si-B type brazing alloys was made. Brazing alloys containing phosphorus behave in a different manner to those containing boron.

    Las aleaciones de níquel se producen mediante tres sistemas de aleación: Ni-P, Ni-Si y Ni-B. Durante las reacciones metalúrgicas con el metal de base, la eutéctica frágil en la separación soldada puede transformarse en la solución dúctil-sólida con todas aleaciones. La cinética del proceso varía según el tipo de aleación. Los procesos de precipitación en el metal de base cerca de la separación soldada son de mucha importancia, ya que controlan las propiedades mecánicas de la área de unión después de desaparecer la eutéctica frágil de la separación. Se ha hecho un análisis comparativo de uniones soldadas en aleaciones austeníticas inoxidables realizadas con aleaciones BNi-7 (tipo Ni-P y BNi-1 (tipo Ni-Si-B. Las aleaciones que contienen fósforo se comportan de una manera diferente, tanto con el cambio de la eutéctica a la solución sólida, como con los procesos de precipitación en el metal de base cerca de la unión soldada.

  5. Erosion of tungsten and its brazed joints with bronze irradiated by pulsed deuterium plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Yakushin, V., E-mail: vlyakushin@mephi.ru; Polsky, V.; Kalin, B.; Dzhumaev, P.; Polyansky, A.; Sevryukov, O.; Suchkov, A.; Fedotov, V.

    2013-11-15

    This work presents results on erosion of mono- and polycrystalline tungsten and its brazed joints with bronze substrates under irradiation by high-temperature pulsed (τ{sub p} ∼ 20 μs) deuterium plasma flows, with a power density q = 19–66 GW/m{sup 2} and pulses numbering from 2 to 10, simulating the expected plasma disruptions and ELMs in fusion reactors. The surface erosion and heat resistance of tungsten and brazed joints were investigated by scanning electron microscopy, and erosion coefficients were determined by target mass loss. It is found that for both types of tungsten the surface starts to significantly crack even under relatively weak irradiation regimes (q = 19 GW/m{sup 2}, N = 2), at which point surface melting is not observed. Local melting becomes visible with an increase of q up to 25 GW/m{sup 2}. In addition, there is formation of blisters with a typical size of 1–2 μm on the surface of monocrystalline samples and craters up to 2 μm in diameter on polycrystalline samples. In addition, craters ∼10–30 μm in diameter are formed on defects similar to those observed under unipolar arcs. At that point, the erosion coefficients change to within ranges of 0.2–0.7 × 10{sup −5} kg/J m{sup 2}. It is found that at q = 50 GW/m{sup 2}, the brazed joints of monocrystalline tungsten with bronze of Cu-0.6% Cr-0.08% Zr have the highest heat resistance.

  6. Brazing Refractory Metals Used In High-Temperature Nuclear Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Palmer; C. J. Woolstenhulme

    2009-06-01

    As part of the U. S. Department of Energy (DOE) sponsored Next Generation Nuclear Project (NGNP) currently ongoing at Idaho National Laboratory (INL), the irradiation performance of candidate high-temperature gas reactor fuels and materials is being evaluated at INL’s Advanced Test Reactor (ATR). The design of the first Advanced Gas Reactor (AGR 1) experiment, currently being irradiated in the ATR, required development of special techniques for brazing niobium and molybdenum. Brazing is one technique used to join refractory metals to each other and to stainless steel alloys. Although brazing processes are well established, it is difficult to braze niobium, molybdenum, and most other refractory metals because they quickly develop adherent oxides when exposed to room-temperature air. Specialized techniques and methods were developed by INL to overcome these obstacles. This paper describes the techniques developed for removing these oxides, as well as the ASME Section IX-qualified braze procedures that were developed as part of the AGR-1 project. All brazes were made using an induction coil with an inert or reducing atmosphere at low pressure. Other parameters, such as filler metals, fluxes used, and general setup procedures, are also discussed.

  7. MHD Effects on Non-Newtonian Power-Law Fluid Past a Continuously Moving Porous Flat Plate with Heat Flux and Viscous Dissipation

    Science.gov (United States)

    Kishan, N.; Shashidar Reddy, B.

    2013-06-01

    The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.

  8. Effects of Thermal Radiation and Chemical Reaction on MHD Free Convection Flow past a Flat Plate with Heat Source and Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    E.Hemalatha

    2015-09-01

    Full Text Available This paper analyzes the radiation and chemical reaction effects on MHD steady two-dimensional laminar viscous incompressible radiating boundary layer flow over a flat plate in the presence of internal heat generation and convective boundary condition. It is assumed that lower surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the upper surface with a heat source that decays exponentially. The Rosseland approximation is used to describe radiative heat transfer as we consider optically thick fluids. The governing boundary layer equations are transformed into a system of ordinary differential equations using similarity transformations, which are then solved numerically by employing fourth order Runge-Kutta method along with shooting technique. The effects of various material parameters on the velocity, temperature and concentration as well as the skin friction coefficient, the Nusselt number, the Sherwood number and the plate surface temperature are illustrated and interpreted in physical terms. A comparison of present results with previously published results shows an excellent agreement.

  9. Effects of Thermal Diffusion and Viscous Dissipation on Unsteady MHD Free Convection Flow Past a Vertical Porous Plate Under Oscillatory Suction Velocity with Heat Sink

    Directory of Open Access Journals (Sweden)

    Prabhakar Reddy B.

    2014-05-01

    Full Text Available The thermal diffusion and viscous dissipation effects on an unsteady MHD free convection heat and mass transfer flow of an incompressible, electrically conducting, fluid past an infinite vertical porous plate embedded in a porous medium of time dependent permeability under oscillatory suction velocity in the presence of a heat absorbing sink have been studied. It is considered that the influence of a uniform magnetic field acts normal to the flow and the permeability of the porous medium fluctuates with time. The dimensionless governing equations for this investigation have been solved numerically by using the efficient Galerkin finite element method. The numerical results obtained have been presented through graphs and tables for the thermal Grashof number (Gr > 0 corresponding to the cooling of the porous plate and (Gr < 0 corresponding to heating of the porous plate to observe the effects of various material parameters encountered in the problem under investigation. Numerical data for skin-friction, Nusselt and Sherwood numbers are tabulated and then discussed.

  10. 翅片板式传热器双流道传热与流动数值模拟%Numerical simulation for heat transfer and flow of the double channel of fin plate heat exchanger

    Institute of Scientific and Technical Information of China (English)

    徐晓冉; 张锁龙; 王存明

    2013-01-01

      焊接型板式传热器的紧凑性好、质量轻、传热性能好、初始成本低等优越性已越来越被人们所认识,因此人们纷纷对板式传热器内流动状态和传热机理展开研究。鉴于此,本文运用数值模拟软件 Fluent 对全焊接翅片板式传热器双流道进行模拟,在此基础上又进行了实验研究及实验数据与数值模拟的对比分析,得出不同结构参数和操作参数下翅片的传热系数和压力降,并分析翅片高度和翅片间距对翅片传热性能与流动阻力的影响。结果表明:①固定冷侧的入口速度和温度,热侧的传热系数和压降随之热侧入口速度增加而增大;②板间距一定时,翅片高度并非越高传热性能越好;③翅片间距越小,传热性能越好。%Compacted size,light weight,good heat transfer performances,and low operating costs have made welded plate heat exchanger increasingly recognized in the industry. Fluid flow and heat transfer in plate heat exchangers have been widely studied. The numerical simulation of double channel’s flow field plate heat exchanger was presented in this paper using software. The fin heat transfer coefficient and pressure drop were obtained at different structural and operational parameters. The influences of fin height and fin spacing on heat transfer performance and flow resistance were also analyzed. The results showed the following:the velocity and temperature on the fixed cold side,heat transfer coefficient and pressure drop on the hot side increased with the hot side inlet velocity;at fixed plate spacing,the heat transfer performance was not in proportion with fin height;heat transfer performance was better at smaller fin spacing.

  11. Microstructure of arc brazed and diffusion bonded joints of stainless steel and SiC reinforced aluminum matrix composite

    Science.gov (United States)

    Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.

    2016-03-01

    Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.

  12. In-process oxidation protection in fluxless brazing or diffusion bonding of aluminum alloys

    Science.gov (United States)

    Okelly, K. P.; Featherston, A. B.

    1974-01-01

    Aluminum is cleaned of its oxide coating and is sealed immediately with polymeric material which makes it suitable for fluxless brazing or diffusion bonding. Time involved between cleaning and brazing is no longer critical factor.

  13. Method of temperature rising velocity and threshold control of electron beam brazing

    Institute of Scientific and Technical Information of China (English)

    Xuedong Wang; Shun Yao

    2005-01-01

    In order to accommodate electron beam to the brazing of the joints with various curve shapes and the brazing of thermo sensitive materials, the method of electron beam scanning and brazing temperature control was developed, in which electron beam was controlled to scan according to predefined scanning track, and the actual temperature rising velocity of the brazed seam was limited in an allowed scope by detecting the brazed seam temperature, calculating the temperature rising velocity and adjusting the beam current during the brazing process; in addition, through the setting of the highest allowed temperature, the actual temperature of the brazed seam could be controlled not exceeding the threshold set value, and these two methods could be employed alone or jointly. It is shown that high precision temperature control in electron beam brazing could be realized and the productivity be increased by the proposed method.

  14. Effects of Rare Earths on Properties of Ti-Zr-Cu-Ni Base Brazing Filler Alloys

    Institute of Scientific and Technical Information of China (English)

    Ma Tianjun; Kang Hui; Wu Yongqin; Qu Ping

    2004-01-01

    The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.

  15. Effect of Filler Composition on the Brazing of Alumina to Copper Using Ultrasonic Wave

    Institute of Scientific and Technical Information of China (English)

    Khalid M. HAFEZ; Masaaki NAKA

    2003-01-01

    An ultrasonic wave was applied during brazing of alumina to Cu. First alumina was metallized by applying ultrasonicwave in braze bath. Then the metallized alumina was brazed with Cu using the same filler alloy. The filler used wereZn-Al alloys and Zn-Sn A

  16. 辊底式热处理炉在安钢中厚板热处理线上的应用%Application of roller hearth heat treatment line furnace in heat treatment line of Anyang heavy and medium plate

    Institute of Scientific and Technical Information of China (English)

    张万军

    2011-01-01

    The performance structure and application of roller hearth heat treatment furnace in heat treatment line of Anyang heavy and medium plate were introduced, discuss and analyze the existed issue during the furnace applying to produce, and adopt corresponding measure to improve simultaneous-ly.%介绍了安钢中厚板热处理生产线上辊底式热处理炉的性能、结构特点及应用情况,对存在的问题进行了分析讨论,并提出了相应的改进措施.

  17. The Study Of The Impact Of Surface Preparation Methods Of Inconel 625 And 718 Nickel-Base Alloys On Wettability By BNi-2 And BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-06-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  18. The Study of the Impact of Surface Preparation Methods of Inconel 625 and 718 Nickel-Base Alloys on Wettability by BNi-2 and BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-04-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  19. Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    2016-03-01

    Full Text Available The problem of conjugate effects of heat and mass transfer over a moving/stationary vertical plate has been studied under the influence of applied magnetic field, thermal radiation, internal heat generation/absorption and first order chemical reaction. The fluid is assumed to be electrically conducting water based Cu-nanofluid. The Tiwari and Das model is used to model the nanofluid, whereas Rosseland approximation is used for thermal radiation effect. Unified closed form solutions are obtained for the governing equations using Laplace transform method. The velocity, temperature and concentration profiles are expressed graphically for different flow pertinent parameters. The physical quantities of engineering interest such as skin friction, Nusselt number and Sherwood number are also computed. The obtained analytical solutions satisfy all imposed initial and boundary conditions and they can be reduced to known previous results in some limiting cases. It is found that, by varying nanoparticle volume fraction, the flow and heat transfer characteristics could be controlled.

  20. 沉浸竖板式浴室热泵换热器的研究%Study on the Immersed Vertical Plate Type Heat Exchanger for Bathroom Heat Pump

    Institute of Scientific and Technical Information of China (English)

    王春虎; 杨宗政; 李伶俐; 郝博

    2016-01-01

    The immersed vertical plate type heat exchanger was developed based on the common bathroom heat pump heat ex-changer which was easily blocked and difficult to be regenerated.Structure,operating principle and characteristic parameter equa-tions of the immersed vertical plate type heat exchanger were also introduced.The key factors influenced on the heating load and the pressure drop were calculated and analyzed.The experiment research of the heat transfer coefficient,the operating parameters and the heat pump coefficient of performance were also conducted.The theoretical analysis and the experiment result had a good reference value in designing and controlling of the heat exchanger.%针对普通的浴室热泵换热器存在易堵塞、维护复杂等问题,开发了一种沉浸竖板式换热器,介绍了其结构、工作原理和特性参数方程,并针对关键要素对传热量和压降的影响规律进行计算分析,对换热器的传热系数、换热器操作参数和热泵性能指标的变化规律进行了试验研究,理论分析和试验结果对该浴室热泵换热器的设计和调控均具有较好的参考价值。

  1. Influence of Heat Shock Temperatures and Fast Freezing on Viability of Probiotic Sporeformers and the Issue of Spore Plate Count Versus True Numbers

    Directory of Open Access Journals (Sweden)

    Mojtaba Jafari

    2016-02-01

    Full Text Available Background and Objectives: The purpose of the present study was to investigate effects of various heat shock conditions and fast freezing and subsequent thawing on the viability and recovery of Bacillus coagulans and Bacillus subtilis as probiotic sporeformers, and also to compare spore plate and microscopic counts. Materials and Methods: After preparing the final suspensions of B. coagulans and Bacillus subtilis subsp. Natto spores, they were spread-plated before and after fast freezing treatment (-70°C for about 1 min. Heat shock treatments of the spores were carried out at 68oC for 15, 20, and 30 min as well as at 80oC for 10 and 15 min. Concentrations of the examined probiotic sporeformers were determined simultaneously by plate enumerations and microscopically determined counts. Student’s t-test and one-way analysis of variance (ANOVA of SPSS were used for statistical analysis of the data. Analysis of DoE results was carried out using Minitab. Results: The results presented here show that the highest recovery rates for B. coagulans (14.75 log CFU/mL and B. subtilis spores (14.80 log CFU/mL were under a heat shock condition of 68°C for 20 min in nutrient agar (p<0.05. In addition, the survival rates of B. coagulans and B. subtilis spores under the fast freezing and subsequent thawing condition were about 90% and 88%, respectively. Plate counts differed significantly from counts determined microscopically, with differences of almost 0.5 and 0.8 log for B. coagulans and B. subtilis spores, respectively (p<0.05. In addition, DoE results of the study revealed that both factors of spore count method and only freezing factor in fast freezing treatment have a significant effect on concentrations of the spores examined (p<0.05. Conclusions: Heat shock conditions, freezing and subsequent thawing circumstances, and plate counts or enumerations determined microscopically have significant influences on the viability of probiotic sporeformers and

  2. Numerical analysis of flow and heat transfer behavior in fin-tube flat-plate solar collector

    Institute of Scientific and Technical Information of China (English)

    Namory Camara; LU Hui-lin

    2007-01-01

    Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.

  3. Numerical Simulation on Heat Transfer Characteristics of Plate Heat Exchanger Filled with Iron-Nickel Foam%铁镍泡沫填充板式换热器传热特性数值模拟

    Institute of Scientific and Technical Information of China (English)

    晁攸明; 程聪; 张铱鈖

    2012-01-01

    The complex three-dimensional network structure of open-cell foam metal can enhance the nonlinear flow effect of fluid through foam. Large specific surface area and large coefficient of thermal conductivity of the matrix material can improve the heat transfer efficiency. Based on the above features of open-cell foam, a new type of compact plate heat exchanger filled with iron-nickel foam was developed. The characteristics of air-air heat transfer in the plate heat exchanger were numerically simulated. All computations were performed using CFD of the commercially available finite element code FLUENT. Under the same operating conditions, the simulation results agreed well with the experimental results. The simulation results show that filling with iron-nickel foam in plate heat exchanger could improve the extent of turbulence of cold and hot air in plate heat exchanger. Compared with the heat exchanger without fillers, the plate heat exchanger filled with iron-nickel foam was obviously improved in heat transter efficiency. Iron-nickel foam fillers increased flow resistance of the hot and cold air, but the resulting loss of pressure was of little effect on heat exchanger performance. While filling with the same porosity iron-nickel foam, the influence of pore density change on heat exchanger efficiency was relatively small. The research results can be reference for structure optimization design and performance a-nalysis of heat transfer equipment.%利用开孔泡沫金属比表面积大、基体金属材料导热系数大和其复杂的三维立体网状结构能提高流体非线性效果的特点,研制了一种新型紧凑式镍铁泡沫填充板式换热器.并用CFD商用有限元软件FLUENT对空气空气在该换热器中的传热特性进行数值模拟.在相同的操作条件下,模拟结果与实验结果吻合较好.研究结果表明:在板式换热器中填充开孔铁镍泡沫材料,冷热空气在换热器中的湍流程度有所增强,板式换热

  4. Microstructures of beta-titanium orthodontic wires joined by infrared brazing.

    Science.gov (United States)

    Iijima, Masahiro; Brantley, William A; Kawashima, Isao; Baba, Naoki; Alapati, Satish B; Yuasa, Toshihiro; Ohno, Hiroki; Mizoguchi, Itaru

    2006-10-01

    The microstructures and interdiffusion in brazed beta-titanium orthodontic wires were investigated by scanning electron microscopy and electron probe microanalysis, respectively. Beta-titanium wire (Ti-11Mo-6Zr-4Sn) with cross-section dimensions of 0.032 in. x 0.032 in., titanium-based braze alloy (Ti-30Ni-20Cu), and silver-based braze alloy (Ag-22Cu-17Zn-5Sn) were selected for the study. Brazing was performed using infrared radiation (RS-1) under an argon atmosphere. Specimens were etched with two solutions (2.5% HF + 2.5% HNO(3) + 95% H(2)O; 25% HN(4)OH + 30% H(2)O(2) + 45%H(2)O). It was found that the silver-based braze alloy has a eutectic structure. In the diffusion layer between the beta-titanium wire and this silver-based braze alloy, Cu and Ti were enriched on the wire side, and Sn and Ti were enriched on the braze alloy side. The titanium-based braze alloy has a dendritic structure. Beta-titanium wire specimens brazed with the titanium-based braze alloy had a thicker intermediate area compared to the silver alloy; Ti in the diffusion layer had an irregular concentration gradient, and the braze alloy side had higher Ti concentration. The original microstructure of the beta-titanium wire was not altered with the use of either braze alloy. Infrared brazing of beta-titanium orthodontic wire is acceptable for clinical use, since the wire microstructure did not deteriorate with either the titanium-based or silver-based braze alloy. The differing microstructures of the joint regions for the two braze alloys suggest that the joint strengths may also differ.

  5. 新型平板热管换热器热回收效率特性实验研究%Research on New Type of Plate Heat Pipe Heat Exchanger in Room Ventilation

    Institute of Scientific and Technical Information of China (English)

    于雯静; 刁彦华; 赵耀华; 张冀

    2011-01-01

    A plate heat pipe heat exchanger for room ventilation was designed. The advantages of the heat pipe heat exchanger are small and high compactness. In this paper, the effect of the working fluid (Rl13, R141b and their mixture) was investigated experimentally for the performance of the heat pipe heat exchanger. The overall experiments were carried out under the simulated summer condition, the vacuum of the heat pipe heat exchanger was set at 1 x 10-3 Pa, and the filling ratio (the ratio of the working fluid volume in the heat pipe heat exchanger to the volume of the heat pipe heat exchanger) was 1/3. The experimental results show that the heat pipe heat exchanger could gain a high efficiency of heat recovery. The effectiveness of heat pipe heat exchanger with R141b as working fluid is superior to other working fluid over the whole air volume range, and the maximum effectiveness could be reached 58.2%.%本文针对普通住宅房间设计了一台新型平板式热管换热器,该换热器结构紧凑、体积小巧。为研究该换热器的使用条件,本文开展了不同工质(R113、R141b以及这两种工质的混合物)对该热管换热器换热效率影响的实验研究。整个实验在夏季工况下进行,热管真空度为1×10^-3Pa,充液量(灌入热管换热器内的工质体积与热管换热器体积之比)为1/3。实验结果表明:该热管换热器热回收效率较高。在整个风量范围内,R141b作为工质的热管换热器换热效果最好,最高效率达到了58.2%。

  6. Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates

    Science.gov (United States)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.; Yan, Min

    2016-09-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two two-dimensional grooved metal plates by a full-wave scattering approach. The enhancement originates from both transverse-magnetic spoof surface-plasmon polaritons and a series of transverse-electric bonding- and anti-bonding-waveguide modes at surfaces. The RHT spectrum is frequency selective and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy-transfer process.

  7. Two-beam Laser Brazing of Thin Sheet Steel for Automotive Industry Using Cu-base Filler Material

    Science.gov (United States)

    Mittelstädt, C.; Seefeld, T.; Reitemeyer, D.; Vollertsen, F.

    This work shows the potential of two-beam laser brazing for joining both Zn-coated steel and 22MnB5. Brazing of Zn-coated steel sheets using Cu-Si filler wire is already state of the art in car manufacturing. New press-hardened steels like 22MnB5 are more and more used in automotive industry, offering high potential to save costs and improve structural properties (reduced weight / higher stiffness). However, for joining of these ultra-high strength steels investigations are mandatory. In this paper, a novel approach using a two-beam laser brazing process and Cu-base filler material is presented. The use of Cu-base filler material leads to a reduced heat input, compared to currently applied welding processes, which may result in benefits concerning distortion, post processing and tensile strength of the joint. Reliable processing at desired high speeds is attained by means of laser-preheating. High feed rates prevent significant diffusion of copper into the base material.

  8. Graphite-to-304SS Braze Joining by Active Metal-Brazing Technique: Improvement of Mechanical Properties

    Science.gov (United States)

    Ray, Ajoy K.; Kar, Abhijit; Kori, S. A.; Pathak, L. C.; Sonnad, A. N.

    2013-01-01

    In the present investigation, an attempt has been made to improve the mechanical strength of graphite-stainless steel-brazed joint. Due to high capillary action, the liquid filler alloy usually tends to percolate into the pores of graphite causing severe stress in the graphite near the joint interface resulting in poor joint strength of 10-15 MPa. In the present investigation, a thin coating of SiC was applied on graphite before the joining process to avoid the penetration of liquid filler alloy into the pores of the graphite. Active filler alloy Ag-Cu-Ti was used to braze the substrates. The brazing was carried out at 850, 900, 950, and 1000 °C. The characterization of the interfaces of the brazed joints was carried out using scanning electron microscopy attached with energy dispersive spectroscopy and x-ray diffraction analysis. From the correlation between the microstructural and mechanical properties, shear strength of approximately 35 MPa for graphite-304SS-brazed joint produced at 900 °C was demonstrated. After the shear tests, the fracture surfaces were analyzed by SEM-EDS.

  9. Radioisotope tracer studies in the NASA Skylab ethothermic brazing experiment M-552

    Science.gov (United States)

    Braski, D. N.; Adair, H. L.; Kobisk, E. H.

    1974-01-01

    The first use of radioisotope tracer for mapping flow patterns during brazing of metal components in a space environment (near-zero gravity) proved successful. A nickel ferrule was brazed to a nickel tube with Lithobraze BT (71.8% Ag, 28% Cu, 0.2% Li) which contained a trace amount of radioactive Ag-110. Mapping of the flow of the braze alloy in the annulus formed between the tube and the concentric ferrule was determined by counting the radiation intensity as a function of position in the braze joint. Significant information concerning the thermal history of the braze was determined.

  10. Use of capillary tubes and plate heat exchanger to validate U.S. Department of Agriculture pasteurization protocols for elimination of Listeria monocytogenes in liquid egg products.

    Science.gov (United States)

    Michalski, C B; Brackett, R E; Hung, Y C; Ezeike, G O

    2000-07-01

    D-values for a five-strain cocktail of Listeria monocytogenes in five different liquid egg products (whole egg, egg yolk, egg white, egg yolk + 5% sucrose + 5% NaCl, and egg yolk + 10% NaCl) were determined using 100-microl capillary tubes. The egg products were inoculated with approximately 1 x 10(10) organisms/ml and heated in capillary tubes to temperatures ranging from 53 to 69 degrees C for various time intervals. Using a pilot scale plate heat exchanger, the U.S. Department of Agriculture (USDA) protocols for pasteurization were also evaluated using egg products inoculated with approximately 1 x 10(7) L. monocytogenes/ml. Results of experiments with capillary tubes suggested that all processes would result in less than the 9D process recommended by USDA. Moreover, although pasteurization with a plate heat exchanger provided greater lethality than did capillary tubes, all products still received less than a 5.4D process. Hence, these results suggest that the current USDA protocol may not be adequate to assure a large margin of safety.

  11. Use of capillary tubes and plate heat exchanger to validate U.S. Department of Agriculture pasteurization protocols for elimination of Salmonella enteritidis from liquid egg products.

    Science.gov (United States)

    Michalski, C B; Brackett, R E; Hung, Y C; Ezeike, G O

    1999-02-01

    D values for a five-strain cocktail of Salmonella Enteritidis in five different liquid egg products (whole egg, egg yolk, egg white, egg yolk + 5% sucrose + 5% NaCl, and egg yolk + 10% NaCl) were determined using 100-microl capillary tubes. The egg products were inoculated with approximately 1 X 10(10) organisms/ml and heated in capillary tubes to temperatures ranging from 51 to 68 degrees C for various time intervals. Using a pilot scale plate heat exchanger, the U.S. Department of Agriculture (USDA) protocols for pasteurization were also evaluated using egg products inoculated with approximately 1 x 10(7) Salmonella Enteritidis/ml. Results of experiments with capillary tubes suggested that almost all processes would result in less than the 9D process recommended by the USDA. However, when the egg products were pasteurized using the plate heat exchanger, a greater than 9D process was achieved for Salmonella Enteritidis in all products except egg yolk containing 5% sucrose + 5% NaCl, which received approximately a 4D process.

  12. A review of oxide, silicon nitride, and silicon carbide brazing

    Energy Technology Data Exchange (ETDEWEB)

    Santella, M.L.; Moorhead, A.J.

    1987-01-01

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed.

  13. Combined natural convection and mass transfer effects on unsteady flow past an infinite vertical porous plate embedded in a porous medium with heat source

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.S. [Department of Physics, K B D A V College, Nirakarpur, Khurda-752 019 (Orissa) (India); Tripathy, R.K. [Department of Physics, D R Nayapalli College, Bhubaneswar-751 012 (Orissa) (India); Padhy, R.K. [Department of Physics, D A V Public School, Chandrasekharpur, Bhubaneswar-751 021 (Orissa) (India); Sahu, M. [Department of Physics, Jupiter +2 Women’s Science College, IRC Village, Bhubaneswar-751 015 (Orissa) (India)

    2012-07-01

    This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (£1) and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.

  14. Combined natural convection and mass transfer effects on unsteady flow past an infinite vertical porous plate embedded in a porous medium with heat source

    Directory of Open Access Journals (Sweden)

    S. S. Das, R. K. Tripathy, R. K. Padhy, M. Sahu

    2012-01-01

    Full Text Available This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (less than or equal 1 and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.

  15. 中国古青铜器表面富锡铜鎏镀及鎏焊的工艺探索第三部分——鎏焊%Technological study on amalgam coating and brazing of tin-rich copper on surface of bronze wares of ancient China——Part Ⅲ.Amalgam brazing

    Institute of Scientific and Technical Information of China (English)

    吴元康; 储荣邦

    2012-01-01

    Amalgam brazing is derived from amalgam coating. The definition, characteristics, application, and significance of amalgam brazing were expatiated. A process of amalgam brazing for producing combined bronze wares was developed. The compositions of brazing material and flux were given. The operations of pretreatment, mercury removal by heating, and post-treatment were described. The implementation of amalgam coating and brazing processes was introduced taking the Western Han Dynasty's bronze cowry container with tribute-paying figures excavated in Yunnan as an example. The method for distinguishing whether an antique bronze ware is produced by cast welding after lost-wax casting or by copper brazing with separated small cast parts was presented.%鎏焊是从鎏镀衍生而来的.阐述了鎏焊的定义、特点、应用和意义.设计了用于制作组合青铜器的鎏焊工艺,给出了焊料、焊剂配方,说明了前处理、加热驱汞及后处理的操作方法.以西汉云南纳贡场面青铜贮贝器为例,介绍了鎏镀与鎏焊工艺的具体实施过程.提出了鉴别古青铜器是由失蜡铸造后铸焊而成还是由分铸小件铜焊而成的方法.

  16. Microstructure and Properties of Joint Interface of Semisolid Stirring Brazing of Composites

    Institute of Scientific and Technical Information of China (English)

    Huibin Xu; Bofang Zhou; Changhua Du; Quanxiang Luo; Hongyou Chen

    2012-01-01

    Stirring assisted brazing of SiC(p/A356) composites in air was investigated. A stirring was applied on one of the samples to be bonded at 455℃ during brazing. The filler metal was extruded and impacted intensively on the two surfaces of the base materials during stirring. It can be found that oxide film on the surface of the composites can be disrupted and removed through the observation by scanning electron microscopy (SEM). The metallurgical bonds formed between the filler metal and the base materials. However, continuous residual oxide film was found at bottom joint interface, which limited the lift of joint strength. A stirring was applied once more after the samples were continuously heated up to 470 and 500℃, respectively. At this time, residual oxide film after the first of stirring can be broken by once more stirring. The bonds are mainly composed of a new alloy, which have a higher content of aluminum and are free of continuous oxide film, showing higher shear strength of 113 MPa than that of the base materials.

  17. Microwave-assisted brazing of alumina ceramics for electron tube applications

    Indian Academy of Sciences (India)

    2016-04-01

    Alumina was joined with alumina using microwave-assisted and conventional brazing methods at 960$^{\\circ}$C for 15 min using TiCuSil (68.8Ag–26.7Cu–4.5Ti in wt.%) as the brazing alloy. The brazed joints were characterizedby X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Vickers microhardness evaluation, brazing strength measurement and helium leak test. X-ray diffraction analysis confirmed the formationof Ti-based compounds at the substrate-filler alloy interfaces of the microwave and conventionally brazed joints. The elemental compositions at the joint cross-section were determined by energy dispersive X-ray analysis. Vickers microhardness measurement indicated reliable joint performance for the microwave-assisted brazed joints during actual application in an electron tube. Brazing strength measurement and helium leak test provided the evidence forgood alumina-alumina joint formation.

  18. Numerical simulation of filler metal droplets spreading in laser brazing

    Science.gov (United States)

    Chen, Yanbin; Feng, Xiaosong; Li, Liqun

    2007-11-01

    A finite element model was constructed using a commercial software Fidap to analyze the Cu-base filler metal droplet spreading process in laser brazing, in which the temperature distribution, droplet geometry, and fluid flow velocity were calculated. Marangoni and buoyancy convection and gravity force were considered, and the effects of laser power and spot size on the spreading process were evaluated. Special attention was focused on the free surface of the droplet, which determines the profile of the brazing spot. The simulated results indicate that surface tension is the dominant flow driving force and laser spot size determines the droplet spreading domain.

  19. Computational simulations and experimental validation of a furnace brazing process

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Gianoulakis, S.E.; Malizia, L.A.

    1998-12-31

    Modeling of a furnace brazing process is described. The computational tools predict the thermal response of loaded hardware in a hydrogen brazing furnace to programmed furnace profiles. Experiments were conducted to validate the model and resolve computational uncertainties. Critical boundary conditions that affect materials and processing response to the furnace environment were determined. {open_quotes}Global{close_quotes} and local issues (i.e., at the furnace/hardware and joint levels, respectively) are discussed. The ability to accurately simulate and control furnace conditions is examined.

  20. Numerical simulation of filler metal droplets spreading in laser brazing

    Institute of Scientific and Technical Information of China (English)

    Yanbin Chen; Xiaosong Feng; Liqun Li

    2007-01-01

    A finite element model was constructed using a commercial software Fidap to analyze the Cu-base filler metal droplet spreading process in laser brazing, in which the temperature distribution, droplet geometry,and fluid flow velocity were calculated. Marangoni and buoyancy convection and gravity force were considered, and the effects of laser power and spot size on the spreading process were evaluated. Special attention was focused on the free surface of the droplet, which determines the profile of the brazing spot.The simulated results indicate that surface tension is the dominant flow driving force and laser spot size determines the droplet spreading domain.