WorldWideScience

Sample records for brayton cycle improving

  1. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji; Nakanishi, Shigeyasu; Inoue, Kiyoshi; Ishigai, Seikan.

    1982-01-01

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH 3 , SO 2 , CO 2 and H 2 O were examined as perfect gas and real gas. The advantage of CO 2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  2. Improvement of supercritical CO2 Brayton cycle using binary gas mixture

    International Nuclear Information System (INIS)

    Jeong, Woo Seok

    2011-02-01

    A Sodium-cooled Fast Reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is inevitably subjected to a sodium-water reaction. To prevent hazardous situation caused by sodium-water reaction, the SFR with Brayton cycle using Supercritical Carbon dioxide (S-CO 2 cycle) as a working fluid can be an alternative approach. The S-CO 2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work significantly decreases at slightly above the critical point due to high density near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. The critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle increases the efficiency and thus, changing the critical point of CO 2 can result in an improvement of the total cycle efficiency with the same cycle layout. Modifying the critical point of the working fluid can be done by adding other gases to CO 2 . The direction and range of the CO 2 critical point variation depends on the mixed component and its amount. In particular, chemical reactivity of the gas mixture itself and the gas mixture with sodium at high temperatures are of interest. To modify the critical point of the working fluid, several gases were chosen as candidates by which chemical stability with sodium within the interested range of cycle operating condition was assured: CO 2 was mixed with N 2 , O 2 , He, Ar and Xe. To evaluate the effect of shifting the critical point and changes in the properties of the S-CO 2 Brayton cycle, a supercritical Brayton cycle analysis code connected with the REFPROP program from the NIST was developed. The developed code is for evaluating

  3. Comparative energy analysis on a new regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Goodarzi, M.

    2016-01-01

    Highlights: • New regenerative Brayton cycle has been introduced. • New cycle has higher thermal efficiency and lower exhausted heat per output power. • Regenerator may remain useful in the new cycle even at high pressure ratio. • New regenerative Brayton cycle is suggested for low pressure ratio operations. - Abstract: Gas turbines are frequently used for power generation. Brayton cycle is the basis for gas turbine operation and developing the alternative cycles. Regenerative Brayton cycle is a developed cycle for basic Brayton cycle with higher thermal efficiency at low to moderate pressure ratios. A new regenerative Brayton cycle has been introduced in the present study. Energy analysis has been conducted on ideal cycles to compare them from the first law of thermodynamics viewpoint. Comparative analyses showed that the new regenerative Brayton cycle has higher thermal efficiency than the original one at the same pressure ratio, and also lower heat absorption and exhausted heat per unite output power. Computed results show that new cycle improves thermal efficiency from 12% to 26% relative to the original regenerative Brayton cycle in the range of studied pressure ratios. Contrary to the original regenerative Brayton cycle, regenerator remains useful in the new regenerative Brayton cycle even at higher pressure ratio.

  4. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zelong; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  5. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    OpenAIRE

    Zelong Zhang, Lingen Chen, Fengrui Sun

    2012-01-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficien...

  6. Potential performance improvement using a reacting gas (nitrogin tetroxide) as the working fluid in a closed Brayton cycle

    Science.gov (United States)

    Stochl, R. J.

    1979-01-01

    The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.

  7. Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon

    2011-01-01

    Highlights: → S-CO 2 cycle could be enhanced by shifting the critical point of working fluids using gas mixture. → In-house cycle code was developed to analyze supercritical Brayton cycles with gas mixture. → Gas mixture candidates were selected through a screening process: CO 2 mixing with N 2 , O 2 , He, and Ar. → CO 2 -He binary mixture shows the highest cycle efficiency increase. → Lowering the critical temperature and critical pressure of the coolant has a positive effect on the total cycle efficiency. - Abstract: A sodium-cooled fast reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is subjected to a possible sodium-water reaction. To prevent any hazards from sodium-water reaction, a SFR with the Brayton cycle using Supercritical Carbon dioxide (S-CO 2 ) as the working fluid can be an alternative approach to improve the current SFR design. However, the S-CO 2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work is significantly decreased slightly above the critical point due to high density of CO 2 near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. In other words, the critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle can increase the efficiency. Therefore, changing the critical point of CO 2 can result in an improvement of the total cycle efficiency with the same cycle layout. A small amount of other gases can be added in order to change the critical point of CO 2 . The direction and range of the critical point variation of CO 2 depends on the mixed component and its amount. Several gases that show chemical stability with

  8. Potential Improvements of Supercritical Recompression CO2 Brayton Cycle Coupled with KALIMER-600 by Modifying Critical Point of CO2

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon; No, Hee Cheon

    2010-01-01

    Most of the existing designs of a Sodium cooled Fast Reactor (SFR) have a Rankine cycle as an electric power generation cycle. This has the risk of a sodium water reaction. To prevent any hazards from a sodium water reaction, an indirect Brayton cycle using Supercritical Carbon dioxide (S-CO 2 ) as the working fluids for a SFR is an alternative approach to improve the current SFR design. The supercritical Brayton cycle is defined as a cycle with operating conditions above the critical point and the main compressor inlet condition located slightly above the critical point of working fluid. This is because the main advantage of the cycle comes from significantly decreased compressor work just above the critical point due to high density near boundary between supercritical state and subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. In other words, the critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the minimum temperature of a thermodynamic cycle can increase the efficiency and the minimum temperature can be decreased by shifting the critical point of CO 2 as mixed with other gases. In this paper, potential enhancement of S-CO 2 cycle coupled with KALIMER-600, which has been developed at KAERI, was investigated using a developed cycle code with a gas mixture property program

  9. NERI Quarterly Progress Report -- April 1 - June 30, 2005 -- Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    International Nuclear Information System (INIS)

    Chang Oh

    2005-01-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future

  10. FY-05 Second Quarter Report On Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    International Nuclear Information System (INIS)

    Chang Oh

    2005-01-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future

  11. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    International Nuclear Information System (INIS)

    Chang H. Oh

    2006-01-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for state-of-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency

  12. Brayton cycle space power systems

    International Nuclear Information System (INIS)

    Pietsch, A.; Trimble, S.W.; Harper, A.D.

    1985-01-01

    The latest accomplishments in the design and development of the Brayton Isotope Power System (BIPS) for space applications are described, together with a reexamination of the design/cost tradeoffs with respect to current economic parameters and technology status. The results of tests performed on a ground test version of the flight configuration, the workhorse loop, were used to confirm the performance projections made for the flight system. The results of cost-model analysis indicate that the use of the highest attainable power conversion system efficiency will yield the most cost-effective systems. 13 references

  13. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  14. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sienicki, James [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States); Nellis, Gregory [Univ. of Wisconsin, Madison, WI (United States); Klein, Sanford [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  15. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  16. Cascaded recompression closed brayton cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  17. Cascaded recompression closed brayton cycle system

    Science.gov (United States)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  18. Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinery. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper. The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle

  19. An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Imineo, Francesco; Marinelli, Valerio

    2013-01-01

    An improved model to analyze the performance of solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle is presented. In the new model, the effect of the incident angle modifier is included, to take into account the variation of the optical efficiency with the incidence angle of the irradiance, and the effect of the reheating of the fluid also has been studied. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine, with and without reheating of the fluid in the solar field. When reheating is used, the efficiency of the plant is increased. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it is able to compete well with other more complex plants operating with different heat transfer fluids. - Highlights: ► An improved model to calculate an innovative CPS solar plant is presented. ► The plant works with air in an open Joule–Brayton cycle. ► The reheating of the air increases the thermodynamic efficiency. ► The plant is very simple and competes well with other more complex solar plants

  20. Multi-objective thermodynamic optimization of combined Brayton and inverse Brayton cycles using genetic algorithms

    International Nuclear Information System (INIS)

    Besarati, S.M.; Atashkari, K.; Jamali, A.; Hajiloo, A.; Nariman-zadeh, N.

    2010-01-01

    This paper presents a simultaneous optimization study of two outputs performance of a previously proposed combined Brayton and inverse Brayton cycles. It has been carried out by varying the upper cycle pressure ratio, the expansion pressure of the bottom cycle and using variable, above atmospheric, bottom cycle inlet pressure. Multi-objective genetic algorithms are used for Pareto approach optimization of the cycle outputs. The two important conflicting thermodynamic objectives that have been considered in this work are net specific work (w s ) and thermal efficiency (η th ). It is shown that some interesting features among optimal objective functions and decision variables involved in the Baryton and inverse Brayton cycles can be discovered consequently.

  1. Thermodynamic Optimization of Supercritical CO{sub 2} Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rhim, Dong-Ryul; Park, Sung-Ho; Kim, Su-Hyun; Yeom, Choong-Sub [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2015-05-15

    The supercritical CO{sub 2} Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO{sub 2} Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO{sub 2} like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO{sub 2} instead of water. The supercritical CO{sub 2} recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO{sub 2} Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO{sub 2} recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO{sub 2} recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected.

  2. Back work ratio of Brayton cycle; La relacion de trabajo de retroceso de un ciclo Brayton

    Energy Technology Data Exchange (ETDEWEB)

    Malaver de la Fuente, M. [Universidad Maritima del Caribe (Venezuela)]. E-mail: mmf_umc@hotmail.com

    2010-07-15

    This paper analyzes the existing relation between temperatures, back work ratio and net work of Brayton cycle, a cycle that describes gas turbine engines performance. The application of computational software helps to show the influence of back work ratio or coupling ratio, compressor and turbine inlet temperatures in an ideal thermodynamical cycle. The results lead to deduce that the maximum value reached in back work ratio will depend on the ranges of maximum and minimal temperatures of Brayton cycle. [Spanish] En este articulo se estudia la relacion que existe entre las temperaturas, la relacion de trabajo de retroceso y el trabajo neto en el ciclo Brayton, que es el ciclo ideal que describe el comportamiento de los motores de turbina de gas. La aplicacion de programas computarizados ayuda a mostrar la influencia de la relacion de trabajo de retroceso o relacion de acoplamiento, la temperatura de entrada al compresor y la temperatura de entrada a la turbina en este ciclo termodinamico ideal. Los resultados obtenidos permiten deducir que el valor maximo que alcanza la relacion de trabajo de retroceso dependera de los limites de temperatura maxima y minima impuestos en el ciclo Brayton.

  3. New exergy analysis of a regenerative closed Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2017-01-01

    Highlights: • The maximum power is studied relating to time and size constraints variations. • The influence of time and size constraints on exergy destruction are investigated. • The definitions of heat exergy, and second law efficiency are modified. - Abstract: In this study, the optimal performance of a regenerative closed Brayton cycle is sought through power maximization. Optimization is performed on the output power as the objective function using genetic algorithm. In order to take into account the time and the size constraints in current problem, the dimensionless mass-flow parameter is used. The influence of the unavoidable exergy destruction due to finite-time constraint is taken into account by developing the definition of heat exergy. Finally, the improved definitions are proposed for heat exergy, and the second law efficiency. Moreover, the new definitions will be compared with the conventional ones. For example, at a specified dimensionless mass-flow parameter, exergy overestimation in conventional definition, causes about 31% lower estimation of the second law efficiency. These results could be expected to be utilized in future solar thermal Brayton cycle assessment and optimization.

  4. Potential impacts of Brayton and Stirling cycle engines

    Science.gov (United States)

    Heft, R. C.

    1980-01-01

    Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  5. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  6. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J

    1997-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  7. Power and efficiency optimization for combined Brayton and inverse Brayton cycles

    International Nuclear Information System (INIS)

    Zhang Wanli; Chen Lingen; Sun Fengrui

    2009-01-01

    A thermodynamic model for open combined Brayton and inverse Brayton cycles is established considering the pressure drops of the working fluid along the flow processes and the size constraints of the real power plant using finite time thermodynamics in this paper. There are 11 flow resistances encountered by the gas stream for the combined Brayton and inverse Brayton cycles. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, combustion inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances control the air flow rate and the net power output. The relative pressure drops associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle. The analytical formulae about the relations between power output, thermal conversion efficiency, and the compressor pressure ratio of the top cycle are derived with the 11 pressure drop losses in the intake, compression, combustion, expansion, and flow process in the piping, the heat transfer loss to the ambient, the irreversible compression and expansion losses in the compressors and the turbines, and the irreversible combustion loss in the combustion chamber. The performance of the model cycle is optimized by adjusting the compressor inlet pressure of the bottom cycle, the air mass flow rate and the distribution of pressure losses along the flow path. It is shown that the power output has a maximum with respect to the compressor inlet pressure of the bottom cycle, the air mass flow rate or any of the overall pressure drops, and the maximized power output has an additional maximum with respect to the compressor pressure

  8. Power conversion systems based on Brayton cycles for fusion reactors

    International Nuclear Information System (INIS)

    Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.; Serrano, I.P.

    2011-01-01

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO 2 in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO 2 cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO 2 -H 2 O cycle was set.

  9. Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Fuli Zhu

    2018-03-01

    Full Text Available An irreversible Maisotsenko reciprocating Brayton cycle (MRBC model is established using the finite time thermodynamic (FTT theory and taking the heat transfer loss (HTL, piston friction loss (PFL, and internal irreversible losses (IILs into consideration in this paper. A calculation flowchart of the power output (P and efficiency (η of the cycle is provided, and the effects of the mass flow rate (MFR of the injection of water to the cycle and some other design parameters on the performance of cycle are analyzed by detailed numerical examples. Furthermore, the superiority of irreversible MRBC is verified as the cycle and is compared with the traditional irreversible reciprocating Brayton cycle (RBC. The results can provide certain theoretical guiding significance for the optimal design of practical Maisotsenko reciprocating gas turbine plants.

  10. Small particle bed reactors: Sensitivity to Brayton cycle parameters

    Science.gov (United States)

    Coiner, John R.; Short, Barry J.

    Relatively simple particle bed reactor (PBR) algorithms were developed for optimizing low power closed Brayton cycle (CBC) systems. These algorithms allow the system designer to understand the relationship among key system parameters as well as the sensitivity of the PBR size and mass (a major system component) to variations in these parameters. Thus, system optimization can be achieved.

  11. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  12. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  13. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  14. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  15. Performance analysis of Brayton cycle system for space power reactor

    International Nuclear Information System (INIS)

    Li Zhi; Yang Xiaoyong; Zhao Gang; Wang Jie; Zhang Zuoyi

    2017-01-01

    The closed Brayton cycle system now is the potential choice as the power conversion system for High Temperature Gas-cooled Reactors because of its high energy conversion efficiency and compact configuration. The helium is the best working fluid for the system for its chemical stability and small neutron absorption cross section. However, the Helium has small mole mass and big specific volume, which would lead to larger pipes and heat exchanger. What's more, the big compressor enthalpy rise of helium would also lead to an unacceptably large number of compressor's stage. For space use, it's more important to satisfy the limit of the system's volume and mass, instead of the requirement of the system's thermal capacity. So Noble-Gas binary mixture of helium and xenon is presented as the working fluid for space Brayton cycle. This paper makes a mathematical model for space Brayton cycle system by Fortran language, then analyzes the binary mixture of helium and xenon's properties and effects on power conversion units of the space power reactor, which would be helpful to understand and design the space power reactor. The results show that xenon would lead to a worse system's thermodynamic property, the cycle's efficiency and specific power decrease as xenon's mole fraction increasing. On the other hand, proper amount of xenon would decrease the enthalpy changes in turbomachines, which would be good for turbomachines' design. Another optimization method – the specific power optimization is also proposed to make a comparison. (author)

  16. High exergetic modified Brayton cycle with thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Yazawa, Kazuaki; Fisher, Timothy S.; Groll, Eckhard A.; Shakouri, Ali

    2017-01-01

    Highlights: • Modified Brayton cycle with thermoelectric generators. • 1 kW power output scale hybrid gas turbine for residential applications. • Low profile TEGs are embedded in combustor/recuperator/heat-exchangers. • Analytical primary energy efficiency achieves more than 40%. - Abstract: A novel concept using thermoelectric direct power generators (TEGs) integrated into a 1 kW scale miniature Brayton cycle is investigated based on an analytical study. The work considers a residential scale application aiming to achieve 40% primary energy efficiency in contrast to the state-of-the-art miniature gas turbine alone, which can only achieve <16%. A topping cycle TEG for a hot gas temperature at 1600–1700 °C is embedded in the combustor scale of a kitchen stove. This TEG converts a fraction of the heat into electricity, while all the remaining thermal energy proceeds to the Brayton cycle. Turbine-inlet gas temperature regulates to 800–1100 °C by optimizing the air mixture. A second TEG is built in the recuperator; hence, the associated temperature is similar to that of a vehicle exhaust. A third TEG is used for waste heat recovery from flue gas, and then the downstream heat flow is used by a combined-heat-power system. By taking advantage of low-profile modules, the TEG embedded heat exchanges can be compact and low-cost at 0.2–0.3 $/W. The figure-of-merit of the thermoelectric materials considers ZT 1.0–1.8. Assuming that all advanced components are utilized, the primary energy efficiency predicts 42% with power output 720 W from the alternator and 325 W from the TEGs out of 0.456 g/s of a pipeline natural gas input.

  17. Design and analysis of helium Brayton power cycles for HiPER reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Consuelo, E-mail: csanchez@ind.uned.es [Dpto. Ingeniería Energética UNED, Madrid (Spain); Juárez, Rafael; Sanz, Javier [Dpto. Ingeniería Energética UNED, Madrid (Spain); Instituto de Fusión Nuclear/UPM, Madrid (Spain); Perlado, Manuel [Instituto de Fusión Nuclear/UPM, Madrid (Spain)

    2013-10-15

    Highlights: ► A helium Brayton cycle has been designed integrating the two energy sources of HiPER. ► The Brayton cycle has intercooling stages and a recovery process. ► The low temperature of HiPER heat sources results in low cycle efficiency (35.2%). ► Two inter-cooling stages and a reheating process increases efficiency to over 37%. ► Helium Brayton cycles are to be considered as candidates for HiPER power cycles. -- Abstract: Helium Brayton cycles have been studied as power cycles for both fission and fusion reactors obtaining high thermal efficiency. This paper studies several technological schemes of helium Brayton cycles applied for the HiPER reactor proposal. Since HiPER integrates technologies available at short term, its working conditions results in a very low maximum temperature of the energy sources, something that limits the thermal performance of the cycle. The aim of this work is to analyze the potential of the helium Brayton cycles as power cycles for HiPER. Several helium Brayton cycle configurations have been investigated with the purpose of raising the cycle thermal efficiency under the working conditions of HiPER. The effects of inter-cooling and reheating have specifically been studied. Sensitivity analyses of the key cycle parameters and component performances on the maximum thermal efficiency have also been carried out. The addition of several inter-cooling stages in a helium Brayton cycle has allowed obtaining a maximum thermal efficiency of over 36%, and the inclusion of a reheating process may also yield an added increase of nearly 1 percentage point to reach 37%. These results confirm that helium Brayton cycles are to be considered among the power cycle candidates for HiPER.

  18. Design and analysis of helium Brayton power cycles for HiPER reactor

    International Nuclear Information System (INIS)

    Sánchez, Consuelo; Juárez, Rafael; Sanz, Javier; Perlado, Manuel

    2013-01-01

    Highlights: ► A helium Brayton cycle has been designed integrating the two energy sources of HiPER. ► The Brayton cycle has intercooling stages and a recovery process. ► The low temperature of HiPER heat sources results in low cycle efficiency (35.2%). ► Two inter-cooling stages and a reheating process increases efficiency to over 37%. ► Helium Brayton cycles are to be considered as candidates for HiPER power cycles. -- Abstract: Helium Brayton cycles have been studied as power cycles for both fission and fusion reactors obtaining high thermal efficiency. This paper studies several technological schemes of helium Brayton cycles applied for the HiPER reactor proposal. Since HiPER integrates technologies available at short term, its working conditions results in a very low maximum temperature of the energy sources, something that limits the thermal performance of the cycle. The aim of this work is to analyze the potential of the helium Brayton cycles as power cycles for HiPER. Several helium Brayton cycle configurations have been investigated with the purpose of raising the cycle thermal efficiency under the working conditions of HiPER. The effects of inter-cooling and reheating have specifically been studied. Sensitivity analyses of the key cycle parameters and component performances on the maximum thermal efficiency have also been carried out. The addition of several inter-cooling stages in a helium Brayton cycle has allowed obtaining a maximum thermal efficiency of over 36%, and the inclusion of a reheating process may also yield an added increase of nearly 1 percentage point to reach 37%. These results confirm that helium Brayton cycles are to be considered among the power cycle candidates for HiPER

  19. Performance estimates for the Space Station power system Brayton Cycle compressor and turbine

    Science.gov (United States)

    Cummings, Robert L.

    1989-01-01

    The methods which have been used by the NASA Lewis Research Center for predicting Brayton Cycle compressor and turbine performance for different gases and flow rates are described. These methods were developed by NASA Lewis during the early days of Brayton cycle component development and they can now be applied to the task of predicting the performance of the Closed Brayton Cycle (CBC) Space Station Freedom power system. Computer programs are given for performing these calculations and data from previous NASA Lewis Brayton Compressor and Turbine tests is used to make accurate estimates of the compressor and turbine performance for the CBC power system. Results of these calculations are also given. In general, calculations confirm that the CBC Brayton Cycle contractor has made realistic compressor and turbine performance estimates.

  20. Sensitivity study on nitrogen Brayton cycle coupled with a small ultra-long cycle fast reactor

    International Nuclear Information System (INIS)

    Seo, Seok Bin; Seo, Han; Bang, In Cheol

    2014-01-01

    The main characteristics of UCFR are constant neutron flux and power density. They move their positions every moment at constant speed along with axial position of fuel rod for 60 years. Simultaneously with the development of the reactors, a new power conversion system has been considered. To solve existing issues of vigorous sodium-water reaction in SFR with steam power cycle, many researchers suggested a closed Brayton cycle as an alternative technique for SFR power conversion system. Many inactive gases are selected as a working fluid in Brayton power cycle, mainly supercritical CO 2 (S-CO 2 ). However, S-CO 2 still has potential for reaction with sodium. CO 2 -sodium reaction produces solid product, which has possibility to have an auto ignition reaction around 600 .deg. C. Thus, instead of S-CO 2 , CEA in France has developed nitrogen power cycle for ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration). In addition to inactive characteristic of nitrogen with sodium, its thermal and physical similarity with air enables to easily adopt to existing air Brayton cycle technology. In this study, for an optimized power conversion system for UCFR, a nitrogen Brayton cycle was analyzed in thermodynamic aspect. Based on subchannel analysis data of UCFR-100, a parametric study for thermal performance of nitrogen Brayton cycle was achieved. The system maximum pressure significantly affects to the overall efficiency of cycle, while other parameters show little effects. Little differences of the overall efficiencies for all cases between three stages (BOC, MOC, EOC) indicate that the power cycle of UCFR-100 maintains its performance during the operation

  1. Thermo-economic performance of HTGR Brayton power cycles

    International Nuclear Information System (INIS)

    Linares, J. L.; Herranz, L. E.; Moratilla, B. Y.; Fernandez-Perez, A.

    2008-01-01

    High temperature reached in High and Very High Temperature Reactors (VHTRs) results in thermal efficiencies substantially higher than those of actual nuclear power plants. A number of studies mainly driven by achieving optimum thermal performance have explored several layout. However, economic assessments of cycle power configurations for innovative systems, although necessarily uncertain at this time, may bring valuable information in relative terms concerning power cycle optimization. This paper investigates the thermal and economic performance direct Brayton cycles. Based on the available parameters and settings of different designs of HTGR power plants (GTHTR-300 and PBMR) and using the first and second laws of thermodynamics, the effects of compressor inter-cooling and of the compressor-turbine arrangement (i.e., single vs. multiple axes) on thermal efficiency have been estimated. The economic analysis has been based on the El-Sayed methodology and on the indirect derivation of the reactor capital investment. The results of the study suggest that a 1-axis inter-cooled power cycle has a similar thermal performance to the 3-axes one (around 50%) and, what's more, it is substantially less taxed. A sensitivity study allowed assessing the potential impact of optimizing several variables on cycle performance. Further than that, the cycle components costs have been estimated and compared. (authors)

  2. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  3. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  4. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce [Wilson Solarpower Corporation, Boston, MA (United States)

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  5. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  6. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  7. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  8. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    Science.gov (United States)

    Pasch, James Jay

    2017-02-07

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  9. Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles

    International Nuclear Information System (INIS)

    Bernardos, Eva; López, Ignacio; Rodríguez, Javier; Abánades, Alberto

    2013-01-01

    This paper proposes a first study in-depth of solar–fossil hybridization from a general perspective. It develops a set of useful parameters for analyzing and comparing hybrid plants, it studies the case of hybridizing Brayton cycles with current solar technologies and shows a tentative extrapolation of the results to integrated combined cycle systems (ISCSS). In particular, three points have been analyzed: the technical requirements for solar technologies to be hybridized with Brayton cycles, the temperatures and pressures at which hybridization would produce maximum power per unit of fossil fuel, and their mapping to current solar technologies and Brayton cycles. Major conclusions are that a hybrid plant works in optimum conditions which are not equal to those of the solar or power blocks considered independently, and that hybridizing at the Brayton cycle of a combined cycle could be energetically advantageous. -- Highlights: •We model a generic solar–fossil hybrid Brayton cycle. •We calculate the operating conditions for maximum ratio power/fuel consumption. •Best hybrid plant conditions are not the same as solar or power blocks separately. •We study potential for hybridization with current solar technologies. •Hybridization at the Brayton in a combined cycle may achieve high power/fuel ratio

  10. Study of various Brayton cycle designs for small modular sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Lee, Jeong Ik

    2014-01-01

    Highlights: • Application of closed Brayton cycle for small and medium sized SFRs is reviewed. • S-CO 2 , helium and nitrogen cycle designs for small modular SFR applications are analyzed and compared in terms of cycle efficiency, component performance and physical size. • Several new layouts for each Brayton cycle are suggested to simplify the turbomachinery designs. • S-CO 2 cycle design shows the best efficiency and compact size compared to other Brayton cycles. - Abstract: Many previous sodium cooled fast reactors (SFRs) adopted steam Rankine cycle as the power conversion system. However, the concern of sodium water reaction has been one of the major design issues of a SFR system. As an alternative to the steam Rankine cycle, several closed Brayton cycles including supercritical CO 2 cycle, helium cycle and nitrogen cycle have been suggested recently. In this paper, these alternative gas Brayton cycles will be compared to each other in terms of cycle performance and physical size for small modular SFR application. Several new layouts are suggested for each fluid while considering the turbomachinery design and the total system volume

  11. Optimization of the performance characteristics in an irreversible magnetic Brayton refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Hao; Liu Sanqiu

    2008-01-01

    An irreversible cycle model of magnetic Brayton refrigerators is established, in which the thermal resistance and irreversibility in the two adiabatic processes are taken into account. Expressions for several important performance parameters, such as the coefficient of performance, cooling rate and power input are derived. Moreover, the optimal performance parameters are obtained at the maximum coefficient of performance. The optimization region (or criteria) for an irreversible magnetic Brayton refrigerator is obtained. The results obtained here have general significance and will be helpful to understand deeply the performance of a magnetic Brayton refrigeration cycle

  12. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  13. Potential application of Rankine and He-Brayton cycles to sodium fast reactors

    International Nuclear Information System (INIS)

    Perez-Pichel, G.D.; Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.

    2011-01-01

    Highlights: → This paper has been focused on thermal efficiency of several Rankine and Brayton cycles for SFR. → A sub-critical Rankine configuration could reach a thermal efficiency higher than 43%. → It could be increased to almost 45% using super-critical configurations. → Brayton cycles thermal performance can be enhanced by adding a super-critical organic fluid Rankine cycle. → The moderate coolant temperature at the reactor makes Brayton configurations have poorer. - Abstract: Traditionally all the demos and/or prototypes of the sodium fast reactor (SFR) technology with power output, have used a steam sub-critical Rankine cycle. Sustainability requirement of Gen. IV reactors recommends exploring alternate power cycle configurations capable of reaching high thermal efficiency. By adopting the anticipated working parameters of next SFRs, this paper investigates the potential of some Rankine and He-Brayton layouts to reach thermal efficiencies as high as feasible, so that they could become alternates for SFR reactor balance of plant. The assessment has encompassed from sub-critical to super-critical Rankine cycles and combined cycles based on He-Brayton gas cycles of different complexity coupled to Organic Rankine Cycles. The sub-critical Rankine configuration reached at thermal efficiency higher than 43%, which has been shown to be a superior performance than any of the He-Brayton configurations analyzed. By adopting a super-critical Rankine arrangement, thermal efficiency would increase less than 1.5%. In short, according to the present study a sub-critical layout seems to be the most promising configuration for all those upcoming prototypes to be operated in the short term (10-15 years). The potential of super-critical CO 2 -Brayton cycles should be explored for future SFRs to be deployed in a longer run.

  14. Preliminary closed Brayton cycle study for a space reactor application

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de; Camillo, Giannino Ponchio

    2007-01-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  15. Preliminary closed Brayton cycle study for a space reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de [Institute for Advanced Studies, Sao Jose dos Campos, SP (Brazil)]. E-mail: guimarae@ieav.cta.br; Camillo, Giannino Ponchio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)]. E-mail: gianninocamillo@gmail.com

    2007-07-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  16. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  17. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems

    Science.gov (United States)

    Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.

    1980-01-01

    Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.

  18. Combined Brayton-JT cycles with refrigerants for natural gas liquefaction

    Science.gov (United States)

    Chang, Ho-Myung; Park, Jae Hoon; Lee, Sanggyu; Choe, Kun Hyung

    2012-06-01

    Thermodynamic cycles for natural gas liquefaction with single-component refrigerants are investigated under a governmental project in Korea, aiming at new processes to meet the requirements on high efficiency, large capacity, and simple equipment. Based upon the optimization theory recently published by the present authors, it is proposed to replace the methane-JT cycle in conventional cascade process with a nitrogen-Brayton cycle. A variety of systems to combine nitrogen-Brayton, ethane-JT and propane-JT cycles are simulated with Aspen HYSYS and quantitatively compared in terms of thermodynamic efficiency, flow rate of refrigerants, and estimated size of heat exchangers. A specific Brayton-JT cycle is suggested with detailed thermodynamic data for further process development. The suggested cycle is expected to be more efficient and simpler than the existing cascade process, while still taking advantage of easy and robust operation with single-component refrigerants.

  19. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickard, Paul S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  20. Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Paul [AREVA Federal Services, LLC, Charlotte, NC (United States); Lindsay, Edward [AREVA Federal Services, LLC, Charlotte, NC (United States); McDowell, Michael [AREVA Federal Services, LLC, Charlotte, NC (United States); Huang, Megan [AREVA Federal Services, LLC, Charlotte, NC (United States)

    2015-04-23

    AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.

  1. Effects of hysteresis and Brayton cycle constraints on magnetocaloric refrigerant performance

    Science.gov (United States)

    Brown, T. D.; Buffington, T.; Shamberger, P. J.

    2018-05-01

    Despite promising proofs of concept, system-level implementation of magnetic refrigeration has been critically limited by history-dependent refrigerant losses that interact with governing thermodynamic cycles to adversely impact refrigeration performance. Future development demands a more detailed understanding of how hysteresis limits performance, and of how different types of cycles can mitigate these limitations, but without the extreme cost of experimental realization. Here, the utility of Brayton cycles for magnetic refrigeration is investigated via direct simulation, using a combined thermodynamic-hysteresis modeling framework to compute the path-dependent magnetization and entropy of a model alloy for a variety of feasible Brayton cycles between 0-1.5 T and 0-5 T. By simultaneously varying the model alloy's hysteresis properties and applying extensions of the thermodynamic laws to non-equilibrium systems, heat transfers and efficiencies are quantified throughout the space of hystereses and Brayton cycles and then compared with a previous investigation using Ericsson cycles. It is found that (1) hysteresis losses remain a critical obstacle to magnetic refrigeration implementation, with efficiencies >80% in the model system requiring hysteresis refrigerant transformation temperatures at the relevant fields; (3) for a given hysteresis and field constraint, Brayton and Ericsson-type cycles generate similar efficiencies; for a given temperature span, Ericsson cycles lift more heat per cycle, with the difference decreasing with the refrigerant heat capacity outside the phase transformation region.

  2. Optimization of Brayton cycles for low-to-moderate grade thermal energy sources

    International Nuclear Information System (INIS)

    Rovira, Antonio; Muñoz-Antón, Javier; Montes, María José; Martínez-Val, José María

    2013-01-01

    Future electricity generation will involve low or moderate temperature technologies. In such a scenario, optimisation of thermodynamic cycles will be a key task. This work presents a systematic analysis to find the operating regime where Brayton cycles reach the highest efficiency, using real substances and given heat source and sink temperatures. Several configurations using fluids close to its critical point at the compressor inlet are considered. Irreversibility sources are carefully analysed, as well as the type of working fluid. The analysis is performed by means of a theoretical approach to obtain some trends, which are afterwards validated with real gases. Results show that the efficiency and the specific work improve if the compressor inlet is close to the critical point. Furthermore, these cycles are less sensitive to pressure drops and politropic efficiencies than those working with ideal gases. The above features are more evident when the ratio of heat source and heat sink temperatures is low. The selection of the gas becomes a fundamental issue in this quest. Critical temperature should be close to ambient temperature, low critical pressure is advisable and the R/c p factor measured at the ideal gas condition should be low to further enhance the efficiency. - Highlights: • Performance analysis of Brayton cycles with the compressor inlet close to the critical point. • Cycles are not very sensitive to pressure drops and isentropic efficiencies of the compressor. • Gas selection becomes important, regarding the critical pressure and temperature as well as the kind of fluid. • R/c p factor measured at the ideal gas condition should be as low as possible

  3. Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor

    International Nuclear Information System (INIS)

    Halimi, Burhanuddin; Suh, Kune Y.

    2012-01-01

    Highlights: ► Computational analysis of S-CO 2 Brayton cycle power conversion system. ► Validation of numerical model with literature data. ► Recompression S-CO 2 Brayton cycle thermal efficiency of 42.44%. ► Reheating concept to enhance the cycle thermal efficiency. ► Higher efficiency achieved by the proposed concept. - Abstract: The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO 2 ) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO 2 is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.

  4. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  5. Research on the Development of the Supercritical CO{sub 2} Dual Brayton Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Young-Jin; Na, Sun Ik; Cho, Junhyun; Shin, Hyung-Ki; Lee, Gilbong [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of)

    2016-10-15

    Because of the growing interest in supercritical carbon dioxide power cycle technology owing to its potential enhancement in compactness and efficiency, supercritical carbon dioxide cycles have been studied in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. This study introduces the current status of the research project on the supercritical carbon dioxide power cycle by Korea Institute of Energy Research (KIER). During the first phase of the project, the un-recuperated supercritical Brayton cycle test loop was built and tested. In phase two, researchers are designing and building a supercritical carbon dioxide dual Brayton cycle, which utilizes two turbines and two recuperators. Under the simulation condition considered in this study, it was confirmed that the design parameter has an optimal value for maximizing the net power in the supercritical carbon dioxide dual cycle.

  6. Optimization of a regenerative Brayton cycle by maximization of a newly defined second law efficiency

    NARCIS (Netherlands)

    Haseli, Y.

    2013-01-01

    The idea is to find out whether 2nd law efficiency optimization may be a suitable trade-off between maximum work output and maximum 1st law efficiency designs for a regenerative gas turbine engine operating on the basis of an open Brayton cycle. The primary emphasis is placed on analyzing the ideal

  7. Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-13

    The supercritical carbon-dioxide (referred to as SC-CO2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO2 direct cycle gas fast reactor has also been recently proposed. The SC-CO2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO2 densities, and allows for smaller components size, fewer components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO2 environment is the possibility

  8. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-05-01

    Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.

  9. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  10. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  11. Preliminary Design of S-CO2 Brayton Cycle for KAIST Micro Modular Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Kim, Min Gil; Bae, Seong Jun; Lee, Jeong Ik

    2013-01-01

    This paper suggests a complete modular reactor with an innovative concept of reactor cooling by using a supercritical carbon dioxide directly. Authors propose the supercritical CO 2 Brayton cycle (S-CO 2 cycle) as a power conversion system to achieve small volume of power conversion unit (PCU) and to contain the core and PCU in one vessel for the full modularization. This study suggests a conceptual design of small modular reactor including PCU which is named as KAIST Micro Modular Reactor (MMR). As a part of ongoing research of conceptual design of KAIST MMR, preliminary design of power generation cycle was performed in this study. Since the targets of MMR are full modularization of a reactor system with S-CO 2 coolant, authors selected a simple recuperated S-CO 2 Brayton cycle as a power conversion system for KAIST MMR. The size of components of the S-CO 2 cycle is much smaller than existing helium Brayton cycle and steam Rankine cycle, and whole power conversion system can be contained with core and safety system in one containment vessel. From the investigation of the power conversion cycle, recompressing recuperated cycle showed higher efficiency than the simple recuperated cycle. However the volume of heat exchanger for recompressing cycle is too large so more space will be occupied by heat exchanger in the recompressing cycle than the simple recuperated cycle. Thus, authors consider that the simple recuperated cycle is more suitable for MMR. More research for the KAIST MMR will be followed in the future and detailed information of reactor core and safety system will be developed down the road. More refined cycle layout and design of turbomachinery and heat exchanger will be performed in the future study

  12. Preliminary design of S-CO{sub 2} Brayton cycle for APR-1400 with power generation and desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Won Woong; Jeong, Yong Hoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [KUSTAR, Abu Dhabi (United Arab Emirates)

    2015-10-15

    This study was conducted to explore the capabilities of the S-CO{sub 2} Brayton cycle for a cogeneration system for APR-1400 application. Three concepts of the S-CO{sub 2} simple recuperated co-generation cycle were designed. A supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle is recently receiving significant attention as a promising power conversion system in wide range of energy applications due to its high efficiency and compact footprint. The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this study, the concept of replacing the entire steam cycle of APR-1400 with the S-CO{sub 2} Brayton cycle is evaluated. The power generation purpose S-CO{sub 2} Brayton cycles are redesigned to generate power and provide heat to the desalination system at the same time. The performance of these newly suggested cycles are evaluated in this paper. The target was to deliver 147MW heat to the desalination process. The thermal efficiencies of the three concepts are not significantly different, but the 3{sup rd} concept is relatively simpler than other cycles because only an additional heat exchanger is required. Although the 2{sup nd} concept is relatively complicated in comparison to other concepts, the temperatures at the inlet and outlet of the DHX are higher than that of the others. As shown in the results, the S-CO{sub 2} Brayton cycles are not easy to outperform the steam cycle with very simple layout and general design points under APR-1400 operating condition. However, this study shows that the S-CO{sub 2} Brayton cycles can be designed as a co-generation cycle while producing the target desalination heat with a simple configuration. In addition, it was also found that the S-CO{sub 2} Brayton cycle can achieve higher cycle thermal efficiency than the steam power cycle under

  13. Computer simulation of transitional process to the final stable Brayton cycle in magnetic refrigeration

    International Nuclear Information System (INIS)

    Numasawa, T.; Hashimoto, T.

    1981-01-01

    The final working cycle in the magnetic refrigeration largely depends on the heat transfer coefficient β in the system, the parameter γ of the heat inflow from the outer system to this cycle and the period tau of the cycle. Therefore, so as to make clear this dependence, the time variation of the Brayton cycle with β, γ and tau has been investigated. In the present paper the transitional process of this cycle and the dependence of the final cooling temperature of the heat load on β, γ and tau have all been shown. (orig.)

  14. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2016-01-01

    Highlights: • Finite time exergoeconomic multi objective optimization of a Brayton cycle. • Comparing the exergoeconomic and the ecological function optimization results. • Inserting the cost of fluid streams concept into finite-time thermodynamics. • Exergoeconomic sensitivity analysis of a regenerative Brayton cycle. • Suggesting the cycle performance curve drawing and utilization. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power maximization and then exergoeconomic optimization using finite-time thermodynamic concept and finite-size components. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is used deploying time variations. The decision variables for the optimum state (of multi objective exergoeconomic optimization) are compared to the maximum power state. One can see that the multi objective exergoeconomic optimization results in a better performance than that obtained with the maximum power state. The results demonstrate that system performance at optimum point of multi objective optimization yields 71% of the maximum power, but only with exergy destruction as 24% of the amount that is produced at the maximum power state and 67% lower total cost rate than that of the maximum power state. In order to assess the impact of the variation of the decision variables on the objective functions, sensitivity analysis is conducted. Finally, the cycle performance curve drawing according to exergoeconomic multi objective optimization results and its utilization, are suggested.

  15. Features of supercritical carbon dioxide Brayton cycle coupled with reactor

    International Nuclear Information System (INIS)

    Duan Chengjie; Wang Jie; Yang Xiaoyong

    2010-01-01

    In order to obtain acceptable cycle efficiency, current helium gas turbine power cycle technology needs high cycle temperature which means that the cycle needs high core-out temperature. The technology has high requirements on reactor structure and fuel elements materials, and also on turbine manufacture. While utilizing CO 2 as cycle working fluid, it can guarantee to lower the cycle temperature and turbo machine Janume but achieve the same cycle efficiency, so as to enhance the safety and economy of reactor. According to the laws of thermodynamics, a calculation model of supercritical CO 2 power cycle was established to analyze the feature, and the decisive parameters of the cycle and also investigate the effect of each parameter on the cycle efficiency in detail were obtained. The results show that supercritical CO 2 power cycle can achieve quite satisfied efficiency at a lower cycle highest temperature than helium cycle, and CO 2 is a promising working fluid. (authors)

  16. Supercritical carbon dioxide Brayton power conversion cycle for battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Kim, T. W.; Kim, N. H.; Suh, K. Y.

    2007-01-01

    Supercritical carbon dioxide (SCO 2 ) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. The SCO 2 Brayton cycle efficiency as high as 45% furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth lead-cooled Battery Optimized Reactor Integral System (BORIS) is being developed as an ultra-long-life, versatile-purpose, fast-spectrum reactor. BORIS is coupled to the SCO 2 Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO 2 Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW precooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO 2 leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45% was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO 2 going out from the low temperature recuperator. Development of Modular Optimized Brayton Integral System (MOBIS) is being devised as the SCO 2 Brayton cycle energy conversion cycle for BORIS. MOBIS consists of Loop Operating Brayton Optimization Study (LOBOS) for experimental Brayton cycle loop and Gas Advanced Turbine Operation Study (GATOS) for the SCO 2 turbine. Liquid-metal Energy Exchanger Integral System (LEXIS) serves to couple BORIS and MOBIS. LEXIS comprises Physical Aspect Thermal Operation System (PATOS) for SCO 2 thermal hydraulic characteristics, Shell-and-tube Overall Layout Optimization Study (SOLOS) for shell-and-tube heat exchanger, Printed

  17. The maximum power condition of the brayton cycle with heat exchange processes

    International Nuclear Information System (INIS)

    Jung, Pyung Suk; Cha, Jin Girl; Ro, Sung Tack

    1985-01-01

    The ideal brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power of the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink. (Author)

  18. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  19. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  20. Design and analysis of Helium Brayton cycle for energy conversion system of RGTT200K

    International Nuclear Information System (INIS)

    Ignatius Djoko Irianto

    2016-01-01

    The helium Brayton cycle for the design of cogeneration energy conversion system for RGTT200K have been analyzed to obtain the higher thermal efficiency and energy utilization factor. The aim of this research is to analyze the potential of the helium Brayton cycle to be implemented in the design of cogeneration energy conversion system of RGTT200K. Three configuration models of cogeneration energy conversion systems have been investigated. In the first configuration model, an intermediate heat exchanger (IHX) is installed in series with the gas turbine, while in the second configuration model, IHX and gas turbines are installed in parallel. The third configuration model is similar to the first configuration, but with two compressors. Performance analysis of Brayton cycle used for cogeneration energy conversion system of RGTT200K has been done by simulating and calculating using CHEMCAD code. The simulation result shows that the three configuration models of cogeneration energy conversion system give the temperature of thermal energy in the secondary side of IHX more than 800 °C at the reactor coolant mass flow rate of 145 kg/s. Nevertheless, the performance parameters, which include thermal efficiency and energy utilization factor (EUF), are different for each configuration model. By comparing the performance parameter in the three configurations of helium Brayton cycle for cogeneration energy conversion systems RGTT200K, it is found that the energy conversion system with a first configuration has the highest thermal efficiency and energy utilization factor (EUF). Thermal efficiency and energy utilization factor for the first configuration of the reactor coolant mass flow rate of 145 kg/s are 35.82 % and 80.63 %. (author)

  1. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  2. Supercritical CO2 Brayton Cycle Energy Conversion System Coupled with SFR

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2008-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For a system development, a computer code was developed to calculate heat balance of normal operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Computer codes were developed to analysis for the S-CO 2 turbomachinery. Based on the design codes, the design parameters were prepared to configure the KALIMER-600 S-CO 2 turbomachinery models. A one-dimensional analysis computer code was developed to evaluate the performance of the previous PCHE heat exchangers and a design data for the typical type PCHE was produced. In parallel with the PCHE-type heat exchanger design, an airfoil shape fin PCHE heat exchanger was newly designed. The new design concept was evaluated by three-dimensional CFD analyses. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. The MMS-LMR code was also developed to analyze the transient phenomena in a SFR with a supercritical CO 2 Brayton cycle to develop the control logic. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na-CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na-CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  3. Extension of the supercritical carbon dioxide Brayton cycle for application to the Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Sienicki, J. J.

    2010-01-01

    An investigation has been carried out of the feasibility of applying the supercritical carbon dioxide (S-CO 2 ) Brayton cycle to the Very High Temperature Reactor (VHTR). Direct application of the standard S-CO 2 recompression cycle to the VHTR was found to be challenging because of the mismatch in the inherent temperature drops across the He and CO 2 sides of the reactor heat exchanger resulting in a relatively low cycle efficiency of 45 % compared to 48 % for a direct helium cycle. Two approaches consisting of either a cascaded cycle arrangement with three separate cascaded S-CO 2 cycles or, alternately, operation of a single S-CO 2 cycle with the minimum pressure below the critical pressure and the minimum temperature above the critical temperature have been identified and shown to successfully enable the S-CO 2 Brayton cycle to be adapted to the VHTR such that the benefits of the higher S-CO 2 cycle efficiency can be realized. For both approaches, S-CO 2 cycle efficiencies in excess of 49 % are calculated. (authors)

  4. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  5. Thermal performance of Brayton power cycles. A study based on high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Herranz, Luis E.; Linares, Jose I.; Moratilla, Beatriz Y.

    2005-01-01

    Power cycles optimization has become an essential ingredient to achieve sustainability and improve economic competitiveness of forthcoming Generation IV designs. This paper investigates performance of several configurations of direct helium Brayton cycles. An optimum layout is proposed based on multiple intercooled compression stages and in-between turbines reheating: C(IC) 2 HTRTX. Under the hypotheses and approximations made, a 59% is estimated and it increases even further (67%) when the foreseen technological development is considered. A sensitive analysis identified key components and variables for cycle performance. Particular attention is paid to the effect of the extracted gas mass fraction for reheating. It is shown that the C(IC) 2 HTRTX cycle provides a feasible and simple way to operate the power plant the load-follow mode with a very little loss of efficiency. (author)

  6. Identified corrosion and erosion mechanisms in SCO2 Brayton Cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Kruizenga, Alan Michael

    2014-06-01

    Supercritical Carbon Dioxide (S-CO2) is an efficient and flexible working fluid for power production. Research to interface S-CO2 systems with nuclear, thermal solar, and fossil energy sources is currently underway. To proceed, we must address concerns regarding compatibility of materials, at high temperature, and compatibility between significantly different heat transfer fluids. Dry, pure S-CO2 is thought to be relatively inert [1], while the addition of ppm levels of water and oxygen result in formation of a protective chromia layer and iron oxide [2]. Thin oxides are favorable as diffusion barriers, and for their minimal impact on heat transfer. While S-CO2 is typically understood to be the secondary fluid, many varieties of primary fluids exist for nuclear applications. Molten salts, for use in the Molten Salt Reactor concept, are given as an example to contrast the materials requirements of primary and secondary fluids. Thin chromia layers are soluble in molten salt systems (nitrate, chloride, and fluoride based salts) [3-8], making materials selection for heat exchangers a precarious balancing act between high temperature oxidation (S-CO2) and metal dissolution (salt side of heat exchanger). Because concerns have been raised regarding component lifetimes, S-CO2 work has begun to characterize starting materials and to establish a baseline by analysis of 1) as-received stainless steel piping, and 2) piping exposed to S-CO2 under typical operating conditions with Sandia National Laboratories Brayton systems. A second issue discovered by SNL involves substantial erosion in the turbine blade and inlet nozzle. It is believed that this is caused by small particulates that originate from different materials around the loop that are entrained by the S-CO2 to the nozzle, where they impact the inlet nozzle vanes, causing erosion. We believe that, in some way, this is linked to the purity of the S-CO2, the corrosion contaminants, and the metal particulates that

  7. Nuclear reactor closed Brayton cycle power conversion system optimization trends for extra-terrestrial applications

    International Nuclear Information System (INIS)

    Ashe, T.L.; Baggenstoss, W.G.; Bons, R.

    1990-01-01

    Extra-terrestrial exploration and development missions of the next century will require reliable, low-mass power generation modules of 100 kW e and more. These modules will be required to support both fixed-base and manned rover/explorer power needs. Low insolation levels at and beyond Mars and long periods of darkness on the moon make solar conversion less desirable for surface missions. For these missions, a closed Brayton cycle energy conversion system coupled with a reactor heat source is a very attractive approach. The authors conducted parametric studies to assess optimized system design trends for nuclear-Brayton systems as a function of operating environment and user requirements. The inherent design flexibility of the closed Brayton cycle energy conversion system permits ready adaptation of the system to future design constraints. This paper describes a dramatic contrast between system designs requiring man-rated shielding. The paper also considers the ramification of using indigenous materials to provide reactor shielding for a fixed-base power source

  8. Analysis of a 115MW, 3 shaft, helium Brayton cycle

    International Nuclear Information System (INIS)

    Pradeepkumar, K.N.

    2002-01-01

    This research theme is originated from a development project that is going on in South Africa, for the design and construction of a closed cycle gas turbine plant using gas-cooled reactor as the heat source to generate 115 MW of electricity. South African Power utility company, Eskorn, promotes this developmental work through its subsidiary called PBMR (Pebble Bed Modular Reactor). Some of the attractive features of this plant are the inherent and passive safety features, modular geometry, small evacuation area, small infrastructure requirements for the installation and running of the plant, small construction time, quick starting and stopping and also low operational cost. This exercise is looking at the operational aspects of a closed cycle gas turbine, the finding of which will have a direct input towards the successful development and commissioning of the plant. A thorough understanding of the fluid dynamics in this three-shaft system and its transient performance analysis were the two main objectives of this research work. A computer programme called GTSI, developed by a previous Cranfield University research student, has been used in this as a base programme for the performance analysis. Some modifications were done on this programme to improve its control abilities. The areas covered in the performance analysis are Start-up, Shutdown and Load ramping. A detailed literature survey has been conducted to learn from the helium Turbo machinery experiences, though it is very limited. A critical analysis on the design philosophy of the PBMR is also carried out as part of this research work. The performance analysis has shown the advantage, disadvantage and impact of various power modulation methods suggested for the PBMR. It has tracked the effect of the operations of the various valves included in the PBMR design. The start-up using a hot gas injection has been analysed in detail and a successful start region has been mapped. A start-up procedure is also written

  9. A Conceptual Study of Using an Isothermal Compressor on a Supercritical CO_2 Brayton Cycle for SMART Application

    International Nuclear Information System (INIS)

    Heo, Jin Young; Lee, Jeong Ik; Ahn, Yoonhan

    2016-01-01

    To maximize the benefits of modularization, the supercritical CO_2 (S-CO_2) power cycle can replace the conventional steam Rankine cycle to increase the cycle efficiency and reduce its system size. Previous works have been conducted to evaluate potential advantages of applying the S-CO_2 cycle to SMRs, specifically to SMART (System-integrated Modular Advanced Reactor) which is an integral SMR developed by KAERI (Korea Atomic Energy Institute). One of the optimized S-CO_2 cycle layouts is the recompressing Brayton cycle. This paper attempts to improve the cycle layout by replacing the conventional compressor with an isothermal compressor, of which its potential in the S-CO_2 power cycle is conceptually being evaluated. The SMR applications, for which SMART reactor has been represented, can take advantage of the currently developing S-CO_2 cycle greatly by the reduction of size. By introducing the isothermal compressor, the cycle layout considered in has been further improved by increasing the cycle net efficiency by around 0.5%

  10. A Conceptual Study of Using an Isothermal Compressor on a Supercritical CO{sub 2} Brayton Cycle for SMART Application

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jin Young; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Ahn, Yoonhan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    To maximize the benefits of modularization, the supercritical CO{sub 2} (S-CO{sub 2}) power cycle can replace the conventional steam Rankine cycle to increase the cycle efficiency and reduce its system size. Previous works have been conducted to evaluate potential advantages of applying the S-CO{sub 2} cycle to SMRs, specifically to SMART (System-integrated Modular Advanced Reactor) which is an integral SMR developed by KAERI (Korea Atomic Energy Institute). One of the optimized S-CO{sub 2} cycle layouts is the recompressing Brayton cycle. This paper attempts to improve the cycle layout by replacing the conventional compressor with an isothermal compressor, of which its potential in the S-CO{sub 2} power cycle is conceptually being evaluated. The SMR applications, for which SMART reactor has been represented, can take advantage of the currently developing S-CO{sub 2} cycle greatly by the reduction of size. By introducing the isothermal compressor, the cycle layout considered in has been further improved by increasing the cycle net efficiency by around 0.5%.

  11. Thermal performance analysis of Brayton cycle with waste heat recovery boiler for diesel engines of offshore oil production facilities

    International Nuclear Information System (INIS)

    Liu, Xianglong; Gong, Guangcai; Wu, Yi; Li, Hangxin

    2016-01-01

    Highlights: • Comparison of Brayton cycle with WHRB adopted in diesel engines with and without fans by thermal performance. • Waste heat recovery technology for FPSO. • The thermoeconomic analysis for the heat recovery for FPSO. - Abstract: This paper presents the theoretical analysis and on-site testing on the thermal performance of the waste heat recovery system for offshore oil production facilities, including the components of diesel engines, thermal boilers and waste heat boilers. We use the ideal air standard Brayton cycle to analyse the thermal performance. In comparison with the traditional design, the fans at the engine outlet of the waste heat recovery boiler is removed due to the limited space of the offshore platform. The cases with fan and without fan are compared in terms of thermal dynamics performance, energy efficiency and thermo-economic index of the system. The results show that the application of the WHRB increases the energy efficiency of the whole system, but increases the flow resistance in the duct. It is proved that as the waste heat recovery boiler takes the place of the thermal boiler, the energy efficiency of whole system without fan is slightly reduced but heat recovery efficiency is improved. This research provides an important guidance to improve the waste heat recovery for offshore oil production facilities.

  12. Brayton-Cycle Power-Conversion Unit Tested With Ion Thruster

    Science.gov (United States)

    Hervol, David S.

    2005-01-01

    Nuclear electric propulsion has been identified as an enabling technology for future NASA space science missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study. An important element of the nuclear electric propulsion spacecraft is the power conversion system, which converts the reactor heat to electrical power for use by the ion propulsion system and other spacecraft loads. The electrical integration of the power converter and ion thruster represents a key technical challenge in making nuclear electric propulsion technology possible. This technical hurdle was addressed extensively on December 1, 2003, when a closed- Brayton-cycle power-conversion unit was tested with a gridded ion thruster at the NASA Glenn Research Center. The test demonstrated end-to-end power throughput and marked the first-ever coupling of a Brayton turbo alternator and a gridded ion thruster, both of which are candidates for use on JIMO-type missions. The testing was conducted at Glenn's Vacuum Facility 6, where the Brayton unit was installed in the 3-m-diameter vacuum test port and the ion thruster was installed in the 7.6-m-diameter main chamber.

  13. Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle

    Directory of Open Access Journals (Sweden)

    S. Mohammad S. Mahmoudi

    2016-10-01

    Full Text Available A new combined supercritical CO2 recompression Brayton/Kalina cycle (SCRB/KC is proposed. In the proposed system, waste heat from a supercritical CO2 recompression Brayton cycle (SCRBC is recovered by a Kalina cycle (KC to generate additional electrical power. The performances of the two cycles are simulated and compared using mass, energy and exergy balances of the overall systems and their components. Using the SPECO (Specific Exergy Costing approach and employing selected cost balance equations for the components of each system, the total product unit costs of the cycles are obtained. Parametric studies are performed to investigate the effects on the SCRB/KC and SCRBC thermodynamic and thermoeconomic performances of key decision parameters. In addition, considering the exergy efficiency and total product unit cost as criteria, optimization is performed for the SCRBC and SCRB/KC using Engineering Equation Solver software. The results indicate that the maximum exergy efficiency of the SCRB/KC is higher than that of the SCRBC by up to 10%, and that the minimum total product unit cost of the SCRB/KC is lower than that of the SCRBC by up to 4.9%.

  14. Adaptability of Brayton cycle conversion systems to fast, epithermal and thermal spectrum space nuclear reactors

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1988-01-01

    The two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) are carrying out joint preliminary studies on space nuclear power systems for future ARIANE 5 launch vehicle applications. The Brayton cycle is the reference conversion system, whether the heat source is a liquid metal-cooled (NaK, Na or Li) reactor or a gas-cooled direct cycle concept. The search for an adequate utilization of this energy conversion means has prompted additional evaluations featuring the definition of satisfactory cycle conditions for these various kinds of reactor concepts. In addition to firstly studied fast and epithermal spectrum ones, thermal spectrum reactors can offer an opportunity of bringing out some distinctive features of the Brayton cycle, in particular for the temperature conditioning of the efficient metal hydrides (ZrH, Li/sub 7/H) moderators. One of the purposes of the paper is to confirm the potential of long lifetime ZrH moderated reactors associated with a gas cycle and to assess the thermodynamical consequences for both Nak(Na)-cooled or gas-cooled nuclear heat sources. This investigation is complemented by the definition of appropriate reactor arrangements which could be presented on a further occasion

  15. Malone-brayton cycle engine/heat pump

    Science.gov (United States)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  16. Impact of closed Brayton cycle test results on gas cooled reactor operation and safety

    International Nuclear Information System (INIS)

    Wright, St.A.; Pickard, P.S.

    2007-01-01

    This report summarizes the measurements and model predictions for a series of tests supported by the U.S. Department of Energy that were performed using the recently constructed Sandia Brayton Loop (SBL-30). From the test results we have developed steady-state power operating curves, controls methodologies, and transient data for normal and off-normal behavior, such as loss of load events, and for decay heat removal conditions after shutdown. These tests and models show that because the turbomachinery operates off of the temperature difference (between the heat source and the heat sink), that the turbomachinery can continue to operate (off of sensible heat) for long periods of time without auxiliary power. For our test hardware, operations up to one hour have been observed. This effect can provide significant operations and safety benefits for nuclear reactors that are coupled to a Brayton cycles because the operating turbomachinery continues to provide cooling to the reactor. These capabilities mean that the decay-heat removal can be accommodated by properly managing the electrical power produced by the generator/alternator. In some conditions, it may even be possible to produce sufficient power to continue operating auxiliary systems including the waste heat circulatory system. In addition, the Brayton plant impacts the consequences of off-normal and accident events including loss of load and loss of on-site power. We have observed that for a loss of load or a loss of on-site power event, with a reactor scram, the transient consists initially of a turbomachinery speed increase to a new stable operating point. Because the turbomachinery is still spinning, the reactor is still being cooled provided the ultimate heat sink remains available. These highly desirable operational characteristics were observed in the Sandia Brayton loop. This type of behavior is also predicted by our models. Ultimately, these results provide the designers the opportunity to design gas

  17. Supercritical CO2 Brayton power cycles for DEMO fusion reactor based on Helium Cooled Lithium Lead blanket

    International Nuclear Information System (INIS)

    Linares, José Ignacio; Herranz, Luis Enrique; Fernández, Iván; Cantizano, Alexis; Moratilla, Beatriz Yolanda

    2015-01-01

    Fusion energy is one of the most promising solutions to the world energy supply. This paper presents an exploratory analysis of the suitability of supercritical CO 2 Brayton power cycles (S-CO 2 ) for low-temperature divertor fusion reactors cooled by helium (as defined by EFDA). Integration of three thermal sources (i.e., blanket, divertor and vacuum vessel) has been studied through proposing and analyzing a number of alternative layouts, achieving an improvement on power production higher than 5% over the baseline case, which entails to a gross efficiency (before self-consumptions) higher than 42%. In spite of this achievement, the assessment of power consumption for the circulating heat transfer fluids results in a penalty of 20% in the electricity production. Once the most suitable layout has been selected an optimization process has been conducted to adjust the key parameters to balance performance and size, achieving an electrical efficiency (electricity without taking into account auxiliary consumptions due to operation of the fusion reactor) higher than 33% and a reduction in overall size of heat exchangers of 1/3. Some relevant conclusions can be drawn from the present work: the potential of S-CO 2 cycles as suitable converters of thermal energy to power in fusion reactors; the significance of a suitable integration of thermal sources to maximize power output; the high penalty of pumping power; and the convenience of identifying the key components of the layout as a way to optimize the whole cycle performance. - Highlights: • Supercritical CO 2 Brayton cycles have been proposed for BoP of HCLL fusion reactor. • Low temperature sources have been successfully integrated with high temperature ones. • Optimization of thermal sources integration improves 5% the electricity production. • Assessment of pumping power with sources and sink loops results on 20% of gross power. • Matching of key parameters has conducted to 1/3 of reduction in heat

  18. A four-year investigation of Brayton cycle systems for future french space power applications

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Proust, E.; Carre, F.

    1988-01-01

    Within the framework of a joint program initiated in 1983 by the two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique), in order to study space nuclear power systems for future ARIANE 5 applications, extensive investigations have dealt with the Brayton cycle which has been selected as the energy conversion system. Several aspects can be mentioned in this field: the matching of the power system to the available radiator dimensions up to 200 kWe, the direct or indirect waste heat transfer to the radiator, the use of a recuperator, the recent work on moderate (25 kWe) power levels, the simulation studies related to various operating conditions and the general system optimization. A limited experimental program is starting on some crucial technology areas including a first contract to the industry concerning the turbogenerator. Particular attention is being paid to the significance of the adoption of a Brayton cycle for space applications involving a nuclear heat source which can be either a liquid metal-cooled or a gas-cooled reactor. As far as a gas-cooled reactor, direct cycle system is concerned, the relevance to the reactor technology and the concept for moderator thermal conditioning, is particularly addressed

  19. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  20. Combined Reverse-Brayton Joule Thompson Hydrogen Liquefaction Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shimko, Martin A. [Gas Equipment Engineering Corporation, Milford, CT (United States); Dunn, Paul M. [Gas Equipment Engineering Corporation, Milford, CT (United States)

    2011-12-31

    The following is a compilation of Annual Progress Reports submitted to the DOE’s Fuel Cell Technologies Office by Gas Equipment Engineering Corp. for contract DE-FG36-05GO15021. The reports cover the project activities from August 2005 through June 2010. The purpose of this project is to produce a pilot-scale liquefaction plant that demonstrates GEECO’s ability to meet or exceed the efficiency targets set by the DOE. This plant will be used as a model to commercialize this technology for use in the distribution infrastructure of hydrogen fuel. It could also be applied to markets distributing hydrogen for industrial gas applications. Extensive modeling of plant performance will be used in the early part of the project to identify the liquefaction cycle architecture that optimizes the twin goals of increased efficiency and reduced cost. The major challenge of the project is to optimize/balance the performance (efficiency) of the plant against the cost of the plant so that the fully amortized cost of liquefying hydrogen meets the aggressive goals set by DOE. This project will design and build a small-scale pilot plant (several hundred kg/day) that will be both a hardware demonstration and a model for scaling to larger plant sizes (>50,000 kg/day). Though an effort will be made to use commercial or near-commercial components, key components that will need development for either a pilot- or full-scale plant will be identified. Prior to starting pilot plant fabrication, these components will be demonstrated at the appropriate scale to demonstrate sufficient performance for use in the pilot plant and the potential to achieve the performance used in modeling the full-scale plant.

  1. Modeling the small-scale dish-mounted solar thermal Brayton cycle

    Science.gov (United States)

    Le Roux, Willem G.; Meyer, Josua P.

    2016-05-01

    The small-scale dish-mounted solar thermal Brayton cycle (STBC) makes use of a sun-tracking dish reflector, solar receiver, recuperator and micro-turbine to generate power in the range of 1-20 kW. The modeling of such a system, using a turbocharger as micro-turbine, is required so that optimisation and further development of an experimental setup can be done. As a validation, an analytical model of the small-scale STBC in Matlab, where the net power output is determined from an exergy analysis, is compared with Flownex, an integrated systems CFD code. A 4.8 m diameter parabolic dish with open-cavity tubular receiver and plate-type counterflow recuperator is considered, based on previous work. A dish optical error of 10 mrad, a tracking error of 1° and a receiver aperture area of 0.25 m × 0.25 m are considered. Since the recuperator operates at a very high average temperature, the recuperator is modeled using an updated ɛ-NTU method which takes heat loss to the environment into consideration. Compressor and turbine maps from standard off-the-shelf Garrett turbochargers are used. The results show that for the calculation of the steady-state temperatures and pressures, there is good comparison between the Matlab and Flownex results (within 8%) except for the recuperator outlet temperature, which is due to the use of different ɛ-NTU methods. With the use of Matlab and Flownex, it is shown that the small-scale open STBC with an existing off-the-shelf turbocharger could generate a positive net power output with solar-to-mechanical efficiency of up to 12%, with much room for improvement.

  2. Thermodynamic analyses and optimization of a recompression N2O Brayton power cycle

    International Nuclear Information System (INIS)

    Sarkar, Jahar

    2010-01-01

    Thermodynamic analyses and simultaneous optimizations of cycle pressure ratio and flow split fraction to get maximum efficiency of N 2 O recompression Brayton cycle have been performed to study the effects of various operating conditions and component performances. The energetic as well as exergetic performance comparison with its counterpart recompression CO 2 cycle is presented as well. Optimization shows that the optimum minimum cycle pressure is close to pseudo-critical pressure for supercritical cycle, whereas saturation pressure corresponding to minimum cycle temperature for condensation cycle. Results show that the maximum thermal efficiency increases with decrease in minimum cycle temperature and increase in both maximum cycle pressure and temperature. Influence of turbine performance on cycle efficiency is more compared to that of compressors, HTR (high temperature recuperator) and LTR (low temperature recuperator). Comparison shows that N 2 O gives better thermal efficiency (maximum deviation of 1.2%) as well as second law efficiency compared to CO 2 for studied operating conditions. Component wise irreversibility distribution shows the similar trends for both working fluids. Present study reveals that N 2 O is a potential option for the recompression power cycle.

  3. Conceptual design study of closed Brayton cycle gas turbines for fusion power generation

    International Nuclear Information System (INIS)

    Kuo, S.C.

    1976-01-01

    A conceptual design study is presented of closed Brayton cycle gas turbine power conversion systems suitable for integration with advanced-concept Tokamak fusion reactors (such as UWMAK-III) for efficient power generation without requiring cooling water supply for waste heat rejection. A baseline cycle configuration was selected and parametric performance analyses were made. Based on the results of the parametric analysis and trade-off and interface considerations, the reference design conditions for the baseline cycle were selected. Conceptual designs were made of the major helium gas turbine power system components including a 585-MWe single-shaft turbomachine, (three needed), regenerator, precooler, intercooler, and the piping system connecting them. Structural configuration and significant physical dimensions for major components are illustrated, and a brief discussion on major advantages, power control and crucial technologies for the helium gas turbine power system are presented

  4. Thermodynamic analysis and optimization of a Closed Regenerative Brayton Cycle for nuclear space power systems

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Guimarães, Lamartine N.F.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differ strongly from usual ground-based power systems regarding the importance of overall size and mass. For propulsion power systems, size and mass are essential drivers that should be minimized during conception processes. Considering this aspect, this paper aims the development of a design-based model of a Closed Regenerative Brayton Cycle that applies the thermal conductance of the main components in order to predict the energy conversion performance, allowing its use as a preliminary tool for heat exchanger and radiator panel sizing. The centrifugal-flow turbine and compressor characterizations were achieved using algebraic equations from literature data. A binary mixture of Helium–Xenon with molecular weight of 40 g/mole is applied and the impact of the components sizing in the energy efficiency is evaluated in this paper, including the radiator panel area. Moreover, an optimization analysis based on the final mass of heat the exchangers is performed. - Highlights: • A design-based model of a Closed Brayton Cycle is proposed for nuclear space needs. • Turbomachinery efficiency presented a strong influence on the system efficiency. • Radiator area presented the highest potential to increase the system efficiency. • There is maximum system efficiency for each total mass of heat exchangers. • Size or efficiency optimization was performed by changing heat exchanger proportion.

  5. Brayton Cycle Numerical Modeling using the RELAP5-3D code, version 4.3.4

    Energy Technology Data Exchange (ETDEWEB)

    Longhini, Eduardo P.; Lobo, Paulo D.C.; Guimarães, Lamartine N.F.; Filho, Francisco A.B.; Ribeiro, Guilherme B., E-mail: edu_longhini@yahoo.com.br [Instituto de Estudos Avançados (IEAv), São José dos Campos, SP (Brazil). Divisão de Energia Nuclear

    2017-07-01

    This work contributes to enable and develop technologies to mount fast micro reactors, to generate heat and electric energy, for the purpose to warm and to supply electrically spacecraft equipment and, also, the production of nuclear space propulsion effect. So, for this purpose, the Brayton Cycle demonstrates to be an optimum approach for space nuclear power. The Brayton thermal cycle gas has as characteristic to be a closed cycle, with two adiabatic processes and two isobaric processes. The components performing the cycle's processes are compressor, turbine, heat source, cold source and recuperator. Therefore, the working fluid's mass flow runs the thermal cycle that converts thermal energy into electrical energy, able to use in spaces and land devices. The objective is numerically to model the Brayton thermal cycle gas on nominal operation with one turbomachine composed for a radial-inflow compressor and turbine of a 40.8 kWe Brayton Rotating Unit (BRU). The Brayton cycle numerical modeling is being performed with the program RELAP5-3D, version 4.3.4. The nominal operation uses as working fluid a mixture 40 g/mole He-Xe with a flow rate of 1.85 kg/s, shaft rotational speed of 45 krpm, compressor and turbine inlet temperature of 400 K and 1149 K, respectively, and compressor exit pressure 0.931 MPa. Then, the aim is to get physical corresponding data to operate each cycle component and the general cycle on this nominal operation. (author)

  6. Brayton Cycle Numerical Modeling using the RELAP5-3D code, version 4.3.4

    International Nuclear Information System (INIS)

    Longhini, Eduardo P.; Lobo, Paulo D.C.; Guimarães, Lamartine N.F.; Filho, Francisco A.B.; Ribeiro, Guilherme B.

    2017-01-01

    This work contributes to enable and develop technologies to mount fast micro reactors, to generate heat and electric energy, for the purpose to warm and to supply electrically spacecraft equipment and, also, the production of nuclear space propulsion effect. So, for this purpose, the Brayton Cycle demonstrates to be an optimum approach for space nuclear power. The Brayton thermal cycle gas has as characteristic to be a closed cycle, with two adiabatic processes and two isobaric processes. The components performing the cycle's processes are compressor, turbine, heat source, cold source and recuperator. Therefore, the working fluid's mass flow runs the thermal cycle that converts thermal energy into electrical energy, able to use in spaces and land devices. The objective is numerically to model the Brayton thermal cycle gas on nominal operation with one turbomachine composed for a radial-inflow compressor and turbine of a 40.8 kWe Brayton Rotating Unit (BRU). The Brayton cycle numerical modeling is being performed with the program RELAP5-3D, version 4.3.4. The nominal operation uses as working fluid a mixture 40 g/mole He-Xe with a flow rate of 1.85 kg/s, shaft rotational speed of 45 krpm, compressor and turbine inlet temperature of 400 K and 1149 K, respectively, and compressor exit pressure 0.931 MPa. Then, the aim is to get physical corresponding data to operate each cycle component and the general cycle on this nominal operation. (author)

  7. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  8. Promising designs of compact heat exchangers for modular HTRs using the Brayton cycle

    International Nuclear Information System (INIS)

    Pra, Franck; Tochon, Patrice; Mauget, Christian; Fokkens, Jan; Willemsen, Sander

    2008-01-01

    The presented study was carried out within the Work Package 2 'Recuperator' of the High Temperature Reactor-E European program. High Temperature gas cooled Reactor concepts with a direct cycle have become potentially interesting for the future. Theoretically, these concepts provide higher efficiency than a classical steam cycle. Within the Brayton cycle the helium/helium recuperator, required to achieve the high efficiency, has to work under very harsh conditions (temperature, pressure, and pressure difference between circuits). Within the project the most promising technologies for the compact recuperator were investigated. First, the requirements for the recuperator to operate under the direct Brayton cycle have been defined. Based on these requirements the various potential technologies available on the market have been investigated. Two particular technologies (HEATRIC Printed Circuit Heat Exchanger, NORDON plate fin concept) have been selected as most promising. For the former, a precise description has been given and a mock-up has been fabricated and tested in the Claire loop at CEA. In the Claire loop the Printed Circuit Heat Exchanger mock-up has been subjected to thermal shocks, which are considered to be representative for a recuperator. Prior to the experimental testing coupled Computational Fluid Dynamic (CFD) and Finite Element analyses have been performed to give insight into the thermal and mechanical behaviour of the mock-ups during the thermal shock. Based on these results the experimental measuring program has been optimized. Upon completion of the tests the experimental and numerical results have been compared. Based on the results from the investigation performed recommendations are given for the full-size recuperator using the selected technologies

  9. Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor

    International Nuclear Information System (INIS)

    Yoon, Ho Joon; Ahn, Yoonhan; Lee, Jeong Ik; Addad, Yacine

    2012-01-01

    Highlights: ► S-CO 2 cycle as candidate for SMS. ► MATLAB code used for S-CO 2 cycle analysis. ► Pressure ratio and split ratio comparison analyzed. - Abstract: The supercritical carbon dioxide (S-CO 2 ) Brayton cycle is being considered as a favorable candidate for the next generation nuclear reactors power conversion systems. Major benefits of the S-CO 2 Brayton cycle compared to other Brayton cycles are: (1) high thermal efficiency in relatively low turbine inlet temperature, (2) compactness of the turbomachineries and heat exchangers and (3) simpler cycle layout at an equivalent or superior thermal efficiency. However, these benefits can be still utilized even in the water-cooled reactor technologies under special circumstances. A small and medium size water-cooled nuclear reactor (SMR) has been gaining interest due to its wide range of application such as electricity generation, seawater desalination, district heating and propulsion. Another key advantage of a SMR is that it can be transported from one place to another mostly by maritime transport due to its small size, and sometimes even through a railway system. Therefore, the combination of a S-CO 2 Brayton cycle with a SMR can reinforce any advantages coming from its small size if the S-CO 2 Brayton cycle has much smaller size components, and simpler cycle layout compared to the currently considered steam Rankine cycle. In this paper, SMART (System-integrated Modular Advanced ReacTor), a 330 MW th integral reactor developed by KAERI (Korea Atomic Energy Institute) for multipurpose utilization, is considered as a potential candidate for applying the S-CO 2 Brayton cycle and advantages and disadvantages of the proposed system will be discussed in detail. In consideration of SMART condition, the turbine inlet pressure and size of heat exchangers are analyzed by using in-house code developed by KAIST–Khalifa University joint research team. According to the cycle evaluation, the maximum cycle efficiency

  10. Development of the System Dynamics Code using Homogeneous Equilibrium Model for S-CO{sub 2} Brayton cycle Transient Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Won Woong; Oh, Bongseong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The features of the S-CO{sub 2} Brayton cycle come from a small compressing work by designing the compressor inlet close the critical point of CO{sub 2}. This means the system condition can be operating under two-phase or sub-critical phase during transient situations such as changes of cooling system performance, load variations, etc. Since there is no operating MW scale S-CO{sub 2} Brayton cycle system in the world yet, using an analytical code is the only way to predict the system behavior and develop operating strategies of the S-CO{sub 2} Brayton cycles. Therefore, the development of a credible system code is an important part for the practical S-CO{sub 2} system research. The current status of the developed system analysis code for S-CO{sub 2} Brayton cycle transient analyses in KAIST and verification results are presented in this paper. To avoid errors related with convergences of the code during the phase changing flow calculation in GAMMA+ code, the authors have developed a system analysis code using Homogeneous Equilibrium Model (HEM) for the S-CO{sub 2} Brayton cycle transient analysis. The backbone of the in-house code is the GAMMA+1.0 code, but treating the quality of fluid by tracking system enthalpy gradient every time step. Thus, the code adopts pressure and enthalpy as the independent scalar variables to track the system enthalpy for updating the quality of the system every time step. The heat conduction solving method, heat transfer correlation and frictional losses on the pipe are referred from the GAMMA+ code.

  11. Regenerator optimization of a Closed Brayton Cycle via entropy generation minimization

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, Élvis Falcão de; Ribeiro, Guilherme Borges; Guimarães, Lamartine N. F., E-mail: falcao@ieav.cta.br, E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avançacados (IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear

    2017-07-01

    This paper aims the numerical study of the heat transfer and fluid flow of a Closed Brayton Cycle (CBC) regenerator that is part of TERRA microreactor. This regenerator consists in a cross flow heat exchanger, where heat transfer occurs between internal fluid flow in radial tubes and external fluid flow passing perpendicularly to the tubes, which are disposed in a symmetrical cylindrical set where the number of tubes in the axial and radial directions can vary. In the simulations, mass flow inlet is varied for a fixed geometry. The fluid flow solution is provided by a commercial CFD solver and the entropy generation number calculation is later computed for optimization purposes. As a result, the entropy minimization method provides the regenerator configuration that enables the highest energy conversion efficiency. (author)

  12. Design and fabrication of gas bearings for Brayton cycle rotating unit

    Science.gov (United States)

    Frost, A.; Tessarzik, J. M.; Arwas, E. B.; Waldron, W. D. (Editor)

    1973-01-01

    Analysis, design, and testing of two types of pivoted pad journal bearings and a spiral-grooved thrust bearing suitable for direct installation into the NASA 2 to 15 KW Brayton Cycle Rotating Unit (BRU) have been accomplished. Both types of tilting pad bearing assemblies are of the preloaded type, consisting of three pads with one pad flexibly mounted. One type utilizes a non-conforming pivot, while the other replaces the conventional spherical pivot with a cruciform flexible member. The thrust bearing is flexure mounted to accommodate static machine mislinement. Test results indicate that both types of journal bearings should satisfy the requirements imposed by the BRU. Hydrostatic tests of the spiral-grooved thrust bearing showed it to be free of pneumatic hammer with as many as 24 orifices over the BRU pressure and load range.

  13. The closed Brayton cycle: An energy conversion system for near-term military space missions

    Science.gov (United States)

    Davis, Keith A.

    The Particle Bed Reactor (PBR)-closed Brayton cycle (CBC) provides a 5 to 30 kWe class nuclear power system for surveillance and communication missions during the 1990s and will scale to 100 kWe and beyond for other space missions. The PBR-CBC is technically feasible and within the existing state of the art. The PBR-CBC system is flexible, scaleable, and offers development economy. The ability to operate over a wide power range promotes commonality between missions with similar but not identical power spectra. The PBR-CBC system mass is very competitive with rival nuclear dynamic and static power conversion and systems. The PBR-CBC provides growth potential for the future with even lower specific masses.

  14. Regenerator optimization of a Closed Brayton Cycle via entropy generation minimization

    International Nuclear Information System (INIS)

    Araújo, Élvis Falcão de; Ribeiro, Guilherme Borges; Guimarães, Lamartine N. F.

    2017-01-01

    This paper aims the numerical study of the heat transfer and fluid flow of a Closed Brayton Cycle (CBC) regenerator that is part of TERRA microreactor. This regenerator consists in a cross flow heat exchanger, where heat transfer occurs between internal fluid flow in radial tubes and external fluid flow passing perpendicularly to the tubes, which are disposed in a symmetrical cylindrical set where the number of tubes in the axial and radial directions can vary. In the simulations, mass flow inlet is varied for a fixed geometry. The fluid flow solution is provided by a commercial CFD solver and the entropy generation number calculation is later computed for optimization purposes. As a result, the entropy minimization method provides the regenerator configuration that enables the highest energy conversion efficiency. (author)

  15. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br, E-mail: braz@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  16. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  17. Validation of the CATHARE2 code against experimental data from Brayton-cycle plants

    International Nuclear Information System (INIS)

    Bentivoglio, Fabrice; Tauveron, Nicolas; Geffraye, Genevieve; Gentner, Herve

    2008-01-01

    In recent years the Commissariat a l'Energie Atomique (CEA) has commissioned a wide range of feasibility studies of future-advanced nuclear reactors, in particular gas-cooled reactors (GCR). The thermohydraulic behaviour of these systems is a key issue for, among other things, the design of the core, the assessment of thermal stresses, and the design of decay heat removal systems. These studies therefore require efficient and reliable simulation tools capable of modelling the whole reactor, including the core, the core vessel, piping, heat exchangers and turbo-machinery. CATHARE2 is a thermal-hydraulic 1D reference safety code developed and extensively validated for the French pressurized water reactors. It has been recently adapted to deal also with gas-cooled reactor applications. In order to validate CATHARE2 for these new applications, CEA has initiated an ambitious long-term experimental program. The foreseen experimental facilities range from small-scale loops for physical correlations, to component technology and system demonstration loops. In the short-term perspective, CATHARE2 is being validated against existing experimental data. And in particular from the German power plants Oberhausen I and II. These facilities have both been operated by the German utility Energie Versorgung Oberhausen (E.V.O.) and their power conversion systems resemble to the high-temperature reactor concepts: Oberhausen I is a 13.75-MWe Brayton-cycle air turbine plant, and Oberhausen II is a 50-MWe Brayton-cycle helium turbine plant. The paper presents these two plants, the adopted CATHARE2 modelling and a comparison between experimental data and code results for both steady state and transient cases

  18. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  19. Enhanced arrangement for recuperators in supercritical CO2 Brayton power cycle for energy conversion in fusion reactors

    International Nuclear Information System (INIS)

    Serrano, I.P.; Linares, J.I.; Cantizano, A.; Moratilla, B.Y.

    2014-01-01

    Highlights: •We propose an enhanced power conversion system layout for a Model C fusion reactor. •Proposed layout is based on a modified recompression supercritical CO 2 Brayton cycle. •New arrangement in recuperators regards to classical cycle is used. •High efficiency is achieved, comparable with the best obtained in complex solutions. -- Abstract: A domestic research program called TECNO F US was launched in Spain in 2009 to support technological developments related to a dual coolant breeding blanket concept for fusion reactors. This concept of blanket uses Helium (300 °C/400 °C) to cool part of it and a liquid metal (480 °C/700 °C) to cool the rest; it also includes high temperature (700 °C/800 °C) and medium temperature (566 °C/700 °C) Helium cooling circuits for divertor. This paper proposes a new layout of the classical recompression supercritical CO 2 Brayton cycle which replaces one of the recuperators (the one with the highest temperature) by another which by-passes the low temperature blanket source. This arrangement allows reaching high turbine inlet temperatures (around 600 °C) with medium pressures (around 225 bar) and achieving high cycle efficiencies (close to 46.5%). So, the proposed cycle reveals as a promising design because it integrates all the available thermal sources in a compact layout achieving high efficiencies with the usual parameters prescribed in classical recompression supercritical CO 2 Brayton cycles

  20. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  1. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function

    International Nuclear Information System (INIS)

    Kwon, Jin Gyu; Kim, Tae Ho; Park, Hyun Sun; Cha, Jae Eun; Kim, Moo Hwan

    2016-01-01

    Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO_2) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO_2 Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.

  2. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jin Gyu [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Tae Ho [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2016-03-15

    Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO{sub 2}) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO{sub 2} Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.

  3. An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Marinelli, Valerio

    2012-01-01

    A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.

  4. CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Lee, Youho; Ahn, Yoonhan; Lee, Jeong Ik

    2016-01-01

    Highlights: • CFD analyses were performed to find performance of PCHE for supercritical CO 2 power cycle. • CFD results were obtained beyond the limits of existing correlations. • Designs of different PCHEs with different correlations were compared. • A new CFD-aided correlation covering a wider Reynolds number range was proposed. - Abstract: While most conventional PCHE designs for working fluid of supercritical CO 2 require an extension of valid Reynolds number limits of experimentally obtained correlations, Computational Fluid Dynamics (CFD) code ANSYS CFX was used to explore validity of existing correlations beyond their tested Reynolds number ranges. For heat transfer coefficient correlations, an appropriate piece-wising with Ishizuka’s and Hesselgreaves’s correlation is found to enable an extension of Reynolds numbers. For friction factors, no single existing correlation is found to capture different temperature and angular dependencies for a wide Reynolds number range. Based on the comparison of CFD results with the experimentally obtained correlations, a new CFD-aided correlation covering an extended range of Reynolds number 2000–58,000 for Nusselt number and friction factor is proposed to facilitate PCHE designs for the supercritical CO 2 Brayton cycle application.

  5. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  6. Supercritical CO2 Brayton cycle compression and control near the critical point

    International Nuclear Information System (INIS)

    Wright, S. A.; Fuller, R.; Noall, J.; Radel, R.; Vernon, M. E.; Pickard, P. S.

    2008-01-01

    This report describes the supercritical compression and control issues, the analysis, and the measured test results of a small-scale supercritical CO 2 (S-CO 2 ) compression test-loop. The test loop was developed by Sandia and is described in a companion paper in this conference. The results of these experiments will for the first time evaluate and experimentally demonstrate supercritical compression and the required compressor inlet control approaches on an appropriate scale in a series of test loops at Sandia National Laboratories. The Sandia effort is focused on the main compressor of a supercritical Brayton loop while a separate DOE Gen lV program focus is on studying similar behavior in re-compression Brayton cycles that have dual compressors. One of the main goals of this program is to develop and demonstrate the ability to design, operate, and control the supercritical compression process near the critical point due to highly non-linear behavior near this point. This Sandia supercritical test-loop uses a 50 kW radial compressor to pump supercritical CO 2 (S-CO 2 ) through an orifice and through a water-cooled gas-chiller. At the design point the compressor flow rate is 3.5 kg/s, the inlet pressure is 7, 690 kPa, the pressure ratio is 1.8, the inlet temperature is 305 K, and the shaft speed is 75, 000 rpm. The purpose of the loop is to study the compression and control issues near the critical point. To study compression we intend to compare the design code predictions for efficiency and change in enthalpy (or pressure ratio / head) of the radial compressor with the measured results from actual tests. In the tests the inlet flow, temperature, and pressure, will be varied around the critical point of CO 2 (Tc=304.2 K, and Pc=7.377 MPa). To study control, the test loop will use a variety of methods including inventory control, shaft speed control, and cooling water flow rate, and cooling water temperature control methods to set the compressor inlet temperature

  7. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)

    International Nuclear Information System (INIS)

    Olumayegun, Olumide; Wang, Meihong; Kelsall, Greg

    2017-01-01

    Highlights: • Nitrogen closed Brayton cycle for small modular sodium-cooled fast reactor studied. • Thermodynamic modelling and analysis of closed Brayton cycle performed. • Two-shaft configuration proposed and performance compared to single shaft. • Preliminary design of heat exchangers and turbomachinery carried out. - Abstract: Sodium-cooled fast reactor (SFR) is considered the most promising of the Generation IV reactors for their near-term demonstration of power generation. Small modular SFRs (SM-SFRs) have less investment risk, can be deployed more quickly, are easier to operate and are more flexible in comparison to large nuclear reactor. Currently, SFRs use the proven Rankine steam cycle as the power conversion system. However, a key challenge is to prevent dangerous sodium-water reaction that could happen in SFR coupled to steam cycle. Nitrogen gas is inert and does not react with sodium. Hence, intercooled closed Brayton cycle (CBC) using nitrogen as working fluid and with a single shaft configuration has been one common power conversion system option for possible near-term demonstration of SFR. In this work, a new two shaft nitrogen CBC with parallel turbines was proposed to further simplify the design of the turbomachinery and reduce turbomachinery size without compromising the cycle efficiency. Furthermore, thermodynamic performance analysis and preliminary design of components were carried out in comparison with a reference single shaft nitrogen cycle. Mathematical models in Matlab were developed for steady state thermodynamic analysis of the cycles and for preliminary design of the heat exchangers, turbines and compressors. Studies were performed to investigate the impact of the recuperator minimum terminal temperature difference (TTD) on the overall cycle efficiency and recuperator size. The effect of turbomachinery efficiencies on the overall cycle efficiency was examined. The results showed that the cycle efficiency of the proposed

  8. Optimization of advanced high-temperature Brayton cycles with multiple reheat stages

    International Nuclear Information System (INIS)

    Haihua Zhao; Per F Peterson

    2005-01-01

    Full text of publication follows: This paper presents an overview and a few point designs for multiple-reheat Brayton cycle power conversion systems using high temperature molten salts (or liquid metals). All designs are derived from the General Atomics GT-MHR power conversion unit (PCU). The GT-MHR PCU is currently the only closed helium cycle system that has undergone detailed engineering design analysis, and that has turbomachinery which is sufficiently large to extrapolate to a >1000 MW(e) multiple reheat gas cycle power conversion system. Analysis shows that, with relatively small engineering modifications, multiple GT-MHR PCU's can be connected together to create a power conversion system in the >1000 MW(e) class. The resulting power conversion system is quite compact, and results in what is likely the minimum gas duct volume possible for a multiple-reheat system. To realize this, compact offset fin plate type liquid-to-gas heat exchangers (power densities from 10 to 120 MW/m 3 ) are needed. Both metal and non-metal heat exchangers are being investigated for high-temperature, gas-cooled reactors for temperatures to 1000 deg. C. Recent high temperature heat exchanger studies for nuclear hydrogen production has suggested that carbon-coated composite materials such as liquid silicon infiltrated chopped fiber carbon-carbon preformed material potentially could be used to fabricate plate fin heat exchangers with reasonable price. Different fluids such as helium, nitrogen and helium mixture, and supercritical CO 2 are compared for these multiple reheat Brayton cycles. Nitrogen and helium mixture cycle need about 40% more total PCU volume than helium cycle while keeping the same net cycle efficiency. Supercritical CO 2 needs very high pressure to optimize. Due to relatively detailed design for components such as heat exchangers, turbomachinery, and duct system, relatively accurate total pressure loss can be obtained, which results in more credible net efficiency

  9. Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle

    International Nuclear Information System (INIS)

    Wang Wenhua; Chen Lingen; Sun Fengrui; Wu Chih

    2003-01-01

    In this paper, the theory of finite time thermodynamics is used in the performance analysis of an irreversible closed intercooled regenerated Brayton cycle coupled to variable temperature heat reservoirs. The analytical formulae for dimensionless power and efficiency, as functions of the total pressure ratio, the intercooling pressure ratio, the component (regenerator, intercooler, hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies and the thermal capacity rates of the working fluid and the heat reservoirs, the pressure recovery coefficients, the heat reservoir inlet temperature ratio, and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio, are derived. The intercooling pressure ratio is optimized for optimal power and optimal efficiency, respectively. The effects of component (regenerator, intercooler and hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies, the pressure recovery coefficients, the heat reservoir inlet temperature ratio and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio on optimal power and its corresponding intercooling pressure ratio, as well as optimal efficiency and its corresponding intercooling pressure ratio are analyzed by detailed numerical examples. When the heat transfers between the working fluid and the heat reservoirs are executed ideally, the pressure drop losses are small enough to be neglected and the thermal capacity rates of the heat reservoirs are infinite, the results of this paper replicate those obtained in recent literature

  10. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Venker, Jeanne

    2015-03-31

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO{sub 2}) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO{sub 2} Brayton cycles, can be assessed as a retrofit measure for present light water reactors. Transient simulations are hereby of great importance. The heat removal system has to be modeled explicitly to account for the interaction between the system and the behavior of the plant during different accident conditions. As a first step, transport and thermodynamic fluid properties of supercritical carbon dioxide have been implemented in ATHLET to allow for the simulation of the new working fluid. Additionally, a heat transfer correlation has been selected to represent the specific heat transfer of supercritical carbon dioxide. For the calculation of pressure losses due to wall friction, an approach for turbulent single phase flow has been adopted that is already implemented in ATHLET. In a second step, a component model for radial compressors has been implemented in the system code. Furthermore, the available model for axial turbines has been adapted to simulate the transient behavior of radial turbines. All extensions have been validated against experimental data. In order to simulate the interaction between the self-propelling heat removal system and a generic boiling water reactor, the components of the sCO{sub 2} Brayton cycle have been dimensioned with first principles. An available input deck of a generic BWR has then been extended by the residual heat removal system. The modeled application has shown that the extended version of ATHLET is suitable to simulate sCO{sub 2} Brayton cycles and to evaluate the introduced

  11. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    International Nuclear Information System (INIS)

    Venker, Jeanne

    2015-01-01

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO 2 ) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO 2 Brayton cycles, can be assessed as a retrofit measure for present light water reactors. Transient simulations are hereby of great importance. The heat removal system has to be modeled explicitly to account for the interaction between the system and the behavior of the plant during different accident conditions. As a first step, transport and thermodynamic fluid properties of supercritical carbon dioxide have been implemented in ATHLET to allow for the simulation of the new working fluid. Additionally, a heat transfer correlation has been selected to represent the specific heat transfer of supercritical carbon dioxide. For the calculation of pressure losses due to wall friction, an approach for turbulent single phase flow has been adopted that is already implemented in ATHLET. In a second step, a component model for radial compressors has been implemented in the system code. Furthermore, the available model for axial turbines has been adapted to simulate the transient behavior of radial turbines. All extensions have been validated against experimental data. In order to simulate the interaction between the self-propelling heat removal system and a generic boiling water reactor, the components of the sCO 2 Brayton cycle have been dimensioned with first principles. An available input deck of a generic BWR has then been extended by the residual heat removal system. The modeled application has shown that the extended version of ATHLET is suitable to simulate sCO 2 Brayton cycles and to evaluate the introduced heat removal system

  12. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5

  13. Enhanced arrangement for recuperators in supercritical CO{sub 2} Brayton power cycle for energy conversion in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I.P.; Linares, J.I., E-mail: linares@dim.icai.upcomillas.es; Cantizano, A.; Moratilla, B.Y.

    2014-10-15

    Highlights: •We propose an enhanced power conversion system layout for a Model C fusion reactor. •Proposed layout is based on a modified recompression supercritical CO{sub 2} Brayton cycle. •New arrangement in recuperators regards to classical cycle is used. •High efficiency is achieved, comparable with the best obtained in complex solutions. -- Abstract: A domestic research program called TECNO{sub F}US was launched in Spain in 2009 to support technological developments related to a dual coolant breeding blanket concept for fusion reactors. This concept of blanket uses Helium (300 °C/400 °C) to cool part of it and a liquid metal (480 °C/700 °C) to cool the rest; it also includes high temperature (700 °C/800 °C) and medium temperature (566 °C/700 °C) Helium cooling circuits for divertor. This paper proposes a new layout of the classical recompression supercritical CO{sub 2} Brayton cycle which replaces one of the recuperators (the one with the highest temperature) by another which by-passes the low temperature blanket source. This arrangement allows reaching high turbine inlet temperatures (around 600 °C) with medium pressures (around 225 bar) and achieving high cycle efficiencies (close to 46.5%). So, the proposed cycle reveals as a promising design because it integrates all the available thermal sources in a compact layout achieving high efficiencies with the usual parameters prescribed in classical recompression supercritical CO{sub 2} Brayton cycles.

  14. Properties of noble gases and binary mixtures for closed Brayton Cycle applications

    International Nuclear Information System (INIS)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-01

    A review is conducted of the properties of the noble gases, helium, neon, argon, krypton and xenon, and their binary mixtures at pressures from 0.1 to 20 MPa and temperatures up to 1400 K. An extensive database of experimental measurements is compiled and used to develop semi-empirical properties correlations. The correlations accurately account for the effects of pressure and temperature on the thermodynamic and transport properties of these gases for potential uses in space (∼2 MPa and up to 1400 K) and terrestrial (∼7.0 MPa and up to 1200 K) applications of Closed Brayton Cycle (CBC). The developed correlations are based on the Chapman-Enskog kinetic theory for dilute gases, and on the application of the law of corresponding states to account for the dependence of properties on pressure. The correlations use the critical temperature and density of the gases as scaling parameters, and their predictions are compared with the compiled database. At temperatures ≥400 K and pressures ≤2 MPa in CBC space power systems, He and Ne, and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole behave essentially like a perfect gas, and the error of neglecting the effect of pressure on their compressibility factor, specific heats and transport properties is ≤1%. At a typical operating pressure of 7.0 MPa and up to 1200 K in terrestrial CBC power plants, neglecting the effect of pressure can result in ∼4% error in the properties of noble gases and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole, and as much as 20% error for pure argon. Therefore, when operating at pressures >2.0 MPa and/or using noble gases or binary mixtures with molecular weights > 40 g/mole, the present correlations should be used to accurately predict the thermodynamic and transport properties

  15. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  16. Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Jeong, Yong Hoon

    2013-01-01

    Highlights: • Supercritical CO 2 -based gas mixture Brayton cycles were investigated for a SFR. • The critical point of CO 2 is the lowest cycle operating limit of the S-CO 2 cycles. • Mixing additives with CO 2 changes the CO 2 critical point. • CO 2 –Xe and CO 2 –Kr cycles achieve higher cycle efficiencies than the S-CO 2 cycles. • CO 2 –H 2 S and CO 2 –cyclohexane cycles perform better at higher heat sink temperatures. -- Abstract: The supercritical carbon dioxide Brayton cycle (S-CO 2 cycle) has attracted much attention as an alternative to the Rankine cycle for sodium-cooled fast reactors (SFRs). The higher cycle efficiency of the S-CO 2 cycle results from the considerably decreased compressor work because the compressor behaves as a pump in the proximity of the CO 2 vapor–liquid critical point. In order to fully utilize this feature, the main compressor inlet condition should be controlled to be close to the critical point of CO 2 . This indicates that the critical point of CO 2 is a constraint on the minimum cycle condition for S-CO 2 cycles. Modifying the CO 2 critical point by mixing additive gases could be considered as a method of enhancing the performance and broadening the applicability of the S-CO 2 cycle. Due to the drastic fluctuations of the thermo-physical properties of fluids near the critical point, an in-house cycle analysis code using the NIST REFPROP database was implemented. Several gases were selected as potential additives considering their thermal stability and chemical interaction with sodium in the temperature range of interest and the availability of the mixture property database: xenon, krypton, hydrogen sulfide, and cyclohexane. The performances of the optimized CO 2 -containing binary mixture cycles with simple recuperated and recompression layouts were compared with the reference S-CO 2 , CO 2 –Ar, CO 2 –N 2 , and CO 2 –O 2 cycles. For the decreased critical temperatures, the CO 2 –Xe and CO 2

  17. Performance Optimization of a Solar-Driven Multi-Step Irreversible Brayton Cycle Based on a Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmadi Mohammad Hosein

    2016-01-01

    Full Text Available An applicable approach for a multi-step regenerative irreversible Brayton cycle on the basis of thermodynamics and optimization of thermal efficiency and normalized output power is presented in this work. In the present study, thermodynamic analysis and a NSGA II algorithm are coupled to determine the optimum values of thermal efficiency and normalized power output for a Brayton cycle system. Moreover, three well-known decision-making methods are employed to indicate definite answers from the outputs gained from the aforementioned approach. Finally, with the aim of error analysis, the values of the average and maximum error of the results are also calculated.

  18. Effect of geometrical shape of the working substance Gadolinium on the performance of a regenerative magnetic Brayton refrigeration cycle

    International Nuclear Information System (INIS)

    Diguet, Gildas; Lin, Guoxing; Chen, Jincan

    2013-01-01

    Based on Mean Field Theory (MFT), the entropy of magnetic material Gadolinium (Gd), which is a function of the local magnetic field and temperature, is calculated and analyzed. This local magnetic field is the sum of the applied field H 0 plus the exchange field H W =λM and the demagnetizing field H d =−NM, where the demagnetizing factor N depends on the shape of magnetic materials. Hereby, the impacts of the demagnetizing factor N on the magnetic entropy, magnetic entropy change and main thermodynamics performance of a regenerative magnetic Brayton refrigeration cycle using Gd as the working substance are investigated and evaluated in detail. The results obtained underline the importance of the shape of the working substance used in magnetic refrigerators for room-temperature application; elongated materials provide better thermodynamics performance such as higher COP and net heat absorption. It is pointed out that for low external fields, the magnetic refrigerator ceased to be functional if flat materials were used. - Highlights: ► Gd entropy is calculated as a function of temperature and internal magnetic field. ► Magnetic Brayton cycle properties generally depend on the demagnetizing factor. ► Redundant heat transfer is highly sensitive to the demagnetizing factor. ► The net cooling quantity is highly sensitive to the demagnetizing factor. ► Coefficient of performance is dependant to the magnetic material shape.

  19. Conceptual Design of S-CO{sub 2} Brayton Cycle Radial Turbomachinery for KAIST Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkuk; Kim, Seong Gu; Lee, Jekyoung; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST proposed a new SMR design, which utilizes S-CO{sub 2} as the working fluid. It was named as KAIST MMR. Compared with existing SMR concepts, KAIST MMR has advantages of achieving smaller volume of power conversion unit (PCU) and containing the core and PCU in one vessel for the complete modularization. Authors noticed that the compressor and turbine assumed performances of KAIST MMR were conservatively selected previously. Thus, this paper tries to address the best estimate values of each turbomachinery in 10MWe class KAIST MMR. The turbomachinery size of the S-CO{sub 2} cycle is smaller than helium Brayton cycle and steam Rankine cycle. The suggested SMR concept adopts passive cooling system by using air. This method can cool reactor without external electricity supply. Small size and more flexible installation in the inland area will be necessary characteristics for the future nuclear application in the water limited region. KAIST MMR meets all these requirements by utilizing S-CO{sub 2} as a working fluid. This paper presents the work for further increasing the system performance by estimating the component efficiency more realistically. The cycle layout adopted for the application is S-CO{sub 2} recuperated Brayton cycle. The best efficiency of compressor and turbine was evaluated to be 84.94% and 90.94%, respectively. By using KAIST in-house code, thermal efficiency and net output were increased to 35.81% and 12.45MWe, respectively, for the same core thermal power. More refined cycle layout and suitable turbomachinery design will be performed in the near future.

  20. Preliminary design of a Brayton cycle as a standalone Decay Heat Removal system for the Gas-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Epiney, A.; Mikityuk, K.; Chawla, R.; Alpy, N.; Haubensack, D.; Malo, J.Y.

    2009-01-01

    This paper reports a preliminary design study of a Brayton cycle which would be a dedicated, standalone Decay Heat Removal (DHR) loop of the Gas-cooled Fast Reactor (GFR). In comparison to the DHR reference strategy developed during the GFR pre-conceptual design phase (which was completed by the CEA at the end of 2007), the salient feature of this alternative device would be to combine the energetic autonomy of the natural convection process - which is foreseen for operation at high and medium pressures - to the efficiency of the forced convection process which is foreseen for operation down to very low pressures. An analytical model, the so-called 'Brayton scoping' model, is described in the paper. This is based on simplified thermodynamical and aerodynamical equations and was developed to highlight design choices. First simulations of the proposed device's performance during loss-of-coolant-accident (LOCA) transients have been performed using the CATHARE code, and these are also reported. Analysis of the simulation results are consistent with the first insights obtained from usage of the 'Brayton scoping' model, e.g. the turbomachine accelerates during the depressurization process to tend towards a steady rotational speed value which is inversely proportional to the pressure. For small break LOCA events, the device operates successfully as regards its safety function and delivers to the core a relatively unperturbed cooling mass flowrate as a function of pressure change. However, further studies are required for medium to large break sizes, since certain stability concerns have been met in such cases. For example, an unexpected turbomachine stoppage was induced during the transients, resulting in loss of the necessary core cooling mass flow. (author)

  1. Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle

    Directory of Open Access Journals (Sweden)

    Živić Marija

    2014-01-01

    Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.

  2. Motor starting a Brayton cycle power conversion system using a static inverter

    Science.gov (United States)

    Curreri, J. S.; Edkin, R. A.; Kruchowy, R.

    1973-01-01

    The power conversion module of a 2- to 15-kWe Brayton engine was motor started using a three-phase, 400-hertz static inverter as the power source. Motor-static tests were conducted for initial gas loop pressures of 10, 14, and 17 N/sq cm (15, 20, and 25 psia) over a range of initial turbine inlet temperatures from 366 to 550 K (200 to 530 F). The data are presented to show the effects of temperature and pressure on the motor-start characteristics of the rotating unit. Electrical characteristics during motoring are also discussed.

  3. Supercritical CO2 Brayton power cycles for DEMO (demonstration power plant) fusion reactor based on dual coolant lithium lead blanket

    International Nuclear Information System (INIS)

    Linares, José Ignacio; Cantizano, Alexis; Moratilla, Beatriz Yolanda; Martín-Palacios, Víctor; Batet, Lluis

    2016-01-01

    This paper presents an exploratory analysis of the suitability of supercritical CO 2 Brayton power cycles as alternative energy conversion systems for a future fusion reactor based on a DCLL (dual coolant lithium-lead) blanket, as prescribed by EUROfusion. The main issue dealt is the optimization of the integration of the different thermal sources with the power cycle in order to achieve the highest electricity production. The analysis includes the assessment of the pumping consumption in the heating and cooling loops, taking into account additional considerations as control issues and integration of thermal energy storage systems. An exergy analysis has been performed in order to understand the behavior of each layout. Up to ten scenarios have been analyzed assessing different locations for thermal sources heat exchangers. Neglecting the worst four scenarios, it is observed less than 2% of variation among the other six ones. One of the best six scenarios clearly stands out over the others due to the location of the thermal sources in a unique island, being this scenario compatible with the control criteria. In this proposal 34.6% of electric efficiency (before the self-consumptions of the reactor but including pumping consumptions and generator efficiency) is achieved. - Highlights: • Supercritical CO 2 Brayton cycles have been proposed for BoP of DCLL fusion reactor. • Integration of different available thermal sources has been analyzed considering ten scenarios. • Neglecting the four worst scenarios the electricity production varies less than 2%. • Control and energy storage integration issues have been considered in the analysis. • Discarding the vacuum vessel and joining the other sources in an island is proposed.

  4. Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2011-01-01

    The small-scale open and direct solar thermal Brayton cycle with recuperator has several advantages, including low cost, low operation and maintenance costs and it is highly recommended. The main disadvantages of this cycle are the pressure losses in the recuperator and receiver, turbomachine efficiencies and recuperator effectiveness, which limit the net power output of such a system. The irreversibilities of the solar thermal Brayton cycle are mainly due to heat transfer across a finite temperature difference and fluid friction. In this paper, thermodynamic optimisation is applied to concentrate on these disadvantages in order to optimise the receiver and recuperator and to maximise the net power output of the system at various steady-state conditions, limited to various constraints. The effects of wind, receiver inclination, rim angle, atmospheric temperature and pressure, recuperator height, solar irradiance and concentration ratio on the optimum geometries and performance were investigated. The dynamic trajectory optimisation method was applied. Operating points of a standard micro-turbine operating at its highest compressor efficiency and a parabolic dish concentrator diameter of 16 m were considered. The optimum geometries, minimum irreversibility rates and maximum receiver surface temperatures of the optimised systems are shown. For an environment with specific conditions and constraints, there exists an optimum receiver and recuperator geometry so that the system produces maximum net power output. -- Highlights: → Optimum geometries exist such that the system produces maximum net power output. → Optimum operating conditions are shown. → Minimum irreversibility rates and minimum entropy generation rates are shown. → Net power output was described in terms of total entropy generation rate. → Effects such as wind, recuperator height and irradiance were investigated.

  5. Optimum performance of the small scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P. [Department of Mechanical and Aeronautical Engineering, University of Pretoria, (South Africa)

    2011-07-01

    The energy of the sun can be transformed into mechanical power through the use of concentrated solar power systems. The use of the Brayton cycle with recuperator has significant advantages but also raises issues such as pressure loss and low net power output which are mainly due to irreversibilities of heat transfer and fluid friction. The aim of this study is to optimize the system to generate maximum net power output. Thermodynamic and dynamic trajectory optimizations were performed on a dish concentrator and an off-the-shelf micro-turbine and the effects of wind, solar irradiance and other environmental conditions and constraints on the power output were analyzed. Results showed that the maximum power output is increased when wind decreases and irradiance increases; solar irradiance was found to have a more significant impact than wind. This study highlighted the factors which impact the power generation of concentrated solar power systems so that designers can take them into account.

  6. Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis

    Science.gov (United States)

    Gupta, Sudeep Kumar; Ghosh, Parthasarathi

    2017-02-01

    The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.

  7. Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output

    International Nuclear Information System (INIS)

    Jansen, E.; Bello-Ochende, T.; Meyer, J.P.

    2015-01-01

    The main objective of this paper is to optimise the open-air solar-thermal Brayton cycle by considering the implementation of the second law of thermodynamics and how it relates to the design of the heat exchanging components within it. These components included one or more regenerators (in the form of cross-flow heat exchangers) and the receiver of a parabolic dish concentrator where the system heat was absorbed. The generation of entropy was considered as it was associated with the destruction of exergy or available work. The dimensions of some components were used to optimise the cycles under investigation. EGM (Entropy Generation Minimisation) was employed to optimise the system parameters by considering their influence on the total generation of entropy (destruction of exergy). Various assumptions and constraints were considered and discussed. The total entropy generation rate and irreversibilities were determined by considering the individual components and ducts of the system, as well as their respective inlet and outlet conditions. The major system parameters were evaluated as functions of the mass flow rate to allow for a proper discussion of the system performance. The performances of both systems were investigated, and characteristics were listed for both. Finally, a comparison is made to shed light on the differences in performance. - Highlights: • Implementation of the second law of thermodynamics. • Design of heat exchanging and collecting equipment. • Utilisation of Entropy Generation Minimization. • Presentation of a multi-objective optimization. • Raise efficiency with more regeneration

  8. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    Science.gov (United States)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  9. Transient Model of a 10 MW Supercritical CO{sub 2} Brayton Cycle for Light Water Reactors by using MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo-Hyun; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Bae, Sung Won; Cha, Jae-Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, recuperation cycle was chosen as a reference loop design and the MARS code was chosen as the transient cycle analysis code. Cycle design condition is focus on operation point of the light-water reactor. Development of a transient model was performed for 10MW-electron SCO{sub 2} coupled with light water reactors. In order to perform transient analysis, cycle transient model was developed and steady-state run was performed and presented in the paper. In this study, the transient model of SCO{sub 2} recuperation Brayton cycle was developed and implemented in MARS to study the steady-state simulation. We performed nodalization of the transient model using MARS code and obtained steady-state results. This study is shown that the supercritical CO{sub 2} Brayton cycle can be used as a power conversion system for light water reactors. Future work will include transient analysis such as partial road operation, power swing, start-up, and shutdown. Cycle control strategy will be considered for various control method.

  10. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Luís F.R.; Ribeiro, Guilherme B., E-mail: luisromano_91@hotmail.com, E-mail: gbribeiro@ieav.cta.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil). Pós-Graduação Ciências e Tecnologias Espaciais

    2017-07-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  11. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    International Nuclear Information System (INIS)

    Romano, Luís F.R.; Ribeiro, Guilherme B.

    2017-01-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  12. RANS simulation of a radial compressor for supercritical CO{sub 2} Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Cho, Seong Kuk; Lee, Jekyoung; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Si Woo [Jinsol Turbo, Daejeon (Korea, Republic of)

    2016-10-15

    S-CO{sub 2} cycle has a small footprint due to the compact turbomachine and heat exchanger. It was found that the S-CO{sub 2} compressor consumes small compression work if the operating conditions approach to the critical point (7.38MPa, 31.1℃). Therefore, this reduced compression work contributes to high cycle efficiency. Due to the above mentioned advantages, the S-CO{sub 2} cycle can be applied to various heat sources such as coal power, bottoming cycle of fuel cells, and the next generation nuclear systems. To demonstrate the S-CO{sub 2} cycle performance, an integral test facility is necessary. Therefore, the joint research team of KAERI, KAIST, POSTECH designed a supercritical CO{sub 2} integral experiment loop (SCIEL). The experimental data from this loop are accumulating in various conditions, rotational speed. The design of a S-CO{sub 2} compressor operating near the critical point is one of the major technical challenges in the development of cycle components. A radial compressor geometry designed for supercritical CO{sub 2} loop was utilized for CFD analysis. The preliminary results were compared to the experimental data. In this study, the authors present a CFD approach with accurate CSV type property table. Compared results showed reasonable difference between CFD and experiment except for efficiency curve at 35,000rpm. In future works, the loss models used for the design of S-CO{sub 2} compressor will be validated, and established with CFD results.

  13. Compressor Modeling for Transient Analysis of Supercritical CO2 Brayton Cycle by using MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hyun; Park, Hyun Sun; Kim, Tae Ho; Kwon, Jin Gyu [POSTECH, Pohang (Korea, Republic of); Bae, Sung Won; Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, SCIEL (Supercritical CO{sub 2} Integral Experimental Loop) was chosen as a reference loop and the MARS code was as the transient cycle analysis code. As a result, the compressor homologous curve was developed from the SCIEL experimental data and MARS analysis was performed and presented in the paper. The advantages attract SCO{sub 2}BC as a promising next generation power cycles. The high thermal efficiency comes from the operation of compressor near the critical point where the properties of SCO{sub 2}. The approaches to those of liquid phase, leading drastically lower the compression work loss. However, the advantage requires precise and smooth operation of the cycle near the critical point. However, it is one of the key technical challenges. The experimental data was steady state at compressor rotating speed of 25,000 rpm. The time, 3133 second, was starting point of steady state. Numerical solutions were well matched with the experimental data. The mass flow rate from the MARS analysis of approximately 0.7 kg/s was close to the experimental result of 0.9 kg/s. It is expected that the difference come from the measurement error in the experiment. In this study, the compressor model was developed and implemented in MARS to study the transient analysis of SCO{sub 2}BC in SCIEL. We obtained the homologous curves for the SCIEL compressor using experimental data and performed nodalization of the compressor model using MARS code. In conclusions, it was found that numerical solutions from the MARS model were well matched with experimental data.

  14. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Science.gov (United States)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  15. Development of a Performance Analysis Code for the Off-design conditions of a S-CO2 Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Yoo, Yong-Hwan; Cha, Jae-Eun; Lee, Tae-Ho; Eoh, Jae-Hyuk; Kim, Seong-O

    2008-01-01

    For the development of a supercritical carbon dioxide (S-CO2) Brayton cycle energy conversion system coupled to KALIMER-600, a thermal balance has been established on 100% power operating conditions including all the reactor system models such as a primary heat transport system (PHTS), an intermediate heat transport system (IHTS), and an energy conversion system. The S-CO2 Brayton cycle energy conversion system consists of a sodium-CO2 heat exchanger (Hx), turbine, high temperature recuperate (HTR), low temperature recuperate (LTR), precooler, compressor no.1, and compressor no.2. Two compressors were employed to avoid a sharp change of the physical properties near their critical point with a corresponding pressure. The component locations and their operating conditions are illustrated. Energy balance of the power conversion system in KALIMER-600 was designed with the full power condition of each component. Therefore, to predict the off-design conditions and to evaluate each component, an off-design performance analysis code should be accomplished. An off-design performance analysis could be classified into overall system control logic and local system control logic. The former means that mass flow rate and power are controlled by valves, and the latter implies that a bypass or inventory control is an admitted system balance. The ultimate goal of this study is development of the overall system control logic

  16. Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making

    OpenAIRE

    Rajesh Kumar; S.C. Kaushik; Raj Kumar; Ranjana Hans

    2016-01-01

    Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is s...

  17. Modeling and sizing of the heat exchangers of a new supercritical CO2 Brayton power cycle for energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Serrano, I.P.; Cantizano, A.; Linares, J.I.; Moratilla, B.Y.

    2014-01-01

    Highlights: •We propose a procedure to model the heat exchangers of a S-CO2 Brayton power cycle. •Discretization in sub-heat exchangers is performed due to complex behavior of CO 2 . •Different correlations have been tested, verifying them with CFD when necessary. •Obtained sizes are agree with usual values of printed circuit heat exchangers. -- Abstract: TECNO F US is a research program financed by the Spanish Government to develop technologies related to a dual-coolant (He/Pb–Li) breeding blanket design concept including the auxiliary systems for a future power reactor (DEMO). One of the main issues of this program is the optimization of heat recovery from the reactor and its conversion into electrical power. This paper is focused on the methodology employed for the design and sizing of all the heat exchangers of the supercritical CO 2 Brayton power cycle (S-CO2) proposed by the authors. Due to the large pressure difference between the fluids, and also to their compactness, Printed Circuit Heat Exchangers (PCHE) are suggested in literature for these type of cycles. Because of the complex behavior of CO 2 , their design is performed by a numerical discretization into sub-heat exchangers, thus a higher precision is reached when the thermal properties of the fluids vary along the heat exchanger. Different empirical correlations for the pressure drop and the Nusselt number have been coupled and assessed. The design of the precooler (PC) and the low temperature recuperator (LTR) is also verified by simulations using CFD because of the near-critical behavior of CO 2 . The size of all of the heat exchangers of the cycle have been assessed

  18. Modeling and sizing of the heat exchangers of a new supercritical CO{sub 2} Brayton power cycle for energy conversion for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I.P.; Cantizano, A.; Linares, J.I., E-mail: linares@upcomillas.es; Moratilla, B.Y.

    2014-10-15

    Highlights: •We propose a procedure to model the heat exchangers of a S-CO2 Brayton power cycle. •Discretization in sub-heat exchangers is performed due to complex behavior of CO{sub 2}. •Different correlations have been tested, verifying them with CFD when necessary. •Obtained sizes are agree with usual values of printed circuit heat exchangers. -- Abstract: TECNO{sub F}US is a research program financed by the Spanish Government to develop technologies related to a dual-coolant (He/Pb–Li) breeding blanket design concept including the auxiliary systems for a future power reactor (DEMO). One of the main issues of this program is the optimization of heat recovery from the reactor and its conversion into electrical power. This paper is focused on the methodology employed for the design and sizing of all the heat exchangers of the supercritical CO{sub 2} Brayton power cycle (S-CO2) proposed by the authors. Due to the large pressure difference between the fluids, and also to their compactness, Printed Circuit Heat Exchangers (PCHE) are suggested in literature for these type of cycles. Because of the complex behavior of CO{sub 2}, their design is performed by a numerical discretization into sub-heat exchangers, thus a higher precision is reached when the thermal properties of the fluids vary along the heat exchanger. Different empirical correlations for the pressure drop and the Nusselt number have been coupled and assessed. The design of the precooler (PC) and the low temperature recuperator (LTR) is also verified by simulations using CFD because of the near-critical behavior of CO{sub 2}. The size of all of the heat exchangers of the cycle have been assessed.

  19. Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: A vital transition for low-carbon power generation industry

    International Nuclear Information System (INIS)

    Milani, Dia; Luu, Minh Tri; McNaughton, Robbie; Abbas, Ali

    2017-01-01

    Highlights: • The layout of 14 demonstrative supercritical CO 2 closed Brayton cycles are analysed. • The key parameters of the “combined” cycle are sensitized and optimized. • The effect of thermal efficiency vs HX area on techno-economic nexus is highlighted. • The design of a matching solar heliostat field in direct configuration is revealed. • The water demand for hybrid vs water-only cooling scenarios are assessed. - Abstract: Current worldwide infrastructure of electrical power generation would mostly continue to rely on fossil-fuel but require a modest transition for the ultimate goal of decarbonizing power generation industry. By relying on those already established and carefully managed centrepiece power plants (PPs), we aim at filling the deficits of the current electrical networks with smaller, cleaner, and also more efficient PPs. In this context, we present a unique model for a small-scale decentralized solar-assisted supercritical CO 2 closed Brayton cycle (sCO 2 -CBC). Our model is based on the optimized values of three key performance indicators (KPIs); thermal efficiency, concentrated solar power (CSP) compatibility, and water demand for cooling. For a case-study of 10 MW e CSP-assisted sCO 2 -CBC power plant, our dynamic model shows a 52.7% thermal efficiency and 25.9% solar penetration and up to 80% of water saving in heat-rejection units. These KPIs show significant promise of the solar-assisted supercritical CO 2 power cycle for an imperative transformation in the power industry towards future sustainable electricity generation.

  20. Advanced heat pump for the recovery of volatile organic compounds. Phase 1, Conceptual design of an advanced Brayton cycle heat pump for the recovery of volatile organic compounds: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The ``Toxic-Release Inventory`` of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy`s (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M`s work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  1. Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO_2 Brayton cycles and MEE-TVC desalination system

    International Nuclear Information System (INIS)

    Kouta, Amine; Al-Sulaiman, Fahad; Atif, Maimoon; Marshad, Saud Bin

    2016-01-01

    Highlights: • The entropy, exergy, and cost analyses for two solar cogeneration configurations are conducted. • The recompression cogeneration cycle achieves lower LCOE as compared to the regeneration cogeneration cycle. • The solar tower is the largest contributor to entropy generation in both configurations reaching almost 80%. • The specific entropy generation in the MEE-TVC decreases with decreasing the fraction. - Abstract: In this study, performance and cost analyses are conducted for a solar power tower integrated with supercritical CO_2 (sCO_2) Brayton cycles for power production and a multiple effect evaporation with a thermal vapor compression (MEE-TVC) desalination system for water production. The study is performed for two configurations based on two different supercritical cycles: the regeneration and recompression sCO_2 Brayton cycles. A two-tank molten salt storage is utilized to ensure a uniform operation throughout the day. From the entropy analysis, it was shown that the solar tower is the largest contributor to entropy generation in both configurations, reaching almost 80% from the total entropy generation, followed by the MEE-TVC desalination system, and the sCO_2 power cycle. The entropy generation in the two-tank thermal storage is negligible, around 0.3% from the total generation. In the MEE-TVC system the highest contributing component is the steam jet ejector, which is varying between 50% and 60% for different number of effects. The specific entropy generation in the MEE-TVC decreases as the fraction of the input heat to the desalination system decreases; while the specific entropy generation of the sCO_2 cycle remains constant. The cost analysis performed for different regions in Saudi Arabia and the findings reveal that the regions characterized by the highest average solar irradiation throughout the year have the lowest LCOE and LCOW values. The region achieving the lowest cost is Yanbu, followed by Khabt Al-Ghusn in the second

  2. A preliminary study of a D-T tokamak fusion reactor with advanced blanket using the compact fusion advanced Brayton (CFAB) cycle

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Ishikawa, M.; Umoto, J.; Fukuyama, A.; Mitarai, O.; Okamoto, M.; Sekimoto, H.; Nagatsu, M.

    1995-01-01

    Preliminary key issues for a synchrotron radiation-enhanced compact fusion advanced Brayton (CFAB) cycle fusion reactor similar to the CFAR (compact fusion advanced Rankine) cycle reactor are presented. These include plasma operation windows as a function of the first wall reflectivity and related issues, to estimate an allowance for deterioration of the first wall reflectivity due to dpa effects. It was found theoretically that first wall reflectivities down to 0.8 are still adequate for operation at an energy confinement scaling of 3 times Kaye-Goldston. Measurements of the graphite first wall reflectivities at Nagoya University indicate excellent reflectivities in excess of 90% for CC-312, PCC-2S, and PD-330S in the submillimeter regime, even at high temperatures in excess of 1000K. Some engineering issues inherent to the CFAB cycle are also discussed briefly in comparison with the CFAR cycle which uses hazardous limited-resource materials but is capable of using mercury as coolant for high heat removal. The CFAB cycle using helium coolant is found to achieve higher net plant conversion efficiencies in excess 60% using a non-equilibrium magnetohydrodynamic disk generator in the moderate pressure range, even at the cost of a relatively large pumping power, and at the penalty of high temperature materials, although excellent heat removal characteristics in the moderate pressure range need to be guaranteed in the future. (orig.)

  3. Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2016-06-01

    Full Text Available Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is selected using Fuzzy, TOPSIS, LINMAP and Shannon’s entropy decision making methods. Triple objective evolutionary approach applied to the proposed model gives power output, thermal efficiency, ecological function as (53.89 kW, 0.1611, −142 kW which are 29.78%, 25.86% and 21.13% lower in comparison with reversible system. Furthermore, the present study reflects the effect of various heat capacitance rates and component efficiencies on triple objectives in graphical custom. Finally, with the aim of error investigation, average and maximum errors of obtained results are computed.

  4. Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2015-01-01

    Highlights: • Defining a dimensionless parameter includes the finite-time and size concepts. • Inserting the concept of exergy of fluid streams into finite-time thermodynamics. • Defining, drawing and modifying of maximum ecological function curve. • Suggesting the appropriate performance zone, according to maximum ecological curve. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power and then ecological function maximization using finite-time thermodynamic concept and finite-size components. Multi-objective optimization is used for maximizing the ecological function. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is introduced deploying time variations. The variations of output power, total exergy destruction of the system, and decision variables for the optimum state (maximum ecological function state) are compared to the maximum power state using the dimensionless parameter. The modified ecological function in optimum state is obtained and plotted relating to the dimensionless mass-flow parameter. One can see that the modified ecological function study results in a better performance than that obtained with the maximum power state. Finally, the appropriate performance zone of the heat engine will be obtained

  5. Initial estimates of the economical attractiveness of a nuclear closed Brayton combined cycle operating with firebrick resistance-heated energy storage

    Directory of Open Access Journals (Sweden)

    Florian Chavagnat

    2018-04-01

    Full Text Available The Firebrick Resistance-Heated Energy Storage (FIRES concept developed by the Massachusetts Institute of Technology aims to enhance profitability of the nuclear power industry in the next decades. Studies carried out at Massachusetts Institute of Technology already provide estimates of the potential revenue from FIRES system when it is applied to industrial heat supply, the likely first application. Here, we investigate the possibility of operating a power plant (PP with a fluoride-salt-cooled high-temperature reactor and a closed Brayton cycle. This variant offers features such as enhanced nuclear safety as well as flexibility in design of the PP but also radically changes the way of operating the PP. This exploratory study provides estimates of the revenue generated by FIRES in addition to the nominal revenue of the stand-alone fluoride-salt-cooled high-temperature reactor, which are useful for defining an initial design. The electricity price data is based on the day-ahead markets of Germany/Austria and the United States (Iowa. The proposed method derives from the equation of revenue introduced in this study and involves simple computations using MatLab to compute the estimates. Results show variable economic potential depending on the host grid but stress a high profitability in both regions. Keywords: Firebrick Resistance-Heated Energy Storage, Nuclear Power Plant, Revenue Estimate, Storage System

  6. Fundamental study of key issues related to advanced sCO2 Brayton cycle: Prototypic HX development and cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Devesh [Georgia Inst. of Technology, Atlanta, GA (United States)

    2018-01-08

    Diffusion bonded heat exchangers are the leading candidates for the sCO2 Brayton cycles in next generation nuclear power plants. Commercially available diffusion bonded heat exchangers utilize set of continuous semi-circular zigzag micro channels to increase the heat transfer area and enhance heat transfer through increased turbulence production. Such heat exchangers can lead to excessive pressure drop as well as flow maldistribution in the case of poorly designed flow distribution headers. The goal of the current project is to fabricate and test potential discontinuous fin patterns for diffusion bonded heat exchangers; which can achieve desired thermal performance at lower pressure drops. Prototypic discontinuous offset rectangular and Airfoil fin surface geometries were chemically etched on to 316 stainless steel plate and sealed against an un-etched flat pate using O-ring seal emulating diffusion bonded heat exchangers. Thermal-hydraulic performance of these prototypic discontinuous fin geometries was experimentally evaluated and compared to the existing data for the continuous zigzag channels. The data generated from this project will serve as the database for future testing and validation of numerical models.

  7. State space model extraction of thermohydraulic systems – Part II: A linear graph approach applied to a Brayton cycle-based power conversion unit

    International Nuclear Information System (INIS)

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies

  8. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  9. Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINKTM

    International Nuclear Information System (INIS)

    Wright, Steven A.; Sanchez, Travis

    2005-01-01

    The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK TM (Simulink, 2004). SIMULINK TM is a development environment packaged with MatLab TM (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion components such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK TM models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK TM modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)

  10. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Sienicki, J.J.

    2012-01-01

    Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO 2 ) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO 2 cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO 2 . It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO 2 heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO 2 -to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO 2 turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the

  11. Buffer thermal energy storage for a solar Brayton engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  12. Garrett solar Brayton engine/generator status

    Science.gov (United States)

    Anson, B.

    1982-07-01

    The solar advanced gas turbine (SAGT-1) is being developed by the Garrett Turbine Engine Company, for use in a Brayton cycle power conversion module. The engine is derived from the advanced gas turbine (AGT101) now being developd by Garrett and Ford Motor Company for automotive use. The SAGT Program is presently funded for the design, fabrication and test of one engine at Garrett's Phoenix facility. The engine when mated with a solar receiver is called a power conversion module (PCU). The PCU is scheduled to be tested on JPL's test bed concentrator under a follow on phase of the program. Approximately 20 kw of electrical power will be generated.

  13. Development of a 77K Reverse-Brayton Cryocooler with Multiple Coldheads, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — RTI will design and optimize an 80 W, 77K cryocooler based on the reverse turbo Brayton cycle (RTBC) with four identical coldheads for distributed cooling. Based on...

  14. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  15. An investigation of sodium–CO{sub 2} interaction byproduct cleaning agent for SFR coupled with S-CO{sub 2} Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hwa-Young, E-mail: jhy0523@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Division of SFR NSSS System Design, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Wi, Myung-Hwan, E-mail: mhwi@kaeri.re.kr [Division of SFR NSSS System Design, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ahn, Hong Joo, E-mail: ahjoo@kaeri.re.kr [Division of Nuclear Chemistry Research, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2016-02-15

    Highlights: • Study on cleaning agent was conducted to remove Na–CO{sub 2} interaction byproducts. • Screening criteria to select candidate substances as cleaning agents were suggested. • The mixtures of Na{sub 2}CO{sub 3} with NaBrO{sub 3}, NaClO{sub 3}, or NaBF{sub 4} were thermally analyzed with the TG/DTA studies. • Three candidate substances decomposed before 600 °C and did not react with Na{sub 2}CO{sub 3}. - Abstract: One of the promising future nuclear energy systems, the Sodium-cooled Fast Reactor (SFR) has been actively developed internationally. Recently, to improve safety and economics of a SFR further, coupling supercritical CO{sub 2} power cycle was suggested. However, there can be a chemical reaction between sodium and CO{sub 2} at high temperature (more than 400 °C) when the pressure boundary fails in a sodium–CO{sub 2} heat exchanger. To ensure the performance of such a system, it is important to employ a cleaning agent to recover the system back to normal condition after the reaction. When sodium and CO{sub 2} react, solid and gaseous reaction products such as sodium carbonate (Na{sub 2}CO{sub 3}) and carbon monoxide (CO) appear. Since most of solid reaction products are hard and can deteriorate system performance, quick removal of solid reaction products becomes very important for economic performance of the system. Thus, the authors propose the conceptual method to remove the byproducts with a chemical reaction at high temperature. The chemical reaction will take place between the reaction byproducts and a cleaning agent while the cleaning agent is inert with sodium. Thus, various sodium-based compounds were first investigated and three candidate substances satisfying several criteria were selected; sodium bromate (NaBrO{sub 3}), sodium chlorate (NaClO{sub 3}), and sodium tetrafluoroborate (NaBF{sub 4}). The selected substances were thermally analyzed with the TG/DTA studies. Unfortunately, it was revealed that all candidate

  16. Nuclear Bi-Brayton system for aircraft propulsion

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1979-01-01

    Recent studies have shown the desirability of new system concept for nuclear aircraft propulsion utilizing the Bi-Brayton system concept, permits coupling of a gas cooled reactor to the power transmission and conversion system in a manner such as to fulfill the safety criteria while eliminating the need for a high temperature intermediate heat exchanger or shaft penetrations of the containment vessel. This system has been shown to minimize the component development required and to allow reduction in total propulsion system weight. This paper presents a description of the system concept and the results of the definition and evaluation studies to date. Parametric and reference system definition studies have been performed. The closed-cycle Bi-Brayton system and component configurations and weight estimates have been derived. Parametric evaluation and cycle variation studies have been performed and interpreted. 7 refs

  17. SP-100/Brayton power system concepts

    International Nuclear Information System (INIS)

    Owen, D.F.

    1989-01-01

    Use of closed Brayton cycle (CBC) power conversion technology has been investigated for use with SP-100 reactors for space power systems. The CBC power conversion technology is being developed by Rockwell International under the Dynamic Isotype Power System (DIPS) and Space Station Freedom solar dynamic power system programs to provide highly efficient power conversion with radioisotype and solar collector heat sources. Characteristics including mass, radiator area, thermal power, and operating temperatures for systems utilizing SP-100 reactor and CBC power conversion technology were determined for systems in the 10-to 100-kWe power range. Possible SP-100 reactor/CBC power system configurations are presented. Advantages of CBC power conversion technology with regard to reactor thermal power, operating temperature, and development status are discussed

  18. Improving Teaching through Collaborative Reflective Teaching Cycles

    Science.gov (United States)

    Murray, Eileen

    2015-01-01

    Reflection and collaboration are two activities teachers can use to change and improve their practice. However, finding the time and space to do so can be challenging. The collaborative reflective teaching cycle is a structured activity teachers can use to engage in reflection and collaboration. This article describes how a seventh grade teaching…

  19. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  20. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  1. Thermodynamic design of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, C. W.; Yang, H. S.; Sohn, Song Ho; Lim, Ji Hyun; Oh, S. R.; Hwang, Si Dole

    2012-06-01

    Thermodynamic design of Brayton cryocooler is presented as part of an ongoing governmental project in Korea, aiming at 1 km HTS power cable in the transmission grid. The refrigeration requirement is 10 kW for continuously sub-cooling liquid nitrogen from 72 K to 65 K. An ideal Brayton cycle for this application is first investigated to examine the fundamental features. Then a practical cycle for a Brayton cryocooler is designed, taking into account the performance of compressor, expander, and heat exchangers. Commercial software (Aspen HYSYS) is used for simulating the refrigeration cycle with real fluid properties of refrigerant. Helium is selected as a refrigerant, as it is superior to neon in thermodynamic efficiency. The operating pressure and flow rate of refrigerant are decided with a constraint to avoid the freezing of liquid nitrogen

  2. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  3. Quality Improvement Cycles that Reduced Waiting Times at ...

    African Journals Online (AJOL)

    It was decided to undertake quality improvement (QI) cycles to analyse and improve the situation, using waiting time as a measure of improvement. Methods: A QI team was chosen to conduct two QI cycles. The allocated time for QI cycle 1 was from May to August 2006 and for QI cycle 2 from September to December 2006.

  4. Design and fabrication of the Mini-Brayton Recuperator (MBR)

    Science.gov (United States)

    Killackey, J. J.; Graves, R.; Mosinskis, G.

    1978-01-01

    Development of a recuperator for a 2.0 kW closed Brayton space power system is described. The plate-fin heat exchanger is fabricated entirely from Hastelloy X and is designed for 10 years continuous operation at 1000 K (1300 F) with a Xenon-helium working fluid. Special design provisions assure uniform flow distribution, crucial for meeting 0.975 temperature effectiveness. Low-cycle fatigue, resulting from repeated startup and shutdown cycles, was identified as the most critical structural design problem. It is predicted that the unit has a minimum fatigue life of 220 cycles. This is in excess of the BIPS requirement of 100 cycles. Heat transfer performance and thermal cycle testing with air, using a prototype unit, verified that all design objectives can be met.

  5. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system

    International Nuclear Information System (INIS)

    Guo, Juncheng; Cai, Ling; Chen, Jincan; Zhou, Yinghui

    2016-01-01

    A more realistic thermodynamic model of the pumped thermal electricity storage (PTES) system consisting of a Brayton cycle and a reverse Brayton cycle is proposed, where the internal and external irreversible losses are took into account and several important controlling parameters, e.g., the pressure ratio and heat flows of the two isobaric processes in the Brayton cycle, are introduced. Analytic expressions for the round trip efficiency and power output of the PTES system are derived. The general performance characteristics of the PTES system are revealed. The optimal relationship between the round trip efficiency and the power output is obtained. The influences of some important controlling parameters on the performance characteristics of the PTES system are discussed and the optimally operating regions of these parameters are determined. - Highlights: • A cycle model of the Brayton pumped thermal electricity storage system is proposed. • Internal and external irreversible losses are considered. • Maximum power output and efficiency of the system are calculated. • Optimum performance characteristics of the system are revealed. • Rational ranges of key controlling parameters are determined.

  6. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton

    International Nuclear Information System (INIS)

    Sharaf Eldean, Mohamed A.; Rafi, Khwaja M.; Soliman, A.M.

    2017-01-01

    Highlights: • Different working gases are used to power on Concentrated Solar Gas Engines. • Gases are used to increase the system efficiency. • Specific heat capacity is considered a vital role for the comparison. • Brayton engine resulted higher design limits. • CO 2 is favorable as a working gas more than C 2 H 2 . - Abstract: This article presents a performance study of using different working fluids (gases) to power on Concentrated Solar Gas Engine (CSGE-Stirling and/or Brayton). Different working gases such as Monatomic (five types), Diatomic (three types) and Polyatomic (four types) are used in this investigation. The survey purported to increase the solar gas engine efficiency hence; decreasing the price of the output power. The effect of using different working gases is noticed on the engine volume, dish area, total plant area, efficiency, compression and pressure ratios thence; the Total Plant Cost (TPC, $). The results reveal that the top cycle temperature effect is reflected on the cycle by increasing the total plant efficiency (2–10%) for Brayton operational case and 5–25% for Stirling operational case. Moreover; Brayton engine resulted higher design limits against the Stirling related to total plant area, m 2 and TPC, $ while generating 1–100 MW e as an economic case study plant. C 2 H 2 achieved remarkable results however, CO 2 is considered for both cycles operation putting in consideration the gas flammability and safety issues.

  7. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Science.gov (United States)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  8. Cost estimating Brayton and Stirling engines

    Science.gov (United States)

    Fortgang, H. R.

    1980-01-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  9. Comparison of Direct and Indirect Gas Reactor Brayton Systems for Nuclear Electric Space Propulsion

    International Nuclear Information System (INIS)

    M Postlehwait; P DiLorenzo; S Belanger; J Ashcroft

    2005-01-01

    Gas reactor systems are being considered as candidates for use in generating power for the Prometheus-1 spacecraft, along with other NASA missions as part of the Prometheus program. Gas reactors offer a benign coolant, which increases core and structural materials options. However, the gas coolant has inferior thermal transport properties, relative to other coolant candidates such as liquid metals. This leads to concerns for providing effective heat transfer and for minimizing pressure drop within the reactor core. In direct gas Brayton systems, i.e. those with one or more Brayton turbines in the reactor cooling loop, the ability to provide effective core cooling and low pressure drop is further constrained by the need for a low pressure, high molecular weight gas, typically a mixture of helium and xenon. Use of separate primary and secondary gas loops, one for the reactor and one or more for the Brayton system(s) separated by heat exchanger(s), allows for independent optimization of the pressure and gas composition of each loop. The reactor loop can use higher pressure pure helium, which provides improved heat transfer and heat transport properties, while the Brayton loop can utilize lower pressure He-Xe. However, this approach requires a separate primary gas circulator and also requires gas to gas heat exchangers. This paper focuses on the trade-offs between the direct gas reactor Brayton system and the indirect gas Brayton system. It discusses heat exchanger arrangement and materials options and projects heat exchanger mass based on heat transfer area and structural design needs. Analysis indicates that these heat exchangers add considerable mass, but result in reactor cooling and system resiliency improvements

  10. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  11. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  12. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  13. Brayton Isotope Power System (BIPS) facility specification

    International Nuclear Information System (INIS)

    1976-01-01

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included

  14. Brayton Isotope Power System (BIPS) facility specification

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-31

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included.

  15. Course Development Cycle Time: A Framework for Continuous Process Improvement.

    Science.gov (United States)

    Lake, Erinn

    2003-01-01

    Details Edinboro University's efforts to reduce the extended cycle time required to develop new courses and programs. Describes a collaborative process improvement framework, illustrated data findings, the team's recommendations for improvement, and the outcomes of those recommendations. (EV)

  16. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  17. Numerical Comparison of NASA's Dual Brayton Power Generation System Performance Using CO2 or N2 as the Working Fluid

    Science.gov (United States)

    Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.

    2010-01-01

    A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).

  18. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu, Xinhe; Yang, Xiaoyong; Wang, Jie

    2017-01-01

    Highlights: • The features of three different power generation schemes, including closed Brayton cycle, non-reheating combined cycle and reheating combined cycle, coupled with high temperature gas-cooled reactor (HTGR) were investigated and compared. • The effects and mechanism of reactor core outlet temperature, compression ratio and other key parameters over cycle characteristics were analyzed by the thermodynamic models.. • It is found that reheated combined cycle has the highest efficiency. Reactor outlet temperature and main steam parameters are key factors to improve the cycle’s performance. - Abstract: With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactors (HTGRs). In this paper, different cycle power generation schemes for HTGRs were systematically studied. Physical and mathematical models were established for these three cycle schemes: closed Brayton cycle, simple combined cycle, and reheated combined cycle. The effects and mechanism of key parameters such as reactor core outlet temperature, reactor core inlet temperature and compression ratio on the features of these cycles were analyzed. Then, optimization results were given with engineering restrictive conditions, including pinch point temperature differences. Results revealed that within the temperature range of HTGRs (700–900 °C), the reheated combined cycle had the highest efficiency, while the simple combined cycle had the lowest efficiency (900 °C). The efficiencies of the closed Brayton cycle, simple combined cycle and reheated combined cycle are 49.5%, 46.6% and 50.1%, respectively. These results provide insights on the different schemes of these cycles, and reveal the effects of key parameters on performance of these cycles. It could be helpful to understand and develop a combined cycle coupled with a high temperature reactor in the future.

  19. Brayton rotating units for space reactor power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., The Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2009-09-15

    Designs and analyses models of centrifugal-flow compressor and radial-inflow turbine of 40.8kW{sub e} Brayton Rotating Units (BRUs) are developed for 15 and 40 g/mole He-Xe working fluids. Also presented are the performance results of a space power system with segmented, gas cooled fission reactor heat source and three Closed Brayton Cycle loops, each with a separate BRU. The calculated performance parameters of the BRUs and the reactor power system are for shaft rotational speed of 30-55 krpm, reactor thermal power of 120-471kW{sub th}, and turbine inlet temperature of 900-1149 K. With 40 g/mole He-Xe, a power system peak thermal efficiency of 26% is achieved at rotation speed of 45 krpm, compressor and turbine inlet temperatures of 400 and 1149 K and 0.93 MPa at exit of the compressor. The corresponding system electric power is 122.4kW{sub e}, working fluid flow rate is 1.85 kg/s and the pressure ratio and polytropic efficiency are 1.5% and 86.3% for the compressor and 1.42% and 94.1% for the turbine. For the same nominal electrical power of 122.4kW{sub e}, decreasing the molecular weight of the working fluid (15 g/mole) decreases its flow rate to 1.03 kg/s and increases the system pressure to 1.2 MPa. (author)

  20. Quality improvement cycles that reduced waiting times at Tshwane ...

    African Journals Online (AJOL)

    improvement. QI in medical practices is a method for continuously finding better ways to provide better care and service.11 The QI cycle is a recognised tool for analysing and improving the efficiency and quality of healthcare services.12 QI is a team effort, requiring knowledge, skills, experience and perspective of each team ...

  1. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2002-01-01

    This paper presents an analysis of the possibilities for improving the efficiency of an indirectly biomass-fired gas turbine (IBFGT) by supplementary direct gas-firing. The supplementary firing may be based on natural gas, biogas, or pyrolysis gas. {The interest in this cycle arise from a recent...... demonstration of a two-stage gasification process through construction of several plants.} A preliminary analysis of the ideal recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  2. A New, Highly Improved Two-Cycle Engine

    Science.gov (United States)

    Wiesen, Bernard

    2008-01-01

    The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.

  3. Power and efficiency in a regenerative gas-turbine cycle with multiple reheating and intercooling stages

    Science.gov (United States)

    Calvo Hernández, A.; Roco, J. M. M.; Medina, A.

    1996-06-01

    Using an improved Brayton cycle as a model, a general analysis accounting for the efficiency and net power output of a gas-turbine power plant with multiple reheating and intercooling stages is presented. This analysis provides a general theoretical tool for the selection of the optimal operating conditions of the heat engine in terms of the compressor and turbine isentropic efficiencies and of the heat exchanger efficiency. Explicit results for the efficiency, net power output, optimized pressure ratios, maximum efficiency, maximum power, efficiency at maximum power, and power at maximum efficiency are given. Among others, the familiar results of the Brayton cycle (one compressor and one turbine) and of the corresponding Ericsson cycle (infinite compressors and infinite turbines) are obtained as particular cases.

  4. HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles

    Directory of Open Access Journals (Sweden)

    José Carbia Carril

    2015-01-01

    Full Text Available In high temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR specifically designed to operate as power plant heat sources, efficiency enhancement at effective cost under safe conditions can be achieved. Mentioned improvements concern the implementation of two cycle structures: (a, a stand alone Brayton operating with helium and a stand alone Rankine cycle (RC with regeneration, operating with carbon dioxide at ultrasupercritical pressure as working fluid (WF, where condensation is carried out at quasicritical conditions, and (b, a combined cycle (CC, in which the topping closed Brayton cycle (CBC operates with helium as WF, while the bottoming RC is operated with one of the following WFs: carbon dioxide, xenon, ethane, ammonia, or water. In both cases, an intermediate heat exchanger (IHE is proposed to provide thermal energy to the closed Brayton or to the Rankine cycles. The results of the case study show that the thermal efficiency, through the use of a CC, is slightly improved (from 45.79% for BC and from 50.17% for RC to 53.63 for the proposed CC with He-H2O operating under safety standards.

  5. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis

    Science.gov (United States)

    Kochunni, Sarun Kumar; Chowdhury, Kanchan

    2017-02-01

    LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.

  6. Performance analysis of a large-scale helium Brayton cryo-refrigerator with static gas bearing turboexpander

    International Nuclear Information System (INIS)

    Zhang, Yu; Li, Qiang; Wu, Jihao; Li, Qing; Lu, Wenhai; Xiong, Lianyou; Liu, Liqiang; Xu, Xiangdong; Sun, Lijia; Sun, Yu; Xie, Xiujuan; Wang, Bingming; Qiu, Yinan; Zhang, Peng

    2015-01-01

    Highlights: • A 2 kW at 20.0 K helium Brayton cryo-refrigerator is built in China. • A series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. • Maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs. • A model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. - Abstract: Large-scale helium cryo-refrigerator is widely used in superconducting systems, nuclear fusion engineering, and scientific researches, etc., however, its energy efficiency is quite low. First, a 2 kW at 20.0 K helium Brayton cryo-refrigerator is built, and a series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. It is found that maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs, which is the main characteristic of the helium Brayton cryo-refrigerator/cycle different from the air Brayton refrigerator/cycle. Other three characteristics also lie in the configuration of refrigerant helium bypass, internal purifier and non-linearity of specific heat of helium. Second, a model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. The assumption named internal purification temperature depth (PTD) is introduced, and the heat capacity rate of whole cycle is divided into three different regions in accordance with the PTD: room temperature region, upper internal purification temperature region and lower one. Analytical expressions of cooling capacity and COP are obtained, and we found that the expressions are piecewise functions. Further, comparison between the model and the experimental results for cooling capacity of the helium cryo-refrigerator shows that error is less than 7.6%. The PTD not only helps to achieve the analytical formulae and indicates the working

  7. High-intensity cycle interval training improves cycling and running performance in triathletes.

    Science.gov (United States)

    Etxebarria, Naroa; Anson, Judith M; Pyne, David B; Ferguson, Richard A

    2014-01-01

    Effective cycle training for triathlon is a challenge for coaches. We compared the effects of two variants of cycle high-intensity interval training (HIT) on triathlon-specific cycling and running. Fourteen moderately-trained male triathletes ([Formula: see text]O2peak 58.7 ± 8.1 mL kg(-1) min(-1); mean ± SD) completed on separate occasions a maximal incremental test ([Formula: see text]O2peak and maximal aerobic power), 16 × 20 s cycle sprints and a 1-h triathlon-specific cycle followed immediately by a 5 km run time trial. Participants were then pair-matched and assigned randomly to either a long high-intensity interval training (LONG) (6-8 × 5 min efforts) or short high-intensity interval training (SHORT) (9-11 × 10, 20 and 40 s efforts) HIT cycle training intervention. Six training sessions were completed over 3 weeks before participants repeated the baseline testing. Both groups had an ∼7% increase in [Formula: see text]O2peak (SHORT 7.3%, ±4.6%; mean, ±90% confidence limits; LONG 7.5%, ±1.7%). There was a moderate improvement in mean power for both the SHORT (10.3%, ±4.4%) and LONG (10.7%, ±6.8%) groups during the last eight 20-s sprints. There was a small to moderate decrease in heart rate, blood lactate and perceived exertion in both groups during the 1-h triathlon-specific cycling but only the LONG group had a substantial decrease in the subsequent 5-km run time (64, ±59 s). Moderately-trained triathletes should use both short and long high-intensity intervals to improve cycling physiology and performance. Longer 5-min intervals on the bike are more likely to benefit 5 km running performance.

  8. Investigators share improved understanding of the North American carbon cycle

    Science.gov (United States)

    Richard A. Birdsey; Robert Cook; Scott Denning; Peter Griffith; Beverly Law; Jeffrey Masek; Anna Michalak; Stephen Ogle; Dennis Ojima; Yude Pan; Christopher Sabine; Edwin Sheffner; Eric Sundquist

    2007-01-01

    The U.S. North American Carbon Program (NACP) sponsored an "all-scientist" meeting to review progress in understanding the dynamics of the carbon cycle of North American and adjacent oceans, and to chart a course for improved integration across scientifi c disciplines, scales, and Earth system boundaries. The meeting participants also addressed the need for...

  9. Innovative predictive maintenance concepts to improve life cycle management

    NARCIS (Netherlands)

    Tinga, Tiedo

    2014-01-01

    For naval systems with typically long service lives, high sustainment costs and strict availability requirements, an effective and efficient life cycle management process is very important. In this paper four approaches are discussed to improve that process: physics of failure based predictive

  10. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  11. Brayton dynamic isotope power systems update

    International Nuclear Information System (INIS)

    Davis, K.A.; Pietsch, A.; Casagrande, R.D.

    1986-01-01

    Brayton dynamic power systems are uniquely suited for space applications. They are compact and highly efficient, offer inherent reliability due to only one moving part, and utilize a single phase and inert working fluid. Additional features include gas bearings, constant speed, and operation at essentially constant temperature. The design, utilizing an inert gas working fluid and gas bearing, is unaffected by zero gravity and can be easily started and restarted in space at low temperatures. This paper describes the salient features of the BIPS as a Dynamic Isotope Power System (DIPS), summarizes the development work to date, establishes the maturity of the design, provides an update on materials technology, and reviews systems integration considerations

  12. Brayton Point coal conversion project (NEPCO)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W.F. Jr.

    1982-05-01

    The New England Power Company (NEPCO) recently converted Brayton Point Power Station Units 1, 2, and 3 from oil to coal. The coal conversion project is the largest coal conversion project in the nation to date. Stone and Webster Engineering Corporation (SWEC) was hired as the engineer/constructor for the project. Units 1 and 2 are 250-MW Combustion Engineering boilers, and Unit 3 is a 650-MW Babcock and Wilcox boiler. All three units were originally designed to burn pulverized coal but were converted to oil during the years of low oil prices. Studies performed by NEPCO and SWEC indicated that the areas discussed in the following paragraphs required upgrading before the units could efficiently burn coal and meet Federal and State environmental requirements. All units have been converted and are operating. This paper discusses design modifications required to burn coal, startup, and initial operating problems, and solutions.

  13. Improving Life-Cycle Cost Management of Spacecraft Missions

    Science.gov (United States)

    Clardy, Dennon

    2010-01-01

    This presentation will explore the results of a recent NASA Life-Cycle Cost study and how project managers can use the findings and recommendations to improve planning and coordination early in the formulation cycle and avoid common pitfalls resulting in cost overruns. The typical NASA space science mission will exceed both the initial estimated and the confirmed life-cycle costs by the end of the mission. In a fixed-budget environment, these overruns translate to delays in starting or launching future missions, or in the worst case can lead to cancelled missions. Some of these overruns are due to issues outside the control of the project; others are due to the unpredictable problems (unknown unknowns) that can affect any development project. However, a recent study of life-cycle cost growth by the Discovery and New Frontiers Program Office identified a number of areas that are within the scope of project management to address. The study also found that the majority of the underlying causes for cost overruns are embedded in the project approach during the formulation and early design phases, but the actual impacts typically are not experienced until late in the project life cycle. Thus, project management focus in key areas such as integrated schedule development, management structure and contractor communications processes, heritage and technology assumptions, and operations planning, can be used to validate initial cost assumptions and set in place management processes to avoid the common pitfalls resulting in cost overruns.

  14. Improving early cycle economic evaluation of diagnostic technologies.

    Science.gov (United States)

    Steuten, Lotte M G; Ramsey, Scott D

    2014-08-01

    The rapidly increasing range and expense of new diagnostics, compels consideration of a different, more proactive approach to health economic evaluation of diagnostic technologies. Early cycle economic evaluation is a decision analytic approach to evaluate technologies in development so as to increase the return on investment as well as patient and societal impact. This paper describes examples of 'early cycle economic evaluations' as applied to diagnostic technologies and highlights challenges in its real-time application. It shows that especially in the field of diagnostics, with rapid technological developments and a changing regulatory climate, early cycle economic evaluation can have a guiding role to improve the efficiency of the diagnostics innovation process. In the next five years the attention will move beyond the methodological and analytic challenges of early cycle economic evaluation towards the challenge of effectively applying it to improve diagnostic research and development and patient value. Future work in this area should therefore be 'strong on principles and soft on metrics', that is, the metrics that resonate most clearly with the various decision makers in this field.

  15. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  16. Energetic and exergetic Improvement of geothermal single flash cycle

    Directory of Open Access Journals (Sweden)

    Navid Nazari

    2016-08-01

    Full Text Available This paper presents a detailed analysis of a new method for improving energetic and exergetic efficiencies of single flash cycle. The thermodynamic process of the new method consists of extracting a fraction of hot wellhead geothermal brine for the purpose of superheating saturated steam entering the turbine. Computer programming scripts were developed and optimized based on mathematical proposed models for the different components of the systems. The operating parameters such as separator temperature, geofluid wellhead enthalpy and geothermal source temperature are varied to investigate their effects on both net power output and turbine exhaust quality of the systems. Also, full exergy assessment was performed for the new design. The results of separator temperature optimization revealed that specific net power output of the new design can be boosted up to 8% and turbine exhaust quality can be diminished up to 50% as compared to common single flash cycle. In addition, for wells with higher discharge enthalpy, superheating process improve specific net power output even up to 10%. Finally, it was observed that the overall system exergy efficiency was approximately raised 3%. Article History: Received January 5th 2016; Received in revised form June 25th 2016; Accepted July 3rd 2016; Available online How to Cite This Article: Nazari, N. and Porkhial, S. (2016. Energetic and Exergetic Improvement of Geothermal Single Flash Cycle. Int. Journal of Renewable Energy Development, 5(2,129-138. http://dx.doi.org/10.14710/ijred.5.2.129-138 

  17. WWER-440 fuel cycles possibilities using improved fuel assemblies design

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    2008-01-01

    Practically five years cycle has been achieved in the last years at NPP Dukovany. There are two principal means how it could be achieved. First, it is necessary to use fuel assemblies with higher fuel enrichment and second, to use fuel loading with very low leakage. Both these conditions are fulfilled at NPP Dukovany at this time. It is known, that the fuel cycle economy can be improved by increasing the fuel residence time in the core up to six years. There are at least two ways how this goal could be achieved. The simplest way is to increase enrichment in fuel. There exists a limit, which is 5.0 w % of 235 U. Taking into account some uncertainty, the calculation maximum is 4.95 w % of 235 U. The second way is to change fuel assembly design. There are several possibilities, which seem to be suitable from the neutron - physical point of view. The first one is higher mass content of uranium in a fuel assembly. The next possibility is to enlarge pin pitch. The last possibility is to 'omit' FA shroud. This is practically unrealistic; anyway, some other structural parts must be introduced. The basic neutron physical characteristics of these cycles for up-rated power are presented showing that the possibilities of fuel assemblies with this improved design in enlargement of fuel cycles are very promising. In the end, on the basis of neutron physical characteristics and necessary economical input parameters, a preliminary evaluation of economic contribution of proposals of advanced fuel assemblies on fuel cycle economy is presented (Authors)

  18. Concept Evaluation Using the PDSA Cycle for Continuous Quality Improvement.

    Science.gov (United States)

    Laverentz, Delois Meyer; Kumm, Sharon

    As concept-based nursing education gains popularity, there is little literature on how to sustain quality after initiation of the curriculum. Critical appraisal of concepts in a university program revealed varying definitions, attributes, and exemplars resulting in student confusion. The Plan, Do, Study, Act (PDSA) cycle for continuous quality improvement was used for concept evaluation. The goals of the evaluation project were: 1) to develop common definition and attributes for concepts and 2) to develop horizontal and vertical leveling of exemplars to build on prior student learning. The continuous quality improvement process can be used to prevent "concept creep" and ensure internal consistency of concept definitions, attributes, and exemplars.

  19. Tune-control improvements on the rapid-cycling synchrotron

    International Nuclear Information System (INIS)

    Potts, C.; Faber, M.; Gunderson, G.; Knott, M.; Voss, D.

    1981-01-01

    The as-built lattice of the Rapid-Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. A set of octupole magnets and programmable power supplies with similar dynamic qualities have been constructed and installed to control the anticipated high-intensity transverse instability. This system will be operational in the spring of 1981

  20. Heat exchanger design for hot air ericsson-brayton piston engine

    Directory of Open Access Journals (Sweden)

    Ďurčanský P.

    2014-03-01

    Full Text Available One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  1. Heat exchanger design for hot air ericsson-brayton piston engine

    Science.gov (United States)

    Ďurčanský, P.; Lenhard, R.; Jandačka, J.

    2014-03-01

    One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  2. Process improvement by cycle time reduction through Lean Methodology

    Science.gov (United States)

    Siva, R.; patan, Mahamed naveed khan; lakshmi pavan kumar, Mane; Purusothaman, M.; pitchai, S. Antony; Jegathish, Y.

    2017-05-01

    In present world, every customer needs their products to get on time with good quality. Presently every industry is striving to satisfy their customer requirements. An aviation concern trying to accomplish continuous improvement in all its projects. In this project the maintenance service for the customer is analyzed. The maintenance part service is split up into four levels. Out of it, three levels are done in service shops and the fourth level falls under customer’s privilege to change the parts in their aircraft engines at their location. An enhancement for electronics initial provisioning (eIP) is done for fourth level. Customers request service shops to get their requirements through Recommended Spare Parts List (RSPL) by eIP. To complete this RSPL for one customer, it takes 61.5 hours as a cycle time which is very high. By mapping current state VSM and takt time, future state improvement can be done in order to reduce cycle time using Lean tools such as Poke-Yoke, Jidoka, 5S, Muda etc.,

  3. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Science.gov (United States)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  4. Variations on the Zilch Cycle

    Science.gov (United States)

    Binder, P.-M.; Tanoue, C. K. S.

    2013-01-01

    Thermo dynamic cycles in introductory physics courses are usually made up from a small number of permutations of isothermal, adiabatic, and constant-pressure and volume quasistatic strokes, with the working fluid usually being an ideal gas. Among them we find the Carnot, Stirling, Otto, Diesel, and Joule-Brayton cycles; in more advanced courses,…

  5. Can cycling safety be improved by opening all unidirectional cycle paths for cycle traffic in both directions? A theoretical examination of available literature and data.

    Science.gov (United States)

    Methorst, Rob; Schepers, Paul; Kamminga, Jaap; Zeegers, Theo; Fishman, Elliot

    2017-08-01

    Many studies have found bicycle-motor vehicle crashes to be more likely on bidirectional cycle paths than on unidirectional cycle paths because drivers do not expect cyclists riding at the right side of the road. In this paper we discuss the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions prevent this lack of expectancy and accordingly improves cycling safety. A new national standard requires careful consideration because a reversal is difficult once cyclists are used to their new freedom of route choice. We therefore explored the hypothesis using available data, research, and theories. The results show that of the length of cycle paths along distributor roads in the Netherlands, 72% is bidirectional. If drivers would become used to cyclists riding at the left side of the road, this result raises the question of why bidirectional cycle paths in the Netherlands still have a poor safety record compared to unidirectional cycle paths. Moreover, our exploration suggested that bidirectional cycle paths have additional safety problems. It increases the complexity of unsignalized intersections because drivers have to scan more directions in a short period of time. Moreover, there are some indications that the likelihood of frontal crashes between cyclists increases. We reject the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions will improve cycle safety. We recommend more attention for mitigating measures given the widespread application of bidirectional cycle paths in the Netherlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Process Cycle Efficiency Improvement Through Lean: A Case Study

    Directory of Open Access Journals (Sweden)

    P.V. Mohanram

    2011-06-01

    Full Text Available Lean manufacturing is an applied methodology of scientific, objective techniques that cause work tasks in a process to be performed with a minimum of non-value adding activities resulting in greatly reduced wait time, queue time, move time, administrative time, and other delays. This work addresses the implementation of lean principles in a construction equipment company. The prime objective is to evolve and test several strategies to eliminate waste on the shop floor. This paper describes an application of value stream mapping (VSM. Consequently, the present and future states of value stream maps are constructed to improve the production process by identifying waste and its sources. A noticeable reduction in cycle time and increase in cycle efficiency is confirmed. The production flow was optimized thus minimizing several non-value added activities/times such as bottlenecking time, waiting time, material handling time, etc. This case study can be useful in developing a more generic approach to design lean environment.

  7. Program plan for the Brayton Isotope Power System. Phase I. Design, fabrication and test of the Brayton Isotope Power System

    International Nuclear Information System (INIS)

    1975-01-01

    Phase I of an overall program for the development of a 500 to 2000 W(e) (EOM), 7-y life, power system for space vehicles is discussed. The system uses a closed Brayton dynamic system to convert energy from an isotope heat source at a net efficiency greater than 25 percent. This first phase, a 35-month effort, is for the conceptual design of a 1300 W(e), 450 lb flight system and the design, fabrication, and test of a ground demonstration system. The flight system will use, for the baseline design, two of the multihundred-watt (MHW) heat sources being developed. The Ground Demonstration System will simulate, as closely as possible, the Brayton Isotope Power Flight System and will utilize components and technology being developed for the Mini-Brayton rotating unit, recuperator and heat source assembly, respectively. The Ground Demonstration System includes a performance test and a 1000-h endurance test

  8. A Conceptual Study of Using an Isothermal Compressor on a Supercritical CO2 Cycle for Various Nuclear Applications

    International Nuclear Information System (INIS)

    Heo, Jin Young; Lee, Jeong Ik

    2017-01-01

    In order to accelerate the deployment of cleaner and safer energy sources, further development of such advanced nuclear power systems is necessary. By aiming to have higher efficiency, lower costs, and reduced system size, next-generation nuclear reactors can have greater advantages which will justify their adoption. Many research efforts focus on these objectives to also propose new concepts and technologies to improve the present state of the art. To maximize the benefits of advanced reactor designs, the supercritical CO 2 (S-CO 2 ) power cycle can be adopted to enhance the performance of the power conversion systems. The potential of replacing the conventional power block with the S-CO 2 power cycle can increase the cycle efficiency and also reduce its overall system size. The potential of using the S-CO 2 power cycles in advanced nuclear reactors can be further improved by adopting an isothermal compressor to the cycle layout. This paper attempts to improve the cycle layout by replacing the conventional compressor with an isothermal compressor, of which its potential in the S-CO 2 power cycle is conceptually being evaluated. An isothermal compressor minimizes compression work and further reduces the system size by having smaller heat exchanger requirements. The study includes cycle optimization maximizing cycle efficiency with respect to different cycle design parameters. The S-CO 2 iso-Brayton cycle layouts have been effective in improving the cycle efficiencies of the next-generation nuclear reactors. By using the isothermal compressor, the net efficiency can be improved by 8% points for the simple recuperated cycle layout, and 5% points for the recompression cycle layout. It is also noted that the estimated UA values required for the iso-Brayton cycle layouts are almost the same or less compared to those of the reference cycle layouts.

  9. Study of reverse Brayton cryocooler with Helium-Neon mixture for HTS cable

    Science.gov (United States)

    Dhillon, A. K.; Ghosh, P.

    2017-12-01

    As observed in the earlier studies, helium is more efficient than neon as a refrigerant in a reverse Brayton cryocooler (RBC) from the thermodynamic point of view. However, the lower molecular weight of helium leads to higher refrigerant inventory as compared to neon. Thus, helium is suitable to realize the high thermodynamic efficiency of RBC whereas neon is appropriate for the compactness of the RBC. A binary mixture of helium and neon can be used to achieve high thermodynamic efficiency in the compact reverse Brayton cycle (RBC) based cryocooler. In this paper, an attempt has been made to analyze the thermodynamic performance of the RBC with a binary mixture of helium and neon as the working fluid to provide 1 kW cooling load for high temperature superconductor (HTS) power cables working with a temperature range of 50 K to 70 K. The basic RBC is simulated using Aspen HYSYS V8.6®, a commercial process simulator. Sizing of each component based on the optimized process parameters for each refrigerant is performed based on a computer code developed using Engineering Equation Solver (EES-V9.1). The recommendation is provided for the optimum mixture composition of the refrigerant based on the trade-off factors like thermodynamic efficiency such as the exergy efficiency and equipment considerations. The outcome of this study may be useful for recommending a suitable refrigerant for the RBC operating at a temperature level of 50 K to 70 K.

  10. New insight into regenerated air heat pump cycle

    International Nuclear Information System (INIS)

    Zhang, Chun-Lu; Yuan, Han; Cao, Xiang

    2015-01-01

    Regenerated air (reverse Brayton) cycle has unique potentials in heat pump applications compared to conventional vapor-compression cycles. To better understand the regenerated air heat pump cycle characteristics, a thermodynamic model with new equivalent parameters was developed in this paper. Equivalent temperature ratio and equivalent isentropic efficiency of expander were introduced to represent the effect of regenerator, which made the regenerated air cycle in the same mathematical expressions as the basic air cycle and created an easy way to prove some important features that regenerated air cycle inherits from the basic one. Moreover, we proved in theory that the regenerator does not always improve the air cycle efficiency. Larger temperature ratio and lower effectiveness of regenerator could make the regenerated air cycle even worse than the basic air cycle. Lastly, we found that only under certain conditions the cycle could get remarkable benefits from a well-sized regenerator. These results would enable further study of the regenerated air cycle from a different perspective. - Highlights: • A thermodynamic model for regenerated air heat pump cycle was developed. • Equivalent temperature ratio and equivalent expander efficiency were introduced. • We proved regenerated air cycle can make heating capacity in line with heating load. • We proved the regenerator does not always improve the air cycle efficiency.

  11. Identifying improvement potentials in cement production with life cycle assessment.

    Science.gov (United States)

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  12. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  13. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings

    KAUST Repository

    Yao, Yan; Liu, Nian; McDowell, Matthew T.; Pasta, Mauro; Cui, Yi

    2012-01-01

    For silicon nanowires (Si NWs) to be used as a successful high capacity lithium-ion battery anode material, improvements in cycling stability are required. Here we show that a conductive polymer surface coating on the Si NWs improves cycling stability; coating with PEDOT causes the capacity retention after 100 charge-discharge cycles to increase from 30% to 80% over bare NWs. The improvement in cycling stability is attributed to the conductive coating maintaining the mechanical integrity of the cycled Si material, along with preserving electrical connections between NWs that would otherwise have become electrically isolated during volume changes. © 2012 The Royal Society of Chemistry.

  14. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Combined cycle performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2011-01-01

    The part-load performance of combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry gas turbines on the part-load efficiency for combined...... cycles used for ship propulsion. Moreover, the paper is aimed at developing methodologies and deriving models for part-load simulations suitable for energy system analysis of various components within combined cycle power plants. Two different gas turbine configurations are studied, a two-shaft aero......-derivative configuration and a single-shaft industrial configuration. The results suggest that by the use of variable geometry gas turbines, the combined cycle part-load performance can be improved. In order to minimise the voyage fuel consumption, a combined cycle featuring two-shaft gas turbines with VAN control...

  15. Combined cycle power plants: technological prospects for improving the efficiency

    International Nuclear Information System (INIS)

    Lauri, R.

    2009-01-01

    The combined cycle power plants characteristics are better than one course open to a closed loop presenting an electrical efficiency close to 60% do not reach for gas turbine engines for power plants and conventional steam engines. [it

  16. Brayton Isotope Power System. Phase I. (Ground demonstration system) Configuration Control Document (CCD)

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration control document (CCD) defines the BIPS-GDS configuration. The GDS configuration is similar to a conceptual flight system design, referred to as the BIPS-FS, which is discussed in App. I. The BIPS is being developed by ERDA as a 500 to 2000 W(e), 7-y life, space power system utilizing a closed Brayton cycle gas turbine engine to convert thermal energy (from an isotope heat source) to electrical energy at a net efficiency exceeding 25 percent. The CCD relates to Phase I of an ERDA Program to qualify a dynamic system for launch in the early 1980's. Phase I is a 35-month effort to provide an FS conceptual design and GDS design, fabrication, and test. The baseline is a 7-year life, 450-pound, 4800 W(t), 1300 W(e) system which will use two multihundred watt (MHW) isotope heat sources being developed

  17. Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

  18. Feasibility of Ericsson type isothermal expansion/compression gas turbine cycle for nuclear energy use

    International Nuclear Information System (INIS)

    Shimizu, Akihiko

    2007-01-01

    A gas turbine with potential demand for the next generation nuclear energy use such as HTGR power plants, a gas cooled FBR, a gas cooled nuclear fusion reactor uses helium as working gas and with a closed cycle. Materials constituting a cycle must be set lower than allowable temperature in terms of mechanical strength and radioactivity containment performance and so expansion inlet temperature is remarkably limited. For thermal efficiency improvement, isothermal expansion/isothermal compression Ericsson type gas turbine cycle should be developed using wet surface of an expansion/compressor casing and a duct between stators without depending on an outside heat exchanger performing multistage re-heat/multistage intermediate cooling. Feasibility of an Ericsson cycle in comparison with a Brayton cycle and multi-stage compression/expansion cycle was studied and technologies to be developed were clarified. (author)

  19. Control system options and strategies for supercritical CO2 cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Kulesza, K. P.; Sienicki, J. J.; Nuclear Engineering Division; Oregon State Univ.

    2009-06-18

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO{sub 2} Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO{sub 2} Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO{sub 2} Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO{sub 2} Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO{sub 2} Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO{sub 2} Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO{sub 2} Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO{sub 2} Brayton Cycle as

  20. Control system options and strategies for supercritical CO2 cycles

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Kulesza, K.P.; Sienicki, J.J.

    2009-01-01

    The Supercritical Carbon Dioxide (S-CO 2 ) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO 2 Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO 2 Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO 2 Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO 2 Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO 2 Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO 2 Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO 2 Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO 2 Brayton Cycle as well as the benefits in expanding the range

  1. Study of reactor Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  2. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  3. Improving the quality of care for patients with hypertension in Moshupa District, Botswana: Quality improvement cycle

    Directory of Open Access Journals (Sweden)

    Cathy Kande

    2014-01-01

    Full Text Available Background: Although there are no prevalence studies on hypertension in Botswana, this condition is thought to be common and the quality of care to be poor.Aim: The aim of this project was to assess and improve the quality of primary care forhypertension.Setting: Moshupa clinic and catchment area, Botswana.Methods: Quality improvement cycle.Results: Two hundred participants were included in the audit. Sixty-eight per cent were women with a mean age of 55 years. In the baseline audit none of the target standards were met. During the re-audit six months later, six out of nine structural target standards, five out of 11 process target standards and one out of two outcome target standards were achieved. Statistically-significant improvement in performance (p < 0.05 was shown in 10 criteria although the target standard was not always met. In the re-audit, the target of achieving blood pressure control (< 140/90 in 70% of patients was achieved.Conclusion: The quality of care for hypertension was suboptimal in our setting. Simple interventions were designed and implemented to improve the quality of care. These interventions led to significant improvement in structural and process criteria. A corresponding significant improvement in the control of blood pressure was also seen.

  4. Quantum thermodynamic cycles and quantum heat engines. II.

    Science.gov (United States)

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  5. PDCA cycle as a part of continuous improvement in the production company - a case study

    Directory of Open Access Journals (Sweden)

    Marta Jagusiak-Kocik

    2017-04-01

    Full Text Available The paper presents a case study of the practical use of Deming cycle in a manufacturing company, from the plastics processing industry, from the sector of small and medium-sized enterprises. The paper is a study of literature in the field of continuous improvement and characterized by a cycle of continuous improvement, called the Deming cycle, or PDCA cycle. This cycle was used as a solution to quality problems which occurred during production of photo frames: discolorations and scorches on the surface of the frame. When measures were introduced to reduce the number of nonconformities, a decrease by more than 60% was observed.

  6. Nanosatellite Architectures for Improved Study of the Hydrologic Cycle

    Science.gov (United States)

    Blackwell, W. J.; Osaretin, I.; Cahoy, K.

    2012-12-01

    The need for low-cost, mission-flexible, and rapidly deployable spaceborne sensors that meet stringent performance requirements pervades the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. To address these challenges, we present nanosatellite constellation architectures that would profoundly improve both the performance and cost/risk/schedule profiles of NASA Earth and Space Science missions by leveraging recent technology advancements. As a key enabling element, we describe a scalable and mission-flexible 6U CubeSat-based self-organizing constellation architecture (the Distributed Observatory for Monitoring of Earth, henceforth "DOME") that will achieve state-of-the-art performance (and beyond) relative to current systems with respect to spatial, spectral, and radiometric resolution. A focus of this presentation is an assessment of the viability of a cross-linked CubeSat constellation with onboard propulsion systems for high-fidelity Earth and Space Science research. Such architecture could provide game-changing advances by reducing costs by at least an order of magnitude while increasing robustness to launch and sensor failures, allowing fast-track insertion of new technologies, and improving science performance. High-resolution passive microwave atmospheric sounding is an ideal sensing modality for nanosatellite implementation due to rapidly advancing microwave and millimeterwave receiver technology. The DOME constellation would nominally comprise 6U CubeSat Microwave Atmospheric Sounder (CMAS) satellites. Each CMAS satellite would host a complete 6U CubeSat atmospheric sounder, including a radiometer payload module with passive microwave receivers operating near atmospheric absorption lines near 60 and 183.31 GHz, and a spacecraft bus with attitude determination and control, avionics, power, cross-linked communications (spacecraft-to-spacecraft and spacecraft-to-ground), and propulsion systems. A

  7. Improving early cycle economic evaluation of diagnostic technologies

    NARCIS (Netherlands)

    Steuten, Lotte Maria Gertruda; Ramsey, Scott D.

    2014-01-01

    The rapidly increasing range and expense of new diagnostics, compels consideration of a different, more proactive approach to health economic evaluation of diagnostic technologies. Early cycle economic evaluation is a decision analytic approach to evaluate technologies in development so as to

  8. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Angela eRidgel

    2015-09-01

    Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.

  9. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2015-01-01

    undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends

  10. Improving patient handover between teams using a business improvement model: PDSA cycle.

    Science.gov (United States)

    Luther, Vishal; Hammersley, Daniel; Chekairi, Ahmed

    2014-01-01

    Medical admission units are continuously under pressure to move patients off the unit to outlying medical wards and allow for new admissions. In a typical district general hospital, doctors working in these medical wards reported that, on average, three patients each week arrived from the medical admission unit before any handover was received, and a further two patients arrived without any handover at all. A quality improvement project was therefore conducted using a 'Plan, Do, Study, Act' cycle model for improvement to address this issue. P - Plan: as there was no framework to support doctors with handover, a series of standard handover procedures were designed. D - Do: the procedures were disseminated to all staff, and championed by key stakeholders, including the clinical director and matron of the medical admission unit. S - STUDY: Measurements were repeated 3 months later and showed no change in the primary end points. A - ACT: The post take ward round sheet was redesigned, creating a checkbox for a medical admission unit doctor to document that handover had occurred. Nursing staff were prohibited from moving the patient off the ward until this had been completed. This later evolved into a separate handover sheet. Six months later, a repeat study revealed that only one patient each week was arriving before or without a verbal handover. Using a 'Plan, Do, Study, Act' business improvement tool helped to improve patient care.

  11. Performance improvement: an active life cycle product management

    Science.gov (United States)

    Cucchiella, Federica; Gastaldi, Massimo; Lenny Koh, S. C.

    2010-03-01

    The management of the supply chain has gained importance in many manufacturing firms. Operational flexibility can be considered a crucial weapon to increase competitiveness in a turbulent marketplace. It reflects the ability of a firm to properly and rapidly respond to a variable and dynamic environment. For the firm operating in a fashion sector, the management of the supply chain is even more complex because the product life cycle is shorter than that of the firm operating in a non-fashion sector. The increase of firm flexibility level can be reached through the application of the real option theory inside the firm network. In fact, real option may increase the project value by allowing managers to more efficiently direct the production. The real option application usually analysed in literature does not take into account that the demands of products are well-defined by the product life cycle. Working on a fashion sector, the life cycle pattern is even more relevant because of an expected demand that grows according to a constant rate that does not capture the demand dynamics of the underlying fashion goods. Thus, the primary research objective of this article is to develop a model useful for the management of investments in a supply chain operating in a fashion sector where the system complexity is increased by the low level of unpredictability and stability that is proper of the mood phenomenon. Moreover, unlike the traditional model, a real option framework is presented here that considers fashion product characterised by uncertain stages of the production cycle.

  12. Improvement of Cycle Dependent Core Model for NPP Simulator

    International Nuclear Information System (INIS)

    Song, J. S.; Koo, B. S.; Kim, H. Y. and others

    2003-11-01

    The purpose of this study is to establish automatic core model generation system and to develop 4 cycle real time core analysis methodology with 5% power distribution and 500 pcm reactivity difference criteria for nuclear power plant simulator. The standardized procedure to generate database from ROCS and ANC, which are used for domestic PWR core design, was established for the cycle specific simulator core model generation. An automatic data interface system to generate core model also established. The system includes ARCADIS which edits group constant and DHCGEN which generates interface coupling coefficient correction database. The interface coupling coefficient correction method developed in this study has 4 cycle real time capability and accuracies of which the maximum differences between core design results are within 103 pcm reactivity, 1% relative power distribution and 6% control rod worth. A nuclear power plant core simulation program R-MASTER was developed using the methodology and applied by the concept of distributed client system in simulator. The performance was verified by site acceptance test in Simulator no. 2 in Kori Training Center for 30 initial condition generation and 27 steady state, transient and postulated accident situations

  13. Improvement of Cycle Dependent Core Model for NPP Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Koo, B. S.; Kim, H. Y. and others

    2003-11-15

    The purpose of this study is to establish automatic core model generation system and to develop 4 cycle real time core analysis methodology with 5% power distribution and 500 pcm reactivity difference criteria for nuclear power plant simulator. The standardized procedure to generate database from ROCS and ANC, which are used for domestic PWR core design, was established for the cycle specific simulator core model generation. An automatic data interface system to generate core model also established. The system includes ARCADIS which edits group constant and DHCGEN which generates interface coupling coefficient correction database. The interface coupling coefficient correction method developed in this study has 4 cycle real time capability and accuracies of which the maximum differences between core design results are within 103 pcm reactivity, 1% relative power distribution and 6% control rod worth. A nuclear power plant core simulation program R-MASTER was developed using the methodology and applied by the concept of distributed client system in simulator. The performance was verified by site acceptance test in Simulator no. 2 in Kori Training Center for 30 initial condition generation and 27 steady state, transient and postulated accident situations.

  14. Exergy Analysis of a Subcritical Refrigeration Cycle with an Improved Impulse Turbo Expander

    Directory of Open Access Journals (Sweden)

    Zhenying Zhang

    2014-08-01

    Full Text Available The impulse turbo expander (ITE is employed to replace the throttling valve in the vapor compression refrigeration cycle to improve the system performance. An improved ITE and the corresponding cycle are presented. In the new cycle, the ITE not only acts as an expansion device with work extraction, but also serves as an economizer with vapor injection. An increase of 20% in the isentropic efficiency can be attained for the improved ITE compared with the conventional ITE owing to the reduction of the friction losses of the rotor. The performance of the novel cycle is investigated based on energy and exergy analysis. A correlation of the optimum intermediate pressure in terms of ITE efficiency is developed. The improved ITE cycle increases the exergy efficiency by 1.4%–6.1% over the conventional ITE cycle, 4.6%–8.3% over the economizer cycle and 7.2%–21.6% over the base cycle. Furthermore, the improved ITE cycle is also preferred due to its lower exergy loss.

  15. 'Virtual' central business office: how UMMS improved revenue cycle performance.

    Science.gov (United States)

    Henciak, Bill; Fontaine, Christine; Fields, Keith; Parks, Stacy

    2010-06-01

    Based on its experience with implementing a virtual central business office, UMMS recommends the following steps to ensure the success of such an initiative: Define the process flow for the organization's day-today revenue cycle operations prior to implementation. Then select best practices and milestones for managing accounts. Identify any possible technology issues that could arise during implementation prior to go live. Hold a midproject debriefing with staff. Develop an organizational chart that details who is responsible for handling issues that arise during implementation and afterward.

  16. Rapid-fire improvement with short-cycle kaizen.

    Science.gov (United States)

    Heard, E

    1999-05-01

    Continuous improvement is an attractive idea, but it is typically more myth than reality. SCK is no myth. It delivers dramatic improvements in traditional measures quickly. SCK accomplishes this via kaizens: rapid, repeated, time-compressed changes for the better in bite-sized chunks of the business.

  17. Creating a Cycle of Continuous Improvement through Instructional Rounds

    Science.gov (United States)

    Meyer-Looze, Catherine L.

    2015-01-01

    Instructional Rounds is a continuous improvement strategy that focuses on the technical core of educational systems as well as educators collaborating side-by-side. Concentrating on collective learning, this process only makes sense within an overall strategy of improvement. This case study examined the Instructional Rounds process in a northern…

  18. Thermodynamic modelling of a recompression CO_2 power cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Banik, Shubham; Ray, Satyaki; De, Sudipta

    2016-01-01

    Highlights: • Thermodynamic model for recompression T-CO_2 is developed. • Energetic and exergetic analysis compared with S-CO_2 and Reg. Brayton cycle. • Maximum efficiency of 13.6% is obtained for T-CO_2 cycle. • Optimum recompression ratio of 0.48 is obtained for minimum irreversibility. • Reg. Brayton has better efficiency, T-CO_2 offers minimum irreversibility. - Abstract: Due to the rising prices of conventional fossil fuels, increasing the overall thermal efficiency of a power plant is essential. One way of doing this is waste heat recovery. This recovery is most difficult for low temperature waste heat, below 240 °C, which also covers majority of the waste heat source. Carbon dioxide, with its low critical temperature and pressure, offers an advantage over ozone-depleting refrigerants used in Organic Rankine Cycles (ORCs) and hence is most suitable for the purpose. This paper introduces parametric optimization of a transcritical carbon dioxide (T-CO_2) power cycle which recompresses part of the total mass flow of working fluid before entering the precooler, thereby showing potential for higher cycle efficiency. Thermodynamic model for a recompression T-CO_2 power cycle has been developed with waste heat source of 2000 kW and at a temperature of 200 °C. Results obtained from this model are analysed to estimate effects on energetic and exergetic performances of the power cycle with varying pressure and mass recompression ratio. Higher pressure ratio always improves thermodynamic performance of the cycle – both energetic and exergetic. Higher recompression ratio also increases exergetic efficiency of the cycle. However, it increases energy efficiency, only if precooler inlet temperature remains constant. Maximum thermal efficiency of the T-CO_2 cycle with a recompression ratio of 0.26 has been found to be 13.6%. To minimize total irreversibility of the cycle, an optimum ratio of 0.48 was found to be suitable.

  19. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Oh, Seungjin; Ang, Li; Shahzad, Muhammad Wakil; Ismail, Azhar Bin

    2015-01-01

    -driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent

  20. Crop improvement using life cycle datasets acquired under field conditions

    Directory of Open Access Journals (Sweden)

    Keiichi eMochida

    2015-09-01

    Full Text Available Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer designed crops to prevent yield shortfalls because of environmental fluctuations due to future climate change.

  1. Crop improvement using life cycle datasets acquired under field conditions.

    Science.gov (United States)

    Mochida, Keiichi; Saisho, Daisuke; Hirayama, Takashi

    2015-01-01

    Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer "designed crops" to prevent yield shortfalls because of environmental fluctuations due to future climate change.

  2. Advanced codes and methods supporting improved fuel cycle economics - 5493

    International Nuclear Information System (INIS)

    Curca-Tivig, F.; Maupin, K.; Thareau, S.

    2015-01-01

    AREVA's code development program was practically completed in 2014. The basic codes supporting a new generation of advanced methods are the followings. GALILEO is a state-of-the-art fuel rod performance code for PWR and BWR applications. Development is completed, implementation started in France and the U.S.A. ARCADIA-1 is a state-of-the-art neutronics/ thermal-hydraulics/ thermal-mechanics code system for PWR applications. Development is completed, implementation started in Europe and in the U.S.A. The system thermal-hydraulic codes S-RELAP5 and CATHARE-2 are not really new but still state-of-the-art in the domain. S-RELAP5 was completely restructured and re-coded such that its life cycle increases by further decades. CATHARE-2 will be replaced in the future by the new CATHARE-3. The new AREVA codes and methods are largely based on first principles modeling with an extremely broad international verification and validation data base. This enables AREVA and its customers to access more predictable licensing processes in a fast evolving regulatory environment (new safety criteria, requests for enlarged qualification databases, statistical applications, uncertainty propagation...). In this context, the advanced codes and methods and the associated verification and validation represent the key to avoiding penalties on products, on operational limits, or on methodologies themselves

  3. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    Science.gov (United States)

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the

  4. Analysis of thermal cycles and working fluids for power generation in space

    International Nuclear Information System (INIS)

    Tarlecki, Jason; Lior, Noam; Zhang Na

    2007-01-01

    Production of power in space for terrestrial use is of great interest in view of the rapidly rising power demand and its environmental impacts. Space also offers a very low temperature, making it a perfect heat sink for power plants, thus offering much higher efficiencies. This paper focuses on the evaluation and analysis of thermal Brayton, Ericsson and Rankine power cycles operating at space conditions on several appropriate working fluids. Under the examined conditions, the thermal efficiency of Brayton cycles reaches 63%, Ericsson 74%, and Rankine 85%. These efficiencies are significantly higher than those for the computed or real terrestrial cycles: by up to 45% for the Brayton, and 17% for the Ericsson; remarkably 44% for the Rankine cycle even when compared with the best terrestrial combined cycles. From the considered working fluids, the diatomic gases (N 2 and H 2 ) produce somewhat better efficiencies than the monatomic ones in the Brayton and Rankine cycles. The Rankine cycles require radiator areas that are larger by up to two orders of magnitude than those required for the Brayton and Ericsson cycles. The results of the analysis of the sensitivity of the cycle performance parameters to major parameters such as turbine inlet temperature and pressure ratio are presented, equations or examining the effects of fluid properties on the radiator area and pressure drop were developed, and the effects of the working fluid properties on cycle efficiency and on the power production per unit radiator area were explored to allow decisions on the optimal choice of working fluids

  5. Frameworks for improvement: clinical audit, the plan-do-study-act cycle and significant event audit.

    Science.gov (United States)

    Gillam, Steve; Siriwardena, A Niroshan

    2013-01-01

    This is the first in a series of articles about quality improvement tools and techniques. We explore common frameworks for improvement, including the model for improvement and its application to clinical audit, plan-do-study-act (PDSA) cycles and significant event analysis (SEA), examining the similarities and differences between these and providing examples of each.

  6. Model improvements for tritium transport in DEMO fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Tosti, Silvano [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Franza, Fabrizio [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-10-15

    Highlights: • T inventory and permeation of DEMO blankets have been assessed under pulsed operation. • 1-D model for T transport has been developed for the HCLL DEMO blanket. • The 1-D model evaluated T partial pressure and T permeation rate radial profiles. - Abstract: DEMO operation requires a large amount of tritium, which is directly produced inside the reactor by means of Li-based breeders. During its production, recovering and purification, tritium comes in contact with large surfaces of hot metallic walls, therefore it can permeate through the blanket cooling structure, reach the steam generator and finally the environment. The development of dedicated simulation tools able to predict tritium losses and inventories is necessary to verify the accomplishment of the accepted tritium environmental releases as well as to guarantee a correct machine operation. In this work, the FUS-TPC code is improved by including the possibility to operate in pulsed regime: results in terms of tritium inventory and losses for three pulsed scenarios are shown. Moreover, the development of a 1-D model considering the radial profile of the tritium generation is described. By referring to the inboard segment on the equatorial axis of the helium-cooled lithium–lead (HCLL) blanket, preliminary results of the 1-D model are illustrated: tritium partial pressure in Li–Pb and tritium permeation in the cooling and stiffening plates by assuming several permeation reduction factor (PRF) values. Future improvements will consider the application of the model to all segments of different blanket concepts.

  7. [Primary care for diabetic patients: a quality improvement cycle].

    Science.gov (United States)

    Navarro-Martínez, A; Suárez-Beke, M P; Sánchez-Nicolás, J A; Lázaro-Aragues, P; de Jesús Jiménez-Vázquez, E; Huertas-de Mora, O

    2014-01-01

    The aim of this study was to evaluate and improve the quality of medical care provided to diabetic patients following the standards proposed by the American Diabetes Association. The study was conducted in three phases by analyzing data from the computerized clinical history of a sample of 340 patients. First phase (2010): cross-sectional, descriptive study which assessed the proportion of patients who met the standards related to the screening of diabetes, and goals of control and treatment. Subsequently, health professionals reviewed the results in order to promote the implementation of corrective action. Finally (2012), a new assessment with the same standards was performed. An increase in the number of patients treated with insulin (12.7% in 2010 and 20.2% in 2012) was observed (P < .01). There were also percentage increases in the number of patients who met the screening standards as regards analytical determinations: glycosylated hemoglobin (from 44.4% to 68.2%), lipid profile (47.6%-73.8%), creatinine (32.5% - 73.5%), and albumin-creatinine ratio (9.2%-24.4%) (P < .001). Only 6.4% (CI: 3.2- 9.8) of diabetic patients attained the composite target of glycosylated hemoglobin < 7%, blood pressure < 130/80 mmHg and low-density lipoprotein cholesterol < 100 mg/dl in 2012. This study shows that medical care has improved the goals related to analytical determinations and the number of insulin-treated diabetic type 2 patients. An optimal level was also maintained in metabolic control of diabetes, but there was still poor control of risk factors for cardiovascular disease. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  8. Advances in defining a closed brayton conversion system for future ARIANE 5 space nuclear power applications

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1986-06-01

    The present European ARIANE space program will expand into the large ARIANE 5 launch vehicle from 1995. It is assumed that important associated missions would require the generation of 200 kWe or more in space during several years at the very beginning of the next century. It is the reason why, in 1983, the French C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) have initiated preliminary studies of a space nuclear power system. The currently selected conversion system is a closed Brayton cycle. Reasons for this choice are given: high efficiency of a dynamic system; monophasic, inert working fluid; extensive turbomachinery experience, etc... A key aspect of the project is the adaptation to the heat rejection conditions, namely to the radiator geometry which depends upon the dimensions of the ARIANE 5 spacecraft. In addition to usual concepts already studied for space applications, another cycle arrangement is being investigated which could offer satisfactory compromises among many considerations, increase the efficiency of the system and make it more attractive as far as the specific mass (kg/kWe), the specific radiator area (m 2 /kWe) and various technological aspects are concerned. Comparative details are presented

  9. Overview of CNES-CEA joint programme on space nuclear Brayton systems

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Chaudourne, S.; Keirle, P.; Tilliette, Z.; Vrillon, B.

    1990-01-01

    In 1982, a cooperative programme on space nuclear power systems was initiated between the French Centre National d'Etudes Spatiales (CNES) and the Commissariat a l'Energie Atomique (CEA), to assess the feasibility, lead time, cost, competitiveness and development prospects for space nuclear power systems (SPS) in the 20 to 200 kWe range. The present three-year study phase is primarily oriented toward the assessment of various reactor candidate technologies and system design options for nuclear SPS in the 20 kWe class, which corresponds to the expected power needs of the first European space missions, anticipated to begin in 2005. This paper presents an overview of the present programme phase, with emphasis on design studies of three reference design concepts for 20 kWe turboelectric nuclear power systems selected so as to cover a wide range of reactor temperatures and corresponding technologies. The systems differ mainly in their nuclear reactors which are: the Liquid Metal Fast Breeder derivative or UO 2 /Na/Stainless steel -650 0 C; the High Temperature Gas-cooled derivative or UO 2 /direct cycle/super alloys - 850 0 C; and the UN/Li/MoRe alloy - 1120 0 C. All three systems use a Brayton cycle with recuperation for power conversion. (author)

  10. Thermodynamics Properties of Binary Gas Mixtures for Brayton Space Nuclear Power System

    International Nuclear Information System (INIS)

    You Ersheng; Shi Lei; Zhang Zuoyi

    2014-01-01

    Space nuclear power system with closed Brayton cycle has the potential advantages of high cycle efficiency. It can be achieved to limit the specific mass of the system with a competitive design scheme, so as to strengthen the advantage of the nuclear energy applying in space propulsion and electric generating compared to solar or chemical propellant. Whereby, the thermodynamic properties of working fluids have a significant influence on the performance of the plant. Therefore, two binary mixtures helium-nitrogen and helium-carbon dioxide are introduced to analysis the variation in the transport and heat transfer capacity of working fluids. Based on the parameters of pure gases, the heat transfer coefficient, pressure losses and aerodynamic loading are calculated as a function of mole fraction at the temperature of 400 K and 1200 K, as well as the typical operating pressure of 2 MPa. Results indicated that the mixture of helium-carbon dioxide with a mole fraction of 0.4 is a more attractive choice for the high heat transfer coefficient, low aerodynamic loading and acceptable pressure losses in contrast to helium-nitrogen and other mixing ratios of helium-carbon dioxide. Its heat transfer coefficient is almost 20% more than that of pure helium and the normalized aerodynamic loading is less than 34% at 1200 K. However; the pressure losses are a little higher with ~3.5 times those of pure helium. (author)

  11. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    Science.gov (United States)

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  12. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.

    2011-01-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550 C and 750 C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in

  13. A closed Brayton power conversion unit concept for nuclear electric propulsion for deep space missions

    International Nuclear Information System (INIS)

    Joyner, Claude Russell II; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt and Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level

  14. A comparison of improved power plant technologies on lignite with (PFBC) and (IGCC) cycles

    International Nuclear Information System (INIS)

    Cherepnalkovski, Ilija

    1997-01-01

    Technologies and process diagrams descriptions for PFBC (Pressurised Fluidized Bed Combustion) and IGCC (Integrated Gasification Combined Cycle) are presented as for improved cycles with modern clean coal technologies, the most popular currently. A special attention is paid to the possibilities for Macedonian lignites use on the power plants with PFBC and IGCC cycles. The comparison of the above mention technologies has been done particularly on the desulfurization, NO x reduction, ash elimination and its use in the building and construction industries. A comparison between the power plants with PFBC and IGCC cycles is made by the following criteria: cycle efficiency, desulfurization and nitrogen oxides reduction, power plant complexity and their cost, as well as plant reliability. (Author)

  15. An Improved Multi-Evaporator Adsorption Desalination Cycle for GCC Countries

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-29

    In Gulf Cooperation Council (GCC) countries, cogeneration based desalination processes consume almost 25% of the total annual energy and it is increasing at 2.2% annually. The high fresh water demand is attributed to high gross domestic product (GDP) growth rate, 24%, and the high water languishes, more than 10%. Over the past two decades, GCC countries have spent tens of billion dollars to expand their present and planned desalination capacities. It is foreseeable that with business-as-usual scenario, the domestic oil consumption of Saudi Arabia may exceed its production capacity by 2040. Innovative and sustainable water production solutions are needed urgently for future water supplies without environment impact. In this paper, a hybrid desalination cycle is proposed by integrating multi cascaded-evaporators (CE) with an adsorption cycle (AD). In this new innovative cycle, AD desorbed vapors are supplied to the CE to exploit the latent condensation energy within the evaporators arranged in both pressures-temperatures cascaded manner to improves the performance ratio (PR) of the cycle. Hybrid cycle shows more than 10 folds water production improvement as compared to conventional AD cycle due to synergetic effect. This concept is demonstrated in a laboratory pilot plant using a 3 cascaded evaporators pilot and simulation of 8 evaporators hybrid cycle.

  16. Using Iterative Plan-Do-Study-Act Cycles to Improve Teaching Pedagogy.

    Science.gov (United States)

    Murray, Elizabeth J

    2018-01-15

    Most students entering nursing programs today are members of Generation Y or the Millennial generation, and they learn differently than previous generations. Nurse educators must consider implementing innovative teaching strategies that appeal to the newest generation of learners. The Plan-Do-Study-Act cycle is a framework that can be helpful when planning, assessing, and continually improving teaching pedagogy. This article describes the use of iterative Plan-Do-Study-Act cycles to implement a change in teaching pedagogy.

  17. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas

    2015-01-01

    to improve the boiling process. Optimizations are carried out for eight hydrocarbon mixtures for hot fluid inlet temperatures at 120 °C and 90 °C, using a genetic algorithm to determine the cycle conditions for which the net power output is maximized. The most promising mixture is an isobutane....../pentane mixture which, for the 90 °C hot fluid inlet temperature case, achieves a 14.5% higher net power output than an optimized organic Rankine cycle using the same mixture. Two parameter studies suggest that optimum conditions for the organic split-cycle are when the temperature profile allows the minimum...

  18. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    International Nuclear Information System (INIS)

    1976-01-01

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined

  19. Brayton Isotope Power System, Design Integrity Checklist (BIPS-DIC)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.G.

    1976-06-10

    A preliminary Failure Modes, Effects and Criticality Analysis (FMECA) for the BIPS Flight System (FS) was published as AiResearch Report 76-311709 dated January 12, 1976. The FMECA presented a thorough review of the conceptual BIPS FS to identify areas of concern and activities necessary to avoid premature failures. In order to assure that the actions recommended by the FMECA are effected in both the FS and the Ground Demonstration System (GDS), a checklist (the BIPS-DIC) was prepared for the probability of occurrence of those failure modes that rated highest in criticality ranking. This checklist was circulated as an attachment to AiResearch Coordination Memo No. BIPS-GDS-A0106 dated January 23, 1976. The Brayton Isotope Power System-Design Integrity Checklist (BIPS-DIC) has been revised and is presented. Additional entries have been added that reference failure modes determined to rank highest in criticality ranking. The checklist will be updated periodically.

  20. A 4 K tactical cryocooler using reverse-Brayton machines

    Science.gov (United States)

    Zagarola, M.; Cragin, K.; McCormick, J.; Hill, R.

    2017-12-01

    Superconducting electronics and spectral-spatial holography have the potential to revolutionize digital communications, but must operate at cryogenic temperatures, near 4 K. Liquid helium is undesirable for military missions due to logistics and scarcity, and commercial low temperature cryocoolers are unable to meet size, weight, power, and environmental requirements for many missions. To address this need, Creare is developing a reverse turbo-Brayton cryocooler that provides refrigeration at 4.2 K and rejects heat at 77 K to an upper-stage cryocooler or through boil-off of liquid nitrogen. The cooling system is predicted to reduce size, weight, and input power by at least an order of magnitude as compared to the current state-of-the-art 4.2 K cryocooler. For systems utilizing nitrogen boil-off, the boil-off rate is reasonable. This paper reviews the design of the cryocooler, the key components, and component test results.

  1. Mission environments for the Isotope Brayton Flight System (preliminary)

    International Nuclear Information System (INIS)

    1975-01-01

    The mission environments for the Isotope Brayton Flight Systems (IBFS) are summarized. These are based on (1) those environments established for the MHW-RTG system in the LES 8/9 and Mariner J/S and (2) engineering projections of those likely to exit for the IBFS. The pre-launch environments address transportation, storage, handling and assembly (to spacecraft) and checkout, field transportation, and launch site operations. Launch environments address the Titan IIIC and Shuttle launch vehicles. Operational mission environments address normal space temperature and meteoroide environments. Special environments that may be applicable to DOD missions are not included. Accident environments address explosion and fire for the Titan IIIC and the Shuttle, reentry, earth impact and post impact

  2. Ideal cycle analysis of a regenerative pulse detonation engine for power production

    Science.gov (United States)

    Bellini, Rafaela

    can be obtained as a function of fuel-oxidizer ratio. The Humphrey and ZND cycles are studied in comparison with the Brayton cycle for different fuel-air mixtures such as methane, propane and hydrogen. The validity and limitations of the ZND and Humphrey cycles related to the detonation process are discussed and the criteria for the selection of the best model for the PDE cycle are explained. It is seen that the ZND cycle is a more appropriate representation of the PDE cycle. Next, the thermal and electrical power generation efficiencies for the PDE are compared with those of the deflagration based Brayton cycle. While the Brayton cycle shows an efficiency of 0 at a compressor pressure ratio of 1, the thermal efficiency for the ZND cycle starts out at 42% for hydrogen--air and then climbs to a peak of 66% at a compression ratio of 7 before falling slowly for higher compression ratios. The Brayton cycle efficiency rises above the PDEs for compression ratios above 23. This finding supports the theoretical advantage of PDEs over the gas turbines because PDEs only require a fan or only a few compressor stages, thereby eliminating the need for heavy compressor machinery, making the PDEs less complex and therefore more cost effective than other engines. Lastly, a regeneration study is presented to analyze how the use of exhaust gases can improve the performance of the system. The thermal efficiencies for the regenerative ZND cycle are compared with the efficiencies for the non--regenerative cycle. For a hydrogen--air mixture the thermal efficiency increases from 52%, for a cycle without regeneration, to 78%, for the regenerative cycle. The efficiency is compared with the Carnot efficiency of 84% which is the maximum possible theoretical efficiency of the cycle. When compared to the Brayton cycle thermal efficiencies, the regenerative cycle shows efficiencies that are always higher for the pressure ratio studied of 5 ≤ pic ≤ 25, where pi c the compressor pressure ratio

  3. Cost Analysis of an Air Brayton Receiver for a Solar Thermal Electric Power System in Selected Annual Production Volumes

    Science.gov (United States)

    1981-01-01

    Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.

  4. The use of gas based energy conversion cycles for sodium fast reactors

    International Nuclear Information System (INIS)

    Saez, M.; Haubensack, D.; Alpy, N.; Gerber, A.; Daid, F.

    2008-01-01

    In the frame of Sodium Fast Reactors, CEA, AREVA and EDF are involved in a substantial effort providing both significant expertise and original work in order to investigate the interest to use a gas based energy conversion cycle as an alternative to the classical steam cycle. These gas cycles consist in different versions of the Brayton cycle, various types of gas being considered (helium, nitrogen, argon, separately or mixed, sub or supercritical carbon dioxide) as well as various cycle arrangements (indirect, indirect / combined cycles). The interest of such cycles is analysed in details by thermodynamic calculations and cycle optimisations. The objective of this paper is to provide a comparison between gas based energy conversion cycles from the viewpoint of the overall plant efficiency. Key factors affecting the Brayton cycle efficiency include the turbine inlet temperature, compressors and turbine efficiencies, recuperator effectiveness and cycle pressure losses. A nitrogen Brayton cycle at high pressure (between 100 and 180 bar) could appear as a potential near-term solution of classical gas power conversion system for maximizing the plant efficiency. At long-term, supercritical carbon dioxide Brayton cycle appears very promising for Sodium Fast Reactors, with a potential of high efficiency using even at a core outlet temperature of 545 deg. C. (authors)

  5. Parametric studies on different gas turbine cycles for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Jie; Gu Yihua

    2005-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with turbine cycle is considered as one of the leading candidates for future nuclear power plants. In this paper, the various types of HTGR gas turbine cycles are concluded as three typical cycles of direct cycle, closed indirect cycle and open indirect cycle. Furthermore they are theoretically converted to three Brayton cycles of helium, nitrogen and air. Those three types of Brayton cycles are thermodynamically analyzed and optimized. The results show that the variety of gas affects the cycle pressure ratio more significantly than other cycle parameters, however, the optimized cycle efficiencies of the three Brayton cycles are almost the same. In addition, the turbomachines which are required for the three optimized Brayton cycles are aerodynamically analyzed and compared and their fundamental characteristics are obtained. Helium turbocompressor has lower stage pressure ratio and more stage number than those for nitrogen and air machines, while helium and nitrogen turbocompressors have shorter blade length than that for air machine

  6. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    Science.gov (United States)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  7. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the meeting were: - To identify the main issues and technical features that affect capital and energy production costs of fast reactors and related fuel cycle facilities; - To present fast reactor concepts and designs with enhanced economic characteristics, as well as innovative technical solutions (components, subsystems, etc.) that have the potential to reduce the capital costs of fast reactors and related fuel cycle facilities; - To present energy models and advanced tools for the cost assessment of innovative fast reactors and associated nuclear fuel cycles; - To discuss the results of studies and on-going R&D activities that address cost reduction and the future economic competitiveness of fast reactors; and - To identify research and technology development needs in the field, also in view of new IAEA initiatives to help and support Member States in improving the economic competitiveness of fast reactors and associated nuclear fuel cycles

  8. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the meeting were: • To identify the main issues and technical features that affect capital and energy production costs of fast reactors and related fuel cycle facilities; • To present fast reactor concepts and designs with enhanced economic characteristics, as well as innovative technical solutions (components, subsystems, etc.) that have the potential to reduce the capital costs of fast reactors and related fuel cycle facilities; • To present energy models and advanced tools for the cost assessment of innovative fast reactors and associated nuclear fuel cycles; • To discuss the results of studies and ongoing R&D activities that address cost reduction and the future economic competitiveness of fast reactors; • To identify research and technology development needs in the field, also in view of new IAEA initiatives to help and support Member States in improving the economic competitiveness of fast reactors and associated nuclear fuel cycles

  9. Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users.

    Science.gov (United States)

    Graham-Paulson, Terri; Perret, Claudio; Goosey-Tolfrey, Victoria

    2016-06-25

    Caffeine supplementation during whole-/lower-body exercise is well-researched, yet evidence of its effect during upper-body exercise is equivocal. The current study explored the effects of caffeine on cycling/handcycling 10 km time trial (TT) performance in habitual caffeine users. Eleven recreationally trained males (mean (SD) age 24 (4) years, body mass 85.1 (14.6) kg, cycling/handcycling peak oxygen uptake ( V · peak) 42.9 (7.3)/27.6 (5.1) mL∙kg∙min(-1), 160 (168) mg/day caffeine consumption) completed two maximal incremental tests and two familiarization sessions. During four subsequent visits, participants cycled/handcycled for 30 min at 65% mode-specific V · peak (preload) followed by a 10 km TT following the ingestion of 4 mg∙kg(-1) caffeine (CAF) or placebo (PLA). Caffeine significantly improved cycling (2.0 (2.0)%; 16:35 vs. 16:56 min; p = 0.033) but not handcycling (1.8 (3.0)%; 24:10 vs. 24:36 min; p = 0.153) TT performance compared to PLA. The improvement during cycling can be attributed to the increased power output during the first and last 2 km during CAF. Higher blood lactate concentration (Bla) was reported during CAF compared to PLA (p Caffeine improved cycling but not handcycling TT performance. The lack of improvement during handcycling may be due to the smaller active muscle mass, elevated (Bla) and/or participants' training status.

  10. The model for the strategic management of technology. The improvement cycle and matrixes deployment QFD

    International Nuclear Information System (INIS)

    Benavides Velasco, C. A.; Quintana Garcia, C.

    2007-01-01

    In spite of the importance of innovative firms, few contributions study in depth the strategic management of their technological resources. After describing the process of strategic management of technology, we propose a model that enables the application of that process and guarantees organizational flexibility in technological companies. For it, such a process has been adapted to She wart cycle (Deeming wheel) and combined with the quality function deployment (QFD). As a result, we propose the improvement cycle of technology. It contains two matrixes that allow identifying and prioritizing with greater clarity the activities related to the management of technological resources. (Authors)

  11. Improvement of performance operation and cycle efficiency of Al Anbar combined power plant

    International Nuclear Information System (INIS)

    Jabbar, Mohammed Q.

    2014-01-01

    The present work will be focusing on available solution which can serve to increase total efficiency of Al Anbar combined cycle power plant - CCPP, and thus to improve the operation performance as much as possible in order to decrease hydrocarbon, CO2, NOx emissions to environment.The simulation and calculations were performed by program software cycle-tempo software. The results were compared with basic design of Alanbar power plant after making modernization with solar tower receiver system-STRS, which represented a heat source in preheat process for a compressor air. Key Words: CCPP, STRS, Solar potential energy, fuel consumption, hydrocarbon emission

  12. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... are identified during the acceleration and deceleration periods of the motor. The main causes for these adverse thermal cycles have been presented and, consequently, the influence of the deceleration slope, modulation technique and reactive current on the thermal cycles has been analyzed. Finally, the improved...

  13. Variability in Cadence During Forced Cycling Predicts Motor Improvement in Individuals With Parkinson’s Disease

    Science.gov (United States)

    Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.

    2014-01-01

    Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045

  14. Health technology assessment to improve the medical equipment life cycle management.

    Science.gov (United States)

    Margotti, Ana E; Ferreira, Filipa B; Santos, Francisco A; Garcia, Renato

    2013-01-01

    Health technology assessment (HTA) is a tool to support decision making that is intended to assist healthcare managers in their strategic decisions. The use of HTA as a tool for clinical engineering is especially relevant in the domain of the medical equipment once it could improve the performance of the medical equipment. It would be done by their systematically evaluation in several aspects, in their life cycle. In Brazil, the Institute of Biomedical Engineering (IEB-UFSC) through the clinical engineering area has been working on the development of methodologies and improvements on HTA for medical equipment. Therefore, this paper presents the effort to create specific methodologies that will improve the dissemination of HTA, focusing on incorporation and utilization phase of the medical equipment life cycle. This will give a better support to the decision makers in the management of the health care system.

  15. Can FES-augmented active cycling training improve locomotion in post-acute elderly stroke patients?

    Directory of Open Access Journals (Sweden)

    Elisabetta Peri

    2016-06-01

    Full Text Available Recent studies advocated the use of active cycling coupled with functional electrical stimulation to induce neuroplasticity and enhance functional improvements in stroke adult patients. The aim of this work was to evaluate whether the benefits induced by such a treatment are superior to standard physiotherapy. A single-blinded randomized controlled trial has been performed on post-acute elderly stroke patients. Patients underwent FES-augmented cycling training combined with voluntary pedaling or standard physiotherapy. The intervention consisted of fifteen 30-minutes sessions carried out within 3 weeks. Patients were evaluated before and after training, through functional scales, gait analysis and a voluntary pedaling test. Results were compared with an age-matched healthy group. Sixteen patients completed the training. After treatment, a general improvement of all clinical scales was obtained for both groups. Only the mechanical efficiency highlighted a group effect in favor of the experimental group. Although a group effect was not found for any other cycling or gait parameters, the experimental group showed a higher percentage of change with respect to the control group (e.g. the gait velocity was improved of 35.4% and 25.4% respectively, and its variation over time was higher than minimal clinical difference for the experimental group only. This trend suggests that differences in terms of motor recovery between the two groups may be achieved increasing the training dose. In conclusion, this study, although preliminary, showed that FES-augmented active cycling training seems to be effective in improving cycling and walking ability in post-acute elderly stroke patients. A higher sample size is required to confirm results.

  16. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In recent years, engineering oriented work, rather than basic research and development (R&D), has led to significant progress in improving the economics of innovative fast reactors and associated fuel cycle facilities, while maintaining and even enhancing the safety features of these systems. Optimization of plant size and layout, more compact designs, reduction of the amount of plant materials and the building volumes, higher operating temperatures to attain higher generating efficiencies, improvement of load factor, extended core lifetimes, high fuel burnup, etc. are good examples of achievements to date that have improved the economics of fast neutron systems. The IAEA, through its Technical Working Group on Fast Reactors (TWG-FR) and Technical Working Group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), devotes many of its initiatives to encouraging technical cooperation and promoting common research and technology development projects among Member States with fast reactor and advanced fuel cycle development programmes, with the general aim of catalysing and accelerating technology advances in these fields. In particular the theme of fast reactor deployment, scenarios and economics has been largely debated during the recent IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, held in Paris in March 2013. Several papers presented at this conference discussed the economics of fast reactors from different national and regional perspectives, including business cases, investment scenarios, funding mechanisms and design options that offer significant capital and energy production cost reductions. This Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics addresses Member States’ expressed need for information exchange in the field, with the aim of identifying the main open issues and launching possible initiatives to help and

  17. The urban harvest approach as framework and planning tool for improved water and resource cycles.

    Science.gov (United States)

    Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus).

  18. A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement.

    Science.gov (United States)

    Yin, Chieh; Hsueh, Ya-Hsin; Yeh, Chun-Yu; Lo, Hsin-Chang; Lan, Yi-Ting

    2016-01-01

    Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS), which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI) between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p = 0.046) and in force plate the stand balance has also improved by 0.29 (p = 0.031); thus both methods show the significant difference.

  19. A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement

    Directory of Open Access Journals (Sweden)

    Chieh Yin

    2016-01-01

    Full Text Available Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS, which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p=0.046 and in force plate the stand balance has also improved by 0.29 (p=0.031; thus both methods show the significant difference.

  20. Resveratrol Improves Cell Cycle Arrest in Chronic Prostatitis Rats, by C-kit/SCF Suppression.

    Science.gov (United States)

    He, Yi; Zeng, Huizhi; Yu, Yang; Zhang, Jiashu; Zeng, Xiaona; Gong, Fengtao; Liu, Qi; Yang, Bo

    2017-08-01

    Chronic prostatitis (CP) with complex pathogenesis is difficult for treatment. c-kit has been associated with the control of cell proliferation of prostate cells. This study aims to evaluate the role of resveratrol, an activator of Sirt1, in regulating the expression of c-kit in CP and investigate the consequent effects on cell cycle. Rat model of CP was established through subcutaneous injections of diphtheria-pertussis-tetanus vaccine and subsequently treated with resveratrol. Hematoxylin and eosin staining was performed to identify the histopathological changes in prostates. Western blotting and immunohistochemical staining examined the expression level of c-kit, stem cell factor (SCF), Sirt1, and cell cycle-associated proteins. The model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Gland lumen diameter was also significantly smaller; the activity of c-kit/SCF in the CP rats was increased significantly compared to the control group. Meanwhile, the cell cycle proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. Dysregulation of cell cycle was involved in the pathological processes of CP, which was improved after resveratrol treatment by the downregulation of c-kit/SCF by activating Sirt1.

  1. Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the conceptual Brayton Isotope Power System (BIPS) Flight System

    International Nuclear Information System (INIS)

    Miller, L.G.

    1976-01-01

    A failure modes, effects and criticality analysis (FMECA) was made of the Brayton Isotope Power System Flight System (BIPS-FS) as presently conceived. The components analyzed include: Mini-BRU; Heat Source Assembly (HSA); Mini-Brayton Recuperator (MBR); Space Radiator; Ducts and Bellows, Insulation System; Controls; and Isotope Heat Source (IHS)

  2. Hypothesis driven drug design: improving quality and effectiveness of the design-make-test-analyse cycle.

    Science.gov (United States)

    Plowright, Alleyn T; Johnstone, Craig; Kihlberg, Jan; Pettersson, Jonas; Robb, Graeme; Thompson, Richard A

    2012-01-01

    In drug discovery, the central process of constructing and testing hypotheses, carefully conducting experiments and analysing the associated data for new findings and information is known as the design-make-test-analyse cycle. Each step relies heavily on the inputs and outputs of the other three components. In this article we report our efforts to improve and integrate all parts to enable smooth and rapid flow of high quality ideas. Key improvements include enhancing multi-disciplinary input into 'Design', increasing the use of knowledge and reducing cycle times in 'Make', providing parallel sets of relevant data within ten working days in 'Test' and maximising the learning in 'Analyse'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Uranium resource utilization improvements in the once-through PWR fuel cycle

    International Nuclear Information System (INIS)

    Matzie, R.A.

    1980-04-01

    In support of the Nonproliferation Alternative Systems Assessment Program (NASAP), Combustion Engineering, Inc. performed a comprehensive analytical study of potential uranium utilization improvement options that can be backfit into existing PWRs operating on the once-through uranium fuel cycle. A large number of potential improvement options were examined as part of a preliminary survey of candidate options. The most attractive of these, from the standpoint of uranium utilization improvement, economic viability, and ease of implementation, were then selected for detailed analysis and were included in a single composite improvement case. This composite case represents an estimate of the total savings in U 3 O 8 consumption that can be achieved in current-design PWRs by implementing improvements which can be developed and demonstrated in the near term. The improvement options which were evaluated in detail and included in the composite case were a new five-batch, extended-burnup fuel management scheme, low-leakage fuel management, modified lattice designs, axial blankets, reinsertion of initial core batches, and end-of-cycle stretchout

  4. An improved technology for decontaminating ruthenium in uranium purification cycle by hydroxylamine pretreatment

    International Nuclear Information System (INIS)

    Qi Zhanshun; Zhu Zhixuan; Zhang Pilu

    1996-01-01

    The Influences of hydroxylamine concentration, pretreatment time, acidity and the concentration of stabilizer have been studied, and the best pretreatment condition for the improvement of Ru decontamination in uranium purification cycle by hydroxylamine pretreatment has been obtained. The results show that no satisfactory result can be obtained by solely using hydroxylamine as pretreatment agent unless a small amount of hydrazine is added into the pretreatment system as stabilizer

  5. Project Management Life Cycle Models to Improve Management in High-rise Construction

    Science.gov (United States)

    Burmistrov, Andrey; Siniavina, Maria; Iliashenko, Oksana

    2018-03-01

    The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models) based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  6. Project Management Life Cycle Models to Improve Management in High-rise Construction

    Directory of Open Access Journals (Sweden)

    Burmistrov Andrey

    2018-01-01

    Full Text Available The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  7. Fuel performance and operation experience of WWER-440 fuel in improved fuel cycle

    International Nuclear Information System (INIS)

    Gagarinski, A.; Proselkov, V.; Semchenkov, Yu.

    2007-01-01

    The paper summarizes WWER-440 second-generation fuel operation experience in improved fuel cycles using the example of Kola NPP units 3 and 4. Basic parameters of fuel assemblies, fuel rods and uranium-gadolinium fuel rods, as well as the principal neutronic parameters and burn-up achieved in fuel assemblies are presented. The paper also contains some data concerning the activity of coolant during operation (Authors)

  8. FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident.

    Science.gov (United States)

    Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E; Newton, Jennifer H; Lee, Samuel C K; Gregory, Chris M

    2018-03-01

    After a cerebrovascular accident (CVA) aerobic deconditioning contributes to diminished physical function. Functional electrical stimulation (FES)-assisted cycling is a promising exercise paradigm designed to target both aerobic capacity and locomotor function. This pilot study aimed to evaluate the effects of an FES-assisted cycling intervention on aerobic capacity and locomotor function in individuals post-CVA. Eleven individuals with chronic (>6 months) post-CVA hemiparesis completed an 8-wk (three times per week; 24 sessions) progressive FES-assisted cycling intervention. V˙O2peak, self-selected, and fastest comfortable walking speeds, gait, and pedaling symmetry, 6-min walk test (6MWT), balance, dynamic gait movements, and health status were measured at baseline and posttraining. Functional electrical stimulation-assisted cycling significantly improved V˙O2peak (12%, P = 0.006), self-selected walking speed (SSWS, 0.05 ± 0.1 m·s, P = 0.04), Activities-specific Balance Confidence scale score (12.75 ± 17.4, P = 0.04), Berg Balance Scale score (3.91 ± 4.2, P = 0.016), Dynamic Gait Index score (1.64 ± 1.4, P = 0.016), and Stroke Impact Scale participation/role domain score (12.74 ± 16.7, P = 0.027). Additionally, pedal symmetry, represented by the paretic limb contribution to pedaling (paretic pedaling ratio [PPR]) significantly improved (10.09% ± 9.0%, P = 0.016). Although step length symmetry (paretic step ratio [PSR]) did improve, these changes were not statistically significant (-0.05% ± 0.1%, P = 0.09). Exploratory correlations showed moderate association between change in SSWS and 6-min walk test (r = 0.74), and moderate/strong negative association between change in PPR and PSR. These results support FES-assisted cycling as a means to improve both aerobic capacity and locomotor function. Improvements in SSWS, balance, dynamic walking movements, and participation in familial and societal roles are important targets for rehabilitation of individuals

  9. Cost and price estimate of Brayton and Stirling engines in selected production volumes

    Science.gov (United States)

    Fortgang, H. R.; Mayers, H. F.

    1980-01-01

    The methods used to determine the production costs and required selling price of Brayton and Stirling engines modified for use in solar power conversion units are presented. Each engine part, component and assembly was examined and evaluated to determine the costs of its material and the method of manufacture based on specific annual production volumes. Cost estimates are presented for both the Stirling and Brayton engines in annual production volumes of 1,000, 25,000, 100,000 and 400,000. At annual production volumes above 50,000 units, the costs of both engines are similar, although the Stirling engine costs are somewhat lower. It is concluded that modifications to both the Brayton and Stirling engine designs could reduce the estimated costs.

  10. Fuel utilization improvements in a once-through PWR fuel cycle. Final report on Task 6

    International Nuclear Information System (INIS)

    Dabby, D.

    1979-06-01

    In studying the position of the United States Department of Energy, Non-proliferation Alternative Systems Assessment Program, this report determines the uranium saving associated with various improvement concepts applicable to a once-through fuel cycle of a standard four-loop Westinghouse Pressurized Water Reactor. Increased discharged fuel burnup from 33,000 to 45,000 MWD/MTM could achieve a 12% U 3 O 8 saving by 1990. Improved fuel management schemes combined with coastdown to 60% power, could result in U 3 O 8 savings of 6%

  11. Improved thermal cycling durability and PCR compatibility of polymer coated quantum dot

    International Nuclear Information System (INIS)

    Xun Zhe; Guan Yifu; Zhao Xiaoyun

    2013-01-01

    Quantum dots have experienced rapid development in imaging, labeling and sensing in medicine and life science. To be suitable for polymerase chain reaction (PCR) assay, we have tested QD thermal cycling durability and compatibility, which have not been addressed in previous reports. In this study, we synthesized CdSe/ZnS QDs with a surface modification with high-MW amphiphilic copolymers and observed that Mg 2+ ions in the PCR reaction could induce the QDs to precipitate and reduce their fluorescence signal significantly after thermal cycling. To overcome this problem, we used mPEG2000 to conjugate the QD surface for further protection, and found that this modification enables QDs to endure 40 thermal cycles in the presence of other components essential for PCR reactions. We have also identified that QDs have different effects on rTaq and Ex Taq polymerization systems. A high QD concentration could apparently reduce the PCR efficiency, but this inhibition was relieved significantly in the Ex PCR system as the concentration of Ex Taq polymerase was increased. Real-time PCR amplification results showed that QDs could provide a sufficiently measurable fluorescence signal without excessively inhibiting the DNA amplification. Based on this improved thermal cycling durability and compatibility with the PCR system, QDs have the potential to be developed as stable fluorescent sensors in PCR and real-time PCR amplification. (paper)

  12. Blastocyst transfer does not improve cycle outcome as compared to D3 transfer in antagonist cycles with an elevated progesterone level on the day of hCG.

    Science.gov (United States)

    Demirel, Cem; Aydoğdu, Serkan; Özdemir, Arzu İlknur; Keskin, Gülşah; Baştu, Ercan; Buyru, Faruk

    2017-09-01

    To evaluate the association between progesterone elevation on the day of human chorionic gonadotropin (hCG) administration and clinical pregnancy rates of gonadotropin-releasing hormone (GnRH) antagonist in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles with the transfer of embryos at different developmental stages (day-3 versus day-5 ETs). This is a retrospective analysis of fresh IVF/ICSI; 194 cycles out of 2676 conducted in a single center. A total of 2676 cycles were analyzed, of which 386 had no progesterone measurements available. Two hundred eighteen cycles had progesterone elevation (p>1.5 ng/mL) giving an overall incidence of 9.5%. Twenty-four cycles were excluded from further analysis. Of the remaining 194 cycles, 151 had day-3 transfers and 43 had blastocyst transfers. There was no statistically significant difference in pregnancy and clinical pregnancy rates per transfer between the D3-ET and D5-ET groups (46% vs. 49%, and 39% vs. 35%, respectively). The results of this study suggest that blastocyst transfer does not improve cycle outcomes compared with D3 transfer in GnRH antagonist cycles with an elevated progesterone level on the day of hCG.

  13. Assisted Hatching and Intracytoplasmic Sperm Injection are not Associated with Improved Outcomes in ART Cycles for Diminished Ovarian Reserve: An Analysis of US Cycles from 2004–2011

    Science.gov (United States)

    Butts, Samantha F.; Owen, Carter; Mainigi, Monica; Senapati, Suneeta; Seifer, David B.; Dokras, Anuja

    2014-01-01

    Objective To investigate the impact of intracytoplasmic sperm injection (ICSI) and assisted hatching (AH) on ART outcomes in cycles with diminished ovarian reserve (DOR) as the primary diagnosis. Design Retrospective cohort study of cycles from the SART-CORS database. Setting NA. Patient(s) A total of 422,949 fresh, non-donor, initial ART cycles of which 8,597 were diagnosed with only elevated FSH and 38,926 were diagnosed with only DOR according to the SART DOR categorization. Intervention(s) None. Main Outcome Measure(s) Live birth and clinical pregnancy rates. Result(s) ICSI and AH were associated with diminished odds of live birth in SART DOR only cycles (AOR, 95% CI 0.88, 0.81–0.96 for ICSI; AOR, 95% CI 0.77 0.71–0.84 for AH). No association between either ICSI or AH in Elevated FSH only cycles was observed. The combination of ICSI and AH resulted in significantly lower odds of live birth in SART DOR only cycles but not in Elevated FSH only cycles. Conclusion(s) In initial ART cycles for which the only indication relates to a diagnosis of diminished ovarian reserve, assisted hatching and ICSI are not associated with improved live birth rates. PMID:25086790

  14. Competitor presence reduces internal attentional focus and improves 16.1km cycling time trial performance.

    Science.gov (United States)

    Williams, Emily L; Jones, Hollie S; Andy Sparks, S; Marchant, David C; Midgley, Adrian W; Mc Naughton, Lars R

    2015-07-01

    Whilst the presence of a competitor has been found to improve performance, the mechanisms influencing the change in selected work rates during direct competition have been suggested but not specifically assessed. The aim was to investigate the physiological and psychological influences of a visual avatar competitor during a 16.1-km cycling time trial performance, using trained, competitive cyclists. Randomised cross-over design. Fifteen male cyclists completed four 16.1km cycling time trials on a cycle ergometer, performing two with a visual display of themselves as a simulated avatar (FAM and SELF), one with no visual display (DO), and one with themselves and an opponent as simulated avatars (COMP). Participants were informed the competitive avatar was a similar ability cyclist but it was actually a representation of their fastest previous performance. Increased performance times were evident during COMP (27.8±2.0min) compared to SELF (28.7±1.9min) and DO (28.4±2.3min). Greater power output, speed and heart rate were apparent during COMP trial than SELF (pperformance. Competitive cyclists performed significantly faster during a 16.1-km competitive trial than when performing maximally, without a competitor. The improvement in performance was elicited due to a greater external distraction, deterring perceived exertion. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Analyze and Improve Lifetime in 3L-NPC Inverter from Power Cycle and Thermal Balance

    DEFF Research Database (Denmark)

    Chen, Quan; Chen, Zhe; Wang, Qunjing

    2014-01-01

    Three-level Neutral-point-clamped (3L-NPC) topology is becoming a realistic alternative to the conventional one in high-voltage and high-power application. Studies show that the power cycling mean time to failure (MTTF) of the semiconductor bond wire in 3L-NPC inverter system may be very short...... under some common conditions. Firstly, this paper shows the impact of some key parameters on power electronic system lifetime according the analysis of semiconductor failure mechanism. Secondly, a switching frequency reduction method based on the position relationship between the flowing current...... and load voltage is applied to reduce power cycle and switching losses. And then, three-level active neutral point-clamped topology is taken into account to wake the most thermo stressed device. In order to validate the improve lifetime method in this paper, a 2MW 3L-NPC converter used in wind energy has...

  16. An implementation of 7E Learning Cycle Model to Improve Student Self-esteem

    Science.gov (United States)

    Firdaus, F.; Priatna, N.; Suhendra, S.

    2017-09-01

    One of the affective factors that affect student learning outcomes is student self-esteem in mathematics, learning achievement and self-esteem influence each other. The purpose of this research is to know whether self-esteem students who get 7E learning cycle model is better than students who get conventional learning. This research method is a non-control group design. Based on the results obtained that the normal and homogeneous data so that the t test and from the test results showed there are significant differences in self-esteem students learning with 7E learning cycle model compared with students who get conventional learning. The implications of the results of this study are that students should be required to conduct many discussions, presentations and evaluations on classroom activities as these learning stages can improve students’ self-esteem especially pride in the results achieved.

  17. Cooling, freezing and heating with the air cycle: air as the ultimate green refrigerant

    NARCIS (Netherlands)

    Verschoor, M.J.E.

    2000-01-01

    Due to the recent concern about the damage that CFCs cause to the environment (ozone layer, global warming) and the absence of commonly acceptable alternative refrigerants, the search for alternative refrigeration concepts is going on. Air as refrigerant in the Joule-Brayton cycle (air cycle) is one

  18. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  19. Metrics Feedback Cycle: measuring and improving user engagement in gamified eLearning systems

    Directory of Open Access Journals (Sweden)

    Adam Atkins

    2017-12-01

    Full Text Available This paper presents the identification, design and implementation of a set of metrics of user engagement in a gamified eLearning application. The 'Metrics Feedback Cycle' (MFC is introduced as a formal process prescribing the iterative evaluation and improvement of application-wide engagement, using data collected from metrics as input to improve related engagement features. This framework was showcased using a gamified eLearning application as a case study. In this paper, we designed a prototype and tested it with thirty-six (N=36 students to validate the effectiveness of the MFC. The analysis and interpretation of metrics data shows that the gamification features had a positive effect on user engagement, and helped identify areas in which this could be improved. We conclude that the MFC has applications in gamified systems that seek to maximise engagement by iteratively evaluating implemented features against a set of evolving metrics.

  20. Improving evaluation of climate change impacts on the water cycle by remote sensing ET-retrieval

    Directory of Open Access Journals (Sweden)

    S. G. García Galiano

    2015-05-01

    Full Text Available Population growth and intense consumptive water uses are generating pressures on water resources in the southeast of Spain. Improving the knowledge of the climate change impacts on water cycle processes at the basin scale is a step to building adaptive capacity. In this work, regional climate model (RCM ensembles are considered as an input to the hydrological model, for improving the reliability of hydroclimatic projections. To build the RCMs ensembles, the work focuses on probability density function (PDF-based evaluation of the ability of RCMs to simulate of rainfall and temperature at the basin scale. To improve the spatial calibration of the continuous hydrological model used, an algorithm for remote sensing actual evapotranspiration (AET retrieval was applied. From the results, a clear decrease in runoff is expected for 2050 in the headwater basin studied. The plausible future scenario of water shortage will produce negative impacts on the regional economy, where the main activity is irrigated agriculture.

  1. Application of S-CO{sub 2} Cycle for Small Modular Reactor coupled with Desalination System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Bae, Seong Jun; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean small modular reactor, SMART (System-integrated Modular Advanced ReacTor, 100MWe), is designed to achieve enhanced safety and improved economics through reliable passive safety systems, a system simplification and component modularization. SMART can generate electricity and provide water by seawater desalination. However, due to the desalination aspect of SMART, the total amount of net electricity generation is decreased from 100MWe to 90MWe. The authors suggest in this presentation that the reduction of electricity generation can be replenished by applying S-CO{sub 2} power cycle technology. The S-CO{sub 2} Brayton cycle, which is recently receiving significant attention as the next generation power conversion system, has some benefits such as high cycle efficiency, simple configuration, compactness and so on. In this study, the cycle performance analysis of the S-CO{sub 2} cycles for SMART with desalination system is conducted. The simple recuperated S-CO{sub 2} cycle is revised for coupling with desalination system. The three revised layout are proposed for the cycle performance comparison. In this results of the 3rd revised layout, the cycle efficiency reached 37.8%, which is higher than the efficiency of current SMART with the conventional power conversion system 30%.

  2. Application of S-CO_2 Cycle for Small Modular Reactor coupled with Desalination System

    International Nuclear Information System (INIS)

    Lee, Won Woong; Bae, Seong Jun; Lee, Jeong Ik

    2016-01-01

    The Korean small modular reactor, SMART (System-integrated Modular Advanced ReacTor, 100MWe), is designed to achieve enhanced safety and improved economics through reliable passive safety systems, a system simplification and component modularization. SMART can generate electricity and provide water by seawater desalination. However, due to the desalination aspect of SMART, the total amount of net electricity generation is decreased from 100MWe to 90MWe. The authors suggest in this presentation that the reduction of electricity generation can be replenished by applying S-CO_2 power cycle technology. The S-CO_2 Brayton cycle, which is recently receiving significant attention as the next generation power conversion system, has some benefits such as high cycle efficiency, simple configuration, compactness and so on. In this study, the cycle performance analysis of the S-CO_2 cycles for SMART with desalination system is conducted. The simple recuperated S-CO_2 cycle is revised for coupling with desalination system. The three revised layout are proposed for the cycle performance comparison. In this results of the 3rd revised layout, the cycle efficiency reached 37.8%, which is higher than the efficiency of current SMART with the conventional power conversion system 30%

  3. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    Science.gov (United States)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  4. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance.

    Science.gov (United States)

    Lee, J; Kim, H T; Solares, G J; Kim, K; Ding, Z; Ivy, J L

    2015-02-01

    Boosting nitric oxide production during exercise by various means has been found to improve exercise performance. We investigated the effects of a nitric oxide releasing lozenge with added caffeine (70 mg) on oxygen consumption during steady-state exercise and cycling time trial performance using a double-blinded randomized, crossover experimental design. 15 moderately trained cyclists (7 females and 8 males) were randomly assigned to ingest the caffeinated nitric oxide lozenge or placebo 5 min before exercise. Oxygen consumption and blood lactate were assessed at rest and at 50%, 65% and 75% maximal oxygen consumption. Exercise performance was assessed by time to complete a simulated 20.15 km cycling time-trial course. No significant treatment effects for oxygen consumption or blood lactate at rest or during steady-state exercise were observed. However, time-trial performance was improved by 2.1% (p<0.01) when participants consumed the nitric oxide lozenge (2,424±69 s) compared to placebo (2,476±78 s) and without a significant difference in rating of perceived exertion. These results suggest that acute supplementation with a caffeinated nitric oxide releasing lozenge may be a practical and effective means of improving aerobic exercise performance. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Improvement to the gas cycle energy generating installations with heat recuperation

    International Nuclear Information System (INIS)

    Tilliette, Zephyr.

    1977-01-01

    Improvement to the gas cycle energy generating installations with heat recuperation, comprising a heat source, supplying a fluid at high temperature and pressure, an expansion turbine, at least one recuperator fitted to the turbine outlet, a cooler and compressor in series, the compressor returning the high pressure fluid to the source after heat exchange in the recuperator with the low pressure fluid from the turbine. It is characterised in that at least one steam generator is connected to the low pressure end of the recuperator [fr

  6. POSSIBILITIES AND LIMITS OF THE CYCLE OF CONTINUOUS IMPROVEMENT -PDCA AS AN ELEMENT OF LEARNING

    Directory of Open Access Journals (Sweden)

    Celso Machado Junior

    2013-08-01

    Full Text Available The aim of this study is to investigate the possibilities and limits of the use of continuous improvement cycle, PDCA, as a tool that contributes to the development of individual learning in the organization. It is a qualitative, descriptive end uses the case study as a method. It was observed that the practice proposed by PDCA, can be used in the process of knowledge creation in line with the authors in the field, constituting a form of knowledge management within the organization, enabling the creation of tacit knowledge and its explicit transformation were not observed limits for their use.

  7. Improved Electrochemical Cycling Durability in a Nickel Oxide Double-Layered Film.

    Science.gov (United States)

    Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, Alexander; Li, Yao

    2017-11-16

    For the first time, a crystalline-amorphous double-layered NiO x film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ=550 nm. Additionally, the double-layered film has shown better reversibility than that of amorphous and crystalline single-layered films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Improved Function and Reduced Pain after Swimming and Cycling Training in Patients with Osteoarthritis.

    Science.gov (United States)

    Alkatan, Mohammed; Baker, Jeffrey R; Machin, Daniel R; Park, Wonil; Akkari, Amanda S; Pasha, Evan P; Tanaka, Hirofumi

    2016-03-01

    Arthritis and its associated joint pain act as significant barriers for adults attempting to perform land-based physical activity. Swimming can be an ideal form of exercise for patients with arthritis. Yet there is no information on the efficacy of regular swimming exercise involving patients with arthritis. The effect of a swimming exercise intervention on joint pain, stiffness, and physical function was evaluated in patients with osteoarthritis (OA). Using a randomized study design, 48 sedentary middle-aged and older adults with OA underwent 3 months of either swimming or cycling exercise training. Supervised exercise training was performed for 45 min/day, 3 days/week at 60-70% heart rate reserve for 12 weeks. The Western Ontario and McMaster Universities Arthritis Index was used to measure joint pain, stiffness, and physical limitation. After the exercise interventions, there were significant reductions in joint pain, stiffness, and physical limitation accompanied by increases in quality of life in both groups (all p swimming and cycling training. Regular swimming exercise reduced joint pain and stiffness associated with OA and improved muscle strength and functional capacity in middle-aged and older adults with OA. Additionally, the benefits of swimming exercise were similar to the more frequently prescribed land-based cycling training. clinicaltrials.gov NCT01836380.

  9. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.

    Science.gov (United States)

    Ashkani, O; Maleki, A; Jamshidi, N

    2017-03-01

    Exoskeleton is a walking assistance device that improves human gait cycle through providing auxiliary force and transferring physical load to the stronger muscles. This device takes the natural state of organ and follows its natural movement. Exoskeleton functions as an auxiliary device to help those with disabilities in hip and knee such as devotees, elderly farmers and agricultural machinery operators who suffer from knee complications. In this research, an exoskeleton designed with two screw jacks at knee and hip joints. To simulate extension and flexion movements of the leg joints, bearings were used at the end of hip and knee joints. The generated torque and motion angles of these joints obtained as well as the displacement curves of screw jacks in the gait cycle. Then, the human gait cycle was simulated in stance and swing phases and the obtained torque curves were compared. The results indicated that they followed the natural circle of the generated torque in joints with a little difference from each other. The maximum displacement obtained 4 and 6 cm in hip and knee joints jack respectively. The maximum torques in hip and knee joints were generated in foot contact phase. Also the minimum torques in hip and knee joints were generated in toe off and heel off phases respectively.

  10. System safety program plan for the Isotope Brayton Ground Demonstration System (phase I)

    International Nuclear Information System (INIS)

    1976-01-01

    The safety engineering effort to be undertaken in achieving an acceptable level of safety in the Brayton Isotope Power System (BIPS) development program is discussed. The safety organizational relationships, the methods to be used, the tasks to be completed, and the documentation to be published are described. The plan will be updated periodically as the need arises

  11. Exergoeconomic analysis of utilizing the transcritical CO_2 cycle and the ORC for a recompression supercritical CO_2 cycle waste heat recovery: A comparative study

    International Nuclear Information System (INIS)

    Wang, Xurong; Dai, Yiping

    2016-01-01

    Highlights: • An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle. • Performance of the sCO_2/tCO_2 cycle and sCO_2/ORC cycle are presented and compared. • The sCO_2/tCO_2 cycle performs better than the sCO_2/ORC cycle at lower PRc. • The sCO_2/tCO_2 cycle has comparable total product unit cost with the sCO_2/ORC cycle. - Abstract: Two combined cogeneration cycles are examined in which the waste heat from a recompression supercritical CO_2 Brayton cycle (sCO_2) is recovered by either a transcritical CO_2 cycle (tCO_2) or an Organic Rankine Cycle (ORC) for generating electricity. An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle performance and its comparison to the sCO_2/ORC cycle. The following organic fluids are considered as the working fluids in the ORC: R123, R245fa, toluene, isobutane, isopentane and cyclohexane. Thermodynamic and exergoeconomic models are developed for the cycles on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are conducted to evaluate the influence of decision variables on the performance of sCO_2/tCO_2 and sCO_2/ORC cycles. The performance of these cycles is optimized and then compared. The results show that the sCO_2/tCO_2 cycle is preferable and performs better than the sCO_2/ORC cycle at lower PRc. When the sCO_2 cycle operates at a cycle maximum pressure of around 20 MPa (∼2.8 of PRc), the tCO_2 cycle is preferable to be integrated with the recompression sCO_2 cycle considering the off-design conditions. Moreover, contrary to the sCO_2/ORC system, a higher tCO_2 turbine inlet temperature improves exergoeconomic performance of the sCO_2/tCO_2 cycle. The thermodynamic optimization study reveals that the sCO_2/tCO_2 cycle has comparable second law efficiency with the sCO_2/ORC cycle. When the optimization is conducted based on the exergoeconomics, the total product unit cost of the sCO_2/ORC is slightly lower than that of the sCO_2/tCO_2

  12. Back-end fuel cycle efficiencies with respect to improved uranium utilization

    International Nuclear Information System (INIS)

    Kuczera, B.; Hennies, H.H.

    1983-01-01

    The world-wide nuclear power plant (NPP) capacity is at present 160 GW(e). If one adds the power stations under construction and ordered, a plant capacity of approximately 480 GW(e) is obtained for 1990, with the share of LWRs making up more than 80%. A modern LWR consumes in the open fuel cycle about 4400 metric tonnes of natural uranium per GW(e), assuming a lifetime of 30 years and a load factor of 70%. Considering the natural uranium reserves known at present and exploitable under economic conditions, it can be conveniently estimated that, with the present NPP capacity extension perspective, the natural uranium resources may be exhausted in a few decades. This trend can be counteracted in a flexible manner by various approaches in fuel cycle technology and strategy: (i) by steady further development of the established LWR technology the uranium consumption can be reduced by about 15%; (ii) closing the nuclear fuel cycle on the basis of LWRs (i.e. thermal uranium and plutonium recycling) implies up to 40% savings in natural uranium consumption; (iii) more recent considerations include the advanced pressurized water reactor (APWR). The APWR combines the proven PWR technology with a newly developed tight lattice core with greatly improved conversion characteristics (conversion ratio = 0.90 to 0.95). In terms of uranium utilization, the APWR has an efficiency three to five times higher than a PWR; (iv) Commercial introduction of FBR systems results in an optimal utilization of uranium which, at the same time, guarantees the supply of nuclear fuel well beyond the present century. For a corresponding transition period an energy supply system can be conceived which relies essentially on extended back-end fuel cycle capacities. These would facilitate a symbiosis of PWR, APWR and FBR, characterized by high flexibility with respect to long-term developments on the energy market. (author)

  13. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    Science.gov (United States)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  14. Improving the Amazonian Hydrologic Cycle in a Coupled Land-Atmosphere, Single Column Model

    Science.gov (United States)

    Harper, A. B.; Denning, S.; Baker, I.; Prihodko, L.; Branson, M.

    2006-12-01

    We have coupled a land-surface model, the Simple Biosphere Model (SiB3), to a single column of the Colorado State University General Circulation Model (CSU-GCM) in the Amazon River Basin. This is a preliminary step in the broader goal of improved simulation of Basin-wide hydrology. A previous version of the coupled model (SiB2) showed drought and catastrophic dieback of the Amazon rain forest. SiB3 includes updated soil hydrology and root physiology. Our test area for the coupled single column model is near Santarem, Brazil, where measurements from the km 83 flux tower in the Tapajos National Forest can be used to evaluate model output. The model was run for 2001 using NCEP2 Reanalysis as driver data. Preliminary results show that the updated biosphere model coupled to the GCM produces improved simulations of the seasonal cycle of surface water balance and precipitation. Comparisons of the diurnal and seasonal cycles of surface fluxes are also being made.

  15. Anticipated Improvements in Precipitation Physics and Understanding of Water Cycle from GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2003-01-01

    The GPM mission is currently planned for start in the late-2007 to early-2008 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe -- continuously. The constellation s orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly AS1 in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and

  16. How can LCA approaches contribute to improve geo-cycles management

    Science.gov (United States)

    Carreiras, M.; Ferreira, A. J. D.; Esteves, T. C. J.; Delgado, F.; Andrade, F.; Franco, J.; Pereira, C. D.

    2012-04-01

    Climate change and land use have become a major challenge for mankind and the natural environment. Greenhouse gas (GHG) emissions released into the atmosphere in ever rapidly growing volumes are most likely to be responsible for this change. Carbon dioxide gas (CO2) is suggested to be the main cause of global warming. Carbon reduction is the key to preventing this, for example, by enhancing energy efficiency and mitigating carbon emissions by means of green energy and adjusting the use of natural resources. Different activities produce distinguish impacts, and each product generates specific impacts on nature. The impact of man activities in the geo-cycles is of paramount importance in what concerns long term sustainability. Nevertheless, the environmental and sustainability impacts of different approaches and techniques of ecosystem management is a difficult question that can be assessed using LCA techniques LCA is a technique to assess environmental impacts associated with all the stages of a product's life from-cradle-to-grave. Based on that, LCA can be effective in supporting the assessment of decision making on complex sustainability issues because it can integrate the diversity of impacts categories guise and it can be adapted to a large variety of contexts. By incorporating quantitative data LCA allows decision makers to include a full range of economic, environmental, social and technical criteria. The integrated framework is configured such that the pros and cons of alternative environmental and energy strategies can be measured in terms of their ability to achieve the overall goals and objectives of the sustainable development, while satisfying the pollution control requirements. Because it is holistic, integrate and dynamic, this approach represents a state of the art tool for enhance the sustainable development of a sector, allowing a more transparent and participated management, a basic instrument for improved competitiveness. This approach may serve

  17. Reactor/Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  18. An audit cycle of consent form completion: A useful tool to improve junior doctor training.

    Science.gov (United States)

    Leng, Catherine; Sharma, Kavita

    2016-01-01

    Consent for surgical procedures is an essential part of the patient's pathway. Junior doctors are often expected to do this, especially in the emergency setting. As a result, the aim of our audit was to assess our practice in consenting and institute changes within our department to maintain best medical practice. An audit of consent form completion was conducted in March 2013. Standards were taken from Good Surgical Practice (2008) and General Medical Council guidelines. Inclusion of consent teaching at a formal consultant delivered orientation programme was then instituted. A re-audit was completed to reassess compliance. Thirty-seven consent forms were analysed. The re-audit demonstrated an improvement in documentation of benefits (91-100%) and additional procedures (0-7.5%). Additional areas for improvement such as offering a copy of the consent form to the patient and confirmation of consent if a delay occurred between consenting and the procedure were identified. The re-audit demonstrated an improvement in the consent process. It also identified new areas of emphasis that were addressed in formal teaching sessions. The audit cycle can be a useful tool in monitoring, assessing and improving clinical practice to ensure the provision of best patient care.

  19. Fabrication of Porous ZnO/Co₃O₄ Composites for Improving Cycling Stability of Supercapacitors.

    Science.gov (United States)

    Su, Dongqing; Zhang, Longmei; Tang, Zehua; Yu, Tingting; Liu, Huili; Zhang, Junhao; Liu, Yuanjun; Yuan, Aihua; Kong, Qinghong

    2018-07-01

    To tackle the issue of poor cycling stability for metal oxide nanoparticles as supercapacitor electrode, porous ZnO/Co3O4 composites were fabricated via solid-state thermolysis of [CoZn(BTC)(NO3)](2H2O)(0.5DMF) under air atmosphere. The results demonstrate that the products are mesoporous polyhedron structure with the diameter of about 10 μm, which are constructed by many interconnected nanocrystals with the sizes of around 20 nm. ZnO/Co3O4 composites as supercapacitor electrode exhibited excellent cyclic stability capacity, showing a maximum specific capacitance of 106.7 F g-1 and a capacity retention of 102.7 F · g-1 after 1000 cycles at 0.5 A · g-1. The superior electrochemical performance was contributed to ZnO/Co3O4 composites with porous structures and small size, which shortened the route of electronic transmission as well as ions insertion and desertion processes. Additionally, the synergetic effect of bimetallic oxides improved the electrochemical stability.

  20. A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Detor, Andrew [General Electric Company, Niskayuna, NY (United States). GE Global Research; DiDomizio, Richard [General Electric Company, Niskayuna, NY (United States). GE Global Research; McAllister, Don [The Ohio State Univ., Columbus, OH (United States); Sampson, Erica [General Electric Company, Niskayuna, NY (United States). GE Global Research; Shi, Rongpei [The Ohio State Univ., Columbus, OH (United States); Zhou, Ning [General Electric Company, Niskayuna, NY (United States). GE Global Research

    2017-01-03

    The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels. The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.

  1. Life cycle considerations for improving sustainability assessments in seafood awareness campaigns.

    Science.gov (United States)

    Pelletier, Nathan; Tyedmers, Peter

    2008-11-01

    It is widely accepted that improving the sustainability of seafood production requires efforts to reverse declines in global fisheries due to overfishing and to reduce the impacts to host ecosystems from fishing and aquaculture production technologies. Reflective of on-going dialogue amongst participants in an international research project applying Life Cycle Assessment to better understand and manage global salmon production systems, we argue here that such efforts must also address the wider range of biophysical, ecological, and socioeconomic impacts stemming from the material and energetic throughput associated with these industries. This is of particular relevance given the interconnectivity of global environmental change, ocean health, and the viability of seafood production in both fisheries and aquaculture. Although the growing popularity of numerous ecolabeling, certification, and consumer education programs may be making headway in influencing Western consumer perceptions of the relative sustainability of alternative seafood products, we also posit that the efficacy of these initiatives in furthering sustainability objectives is compromised by the use of incomplete criteria. An emerging body of Life Cycle Assessment research of fisheries and aquaculture provides valuable insights into the biophysical dimensions of environmental performance in alternative seafood production and consumption systems, and should be used to inform a more holistic approach to labeling, certifying, and educating for sustainability in seafood production. More research, however, must be undertaken to develop novel techniques for incorporating other critical dimensions, in particular, socioeconomic considerations, into our sustainability decision-making.

  2. Improvement of tritium accountancy technology for the ITER fuel cycle safety enhancement

    International Nuclear Information System (INIS)

    O'hira, Shigeru; Hayashi, T.; Nakamura, H.

    1999-01-01

    In order to improve the safe handling and control of tritium for ITER fuel cycle, effective 'in-situ' tritium accounting methods have been developed at Tritium Process Laboratory in Japan Atomic Energy Research Institute under one of the ITER-EDA R and D Tasks. A remote and multi-location analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa for 120 seconds analytical periods. An 'in-situ' tritium inventory measurement by application of a 'self assaying' storage bed with 25 g tritium capacity could provide a measurement with a required detection limit less than 1% and a design proof of a bed with 100 g tritium capacity. (author)

  3. Improvement of tritium accountancy technology for the ITER fuel cycle safety enhancement

    International Nuclear Information System (INIS)

    O'Hira, S.; Hayashi, T.; Nakamura, H.

    2001-01-01

    In order to improve the safe handling and control of tritium for ITER fuel cycle, effective ''in-situ'' tritium accounting methods have been developed at Tritium Process Laboratory in Japan Atomic Energy Research Institute under one of the ITER-EDA R and D Tasks. A remote and multi-location analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa for 120 seconds analytical periods. An ''in-situ'' tritium inventory measurement by application of a ''self assaying'' storage bed with 25 g tritium capacity could provide a measurement with a required detection limit less than 1 % and a design proof of a bed with 100 g tritium capacity. (author)

  4. Trapping truffle production in holes: a promising technique for improving production and unravelling truffle life cycle

    Directory of Open Access Journals (Sweden)

    Claude Murat

    2016-10-01

    Full Text Available The Périgord black truffle, Tuber melanosporum Vittad., is an ectomycorrhizal fungus that forms edible hypogeous ascomata. It is now harvested in plantations and is recognized as an agricultural product by European policy. Empirical techniques without scientific demonstration of their efficiency are often used to improve the production of truffles in plantations. One of these techniques is “truffle trapping” which consists in practicing holes inside the potential productive area and to fill them with a substrate containing ascospores. We report an experiment in a truffle orchard where 784 holes were set under 196 trees. Two years after the installation of the holes, 95% of the truffles were found inside the holes corresponding to only 5% of the productive area. This study confirms the efficiency of this empirical technique and demonstrates new ways for in situ studies of the truffle life cycle.

  5. Cooling tower performance improvements for a cycling PC-fired unit

    International Nuclear Information System (INIS)

    Keckritz, M.; Thelen, A.

    1997-01-01

    The inevitable deregulation of the electric utility industry has caused many electric utility companies to look closely at their existing assets and predict what role these units will play in the future. Reducing a unit's production cost is the best way to prepare for the deregulated market but this benefit often comes with an associated capital expenditure. Spending capital dollars today can pose a quandary for an investor-owned utility committed to maintaining low consumer rates. The dilemma is: How does a utility improve its competitiveness position today while ensuring that the shareholders are getting a fair return on their investment when any fuel savings are passed through to the consumer? Illinois Power (IP) has been aggressively looking to improve their current competitive position while facing the current regulatory challenges. Studies have been commissioned to identify the most attractive cost reduction opportunities available. One study identified that improving the performance of the Unit 6 cooling tower at the Havana Station would be a very economically attractive option. This paper addresses the economics of refurbishing a cooling tower for a cycling pulverized-coal (PC) unit to provide a competitive advantage leading into the deregulated electricity market

  6. Energy use and climate change improvements of Li/S batteries based on life cycle assessment

    Science.gov (United States)

    Arvidsson, Rickard; Janssen, Matty; Svanström, Magdalena; Johansson, Patrik; Sandén, Björn A.

    2018-04-01

    We present a life cycle assessment (LCA) study of a lithium/sulfur (Li/S) cell regarding its energy use (in electricity equivalents, kWhel) and climate change (in kg carbon dioxide equivalents, CO2 eq) with the aim of identifying improvement potentials. Possible improvements are illustrated by departing from a base case of Li/S battery design, electricity from coal power, and heat from natural gas. In the base case, energy use is calculated at 580 kWhel kWh-1 and climate change impact at 230 kg CO2 eq kWh-1 of storage capacity. The main contribution to energy use comes from the LiTFSI electrolyte salt production and the main contribution to climate change is electricity use during the cell production stage. By (i) reducing cell production electricity requirement, (ii) sourcing electricity and heat from renewable sources, (iii) improving the specific energy of the Li/S cell, and (iv) switching to carbon black for the cathode, energy use and climate change impact can be reduced by 54 and 93%, respectively. For climate change, our best-case result of 17 kg CO2 eq kWh-1 is of similar magnitude as the best-case literature results for lithium-ion batteries (LIBs). The lithium metal requirement of Li/S batteries and LIBs are also of similar magnitude.

  7. Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Rooijen, W.F.G. van

    2006-01-01

    gradients within the fuel assemblies would be too high, and fuel economy is poor. Two improved fuel concepts are proposed: (1) a redesign of the classic TRISO coated particle fuel, and (2) an innovative hollow sphere design. Both fuel elements are used in a core design based on direct cooling of the coated particle fuel. To increase the neutronic margins and obtain adequate self-breeding capabilities, the proposed reactor has 2400 MWth power output and a power density of 50 MW/m 3 . With both types of fuel, it is possible to obtain a closed fuel cycle. Long irradiation intervals (several years) are possible with a low burnup reactivity swing, which reduces the required over-reactivity of the fresh core and reduces control rod requirements during operation. In the closed fuel cycle it is important to be able to predict whether a certain initial fuel composition will in fact yield a new fuel, after irradiation, cool down and reprocessing, with which the reactor can be restarted. A theoretical framework is presented in this thesis which allows calculation of the ‘Breeding Gain’ (BG) of the reactor. The BG quantifies the performance of the fuel for batch i + 1 as a function of the composition of the initial fuel of batch i. If this BG can be made equal to zero, both fuel compositions give the same nuclear performance. To be able to calculate the fuel performance, the reactivity weight, i.e. the contribution of each isotope to the overall reactivity of the reactor, needs to be estimated. It is proposed in this thesis to calculate these reactivity weights using a first-order eigenvalue perturbation calculation. It is shown that this approach yields an expression which reduces to a well-established formula for reactivity weights. All steps in the fuel cycle, i.e. irradiation, cool down and reprocessing, have to be taken into account to calculate the Breeding Gain for the closed fuel cycle. First order nuclide perturbation theory provides an efficient method to calculate the

  8. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the

  9. Critical review of the first-law efficiency in different power combined cycle architectures

    International Nuclear Information System (INIS)

    Iglesias Garcia, Steven; Ferreiro Garcia, Ramon; Carbia Carril, Jose; Iglesias Garcia, Denis

    2017-01-01

    Highlights: • The adiabatic expansion based TC can improve the energy efficiency of CCs. • A revolutionary TC can be a starting point to develop high-performance CCs. • A theoretical thermal efficiency of 83.7% was reached in a Nuclear Power Plant using a TC as bottoming cycle. - Abstract: This critical review explores the potential of an innovative trilateral thermodynamic cycle used to transform low-grade heat into mechanical work and compares its performance with relevant traditional thermodynamic cycles in combined cycles. The aim of this work is to show that combined cycles use traditional low efficiency power cycles in their bottoming cycle, and to evaluate theoretically the implementation of alternative power bottoming cycles. Different types of combined cycles have been reviewed, highlighting their relevant characteristics. The efficiencies of power plants using combined cycles are reviewed and compared. The relevance of researching thermodynamic cycles for combined cycle applications is that a vast amount of heat energy is available at negligible cost in the bottoming cycle of a combined cycle, with the drawback that existing thermal cycles cannot make efficient use of such available low temperature heat due to their low efficiency. The first-law efficiency is used as a parameter to compare and suggest improvements in the combined cycles (CCs) reviewed. The analysis shows that trilateral cycles using closed processes are by far the most efficient published thermal cycles for combined cycles to transform low-grade heat into mechanical work. An innovative trilateral bottoming cycle is proposed to show that the application of non-traditional power cycles can increase significantly the first-law efficiency of CCs. The highest first-law efficiencies achieved are: 85.55% in a CC using LNG cool, 73.82% for a transport vehicle CC, 74.40% in a marine CC, 83.07% in a CC for nuclear power plants, 73.82% in a CC using Brayton and Rankine cycles, 78.31% in a CC

  10. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    Science.gov (United States)

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.

    2016-06-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.

  11. Recuperation of the exhaust gases energy using a Brayton cycle machine

    OpenAIRE

    KLEUT, PETAR

    2017-01-01

    Lately, car manufacturers have been put to a big challenge to reduce the CO2 emission of their entire fleets. Norms of pollutant emissions limit the ways to achieve the desired CO2 emission goals, as some of the solutions that would lead to lower CO2 emission also lead to higher pollutant emission. Waste Heat Recovery (WHR) could be a good solution to lower the CO2 emission of the Internal Combustion Engine (ICE) without increasing the pollutant emission. In the present thesis different WHR s...

  12. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-01-01

    solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows

  13. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    Energy Technology Data Exchange (ETDEWEB)

    A. D. Rao; J. Francuz; H. Liao; A. Verma; G. S. Samuelsen

    2006-11-01

    Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O{sub 2} to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H{sub 2}O to form H{sub 2} and CO{sub 2}. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N{sub 2} from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

  14. Reverse Brayton Cycle with Bladeless Turbo Compressor for Automotive Environmental Cooling

    Science.gov (United States)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2016-01-01

    An automotive cabin cooling system uses a bladeless turbocompressor driven by automobile engine exhaust to compress incoming ambient air. The compressed air is directed to an intercooler where it is cooled and then to another bladeless turbine used as an expander where the air cools as it expands and is directed to the cabin interior. Excess energy may be captured by an alternator couple to the expander turbine. The system employs no chemical refrigerant and may be further modified to include another intercooler on the output of the expander turbine to isolate the cooled cabin environment.

  15. Improved circadian sleep-wake cycle in infants fed a day/night dissociated formula milk.

    Science.gov (United States)

    Cubero, J; Narciso, D; Aparicio, S; Garau, C; Valero, V; Rivero, M; Esteban, S; Rial, R; Rodríguez, A B; Barriga, C

    2006-06-01

    On the basis of the circadian nutritional variations present in breast milk, and of the implications for the sleep/wake cycle of the nutrients present in infant formula milks, we designed a formula milk nutritionally dissociated into a Day/Night composition. The goal was to improve the bottle-fed infant's sleep/wake circadian rhythm. A total of 21 infants aged 4-20 weeks with sleeping difficulties were enrolled in the three-week duration study. The sleep analysis was performed using an actimeter (Actiwatch) placed on an ankle of each infant to uninterruptedly record movements during the three weeks. The dissociated Day milk, designed to be administered from 06:00 to 18:00, contained low levels of tryptophan (1.5g/100g protein) and carbohydrates, high levels of proteins, and the nucleotides Cytidine 5 monophosphate, Guanosine 5 monophosphate and Inosine 5 monophosphate. The dissociated Night milk, designed to be administered from 18.00 to 06.00, contained high levels of tryptophan (3.4g/100g protein) and carbohydrates, low levels of protein, and the nucleotides Adenosine 5 monophosphate and Uridine 5 monophosphate. Three different milk-feeding experiments were performed in a double-blind procedure covering three weeks. In week 1 (control), the infants received both by day and by night a standard formula milk; in week 2 (inverse control), they received the dissociated milk inversely (Night/Day instead of Day/Night); and in week 3, they received the Day/Night dissociated formula concordant with the formula design. When the infants were receiving the Day/Night dissociated milk in concordance with their environment, they showed improvement in all the nocturnal sleep parameters analyzed: total hours of sleep, sleep efficiency, minutes of nocturnal immobility, nocturnal awakenings, and sleep latency. In conclusion, the use of a chronobiologically adjusted infant formula milk seems to be effective in improving the consolidation of the circadian sleep/wake cycle in bottle

  16. An improved CO_2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Shi, Lingfeng; Tian, Hua; Li, Xiaoya; Huang, Guangdai; Chang, Liwen

    2016-01-01

    Highlights: • Propose an improved CTRC system (PR-CTRC) for engine waste heat recovery. • The PR-CTRC achieves a significant increase in thermodynamic performance. • The PR-CTRC possesses a strong coupling capability for high and low grade waste heat. • The PR-CTRC uses smaller turbine design parameters than ORC systems. • Total cooling load analysis of combined engine and recovery system was conducted. - Abstract: CO_2-based transcritical Rankine cycle (CTRC) is a promising technology for the waste heat recovery of an engine considering its safety and environment friendly characteristics, which also matchs the high temperature of the exhaust gas and satisfies the miniaturization demand of recovery systems. But the traditional CTRC system with a basic configuration (B-CTRC) has a poor thermodynamic performance. This paper introduces an improved CTRC system containing both a preheater and regenerator (PR-CTRC), for recovering waste heat in exhaust gas and engine coolant of an engine, and compares its performance with that of the B-CTRC system and also with that of the traditional excellent Organic Rankine Cycle (ORC) systems using R123 as a working fluid. The utilization rate of waste heat, total cooling load, net power output, thermal efficiency, exergy loss, exergy efficiency and component size have been investigated. Results show that, the net power output of the PR-CTRC could reach up to 9.0 kW for a 43.8 kW engine, which increases by 150% compared with that of the B-CTRC (3.6 kW). The PR-CTRC also improves the thermal efficiency and exergy efficiency of the B-CTRC, with increases of 184% and 227%, respectively. Compared with the ORC system, the PR-CTRC shows the significant advantage of highly recycling the exhaust gas and engine coolant simultaneously due to the special property of supercritical CO_2’s specific heat capacity. The supercritical property of CO_2 also generates a better heat transfer and flowing performances. Meanwhile, the PR

  17. Using life cycle assessment to address stakeholders' potential for improving municipal solid waste management.

    Science.gov (United States)

    de Andrade Junior, Milton Aurelio Uba; Zanghelini, Guillherme Marcelo; Soares, Sebastião Roberto

    2017-05-01

    Because the consumption of materials is generally higher than their recovery rate, improving municipal solid waste (MSW) management is fundamental for increasing the efficiency of natural resource use and consumption in urban areas. More broadly, the characteristics of a MSW management system influence the end-of-life (EOL) impacts of goods consumed by households. We aim to indicate the extent to which greenhouse gas emissions from a MSW management system can be reduced by increasing waste paper recycling. We also address the stakeholders' contribution for driving transition towards an improved scenario. Life cycle assessment (LCA) addresses the EOL impacts of the paper industry, driven by the characteristics of MSW management in Florianópolis, Brazil, by varying the level of stakeholders' commitment through different recycling scenarios. The results show that 41% of the climate change impacts from waste paper management could be reduced when increasing the waste paper recycling rates and reducing waste paper landfilling. To achieve such emissions reduction, the industry contribution to the MSW management system would have to increase from 17% in the business-as-usual scenario to 74% in the target scenario. We were able to measure the differences in stakeholders' contribution by modelling the MSW management system processes that are under the industry's responsibility separately from the processes that are under the government's responsibility, based on the Brazilian legal framework. The conclusions indicate that LCA can be used to support policy directions on reducing the impacts of MSW management by increasing resource recovery towards a circular economy.

  18. The public health nutrition intervention management bi-cycle: a model for training and practice improvement.

    Science.gov (United States)

    Hughes, Roger; Margetts, Barrie

    2012-11-01

    The present paper describes a model for public health nutrition practice designed to facilitate practice improvement and provide a step-wise approach to assist with workforce development. The bi-cycle model for public health nutrition practice has been developed based on existing cyclical models for intervention management but modified to integrate discrete capacity-building practices. Education and practice settings. This model will have applications for educators and practitioners. Modifications to existing models have been informed by the authors' observations and experiences as practitioners and educators, and reflect a conceptual framework with applications in workforce development and practice improvement. From a workforce development and educational perspective, the model is designed to reflect adult learning principles, exposing students to experiential, problem-solving and practical learning experiences that reflect the realities of work as a public health nutritionist. In doing so, it assists the development of competency beyond knowing to knowing how, showing how and doing. This progression of learning from knowledge to performance is critical to effective competency development for effective practice. Public health nutrition practice is dynamic and varied, and models need to be adaptable and applicable to practice context to have utility. The paper serves to stimulate debate in the public health nutrition community, to encourage critical feedback about the validity, applicability and utility of this model in different practice contexts.

  19. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  20. A comparison of radioisotope Brayton and Stirling system for lunar surface mobile power

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    A study was performed by the Rocketdyne Division of Rockwell 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The study indicated that the Stirling power module has 20% lower mass and 40% lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangment to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system

  1. Improvement of high voltage cycling performance and thermal stability of lithium-ion cells by use of a thiophene additive

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Soo; Sun, Yang-Kook; Kim, Dong-Won [Department of Chemical Engineering, Hanyang University, Seungdong-gu, Seoul 133-791 (Korea); Noh, Jaegeun [Department of Chemistry, Hanyang University, Seungdong-gu, Seoul 133-791 (Korea); Song, Kwang Soup [Advanced Medical Device Center, Korea Electrotechnology, Research Institute, Ansan, Gyeonggi-do 426-170 (Korea)

    2009-10-15

    This study demonstrates that the addition of thiophene improves the cycle life of lithium-ion cells at high voltage. Electrochemical impedance spectroscopy results suggest that addition of thiophene significantly suppresses the increase of the charge transfer resistance that occurs during cycling up to high voltage. Differential scanning calorimetric studies showed that the thermal stability of fully charged LiCoO{sub 2} cathode was also enhanced in the presence of thiophene. (author)

  2. Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement.

    Science.gov (United States)

    Wu, Junjun; Zhang, Xia; Zhou, Peng; Huang, Jiaying; Xia, Xiudong; Li, Wei; Zhou, Ziyu; Chen, Yue; Liu, Yinghao; Dong, Mingsheng

    2017-11-01

    Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains unclear. In this work, the metabolic efficiency of r-BOX for medium-chain fatty acid (C 6 -C 10 , MCFA) production was optimized by redox cofactor engineering. Stoichiometric analysis of the r-BOX pathway and further experimental examination identified NADH as a crucial determinant of r-BOX process yield. Furthermore, the introduction of formate dehydrogenase from Candida boidinii using fermentative inhibitor byproduct formate as a redox NADH sink improved MCFA titer from initial 1.2g/L to 3.1g/L. Moreover, coupling of increasing the supply of acetyl-CoA with NADH to achieve fermentative redox balance enabled product synthesis at maximum titers. To this end, the acetate re-assimilation pathway was further optimized to increase acetyl-CoA availability associated with the new supply of NADH. It was found that the acetyl-CoA synthetase activity and intracellular ATP levels constrained the activity of acetate re-assimilation pathway, and 4.7g/L of MCFA titer was finally achieved after alleviating these two limiting factors. To the best of our knowledge, this represented the highest titer reported to date. These results demonstrated that the key constraint of r-BOX was redox imbalance and redox engineering could further unleash the lipogenic potential of this cycle. The redox engineering strategies could be applied to acetyl-CoA-derived products or other bio-products requiring multiple redox cofactors for biosynthesis. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Loop containment (joint integrity) assessment Brayton Isotope Power System flight system

    International Nuclear Information System (INIS)

    1976-01-01

    The Brayton Isotope Power System (BIPS) contains a large number of joints. Since the failure of a joint would result in loss of the working fluid and consequential failure of the BIPS, the integrity of the joints is of paramount importance. The reliability of the ERDA BIPS loop containment (joint integrity) is evaluated. The conceptual flight system as presently configured is depicted. A brief description of the flight system is given

  4. Evaluation and optimization of a supercritical carbon dioxide power conversion cycle for nuclear applications

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.

    2011-01-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO 2 ) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550degC and 750degC. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550degC. The particular power cycle investigated in this paper is a supercritical CO 2 recompression Brayton Cycle. The CO 2 recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550degC versus 750degC. However, the supercritical CO 2 recompression Brayton Cycle requires a high end operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle high end operating pressure of 7 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO 2 recompression Brayton cycle for different reactor coolant outlet temperatures and mass flow rates. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550degC and 850degC. Sensitivity calculations were also performed to determine the affect of reactor coolant mass flow rates for a reference reactor coolant outlet temperature of 750degC. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO 2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the

  5. Life cycle assessment of Italian citrus-based products. Sensitivity analysis and improvement scenarios.

    Science.gov (United States)

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2010-07-01

    Though many studies concern the agro-food sector in the EU and Italy, and its environmental impacts, literature is quite lacking in works regarding LCA application on citrus products. This paper represents one of the first studies on the environmental impacts of citrus products in order to suggest feasible strategies and actions to improve their environmental performance. In particular, it is part of a research aimed to estimate environmental burdens associated with the production of the following citrus-based products: essential oil, natural juice and concentrated juice from oranges and lemons. The life cycle assessment of these products, published in a previous paper, had highlighted significant environmental issues in terms of energy consumption, associated CO(2) emissions, and water consumption. Starting from such results the authors carry out an improvement analysis of the assessed production system, whereby sustainable scenarios for saving water and energy are proposed to reduce environmental burdens of the examined production system. In addition, a sensitivity analysis to estimate the effects of the chosen methods will be performed, giving data on the outcome of the study. Uncertainty related to allocation methods, secondary data sources, and initial assumptions on cultivation, transport modes, and waste management is analysed. The results of the performed analyses allow stating that every assessed eco-profile is differently influenced by the uncertainty study. Different assumptions on initial data and methods showed very sensible variations in the energy and environmental performances of the final products. Besides, the results show energy and environmental benefits that clearly state the improvement of the products eco-profile, by reusing purified water use for irrigation, using the railway mode for the delivery of final products, when possible, and adopting efficient technologies, as the mechanical vapour recompression, in the pasteurisation and

  6. Real-time patient survey data during routine clinical activities for rapid-cycle quality improvement.

    Science.gov (United States)

    Wofford, James Lucius; Campos, Claudia L; Jones, Robert E; Stevens, Sheila F

    2015-03-12

    Surveying patients is increasingly important for evaluating and improving health care delivery, but practical survey strategies during routine care activities have not been available. We examined the feasibility of conducting routine patient surveys in a primary care clinic using commercially available technology (Web-based survey creation, deployment on tablet computers, cloud-based management of survey data) to expedite and enhance several steps in data collection and management for rapid quality improvement cycles. We used a Web-based data management tool (survey creation, deployment on tablet computers, real-time data accumulation and display of survey results) to conduct four patient surveys during routine clinic sessions over a one-month period. Each survey consisted of three questions and focused on a specific patient care domain (dental care, waiting room experience, care access/continuity, Internet connectivity). Of the 727 available patients during clinic survey days, 316 patients (43.4%) attempted the survey, and 293 (40.3%) completed the survey. For the four 3-question surveys, the average time per survey was overall 40.4 seconds, with a range of 5.4 to 20.3 seconds for individual questions. Yes/No questions took less time than multiple choice questions (average 9.6 seconds versus 14.0). Average response time showed no clear pattern by order of questions or by proctor strategy, but monotonically increased with number of words in the question (30 words)-8.0, 11.8, 16.8, seconds, respectively. This technology-enabled data management system helped capture patient opinions, accelerate turnaround of survey data, with minimal impact on a busy primary care clinic. This new model of patient survey data management is feasible and sustainable in a busy office setting, supports and engages clinicians in the quality improvement process, and harmonizes with the vision of a learning health care system.

  7. Coiled Tube Gas Heaters For Nuclear Gas-Brayton Power Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per F.

    2018-03-31

    This project developed an alternative design for heat exchangers for application to heating supercritical carbon dioxide (S-CO2) or air for power conversion. We have identified an annular coiled tube bundle configuration–where hot sodium enters tubes from multiple vertical inlet manifold pipes, flows in a spiral pattern radially inward and downward, and then exits into an equal number of vertical outlet manifold pipes–as a potentially attractive option. The S-CO2 gas or air flows radially outward through the tube bundle. Coiled tube gas heaters (CTGHs) are expected to have excellent thermal shock, long-term thermal creep, in-service inspection, and reparability characteristics, compared to alternative options. CTGHs have significant commonality with modern nuclear steam generators. Extensive experience exists with the design, manufacture, operation, in-service inspection and maintenance of nuclear steam generators. The U.S. Nuclear Regulatory Commission also has extensive experience with regulatory guidance documented in NUREG 0800. CTGHs leverage this experience and manufacturing capability. The most important difference between steam generators and gas-Brayton cycles such as the S-CO2 cycle is that the heat exchangers must operate with counter flow with high effectiveness to minimize the pinch-point temperature difference between the hot liquid coolant and the heated gas. S-CO2-cycle gas heaters also operate at sufficiently elevated temperatures that time dependent creep is important and allowable stresses are relatively low. Designing heat exchangers to operate in this regime requires configurations that minimize stresses and stress concentrations. The cylindrical tubes and cylindrical manifold pipes used in CTGHs are particularly effective geometries. The first major goal of this research project was to develop and experimentally validate a detailed, 3-D multi-phase (gas-solid-liquid) heat transport model for

  8. Experimental Results From a 2kW Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David; Mason, Lee; Birchenough, Arthur

    2003-01-01

    This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).

  9. The development of learning material using learning cycle 5E model based stem to improve students’ learning outcomes in Thermochemistry

    Science.gov (United States)

    sugiarti, A. C.; suyatno, S.; Sanjaya, I. G. M.

    2018-04-01

    The objective of this study is describing the feasibility of Learning Cycle 5E STEM (Science, Technology, Engineering, and Mathematics) based learning material which is appropriate to improve students’ learning achievement in Thermochemistry. The study design used 4-D models and one group pretest-posttest design to obtain the information about the improvement of sudents’ learning outcomes. The subject was learning cycle 5E based STEM learning materials which the data were collected from 30 students of Science class at 11th Grade. The techniques used in this study were validation, observation, test, and questionnaire. Some result attain: (1) all the learning materials contents were valid, (2) the practicality and the effectiveness of all the learning materials contents were classified as good. The conclution of this study based on those three condition, the Learnig Cycle 5E based STEM learning materials is appropriate to improve students’ learning outcomes in studying Thermochemistry.

  10. Optimum heat power cycles for specified boundary conditions

    International Nuclear Information System (INIS)

    Ibrahim, O.M.; Klein, S.A.; Mitchell, J.W.

    1991-01-01

    In this paper optimization of the power output of Carnot and closed Brayton cycles is considered for both finite and infinite thermal capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures that yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at maximum power are obtained. A comparison of the maximum power from the two cycles for the same boundary conditions, i.e., the same heat source/sink inlet temperatures, thermal capacitance rates, and heat exchanger conductances, shows that the Brayton cycle can produce more power than the Carnot cycle. This comparison illustrates that cycles exist that can produce more power than the Carnot cycle. The optimum heat power cycle, which will provide the upper limit of power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger conductances is considered. The optimum heat power cycle is identified by optimizing the sum of the power output from a sequence of Carnot cycles. The shape of the optimum heat power cycle, the power output, and corresponding efficiency are presented. The efficiency at maximum power of all cycles investigated in this study is found to be equal to (or well approximated by) η = 1 - sq. root T L.in /φT H.in where φ is a factor relating the entropy changes during heat rejection and heat addition

  11. Improved Cycling Stability of Cobalt-free Li-rich Oxides with a Stable Interface by Dual Doping

    International Nuclear Information System (INIS)

    Xie, Dongjiu; Li, Guangshe; Li, Qi; Fu, Chaochao; Fan, Jianming; Li, Liping

    2016-01-01

    Highlights: • Cobalt-free Na_xLi_1_._2_-_xMn_0_._6_-_xAl_xNi_0_._2O_2 oxides are prepared by a sol-gel method. • Dual-doping strengthens the covalence of Mn-O bonds and suppresses the side reactions between cathode and electrolyte. • Doped cathode has a capacity retention over 92.2% after 100 cycles at a high temperature of 55 °C. - Abstract: Li-rich cobalt-free oxides, popularly used as a cathode with high capacity in lithium ion battery, always suffer from poor cycling stability between 2.0 and 4.8 V vs Li"+/Li, especially when cycled at high temperatures (>50 °C). To overcome this issue, Na"+ and Al"3"+ dual-doped Na_xLi_1_._2_-_xMn_0_._6_-_xAl_xNi_0_._2O_2 Li-rich cathode is prepared in this study. It is shown that the side reactions between cathode and electrolyte during cycling are suppressed. The improved cycling performance is observed for all of the doped samples, among which the sample with x = 0.03 exhibits the highest capacity retention of 86.1% after 200 cycles between 2.0 and 4.8 V at 2C (1C = 200 mA g"−"1) and shows a remarkable cycling stability, even at a high temperature of 55 °C (a capacity retention of 92.2% after 100 cycles). Moreover, the average voltage of the sample with x = 0.03 after 100 cycles at 0.5C remains at 3.11 V with a retention ratio of 86.6%. This work provides a new strategy to develop Li-rich cobalt-free cathodes with excellent cycling stability for lithium ion batteries at high temperatures.

  12. Improving the actinides recycling in closed fuel cycles, a major step towards nuclear energy sustainability

    International Nuclear Information System (INIS)

    Poinssot, C.; Grandjean, S.; Masson, M.; Bouillis, B.; Warin, D.

    2013-01-01

    Increasing the sustainability of nuclear energy is a longstanding road that requires a stepwise approach to successively tackle the following 3 objectives. First of all, optimize the consumption of natural resource to preserve them for future generations and hence guarantee the energetic independence of the countries (no uranium ore is needed anymore). The current twice-through cycle of Pu implemented by France, UK, Japan and soon China is a first step in this direction and already allows the development and optimization of the relevant industrial processes. It also allows a major improvement regarding the conditioning of the ultimate waste in a durable and robust nuclear glass. Secondly, the recycling of americium could be an interesting option for the future with the deployment of FR fleet to save the repository resource and optimize its use by allowing a denser disposal. It would limit the burden towards the future generations and the need for additional repositories before several centuries. Thirdly, the recycling of the whole minor actinides inventory could be an interesting option for the far-future for strongly decreasing the waste long-term toxicity, down to a few centuries. It would bring the waste issue back within the human history, which should promote its acceptance by the social opinion

  13. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    Directory of Open Access Journals (Sweden)

    Carla R V Coelho

    Full Text Available A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1 modifying diets by changing the quantities and proportions of foods and 2 increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA and Docosahexaenoic Acid (DHA in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets.

  14. Improving The Average Session Evaluation Score Of Supervisory Programby Using PDCA Cycle At PT XYZ

    Directory of Open Access Journals (Sweden)

    Jonny Jonny

    2016-09-01

    Full Text Available PT XYZ took People Development tasks as important things in order to provide great leaders for handling its business operations. It had several leadership programs such as basic management program, supervisory program, managerial program, senior management program, general management program, and the executive program. For basic management and supervisory programs, PT XYZ had appointed ABC division to solely handled them, while the rest, ABC division should cooperate with other training providers who were reputable in leadership ones. The aim of this study was to ensure that the appropriate leadership style has been delivered accordingly to the guideline to the employees by ABC division to improve the average session evaluation score of the supervisory program by using PDCA (Plan, Do, Check, and Action cycle. The method of this research was by gathering quantitative and qualitative data by using session and program evaluation format to see current condition. The research finds that the reasons why the program is below target 4,10 score. It is related to the new facilitator, no framework, and teaching aids. 

  15. Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator

    International Nuclear Information System (INIS)

    Plaznik, Uroš; Tušek, Jaka; Kitanovski, Andrej; Poredoš, Alojz

    2013-01-01

    We have analyzed the influence of different magnetic thermodynamic cycles on the performance of a magnetic cooling device with an active magnetic regenerator (AMR) based on the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles. Initially, a numerical simulation was performed using a 1D, time-dependent, numerical model. Then a comparison was made with respect to the cooling power and the COP for different temperature spans. We showed that applying the Ericsson or the Hybrid Brayton–Ericsson cycle with an AMR, instead of the standard Brayton cycle, can increase the efficiency of the selected cooling device. Yet, in the case of the Ericsson cycle, the cooling power was decreased compared to the Hybrid and especially compared to the Brayton cycle. Next, an experimental analysis was carried out using a linear-type magnetic cooling device. Again, the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles with an AMR were compared with respect to the cooling power and the COP for different temperature spans. The results of the numerical simulation were confirmed. The Hybrid Brayton–Ericsson cycle with an AMR showed the best performance if a no-load temperature span was considered as a criterion. -- Highlights: • New thermodynamic cycles with an active magnetic regenerator (AMR) are presented. • Three different thermodynamic cycles with an AMR were analyzed. • Numerical and experimental analyses were carried out. • The best overall performance was achieved with the Hybrid Brayton–Ericsson cycle. • With this cycle the temperature span of test device was increased by almost 10%

  16. Suggestions for future Pu fuel cycle designs

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2013-01-01

    Recommended follow-up Pu Studies: • Verification of VSOP-A vs. VSOP 99/05, by comparison with MCNP. • DLOFC temperatures with Multi-group Tinte. • Redesign of the reactor: - Replace small concentrated Pu fuel kernels with large (500 μm diameter) diluted kernels to reduce burn-up. - Switch from the direct Brayton cycle to the indirect Rankine steam cycle to reduce fuel temperatures. - Add neutron poisons to the reflectors to suppress power and temperature peaks and to produce negative uniform temperature reactivity coefficients

  17. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode.

    Science.gov (United States)

    Wang, Jiexi; Zhang, Qiaobao; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Xu, Daguo; Zhang, Kaili

    2014-08-14

    To improve the cycle performance of LiMn2O4 at elevated temperature, a graphite layer is introduced to directly cover the surface of a commercial LiMn2O4-based electrode via room-temperature DC magnetron sputtering. The as-modified cathodes display improved capacity retention as compared to the bare LiMn2O4 cathode (BLMO) at 55 °C. When sputtering graphite for 30 min, the sample shows the best cycling performance at 55 °C, maintaining 96.2% capacity retention after 200 cycles. Reasons with respect to the graphite layer for improving the elevated-temperature performance of LiMn2O4 are systematically investigated via the methods of cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectrometry, scanning and transmission electron microscopy, X-ray diffraction and inductively coupled plasma-atomic emission spectrometry. The results demonstrate that the graphite coated LiMn2O4 cathode has much less increased electrode polarization and electrochemical impedance than BLMO during the elevated-temperature cycling process. Furthermore, the graphite layer is able to alleviate the severe dissolution of manganese ions into the electrolyte and mitigate the morphological and structural degradation of LiMn2O4 during cycling. A model for the electrochemical kinetics process is also suggested for explaining the roles of the graphite layer in suppressing the Mn dissolution.

  18. Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Salimpour, M.R.; Zahedi, M.A. [Isfahan University of Technology (Iran, Islamic Republic of). Department of Mechanical Engineering

    2012-08-15

    The effective utilization of the cryogenic exergy associated with liquefied natural gas (LNG) vaporization is important. In this paper, a novel combined power cycle is proposed which utilizes LNG in different ways to enhance the power generation of a power plant. In addition to the direct expansion in the appropriate expander, LNG is used as a low-temperature heat sink for a middle-pressure gas cycle which uses nitrogen as working fluid. Also, LNG is used to cool the inlet air of an open Brayton gas turbine cycle. These measures are accomplished to improve the exergy recovery of LNG. In order to analyze the performance of the system, the influence of several key parameters such as pressure ratio of LNG turbine, ratio of the mass flow rate of LNG to the mass flow rate of air, pressure ratio of different compressors, LNG pressure and inlet pressure of nitrogen compressor, on the thermal efficiency and exergy efficiency of the offered cycle is investigated. Finally, the proposed combined cycle is optimized on the basis of first and second laws of thermodynamics. (orig.)

  19. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  20. Cycle layout studies of S-CO2 cycle for the next generation nuclear system application

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Bae, Seong Jun; Kim, Minseok; Cho, Seong Kuk; Baik, Seungjoon; Lee, Jeong Ik; Cha, Jae Eun

    2014-01-01

    According to the second law of thermodynamics, the next generation nuclear reactor system efficiency can potentially be increased with higher operating temperature. Fig.1 shows several power conversion system efficiencies and heat sources with respect to the system top operating temperature. As shown in Fig.1, the steam Rankine and gas Brayton cycles have been considered as the major power conversion systems more than several decades. In the next generation reactor operating temperature region (450 - 900 .deg. C), the steam Rankine and gas Brayton cycles have limits due to material problems and low efficiency, respectively. Among the future power conversion systems, S-CO 2 cycle is receiving interests due to several benefits including high efficiency under the mild turbine inlet temperature range (450-650 .deg. C), compact turbomachinery and simple layout compared to the steam Rankine cycle. S-CO 2 cycle can show relatively high efficiency under the mild turbine inlet temperature range (450-600 .deg. C) compared to other power conversion systems. The recompression cycle shows the best efficiency among other layouts and it is suitable for the application to advanced nuclear reactor systems. As S-CO 2 cycle performance can vary depending on the layout configuration, further studies on the layouts are required to design a better performing cycle

  1. Cycle-Based Budgeting and Continuous Improvement at Jefferson County Public Schools: Year 1 Report

    Science.gov (United States)

    Yan, Bo

    2016-01-01

    This report documents the first-year of implementing Cycle-based Budgeting at Jefferson County Public Schools (Louisville, KY). To address the limitations of incremental budgeting and zero-based budgeting, a Cycle-based Budgeting model was developed and implemented in JCPS. Specifically, each new program needs to submit an on-line budget request…

  2. Improving Defense Acquisition Management and Policy Through a Life-Cycle Affordability Framework

    Science.gov (United States)

    2014-02-04

    14  Are the PBL Prophets Using Science or Alchemy to Create Life Cycle...or role (engineering, SCM, finance ). Two Select managers for baseline study. Select managers whose self-description and supervisor feedback...networks into value . Are the PBL Prophets Using Science or Alchemy to Create Life Cycle Affordability? Using Theory to Predict the Efficacy of

  3. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  4. Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection

    NARCIS (Netherlands)

    Hobbelen, D.G.E.; Wisse, M.

    2008-01-01

    Limit cycle walkers are bipeds that exhibit a stable cyclic gaitwithout requiring local controllability at all times during gait. A well-known example of limit cycle walking is McGeer’s “passive dynamic walking,” but the concept expands to actuated bipeds as involved in this study. One of the

  5. Measuring and Comparing Descend in Elite Race Cycling with a Perspective on Real-Time Feedback for Improving Individual Performance

    NARCIS (Netherlands)

    Reijne, M.M.; Bregman, D.J.J.; Schwab, A.L.; Espinosa, Hugo G.; Rowlands, David R.; Shepherd, Jonathan; Thiel, David V.

    2018-01-01

    Descend technique and performance vary among elite racing cyclists and it is not clear what slower riders should do to improve their performance. An observation study was performed of the descending technique of members of a World Tour cycling team and the technique of each member was compared with

  6. Impact of accreditation on improvement of operational inputs after two cycles of assessments in some Ghanaian universities

    NARCIS (Netherlands)

    Dattey, Kwame; Westerheijden, Don F.; Hofman, W.H.A.

    2017-01-01

    The study assesses the influence of accreditation, after two cycles of evaluation on some selected Ghanaian universities. This was done by examining the changes that had occurred in specified indicators, mainly because of the implementation of suggestions for improvement made by the previous cycle’s

  7. Actual characteristics study on HTR-10GT coupling with direct gas turbine cycle

    International Nuclear Information System (INIS)

    Peng Xuechuang; Zhu Shutang; Wang Jie

    2005-01-01

    Compared with a plant of steam turbine cycle, a HTGR plant with direct gas turbine cycle has a higher thermal efficiency. A lot of investigations on the characteristics of HTR-10GT, which is the reactor studying project of Tsinghua University, have been carried out, however, all of them are based on the theoretical Brayton Cycle which neglects many actual conditions, such as leakage, pressure loss and so on. For engineering practices, leakage is an unavoidable problem. The difference of the location and capacity of leakage will directly influence the working medium's thermoparameters and lead to fall of the cycle efficiency. The present study is focused on the performance of an actual Brayton cycle with practical conditions of leakage. The present study which based on building the physical and mathematical model of the leakage, aims to study the actual characteristics of the direct gas turbine circle. (authors)

  8. Preliminary analysis of combined cycle of modular high-temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Baogang, Z.; Xiaoyong, Y.; Jie, W.; Gang, Z.; Qian, S.

    2015-01-01

    Modular high-temperature gas cooled reactor (HTGR) is known as one of the most advanced nuclear reactors because of its inherent safety and high efficiency. The power conversion system of HTGR can be steam turbine based on Rankine cycle or gas turbine based on Brayton cycle respectively. The steam turbine system is mature and the gas turbine system has high efficiency but under development. The Brayton-Rankine combined cycle is an effective way to further promote the efficiency. This paper investigated the performance of combined cycle from the viewpoint of thermodynamics. The effect of non-dimensional parameters on combined cycle’s efficiency, such as temperature ratio, compression ratio, efficiency of compressor, efficiency of turbine, was analyzed. Furthermore, the optimal parameters to achieve highest efficiency was also given by this analysis under engineering constraints. The conclusions could be helpful to the design and development of combined cycle of HTGR. (author)

  9. Measuring and Comparing Descend in Elite Race Cycling with a Perspective on Real-Time Feedback for Improving Individual Performance

    OpenAIRE

    Reijne, M.M.; Bregman, D.J.J.; Schwab, A.L.; Espinosa, Hugo G.; Rowlands, David R.; Shepherd, Jonathan; Thiel, David V.

    2018-01-01

    Descend technique and performance vary among elite racing cyclists and it is not clear what slower riders should do to improve their performance. An observation study was performed of the descending technique of members of a World Tour cycling team and the technique of each member was compared with the fastest descender amongst them. The obtained data gives us guidelines for rider specific feedback in order to improve his performance. The bicycles were equipped with a system that could measur...

  10. Monitoring the Carbon Cycle: Improving Our Ability to Proved Policy Relevant Information

    Science.gov (United States)

    Bruhwiler, L.

    2017-12-01

    Humans have altered the energy balance of the climate system mainly by producing and consuming fossil fuels, but also by emissions from food production. Manufacture and use of halocarbons, many of which are also strong greenhouse gases (GHGs) have added to anthropogenic radiative forcing. In response, the global atmosphere has warmed over the last half century at a rate of 0.17°C. The largest contribution to radiative forcing is due to CO2, and at present, about half of all anthropogenic CO2 emissions have been taken up by the oceans and terrestrial biosphere. The size of this "carbon emission discount" may change in the future as more carbon accumulates in the oceans, as human alter landscapes, and as climate changes. Efforts to limit global average temperature increases to 2°C and avoid the most catastrophic consequences of climate change depend on keeping track of both human emissions of greenhouse gases and changes in natural fluxes of carbon and nitrogen that occur in response to human activities and changing climate. Global in situ network observations provide information about changes in global GHG abundances over recent decades, as well as changing distributions between hemispheres. This information gives insight into changes in global and hemispheric sources and sinks of GHGs. It is, however, currently difficult to obtain robust information about regional sources and to discriminate between natural and anthropogenic fluxes. Information about regional sources is needed for GHG policymaking, while discrimination of natural sources is necessary for detection of trends in GHG fluxes and evaluation of coupled carbon cycle climate models. Although column average GHG abundances from space-based remote sensing data could provide considerable constraints on GHG budgets, there are still technical challenges to be overcome. Possible strategies for making progress involve greater increased observational coverage and more international collaboration, as well as

  11. Improvement of characteristic statistic algorithm and its application on equilibrium cycle reloading optimization

    International Nuclear Information System (INIS)

    Hu, Y.; Liu, Z.; Shi, X.; Wang, B.

    2006-01-01

    A brief introduction of characteristic statistic algorithm (CSA) is given in the paper, which is a new global optimization algorithm to solve the problem of PWR in-core fuel management optimization. CSA is modified by the adoption of back propagation neural network and fast local adjustment. Then the modified CSA is applied to PWR Equilibrium Cycle Reloading Optimization, and the corresponding optimization code of CSA-DYW is developed. CSA-DYW is used to optimize the equilibrium cycle of 18 month reloading of Daya bay nuclear plant Unit 1 reactor. The results show that CSA-DYW has high efficiency and good global performance on PWR Equilibrium Cycle Reloading Optimization. (authors)

  12. Exergy and exergoeconomic analyses of a supercritical CO_2 cycle for a cogeneration application

    International Nuclear Information System (INIS)

    Wang, Xurong; Yang, Yi; Zheng, Ya; Dai, Yiping

    2017-01-01

    Detailed exergy and exergoeconomic analyses are performed for a combined cogeneration cycle in which the waste heat from a recompression supercritical CO_2 Brayton cycle (sCO_2) is recovered by a transcritical CO_2 cycle (tCO_2) for generating electricity. Thermodynamic and exergoeconomic models are developed on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are then conducted to evaluate the influence of key decision variables on the sCO_2/tCO_2 performance. Finally, the combined cycle is optimized from the viewpoint of exergoeconomics. It is found that, combining the sCO_2 with a tCO_2 cycle not only enhances the energy and exergy efficiencies of the sCO_2, but also improves the cycle exergoeconomic performance. The results show that the most exergy destruction rate takes place in the reactor, and the components of the tCO_2 bottoming cycle have less exergy destruction. When the optimization is conducted based on the exergoeconomics, the overall exergoeconomic factor, the total cost rate and the exergy destruction cost rate are 53.52%, 11243.15 $/h and 5225.17 $/h, respectively. The optimization study reveals that an increase in reactor outlet temperature leads to a decrease in total cost rate and total exergy destruction cost rate of the system. - Highlights: • Exergy and exergoeconomic analyses of a combined sCO_2/tCO_2 cycle were performed. • Exergoeconomic optimization of the sCO_2/tCO_2 cycle was presented. • The reactor had the highest exergy loss among sCO_2/tCO_2 cycle components. • The overall exergoeconomic factor was up to 53.5% for the optimum case.

  13. Environmental life cycle assessment of Italian mozzarella cheese: Hotspots and improvement opportunities.

    Science.gov (United States)

    Dalla Riva, A; Burek, J; Kim, D; Thoma, G; Cassandro, M; De Marchi, M

    2017-10-01

    The present study investigated a cradle-to-grave life cycle assessment to estimate the environmental impacts associated with Italian mozzarella cheese consumption. The differences between mozzarella produced from raw milk and mozzarella produced from curd were studied, and differences in manufacturing processes have been emphasized in order to provide guidance for targeted improvements at this phase. Specifically, the third-largest Italian mozzarella producer was surveyed to collect site-specific manufacturing data. The Ecoinvent v3.2 database was used for secondary data, whereas SimaPro 8.1 was the modeling software. The inventory included inputs from farm activities to end of life disposal of wasted mozzarella and packaging. Additionally, plant-specific information was used to assign major inputs, such as electricity, natural gas, packaging, and chemicals to specific products; however, where disaggregated information was not provided, milk solids allocation was applied. Notably, loss of milk solids was accounted during the manufacture, moreover mozzarella waste and transport were considered during distribution, retail, and consumption phases. Feed production and animal emissions were the main drivers of raw milk production. Electricity and natural gas usage, packaging (cardboard and plastic), transport, wastewater treatment, and refrigerant loss affected the emissions from a farm gate-to-dairy plant gate perspective. Post-dairy plant gate effects were mainly determined by electricity usage for storage of mozzarella, transport of mozzarella, and waste treatment. The average emissions were 6.66 kg of CO 2 equivalents and 45.1 MJ of cumulative energy demand/kg of consumed mozzarella produced directly from raw milk, whereas mozzarella from purchased curd had larger emissions than mozzarella from raw milk due to added transport of curd from specialty manufacturing plants, as well as electricity usage from additional processes at the mozzarella plant that are required

  14. Cycle chemistry monitoring system as means of improving the reliability of the equipment at the power plants

    Science.gov (United States)

    Yegoshina, O. V.; Voronov, V. N.; Yarovoy, V. O.; Bolshakova, N. A.

    2017-11-01

    There are many problems in domestic energy at the present that require urgent solutions in the near future. One of these problems - the aging of the main and auxiliary equipment. Wear of equipment is the cause of decrease reliability and efficiency of power plants. Reliability of the equipment are associated with the introduction of cycle chemistry monitoring system. The most damageable equipment’s are boilers (52.2 %), turbines (12.6 %) and heating systems (12.3 %) according to the review of failure rate on the power plants. The most part of the damageability of the boiler is heated surfaces (73.2 %). According to the Russian technical requirements, the monitoring systems are responsible to reduce damageability the boiler heating surfaces and to increase the reliability of the equipment. All power units capacity of over 50 MW are equipped with cycle chemistry monitoring systems in order to maintain water chemistry within operating limits. The main idea of cycle chemistry monitoring systems is to improve water chemistry at power plants. According to the guidelines, cycle chemistry monitoring systems of a single unit depends on its type (drum or once-through boiler) and consists of: 20…50 parameters of on-line chemical analyzers; 20…30 «grab» sample analyses (daily) and about 15…20 on-line monitored operating parameters. The operator of modern power plant uses with many data at different points of steam/water cycle. Operators do not can estimate quality of the cycle chemistry due to the large volume of daily and every shift information and dispersion of data, lack of systematization. In this paper, an algorithm for calculating the quality index developed for improving control the water chemistry of the condensate, feed water and prevent scaling and corrosion in the steam/water cycle.

  15. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  16. Supercritical Water Reactor Cycle for Medium Power Applications

    International Nuclear Information System (INIS)

    BD Middleton; J Buongiorno

    2007-01-01

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency (ge)20%; Steam turbine outlet quality (ge)90%; and Pumping power (le)2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  17. Improvement of Taihu water quality by the technology of immobilized nitrogen cycle bacteria

    International Nuclear Information System (INIS)

    Li Zhengkui; Zhang Weidong; Zhu Jiating; Pu Peimin; Hu Weipin; Hu Chunhua; Chen Baojun; Li Bo; Cheng Xiaoying; Zhang Shengzhao; Fan Yunqi

    2002-01-01

    Experimental studies were carried out on the purification of eutrophic Taihu Lake water by dynamic experiment using immobilized nitrogen cycle bacteria (INCB). The results showed that the eutrophic water of Taihu Lake can be purified effectively as it passes through the experimental reactor into which some immobilized nitrogen cycle bacteria were put. The removal efficiencies for Total N (TN), NH 4 + -N with immobilized nitrogen cycle bacteria were 72.4% and 85.6%, respectively. It was found that the immobilized nitrogen cycle bacteria also have purificatory effect on eutrophic water of Taihu Lake at winter temperature (7 degree C), and that the removal efficiencies for Total N (TN), NH 4 + -N were 55.6%, and 58.9%, respectively. The removal efficiencies for TN and NH 4 + -N depend on the time the water stays in the experimental reactor

  18. Improvement by the Life Cycle Control System of University Production With Use of CALS-Tehnology

    Directory of Open Access Journals (Sweden)

    Yuriy I. Dreizis

    2013-01-01

    Full Text Available The mechanism of management by life cycle of production of university with use of CALS technologies is described. Tasks of service of marketing and the quality management department, connected with university product quality control are defined

  19. An Improved Multi-Evaporator Adsorption Desalination Cycle for GCC Countries

    KAUST Repository

    Shahzad, Muhammad Wakil; Ng, Kim Choon

    2017-01-01

    , the domestic oil consumption of Saudi Arabia may exceed its production capacity by 2040. Innovative and sustainable water production solutions are needed urgently for future water supplies without environment impact. In this paper, a hybrid desalination cycle

  20. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  1. Development of an improved two-cycle process for recovering uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Chen, H.M.; Chen, H.J.; Tsai, Y.M.; Lee, T.W.; Ting, G.

    1987-01-01

    An improved two-cycle separation process for the recovery of uranium from wet-process phosphoric acid by extraction with bis(2-ethylhexyl)phosphoric acid (D2EHPA) plus dibutyl butylphosphonate (DBBP) in kerosene has been developed and demonstrated successfully in bench-scale, continuous mixer-settler tests. The sulfuric acid and water scrubbing steps for the recycled extraction in the second cycle solve the problems of the contamination and dilution of the phosphoric acid by the ammonium ion and water and also avoid the formation of undesirable phosphatic precipitates during the subsequent extraction of uranium by recycled organic extractant

  2. Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material

    International Nuclear Information System (INIS)

    Gutierrez, Andrea; Ushak, Svetlana; Galleguillos, Hector; Fernandez, Angel; Cabeza, Luisa F.; Grágeda, Mario

    2015-01-01

    Highlights: • Bischofite as phase change material for TES is studied. • Thermophysical properties of bischofite mixtures with PEG were determined. • The aim was to improve the cycling stability of bischofite. • The heating and cooling during 30 cycles were measured. • The most stable sample was bischofite + 5% PEG 2 000. - Abstract: Bischofite is a by-product of the non-metallic mining industry. It has been evaluated as phase change material in thermal energy storage, but it shows little cycling stability, therefore in this paper the mixture of bischofite with an additive was studied. Since polyethylene glycol (PEG) is a PCM itself, in this paper PEG (with different molecular weights) is used as additive in a PCM (bischofite) to improve its thermal behaviour. Results show that adding 5% PEG 2 000 to bischofite gives a more cycling stable PCM without affecting its melting temperature neither decreasing significantly its heat of fusion. This research shows that mixing an inorganic PCM with an organic additive can be a good option to improve the thermal performance of the PCM

  3. Analysis of oxygen-enhanced combustion of gas power cycle

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Cristiano Frandalozo; Carotenuto, Adriano; Schneider, Paulo Smith [Universidade Federal do Rio Grande do Sul (GESTE/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Termicos e Energeticos], E-mails: cristiano.maidana@ufrgs.br, pss@mecanica.ufrgs.br

    2010-07-01

    The majority of combustion processes use air as oxidant, roughly taken as 21% O{sub 2} and 79% N{sub 2}, by volume. In many cases, these processes can be enhanced by using an oxidant that contains higher proportion of O{sub 2} than in air. This is known as oxygen-enhanced combustion or OEC, and can bring important benefits like higher thermal efficiencies, lower exhaust gas volumes, higher heat transfer efficiency, reduction fuel consumption, reduced equipment costs and substantially pollutant emissions reduction. Within this scenario, this paper aims to investigate the influence of 21-30% oxygen concentration on the performance of a air-fired natural gas fueled power plant. This power plant operates under a Brayton cycle with models with the help of an air flow splitter after the compressor output in order to dose the oxygen rate of combustion and to keep the flue gas intake of the turbine at a prescribed temperature. Simulations shows that the enhancing of the oxidant stream reduced fuel consumption of about 10%, driven by higher adiabatic flame temperatures, which improves thermal and heat transfer efficiencies. A conclusion obtained is that the use of oxygen in higher proportions can be a challenge to retrofit existing air-fired natural gas power turbine cycles, because of the technological limitation of its materials with higher flame temperatures. (author)

  4. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia–water cycle

    International Nuclear Information System (INIS)

    Luo, Chending; Zhao, Fuqiang; Zhang, Na

    2014-01-01

    Highlights: • We propose a novel nuclear ammonia–water power and cooling cogeneration system. • The high temperature reactor is inherently safe, with exhaust heat fully recovered. • The thermal performances are improved compared with nuclear combined cycle. • The base case attains an energy efficiency of 69.9% and exergy efficiency of 72.5%. • Energy conservation and emission reduction are achieved in this cogeneration way. - Abstract: A nuclear ammonia–water power and refrigeration cogeneration system (NAPR) has been proposed and analyzed in this paper. It consists of a closed high temperature gas-cooled reactor (HTGR) topping Brayton cycle and a modified ammonia water power/refrigeration combined bottoming cycle (APR). The HTGR is an inherently safe reactor, and thus could be stable, flexible and suitable for various energy supply situation, and its exhaust heat is fully recovered by the mixture of ammonia and water in the bottoming cycle. To reduce exergy losses and enhance outputs, the ammonia concentrations of the bottoming cycle working fluid are optimized in both power and refrigeration processes. With the HTGR of 200 MW thermal capacity and 900 °C/70 bar reactor-core-outlet helium, the system achieves 88.8 MW net electrical output and 9.27 MW refrigeration capacity, and also attains an energy efficiency of 69.9% and exergy efficiency of 72.5%, which are higher by 5.3%-points and 2.6%-points as compared with the nuclear combined cycle (NCC, like a conventional gas/steam power-only combined cycle while the topping cycle is a closed HTGR Brayton cycle) with the same nuclear energy input. Compared with conventional separate power and refrigeration generation systems, the fossil fuel saving (based on CH 4 ) and CO 2 emission reduction of base-case NAPR could reach ∼9.66 × 10 4 t/y and ∼26.6 × 10 4 t/y, respectively. The system integration accomplishes the safe and high-efficiency utilization of nuclear energy by power and refrigeration

  5. Use of ICSI in IVF cycles in women with tubal ligation does not improve pregnancy or live birth rates.

    Science.gov (United States)

    Grimstad, F W; Nangia, Ajay K; Luke, B; Stern, J E; Mak, W

    2016-12-01

    Does ICSI improve outcomes in ART cycles without male factor, specifically in couples with a history of tubal ligation as their infertility diagnosis? The use of ICSI showed no significant improvement in fertilization rate and resulted in lower pregnancy and live birth (LB) rates for women with the diagnosis of tubal ligation and no male factor. Prior studies have suggested that ICSI use does not improve fertilization, pregnancy or LB rates in couples with non-male factor infertility. However, it is unknown whether couples with tubal ligation only diagnosis and therefore iatrogenic infertility could benefit from the use of ICSI during their ART cycles. Longitudinal cohort of nationally reported cycles in the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System (SART CORS) of ART cycles performed in the USA between 2004 and 2012. There was a total of 8102 first autologous fresh ART cycles from women with the diagnosis of tubal ligation only and no reported male factor in the SART database. Of these, 957 were canceled cycles and were excluded from the final analysis. The remaining cycles were categorized by the use of conventional IVF (IVF, n = 3956 cycles) or ICSI (n = 3189 cycles). The odds of fertilization, clinical intrauterine gestation (CIG) and LB were calculated by logistic regression modeling, and the adjusted odds ratios (AORs) with 95% confidence intervals were calculated by adjusting for the confounders of year of treatment, maternal age, race and ethnicity, gravidity, number of oocytes retrieved, day of embryo transfer and number of embryos transferred. The main outcome measures of the study were odds of fertilization (2PN/total oocytes), clinical intrauterine gestation (CIG/cycle) and live birth (LB/cycle). The fertilization rate was higher in the ICSI versus IVF group (57.5% vs 49.1%); however, after adjustment this trend was no longer significant (AOR 1.14, 0.97-1.35). Interestingly, both odds of CIG (AOR 0.78, 0

  6. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  7. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    International Nuclear Information System (INIS)

    Siamidis, John; Mason, Lee

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS O pt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids

  8. Remotely controlled biking is associated with improved adherence to prescribed cycling speed.

    Science.gov (United States)

    Jeong, In Cheol; Finkelstein, Joseph

    2015-01-01

    Individuals with mobility impairment may benefit from passive exercise mode which can be subsequently enhanced by an active exercise program. However, it is unclear which exercise mode promotes higher adherence to prescribed exercise intensity. The goal of this project was to compare adherence to prescribed speed during passive and active cycling exercise. We used cross-over study design in which subjects followed the same cycling intensity prescription for passive and active exercise modes in a random sequence. Coefficient of variation (CV) and speed differences were used to estimate extent of deviation from the prescribed trajectory. CV varied from 5.2% to 20.4% for the active mode and from 2.8% to 4.5% for the passive mode respectively. Though the CV differences did not reach statistical significance, analysis of cycling speed adherence of 120-second periods showed significantly higher cycling adherence during passive mode for each target cycling speed. Our results indicated that the passive mode may promote exercise safety and efficacy by helping patients who have safety concerns such as the frail elderly, patients with cardiovascular conditions or people with other contraindications for excessive exertion during exercise, in following the optimal intensity trajectory prescribed by their provider.

  9. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  10. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO_2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  11. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  12. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients.

    Science.gov (United States)

    Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao

    2016-07-01

    Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients.

  13. Improving broadcast performance of radio duty-cycled Internet-of-Things devices

    NARCIS (Netherlands)

    Guclu, S.S.; Özcelebi, T.; Lukkien, J.J.

    2017-01-01

    Asynchronous Radio Duty Cycling (ARDC) protocols can make embedded networked devices more energy efficient by keeping their radio off most of the time without a need for synchronization between devices. Some ARDC protocols can operate under 6LoWPAN adaptation layer in order to enable the vision of

  14. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  15. Mouth rinsing improves cycling endurance performance during Ramadan fasting in a hot humid environment.

    Science.gov (United States)

    Che Muhamed, Ahmad Munir; Mohamed, Nazirah Gulam; Ismail, Norjana; Aziz, Abdul Rashid; Singh, Rabindarjeet

    2014-04-01

    This study examined the effect of mouth rinsing during endurance cycling in a hot humid environment (32 °C and 75% relative humidity) on athletes in the Ramadan fasted state. Nine trained adolescent male cyclists completed 3 trials that consisted of a carbohydrate mouth-rinse (CMR), a placebo mouth-rinse (PMR), and a no-rinse (NOR) trial during the last 2 weeks of Ramadan. Each trial consisted of a preloading cycle at 65% peak rate of oxygen consumption for 30 min followed by a 10-km time trial (TT10 km) under hot humid condition. During the CMR and PMR trials, each cyclist rinsed his mouth with 25 mL of the solution for 5 s before expectorating the solution pre-exercise, after 5, 15, and 25 min of the preloading cycle, and 15 s prior to the start of TT10 km. Time to complete the TT10 km was significantly faster in the CMR and PMR trials compared with the NOR trial (12.9 ± 1.7 and 12.6 ± 1.7 vs. 16.8 ± 1.6 min, respectively; p benefits compared with a no-rinse condition on TT10 km performance in acute Ramadan fasted subjects during endurance cycling in a heat stress environment.

  16. Group studio cycling; an effective intervention to improve cardio-metabolic health in overweight physically inactive individuals

    OpenAIRE

    Faulkner, SH; Pugh, JK; Hood, TM; Menon, K; King, JA; Nimmo, MA

    2015-01-01

    Introduction: Supervised, laboratory based studies of high intensity interval training (HIIT) is effective at improving health markers in groups at risk of cardiovascular and metabolic disease. Studio cycling, incorporating aerobic and high intensity exercise, may offer a platform for the implementation of HIIT within the wider community. \\ud Methods: Eight, overweight, physically inactive (95%. Mean and peak intensity were equivalent to 83% and 97% of HRmax·VO2max increased from 27.1 ± 4.7 m...

  17. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2003-01-01

    to result in a high marginal efficiency. The paper shows that depending on the application, this is not always the case. The interest in this cycle arises from a recent demonstration of the feasibility of a two-stage gasification process through construction of several plants. The gas from this process...... could be divided into two streams, one for primary and one for supplementary firing. A preliminary analysis of the ideal, recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  18. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, Chan Woo; Yang, Hyung Suk; Hwang, Si Dole

    2014-01-01

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1˜3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  19. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    International Nuclear Information System (INIS)

    Chang, Ho-Myung; Park, Chan Woo; Yang, Hyung Suk; Hwang, Si Dole

    2014-01-01

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1∼3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system

  20. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho-Myung; Park, Chan Woo [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Yang, Hyung Suk; Hwang, Si Dole [KEPCO Research Institute, Daejeon, 305-760 (Korea, Republic of)

    2014-01-29

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1∼3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  1. What are the elements required to improve exposure estimates in life cycle assessments?

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Rosenbaum, Ralph K.; Margni, Manuele

    2016-01-01

    human toxicity and ecosystem toxicity of chemicals posed by different product life cycle stages are characterized in the life cycle impact assessment (LCIA) phase. Exposure and effect quantification as part of LCIA toxicity characterization faces numerous challenges related to inventory analysis (e.......g. number and quantity of chemicals emitted), substance-specific modelling (e.g. organics, inorganics, nano-materials) in various environments and time horizons, human and ecosystem exposure quantification (e.g. exposed organisms and exposure pathways), and toxicity end-points (e.g. carcinogenicity...... chemical exposure and harmful effects. Thereby, we structure this study of key elements identified as areas of elevated public, industrial, regulatory, and scientific concerns. We found the majority of missing elements are directly related to the definition of exposed populations (both ecosystems...

  2. A study on improving international political and diplomatic acceptability of advanced nuclear fuel cycle for Korea

    International Nuclear Information System (INIS)

    Lee, Joeng Hoon

    2011-03-01

    In order to establish an advanced nuclear fuel cycle program for Korea, U.S. support and trust are imperative. In the midst of the negotiations for the renewal of the U.S.-South Korea agreement on peaceful nuclear cooperation, the two obvious components of an advanced nuclear fuel cycle - enrichment and reprocessing - have surfaced as major issues. Despite the United States' firm commitment to nonproliferation, South Korea is in dire need to advance its nuclear fuel cycle proportionate to its now significant nuclear energy program. This research project's objective is to put the U.S.-South Korea Nuclear Agreement into proper alliance perspective. The military alliance between the two countries have weathered decades of trials and tribulations. It is one of the most staunch alliances in existence in global politics. As such, the negotiations for the nuclear agreement must be dealt with in the context of the broader alliance relations, not to be lost in the technicalities of the nonproliferation arguments. But even so, South Korea's track record is far better than some of the states the United States has recently granted a most lenient nuclear agreement - India being a case in point. Fairness issue also surfaces when it comes to the agreement the United States has concluded with Japan. As an equally if not more important ally in Asia, South Korea must be permitted to make significant advancements in either enrichment or reprocessing procedures. This project argues that this is the appropriate direction given the history of the two nations' alliance relations. In the final analysis, this research puts forward the argument that the matter that should count the most is not the question of whether South Korea will proliferate or not, but rather whether the United States trusts its battle-tested ally, enough to help develop a peaceful and efficient advanced nuclear fuel cycle program in South Korea

  3. Near Zero Energy House (NZEH) Design Optimization to Improve Life Cycle Cost Performance Using Genetic Algorithm

    Science.gov (United States)

    Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.

    2018-03-01

    Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.

  4. Analysis of different image-based biofeedback models for improving cycling performances

    Science.gov (United States)

    Bibbo, D.; Conforto, S.; Bernabucci, I.; Carli, M.; Schmid, M.; D'Alessio, T.

    2012-03-01

    Sport practice can take advantage from the quantitative assessment of task execution, which is strictly connected to the implementation of optimized training procedures. To this aim, it is interesting to explore the effectiveness of biofeedback training techniques. This implies a complete chain for information extraction containing instrumented devices, processing algorithms and graphical user interfaces (GUIs) to extract valuable information (i.e. kinematics, dynamics, and electrophysiology) to be presented in real-time to the athlete. In cycling, performance indexes displayed in a simple and perceivable way can help the cyclist optimize the pedaling. To this purpose, in this study four different GUIs have been designed and used in order to understand if and how a graphical biofeedback can influence the cycling performance. In particular, information related to the mechanical efficiency of pedaling is represented in each of the designed interfaces and then displayed to the user. This index is real-time calculated on the basis of the force signals exerted on the pedals during cycling. Instrumented pedals for bikes, already designed and implemented in our laboratory, have been used to measure those force components. A group of subjects underwent an experimental protocol and pedaled with (the interfaces have been used in a randomized order) and without graphical biofeedback. Preliminary results show how the effective perception of the biofeedback influences the motor performance.

  5. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    Science.gov (United States)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  6. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rigamonti, L., E-mail: lucia.rigamonti@polimi.it; Falbo, A.; Grosso, M.

    2013-11-15

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.

  7. Thermal efficiency improvement in high output diesel engines a comparison of a Rankine cycle with turbo-compounding

    International Nuclear Information System (INIS)

    Weerasinghe, W.M.S.R.; Stobart, R.K.; Hounsham, S.M.

    2010-01-01

    Thermal management, in particular, heat recovery and utilisation in internal combustion engines result in improved fuel economy, reduced emissions, fast warm up and optimized cylinder head temperatures. turbo-compounding is a heat recovery technique that has been successfully used in medium and large scale engines. Heat recovery to a secondary fluid and expansion is used in large scale engines, such as in power plants in the form of heat recovery steam generators (HRSG) . The present paper presents a thermodynamic analysis of turbo-compounding and heat recovery and utilisation through a fluid power cycle, a technique that is also applicable to medium and small scale engines. In a fluid power cycle, the working fluid is stored in a reservoir and expanded subsequently. The reservoir acts as an energy buffer that improves the overall efficiency, significantly. This paper highlights the relative advantage of exhaust heat secondary power cycles over turbo-compounding with the aid of MATLAB based QSS Toolbox simulation results. Steam has been selected as the working fluid in this work for its superior heat capacity over organic fluids and gases.

  8. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    International Nuclear Information System (INIS)

    Rigamonti, L.; Falbo, A.; Grosso, M.

    2013-01-01

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020

  9. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation.

    Science.gov (United States)

    Rigamonti, L; Falbo, A; Grosso, M

    2013-11-01

    This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A Life-cycle Approach to Improve the Sustainability of Rural Water Systems in Resource-Limited Countries

    Directory of Open Access Journals (Sweden)

    Nicholas Stacey

    2012-11-01

    Full Text Available A WHO and UNICEF joint report states that in 2008, 884 million people lacked access to potable drinking water. A life-cycle approach to develop potable water systems may improve the sustainability for such systems, however, a review of the literature shows that such an approach has primarily been used for urban systems located in resourced countries. Although urbanization is increasing globally, over 40 percent of the world’s population is currently rural with many considered poor. In this paper, we present a first step towards using life-cycle assessment to develop sustainable rural water systems in resource-limited countries while pointing out the needs. For example, while there are few differences in costs and environmental impacts for many improved rural water system options, a system that uses groundwater with community standpipes is substantially lower in cost that other alternatives with a somewhat lower environmental inventory. However, a LCA approach shows that from institutional as well as community and managerial perspectives, sustainability includes many other factors besides cost and environment that are a function of the interdependent decision process used across the life cycle of a water system by aid organizations, water user committees, and household users. These factors often present the biggest challenge to designing sustainable rural water systems for resource-limited countries.

  11. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  12. A Novel Organic Rankine Cycle System with Improved Thermal Stability and Low Global Warming Fluids

    Directory of Open Access Journals (Sweden)

    Panesar Angad S

    2014-07-01

    Full Text Available This paper proposes a novel Organic Rankine Cycle (ORC system for long haul truck application. Rather than typical tail pipe heat recovery configurations, the proposed setup exploits the gaseous streams that are already a load on the engine cooling module. The system uses dual loops connected only by the Exhaust Gas Recirculation (EGR stream. A water blend study is conducted to identify suitable mixtures for the High Temperature (HT loop, while the Low Temperature (LT loop utilises a Low Global Warming (GWP Hydrofluoroether.

  13. Performance characteristics of a quantum Diesel refrigeration cycle

    International Nuclear Information System (INIS)

    He Jizhou; Wang Hao; Liu Sanqiu

    2009-01-01

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed

  14. Thermodynamic design of natural gas liquefaction cycles for offshore application

    Science.gov (United States)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2014-09-01

    A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.

  15. Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries.

    Science.gov (United States)

    Breitung, Ben; Aguiló-Aguayo, Noemí; Bechtold, Thomas; Hahn, Horst; Janek, Jürgen; Brezesinski, Torsten

    2017-10-12

    Si holds great promise as an alloying anode material for Li-ion batteries with improved energy density because of its high theoretical specific capacity and favorable operation voltage range. However, the large volume expansion of Si during electrochemical reaction with Li and the associated adverse effects strongly limit its prospect for application. Here, we report on the use of three-dimensional instead of flat current collectors for high-capacity Si anodes in an attempt to mitigate the loss of electrical contact of active electrode regions as a result of structural disintegration with cycling. The current collectors were produced by technical embroidery and consist of interconnected Cu wires of diameter <150 µm. In comparison to Si/Li cells using a conventional Cu foil current collector, the embroidered microwire network-based cells show much enhanced capacity and reversibility due to a higher degree of tolerance to cycling.

  16. Improvement of CaO-based sorbent performance for CO{sub 2} looping cycles

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada)

    2009-07-01

    This paper presents research on CO{sub 2} capture by lime-based looping cycles. This is a new and promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as the developing technologies for CO{sub 2} capture, especially those based on CaO looping cycles. This technology is at the pilot plant demonstration stage and there are still significant challenges that require solutions. The technology is based on a dual fluidized bed reactor which contains a carbonator - a unit for CO{sub 2} capture, and a calciner - a unit for CaO regeneration. The major technology components are well known from other technologies and easily applicable. However, even though CaO is a very good candidate as a solid CO{sub 2} carrier, its performance in a practical system still has significant limitations. Thus, research on CaO performance is critical and this paper discusses some of the more important problems and potential solutions that are being examined at CETC-O. To date, the most promising methods were reactivation of spent sorbent by steam, thermal pretreatment of sorbent, and doping, most likely with Al{sub 2}O{sub 3}. The combination of these methods, including pelletization, should provide us with enhanced sorbent performance. 75 refs., 19 figs.

  17. Short term economic emission power scheduling of hydrothermal energy systems using improved water cycle algorithm

    International Nuclear Information System (INIS)

    Haroon, S.S.; Malik, T.N.

    2017-01-01

    Due to the increasing environmental concerns, the demand of clean and green energy and concern of atmospheric pollution is increasing. Hence, the power utilities are forced to limit their emissions within the prescribed limits. Therefore, the minimization of fuel cost as well as exhaust gas emissions is becoming an important and challenging task in the short-term scheduling of hydro-thermal energy systems. This paper proposes a novel algorithm known as WCA-ER (Water Cycle Algorithm with Evaporation Rate) to inspect the short term EEPSHES (Economic Emission Power Scheduling of Hydrothermal Energy Systems). WCA has its ancestries from the natural hydrologic cycle i.e. the raining process forms streams and these streams start flowing towards the rivers which finally flow towards the sea. The worth of WCA-ER has been tested on the standard economic emission power scheduling of hydrothermal energy test system consisting of four hydropower and three thermal plants. The problem has been investigated for the three case studies (i) ECS (Economic Cost Scheduling), (ii) ES (Economic Emission Scheduling) and (iii) ECES (Economic Cost and Emission Scheduling). The results obtained show that WCA-ER is superior to many other methods in the literature in bringing lower fuel cost and emissions. (author)

  18. Coupling a groundwater model with a land surface model to improve water and energy cycle simulation

    Directory of Open Access Journals (Sweden)

    W. Tian

    2012-12-01

    Full Text Available Water and energy cycles interact, making these two processes closely related. Land surface models (LSMs can describe the water and energy cycles on the land surface, but their description of the subsurface water processes is oversimplified, and lateral groundwater flow is ignored. Groundwater models (GWMs describe the dynamic movement of the subsurface water well, but they cannot depict the physical mechanisms of the evapotranspiration (ET process in detail. In this study, a coupled model of groundwater flow with a simple biosphere (GWSiB is developed based on the full coupling of a typical land surface model (SiB2 and a 3-D variably saturated groundwater model (AquiferFlow. In this coupled model, the infiltration, ET and energy transfer are simulated by SiB2 using the soil moisture results from the groundwater flow model. The infiltration and ET results are applied iteratively to drive the groundwater flow model. After the coupled model is built, a sensitivity test is first performed, and the effect of the groundwater depth and the hydraulic conductivity parameters on the ET are analyzed. The coupled model is then validated using measurements from two stations located in shallow and deep groundwater depth zones. Finally, the coupled model is applied to data from the middle reach of the Heihe River basin in the northwest of China to test the regional simulation capabilities of the model.

  19. Application of Data Cubes for Improving Detection of Water Cycle Extreme Events

    Science.gov (United States)

    Albayrak, Arif; Teng, William

    2015-01-01

    As part of an ongoing NASA-funded project to remove a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series), for the hydrology and other point-time series-oriented communities, "data cubes" are created from which time series files (aka "data rods") are generated on-the-fly and made available as Web services from the Goddard Earth Sciences Data and Information Services Center (GES DISC). Data cubes are data as archived rearranged into spatio-temporal matrices, which allow for easy access to the data, both spatially and temporally. A data cube is a specific case of the general optimal strategy of reorganizing data to match the desired means of access. The gain from such reorganization is greater the larger the data set. As a use case of our project, we are leveraging existing software to explore the application of the data cubes concept to machine learning, for the purpose of detecting water cycle extreme events, a specific case of anomaly detection, requiring time series data. We investigate the use of support vector machines (SVM) for anomaly classification. We show an example of detection of water cycle extreme events, using data from the Tropical Rainfall Measuring Mission (TRMM).

  20. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    Directory of Open Access Journals (Sweden)

    Wesley Ingwersen

    2014-03-01

    Full Text Available Life cycle approaches are critical for identifying and reducing environmental burdens of products. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA methods fail to integrate the multiple impacts of a system into unified measures of social, economic or environmental performance related to sustainability. Integrated metrics that combine multiple aspects of system performance based on a common scientific or economic principle have proven to be valuable for sustainability evaluation. In this work, we propose methods of adapting four integrated metrics for use with LCAs of product systems: ecological footprint, emergy, green net value added, and Fisher information. These metrics provide information on the full product system in land, energy, monetary equivalents, and as a unitless information index; each bundled with one or more indicators for reporting. When used together and for relative comparison, integrated metrics provide a broader coverage of sustainability aspects from multiple theoretical perspectives that is more likely to illuminate potential issues than individual impact indicators. These integrated metrics are recommended for use in combination with traditional indicators used in LCA. Future work will test and demonstrate the value of using these integrated metrics and combinations to assess product system sustainability.

  1. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles

    CERN Document Server

    Qin Xiao Yong; Sun Feng Rui; Wu Chih

    2003-01-01

    The performance of irreversible reciprocating heat engine cycles with heat transfer loss and friction-like term loss is analysed using finite-time thermodynamics. The universal relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, and the optimal relation between power output and the efficiency of the cycles are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of cycle processes on the performance of the cycle using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson and Brayton cycles.

  2. A low pressure thermodynamic cycle for electric power generation without mechanical compressor

    International Nuclear Information System (INIS)

    Proto, G.; Lenti, R.

    1996-01-01

    According to the 2 nd thermodynamic law there is no compulsion to have an expansion from high pressure level to atmospheric pressure, the only reason relying upon the minimization of the plant volumetry which is just one of the overall cost parameters. A thermodynamic cycle without rotating machinery does exist in avionic applications like the RAMJET, in which air flowing at supersonic speed is compressed in a convergent duct before being heated in the combustion chamber and then expanded to a much higher MACH number. The concept discussed here, however, is referred to a physical principle of different nature. In fact the inlet air flow is quasi static, while the propelling kinetic energy is the residual energy following the gas combustion, expansion, cooling in Supersonic Flow and ultimately its fluidic compression in a convergent duct. The concept theoretically relies upon the so called 'Simple T 0 change' transformation, according to which, in a Supersonic Flow at constant cross section and without mechanical dissipation, a decrease in the gas stagnation temperature (T 0 ) will turn into an increase of its stagnation pressure. The paper discusses the feasibility of such a process, focusing on a specific conceptual application to a subatmospheric pressure, high temperature Brayton cycle getting to the conclusion that, even with the materials technology limitations, there is the potential for significant improvement of the actual thermodynamic cycle efficiency. (author). 6 figs.,1 tab., 2 refs

  3. Measuring and Comparing Descend in Elite Race Cycling with a Perspective on Real-Time Feedback for Improving Individual Performance

    Directory of Open Access Journals (Sweden)

    M. M. Reijne

    2018-02-01

    Full Text Available Descend technique and performance vary among elite racing cyclists and it is not clear what slower riders should do to improve their performance. An observation study was performed of the descending technique of members of a World Tour cycling team and the technique of each member was compared with the fastest descender amongst them. The obtained data gives us guidelines for rider specific feedback in order to improve his performance. The bicycles were equipped with a system that could measure: velocity, cadence, pedal power, position, steer angle, 3D orientation, rotational speeds and linear accelerations of the rear frame and brake force front and rear. From our observation study, the brake point and apex position turned out to be distinctive indicators of a fast cornering technique in a descent for a tight, hairpin corner. These two indicators can be used as feedback for a slower rider to improve his descend performance.

  4. Study on the coupling performance of a turboexpander compressor applied in cryogenic reverse Brayton air refrigerator

    International Nuclear Information System (INIS)

    Yang, Shanju; Chen, Shuangtao; Chen, Xingya; Zhang, Xingqun; Hou, Yu

    2016-01-01

    Highlights: • Numerical simulations on expansion and compression processes were carried out. • A coupling model was built based on analysis and simulation and verified by test. • Relations and interactions among coupling parameters were quantitatively described. • When T_0_C = 0.39 MPa, the cooling capacity of refrigerator reached 221 W at 129.6 K. - Abstract: A small cryogenic reverse Brayton air refrigerator with turboexpander compressor (TEC) is presented in this study. Because of stable process, simple matching between expander and brake blower, and easy regulation, a turboexpander with brake blower is usually used in small reverse Brayton refrigerator. However, a turboexpander with brake blower just consumes and wastes the output energy during the enthalpy drop. In contrast, the output energy of TEC is absorbed by its coupled compressor for recycling. Thus when employing a TEC, the reverse Brayton refrigerator will achieve lower refrigeration temperature, larger cooling capacity and more effective energy use. TEC overall performance, which has an important impact on the refrigerator thermal performance, is mainly determined by the coupling between expander and compressor. In a TEC, the compressor and expander should seek balance among energy, rotating speed, mass flow rate and pressure, though restricted by individual working characteristics. The coupling relations among compressor efficiency, expander efficiency, compressor pressure ratio and expander expansion ratio are quite complex. In this study, theoretical coupling analysis between expander and compressor was conducted. The aerodynamic performances of compressor and expander were calculated using CFX simulation with SST model. The performance curves of compressor and expander were obtained through simulation results, which were validated by experimental data. Based on the coupling analysis and numerical simulations, the automatic coupling model between compression process and expansion process

  5. The urban harvest approach as framework and planning tool for improved water and resource cycles

    NARCIS (Netherlands)

    Leusbrock, I.; Nanninga, T.A.; Lieberg, K.; Agudelo, C.; Keesman, K.J.; Zeeman, G.; Rijnaarts, H.

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource

  6. Does humidification improve the micro Gas Turbine cycle? Thermodynamic assessment based on Sankey and Grassmann diagrams

    International Nuclear Information System (INIS)

    Montero Carrero, Marina; De Paepe, Ward; Bram, Svend; Parente, Alessandro; Contino, Francesco

    2017-01-01

    Highlights: •The Sankey and Grassmann diagrams of an mGT and an mHAT are drawn and presented. •Water injection leads to a 1.4% mGT electrical efficiency increase. •The saturator acts as an aftercooler enabling greater heat recovery in the recuperator. •In the saturator there is an enthalpy gain but a net exergy loss due to evaporation. •The total exergy efficiency of the mGT and mHAT are 35.7% and 30.6% respectively. -- Abstract: Despite appearing as a promising technology for decentralised Combined Heat and Power (CHP), the rather low electrical efficiency of micro Gas Turbines (mGTs) prevents them from being attractive for users with a variable heat demand. Hot water injection in mGTs, achieved by transforming the cycle into a micro Humid Air Turbine (mHAT), allows increasing the electrical efficiency of these units in moments of low heat demand—therefore decoupling heat and electricity production. This paper introduces and compares the Sankey (enthalpy flow) and Grassmann (exergy flow) diagrams of an mGT based on the Turbec T100 and the corresponding mHAT cycle. Results show that the electrical efficiency of the T100 increases by 1.4% absolute points with water injection, while the total exergy efficiency decreases by 5.1%. Although in the saturation tower there is an enthalpy gain, exergy actually decreases in this component due to the increase in entropy related to the evaporation of water. The benefits of water injection mostly rely on the increased heat capacity of the air-vapour mixture, the lower fuel consumption, the larger amount of heat recovered in the recuperator and the reduced power required in the compressor.

  7. Mouth Rinsing with Maltodextrin Solutions Fails to Improve Time Trial Endurance Cycling Performance in Recreational Athletes

    Directory of Open Access Journals (Sweden)

    Tuğba Nilay Kulaksız

    2016-05-01

    Full Text Available The carbohydrate (CHO concentration of a mouth rinsing solution might influence the CHO sensing receptors in the mouth, with consequent activation of brain regions involved in reward, motivation and regulation of motor activity. The purpose of the present study was to examine the effects of maltodextrin mouth rinsing with different concentrations (3%, 6% and 12% after an overnight fast on a 20 km cycling time trial performance. Nine recreationally active, healthy males (age: 24 ± 2 years; V ˙ O 2 m a x : 47 ± 5 mL·kg−1·min−1 participated in this study. A double-blind, placebo-controlled randomized study was conducted. Participants mouth-rinsed every 2.5 km for 5 s. Maltodextrin mouth rinse with concentrations of 3%, 6% or 12% did not change time to complete the time trial and power output compared to placebo (p > 0.05. Time trial completion times were 40.2 ± 4.0, 40.1 ± 3.9, 40.1 ± 4.4, and 39.3 ± 4.2 min and power output 205 ± 22, 206 ± 25, 210 ± 24, and 205 ± 23 W for placebo, 3%, 6%, and 12% maltodextrin conditions, respectively. Heart rate, lactate, glucose, and rating of perceived exertion did not differ between trials (p > 0.05. In conclusion, mouth rinsing with different maltodextrin concentrations after an overnight fast did not affect the physiological responses and performance during a 20 km cycling time trial in recreationally active males.

  8. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    International Nuclear Information System (INIS)

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu

    2014-01-01

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom

  9. Much improved capacity and cycling performance of LiVMoO6 cathode for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou Liqun; Liang Yongguang; Hu Ling; Han Xiaoyan; Yi Zonghui; Sun Jutang; Yang Shuijin

    2008-01-01

    Spherical LiVMoO 6 nanocrystals as cathode for lithium ion batteries were synthesized using a solvothermal reaction method. Powder XRD data indicate that a single phase LiVMoO 6 with brannerite-type structure is obtained at 550 deg. C by the thermal treatment of the precursor for 6 h. SEM image shows that the particles are composed of loosely stacked spheres with a uniform particle size about 40 nm. The electrode properties of LiVMoO 6 have also been studied by galvanostatic cycling and ac impedance spectroscopy. LiVMoO 6 nanospheres delivered 172 mAh g -1 capacity in the initial discharge process with a reversible capacity retention of 94.4% after 100 cycles in the range of 3.6-1.80 V versus metallic Li at a current density of 100 mA g -1 . The microstructure developed in the electrodes give evidence that the particle size and morphological properties play an important role in the much improved capacity and cycling stability at large currents than ordinary samples

  10. Study on thermodynamic cycle of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu Xinhe; Yang Xiaoyong; Wang Jie

    2017-01-01

    The development trend of the (very) High temperature gas-cooled reactor is to gradually increase the reactor outlet temperature. The different power conversion units are required at the different reactor outlet temperature. In this paper, for the helium turbine direct cycle and the combined cycle of the power conversion unit of the High temperature gas-cooled reactor, the mathematic models are established, and three cycle plans are designed. The helium turbine direct cycle is a Brayton cycle with recuperator, precooler and intercooler. In the combined cycle plan 1, the topping cycle is a simple Brayton cycle without recuperator, precooler and intercooler, and the bottoming cycle is based on the steam parameters (540deg, 6 MPa) recommended by Siemens. In the combined cycle plan 2, the topping cycle also is a simple Brayton cycle, and the bottoming cycle which is a Rankine cycle with reheating cycle is based on the steam parameters of conventional subcritical thermal power generation (540degC, 18 MPa). The optimization results showed that the cycle efficiency of the combined cycle plan 2 is the highest, the second is the helium turbine direct cycle, and the combined cycle plan 2 is the lowest. When the reactor outlet temperature is 900degC and the pressure ratio is 2.02, the cycle efficiency of the combined cycle plan 2 can reach 49.7%. The helium turbine direct cycle has a reactor inlet temperature above 500degC due to the regenerating cycle, so it requires a cooling circuit for the internal wall of the reactor pressure vessel. When the reactor outlet temperature increases, the increase of the pressure ratio required by the helium turbine direct cycle increases may bring some difficulties to the design and manufacture of the magnetic bearings. For the combined cycle, the reactor inlet temperature can be controlled below than 370degC, so the reactor pressure vessel can use SA533 steel without cooling the internal wall of the reactor pressure vessel. The pressure

  11. Carbon-Carbon Composites as Recuperator Materials for Direct Gas Brayton Systems

    International Nuclear Information System (INIS)

    RA Wolf

    2006-01-01

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed

  12. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    Energy Technology Data Exchange (ETDEWEB)

    RA Wolf

    2006-07-19

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  13. Quantification of Improvement in Environmental Quality for Old Residential Buildings Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jozef Mitterpach

    2016-12-01

    Full Text Available In Slovakia, 35% of buildings are older than 50 years but most newer buildings built before 1990 have greater energy consumption. Some other countries also have similar problems. The growing importance of energy saving in buildings can be, in the case of new and old residential buildings (RB, achieved by lowering thermal energy consumption most often by application of polystyrene insulation on the external walls and roof and the exchange of wood window frames for PVC (polyvinyl chloride windows. The novelty of the article for Slovakia and some other central European countries consists in using the life cycle assessment (LCA method for the objective assessment of the environmental benefits of the selected systems of wall insulation, as well as of energy savings in various time intervals of insulation functionality (up to 20 years. LCA software SimaPro (LE Amersfoort, The Netherlands was used with ReCiPe and IMPACT 2002+ assessment methods to quantify the total environmental impact at selected endpoints and midpoints (IMPACT 2002+ of basic structural materials of an RB and its energy demand—heat consumption (hot water heating, central heating before the application of insulation and thermal energy saving (TES after application of insulation to its external walls, roof, and the exchange of windows. The data we obtained confirmed that the environmental impact of the polystyrene insulation of external walls, roof, and exchange of windows of one residential building (RB in the first year after insulation is higher than the reduction caused by achieving a TES of 39%. When taking a lifespan of 20 years into consideration, the impact over the life cycle of the building materials is reduced by 25% (global warming: −4792 kg CO2 eq; production of carcinogens: −2479 kg C2H3Cl eq; acidification: −12,045 kg SO2 eq; and aquatic eutrophication: −257 kg PO4 P-lim. The verified LCA methodology will be used for comparative analysis of different variants

  14. Water Chemistry Control Technology to Improve the Performance of Nuclear Power Plants for Extended Fuel Cycles

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Na, J. W.; Lee, E. H.

    2010-07-01

    Ο To Develop the technology to manage the problems of AOA and radiation, corrosion as long term PWR operation. Ο To Establish the advanced water chemical operating systems. - Development of the proper water chemistry guidelines for long term PWR operation. AOA(Axial Offest Anomaly) has been reported in many PWR plants in the world, including Korea, especially in the plants of higher burn-up and longer cycle operation or power up-rate. A test loop has been designed and made by KAERI, in order to investigate and mitigate AOA problems in Korea. This project included the study of hydrodynamic simulation and the modeling about AOA. The analysis of radioactive crud was performed to investigate of NPPs primary water chemical effect on AOA and to reduce the radioactive dose rate. The high temperature measurement system was developed to on-line monitor of water chemistry in nuclear power plants. The effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. The inhibition technology for fouling and SCC of SG tube was evaluated to establish the water chemistry technology of corrosion control of nuclear system. The high temperature and high pressure crevice chemistry analysis test loop was manufactured to develop the water chemistry technology of crevice chemistry control

  15. Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply.

    Science.gov (United States)

    Ertem, Funda Cansu; Martínez-Blanco, Julia; Finkbeiner, Matthias; Neubauer, Peter; Junne, Stefan

    2016-11-01

    This paper analyses concepts to facilitate a demand oriented biogas supply at an agricultural biogas plant of a capacity of 500kWhel, operated with the co-digestion of maize, grass, rye silage and chicken manure. In contrast to previous studies, environmental impacts of flexible and the traditional baseload operation are compared. Life Cycle Assessment (LCA) was performed to detect the environmental impacts of: (i) variety of feedstock co-digestion scenarios by substitution of maize and (ii) loading rate scenarios with a focus on flexible feedstock utilization. Demand-driven biogas production is critical for an overall balanced power supply to the electrical grid. It results in lower amounts of emissions; feedstock loading rate scenarios resulted in 48%, 20%, 11% lower global warming (GWP), acidification (AP) and eutrophication potentials, and a 16% higher cumulative energy demand. Substitution of maize with biogenic-waste regarding to feedstock substitution scenarios could create 10% lower GWP and AP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Radioactive material releases in the nuclear fuel cycle - Recent experience and improvements

    International Nuclear Information System (INIS)

    Allan, C.J.; Allsop, P.J.; Anderson, R.W.; Boss, C.R.; Frost, S.E.

    1997-01-01

    The nuclear fuel cycle involves a wide range of activities and technologies from the mining of uranium, to the production of electricity and radioisotopes for medical and industrial applications, to the reprocessing and recycling of used fuel, to decommissioning and waste disposal. Worker exposures and releases to the environment are carefully controlled in: (a) all stages of uranium mining, refining and fuel fabrication, where occupational exposures and releases have decreased while production has increased; (b) the operation of nuclear power plants, where occupational exposures and releases have decreased as reactor vendors evolve their products and reactor operators optimize their procedures; (c) fuel reprocessing facilities in the U.K. and France, where occupational exposures and releases have decreased while the amount of fuel processed has increased; and in (d) decommissioning nuclear facilities and waste management activities. The nuclear industry's recent record of achievement in controlling its releases and ensuring the radiological protection of its employees has been excellent. It is clear that releases and occupational exposures from modem nuclear facilities of all types contribute negligibly to the radiation environment to which all biota are exposed. But the general public seems not to appreciate the low environmental impact of nuclear activities. The future of nuclear power and of other applications of nuclear technology applications in medicine, in agriculture and in industry will depend on maintaining a high standard of performance so that the public and decision makers can be assured that the industry is safe. (author)

  17. Improvements of characteristics of open cycle Faraday type MHD power generator

    International Nuclear Information System (INIS)

    Yoshida, Masaharu; Umoto, Juro; Aoki, Sigeo

    1982-01-01

    MHD power generators are classified into two types: Faraday type and diagonal type (including Hall type). It is considered also in Faraday type generators that the characteristics can be improved further by selecting the aspect ratio appropriately, and employing cap electrodes which approach diagonal conducting side-wall type from parallel plate electrodes. First, the three-dimensional analysis using a new equivalent circuit is introduced, in which finite electrode division and working gas boundary layer are considered using the generalized Ohm's law, Maxwell's electromagnetic equations and others. The above described improvement of characteristics is investigated numerically fully applying this analyzing method. If the wall temperature is low, the increase in the aspect ratio of a generating duct cross-section considerably improves the characteristics because plasma non-uniformity decreases. If the cap electrodes having an optimum side-wall length are used, the output increases considerably because the load current is given and received through the side-wall electrodes. Efficiency is a little lower than the case using parallel plate electrodes. Therefore, if the aspect ratio is taken sufficiently large, and the cap electrodes with optimum side-wall electrode length are used, the generator characteristics are greatly improved since the above mentioned effects are multiplied. (Wakatsuki, Y.)

  18. Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model

    Science.gov (United States)

    Brown, Steven; Bilitza, Dieter; Yiǧit, Erdal

    2018-06-01

    A new monthly ionospheric index, IGNS, is presented to improve the representation of the solar cycle variation of the ionospheric F2 peak plasma frequency, foF2. IGNS is calculated using a methodology similar to the construction of the "global effective sunspot number", IG, given by Liu et al. (1983) but selects ionosonde observations based on hemispheres. We incorporated the updated index into the International Reference Ionosphere (IRI) model and compared the foF2 model predictions with global ionospheric observations. We also investigated the influence of the underlying foF2 model on the IG index. IRI has two options for foF2 specification, the CCIR-66 and URSI-88 foF2 models. For the first time, we have calculated IG using URSI-88 and assessed the impact on model predictions. Through a retrospective model-data comparison, results show that the inclusion of the new monthly IGNS index in place of the current 12-month smoothed IG index reduce the foF2 model prediction errors by nearly a factor of two. These results apply to both day-time and nightime predictions. This is due to an overall improved prediction of foF2 seasonal and solar cycle variations in the different hemispheres.

  19. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    Science.gov (United States)

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  20. Life cycle assessment as a tool for the environmental improvement of the tannery industry in developing countries.

    Science.gov (United States)

    Rivela, B; Moreira, M T; Bornhardt, C; Méndez, R; Feijoo, G

    2004-03-15

    A representative leather tannery industry in a Latin American developing country has been studied from an environmental point of view, including both technical and economic analysis. Life Cycle Analysis (LCA) methodology has been used for the quantification and evaluation of the impacts of the chromium tanning process as a basis to propose further improvement actions. Four main subsystems were considered: beamhouse, tanyard, retanning, and wood furnace. Damages to human health, ecosystem quality, and resources are mainly produced by the tanyard subsystem. The control and reduction of chromium and ammonia emissions are the critical points to be considered to improve the environmental performance of the process. Technologies available for improved management of chromium tanning were profoundly studied, and improvement actions related to optimized operational conditions and a high exhaustion chrome-tanning process were selected. These actions related to the implementation of internal procedures affected the economy of the process with savings ranging from US dollars 8.63 to US dollars 22.5 for the processing of 1 ton of wet salt hides, meanwhile the global environmental impact was reduced to 44-50%. Moreover, the treatment of wastewaters was considered in two scenarios. Primary treatment presented the largest reduction of the environmental impact of the tanning process, while no significant improvement for the evaluated impact categories was achieved when combining primary and secondary treatments.

  1. Fuel utilization improvement in PWRs using the denatured 233U-Th cycle

    International Nuclear Information System (INIS)

    Jones, H.M.; Schwenk, G.A.; Toops, E.C.; Yotinen, V.O.

    1980-06-01

    A number of changes in PWR core design and/or operating strategy were evaluated to assess the fuel utilization improvement achievable by their implementation in a PWR using thorium-based fuel and operating in a recycle mode. The reference PWR for this study was identical to the B and W Standard Plant except that the fuel pellets were of denatured ( 233 U/ 238 U-Th)O 2 . An initial scoping study identified the three most promising improvement concepts as (1) a very tight lattice, (2) thorium blankets, and (3) ThO 2 rods placed in available guide tubes. A conceptual core design incorporating these changes was then developed, and the fuel utilization of this modified design was compared with that of the reference case

  2. Does local endometrial injury in the nontransfer cycle improve the IVF-ET outcome in the subsequent cycle in patients with previous unsuccessful IVF? A randomized controlled pilot study

    Directory of Open Access Journals (Sweden)

    Sachin A Narvekar

    2010-01-01

    Full Text Available Background: Management of repeated implantation failure despite transfer of good-quality embryos still remains a dilemma for ART specialists. Scrapping of endometrium in the nontransfer cycle has been shown to improve the pregnancy rate in the subsequent IVF/ET cycle in recent studies. Aim: The objective of this randomized controlled trial (RCT was to determine whether endometrial injury caused by Pipelle sampling in the nontransfer cycle could improve the probability of pregnancy in the subsequent IVF cycle in patients who had previous failed IVF outcome. Setting: Tertiary assisted conception center. Design: Randomized controlled study. Materials and Methods: 100 eligible patients with previous failed IVF despite transfer of good-quality embryos were randomly allocated to the intervention group and control groups. In the intervention group, Pipelle endometrial sampling was done twice: One in the follicular phase and again in the luteal phase in the cycle preceding the embryo transfer cycle. Outcome Measure: The primary outcome measure was live birth rate. The secondary outcome measures were implantation and clinical pregnancy rates. Results: The live birth rate was significantly higher in the intervention group compared to control group (22.4% and 9.8% P = 0.04. The clinical pregnancy rate in the intervention group was 32.7%, while that in the control group was 13.7%, which was also statistically significant ( P = 0.01. The implantation rate was significantly higher in the intervention group as compared to controls (13.07% vs 7.1% P = 0.04. Conclusions: Endometrial injury in nontransfer cycle improves the live birth rate,clinical pregnancy and implantation rates in the subsequent IVF-ET cycle in patients with previous unsuccessful IVF cycles.

  3. Cycle time improvement for plastic injection moulding process by sub groove modification in conformal cooling channel

    Science.gov (United States)

    Kamarudin, K.; Wahab, M. S.; Batcha, M. F. M.; Shayfull, Z.; Raus, A. A.; Ahmed, Aqeel

    2017-09-01

    Mould designers have been struggling for the improvement of the cooling system performance, despite the fact that the cooling system complexity is physically limited by the fabrication capability of the conventional tooling methods. However, the growth of Solid Free Form Technology (SFF) allow the mould designer to develop more than just a regular conformal cooling channel. Numerous researchers demonstrate that conformal cooling channel was tremendously given significant result in the improvement of productivity and quality in the plastic injection moulding process. This paper presents the research work that applies the passive enhancement method in square shape cooling channel to enhance the efficiency of cooling performance by adding the sub groove to the cooling channel itself. Previous design that uses square shape cooling channel was improved by adding various numbers of sub groove to meet the best sub groove design that able reduced the cooling time. The effect of sub groove design on cooling time was investigated by Autodesk Modlflow Insight software. The simulation results showed that the various sub groove designs give different values to ejection time. The Design 7 showed the lowest value of ejection time with 24.3% increment. The addition of sub groove significantly increased a coolant velocity and a rate of heat transfer from molten plastic to coolant.

  4. Improving life-cycle cost management in the US. Army: analysis of the U.S. Army and Commercial Businesses life-cycle cost management.

    OpenAIRE

    White, Bradley A.

    2001-01-01

    The roles and responsibilities of the Army acquisition and logistics communities, as they pertain to the life-cycle management, are undergoing fundamental change. The early identification and total control of life-cycle cost, in particular operations and sustainment costs which comprises as much as 70-80% of a systems total life-cycle cost, is a high priority for the Army. The basis of this change is adoption of commercial best practices to support the Army's goal to organize. tram. equip, an...

  5. Two cycles of plasma rich in growth factors (PRGF-Endoret) intra-articular injections improve stiffness and activities of daily living but not pain compared to one cycle on patients with symptomatic knee osteoarthritis.

    Science.gov (United States)

    Vaquerizo, Víctor; Padilla, Sabino; Aguirre, José Javier; Begoña, Leire; Orive, Gorka; Anitua, Eduardo

    2017-05-19

    To assess the clinical efficacy and safety of a treatment based on one cycle versus two cycles of intra-articular injections of plasma rich in growth factors (PRGF-Endoret) on patients with knee osteoarthritis (OA). Ninety patients with knee OA were included and evaluated. A total of 48 patients received one cycle (OC group) (3 injections on a weekly basis), while 42 patients received two cycles of PRGF-Endoret (TC group) spaced 6 months between them. Patients were evaluated with LEQUESNE and WOMAC scores before treatment and after 48 weeks. Safety assessment was also performed. A significant reduction of all assessed outcome measures was shown for both groups at 48 weeks compared with baseline values (P PRGF did not show a significantly higher pain reduction compared with one cycle treatment. However, two cycles of PRGF showed a significant improvement in WOMAC stiffness, LEQUESNE MCD, LEQUESNE ADV and LEQUESNE global subscales. Therefore, patients treated with two cycles present an improvement in quality of life. II.

  6. Improvement of wine terroir management according to biogeochemical cycle of nitrogen in soil

    Science.gov (United States)

    Najat, Nassr; Aude, Langenfeld; Mohammed, Benbrahim; Lionel, Ley; Laurent, Deliere; Jean-Pascal, Goutouly; David, Lafond; Marie, Thiollet-Scholtus

    2015-04-01

    Good wine terroir production implies a well-balanced Biogeochemical Cycle of Nitrogen (BCN) at field level i.e. in soil and in plant. Nitrogen is very important for grape quality and soil sustainability. The mineralization of organic nitrogen is the main source of mineral nitrogen for the vine. This mineralization depends mainly on the soil microbial activity. This study is focused on the functional microbial populations implicated in the BCN, in particular nitrifying bacteria. An experimental network with 6 vine sites located in Atlantic coast (Loire valley and Bordeaux) and in North-East (Alsace) of France has been set up since 2012. These vine sites represent a diversity of environmental factors (i.e. soil and climate). The adopted approach is based on the measure of several indicators to assess nitrogen dynamic in soil, i.e. nitrogen mineralization, regarding microbial biomass and activity. Statistical analyses are performed to determine the relationship between biological indicator and nitrogen mineralisation regarding farmer's practices. The variability of the BCN indicators seems to be correlated to the physical and chemical parameters in the soil of the field. For all the sites, the bacterial biomass is correlated to the rate and kinetic of nitrogen in soil, however this bioindicator depend also on others parameters. Moreover, the functional bacterial diversity depends on the soil organic matter content. Differences in the bacterial biomass and kinetic of nitrogen mineralization are observed between the sites with clayey (Loire valley site) and sandy soils (Bordeaux site). In some tested vine systems, effects on bacterial activity and nitrogen dynamic are also observed depending on the farmer's practices: soil tillage, reduction of inputs, i.e. pesticides and fertilizers, and soil cover management between rows. The BCN indicators seem to be strong to assess the dynamics of the nitrogen in various sites underline the functional diversity of the soils. These

  7. Predictive control strategy of a gas turbine for improvement of combined cycle power plant dynamic performance and efficiency.

    Science.gov (United States)

    Mohamed, Omar; Wang, Jihong; Khalil, Ashraf; Limhabrash, Marwan

    2016-01-01

    This paper presents a novel strategy for implementing model predictive control (MPC) to a large gas turbine power plant as a part of our research progress in order to improve plant thermal efficiency and load-frequency control performance. A generalized state space model for a large gas turbine covering the whole steady operational range is designed according to subspace identification method with closed loop data as input to the identification algorithm. Then the model is used in developing a MPC and integrated into the plant existing control strategy. The strategy principle is based on feeding the reference signals of the pilot valve, natural gas valve, and the compressor pressure ratio controller with the optimized decisions given by the MPC instead of direct application of the control signals. If the set points for the compressor controller and turbine valves are sent in a timely manner, there will be more kinetic energy in the plant to release faster responses on the output and the overall system efficiency is improved. Simulation results have illustrated the feasibility of the proposed application that has achieved significant improvement in the frequency variations and load following capability which are also translated to be improvements in the overall combined cycle thermal efficiency of around 1.1 % compared to the existing one.

  8. Improvement to the pattern of control rods of the equilibrium cycle of 18 months for the CLV using bio-inspired algorithms

    International Nuclear Information System (INIS)

    Perusquia, R.; Ortiz, J.J.; Montes, J.L.

    2003-01-01

    Nowadays in the National Institute of Nuclear Research are carried out studies with some bio-inspired optimization techniques to improve the performance of the fuel cycles of the boiling water reactors of the Laguna Verde power plant (CLV). In the present work two bio-inspired techniques were applied with the purpose of improving the performance of a balance cycle of 18 months developed for the CLV: genetic algorithms (AG) and systems based on ants colonies (SCH). The design of the reference cycle it represents in several aspects an optimal cycle proposed starting from the experience of several operation decades with the boiling water reactors (BWR initials for Boiling Water Reactor) in the world. To try to improve their performance is beforehand a difficult challenge and it puts on test the feasibility of the optimization methods in the reloads design. The study of the bio-inspired techniques was centered exclusively on the obtaining of the control rod patterns (PBC) trying to overcome the capacity factor reached in the design of the reference cycle. It was fixed the cycle length such that the decrease of the coast down period would represent an increase of the capacity factor of the cycle; so that, it diminishes the annual cost associated with the capital cost of the plant. As consequence of the study, was found that the algorithm based on the ants colonies reaches to diminish the coast down period in five and half days respect to the original balance cycle, what represents an annual saving of $US 74,000. Since the original cycle was optimized, the above-mentioned, shows the ability of the SCH for the optimization of the cycle design. With the AG it was reach to approach to the original balance cycle with a coast down period greater in seven days estimating an annual penalization of $US 130,000. (Author)

  9. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO2 Recompression Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Shaun D. [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, James [Brayton Energy, LLC, Portsmouth, NH (United States); Nash, James [Brayton Energy, LLC, Portsmouth, NH (United States); Farias, Jason [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, Devon [Brayton Energy, LLC, Portsmouth, NH (United States); Caruso, William [Brayton Energy, LLC, Portsmouth, NH (United States)

    2016-04-06

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 . Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kWth cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO2 receiver for a sCO2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.

  10. Coinciding exercise with peak serum caffeine does not improve cycling performance.

    Science.gov (United States)

    Skinner, Tina L; Jenkins, David G; Taaffe, Dennis R; Leveritt, Michael D; Coombes, Jeff S

    2013-01-01

    To investigate whether coinciding peak serum caffeine concentration with the onset of exercise enhances subsequent endurance performance. Randomised, double-blind, crossover. In this randomised, placebo-controlled, double-blind crossover study, 14 male trained cyclists and triathletes (age 31±5year, body mass 75.4±5.7 kg, VO₂max 69.5±6.1 mL kg⁻¹ min⁻¹ and peak power output 417±35W, mean±SD) consumed 6 mg kg(-1) caffeine or a placebo either 1h (C(1h)) prior to completing a 40 km time trial or when the start of exercise coincided with individual peak serum caffeine concentrations (C(peak)). C(peak) was determined from a separate 'caffeine profiling' session that involved monitoring caffeine concentrations in the blood every 30 min over a 4h period. Following caffeine ingestion, peak serum caffeine occurred 120 min in 12 participants and 150 min in 2 participants. Time to complete the 40 km time trial was significantly faster (2.0%; p=0.002) in C(1h) compared to placebo. No statistically significant improvement in performance was noted in the C(peak) trial versus placebo (1.1%; p=0.240). Whilst no differences in metabolic markers were found between C(peak) and placebo conditions, plasma concentrations of glucose (p=0.005), norepinephrine and epinephrine (p≤0.002) were higher in the C(1h) trial 6 min post-exercise versus placebo. In contrast to coinciding peak serum caffeine concentration with exercise onset, caffeine consumed 60 min prior to exercise resulted in significant improvements in 40 km time trial performance. The ergogenic effect of caffeine was not found to be related to peak caffeine concentration in the blood at the onset of endurance exercise. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  12. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  13. Nitrogen expander cycles for large capacity liquefaction of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Choe, Kun Hyung [Korea Gas Corporation, Incheon, 406-130 (Korea, Republic of)

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  14. Nitrogen expander cycles for large capacity liquefaction of natural gas

    Science.gov (United States)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  15. Nitrogen expander cycles for large capacity liquefaction of natural gas

    International Nuclear Information System (INIS)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity

  16. Improvement of methodological and data background for life cycle assessment of nano-metaloxides

    DEFF Research Database (Denmark)

    Miseljic, Mirko

    =0.01) to 3.20E-03 (801-1000 nm, α=1) PAF·m3 ·day/kg for Ag, TiO2, and ZnO ENMs, respectively. In terms of toxicity level the derived CFs show that Ag>ZnO>TiO2. The CFs can be applied, but should be considered interim. A LCA case study was performed on five ENM products, where novel industrial...... model was setup. The fate was based on peri-kinetic aggregation (Brownian motion), ortho-kinetic aggregation (fluid motion), differential settling (sedimentation), resuspension and dissolution of ENMs. The effect part was based on three freshwater trophic levels (algae, daphnia and fish...... measurements from products. Based on the review a central part of the improvement could be done by addressing the functional unit, data inventory and ENM freshwater ecotoxicity CFs. In order to derive freshwater (European continent) ecotoxicity CFs, at midpoint level, of metal (-oxide) ENMs a fate and effect...

  17. Effects on potential once-through improvements on the uranium utilisation in the closed LWR cycle assuming self-generated recycling of uranium and plutonium

    International Nuclear Information System (INIS)

    1979-01-01

    This paper describes the mode of operation of a reference 1300 MW(e) PWR operating on self-generating U/Pu recycle and then considers the uranium saving which might be achieved by introducing a number of improvements in design and operation which have been suggested for the once-through cycle. These are: Increased burnup, lattice changes, spectrum shift, enrichment zoning including blankets, full use of early batches of start-up core, improved fuel management and control design, end of cycle coastdown, reconstitution and inversion of BWR fuel, more frequent refueling. The paper concludes that if both the once-through cycle and recycle in the SGR mode were improved to the optimum extent recycle would offer 25-30% uranium savings compared to the once-through cycle

  18. Modified Truncated Multiplicity Analysis to Improve Verification of Uranium Fuel Cycle Materials

    International Nuclear Information System (INIS)

    LaFleur, A.; Miller, K.; Swinhoe, M.; Belian, A.; Croft, S.

    2015-01-01

    Accurate verification of 235U enrichment and mass in UF6 storage cylinders and the UO2F2 holdup contained in the process equipment is needed to improve international safeguards and nuclear material accountancy at uranium enrichment plants. Small UF6 cylinders (1.5'' and 5'' diameter) are used to store the full range of enrichments from depleted to highly-enriched UF6. For independent verification of these materials, it is essential that the 235U mass and enrichment measurements do not rely on facility operator declarations. Furthermore, in order to be deployed by IAEA inspectors to detect undeclared activities (e.g., during complementary access), it is also imperative that the measurement technique is quick, portable, and sensitive to a broad range of 235U masses. Truncated multiplicity analysis is a technique that reduces the variance in the measured count rates by only considering moments 1, 2, and 3 of the multiplicity distribution. This is especially important for reducing the uncertainty in the measured doubles and triples rates in environments with a high cosmic ray background relative to the uranium signal strength. Howev