WorldWideScience

Sample records for braunschweig experimental reactor

  1. Irrigation of treated wastewater in Braunschweig, Germany

    DEFF Research Database (Denmark)

    Ternes, T.A.; Bonerz, M.; Herrmann, N.

    2007-01-01

    In this study the fate of pharmaceuticals and personal care products which are irrigated on arable land with treated municipal waste-water was investigated. In Braunschweig, Germany, wastewater has been irrigated continuously for more than 45 years. In the winter time only the effluent...... of digested sludge, because many polar compounds do not sorb to sludge and lipophilic compounds are not mobile in the soil-aquifer. Most of the selected PPCPs were never detected in any of the lysimeter or groundwater samples, although they were present in the treated wastewater irrigated onto the fields...

  2. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  3. 9 CFR 319.182 - Braunschweiger and liver sausage or liverwurst.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Braunschweiger and liver sausage or... Sausage § 319.182 Braunschweiger and liver sausage or liverwurst. (a) “Braunschweiger” is a cooked sausage... the following: “Braunschweiger—A Liver Sausage,” “Braunschweiger—A Liverwurst,” or...

  4. China experimental fast reactor; Le reacteur rapide experimental chinois

    Energy Technology Data Exchange (ETDEWEB)

    Tianmin, X. [Institut d' Ingenierie Nucleaire de Pekin (China); Cunren, L. [Centre d' Etude de Surete de Pekin (China)

    2007-07-15

    The Chinese experimental fast reactor (CEFR) is a pool-type sodium-cooled fast reactor whose short term purposes are: -) the validation of computer codes, -) the check of the relevance of standards, and -) the gathering of experimental data on fast reactors. On the long term the expectations will focus on: -) gaining experience in fast reactor operations, -) the testing of nuclear fuels and materials, and -) the study of sodium compounds. The main technical features of CEFR are: -) thermal power output: 65 MW (electrical power output: 20 MW), -) size of the core: height: 45 cm, diameter: 60 cm, -) maximal linear output: 430 W/cm, -) neutron flux: 3.7*10{sup 15} n/cm{sup 2}/s, -) input/output sodium temperature: 360 / 530 Celsius degrees, -) 2 loops for the primary system and 2 loops for the secondary system. The temperature coefficient and the power coefficient are settled to stay negative for any change in the values of the core parameters. The installation of the reactor vessel will be completed by mid 2007. The first criticality of CEFR is expected during the first semester of 2010. (A.C.)

  5. Enhancement of Irradiation Capability of the Experimental Fast Reactor Joyo

    Science.gov (United States)

    Maeda, Shigetaka; Serine, Takashi; Aoyama, Takafumi; Suzuki, Soju

    2009-08-01

    The experimental fast reactor Joyo is the first sodium-cooled fast reactor in Japan. One of its primary missions is to perform irradiation tests of fuel and structural materials to support the development of fast reactors. The MK-III high performance core upgrade to enhance the irradiation testing capabilities was completed in 2003. In order to expand Joyo's capabilities for innovative irradiation testing applications, neutron spectrum tailoring, lower irradiation temperature, movable sample devices and fast neutron beam holes are being considered. This program responds to existing irradiation needs and aims to further expand capabilities for a variety of irradiation tests.

  6. Estimation of damage by inmates of a PWR Reactor neutron irradiation; Medida de flujo adjunto en un reactor experimental

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.

    2013-07-01

    Flow measurement deputy in an experimental reactor This work focuses on the flow measurement attached with reactor subcritical, to be applied in fast, reactor type ADS (Accelerator Driven System). The role of the attached flow in perturbation theory of reactivity, as the theoretical basis for the design of the measurement technique is briefly reviewed. Used measures from the experimental fast reactor currently dismantled CORAL-I.

  7. Reactivity worth measurements with Caliban and Silene experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA Valduc, 21 - Is-sur-Tille (France)

    2008-07-01

    Reactivity worth measurements of material samples put in the central cavities of nuclear reactors allow to test cross section nuclear databases or to extract information about the critical masses of fissile elements. Such experiments have already been completed on the CALIBAN and SILENE experimental reactors operated by the Criticality and Neutronics Research Laboratory of Valduc (Cea, France), using the perturbation measurement technique. Feasibility studies have been performed to prepare future experiments on new materials (beryllium, copper, tantalum, {sup 237}Np) and results show that the obtained values for most materials are clearly above the measurement limits and then the perturbation technique can be used even with smaller size samples.

  8. A Study of Reactor Neutrino Monitoring at Experimental Fast Reactor JOYO

    CERN Document Server

    Furuta, H; Hara, T; Haruna, T; Ishihara, N; Ishitsuka, M; Ito, C; Katsumata, M; Kawasaki, T; Konno, T; Kuze, M; Maeda, J; Matsubara, T; Miyata, H; Nagasaka, Y; Nitta, K; Sakamoto, Y; Suekane, F; Sumiyoshi, T; Tabata, H; Takamatsu, M; Tamura, N

    2011-01-01

    We carried out a study of neutrino detection at the experimental fast reactor JOYO using a 0.76 tons gadolinium loaded liquid scintillator detector. The detector was set up on the ground level at 24.3m from the JOYO reactor core of 140MW thermal power. The measured neutrino event rate from reactor on-off comparison was 1.11\\pm1.24(stat.)\\pm0.46(syst.)events/day. Although the statistical significance of the measurement was not enough, the background in such a compact detector at the ground level was studied in detail and MC simulation was found to describe the data well. A study for improvement of the detector for future such experiments is also shown.

  9. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  10. Experimental Study of a Photocatalytic Reactor for Trace Formaldehyde Removal

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-min; LIAN Zhi-wei; YE Xiao-jiang; SHANG-GUAN Wen-feng

    2005-01-01

    Formaldehyde is the key contaminant influencing building occupants' health in indoor environment. In order to reduce occupants' exposures to formaldehyde, a newly designed photocatalytic reactor was applied in a dynamic HVAC(heating, ventilation and air conditioning) system. The experiments were carried out for the removal of formaldehyde present in air at low parts per million (ppm) concentrations.The initial formaldehyde concentrations were set as1.59 ppm and 0.27 ppm respectively, based on the formaldehyde levels in the polluted places. Experimental results show that the photocatalytic reactor is effective on formaldehyde photodegradation, causes a low pressure drop, and does not make the second pollution of ozone. The kinetic analysis indicates that the kinetics for oxidation processes can be fitted well by a pseudo-first-order kinetic model deduced from Langmuir - Hinshelwood (L-H) model.

  11. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  12. Progress of China Experimental Fast Reactor in 2011

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    1 Background Fast reactor is the reactor which realized the chain fission with fast neutron.As an optional type of generation Ⅳ reactor,fast reactor has three characters:1) It can change 238U to 239Pu and raise the uranium resource utilization

  13. Oak Ridge Tokamak experimental power reactor study scoping report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.

    1977-03-01

    This report presents the scoping studies performed as the initial part of the program to produce a conceptual design for a Tokamak Experimental Power Reactor (EPR). The EPR as considered in this study is to employ all systems necessary for significant electric power production at continuous high duty cycle operation; it is presently scheduled to be the final technological step before a Demonstration Reactor Plant (Demo). The scoping study tasks begin with an exploration and identification of principal problem areas and then concentrate on consideration and evaluation of alternate design choices for each of the following major systems: Plasma Engineering and Physics, Nuclear, Electromagnetics, Neutral Beam Injection, and Tritium Handling. In addition, consideration has been given to the integration of these systems and requirements arising out of their incorporation into an EPR. One intent of this study is to document the paths explored in search of the appropriate EPR characteristics. To satisfy this intent, the explorations are presented in chart form outlining possible options in key areas with extensive supporting footnotes. An important result of the scoping study has been the development and definition of an EPR reference design to serve as (1) a common focus for the continuing design study and (2) a guide for associated development programs. In addition, the study has identified research and development requirements essential to facilitate the successful conceptual design, construction, and operation of an EPR.

  14. Impact of radionuclides on maintenance of Experimental Breeder Reactor II

    Energy Technology Data Exchange (ETDEWEB)

    Olson, W.H.

    1985-01-01

    More than 20 years of Experimental-Breeder-Reactor-II (EBR-II) operation has demonstrated the capability to maintain radioactive equipment without undue radiation exposure to operating and maintenance personnel. The dominant radioisotopes in EBR-II primary systems are the activated corrosion product /sup 54/Mn and the fission products /sup 90/Sr and /sup 137/Cs. The presence of radioisotopes from direct activation, deposit of activated corrosion products, and release of fission products from breached fuel elements dictates special procedures, equipment, and planning but does not prohibit maintenance activities. Since 1977, the average yearly exposure of operating and maintenance personnel has been reduced while the radioactivity of systems and components has increased.

  15. A neutronradiography facility based on an experimental reactor

    Directory of Open Access Journals (Sweden)

    D. T. Thomas

    2015-06-01

    Full Text Available A thermal Neutron Radiography (NR facility based on the use of thermal neutron flux, generated by the PULSTAR experimental reactor, has been designed and simulated using the MCNPX code. The key objective of the proposed facility is to deliver thermal neutron flux in this range for variable values of L/D ratio, instantaneously with acceptable values for all NR parameters. Thus, with suitable aperture and collimators designs, optimization for the parameters for thermal NR was achieved, for a wide range of the collimator ratio. The short time requirements for obtaining the radiography images justify the use of the proposed system for ‘real time radiography’. The system was designed under the limitation that the total Dose Equivalent Rate does not exceed at the external shield surface the limit recommended by ICRP-26.

  16. Experimental assessment of computer codes used for safety analysis of integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Falkov, A.A.; Kuul, V.S.; Samoilov, O.B. [OKB Mechanical Engineering, Nizhny Novgorod (Russian Federation)

    1995-09-01

    Peculiarities of integral reactor thermohydraulics in accidents are associated with presence of noncondensable gas in built-in pressurizer, absence of pumped ECCS, use of guard vessel for LOCAs localisation and passive RHRS through in-reactor HX`s. These features defined the main trends in experimental investigations and verification efforts for computer codes applied. The paper reviews briefly the performed experimental investigation of thermohydraulics of AST-500, VPBER600-type integral reactors. The characteristic of UROVEN/MB-3 code for LOCAs analysis in integral reactors and results of its verification are given. The assessment of RELAP5/mod3 applicability for accident analysis in integral reactor is presented.

  17. Decommissioning of Experimental Breeder Reactor - II Complex, Post Sodium Draining

    Energy Technology Data Exchange (ETDEWEB)

    J. A. (Bart) Michelbacher; S. Paul Henslee; Collin J. Knight; Steven R. sherman

    2005-09-01

    The Experimental Breeder Reactor - II (EBR-II) was shutdown in September 1994 as mandated by the United States Department of Energy. This sodium-cooled reactor had been in service since 1964. The bulk sodium was drained from the primary and secondary systems and processed. Residual sodium remaining in the systems after draining was converted into sodium bicarbonate using humid carbon dioxide. This technique was tested at Argonne National Laboratory in Illinois under controlled conditions, then demonstrated on a larger scale by treating residual sodium within the EBR-II secondary cooling system, followed by the primary tank. This process, terminated in 2002, was used to place a layer of sodium bicarbonate over all exposed surfaces of sodium. Treatment of the remaining EBR-II sodium is governed by the Resource Conservation and Recovery Act (RCRA). The Idaho Department of Environmental Quality issued a RCRA Operating Permit in 2002, mandating that all hazardous materials be removed from EBR-II within a 10 year period, with the ability to extend the permit and treatment period for another 10 years. A preliminary plan has been formulated to remove the remaining sodium and NaK from the primary and secondary systems using moist carbon dioxide, steam and nitrogen, and a water flush. The moist carbon dioxide treatment was resumed in May 2004. As of August 2005, approximately 60% of the residual sodium within the EBR-II primary tank had been treated. This process will continue through the end of 2005, when it is forecast that the process will become increasingly ineffective. At that time, subsequent treatment processes will be planned and initiated. It should be noted that the processes and anticipated costs associated with these processes are preliminary. Detailed engineering has not been performed, and approval for these methods has not been obtained from the regulator or the sponsors.

  18. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.; Marcinkowska, Z.; Boettcher, A.; Prokopowicz, R. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Sireta, P.; Gonnier, C.; Bignan, G. [CEA, DEN, Reactor Studies Department, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Fourmentel, D.; Barbot, L.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C.; Brun, J. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Jagielski, J. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland); Luks, A. [Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland)

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to the qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from

  19. Tokamak experimental power reactor conceptual design. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H/sub 2/O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters.

  20. Experimental study of coal topping process in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.G.; Lu, X.S.; Yao, J.X.; Lin, W.G.; Cui, L.J. [Chinese Academy of Science, Beijing (China). Inst. of Processing Engineering

    2005-02-02

    Experiments were carried out in a downer reactor integrated in a circulating fluidized bed combustor to examine the performance of the coal topping process. The effects of reaction temperature and coal particle size on the product distribution and their compositions were determined. The experimental results show that an increase in temperature will increase the yields of gas and liquid product, and the liquid yield decreases with the increase in coal particle size. The experiments exhibit an optimal condition for the liquid product. When the pyrolysis temperature is 660{sup o}C and coal particle size is less than 0.2-8 mm, the yield of light tar (hexane-soluble fraction) reaches 7.5 wt % (dry coal basis). The light tar is composed of acid groups (57.1 wt %), crude gasoline (aliphatics) (12.9 wt %), aromatics (21.4 wt %), and polar and basic groups (8.6 wt %). The experiments indicate that the coal topping process is a promising technology for partially converting coal into liquid fuels and fine chemicals.

  1. Measurement of neutron spectra in the experimental reactor LR-0

    Energy Technology Data Exchange (ETDEWEB)

    Prenosil, Vaclav; Mravec, Filip; Veskrna, Martin [Faculty of Informatics, Masaryk University, Botanicka 68a, 612 00 Brno, (Czech Republic); Kostal, Michal [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez, (Czech Republic); Matej, Zdenek [VF, a.s., Svitavska 588, 679 21 Cerna Hora, (Czech Republic); Cvachovec, Frantisek [Faculty of Military Technology, University of Defense, Brno, (Czech Republic)

    2015-07-01

    The measurement of fast neutron fluxes is important in many areas of nuclear technology. It affects the stability of the reactor structural components, performance of fuel, and also the fuel manner. The experiments performed at the LR-0 reactor were in the past focused on the measurement of neutron field far from the core, in reactor pressure vessel simulator or in biological shielding simulator. In the present the measurement in closer regions to core became more important, especially measurements in structural components like reactor baffle. This importance increases with both reactor power increase and also long term operation. Other important task is an increasing need for the measurement close to the fuel. The spectra near the fuel are aimed due to the planned measurements with the FLIBE salt, in FHR / MSR research, where one of the task is the measurement of the neutron spectra in it. In both types of experiments there is strong demand for high working count rate. The high count rate is caused mainly by high gamma background and by high fluxes. The fluxes in core or in its vicinity are relatively high to ensure safe reactor operation. This request is met in the digital spectroscopic apparatus. All experiments were realized in the LR-0 reactor. It is an extremely flexible light water zero-power research reactor, operated by the Research Center Rez (Czech Republic). (authors)

  2. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  3. Digital Spectrometric System for Characterization of Mixed Neutron - Gamma Field in the Experimental Reactor LR-0

    Science.gov (United States)

    Mravec, Filip; Matej, Zdenek; Cvachovec, Frantisek; Kostal, Michal; Veskrna, Martin; Prenosil, Vaclav

    2016-02-01

    LR-0 reactor is an experimental reactor in NRI Rez, Czech Republic. So far an analog apparatus was used for measurements of the space-energy distribution of the neutron gamma mixed field inside the reactor vessel. Recently we measured in LR-0 with fully digital apparatus using Agilent digitizer and compared our results with older established results from analog apparatus and also with MCNP calculations.

  4. Review of accident analyses of RB experimental reactor

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2003-01-01

    Full Text Available The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VTNCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62 yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin consisting of 2% enriched uranium metal and 80% enriched UO2 dispersed in aluminum matrix, have been available since 1962 and 1976 respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINĆA Institute, an independent regulatory body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given.

  5. Experimental devices in the osiris reactor to study effects of radiations on fusion reactor materials

    Science.gov (United States)

    Lefevre, F.; Thevenot, G.

    1986-11-01

    Within the framework of the Technology Research Program on controlled fusion initiated by the European Communities, the Services des Piles de Saclay (SPS) of Commissariat à l'Energie Atomique (CEA) have been requested to perform some necessary experiments to study the irradiation behaviour of materials which are possible candidates for controlled fusion reactors. This paper describes the devices, generally adapted from a standard model "The COLIBRI", which allow one to carry out, in the OSIRIS reactor, irradiations on the three great families of fusion reactor materials: - lithium containing materials of breeding blanket for in-situ tritium production, - protection materials, and - structural materials.

  6. Experimental devices in the OSIRIS reactor to study effects of radiations on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, F.; Thevenot, G.

    Within the framework of the Technology Research Program on controlled fusion initiated by the European Communities, the Services des Piles de Saclay (SPS) of Commissariat a l'Energie Atomique (CEA) have been requested to perform some necessary experiments to study the irradiation behaviour of materials which are possible candidates for controlled fusion reactors. This paper describes the devices, generally adapted from a standard model The COLIBRI, which allow one to carry out, in the OSIRIS reactor, irradiations on the three great families of fusion reactor materials: Lithium containing materials of breeding blanket for in-situ tritium production, protection materials, and structural materials.

  7. A reverse flow catalytic membrane reactor for the production of syngas: an experimental study

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2005-01-01

    In this paper experimental results are presented for a demonstration unit of a recently proposed novel integrated reactor concept (Smit et. al., 2005) for the partial oxidation of natural gas to syngas (POM), namely a Reverse Flow Catalytic Membrane Reactor (RFCMR). Natural gas has great potential a

  8. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  9. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  10. An experimental study of a VVER reactor's steam generator model operating in the condensing mode

    Science.gov (United States)

    Morozov, A. V.; Remizov, O. V.

    2012-05-01

    Results obtained from an experimental study of a VVER reactor's steam generator model operating in the condensing mode are presented. The obtained empirical dependence for calculating the power of heat exchangers operating in the steam condensation mode is presented.

  11. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

    2002-05-01

    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV

  12. An immobilized cell reactor with simultaneous product separation. II. Experimental reactor performance.

    Science.gov (United States)

    Dale, M C; Okos, M R; Wankat, P C

    1985-07-01

    The simultaneous separation of volatile fermentation products from product-inhibited fermentations can greatly increase the productivity of a bioreactor by reducing the product concentration in the bioreactor, as well as concentrating the product in an output stream free of cells, substrate, or other feed impurities. The Immobilized Cell Reactor-Separator (ICRS) consists of two column reactors: a cocurrent gas-liquid "enricher" followed by a countercurrent "stripper" The columns are four-phase tubular reactors consisting of (1) an inert gas phase, (2) the liquid fermentation broth, (3) the solid column internal packing, and (4) the immobilized biological catalyst or cells. The application of the ICRS to the ethanol-from-whey-lactose fermentation system has been investigated. Operation in the liquid continuous or bubble flow regime allows a high liquid holdup in the reactor and consequent long and controllable liquid residence time but results in a high gas phase pressure drop over the length of the reactor and low gas flow rates. Operation in the gas continuous regime gives high gas flow rates and low pressure drop but also results in short liquid residence time and incomplete column wetting at low liquid loading rates using conventional gas-liquid column packings. Using cells absorbed to conventional ceramic column packing (0.25-in. Intalox saddles), it was found that a good reaction could be obtained in the liquid continuous mode, but little separation, while in the gas continuous mode there was little reaction but good separation. Using cells sorbed to an absorbant matrix allowed operation in the gas continuous regime with a liquid holdup of up to 30% of the total reactor volume. Good reaction rates and product separation were obtained using this matrix. High reaction rates were obtained due to high density cell loading in the reactor. A dry cell density of up to 92 g/L reactor was obtained in the enricher. The enricher ethanol productivity ranged from 50 to 160

  13. The Jules Horowitz reactor (JHR), a European material testing reactor (MTR), with extended experimental capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, 13 - Saint-Paul-lez-Durance (France)]|[CEA Saclay Dir. de l' Energie Nucleaire DEN, 91 - Gif sur Yvette (France)

    2003-07-01

    The Jules Horowitz Reactor (JHR) is the European MTR (Material Testing Reactor) designed to provide, after 2010, the necessary knowledge for keeping the existing power plants in operation and to design innovative reactors types with new objectives such as: minimizing the radioactive waste production, taking into account additional safety requirements, preventing risks of nuclear proliferation... To achieve such an ambitious objective. The JHR is designed with a high flexibility in order to satisfy the current demand from European industry, research and to be able to accommodate future requirements. The JHR will offer a wide range of performances and services in gathering, in a single site at Cadarache, all the necessary functionalities and facilities for an effective production of results: e.g. fuel fabrication laboratories, preparation of the instrumented devices, interpretation of the experiments, modelling. The JHR must rely on a top level scientific environment based on experts teams from CEA and EC and local universities. With a thermal flux of 7,4.10{sup 14} ncm{sup -2} s{sup -1} and a fast flux of 6,4.10{sup 14} ncm{sup -2}s{sup -1}, it is possible to carry out irradiation experiments on materials and fuels whatever the reactor type considered. It will also be possible to carry out locally, fast neutron irradiation to achieve damage effect up to 25 dpa/year. (dpa = displacement per atom.) The study of the fuels behavior under accidental conditions, from analytical experiments, on a limited amount of irradiated fuel, is a major objective of the project. These oriented safety tests are possible by taking into account specific requirements in the design of the facility such as the tightness level of the containment building, the addition of an alpha hot cell and a laboratory for on line fission products measurement. (authors)

  14. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    Energy Technology Data Exchange (ETDEWEB)

    Cagle, C.D. (comp.)

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included.

  15. Jules Horowitz Reactor, a new irradiation facility: Improving dosimetry for the future of nuclear experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, G.; Beretz, D.; Destouches, C. [CEA, DEN, DER/SPEX, F-13108 Saint-Paul-lez-Durance (France)

    2011-07-01

    Document available in abstract form only, full text of document follows: The Jules Horowitz Reactor (JHR) is an experimental reactor under construction at the French Nuclear Energy and Alternative Energies Commission (CEA) facility at Cadarache. It will achieve its first criticality by the end of 2014. Experiments that will be conducted at JHR will deal with fuel, cladding, and material behavior. The JHR will also produce medical radio-isotopes and doped silicon for the electronic industry. As a new irradiation facility, its instrumentation will benefit from recent improvements. Nuclear instrumentation will include reactor dosimetry, as it is a reference technique to determine neutron fluence in experimental devices or characterize irradiation locations. Reactor dosimetry has been improved with the progress of simulation tools and nuclear data, but at the same time the customer needs have increased: Experimental results must have reduced and assessed uncertainties. This is now a necessary condition to perform an experimental irradiation in a test reactor. Items improved, in the framework of a general upgrading of the dosimetry process based on uncertainty minimization, will include dosimeter, nuclear data, and modelling scheme. (authors)

  16. Experimental study on temperature characteristics and energy conversion in packed bed reactor with dielectric barrier discharge

    Science.gov (United States)

    Li, Sen; Tang, Zuchen; Gu, Fan

    2010-10-01

    The temperature characteristics and energy conversion in packed bed reactor combined with a dielectric barrier discharge (DBD) plasma was investigated experimentally. The pellet temperatures of two types packed bed reactor, cylindrical reactor and parallel-plate reactor, was measured in conditions of various inlet voltage of DBD plasma. The relationship between pellet temperature of the packed bed and applied voltage of DBD plasma was discovered. The experimental result indicates a tendency that the pellet temperature of packed bed increases as the applied voltage of inlet plasma increases. When the voltage of inlet plasma is high enough, the pellet temperature increment decreases. Simultaneously,the packed bed temperature is sensitive to the inlet plasma energy and there is a potential application to heat exchanger. Moreover the proportion of energy consumption of plasma inputting into packed bed reactor was analyzed and calculated. The mechanisms that electrical energy of inlet plasma is transformed into heat energy in the two phases, gaseous and pellets of the packed bed reactor are different. The energy consumption in pellet phase is dielectric polarization loss and depends on packed bed geometry and DBD plasma etc. The energy consumption in gaseous phase is plasma sheath procedure. The important factors effecting on gas discharge are gaseous component and voltage, frequency of power.

  17. Development of Observation Techniques in Reactor Vessel of Experimental Fast Reactor Joyo

    Science.gov (United States)

    Takamatsu, Misao; Imaizumi, Kazuyuki; Nagai, Akinori; Sekine, Takashi; Maeda, Yukimoto

    In-Vessel Observations (IVO) techniques for Sodium cooled Fast Reactors (SFRs) are important in confirming its safety and integrity. And several IVO equipments for an SFR are developed. However, in order to secure the reliability of IVO techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. During the investigation of an incident that occurred with Joyo, IVO using a standard Video Camera (VC) and a Radiation-Resistant Fiberscope (RRF) took place at (1) the top of the Sub-Assemblies (S/As) and the In-Vessel Storage rack (IVS), (2) the bottom face of the Upper Core Structure (UCS). A simple 6 m overhead view of each S/A, through the fuel handling or inspection holes etc, was photographed using a VC for making observations of the top of S/As and IVS. About 650 photographs were required to create a composite photograph of the top of the entire S/As and IVS, and a resolution was estimated to be approximately 1mm. In order to observe the bottom face of the UCS, a Remote Handling Device (RHD) equipped with RRFs (approximately 13 m long) was specifically developed for Joyo with a tip that could be inserted into the 70 mm gap between the top of the S/As and the bottom of the UCS. A total of about 35,000 photographs were needed for the full investigation. Regarding the resolution, the sodium flow regulating grid of 0.8mm in thickness could be discriminated. The performance of IVO equipments under the actual reactor environment was successfully confirmed. And the results provided useful information on incident investigations. In addition, fundamental findings and the experience gained during this study, which included the design of equipment, operating procedures, resolution, lighting adjustments, photograph composition and the durability of the RRF under radiation exposure, provided valuable insights into further improvements and verifications for IVO techniques to

  18. Experimental analysis of liquid-metal reactor scram rod kinematic characteristics

    Science.gov (United States)

    Konovalenko, F. D.; Kondrashov, S. I.

    2017-01-01

    This article represents the results of computational and experimental research of liquid-metal research reactor control rod kinematics. In this research liquid-metal coolant (sodium) was simulated by water. Investigation of control rod scram-mode movement duration and investigation of velocity of movable parts near the bump of damper are the purposes of this research. Also mathematic simulation of control rod movement in scram mode was performed. Computational results for some modes of water circulation comply with experimental results well. Results of this work will be used for tests of scram rod drive of above-named research reactor. It will significantly simplify the scram rod drive testing stand construction.

  19. CO2 Absorption in a Lab-Scale Fixed Solid Bed Reactor: Modelling and Experimental Tests

    Directory of Open Access Journals (Sweden)

    Roberto Gabbrielli

    2004-09-01

    Full Text Available The CO2 absorption in a lab-scale fixed solid bed reactor filled with different solid sorbents has been studied under different operative conditions regarding temperature (20-200°C and input gas composition (N2, O2, CO2, H2O at 1bar pressure. The gas leaving the reactor has been analysed to measure the CO2 and O2 concentrations and, consequently, to evaluate the overall CO2 removal efficiency. In order to study the influence of solid sorbent type (i.e. CaO, coal bottom ash, limestone and blast furnace slag and of mass and heat transfer processes on CO2 removal efficiency, a one-dimensional time dependent mathematical model of the reactor, which may be considered a Plug Flow Reactor, has been developed. The quality of the model has been confirmed using the experimental results.

  20. Experimental study on thermal stratification in a reactor hot plenum of a Japanese demonstration LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.; Yamamoto, K.; Takakuwa, M.; Kajiwara, H.; Watanabe, O.; Akamatsu, K.

    1997-12-31

    Thermal stratification which occurs in a reactor hot plenum after reactor trip has been regarded as one of the most serious phenomena in the thermal-hydraulics of LMFBR. Using a 1/8th scale water model, an experimental study has been conducted to estimate the thermal stratification for a Japanese demonstration LMFBR (DFBR). In the present study, reactor trip was simulated by changing the core outlet temperature with maintaining a constant flow rate. Temperature distribution was measured during the transient and detailed phenomena have been acquired in the study. A severe density interface on structural integrity occurs in a hot plenum under the thermal stratification. Experimental results for temperature gradient and rising speed of the density interface were estimated based on a similarity rule so that an actual condition in the DFBR could be fully discerned. (author)

  1. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  2. Mechatronics of fuel handling mechanism for fast experimental reactor 'Joyo'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Akikazu (Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center)

    1984-01-01

    The outline of the fast experimental reactor ''Joyo'' is introduced, and the fuel handling mechanism peculiar to fast reactors is described. The objectives of the construction of Joyo are to obtain the techniques for the design, construction, manufacture, installation, operation and maintenance of sodium-cooled fast reactors independently, and to use it as an irradiation facility for the development of fuel and materials for fast breeder reactors. At present, the reactor is operated at 100 MW maximum thermal output for the second objective. Since liquid sodium is used as the coolant, the atmosphere of the fuel handling course changes such as liquid sodium at 250 deg C, argon gas at 200 deg C and water, in addition, the spent fuel taken out has the decay heat of 2.1 kW at maximum. The fuel handling works in the reactor and fuel transfer works, and the fuel handling mechanism of a fuel exchanger and that of a cask car for fuel handling are described. Relay sequence control system is used for the fuel handling mechanism of Joyo.

  3. Design of a management information system for the Shielding Experimental Reactor ageing management

    Energy Technology Data Exchange (ETDEWEB)

    He Jie, E-mail: hejiejoe@163.co [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xu Xianhong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The problem of nuclear reactor ageing is a topic of increasing importance in nuclear safety recent years. Ageing management is usually implemented for reactors maintenance. In the practice, a large number of data and records need to be processed. However, there are few professional software applications that aid reactor ageing management, especially for research reactors. This paper introduces the design of a new web-based management information system (MIS), named the Shielding Experimental Reactor Ageing Management Information System (SERAMIS). It is an auxiliary means that helps to collect data, keep records, and retrieve information for a research reactor ageing management. The Java2 Enterprise Edition (J2EE) and network database techniques, such as three-tiered model, Model-View-Controller architecture, transaction-oriented operations, and JavaScript techniques, are used in the development of this system. The functionalities of the application cover periodic safety review (PSR), regulatory references, data inspection, and SSCs classification according to ageing management methodology. Data and examples are presented to demonstrate the functionalities. For future work, techniques of data mining will be employed to support decision-making.

  4. Membrane assisted fluidized bed reactor: experimental demonstration for partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, Salim Abdul Rashid Khan

    2004-01-01

    In this thesis the reactor concept has been developed on the basis of an experimental study on the effect of fluidization conditions on the membrane permeation rate in a MAFBR, the extent of gas back mixing and the tube-to-bed heat transfer rates in the presence of membrane bundles with and without

  5. Feasibility of reactivity worth measurements by perturbation method with Caliban and Silene experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, Pierre; Authier, Nicolas [Commissariat a l' Energie Atomique, Centre d' Etudes de Valduc, 21120 Is-Sur-Tille (France)

    2008-07-01

    Reactivity worth measurements of material samples put in the central cavities of nuclear reactors allow to test cross section nuclear databases or to extract information about the critical masses of fissile elements. Such experiments have already been completed on the Caliban and Silene experimental reactors operated by the Criticality and Neutronics Research Laboratory of Valduc (CEA, France) using the perturbation measurement technique. Calculations have been performed to prepare future experiments on new materials, such as light elements, structure materials, fission products or actinides. (authors)

  6. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  7. EXPERIMENTAL STUDY OF THYRISTOR CONTROLLED REACTOR (TCR AND GTO CONTROLLED SERIES CAPACITOR (GCSC

    Directory of Open Access Journals (Sweden)

    JYOTI AGRAWAL,

    2011-06-01

    Full Text Available This paper deals with the simulation of Thyristor controlled reactor (TCR and GTO Controlled Series Capacitor (GCSC, equipment for controlled series compensation of transmission systems. The paper alsopresents experimental results of a TCR and GCSC connected to a single-phase system. The experiments are carried out in the FACTS lab of electrical engineering department. The TCR system is simulated using MATLAB and the simulation results are presented. The power and control circuits are simulated. The current drawn by the TCR varies with the variation in the firing angle. Stepped variation of current can be obtained using thyristor switched reactor. The simulation results are compared with the theoretical and practical results.Harmonics and its impact on the system are presented. This paper also presents the GCSC, its main components, principal of operation, typical waveforms and main applications. Duality of the GCSC with the well known thyristor controlled reactor is also discussed in this paper.

  8. The D&D of the Experimental Boiling Water Reactor (EBWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fellhauer, C.R.; Boling, L.E.; Yule, T.J.; Bhattacharyya, S.K.

    1996-03-01

    Argonne National Laboratory has completed the D&D of the Experimental Boiling Water Reactor. The Project consisted of decontaminating and for packaging as radioactive waste the reactor vessel and internals, contaminated piping systems, miscellaneous tanks, pumps, and associated equipment. The D&D work involved dismantling process equipment and associated plumbing, ductwork drain lines, etc., performing size reduction of reactor vessel internals in the fuel pool, packaging and manifesting all radioactive and mixed waste, and performing a thorough survey of the facility after the removal of activated and contaminated material. Non-radioactive waste was disposed of in the ANL-E landfill or recycled. In January 1996 the EBWR facility was formally decommissioned and transferred from EM-40 to EM-30. This paper will discuss the details of this ten year effort.

  9. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Lam; Dimitri Gidaspow

    2000-09-01

    The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

  10. Experimental Investigation of Natural Circulation in Regional Energy Reactor-10MW{sub th}

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong Il; Jeun, Gyoo Dong [Hanyang University, Seoul (Korea, Republic of); Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2009-10-15

    A small- and medium-sized nuclear reactor (SMR) has drawn attention because it is used for multi-purpose applications of desaltination, district heating, ship propulsion and small-scale power generation. The SMR has the virtue of providing for the safety more than a large-sized nuclear reactor. It can be avoidable the occurrence of a large break LOCA because the primary pipes are eliminated. And as the SMR is designed to simplify the geometries and safety systems, uncertainties about the reactor operations are reduced and its safety improves. RERI (Regional Energy Research Institute for Next Generation) is designing REX-10 (Regional Energy Reactor 10 MWth) based on SMART-P. This reactor must improve the enhanced safety because the main purposes of it are small-scale power generation and district heating. From this reason, REX-10 adopts the way to remove heat by natural circulation. And to investigate the natural circulation characteristics of REX-10, we constructed RTF (REX- 10 Test Facility) in RERI. The main aim of this article is to evaluate the natural circulation behavior under various experimental conditions.

  11. The use of experimental data in an MTR-type nuclear reactor safety analysis

    Science.gov (United States)

    Day, Simon E.

    Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type ( i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core.

  12. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  13. Simulating experimental investigation on the safety of nuclear heating reactor in loss-of-coolant accidents

    Science.gov (United States)

    Xu, Zhanjie

    1996-12-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology (INET) of Tsinghua University of China in 1989. Its main loop is a thermal-hydraulic system with natural circulation. This paper studies the safety of NHR under the condition of loss-of-coolant accidents (LOCAs) by means of simulant experiments. First, the background and necessity of the experiments are presented, then the experimental system, including the thermal-hydraulic system and the data collection system, and similarity criteria are introduced. Up to now, the discharge experiments with the residual heating power (20% rated heating power) have been carried out on the experimental system. The system parameters including circulation flow rate, system pressure, system temperature, void fraction, discharge mass and so on have been recorded and analyzed. Based on the results of the experiments, the conclusions are shown as follos: on the whole, the reactor is safe under the condition of LOCAs, but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  14. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    Science.gov (United States)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  15. Experimental needs for water cooled reactors. Reactor and nuclear fuel; Les besoins experimentaux pour les reacteurs a eau legere. Reacteur et combustible

    Energy Technology Data Exchange (ETDEWEB)

    Waeckel, N. [Electricite de France (EDF/SEPTEN), 69 - Villeurbanne (France); Beguin, S. [Electricite de France (EDF/SEPTEN), 50 - Cherbourg (France); Assedo [AREVA Framatome ANP, 92 - Paris La Defense (France)

    2005-07-01

    In order to improve the competitiveness of nuclear reactors, the trend will be to increase the fuel burn-up, the fuel enrichment, the length of the irradiation cycle and the global thermal power of the reactor. In all cases the fuel rod will be more acted upon. Experimental programs involving research reactors able to irradiate in adequate conditions instrumented fuel rods will stay necessary for the validation of new practices or new nuclear fuel materials in normal or accidental conditions. (A.C.)

  16. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  17. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    OpenAIRE

    Sabharwall Piyush; O’Brien James E.; Yoon SuJong; Sun Xiaodong

    2015-01-01

    A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed includ...

  18. Experimental techniques to determine salt formation and deposition in supercritical water oxidation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J.P.C.; LaJeunesse, C.A.; Rice, S.F.

    1994-08-01

    Supercritical Water Oxidation (SCWO) is an emerging technology for destroying aqueous organic waste. Feed material, containing organic waste at concentrations typically less than 10 wt % in water, is pressurized and heated to conditions above water`s critical point where the ability of water to dissolve hydrocarbons and other organic chemicals is greatly enhanced. An oxidizer, is then added to the feed. Given adequate residence time and reaction temperature, the SCWO process rapidly produces innocuous combustion products. Organic carbon and nitrogen in the feed emerge as CO{sub 2} and N{sub 2}; metals, heteroatoms, and halides appear in the effluent as inorganic salts and acids. The oxidation of organic material containing heteroatoms, such as sulfur or phosphorous, forms acid anions. In the presence of metal ions, salts are formed and precipitate out of the supercritical fluid. In a tubular configured reactor, these salts agglomerate, adhere to the reactor wall, and eventually interfere by causing a flow restriction in the reactor leading to an increase in pressure. This rapid precipitation is due to an extreme drop in salt solubility that occurs as the feed stream becomes supercritical. To design a system that can accommodate the formation of these salts, it is important to understand the deposition process quantitatively. A phenomenological model is developed in this paper to predict the time that reactor pressure begins to rise as a function of the fluid axial temperature profile and effective solubility curve. The experimental techniques used to generate effective solubility curves for one salt of interest, Na{sub 2}SO{sub 4}, are described, and data is generated for comparison. Good correlation between the model and experiment is shown. An operational technique is also discussed that allows the deposited salt to be redissolved in a single phase and removed from the affected portion of the reactor. This technique is demonstrated experimentally.

  19. An experimental study of hypervapotron structure in external reactor vessel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yufeng; Zhang, Ming [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei, E-mail: chenpeipei@snptc.com.cn [State Power Investment Group Corporation, Beijing (China)

    2016-07-15

    Highlights: • Experiments are performed to study the application of hypervapotron in ERVC design. • CHF experiments on two surfaces are conducted under different flow conditions. • Hypervapotron improves CHF performance by 40–60% compared with smooth surface. • Visualization shows fin structure removes vapor mushroom for better liquid supply. - Abstract: In vessel retention (IVR) is one of the key strategies for many advanced LWR designs to mitigate postulated severe accidents. The success of IVR substantially relies on external reactor vessel cooling (ERVC) by which the decay heat is removed from the melt core in the reactor vessel lower head. The main challenge of IVR is to provide an adequate safety margin of ERVC against critical heat flux (CHF) of subcooled flow boiling in the reactor lower head flow channel. Due to uncertainties in corium melt pool configuration, large CHF margin of ERVC is usually required by regulatory authorities to demonstrate reliability of severe accident mitigation methods. Various CHF enhancement designs have been proposed and studied in literature. In this paper, an experimental study of hypervapotron structure as a novel design to improve CHF performance of ERVC is conducted. Hypervapotron is chosen as one of the potential engineering options for International Thermonuclear Experimental Reactor (ITER) program as a divertor structure to remove highly intense heat from fusion chamber. This study is to conduct CHF experiments at typical PWR ERVC working conditions. The CHF experiments are performed in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. Both smooth and hypervapotron surface are tested at various inclination angles of the test section to simulate various positions of the reactor lower head. The hypervapotron is found to have a 40–60% CHF improvement compared with the smooth surface. The high speed visualization indicates that hypervapotron is able to

  20. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  1. Experimental and Numerical Evaluation of the By-Pass Flow in a Catalytic Plate Reactor for Hydrogen Production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2011-01-01

    Numerical and experimental study is performed to evaluate the reactant by-pass flow in a catalytic plate reactor with a coated wire mesh catalyst for steam reforming of methane for hydrogen generation. By-pass of unconverted methane is evaluated under different wire mesh catalyst width to reactor...

  2. Experimental determination of nuclear parameters for RP-0 reactor core; Determinacion experimental de los parametros nucleares para el nucleo tipo MTR del reactor nuclear RP-0

    Energy Technology Data Exchange (ETDEWEB)

    Cajacuri, Rafael A. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2000-07-01

    In the nuclear reactor for investigations RP-0 which is in Lima, Peru, that is a open pool class reactor with 1 to 10 watts of power and as a nuclear fuel uranium 238 enriched to 20% constituted by elements of Material Testing Reactor fuel class. This has reflectors of graphite and moderator of water demineralized. In 1996/1997 was measured in this reactor the following parameters: position of the control bar that make critic the reactor, critic height of moderator, excess of reactivity of the nucleus, parameter of reactivity for vacuum, parameter of reactivity for temperature, reactivity of its control bar, levels of doses in the reactor. (author)

  3. Conceptual studies of toroidal field magnets for the tokamak experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buncher, B.R.; Chi, J.W.H.; Fernandez, R.

    1976-10-26

    This report documents the principal results of a Conceptual Design Study for the Superconducting Toroidal Field System for a Tokamak Experimental Power Reactor. Two concepts are described for peak operating fields at the windings of 8 tesla, and 12 tesla, respectively. The design and manufacturing considerations are treated in sufficient detail that cost and schedule estimates could be developed. Major uncertainties in the design are identified and their potential impact discussed, along with recommendations for the necessary research and development programs to minimize these uncertainties. The minimum dimensions of a sub-size test coil for experimental qualification of the full size design are developed and a test program is recommended.

  4. Calculation with MCNP of capture photon flux in VVER-1000 experimental reactor.

    Science.gov (United States)

    Töre, Candan; Ortego, Pedro

    2005-01-01

    The aim of this study is to obtain by Monte Carlo method the high energy photon flux due to neutron capture in the internals and vessel layers of the experimental reactor LR-0 located in REZ, Czech Republic, and loaded with VVER-1000 fuel. The calclated neutron, photon and photon to neutron flux ratio are compared with experimental measurements performed with a multi-parameter stilbene detector. The results show clear underestimation of photon flux in downcomer and some overestimation at vessel surface and 1/4 thickness but a good fitting for deeper points in vessel.

  5. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Aaron, Adam M [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL; Holcomb, David Eugene [ORNL; Kisner, Roger A [ORNL; Peretz, Fred J [ORNL; Robb, Kevin R [ORNL; Wilgen, John B [ORNL; Wilson, Dane F [ORNL

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  6. Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor

    KAUST Repository

    Karsenty, Florent

    2012-08-16

    Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,5-dimethylhexane, and n-octane, are candidate surrogate components for conventional diesel fuels derived from petroleum, synthetic Fischer-Tropsch diesel and jet fuels derived from coal, natural gas, and/or biomass, and renewable diesel and jet fuels derived from the thermochemical treatment of bioderived fats and oils. This study presents new experimental results along with a low- and high-temperature chemical kinetic model for the oxidation of 3-methylheptane. The proposed model is validated against these new experimental data from a jet-stirred reactor operated at 10 atm, over the temperature range of 530-1220 K, and for equivalence ratios of 0.5, 1, and 2. Significant effort is placed on the understanding of the effects of methyl substitution on important combustion properties, such as fuel reactivity and species formation. It was found that 3-methylheptane reacts more slowly than 2-methylheptane at both low and high temperatures in the jet-stirred reactor. © 2012 American Chemical Society.

  7. Theoretical and experimental studies of fixed-bed coal gasification reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, B.; Bhattacharya, A.; Salam, L.; Dudukovic, M.P.

    1983-09-01

    A laboratory fixed-bed gasification reactor was designed and built with the objective of collecting operational data for model validation and parameter estimation. The reactor consists of a 4 inch stainless steel tube filled with coal or char. Air and steam is fed at one end of the reactor and the dynamic progress of gasification in the coal or char bed is observed through thermocouples mounted at various radial and axial locations. Product gas compositions are also monitored as a function of time. Results of gasification runs using Wyoming coal are included in this report. In parallel with the experimental study, a two-dimensional model of moving bed gasifiers was developed, coded into a computer program and tested. This model was used to study the laboratory gasifier by setting the coal feed rate equal to zero. The model is based on prior work on steady state and dynamic modeling done at Washington University and published elsewhere in the literature. Comparisons are made between model predictions and experimental results. These are also included in this report. 23 references, 18 figures, 6 tables.

  8. Calculation of kinetic parameters of Caliban metallic core experimental reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)

  9. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Kiil, Søren; Johnsson, Jan Erik

    2003-01-01

    In the present work, an experimental parameter study was conducted in a pilot-scale jet bubbling reactor for wet flue gas desulphurisation (FGD). The pilot plant is downscaled from a limestone-based, gypsum producing full-scale wet FGD plant. Important process parameters, such as slurry pH, inlet...... flue gas concentration of SO2, reactor temperature, and slurry concentration of Cl- have been varied. The degree of desulphurisation, residual limestone content of the gypsum, liquid phase concentrations, and solids content of the slurry were measured during the experimental series. The SO2 removal...... efficiency increased from 66.1% to 71.5% when the reactor slurry pH was changed from 3.5 to 5.5. Addition of Cl(in the form of CaCl2 . 2H(2)O) to the slurry (25 g Cl-/l) increased the degree of desulphurisation to above 99%, due to the onset of extensive foaming, which substantially increased the gas...

  10. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  11. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  12. Experimental reactor regulation: the nuclear safety authority's approach; Le controle des reacteurs experimentaux: la demarche de l'Autorite de surete nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Rieu, J.; Conte, D.; Chevalier, A. [Autorite de Surete Nucleaire, 75 - Paris (France)

    2007-07-15

    French research reactors can be classified into 6 categories: 1) critical scale models (Eole, Minerve and Masurca) whose purpose is the study of the neutron production through the fission reaction; 2) reactors that produce neutron beams (Orphee, and the high flux reactor in Grenoble); 3) reactors devoted to safety studies (Cabri, Phebus) whose purpose is to reproduce accidental configurations of power reactors in reduced scale; 4) experimental reactors (Osiris, Phenix) whose purpose is the carrying-out of irradiation experiments concerning nuclear fuels or structure materials; 5) teaching reactors (Ulysse, Isis); and 6) reactors involved in defense programs (Caliban, Prospero, Apareillage-B). We have to note that 3 research reactors are currently being dismantled: Strasbourg University's reactor, Siloe and Siloette. Research reactors in France are of different types and present different hazards. Even if methods of control become more and more similar to those of power reactors, the French Nuclear Safety Authority (ASN) works to allow the necessary flexibility in the ever changing research reactor field while ensuring a high level of safety. Adopting the internal authorizations for operations of minor safety significance, under certain conditions, is one example of this approach. Another challenge in the coming years for ASN is to monitor the ageing of the French research reactors. This includes periodic safety reviews for each facility every ten years. But ASN has also to regulate the new research reactor projects such as Jules Horowitz Reactor, International Thermonuclear Experimental Reactor, which are about to be built.

  13. Experimental and theoretical study of the efficiency of a three-electrode reactor for the removal of NO

    Science.gov (United States)

    Gallego, J. L.; Minotti, F.; Grondona, D.

    2014-05-01

    An experimental and theoretical study is presented on the efficiency of the removal of NO in a N2 atmosphere in a novel three-electrode reactor. This reactor combines a dielectric-barrier discharge with a corona discharge, designed to enhance streamer propagation in a relatively large region. Experimentally, the reactor has a good energy yield for the removal of NO, as compared with other discharge methods. A theoretical model is developed for the production of reactive species in the streamers by different reactions that allow to relate simple electrical measurements with the reactor efficiency. This theoretical efficiency resulted in good agreement with the experimental one, validating the model and allowing the evaluation of the contribution of different reactions involved in NO removal.

  14. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  15. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    Science.gov (United States)

    Pac, Myoung Youl

    2016-01-01

    This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (νbare) generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the | Δ m312 | and | Δ m322 | oscillations by applying the Fourier sine and cosine transforms to the L / E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2 ⁡ 2θ13 = 0.1. If the energy resolution of the neutrino detector is less than 0.04 /√{Eν} and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48-53 km from the reactor(s) to measure the energy spectrum of νbare. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  16. Influence of operation of national experimental nuclear reactor on the natural environment

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarek-Kacprzak

    2012-09-01

    Full Text Available This paper presents the impact of experimental nuclear reactor operations on the national environment, based on assessment reports of the radiological protection of active nuclear technology sources. Using the analysis of measurements carried out in the last 15 years, the trends are presented in selected elements of the environment on the Świerk Nuclear Centre site and its surroundings. In addition, the impact of research results is presented from the fi fteen year period of environmental analysis on building public confi dence on the eve of the start of construction of the first Polish nuclear power plant.

  17. An alternative experimental approach for subcritical configurations of the IPEN/MB-01 nuclear reactor

    Science.gov (United States)

    Gonnelli, E.; Lee, S. M.; Pinto, L. N.; Landim, H. R.; Diniz, R.; Jerez, R.; dos Santos, A.

    2015-07-01

    This work presents an alternative approach for the reactivity worth experiments analysis in the IPEN/MB-01 reactor considering highly subcritical arrays. In order to reach the subcritical levels, the removal of a specific number of fuel rods is proposed. Twenty three configurations were carried out for this purpose. The control bank insertion experiment was used only as reference for the fuel rod experiment and, in addition, the control banks were maintained completely withdrawn during all the fuel rods experiment. The theoretical simulation results using the MCNP5 code and the ENDF/B-VII.0 library neutron data are in a very good agreement to experimental results.

  18. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    OpenAIRE

    A. Massaro; L. Velardi; Taccogna, F.; Cicala, G.

    2016-01-01

    This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit sy...

  19. Experimental study of thermal crisis in connection with Tokamak reactor high heat flux components

    Science.gov (United States)

    Gallo, D.; Giardina, M.; Castiglia, F.; Celata, G. P.; Mariani, A.; Zummo, G.; Cumo, M.

    2000-04-01

    The results of an experimental research on high heat flux thermal crisis in forced convective subcooled water flow, under operative conditions of interest to the thermal-hydraulic design of TOKAMAK fusion reactors, are here reported. These experiments, carried out in the framework of a collaboration between the Nuclear Engineering Department of Palermo University and the National Institute of Thermal - Fluid Dynamics of the ENEA - Casaccia (Rome), were performed on the STAF (Scambio Termico Alti Flussi) water loop and consisted, essentially, in a high speed photographic study which enabled focusing several information on bubble characteristics and flow patterns taking place during the burnout phenomenology.

  20. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  1. Experimental study of flow and heat transfer in a rotating chemical vapor deposition reactor

    Science.gov (United States)

    Wong, Sun

    An experimental model was set up to study the rotating vertical impinging chemical vapor deposition reactor. Deposition occurs only when the system has enough thermal energy. Therefore, understanding the fluid characteristic and heat transfer of the system will provide a good basis to understand the full model. Growth rate and the uniformity of the film are the two most important factors in CVD process and it is depended on the flow and thermal characteristic within the system. Optimizing the operating parameters will result in better growth rate and uniformity. Operating parameters such as inflow velocity, inflow diameter and rotational speed are used to create different design simulations. Fluid velocities and various temperatures are recorded to see the effects of the different operating parameters. Velocities are recorded by using flow meter and hot wire anemometer. Temperatures are recorded by using various thermocouples and infrared thermometer. The result should provide a quantitative basis for the prediction, design and optimization of the system and process for design and fabrication of future CVD reactors. Further assessment of the system results will be discuss in detail such as effects of buoyancy and effects of rotation. The experimental study also coupled with a numerical study for further validation of both model. Comparisons between the two models are also presented.

  2. Experimental Study of Interfacial Friction in NaBH{sub 4} Solution in Microchannel Dehydrogenation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seok Hyun; Hwang, Sueng Sik; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of)

    2014-02-15

    Sodium borohydride (NaBH{sub 4}) is considered as a secure metal hydride for hydrogen storage and supply. In this study, the interfacial friction of two-phase flow in the dehydrogenation of aqueous NaBH{sub 4} solution in a microchannel with a hydraulic diameter of 461 μm is investigated for designing a dehydrogenation chemical reactor flow passage. Because hydrogen gas is generated by the hydrolysis of NaBH{sub 4} in the presence of a ruthenium catalyst, two different flow phases (aqueous NaBH{sub 4} solution and hydrogen gas) exist in the channel. For experimental studies, a microchannel was fabricated on a silicon wafer substrate, and 100-nm ruthenium catalyst was deposited on three sides of the channel surface. A bubbly flow pattern was observed. The experimental results indicate that the two-phase multiplier increases linearly with the void fraction, which depends on the initial concentration, reaction rate, and flow residence time.

  3. Computational and experimental studies of neutron spectra in the IGR reactor

    CERN Document Server

    Gorin, N V; Litvin, V I; Gajdajchuk, V A; Kazmin, Y M; Pakhnits, V A; Skivka, A S; Vasilev, A P; Pavshuk, V A; Rychev, A S

    2000-01-01

    The results of experiments made in order to determine spectral composition of neutrons in the IGR impulse graphite moderated reactor experimental channel at fuel temperature close to the room one are considered. The set of activation and fission detectors with half-life period more than 0.5 days is applied for the neutron spectrum measurements. The algorithm based on the directed divergence method is used for reconstruction of neutron energy spectra in energy range of 0.6 eV - 18 MeV. The results of calculational studies into the influence of impurities in structural materials on portion of thermal neutrons in he spectrum in the channel centre are discussed as well. The conclusion is made that the calculational results agree well with experimental data

  4. Kinetics of vinyl acetate emulsion polymerization in a pulsed tubular reactor: comparison between experimental and simulation results

    Directory of Open Access Journals (Sweden)

    Sayer C.

    2002-01-01

    Full Text Available A new reactor, the pulsed sieve plate column (PSPC, was developed to perform continuous emulsion polymerization reactions. This reactor combines the enhanced flexibility of tubular reactors with the mixing behavior provided by sieved plates and by the introduction of pulses that is important to prevent emulsion destabilization. The main objective of this work is to study the kinetics of vinyl acetate (VA emulsion polymerization reactions performed in this PSPC. Therefore, both experimental studies and reaction simulations were performed. Results showed that it is possible to obtain high conversions with rather low residence times in the PSPC.

  5. Experimental and Modeling Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor

    OpenAIRE

    Hacarlioglu, Pelin

    2007-01-01

    This dissertation describes the preparation of a novel inorganic membrane for hydrogen permeation and its application in a membrane reactor for the study of the methane steam reforming reaction. The investigations include both experimental studies of the membrane permeation mechanism and theoretical modeling of mass transfer through the membrane and simulation of the membrane reactor with 1-D and 2-D models. A hydrothermally stable and hydrogen selective membrane composed of silica and a...

  6. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Nuclear Reactor Lab.)

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.

  7. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.

  8. Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst: A simulation study using experimental kinetic model

    Institute of Scientific and Technical Information of China (English)

    Nakisa Yaghobi; Mir Hamid Reza Ghoreishy

    2008-01-01

    The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio.

  9. Numerical analysis of irradiated Am samples in experimental fast reactor Joyo

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, Hiroshi; Yamamoto, Tetsuro; Shiba, Tomo-oki; Saito, Masaki [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 1528550 (Japan); Koyama, Shin-ichi; Maeda, Shigetaka, E-mail: sagara@nr.titech.ac.jp [Japan Atomic Energy Agency, 4002 Nanta-cho, O-arai machi, Ibaraki, 3111393 (Japan)

    2010-03-15

    Americium is a key element to design the FBR based nuclear fuel cycle, because of its long-term high radiological toxicity as well as a resource of even-mass-number plutonium by its transmutation in reactors, which contributes the enhancement of proliferation resistance. The present paper deals with the numerical analysis of the Am sample irradiation in Joyo to examine the transmutation performance of pure isotope in fast neutron environment during the irradiation, and deals with the comparison with the experimental result to evaluate the accuracy of current available numerical tool. In {sup 241}Am pure isotope sample, the burn-up calculation of Am transmutation ratio and principal nuclides accumulation are agreed with the measured data within 1-{sigma} uncertainty caused of cross-section covariance. Isomeric ratio of {sup 242}Am in total {sup 241}Am capture reaction were calculated as 0.852{+-}0.016 in the core and 0.85{+-}0.025 in the axial and radial reactors. The current data and recently reported data by Koyama et. al 2008 support the latest version of nuclear data sets in ENDFB-VII and JENDL/AC-2008. From the view point of proliferation resistance, it was confirmed {sup 241}Amp reduces un-attractive Pu to abuse from the beginning to the end of irradiation, and it would have important role to denature Pu in future FBR based nuclear fuel cycle.

  10. Experimental study of flow inversion in MTR upward flow research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Hadi, Ead A. [Benha Univ., Cairo (Egypt). Shobra Faculty of Engineering; Khedr, Ahmed; Talha, Kamal Eldin Aly; Abdel-Latif, Salwa Helmy

    2014-06-15

    The core cooling of upward flow MTR pool type Research Reactor (RR) at the later stage of pump coast down is experimentally handled to clarify the effect of some operating parameters on RR core cooling. Therefore, a test rig is designed and built to simulate the core cooling loop at this stage. The core is simulated as two vertical channels, electrically heated, and extended between upper and lower plenums. Two elevated tanks filled with water are connected to the two plenums. The first one constitutes a left branch, connected to the lower plenum, and is electrically heated to simulate the core return pipe. The second one constitutes the right branch, connected to the upper plenum, and is cooled by refrigerant circuit to simulate the reactor pool. Channel coolant and wall temperatures at different power and branch temperatures are measured, registered and analyzed. The results show that at this stage of core cooling two cooling loops are established; an internal circulation loop between the channels dominated by the difference in channel's power and an external circulation loop between the branches dominated by the temperature difference between branches. Also, there is a double inversion in core flow, upward-downward-upward flow. This double inversion increases largely the channel's wall temperature. Complementary safety analysis to evaluate this phenomenon must be performed. (orig.)

  11. Simulation of batch-operated experimental wetland mesocosms in AQUASIM biofilm reactor compartment.

    Science.gov (United States)

    Mburu, Njenga; Rousseau, Diederik P L; Stein, Otto R; Lens, Piet N L

    2014-02-15

    In this study, a mathematical biofilm reactor model based on the structure of the Constructed Wetland Model No.1 (CWM1) coupled to AQUASIM's biofilm reactor compartment has been used to reproduce the sequence of transformation and degradation of organic matter, nitrogen and sulphur observed in a set of constructed wetland mesocosms and to elucidate the development over time of microbial species as well as the biofilm thickness of a multispecies bacterial biofilm in a subsurface constructed wetland. Experimental data from 16 wetland mesocosms operated under greenhouse conditions, planted with three different plant species (Typha latifolia, Carex rostrata, Schoenoplectus acutus) and an unplanted control were used in the calibration of this mechanistic model. Within the mesocosms, a thin (predominantly anaerobic) biofilm was simulated with an initial thickness of 49 μm (average) and in which no concentration gradients developed. The biofilm density and area, and the distribution of the microbial species within the biofilm were evaluated to be the most sensitive biofilm properties; while the substrate diffusion limitations were not significantly sensitive to influence the bulk volume concentrations. The simulated biofilm density ranging between 105,000 and 153,000 gCOD/m(3) in the mesocosms was observed to vary with temperature, the presence as well as the species of macrophyte. The biofilm modeling was found to be a better tool than the suspended bacterial modeling approach to show the influence of the rhizosphere configuration on the performance of the constructed wetlands.

  12. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: marija_miletic@live.com [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: fuk@cvrez.cz [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: Igor.Pioro@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: Alexey.Dragunov@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada)

    2014-09-15

    coolants. The purpose of the high temperature helium loop (HTHL) is to simulate technical and chemical conditions of VHTR's coolant. The loop is intended to serve an as experimental device for fatigue and creep tests of construction metallic materials for gas-cooled reactors and it should be also employed for research in field of gaseous coolant chemistry. The loop will serve also for tests of nuclear graphite, dosing and helium purification systems. Because the VHTR is a new reactor concept, major technical uncertainties remain relative to helium-cooled advanced reactor systems. This paper summarizes also the concept of the HTHL in the Research Centre Rez Ltd., its design, utilization and future plans for experimental setup.

  13. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. B.; Reid, R.; Sadasivan, P.; Stewart, E.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A representative lunar surface reactor design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The evaluation compares the experimental data from the WST to CFD models. Performance of a water shield on the lunar surface is predicted by CFD models anchored to test data, and by matching relevant dimensionless parameters.

  14. ITER (International Thermonuclear Experimental Reactor) shield and blanket work package report

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs.

  15. Jules Horowitz Reactor Project- Fuel irradiation device, innovative instrumentation proposal for experimental phenomena real time measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gaillot, Stephane; Cheymol, Guy [CEA, Paris (France)

    2013-07-01

    The fuel irradiation devices used for the tests or rods allow reproducing at small scales the conditions of the studied nuclear reactors (as LWR type). During the irradiation phase, the tested fuel rod can be stressed due to thermal, mechanical, nuclear effects which can modify its geometry (dilatation, swelling effects). After the test, the return to normal conditions can have as consequence the disappearance of the phenomenon or give access to partial information (final deformation). Generally, to follow the phenomena related to the irradiation phase, the experimental rod contained in the test device is instrumented with thermocouples and LVDT. As complement of this instrumentation, new sensors using innovating technologies are studied (deformation sensor integrating optical fibres). Through the example of a fuel irradiation device foreseen for the JHR, this paper aims to describe the present development of an innovating instrumentation with the objective to measure, in real time and under flux, the fuel rod deformation phenomena during a ramp test.

  16. Experimental Research for Refractories Used in High-Turbulent-Mixer (HTM)-Reactor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The high turbulent mixer (HTM) process is benefit for improving the quality of iron and steel, but the refractory of the reactor is easy to be eroded by slag and liquid metal at high temperature. Especially for the violent mixing in HTM, refractory can also be impacted by molten metal (iron or steel), so it is very important to study and find out new refractory to meet the demand of HTM. Suitable refractory not only can stand the eroding of slag and liquid metal, but also can reduce the loss of electromagnetic energy. According to the experimental results, the influence of different refractory on electromagnetic force is unconspicuous, the refractory with Al2O3-base is better than that with MgO-base for standing the erosion by slag and iron. Al2O3-base refractory is more suitable for HTM process.

  17. Experimental determination of creep properties of Beryllium irradiated to relevant fusion power reactor doses

    Science.gov (United States)

    Scibetta, M.; Pellettieri, A.; Sannen, L.

    2007-08-01

    A dead weight machine has been developed to measure creep in irradiated beryllium relevant to fusion power reactors. Due to the external compressive load, the material will creep and the specimen will shrink. However, the specimen also swells due to the combined effect of internal pressure in helium bubbles and creep. One of the major challenges is to unmask swelling and derive intrinsic creep properties. This has been achieved through appropriate pre-annealing experiments. Creep has been measured on irradiated and unirradiated specimens. The temperature and stress dependence is characterized and modeled using the product of an Arrhenius' law for the temperature dependence and a power law for the stress dependence. Irradiation increases the sensitivity to creep but the irradiation effects can be rationalized by taking into account the irradiation-induced porosity. Experimental evidence supports dislocation climb by vacancy absorption to be the most plausible intrinsic creep mechanism.

  18. Investigating the Neutral-Gas Manometers in the Wendelstein 7-X Experimental Fusion Reactor

    Science.gov (United States)

    Maisano-Brown, Jeannette; Wenzel, Uwe; Sunn-Pederson, Thomas

    2017-01-01

    The neutral-gas manometer is a powerful diagnostic tool used in the Wendelstein 7-X stellarator, a magnetized fusion experiment located in Germany. The Wendelstein, produced at a cost of 1.2 billion euros, and 20 years in the making, had its first experimental results in Winter 2016. Initial findings exceeded expectations but further study is still necessary. The particular instrument we examined was a hot-cathode ionization gauge, critical for attaining a quality in-vessel environment and a stable plasma. However, after the winter operation of Wendelstein, we found that some of the gauges had failed the six-second (maximum) plasma runs. Wendelstein is on track for 30-minute operations within three years, so it has become of utmost importance to scrutinize gauge design claims. We therefore subjected the devices to high magnetic field, input current, and temperature, as well as to long operational periods. Our results confirmed that the manometer cannot survive a 30-minute run. Though our findings did motivate promising recommendations for design improvement and for further experimentation so that the gauge can be ready for upcoming operations in Summer 2017 and eventual installment in ITER, the International Thermonuclear Experimental Reactor, currently under construction. This research was graciously supported by the Max Planck Institute and the MIT-Germany Initiative.

  19. Development plan for the External Hazards Experimental Group. Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Burns, Douglas Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report describes the development plan for a new multi-partner External Hazards Experimental Group (EHEG) coordinated by Idaho National Laboratory (INL) within the Risk-Informed Safety Margin Characterization (RISMC) technical pathway of the Light Water Reactor Sustainability Program. Currently, there is limited data available for development and validation of the tools and methods being developed in the RISMC Toolkit. The EHEG is being developed to obtain high-quality, small- and large-scale experimental data validation of RISMC tools and methods in a timely and cost-effective way. The group of universities and national laboratories that will eventually form the EHEG (which is ultimately expected to include both the initial participants and other universities and national laboratories that have been identified) have the expertise and experimental capabilities needed to both obtain and compile existing data archives and perform additional seismic and flooding experiments. The data developed by EHEG will be stored in databases for use within RISMC. These databases will be used to validate the advanced external hazard tools and methods.

  20. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  1. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    Directory of Open Access Journals (Sweden)

    A. Massaro

    2016-12-01

    Full Text Available This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit synthetic undoped and n-doped diamond films. The experimental setup equipped with a matching network enables the measurements of very low reflected power. The reflected powers show ripples due to the mismatching between wave and plasma impedance. Specifically, the three types of plasma exhibit reflected power values related to the variation of electron-neutral collision frequency among the species by changing the gas mixture. The different gas mixtures studied are also useful to test the sensitivity of the reflected power measurements to the change of plasma composition. By means of a numerical model, only the interaction of microwave and H2 plasma is examined allowing the estimation of plasma and matching network impedances and of reflected power that is found about eighteen times higher than that measured.

  2. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    Science.gov (United States)

    Massaro, A.; Velardi, L.; Taccogna, F.; Cicala, G.

    2016-12-01

    This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit synthetic undoped and n-doped diamond films. The experimental setup equipped with a matching network enables the measurements of very low reflected power. The reflected powers show ripples due to the mismatching between wave and plasma impedance. Specifically, the three types of plasma exhibit reflected power values related to the variation of electron-neutral collision frequency among the species by changing the gas mixture. The different gas mixtures studied are also useful to test the sensitivity of the reflected power measurements to the change of plasma composition. By means of a numerical model, only the interaction of microwave and H2 plasma is examined allowing the estimation of plasma and matching network impedances and of reflected power that is found about eighteen times higher than that measured.

  3. Engineering solutions for components facing the plasma in experimental fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Farfaletti-Casali, F.

    1986-07-01

    An analysis is made of the engineering problems related to the structures facing the plasma in experimental tokamak-type reactors. Attention is focused on the so-called ''current first wall'', i.e. the wall side of the blanket segments facing the plasma, and on the collector plates of the impurity control system. The design of a first wall, developed at the JRC-Ispra for INTOR/NET and based on the idea of conceiving it as one of the sides, of a box which envelopes a blanket segment, is described. The progress in the structural analysis of the first wall box under operating and abnormal (plasma disruption) conditions is presented and discussed. The design of the collector plates of the single-null divertor of INTOR/NET, as developed at the JRC-Ispra, is described. This design is based on a W-Re protective layer and a water-cooled heat sink, including cooling channels iun Cu-alloys and a Cu-matrix for bonding. The results of the elastic and elasto-plastic evaluations are discussed, together with a layout of the experimental activity in progress. It is concluded that, even if the uncertainties related to the plasma-wall interaction are still relevant, the engineering solutions identified look manageable, although they require a large research and development effort.

  4. The computer science institute building of TU Brunswick University. Construction of an energy-efficient university building; Das Informatikzentrum der TU Braunschweig. Realisierung eines energieeffizienten Institutsgebaeudes

    Energy Technology Data Exchange (ETDEWEB)

    Rozynski, M.; Gerder, F. [Technische Univ. Braunschweig (Germany). Inst. fuer Gebaeude- und Solartechnik

    2003-07-01

    Saving of resources will be a key issue in future building construction. A new building projected on the campus of Brunswick University will have a power supply and ventilation concept that ensures low energy consumption. The project is carried out with funds provided by the Federal Minister of Economics and Technology (BMWi) in the context of the SolarBau funding concept. Construction of the building will be followed by an extensive monitoring programme that is to ensure its perfect function. [German] Eine wesentliche Zielsetzung zukuenftigen Bauens ist der sparsame Umgang mit Ressourcen. Im Rahmen eines integralen Planungsprozesses konnte fuer den Neubau des Informatikzentrums der TU Braunschweig ein Energie- und Lueftungskonzept realisiert werden, dass auf einen niedrigen Energieverbrauch zielt. Das Projekt wird im Rahmen des Foerderkonzeptes SolarBau durch das Bundesministerium fuer Wirtschaft und Technologie (BMWi) gefoerdert. Durch das anschliessende umfangreiche Monitoringprogramm wird derzeit die Funktionsfaehigkeit dieses Konzeptes ueberprueft. (orig.)

  5. Study of process of water disinfection it saw energy solar using an experimental reactor; Estudo do proceso de desinfeccao de agua via energia solar utilizando um reator experimental

    Energy Technology Data Exchange (ETDEWEB)

    Batista, C. H.; Prado, L. R.; Lima, A. S.; Egues, S. M. S.; Araujo, P. M. M.

    2008-07-01

    In this work, was conducted an experimental study of the efficiency of a solar reactor in the disinfection of drinking water using photolysis (UV) and heterogeneous photo catalysis (TiO{sub 2}/UV). The experiments were conducted in batch mode, evaluating the effects of reactor inclination and the presence of a solar concentrator. The results indicated that the employed system was capable to promote the complete disinfection in 150 min using only the photo thermic effect, and in 120 min with the addition of immobilized TiO{sub 2} and the solar concentrator. (Author)

  6. Experimental and analytical investigations of primary coolant pump coastdown phenomena for the Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alatrash, Yazan [Advanced Nuclear Engineering System Department, Korea University of Science and Technology (UST), 217 Gajeong-ro Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kang, Han-ok; Yoon, Hyun-gi; Seo, Kyoungwoo; Chi, Dae-Young [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Yoon, Juhyeon, E-mail: yoonj@kaeri.re.kr [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon (Korea, Republic of)

    2015-05-15

    Highlights: • Core flow coastdown phenomena of a research reactor are investigated experimentally. • The experimental dataset is well predicted by a simulation software package, MMS. • The validity and consistency of the experimental dataset are confirmed. • The designed coastdown half time is confirmed to be well above the design requirement. - Abstract: Many low-power research reactors including the Jordan Research and Training Reactor (JRTR) are designed to have a downward core flow during a normal operation mode for many convenient operating features. This design feature requires maintaining the downward core flow for a short period of time right after a loss of off-site power (LOOP) accident to guarantee nuclear fuel integrity. In the JRTR, a big flywheel is installed on a primary cooling system (PCS) pump shaft to passively provide the inertial downward core flow at an initial stage of the LOOP accident. The inertial pumping capability during the coastdown period is experimentally investigated to confirm whether the coastdown half time requirement given by safety analyses is being satisfied. The validity and consistency of the experimental dataset are evaluated using a simulation software package, modular modeling system (MMS). In the MMS simulation model, all of the design data that affect the pump coastdown behavior are reflected. The experimental dataset is well predicted by the MMS model, and is confirmed to be valid and consistent. The designed coastdown half time is confirmed to be well above the value required by safety analysis results. (wwwyoon@gmail.com)

  7. Experimental and analytical study of stability characteristics of natural circulation boiling water reactors during startup transient

    Science.gov (United States)

    Woo, Kyoungsuk

    Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation

  8. Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz

    2012-04-01

    Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

  9. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Directory of Open Access Journals (Sweden)

    Destouches Christophe

    2016-01-01

    Full Text Available The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  10. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Science.gov (United States)

    Destouches, Christophe

    2016-03-01

    The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND) and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  11. Decommissioning process of the experimental nuclear reactor ARGOS, sited at the Technical School of Industrial Engineering in Barcelona; Proceso de desmantelamiento del reactor nuclear experimental Argos de la Universidad Politecnica de Catalunya

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Aramburu, X.; Duch Guillen, M. A.

    2005-07-01

    The experimental nuclear reactor ARGOS, sited at the Technical School of Industrial Engineering in Barcelona, was an experimental reactor used for training purposes, from 1963 to 1977. Due to economic and administrative circumstances this facility was closed down at the end of this period and the fuel remained the fuel inside the reactor core. In 1994 the fuel was removed. The administrative licence was finally agreed with the authorities in 1998 after a long delay. The decommissioning operations began in 2001. The University dismantled, temporarily stored, checked and classified about 1200 components with a total weight of 154.4 t. The material which was declassified from the radiation protection point of view was approximately 99.9% of all the material. After presenting the final documents to the appropriate authorities the formal closing declaration was agreed in December 2003. After this date the site could be used for any purpose and it was the first case of the decommissioning of a nuclear reactor in Spain. Recently the ARGOS building have been finally demolished. (Author)

  12. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Gauld, Ian C [ORNL

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  13. Economic impacts on the United States of siting decisions for the international thermonuclear experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peerenboom, J.P.; Hanson, M.E.; Huddleston, J.R. [and others

    1996-08-01

    This report presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that, along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively.

  14. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor.

    Science.gov (United States)

    Leipold, F; Furtula, V; Salewski, M; Bindslev, H; Korsholm, S B; Meo, F; Michelsen, P K; Moseev, D; Nielsen, S K; Stejner, M

    2009-09-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic using gyrotrons operated at 60 GHz will meet the requirements for spatially and temporally resolved measurements of the velocity distributions of confined fast alphas in ITER by evaluating the scattered radiation (CTS signal). While a receiver antenna on the low field side of the tokamak, resolving near perpendicular (to the magnetic field) velocity components, has been enabled, an additional antenna on the high field side (HFS) would enable measurements of near parallel (to the magnetic field) velocity components. A compact design solution for the proposed mirror system on the HFS is presented. The HFS CTS antenna is located behind the blankets and views the plasma through the gap between two blanket modules. The viewing gap has been modified to dimensions 30x500 mm(2) to optimize the CTS signal. A 1:1 mock-up of the HFS mirror system was built. Measurements of the beam characteristics for millimeter-waves at 60 GHz used in the mock-up agree well with the modeling.

  15. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  16. Conceptual studies of toroidal field magnets for the tokamak (fusion) experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1976-11-01

    This report presents the results of ''Conceptual Studies of Toroidal Field Magnets for the Tokamak Experimental Power Reactor'' performed for the Energy Research and Development Administration, Oak Ridge Operations. Two conceptual coil designs are developed. One design approach to produce a specified 8 Tesla maximum field uses a novel NbTi superconductor design cooled by pool-boiling liquid helium. For a highest practicable field design, a unique NbSn/sub 3/ conductor is used with forced-flow, single-phase liquid helium cooling to achieve a 12 Tesla peak field. Fabrication requirements are also developed for these approximately 7 meter horizontal bore by 11 meter vertical bore coils. Cryostat design approaches are analyzed and a hybrid cryostat approach selected. Structural analyses are performed for approaches to support in-plane and out-of-plane loads and a structural approach selected. In addition to the conceptual design studies, cost estimates and schedules are prepared for each of the design approaches, major uncertainties and recommendations for research and development identified, and test coil size for demonstration recommended.

  17. EXPERIMENTAL STUDY OF LOCAL HYDRODYNAMICS AND MASS EXCHANGE PROCESSES OF COOLANT IN FUEL ASSEMBLIES OF PRESSURIZED WATER REACTORS

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2016-01-01

    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  18. Experimental and numerical stability investigations on natural circulation boiling water reactors

    CERN Document Server

    Marcel, CP

    2007-01-01

    In the design of novel nuclear reactors active systems are replaced by passive ones in order to reduce the risk of failure. For that reason natural circulation is being considered as the primary cooling mechanism in next generation nuclear reactor designs

  19. Simulating Experimental Investigation on the Safety of Nuclear Heating Reactor in Loss—of —Coolant Accidents

    Institute of Scientific and Technical Information of China (English)

    ZhanjieXu

    1996-01-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology(INET) of Tisinghuan University of CHina in 1989,Its main loop is a thermal-hydraulic system with natural circulation.This paper studies the safety of NHR under the condition of loss-of -coolant accidents(LOCAs) by means of simulant experiments.First,the Background and necessity of the experiments are presented.then the experimental system,including the thermal-hydraulic system and the data collection system,and similarity criteria are introduced.Up to now ,the discharge experiments with the residual heating power(20% rated heating power)have been carried out on the experimental system,The system prameters including circulation flow rate,system pressure,system temperature,void fraction,discharge mass and so on have been recorded and analyzed.Based on the results of the experiments,the conclusionas are shown as follos:on the whole,the reactor is safe under the condition of LOCAs,but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  20. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  1. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Science.gov (United States)

    Sulaiman, S. A.; Dominguez-Ontiveros, E. E.; Alhashimi, T.; Budd, J. L.; Matos, M. D.; Hassan, Y. A.

    2015-04-01

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A&M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  2. Experimental and analytical study on thermal hydraulics in reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Araya, Fumimasa; Ohnuki, Akira; Yoshida, Hiroyuki; Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    Study and development of reduced-moderation spectrum water reactor proceeds as a option of the future type reactor in Japan Atomic Energy Research Institute (JAERI). The reduced-moderation spectrum in which a neutron has higher energy than the conventional water reactors is achieved by decreasing moderator-to-fuel ratio in the lattice core of the reactor. Conversion ratio in the reduced-moderation water reactor can be more than 1.0. High burnup and long term cycle operation of the reactor are expected. A type of heavy water cooled PWR and three types of BWR are discussed as follows; For the PWR, (1) critical heat flux experiments in hexagonal tight lattice core, (2) evaluation of cooling limit at a nominal power operation, and (3) analysis of rewetting cooling behavior at loss of coolant accident following with large scale pipe rupture. For the BWR, analyses of cooling limit at a nominal power operation of, (1) no blanket BWR, (2) long term cycle operation BWR, and (3) high conversion ratio BWR. The experiments and the analyses proved that the basic thermal hydraulic characteristics of these reduced-moderation water reactors satisfy the essential points of the safety requirements. (Suetake, M.)

  3. Hydrocarbon pyrolysis reactor experimentation and modeling for the production of solar absorbing carbon nanoparticles

    Science.gov (United States)

    Frederickson, Lee Thomas

    Much of combustion research focuses on reducing soot particulates in emissions. However, current research at San Diego State University (SDSU) Combustion and Solar Energy Laboratory (CSEL) is underway to develop a high temperature solar receiver which will utilize carbon nanoparticles as a solar absorption medium. To produce carbon nanoparticles for the small particle heat exchange receiver (SPHER), a lab-scale carbon particle generator (CPG) has been built and tested. The CPG is a heated ceramic tube reactor with a set point wall temperature of 1100-1300°C operating at 5-6 bar pressure. Natural gas and nitrogen are fed to the CPG where natural gas undergoes pyrolysis resulting in carbon particles. The gas-particle mixture is met downstream with dilution air and sent to the lab scale solar receiver. To predict soot yield and general trends in CPG performance, a model has been setup in Reaction Design CHEMKIN-PRO software. One of the primary goals of this research is to accurately measure particle properties. Mean particle diameter, size distribution, and index of refraction are calculated using Scanning Electron Microscopy (SEM) and a Diesel Particulate Scatterometer (DPS). Filter samples taken during experimentation are analyzed to obtain a particle size distribution with SEM images processed in ImageJ software. These results are compared with the DPS, which calculates the particle size distribution and the index of refraction from light scattering using Mie theory. For testing with the lab scale receiver, a particle diameter range of 200-500 nm is desired. Test conditions are varied to understand effects of operating parameters on particle size and the ability to obtain the size range. Analysis of particle loading is the other important metric for this research. Particle loading is measured downstream of the CPG outlet and dilution air mixing point. The air-particle mixture flows through an extinction tube where opacity of the mixture is measured with a 532 nm

  4. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2002-12-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  5. On the lifetime of the first mirrors in the diagnostic systems of the international thermonuclear experimental reactor

    OpenAIRE

    De Temmerman, Gregory

    2006-01-01

    Plasma diagnostic systems will be necessary tools for the future success of the International Thermonuclear Experimental Reactor (ITER) both to better understand the physics involved in magnetically confined burning plasma and for the protection of the device in case of disruptions etc. In contrast to conditions in today’s tokamaks, a high level of radiation and neutrons is expected in ITER. To reduce the extent of the possible neutron leakage and to protect the optical compone...

  6. ITER: The International Thermonuclear Experimental Reactor and the nuclear weapons proliferation implications of thermonuclear-fusion energy systems

    OpenAIRE

    Gsponer, Andre; Hurni, Jean-Pierre

    2004-01-01

    This report contains two parts: (1) A list of "points" highlighting the strategic-political and military-technical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (2) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showin...

  7. Experimental analysis of a combustion reactor under co-firing coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fabyo Luiz; Bazzo, Edson; Oliveira Junior, Amir Antonio Martins de [Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil). LabCET], e-mail: ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Complexo Termeletrico Jorge Lacerda, Capivari de Baixo, SC (Brazil)], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Mitigation of greenhouse gases emission is one of the most important issues in energy engineering. Biomass is a potential renewable source but with limited use in large scale energy production because of the relative smaller availability as compared to fossil fuels, mainly to coal. Besides, the costs concerning transportation must be well analysed to determine its economic viability. An alternative for the use of biomass as a primary source of energy is the co-firing, that is the possibility of using two or more types of fuels combined in the combustion process. Biomass can be co-fired with coal in a fraction between 10 to 25% in mass basis (or 4 to 10% in heat-input basis) without seriously impacting the heat release characteristics of most boilers. Another advantage of cofiring, besides the significant reductions in fossil CO{sub 2} emissions, is the reduced emissions of NO{sub x} and SO{sub x}. As a result, co-firing is becoming attractive for power companies worldwide. This paper presents results of some experimental analysis on co-firing coal with rice straw in a combustion reactor. The influence of biomass thermal share in ash composition is also discussed, showing that alkali and earth alkaline compounds play the most important role on the fouling and slagging behavior when co-firing. Some fusibility correlations that can assist in the elucidation of these behavior are presented and discussed, and then applied to the present study. Results show that for a biomass thermal share up to 20%, significant changes are not expected in fouling and slagging behavior of ash. (author)

  8. Summary of experimental tests of elastomeric seismic isolation bearings for use in nuclear reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.; Chang, Y.W.; Kulak, R.F.

    1992-05-01

    This paper describes an experimental test program for isolator bearings which was developed to help establish the viability of using laminated elastomer bearings for base isolation of nuclear reactor plants. The goal of the test program is to determine the performance characteristics of laminated seismic isolation bearings under a wide range of loadings. Tests were performed on scale-size laminated seismic isolators both within the design shear strain range to determine the response of the bearing under expected earthquake loading conditions, and beyond the design range to determine failure modes and to establish safety margins. Three types of bearings, each produced from a different manufacturer, have been tested: (1) high shape factor-high damping-high shear modulus bearings; (2) medium shape factor-high damping-high shear modulus bearings; and (3) medium shape factor-high damping-low shear modulus bearings. All of these tests described in this report were performed at the Earthquake Engineering Research Center at the University of California, Berkeley, with technical assistance from ANL. The tests performed on the three types of bearings have confirmed the high performance characteristics of the high damping-high and low shear modulus elastomeric bearings. The bearings have shown that they are capable of having extremely large shear strains before failure occurs. The most common failure mechanism was the debonding of the top steel plate from the isolators. This failure mechanism can be virtually eliminated by improved manufacturing quality control. The most important result of the failure test of the isolators is the fact that bearings can sustain large horizontal displacement, several times larger than the design value, with failure. Their performance in moderate and strong earthquakes will be far superior to conventional structures.

  9. Summary of experimental tests of elastomeric seismic isolation bearings for use in nuclear reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.; Chang, Y.W.; Kulak, R.F.

    1992-01-01

    This paper describes an experimental test program for isolator bearings which was developed to help establish the viability of using laminated elastomer bearings for base isolation of nuclear reactor plants. The goal of the test program is to determine the performance characteristics of laminated seismic isolation bearings under a wide range of loadings. Tests were performed on scale-size laminated seismic isolators both within the design shear strain range to determine the response of the bearing under expected earthquake loading conditions, and beyond the design range to determine failure modes and to establish safety margins. Three types of bearings, each produced from a different manufacturer, have been tested: (1) high shape factor-high damping-high shear modulus bearings; (2) medium shape factor-high damping-high shear modulus bearings; and (3) medium shape factor-high damping-low shear modulus bearings. All of these tests described in this report were performed at the Earthquake Engineering Research Center at the University of California, Berkeley, with technical assistance from ANL. The tests performed on the three types of bearings have confirmed the high performance characteristics of the high damping-high and low shear modulus elastomeric bearings. The bearings have shown that they are capable of having extremely large shear strains before failure occurs. The most common failure mechanism was the debonding of the top steel plate from the isolators. This failure mechanism can be virtually eliminated by improved manufacturing quality control. The most important result of the failure test of the isolators is the fact that bearings can sustain large horizontal displacement, several times larger than the design value, with failure. Their performance in moderate and strong earthquakes will be far superior to conventional structures.

  10. Parametric experimental tests of steam gasification of pine wood in a fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    L. Vecchione

    2013-09-01

    Full Text Available Among Renewable Energy Sources (RES, biomass represent one of the most common and suitable solution in order to contribute to the global energy supply and to reduce greenhouse gases (GHG emissions. The disposal of some residual biomass, as pruning from pine trees, represent a problem for agricultural and agro-industrial sectors. But if the residual biomass are used for energy production can become a resource. The most suitable energy conversion technology for the above-mentioned biomass is gasification process because the high C/N ratio and the low moisture content, obtained from the analysis. In this work a small-pilot bubbling-bed gasification plant has been designed, constructed and used in order to obtain, from the pine trees pruning, a syngas with low tar and char contents and high hydrogen content. The activities showed here are part of the activities carried out in the European 7FP UNIfHY project. In particular the aim of this work is to develop experimental test on a bench scale steam blown fluidized bed biomass gasifier. These tests will be utilized in future works for the simulations of a pilot scale steam fluidized bed gasifier (100 kWth fed with different biomass feedstock. The results of the tests include produced gas and tar composition as well gas, tar and char yield. Tests on a bench scale reactor (8 cm I.D. were carried out varying steam to biomass ratio from 0.5, 0.7 and 1 to 830°C.

  11. Experimental coupling and modelling of wet air oxidation and packed-bed biofilm reactor as an enhanced phenol removal technology.

    Science.gov (United States)

    Minière, Marine; Boutin, Olivier; Soric, Audrey

    2017-01-25

    Experimental coupling of wet air oxidation process and aerobic packed-bed biofilm reactor is presented. It has been tested on phenol as a model refractory compound. At 30 MPa and 250 °C, wet air oxidation batch experiments led to a phenol degradation of 97% and a total organic carbon removal of 84%. This total organic carbon was mainly due to acetic acid. To study the interest of coupling processes, wet air oxidation effluent was treated in a biological treatment process. This step was made up of two packed-bed biofilm reactors in series: the first one acclimated to phenol and the second one to acetic acid. After biological treatment, phenol and total organic carbon removal was 99 and 97% respectively. Thanks to parameters from literature, previous studies (kinetic and thermodynamic) and experimental data from this work (hydrodynamic parameters and biomass characteristics), both treatment steps were modelled. This modelling allows the simulation of the coupling process. Experimental results were finally well reproduced by the continuous coupled process model: relative error on phenol removal efficiency was 1 and 5.5% for wet air oxidation process and packed-bed biofilm reactor respectively.

  12. Numerical and experimental study of hydraulic dashpot used in the shut-off rod drive mechanism of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Narendra K., E-mail: nksingh_chikki@yahoo.com [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Badodkar, Deepak N. [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Singh, Manjit [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-07-01

    Highlights: • Hydraulic dashpot performance is studied numerically as well as experimentally. • Instantaneous pressure built-up in the dashpot is mainly contributing for damping of freely falling shut-off rod at the end of its travel. • At elevated temperature, dashpot pressure does not reduce in proportion to the reduction in viscosity. • ‘C’ grove in the dashpot shaft flattens the pressure peak and shifts it toward the end of operation. - Abstract: Hydraulic dashpot design for shut-off rod drive mechanism application in a nuclear reactor has been analyzed both numerically and experimentally in this paper. Finite element commercial code COMSOL Multiphysics 4.3 has been used for numerical analysis. Experimental validation has been done at two different cases. Experimental test set-ups and hydraulic dashpot constructions have been described in detail. Various combinations of dashpot oil viscosity and clearance thickness have been analyzed. Important experimental results are also presented and discussed. Pressure distributions in the dashpot chambers obtained from COMSOL are given for both the set-ups. Numerical and experimental results are compared. Dashpot designs have been qualified after detailed analysis and testing on full-scale test stations simulating actual reactor conditions (except radiation)

  13. Experimental evaluation of gamma fluence-rate predictions from Argon-41 releases to the atmosphere over a nuclear research reactor site

    DEFF Research Database (Denmark)

    Rojas-Palma, C.; Aage, H.K.; Astrup, P.

    2004-01-01

    An experimental study of radionuclide dispersion in the atmosphere has been conducted at the BR1 research reactor in Mol, Belgium. Artificially generated aerosols ('white smoke') were mixed with the routine releases of Ar-41 in the reactor's 60-m tall venting stack. The detailed plume geometry...

  14. An experimental substantiation of the design functions imposed on the additional system for passively flooding the core of a VVER reactor

    Science.gov (United States)

    Morozov, A. V.; Remizov, O. V.

    2012-05-01

    Results obtained from a research work on experimentally substantiating the serviceability of the additional system for passively flooding the core of a VVER reactor from the second-stage hydro accumulators are presented.

  15. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  16. Experimental investigation of a directionally enhanced DHX concept for high temperature Direct Reactor Auxiliary Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Joel T.; Blandford, Edward D., E-mail: edb@unm.edu

    2016-07-15

    Highlights: • A novel directional heat exchanger design has been developed. • Hydrodynamic tests have been performed on the proposed design. • Heat transfer performance is inferred by hydrodynamic results. • Results are discussed and future work is suggested. - Abstract: The use of Direct Reactor Auxiliary Cooling Systems (DRACSs) as a safety-related decay heat removal system for advanced reactors has developed historically through the Sodium Fast Reactor (SFR) community. Beginning with the EBR-II, DRACSs have been utilized in a large number of past and current SFR designs. More recently, the DRACS has been adopted for Fluoride Salt-Cooled High-Temperature Reactors (FHRs) for similar decay heat removal functions. In this paper we introduce a novel directionally enhanced DRACS Heat Exchanger (DHX) concept. We present design options for optimizing such a heat exchanger so that shell-side heat transfer is enhanced in one primary coolant flow direction and degraded in the opposite coolant flow direction. A reduced-scale experiment investigating the hydrodynamics of a directionally enhanced DHX was built and the data collected is presented. The concept of thermal diodicity is expanded to heat exchanger technologies and used as performance criteria for evaluating design options. A heat exchanger that can perform as such would be advantageous for use in advanced reactor concepts where primary coolant flow reversal is expected during Loss-of-Forced-Circulation (LOFC) accidents where the ability to circulate coolant is compromised. The design could also find potential use in certain advanced Sodium Fast Reactor (SFR) designs utilizing fluidic diode concepts.

  17. Verification and Validation of the PLTEMP/ANL Code for Thermal-Hydraulic Analysis of Experimental and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalimullah, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanan, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-07

    The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.

  18. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  19. Experimental studies of heat exchange for sodium boiling in the fuel assembly model: Safety substantiation of a promising fast reactor

    Science.gov (United States)

    Khafizov, R. R.; Poplavskii, V. M.; Rachkov, V. I.; Sorokin, A. P.; Trufanov, A. A.; Ashurko, Yu. M.; Volkov, A. V.; Ivanov, E. F.; Privezentsev, V. V.

    2017-01-01

    Numerical simulation of the ULOF-type accident development in a fast reactor with sodium coolant performed using the COREMELT code indicates that sodium boiling in the active core takes place. The boiling is accompanied by oscillations of the technological parameters of the reactor installation; these oscillations can go on during several tens of seconds. In this case, it is possible that a stable regime of removal of heat from residual energy release is implemented. The model of the two-phase coolant flow applied in the code has an important effect on the numerical results; that is why this model needs experimental verification. For eliminating the development of an accident resulting in destruction of the active core elements, a structural solution is proposed; the essence of it is the application of the sodium void above the reactor active core. The experimental installation was developed and the heat exchange at sodium boiling in the model fuel assembly of the fast reactor in the regimes of natural and forced circulation in the presence of the sodium void and the top end shield was studied. It was demonstrated that, in the presence of the sodium void, it is possible to provide long-term cooling of the fuel assembly for a thermal flux density on the fuel element simulator surface of up to 140 and 170 kW/m2 in the natural and forced circulation modes, respectively. The obtained data are used for more precise determination of the numerical model of sodium boiling in the fuel assembly and verification of the COREMELT code.

  20. Theoretical and Experimental Study of the Primary Current Distribution in Parallel-Plate Electrochemical Reactors

    Science.gov (United States)

    Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.

    2012-01-01

    A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…

  1. Experimental computer-controlled instrumentation system for the research reactor DR2

    DEFF Research Database (Denmark)

    Goodstein, L.P.

    1969-01-01

    An instrumentation system has been developed for one of the Danish Atomic Energy Commission's research reactors as part of an experiment on the advantages to be gained by the use of digital computers in a process plant application. Problem areas to be investigated include (a) reliability and safety...

  2. Experimental Study on the Hydrodynamics and Mass Transfer Characteristics of Airlift Loop Reactors(ALR)

    Institute of Scientific and Technical Information of China (English)

    Tang Lixin; Han Pingfang; Lu Xiaoping

    2007-01-01

    The promoting effect of ultrasonic wave on the hydrodynamics and mass transfer characteristics of the airlift loop reactor was studied. The effect of the airlift reactor and ultrasonic wave on the reactor's gas holdup, liquid circulation velocity, mixing time and overall volumetric mass transfer coefficient respectively with and without the presence of ultrasonic wave is empathetically examined and compared. The experiment has proven that the incorporation of ultrasonic wave has no effect on the gas holdup but has the tendency to gradually decrease the liquid circulation velocity and increase the overall volumetric mass transfer coefficient; the effect on the mixing time is relatively complex. At low gas velocity, low powered ultrasonic wave promotes the radial mixing of fluid; with the increase of ultrasonic power, ultrasonic vibration obstructs the radial mixing of fluid. Therefore, there exists an optimal ultrasonic power. Moreover, the effect of ultrasonic wave on the mixing time gradually decreases with the increase of the superficial gas velocity. Correlations were also proposed for the hydrodynamics and mass transfer characteristics of the reactor.

  3. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education

    Science.gov (United States)

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-01-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…

  4. Experimental and numerical stability investigations on natural circulation boiling water reactors

    NARCIS (Netherlands)

    Marcel, C.P.

    2007-01-01

    The stability of natural circulation boiling water reactors is investigated with a strong emphasis on experiments. Two different facilities are used for such a task: the GENESIS facility (to which a void reactivity feedback system is artificially added) and the CIRCUS facility. In addition, numerica

  5. COMPUTATIONAL AND EXPERIMENTAL MODELING OF THREE-PHASE SLURRY-BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Isaac K. Gamwo; Dimitri Gidaspow

    1999-09-01

    Considerable progress has been achieved in understanding three-phase reactors from the point of view of kinetic theory. In a paper in press for publication in Chemical Engineering Science (Wu and Gidaspow, 1999) we have obtained a complete numerical solution of bubble column reactors. In view of the complexity of the simulation a better understanding of the processes using simplified analytical solutions is required. Such analytical solutions are presented in the attached paper, Large Scale Oscillations or Gravity Waves in Risers and Bubbling Beds. This paper presents analytical solutions for bubbling frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble column reactors are not optimum. They involve upflow in the center and downflow at the walls. It may be possible to control flow patterns by proper redistribution of heat exchangers in slurry bubble column reactors. We also believe that the catalyst size in operating slurry bubble column reactors is not optimum. To obtain an optimum size we are following up on the observation of George Cody of Exxon who reported a maximum granular temperature (random particle kinetic energy) for a particle size of 90 microns. The attached paper, Turbulence of Particles in a CFB and Slurry Bubble Columns Using Kinetic Theory, supports George Cody's observations. However, our explanation for the existence of the maximum in granular temperature differs from that proposed by George Cody. Further computer simulations and experiments involving measurements of granular temperature are needed to obtain a sound theoretical explanation for the possible existence of an optimum catalyst size.

  6. Experimental studies on catalytic hydrogen recombiners for light water reactors; Experimentelle Untersuchungen zu katalytischen Wasserstoffkombinatoren fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Drinovac, P.

    2006-06-19

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  7. Experimental Study of a Stoppage Natural Circulation during a Nuclear Heating Reactor LOCA

    Institute of Scientific and Technical Information of China (English)

    博金海; 张佑杰; 姜胜耀

    2001-01-01

    The 5MW nuclear heating reactor is an integral naturalcirculation reactor. The rupture of the coolant penetrating tube is a typical accident causing coolant loss. When the water level drops down to the upper edge of the inlet of the heat exchanger, the natural circulation stops. This influences the core cooling and the stability of the main loop. A series of tests showed that there is a stable drop of pressure, and the heated element temperature is not too high to cause burnout. But the backward flow or flow oscillation in the primary coolant circuit occurs when the flow breaks completely in the end. The whole flow process is described and the mechanism is discussed.

  8. Automated operator procedure prompting for startup of Experimental Breeder Reactor-2

    Energy Technology Data Exchange (ETDEWEB)

    Renshaw, A.W.; Ball, S.J.; Ford, C.E.

    1990-11-01

    This report describes the development of an operator procedure prompting aid for startup of a nuclear reactor. This operator aid is a preliminary design for a similar aid that eventually will be used with the Advanced Liquid Metal Reactor (ALMR) presently in the design stage. Two approaches were used to develop this operator procedure prompting aid. One method uses an expert system software shell, and the other method uses database software. The preliminary requirements strongly pointed toward features traditionally associated with both database and expert systems software. Database software usually provides data manipulation flexibility and user interface tools, and expert systems tools offer sophisticated data representation and reasoning capabilities. Both methods, including software and associated hardware, are described in this report. Proposals for future enhancements to improve the expert system approach to procedure prompting and for developing other operator aids are also offered. 25 refs., 14 figs.

  9. Experimental and modelling evaluation of an ammonia-fuelled microchannel reactor for hydrogen generation / Steven Chiuta

    OpenAIRE

    Chiuta, Steven

    2015-01-01

    In this thesis, ammonia (NH3) decomposition was assessed as a fuel processing technology for producing on-demand hydrogen (H2) for portable and distributed fuel cell applications. This study was motivated by the present lack of infrastructure to generate H2 for proton exchange membrane (PEM) fuel cells. An overview of past and recent worldwide research activities in the development of reactor technologies for portable and distributed hydrogen generation via NH3 decomposition wa...

  10. The SPES3 Experimental Facility Design for the IRIS Reactor Simulation

    Directory of Open Access Journals (Sweden)

    Mario Carelli

    2009-01-01

    Full Text Available IRIS is an advanced integral pressurized water reactor, developed by an international consortium led by Westinghouse. The licensing process requires the execution of integral and separate effect tests on a properly scaled reactor simulator for reactor concept, safety system verification, and code assessment. Within the framework of an Italian R&D program on Nuclear Fission, managed by ENEA and supported by the Ministry of Economic Development, the SPES3 facility is under design and will be built and operated at SIET laboratories. SPES3 simulates the primary, secondary, and containment systems of IRIS with 1 : 100 volume scale, full elevation, and prototypical thermal-hydraulic conditions. The simulation of the facility with the RELAP5 code and the execution of the tests will provide a reliable tool for data extrapolation and safety analyses of the final IRIS design. This paper summarises the main design steps of the SPES3 integral test facility, underlying choices and phases that lead to the final design.

  11. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A. [Univ. of Utah, Salt Lake City, UT (United States); Morrill, Mike [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn S. [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey D. [Univ. of Utah, Salt Lake City, UT (United States)

    2009-06-01

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  12. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-09-15

    In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.

  13. Experimental Study of the Effect of Graphite Dispersion on the Heat Transfer Phenomena in a Reactor Cavity Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Vaghetto, Rodolfo; Capone, Luigi; Hassan, Yassin A

    2011-05-31

    An experimental activity was performed to observe and study the effects of graphite dispersion and deposition on thermal-hydraulic phenomena in a reactor cavity cooling system (RCCS). The small-scale RCCS experimental facility (16.5 x 16.5 x 30.4 cm) used for this activity represents half of the reactor cavity with an electrically heated vessel. Water flowing through five vertical pipes removes the heat produced in the vessel and releases it into the environment by mixing with cold water in a large tank. The particle image velocimetry technique was used to study the velocity field of the air inside the cavity. A set of 52 thermocouples was installed in the facility to monitor the temperature profiles of the vessel, pipe walls, and air. Ten grams of a fine graphite powder (average particle size 2 m) was injected into the cavity through a spraying nozzle placed at the bottom of the vessel. The temperatures and air velocity field were recorded and compared with the measurements obtained before the graphite dispersion, showing a decrease of the temperature surfaces that was related to an increase in their emissivity. The results contribute to the understanding of RCCS capability in an accident scenario.

  14. Development and experimental validation of a calculation scheme for nuclear heating evaluation in the core of the OSIRIS material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F. [Saclay Center CEA, DEN/DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette Cedex (France)

    2011-07-01

    The control of the temperature in material samples irradiated in a material testing reactor requires the knowledge of the nuclear heating caused by the energy deposition by neutrons and photons interacting in the irradiation device structures. Thus, a neutron-photonic three-dimensional calculation scheme has been developed to evaluate the nuclear heating in experimental devices irradiated in the core of the OSIRIS MTR reactor (CEA/Saclay Center). The aim is to obtain a predictive tool for the nuclear heating estimation in irradiation devices. This calculation scheme is mainly based on the TRIPOLI-4 three-dimensional continuous-energy Monte Carlo transport code, developed by CEA (Saclay Center). An experimental validation has been carried out on the basis of nuclear heating measurements performed in the OSIRIS core. After an overview of the experimental devices irradiated in the OSIRIS reactor, we present the calculation scheme and the first results of the experimental validation. (authors)

  15. Hydraulic Experiment for Simulative Assemblies of Blanket Assembly and Np Transmutation Assembly of China Experimental Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    CHENG; Dao-xi; QI; Xiao-guang; ZHAI; Wei-ming; YANG; Bing; ZHOU; Ping

    2013-01-01

    The out-of reactor hydraulic experiment of fast reactor assembly is one of the important experiments in the process of the development of the fast reactor assembly.In this experiment,the size of the throttling element in the foot of the assembly is decided which is fit for the flow division in the reactor and the

  16. Problems in experimental and mathematical investigations of the accidental thermalhydraulic processes in RBMK nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B.I.; Tikhonenko, L.K. [Engineering Centre (EREC) for Nuclear Plants Safety, Electrogorsk (Russian Federation); Blinkov, V.N. [Aviation Institute, Kharkov (Ukraine)] [and others

    1995-09-01

    In this paper the thermalhydraulic scheme and peculiarities of the boiling water graphite-moderated channel-type reactor RBMK are presented and discussed shortly. The essential for RBMK transient regimes, accidental situations and accompanying thermalhydraulic phenomena and processes are formulated. These data are presented in the form of cross reference matrix (version 1) for system computer codes verification. The paper includes qualitative analysis of the computer codes and integral facilities which have been used or can be used for RBMK transients and accidents investigations. The stability margins for RBMK-1000 and RBMK-1500 are shown.

  17. Theoretical and experimental study of the photocatalytic activity of ZnO coated tubular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ríos-Valdovinos, E.; Amézaga-Madrid, P.; Antúnez-Flores, W.; Pola-Albores, F.; Pizá-Ruiz, P.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2014-01-15

    Highlights: • High quality ZnO thin films were deposited on the internal surface of fused silica tubing. • Surface carrier concentration was calculated theoretically under external irradiation. • Influence of film thickness on photocatalytic activity was explained by this model. • An optimum thickness around 60–70 nm was determined to get highest activity. -- Abstract: ZnO thin films were deposited inside of fused silica tubing by aerosol assisted chemical vapor deposition technique. The films were transparent, uniform, highly adherent and non-light scattering. Photocatalytic activity of internally ZnO coated tubing was evaluated by discoloration of a methyl orange aqueous solution in a batch reactor. Tubing was externally irradiated with UV-A at room temperature. A one dimensional model was proposed to calculate the spatial distribution of the carrier density and the films’ surface charge carrier concentration. This model can explain the influence of the films thickness on the photocatalytic activity. Results showed that the photocatalytic activity largely depends on the film thickness. For external irradiation of the films the optimum thickness was around 60–70 nm, for which the photocatalytic activity was maximum. The photonic efficiency of internally ZnO coated tubular reactors was evaluated as a function of initial colorant concentration, irradiation time and intensity. Furthermore, due to the high activity of the ZnO films, the films were repeatedly exposed to UV-A irradiation cycles, followed by activity measurement.

  18. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Jones, Byron

    2013-09-13

    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  19. Experimental study of hydrodynamic and operation start of a baffled anaerobic reactor treating sewage

    Directory of Open Access Journals (Sweden)

    Ana Carolina Silveira Perico

    2009-12-01

    Full Text Available It is important to provide individual sanitation systems for sewage peri-urban communities or rural areas to minimize impacts on the environment and human health caused by sewage discharge in natura into water resources. In this context, the anaerobic digestion of effluent has been one of the main considered technologies due to easy implementation, material minimization and reduction in waste production. The objective of this work was to study a Baffled Anaerobic Reactor (BAR including its hydrodynamic characteristics, percentile of inoculum to be applied and reactor operation start. It was concluded that the flow is dispersed with 3.84% of dead spaces and that 20% of the cow manure provided best results; however, due to the high fiber content of the manure, its use is not recommended as inoculum. The BAR system, composed of four chambers, presented good performance for sewage treatment of a rural community in terms of organic substance removal (COD, turbidity and solids meeting effluent disposal standards of these parameters considering the Federal and Minas Gerais State legislation, in Brazil, even in a transient phase of operation, at temperatures below 20°C. However, the effluents from the BAR can’t be released into water bodies without other parameters such as nitrogen, phosphorus, fecal coliforms, and others are investigated to be conforming to those standards.

  20. Experimental study of the temperature distribution in the TRIGA IPR-R1 Brazilian research reactor; Investigacao experimental da distribuicao de temperaturas no reator nuclear de pesquisa TRIGA IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Zacarias

    2005-07-01

    The TRIGA-IPR-R1 Research Nuclear Reactor has completed 44 years in operation in November 2004. Its initial nominal thermal power was 30 kW. In 1979 its power was increased to 100 kW by adding new fuel elements to the reactor. Recently some more fuel elements were added to the core increasing the power to 250 kW. The TRIGA-IPR-R1 is a pool type reactor with a natural circulation core cooling system. Although the large number of experiments had been carried out with this reactor, mainly on neutron activation analysis, there is not many data on its thermal-hydraulics processes, whether experimental or theoretical. So a number of experiments were carried out with the measurement of the temperature inside the fuel element, in the reactor core and along the reactor pool. During these experiments the reactor was set in many different power levels. These experiments are part of the CDTN/CNEN research program, and have the main objective of commissioning the TRIGA-IPR-R1 reactor for routine operation at 250 kW. This work presents the experimental and theoretical analyses to determine the temperature distribution in the reactor. A methodology for the calibration and monitoring the reactor thermal power was also developed. This methodology allowed adding others power measuring channels to the reactor by using thermal processes. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were also experimentally valued. lt was also presented a correlation for the gap conductance between the fuel and the cladding. The experimental results were compared with theoretical calculations and with data obtained from technical literature. A data acquisition and processing system and a software were developed to help the investigation. This system allows on line monitoring and registration of the main reactor operational parameters. The experiments have given better comprehension of the reactor thermal-fluid dynamics and helped to develop numerical

  1. Validation of RELAP5 model of experimental test rig simulating the natural convection in MTR research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Khedr, A.; Abdel-Latif, Salwa H. [Nuclear and Radiological Regulatory Authority, Cairo (Egypt); Abdel-Hadi, Eed A. [Benha Univ., Cairo (Egypt). Shobra Faculty of Engineering; D' Auria, F. [Pisa Univ. (Italy)

    2016-03-15

    In an attempt to understand the built-up of natural circulation in MTR pool type upward flow research reactors after loss of power, an experimental test rig was built to simulate the loop of natural circulation in MTR reactors. The test rig consisting of two vertically oriented branches, in one of them the core is simulated by two rectangular, electrically heated, parallel channels. The other branch simulates the part of the return pipe that participates in the development of core natural circulation. In the first phase of the work, many experimental runs at different conditions of channel's power and branch's initial temperatures are performed. The channel's coolant and surface temperatures were measured. The measurements and their interpretation were published by the first three authors. In the present work the thermal hydraulic behavior of the test rig is complemented by theoretical analysis using RELAP5 Mod 3.3 system code. The analysis consisting of two parts; in the first part RELAP5 model is validated against the measured values and in the second part some of the other not measured hydraulic parameters are predicted and analyzed. The test rig is typically nodalized and an input dick is prepared. In spite of the low pressure of the test rig, the results show that RELAP5 qualitatively predicts the thermal hydraulic behaviour and the accompanied phenomenon of flow inversion of such facilities. Quantitatively, there is a difference between the predicted and measured values especially the channel's surface temperature. This difference may be return to the uncertainties in initial conditions of experimental runs, the position of the thermocouples which buried inside the heat structure, and the heat transfer package in RELAP5.

  2. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. Oh, PhD; Cliff Davis; Richard Moore

    2004-11-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 900 degrees C or operational fuel temperatures above 1250 degrees C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR's higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Engineering and Environmental Laboratory (INEEL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world's computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertaninty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  3. Safety properties of China experimental fast reactor%中国实验快堆的安全特性

    Institute of Scientific and Technical Information of China (English)

    徐銤

    2011-01-01

    Sodium cooled fast reactor possesses some inherent safety properties, thanks to sodium perfect thermo-physical characteristics. In the same time sodium leakage inducing sodium fire or sodium-water reaction of industrial incidents, from sodium containing systems could not be excluded due to it is alkali metal. It is presented in the paper, that the safety of the China experimental fast reactor(CEFR)has meet the safety demands of Generation ]V due to the inherent safety characteristics have been realized, some passive safety systems, like passive decay heat removal system based on natural convection and circulation and active safety measures have been equipped. As for the large sized fast reactor with high breeding feature which induces positive sodium bubble effect, it is needed to develop passive shut-down systems to keep the safety targets of Generation IV.%钠冷快堆因钠具有好的热物理特性而具有固有安全性,同时也因钠是活泼的碱金属,也难免会有钠的泄漏、钠火和钠水反应等工业事故.本文介绍了中国实验快堆利用钠冷快堆的固有安全性,装设了单靠自然循环和自然对流的事故余热导出系统等多项非能动安全系统及完善的能动安全系统,其安全性达到了第Ⅳ代先进核能系统的安全要求.对于大型快堆,因其保证高的增殖而会有正的钠空泡效应,需要开发非能动停堆系统以保持第Ⅳ代安全目标.

  4. Review of the n_TOF experimental program for Reactor Applications

    Directory of Open Access Journals (Sweden)

    Guerrero C.

    2013-03-01

    Full Text Available The n_TOF facility at CERN is devoted mainly to the measurement of neutron-induced reaction cross section of interest for Nuclear Technologies, Astrophysics and Basic Physics. In particular, the list of measurements carried out during the 2nd Phase of experiments n_TOF-Ph2 (2009-2012 includes a significant number of capture and fission experiments on actinides which are considered key for the further development of nuclear reactors. This contribution will contain a description of all these experiments, some of which will be discussed in detail. The future of the n_TOF facility will be also addressed; in particular, the new vertical neutron beam line with a flight path of only 20 m will be presented and the expected performance discussed in detail.

  5. Large-scale experimental facility for emergency condition investigation of a new generation NPP WWER-640 reactor with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Aniskevich, Y.N.; Vasilenko, V.A.; Zasukha, V.K.; Migrov, Y.A.; Khabensky, V.B. [Research Inst. of Technology NITI (Russian Federation)

    1997-12-31

    The creation of the large-scale integral experimental facility (KMS) is specified by the programme of the experimental investigations to justify the engineering decisions on the safety of the design of the new generation NPP with the reactor WWER-640. The construction of KMS in a full volume will allow to conduct experimental investigations of all physical phenomena and processes, practically, occurring during the accidents on the NPPs with the reactor of WWER type and including the heat - mass exchange processes with low rates of the coolant, which is typical during the utilization of the passive safety systems, process during the accidents with a large leak, and also the complex intercommunicated processes in the reactor unit, passive safety systems and in the containment with the condition of long-term heat removal to the final absorber. KMS is being constructed at the Research Institute of Technology (NITI), Sosnovy Bor, Leningrad region, Russia. (orig.). 5 refs.

  6. ITER: The International Thermonuclear Experimental Reactor and the nuclear weapons proliferation implications of thermonuclear-fusion energy

    CERN Document Server

    Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

    2004-01-01

    This paper contains two parts: (I) A list of "points" highlighting the strategic-political and military-technical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and fo...

  7. Experimental results from the CEA Reactor Physics Programme on MARIUS III

    Energy Technology Data Exchange (ETDEWEB)

    Bosser, R.; Langlet, G.; Morier, F.

    1971-01-15

    A programme of experimental studies on the physics of HTR lattices was proposed in 1968. Under the authority of the EDF-CEA joint comittee, decision to achieve this programmes was taken in Jyly 1969. Less than one year after, MARIUS III had its first divergence in its new configuration and the experiments began in August 1970. After preliminary experiments, phase one of the programme was achieved in October, November and December 1970. Experimental results are presented.

  8. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  9. 239Pu Prompt Fission Neutron Spectra Impact on a Set of Criticality and Experimental Reactor Benchmarks

    Science.gov (United States)

    Peneliau, Y.; Litaize, O.; Archier, P.; De Saint Jean, C.

    2014-04-01

    A large set of nuclear data are investigated to improve the calculation predictions of the new neutron transport simulation codes. With the next generation of nuclear power plants (GEN IV projects), one expects to reduce the calculated uncertainties which are mainly coming from nuclear data and are still very important, before taking into account integral information in the adjustment process. In France, future nuclear power plant concepts will probably use MOX fuel, either in Sodium Fast Reactors or in Gas Cooled Fast Reactors. Consequently, the knowledge of 239Pu cross sections and other nuclear data is crucial issue in order to reduce these sources of uncertainty. The Prompt Fission Neutron Spectra (PFNS) for 239Pu are part of these relevant data (an IAEA working group is even dedicated to PFNS) and the work presented here deals with this particular topic. The main international data files (i.e. JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0, BRC-2009) have been considered and compared with two different spectra, coming from the works of Maslov and Kornilov respectively. The spectra are first compared by calculating their mathematical moments in order to characterize them. Then, a reference calculation using the whole JEFF-3.1.1 evaluation file is performed and compared with another calculation performed with a new evaluation file, in which the data block containing the fission spectra (MF=5, MT=18) is replaced by the investigated spectra (one for each evaluation). A set of benchmarks is used to analyze the effects of PFNS, covering criticality cases and mock-up cases in various neutron flux spectra (thermal, intermediate, and fast flux spectra). Data coming from many ICSBEP experiments are used (PU-SOL-THERM, PU-MET-FAST, PU-MET-INTER and PU-MET-MIXED) and French mock-up experiments are also investigated (EOLE for thermal neutron flux spectrum and MASURCA for fast neutron flux spectrum). This study shows that many experiments and neutron parameters are very sensitive to

  10. Corrosion product deposits on boiling-water reactor cladding: Experimental and theoretical investigation of magnetic properties

    Science.gov (United States)

    Orlov, A.; Degueldre, C.; Wiese, H.; Ledergerber, G.; Valizadeh, S.

    2011-09-01

    Recent Eddy current investigations on the cladding of nuclear fuel pins have shown that the apparent oxide layers are falsified due to unexpected magnetic properties of corrosion product deposits. Analyses by Scanning Electron Microscopy (SEM) or Electron Probe Micro Analysis (EPMA) demonstrated that the deposit layer consists of complex 3-d element oxides (Ni, Mn, Fe) along with Zn, since the reactor operates with a Zn addition procedure to reduce buildup of radiation fields on the recirculation system surfaces. The oxides crystallise in ferritic spinel structures. These spinels are well-known for their magnetic behaviour. Since non-magnetic zinc ferrite (ZnFe 2O 4) may become magnetic when doped with even small amounts of Ni and/or Mn, their occurrence in the deposit layer has been analyzed. The magnetic permeability of zinc ferrite, trevorite and jacobsite and their solid solutions are estimated by magnetic moment additivity. From the void history examination, the low elevation sample (810 mm) did not face significant boiling during the irradiation cycles suggesting growth of (Mn0.092+Zn0.752+Fe0.293+)[(Fe1.713+Mn0.032+Ni0.132+)O] crystals with theoretical value of the magnetic permeability for the averaged heterogeneous CRUD layer of 9.5 ± 3. Meanwhile, (Mn0.162+Zn0.552+Fe0.293+)[(Fe1.713+Mn0.042+Ni0.252+)O] crystallizes at the mid elevation (1810 mm) with theoretical magnetic permeability for the CRUD layer of 4.2 ± 1.5 at the investigated azimuthal location. These theoretical data are compared with the magnetic permeability of the corrosion product deposited layers gained from reactor pool side Eddy current (EC) analyses (9.0 ± 1.0 for low and 3.5 ± 1.0 for high elevation). The calculated thicknesses and magnetic permeability values of the deposition layers (estimated by MAGNACROX multifrequency EC method) match together with these estimated using an "ion magnetic moment additivity" model.

  11. Experimental and computational studies on the natural circulation characteristics of a small- and medium-sized reactor, REX-10

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong Il

    2012-02-15

    The rapid economic development in many countries has led to a growing need for energy. To meet the demand, the nuclear power generation is emerging as a viable alternative because it emits much smaller amount of carbon dioxide as compared to conventional fossil fuel plant produces high power density energy. Because of the latter attractiveness, many large-sized nuclear reactors ({approx}1000 MWe/unit) for electricity generation have been constructed around the world. Recently, small- and medium-sized nuclear reactors (SMRs) receive attention because of its effective adaptability to diversified energy demands. Several attractiveness of the SMR is worth to report here. First, the SMR is a viable alternative for the developing countries that have inferior electricity grids. Second, the SMR may effectively prevent the Large-Break Loss of Coolant Accident (LBLOCA) as it adopts the integral-type reactor. Finally, the SMR is used for various applications - desalination, district heating, small-scale power generation, ship propulsion, to mention a few. These attractiveness provides reasonable justification to construct the SMRs such as SMART, IRIS, CAREM, and KLT-40S. As such, the Regional Energy Research Institute for Next Generation (RERI) has been developing a SMR for regional energy supply, REX-10 since 2005. The REX-10 is the integral-type reactor and relies on natural circulation to improve passive safety. In this study, the natural circulation behavior and capability of the REX-10 is investigated experimentally as well as numerically. To evaluate the thermal-hydraulics of the REX-10, two experimental facilities . RTF and NACTER . were designed and fabricated using the scaling laws proposed by Ishii et al. Both experimental facilities consist of main components of the core, heat exchanger, hot legs, pressurizer, and chillers; however, both experimental facilities have different heat exchanger systems because two types of the heat exchanger are being considered. To

  12. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    Science.gov (United States)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat

  13. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-11-15

    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  14. Experimental study of the supercritical water oxidation of recalcitrant compounds under hydrothermal flames using tubular reactors.

    Science.gov (United States)

    Cabeza, Pablo; Bermejo, M Dolores; Jiménez, Cristina; Cocero, M José

    2011-04-01

    The hydrothermal flame is a new method of combustion that takes place in supercritical water oxidation reactions when the temperature is higher than the autoignition temperature. In these conditions, waste can be completely mineralized in residence times of milliseconds without the formation of by-products typical of conventional combustion. The object of this work is to study the hydrothermal flame formation in aqueous streams with high concentrations of recalcitrant compounds: an industrial waste with a high concentration of acetic acid and various concentrated solutions of ammonia. A tubular reactor with a residence time of 0.7 s was used. Oxygen was used as the oxidant and isopropyl alcohol (IPA) as co-fuel to reach the operation temperature required. The increase of IPA concentrations in the feeds resulted in a better TOC removal. For mixtures containing acetic acid, 99% elimination of TOC was achieved at temperatures higher than 750 °C. In the case of mixtures containing ammonia, TOC removals reached 99% while maximum total nitrogen removals were never higher than 94%, even for reaction temperatures higher than 710 °C. Ignition was observed at concentrations as high as 6% wt NH(3) with 2% wt IPA while at IPA concentrations below 2% wt IPA, the ammonia did not ignite.

  15. Experimental analysis and evaluation of the mass transfer process in a trickle-bed reactor

    Directory of Open Access Journals (Sweden)

    Silva J.D.

    2003-01-01

    Full Text Available A transient experimental analysis of a three-phase descendent-cocurrent trickle-bed H2O/CH4-Ar/g -Al2O3 system was made using the stimulus-response technique, with the gas phase as a reference. Methane was used as a tracer and injected into the argon feed and the concentration vs time profiles were obtained at the entrance and exit of the bed, which were maintained at 298K and 1.013 10(5 Pa. A mathematical model for the tracer was developed to estimate the axial dispersion overall gas-liquid mass transfer and liquid-solid mass transfer coefficients. Experimental and theoretical results were compared and shown to be in good agreement. The model was validated by two additional experiments, and the values of the coefficients obtained above were confirmed.

  16. The ability to create NTD silicon technology in the IRT-T reactor in a horizontal experimental channel with one-side access

    Science.gov (United States)

    Varlachev, V. A.; Golovatsky, A. V.; Emets, E. G.; Butko, Ya A.

    2016-06-01

    The article shows the ability of creation of neutron transmutation doping (NTD) of monocrystalline silicon technology in the reactor's channel, which has a one-side access. In the article a distribution of thermal neutron flux through the length of channel and it's radius, neutron spectrum were obtained which confirmed that horizontal experimental channel HEC-1 is suitable for NTD.

  17. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 1: Influence of operating conditions

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint Annala

  18. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  19. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  20. Experimental determination of thermal contact conductance between pressure and calandria tubes of Indian pressurised heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dureja, A.K., E-mail: akdureja@barc.gov.in [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Pawaskar, D.N.; Seshu, P. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Sinha, S.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Sinha, R.K. [Department of Atomic Energy, OYC, Near Gateway of India, Mumbai (India)

    2015-04-01

    Highlights: • We established an experimental facility to measure thermal contact conductance between disc shaped specimens. • We measured thermal contact conductance between Zr-2.5Nb alloy pressure tube (PT) material and Zr-4 calandria tube (CT) material. • We concluded that thermal contact conductance is a linear function of contact pressure for interface of PT and CT up to 10 MPa contact pressure. • We concluded that thermal contact conductance is a weak function of interface temperature. - Abstract: Thermal contact conductance (TCC) is one of the most important parameters in determining the temperature distribution in contacting structures. Thermal contact conductance between the contacting structures depends on the mechanical properties of underlying materials, thermo-physical properties of the interstitial fluid and surface condition of the structures coming in contact. During a postulated accident scenario of loss of coolant with coincident loss of emergency core cooling system in a tube type heavy water nuclear reactor, the pressure tube is expected to sag/balloon and come in contact with outer cooler calandria tube to dissipate away the heat generated to the moderator. The amount of heat thus transferred is a function of thermal contact conductance and the nature of contact between the two tubes. An experimental facility was designed, fabricated and commissioned to measure thermal contact conductance between pressure tube and calandria tube specimens. Experiments were conducted on disc shaped specimens under axial contact pressure in between mandrels. Experimental results of TCC and a linear correlation as a function of contact pressure have been reported in this paper.

  1. Experimental simulation of fragmentation and stratification of core debris on the core catcher of a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Dipin S.; Vignesh, R. [Indian Institute of Technology, Chennai, Tamil Nadu (India); Sudha, A. Jasmin, E-mail: jasmin@igcar.gov.in [Safety Engineering Division, Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Pushpavanam, S.; Sundararajan, T. [Indian Institute of Technology, Chennai, Tamil Nadu (India); Nashine, B.K.; Selvaraj, P. [Safety Engineering Division, Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2016-05-15

    Highlights: • Fragmentation of two simultaneous metals jets in a bulk coolant analysed. • Particle size from experiments compared with theoretical analysis. • Jet breakup modes explained using dimensionless numbers. • Settling aspects of aluminium and lead debris on collector plate studied. • Results analysed in light of core debris settling on core catcher in a FBR. - Abstract: The complex and coupled phenomena of two simultaneous molten metal jets fragmenting inside a quiescent liquid pool and settling on a collector plate are experimentally analysed in the context of safety analysis of a fast breeder reactor (FBR) in the post accident heat removal phase. Following a hypothetical core melt down accident in a FBR, a major portion of molten nuclear fuel and clad/structural material which are collectively termed as ‘corium’ undergoes fragmentation in the bulk coolant sodium in the lower plenum of the reactor main vessel and settles on the core catcher plate. The coolability of this decay heat generating debris bed is dependent on the particle size distribution and its layering i.e., stratification. Experiments have been conducted with two immiscible molten metals of different densities poured inside a coolant medium to understand their fragmentation behaviour and to assess the possibility of formation of a stratified debris bed. Molten aluminium and lead have been used as simulants in place of molten stainless steel and nuclear fuel to facilitate easy handling. This paper summarizes the major findings from these experiments. The fragmentation of the two molten metals are explained in the light of relevant dimensionless numbers such as Reynolds number and Weber Number. The mass median diameter of the fragmented debris is predicted from nonlinear stability analysis of slender jets for lead jet and using Rayleigh's classical theory of jet breakup for aluminium jet. The agreement of the predicted values with the experimental results is good. These

  2. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  3. Analysis of radiological accident emissions of a lead-cooled experimental reactor. LEADER Project; Analisis radiologico de las emisiones en caso de accidente de un reactor experimental refrigerado por plomo. Proyecto LEADER

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Salcedo, F.; Cortes Martin, A.

    2013-07-01

    The LEADER project develops a conceptual level industrial size reactor cooled lead and a demonstration plant of this technology. The project objectives are to define the characteristics and design to installation scale reactor using available technologies and short-term components and assess safety aspects conducting a preliminary analysis of the impact of the facility.

  4. Experimental studies of local coolant hydrodynamics using a scaled model of cassette-type fuel assembly of a KLT-40S reactor

    Science.gov (United States)

    Dmitriev, S. M.; Barinov, A. A.; Varentsov, A. V.; Doronkov, D. V.; Solntsev, D. N.; Khrobostov, A. E.

    2016-08-01

    The results of experimental studies of local hydrodynamic and mass exchange characteristics of the coolant flow behind the spacer grid in the fuel assembly of a KLT-40S reactor are presented. The experiments were aimed at the investigation of representative domains of the fuel assembly with three tracer injection regions. The studies were performed at the aerodynamic test facility using the tracer gas diffusion method. According to the theory of hydrodynamic similarity, the obtained experimental results can be transferred to full-scale coolant flow conditions in standard fuel assemblies. The analysis of the tracer concentration propagation made it possible to determine in detail the flow pattern and find the main regularities and specific features of the coolant flow behind the plate spacer grid of KLT-40S fuel assembly. The hydraulic resistance coefficient of the spacer grid was experimentally determined. The coefficients of mass exchange between cells for representative cells of the displacer region in the KLT-40S fuel assembly were calculated for the first time; these results are presented in the form of the "mixing matrix." The results of studies of local coolant flow hydrodynamics in the KLT-40S fuel assembly are used at AO Afrikantov OKBM for estimation of thermotechnical reliability of active cores for reactors of floating nuclear power stations. The experimental data on hydrodynamic and mass exchange characteristics are included in the database for verification of CDF codes and detailed cell-wise calculation of the active core for KLT-40S reactor installation. The results of these studies can be used at FSUE RFNC-VNIIEF for testing and verification of domestic three-dimensional hydrodynamic CFD codes ("Logos") that are applied for substantiation of newly designed reactor installations. Practical recommendations on the application of the obtained results in thermohydraulic calculations of the active core for the KLT-40S reactor will be worked out. Proposals

  5. Contribution to modeling of the reflooding of a severely damaged reactor core using PRELUDE experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Bachrata, A.; Fichot, F.; Repetto, G. [Institut de Radioprotection et de Surete Nucleaire IRSN, Cadarache (France); Quintard, M. [Universite de Toulouse, INPT, UPS, IMFT Institut de Mecanique des Fluides de Toulouse, Allee Camille Soula, F-31400 Toulouse (France); CNRS, IMFT, F-31400 Toulouse (France); Fleurot, J. [Institut de Radioprotection et de Surete Nucleaire IRSN, Cadarache (France)

    2012-07-01

    In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. The reflooding (injection of water into core) may be applied if the availability of safety injection is recovered during accident. If the injection becomes available only in the late phase of accident, water will enter a core configuration that will differ significantly from original rod-bundle geometry. Any attempt to inject water after significant core degradation can lead to further fragmentation of core material. The fragmentation of fuel rods may result in the formation of a 'debris bed'. The typical particle size in a debris bed might reach few millimeters (characteristic length-scale: 1 to 5 mm), i.e., a high permeability porous medium. The French 'Institut de Radioprotection et de Surete Nucleaire' is developing experimental programs (PEARL and PRELUDE) and simulation tools (ICARE-CATHARE and ASTEC) to study and optimize the severe accident management strategy and to assess the probabilities to stop the progress of in-vessel core degradation. It is shown that the quench front exhibits either a ID behaviour or a 2D one, depending on injection rate or bed characteristics. The PRELUDE experiment covers a rather large range of variation of parameters, for which the developed model appears to be quite predictive. (authors)

  6. Experimental study of lactose hydrolysis and separation in cstr-uf membrane reactor

    Directory of Open Access Journals (Sweden)

    M. Namvar-Mahboub

    2012-09-01

    Full Text Available In this study, the effect of processing conditions on the performance of continuous stirred tank -ultrafiltration (CSTR-UF in dead - end mode was investigated. An UF membrane with a molecular weight cutoff of 3 kDa made of regenerated cellulose material was used to separate enzyme from products. The effect of operating pressure ranging between 2 and 5 bar and time on the performance of the CSTR-UF system was studied. The experiments were performed with a 0.139 molar aqueous solution of lactose as feed. According to the experimental data, the lactose concentration in the permeate decreased with time due to concentration polarization and hydrolysis. It was found that the rejection factor of lactose increases from 33 to 77% with time from 5 to 85 min. Permeation flux of the membrane was evaluated in terms of pure water flux (PWF and lactose aqueous solution. Results showed that a high operating pressure led to a high permeation flux for both mentioned cases. Also, adding lactose and enzyme to pure water caused a reduction of the permeation flux due to concentration polarization.

  7. Comparison and validation of HEU and LEU modeling results to HEU experimental benchmark data for the Massachusetts Institute of Technology MITR reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Newton, T. H.; Wilson, E. H; Bergeron, A.; Horelik, N.; Stevens, J. (Nuclear Engineering Division); (MIT Nuclear Reactor Lab.)

    2011-03-02

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Towards this goal, comparisons of MCNP5 Monte Carlo neutronic modeling results for HEU and LEU cores have been performed. Validation of the model has been based upon comparison to HEU experimental benchmark data for the MITR-II. The objective of this work was to demonstrate a model which could represent the experimental HEU data, and therefore could provide a basis to demonstrate LEU core performance. This report presents an overview of MITR-II model geometry and material definitions which have been verified, and updated as required during the course of validation to represent the specifications of the MITR-II reactor. Results of calculations are presented for comparisons to historical HEU start-up data from 1975-1976, and to other experimental benchmark data available for the MITR-II Reactor through 2009. This report also presents results of steady state neutronic analysis of an all-fresh LEU fueled core. Where possible, HEU and LEU calculations were performed for conditions equivalent to HEU experiments, which serves as a starting point for safety analyses for conversion of MITR-II from the use of HEU

  8. High power 1 MeV neutral beam system and its application plan for the international tokamak experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R.S. [ITER Joint Central Team, Naka, Ibaraki (Japan)

    1997-03-01

    This paper describes the Neutral Beam Injection system which is presently being designed for the International Tokamak Experimental Reactor, ITER, in Europe Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D{sup 0} to the ITER plasma for a pulse length of >1000 s. Each injectors uses a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D{sup -}. This will be neutralized by collisions with D{sub 2} in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. ITER is scheduled to produce its first plasma at the beginning of 2008, and the planning of the R and D, construction and installation foresees the neutral injection system being available from the start of ITER operations. (author)

  9. Preparation of poly(MePEGCA-co-HDCA) nanoparticles with confined impinging jets reactor: experimental and modeling study.

    Science.gov (United States)

    Lince, Federica; Bolognesi, Sara; Marchisio, Daniele L; Stella, Barbara; Dosio, Franco; Barresi, Antonello A; Cattel, Luigi

    2011-06-01

    In this work, the biodegradable copolymer poly(methoxypolyethyleneglycolcyanoacrylate-co-hexadecylcyanoacrylate) is used to prepare nanoparticles via solvent displacement in a confined impinging jets reactor (CIJR). For comparison, nanoparticles constituted by the homopolymer counterpart are also investigated. The CIJR is a small passive mixer in which very fast turbulent mixing of the solvent (i.e., acetone and tetrahydrofuran) and of the antisolvent (i.e., water) solutions occurs under controlled conditions. The effect of the initial copolymer concentration, solvent type, antisolvent-to-solvent ratio, and mixing rate inside the mixer on the final nanoparticle size distribution, surface properties, and morphology is investigated from the experimental point of view. The effect of some of these parameters is studied by means of a computational fluid dynamics (CFD) model, capable of quantifying the mixing conditions inside the CIJR. Results show that the CIJR can be profitably used for producing nanoparticles with controlled characteristics, that there is a clear correlation between the mixing rate calculated by CFD and the mean nanoparticle size, and therefore that CFD can be used to design, optimize, and scale-up these processes.

  10. Preliminary analysis in support to the experimental activities on the mixing process in the pressurizer of a small modular reactor integrated primary system

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Samira R.V.; Lira, Carlos A.B.O.; Bezerra, Jair L.; Silva, Mario A.B.; Silva, Willdauany C.F., E-mail: samiraruana@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Lima, Fernando R.A., E-mail: falima@crcn.gov.br [Centro Regional de Ciencias Nucleares (CRCN/CNEN-NE), Recife, PE (Brazil); Otero, Maria E.M.; Hernandez, Carlos R.G., E-mail: mmontesi@instec.cu [Department of Nuclear Engineering, InSTEC/CUBA, Higher Institute of Technology and Applied Science, La Habana (Cuba)

    2015-07-01

    Nowadays, there is a renewed interest in the development of advanced/innovative small and medium sized modular reactors (SMRs). The SMRs are variants of the Generation IV systems and usually have attractive characteristics of simplicity, enhanced safety and require limited financial resources. The concept of the integrated primary system reactor (IPSR) is characterized by the inclusion of the entire primary system within a single pressure vessel, including the steam generator and pressurizer. The pressurizer is located within the reactor vessel top, this configuration involves changes on the techniques and is necessary investigate the boron mixing. The present work represents a contribution to the design of an experimental facility planned to provide data relevant for the mixing phenomena in the pressurizer of a compact modular reactor. In particular, in order to evaluate the boron concentration in the surge orifices to simulate the in-surge and out-surge in a facility, scaled 1:200, respect to the ¼ of the pressurizer. The facility behavior studied from one inlet and one outlet of the test section with represent one in-surge e one out-surge the pressurizer of a small modular reactor integrated primary system. (author)

  11. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail: emaprel@ipen.br, E-mail: wmtorres@ipen.br, E-mail: acprado@ipen.br, E-mail: umbehaun@ipen.br, E-mail: rlfranca@ipen.br, E-mail: samuelcs@ipen.br, E-mail: lamacedo@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)

    2015-07-01

    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  12. Time programmed feed of semi-batch reactors with non-linear radical copolymerizations: an experimental study of the system styrene+divinylbenzene using SEC/MALLS

    OpenAIRE

    Gonçalves, Miguel; Dias, Rolando; Costa, Mário Rui

    2007-01-01

    The radical crosslinking copolymerization of mono and divinyl monomers was experimentally studied with a 2.5 dm3 semi-batch reactor using styrene + divinylbenzene as a model system. The analysis of products was carried out by SEC with a MALLS detector. The influence of the feed policy of divinylbenzene on the time evolution of the copolymer molecular weights and z-average mean square radius of gyration was assessed. A detailed kinetic model, in the absence of intramolecular reactions but taki...

  13. Chinese Experimental Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    1.1 The Dynamic Parameters of CEFR Zhao Shaozhi Li Zehua Yi Xiaoyi Zhang Yushan The dynamic parameters of CEFR are calculated with the 2DB and PERT-V-E2 code, and the library of 6-group cross section with 1DX code. The parameters cover the reactivity worth for each assembly in the core and reflector, doppler coefficient for dry and wet core, geometry coefficient, isothermal temperature coefficient and power coefficient, etc.

  14. Chinese Experimental Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    1ChineseExperimentalFastReactor1.1ChineseExperimentalFastReactorXuMi1.1.1DesignProgressBasedonthepreparationofdesigncomputerc...

  15. Study of a Multi-phase Hybrid Heat Exchanger-Reaction (HEX Reactor): Part 1 - Experimental Characterization

    Science.gov (United States)

    2014-01-01

    scalability, and mixing capability compared to more traditional shell - in- tube heat exchangers or stirred tank batch reactors. This study explores the... tube heat exchangers or stirred tank batch reactors. This study explores the hydrodynamic behavior of gas-evolving reacting flows in chevron plate heat ...thermal performance and ease of maintenance. PHEs can be easily disassembled for inspection andmaintenance (in con- trast, shell -and- tube heat

  16. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  17. Dr Robert Aymar, Director of the International Thermonuclear Experimental Reactor (ITER), was nominated to succeed Professor Luciano Maiani as CERN's Director General, to take office on 1 January 2004.

    CERN Multimedia

    2002-01-01

    Dr Robert Aymar, Director of the International Thermonuclear Experimental Reactor (ITER), was nominated to succeed Professor Luciano Maiani as CERN's Director General, to take office on 1 January 2004.

  18. Experimental studies and mathematical modeling of an up-flow biofilm reactor treating mustard oil rich wastewater.

    Science.gov (United States)

    Chakraborty, Chandrima; Chowdhury, Ranjana; Bhattacharya, Pinaki

    2011-05-01

    Bioremediation of lipid-rich model wastewater was investigated in a packed bed biofilm reactor (anaerobic filter). A detailed study was conducted about the influence of fatty acid concentration on biomethanation of the high-fat liquid effluent of edible oil refineries. The biochemical methane potential (BMP) of the liquid waste was reported and maximum cumulative methane production at the exit of the reactor is estimated to be 785 ml CH(4) (STP)/(gVSS added). The effects of hydraulic retention time (HRT), organic loading rate (OLR) and bed porosity on the cold gas efficiency or energy efficiency of the bioconversion process were also investigated. Results revealed that the maximum cold gas efficiency of the process is 42% when the total organic load is 2.1 g COD/l at HRT of 3.33 days. Classical substrate uninhibited Monod model is used to generate the differential system equations which can predict the reactor behavior satisfactorily.

  19. Experimental investigations of thermal-hydraulic processes arising during operation of the passive safety systems used in new projects of nuclear power plants equipped with VVER reactors

    Science.gov (United States)

    Morozov, A. V.; Remizov, O. V.; Kalyakin, D. S.

    2014-05-01

    The results obtained from experimental investigations into thermal-hydraulic processes that take place during operation of the passive safety systems used in new-generation reactor plants constructed on the basis of VVER technology are presented. The experiments were carried out on the model rigs available at the Leipunskii Institute for Physics and Power Engineering. The processes through which interaction occurs between the opposite flows of saturated steam and cold water moving in the vertical steam line of the additional system for passively flooding the core from the second-stage hydro accumulators are studied. The specific features pertinent to undeveloped boiling of liquid on a single horizontal tube heated by steam and steam-gas mixture that is typical for of the condensing operating mode of a VVER reactor steam generator are investigated.

  20. JHR Project: a future Material Testing Reactor working as an International user Facility: The key-role of instrumentation in support to the development of modern experimental capacity

    Energy Technology Data Exchange (ETDEWEB)

    Bignan, G. [CEA, DEN, DER, JHR user Facility Interface Manager' , Cadarache, F-13108 St-Paul-Lez-Durance (France); Gonnier, C. [CEA, DEN, DER, SRJH Jules Horowitz Reactor Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Maugard, B. [CEA, DEN, DER, Reactor Department Studies, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and D support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under

  1. An experimental study of the selective oxidation of ethene in a wall cooled tubular packed bed reactor

    NARCIS (Netherlands)

    Borman, P.C.; Westerterp, K.R.

    1992-01-01

    The selective oxidation of ethene over a silver on ¿-alumina catalyst was studied in a wall cooled tubular reactor. Temperatures were measured inside the bed at different axial and radical positions as well as the overall conversion and selectivity. Locally measured temperatures vary after repacking

  2. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-16

    Report documents design of bench-scale experiments for evaluating capability and sensitivity of selected nondestructive measurement technologies for early detection of degradation modes of interest for passive components condition in advanced reactors. Includes requirements for deploying instrumentation for in-situ monitoring at ongoing materials testing sites.

  3. China Experimental Fast Reactor(CEFR)——Criterion of Criticality for Reactor With External Neutron Source

    Institute of Scientific and Technical Information of China (English)

    ZHAOYu-sen

    2003-01-01

    There is a neutron source with 109 s-1 neutrons in core of CEFR during start up test and operation of CEFR. For judging the criticality of reactor with external neutron source and near criticality, it is important that the neutron level changes in core with time must be understood after introducing positive reactivity to core with external neutron source.

  4. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...

  5. Development of safety analysis codes and experimental validation for a very high temperature gas-cooled reactor Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2006-03-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. Research Objectives As described above, a pipe break may lead to significant fuel damage and fission product release in the VHTR. The objectives of this Korean/United States collaboration were to develop and validate advanced computational methods for VHTR safety analysis. The methods that have been developed are now

  6. Experimental measurement of the refrigerant temperature of the TRIGA Mark III reactor of the ININ; Medicion experimental de la temperatura del refrigerante del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo S, L.F.; Alonso V, G

    1991-08-15

    With the object of knowing the axial temperature profile of the refrigerant in the core of the TRIGA Mark III reactor of the ININ, the temperatures of this, at the enter, in the center and the exit of the core were measured, in the positions: west 2, north 2 and south 1. This was made by means of the thermo pars introduction mounted in aluminum guides, connected to a measurer of digital temperature, whose resolution is of {+-} 0.1 C. The measurements showed a bigger heating of the refrigerant in the superior half of the core, that which suggests that the axial profile of temperature of the reactor is not symmetrical with respect to the center or that those temperature measurements in the center are not correct. (Author)

  7. Experimental investigations on turbulent mixing of hot upward flow and cold downward flow inside a chimney model of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Samiran, E-mail: samiran_sengupta@yahoo.co.in [Research Reactor Design & Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ghosh, Aniruddha [Research Reactor Design & Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sengupta, C. [Research Reactor Maintenance Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vijayan, P.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhattacharya, S. [Research Reactor Design & Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sharma, R.C. [Reactor Group, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-02-15

    Highlights: • Simulated mixing of hot upward and cold downward flows in a chimney of a reactor. • Experiments in chimney model (2:9 scale) at Reynolds number (Re)—1.5 to 4.5 × 10{sup 5}. • Hot upward flow comes out of the chimney when bypass flow ratio (R) is zero. • Increase in ratio (R) reduces jet height, vortex spread height and temperature front height. • Effects of Re, chimney height and temperature differential are not significant. - Abstract: Experiments were conducted to study the turbulent mixing of hot upward flow and cold downward flow inside a scaled down model of chimney structure of a pool type nuclear research reactor. Open pool type nuclear reactors often use this type of chimney structures to prevent mixing of radioactive core outlet water directly into the reactor pool so that radiation field at the reactor pool top can be kept to a lower limit. The chimney structure is designed to facilitate guiding of the radioactive water towards the two outlet nozzles of the chimney and simultaneously allows drawing water from the reactor pool through the chimney top opening. The present work aims at studying flow mixing behaviour of hot and cold water inside a 2/9th scaled down model of the chimney structure experimentally. The ratio between the cold downward flow and the hot upward flow is varied between 0 and 0.15 to predict the extent of suppression of the hot upward flow within the chimney region for various bypass flow ratios. The Reynolds number of the hot upward flow considered in the experiment is about 1.5 × 10{sup 5} which corresponds to a flow rate of about 500 l min{sup −1}. The upward jet height and the temperature distribution were predicted from the experiment. It was observed that increase in bypass flow ratio reduces the upward jet height of hot water. Experiments were also carried out by increasing the flow rate to 1000 and 1500 l min{sup −1} corresponding to Reynolds numbers of 3 × 10{sup 5} and 4.5 × 10{sup 5

  8. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: Modeling and experimental comparison

    DEFF Research Database (Denmark)

    Wang, Rongchang; Terada, Akihiko; Lackner, Susanne

    2009-01-01

    A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O-2, NH3) co......-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (K-i) and maximum specific growth rate...... results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO

  9. Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach.

    Science.gov (United States)

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-03-09

    In this investigation, a new bench-scale electrocoagulation reactor (FCER) has been applied for drinking water denitrification. FCER utilises the concepts of flow column to mix and aerate the water. The water being treated flows through the perforated aluminium disks electrodes, thereby efficiently mixing and aerating the water. As a result, FCER reduces the need for external stirring and aerating devices, which until now have been widely used in the electrocoagulation reactors. Therefore, FCER could be a promising cost-effective alternative to the traditional lab-scale EC reactors. A comprehensive study has been commenced to investigate the performance of the new reactor. This includes the application of FCER to remove nitrate from drinking water. Estimation of the produced amount of H2 gas and the yieldable energy from it, an estimation of its preliminary operating cost, and a SEM (scanning electron microscope) investigation of the influence of the EC process on the morphology of the surface of electrodes. Additionally, an empirical model was developed to reproduce the nitrate removal performance of the FCER. The results obtained indicated that the FCER reduced the nitrate concentration from 100 to 15 mg/L (World Health Organization limitations for infants) after 55 min of electrolysing at initial pH of 7, GBE of 5 mm, CD of 2 mA/cm(2), and at operating cost of 0.455 US $/m(3). Additionally, it was found that FCER emits H2 gas enough to generate a power of 1.36 kW/m(3). Statistically, the relationship between the operating parameters and nitrate removal could be modelled with R(2) of 0.848. The obtained SEM images showed a large number dents on anode's surface due to the production of aluminium hydroxides.

  10. Idaho National Laboratory Experimental Program to Measure the Flow Phenomena in a Scaled Model of a Prismatic Gas-Cooled Reactor Lower Plenum for Validation of CFD Codes

    Energy Technology Data Exchange (ETDEWEB)

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2008-09-01

    The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a prismatic gas-cooled reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A description of the scaling analysis, experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that will be presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the mineral oil working fluid. The benefit of the MIR technique is that it permits high-quality measurements to be obtained without locating intrusive transducers that disturb the flow field and without distortion of the optical paths. An advantage of the INL MIR system is its large size which allows improved spatial and temporal resolution compared to similar facilities at smaller scales. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements

  11. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results.

    Science.gov (United States)

    Héquet, Valérie; Batault, Frédéric; Raillard, Cécile; Thévenet, Frédéric; Le Coq, Laurence; Dumont, Éric

    2017-03-06

    The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m³ and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10(-3) m³. The PCO device was composed of a pleated photocatalytic filter (1100 cm²) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm(-2); (ii) air velocity v from 0.2 to 1.9 m·s(-1); and (iii) initial toluene concentration C₀ (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m³·h(-1), were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.

  12. Experimental study on buoyancy-driven exchange flows through breaches of a tokamak vacuum vessel in a fusion reactor under the loss-of-vacuum-event conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Kazuyuki; Tomoaki, Kunugi; Ogawa, Masurou; Seki, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1997-02-01

    As one of thermofluid safety studies in the International Thermonuclear Experimental Reactor, buoyancy-driven exchange flow behavior through breaches of a vacuum vessel (VV) has been investigated quantitatively by using a preliminary loss-of-vacuum-event (LOVA) apparatus that simulated the tokamak VV of a fusion reactor with a small-scaled model. To carry out the present experiments under the atmospheric pressure condition, helium gas and air were provided as the working fluids. The inside of the VV was initially filled with helium gas and the outside was atmosphere. The breaches on the VV under the LOVA condition were simulated by opening six simulated breaches to which were set the different positions on the VV. When the buoyancy-driven exchange flow through the breach occurred, helium gas went out from the inside of the VV through the breach to the outside and air flowed into the inside of the VV through the breach from the outside. The exchange rate in the VV between helium gas and air was calculated from the measured weight change of the VV with time since the experiment has started. experimental parameters were breach position, breach number, breach length, breach size, and breach combination. The present study clarifies that the relation between the exchange rate and the breach position of the VV depended on the magnitude of the potential energy from the ground level to the breach position, and then, the exchange rate decreased as the breach length increased and as the breach size decreased.

  13. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system.

    Science.gov (United States)

    Kuşçu, Özlem Selçuk; Sponza, Delia Teresa

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  14. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  15. Experimental investigations of heat transfer and temperature fields in models simulating fuel assemblies used in the core of a nuclear reactor with a liquid heavy-metal coolant

    Science.gov (United States)

    Belyaev, I. A.; Genin, L. G.; Krylov, S. G.; Novikov, A. O.; Razuvanov, N. G.; Sviridov, V. G.

    2015-09-01

    The aim of this experimental investigation is to obtain information on the temperature fields and heat transfer coefficients during flow of liquid-metal coolant in models simulating an elementary cell in the core of a liquid heavy metal cooled fast-neutron reactor. Two design versions for spacing fuel rods in the reactor core were considered. In the first version, the fuel rods were spaced apart from one another using helical wire wound on the fuel rod external surface, and in the second version spacer grids were used for the same purpose. The experiments were carried out on the mercury loop available at the Moscow Power Engineering Institute National Research University's Chair of Engineering Thermal Physics. Two experimental sections simulating an elementary cell for each of the fuel rod spacing versions were fabricated. The temperature fields were investigated using a dedicated hinged probe that allows temperature to be measured at any point of the studied channel cross section. The heat-transfer coefficients were determined using the wall temperature values obtained at the moment when the probe thermocouple tail end touched the channel wall. Such method of determining the wall temperature makes it possible to alleviate errors that are unavoidable in case of measuring the wall temperature using thermocouples placed in slots milled in the wall. In carrying out the experiments, an automated system of scientific research was applied, which allows a large body of data to be obtained within a short period of time. The experimental investigations in the first test section were carried out at Re = 8700, and in the second one, at five values of Reynolds number. Information about temperature fields was obtained by statistically processing the array of sampled probe thermocouple indications at 300 points in the experimental channel cross section. Reach material has been obtained for verifying the codes used for calculating velocity and temperature fields in channels with

  16. Preliminary Experimental Results using a Steady State ICP Flow Reactor to Investigate Condensation Chemistry for Nuclear Forensics

    Science.gov (United States)

    Koroglu, Batikan; Armstrong, Mike; Cappelli, Mark; Chernov, Alex; Crowhurst, Jonathan; Mehl, Marco; Radousky, Harry; Rose, Timothy; Zaug, Joe

    2016-10-01

    The high temperature chemistry of rapidly condensing matter is under investigation using a steady state inductively coupled plasma (ICP) flow reactor. The objective is to study chemical processes on cooling time scales similar to that of a low yield nuclear fireball. The reactor has a nested set of gas flow rings that provide flexibility in the control of hydrodynamic conditions and mixing of chemical components. Initial tests were run using two different aqueous solutions (ferric nitrate and uranyl nitrate). Chemical reactants passing through the plasma torch undergo non-linear cooling from 10,000K to 1,000K on time scales of <0.1 to 0.5s depending on flow conditions. Optical spectroscopy measurements were taken at different positions along the flow axis to observe the in situ spatial and temporal evolution of chemical species at different temperatures. The current data offer insights into the changes in oxide chemistry as a function of oxygen fugacity. The time resolved measurements will also serve as a validation target for the development of kinetic models that will be used to describe chemical fractionation during nuclear fireball condensation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. New nanosized catalytic membrane reactors for hydrogenation with stored hydrogen: Prerequisites and the experimental basis for their creation

    Science.gov (United States)

    Soldatov, A. P.; Tsodikov, M. V.; Parenago, O. P.; Teplyakov, V. V.

    2010-12-01

    The prerequisites and prospects for creating a new generation of nanosized membrane reactors are considered. For the first time, hydrogenation reactions take place in ceramic membrane pores with hydrogen adsorbed beforehand in mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) formed on the internal pore surface. It is shown for Trumem microfiltration membranes with D avg ˜130 nm that oxidation reactions of CO on a Cu0.03Ti0.97O2 ± δ catalyst and the oxidative conversion of methane into synthesis gas and light hydrocarbons on La + Ce/MgO are considerably enhanced when they occur in membranes. Regularities of hydrogen adsorption, storage, and desorption in nanosized membrane reactors are investigated through OCNTG formation in Trumem ultrafiltration membrane pores with D avg = 50 and 90 nm and their saturation with hydrogen at a pressure of 10-13 MPa. It is shown that the amount of adsorbed hydrogen reaches 14.0% of OCNTG mass. Using thermogravimetric analysis in combination with mass-spectrometric analysis, hydrogen adsorption in OCNTG is first determined and its desorption is found to proceed at atmospheric pressure at a temperature of ˜175°C. It is shown that adsorbed hydrogen affects the transport properties of the membranes, reducing their efficiency with respect to liquids by 4-26 times. This is indirect confirmation of its high activity, due apparently the dissociative mechanism of adsorption.

  18. Storage of plugs and experimental devices from reactors; Stockage des bouchons et dispositifs experimentaux en provenance des reacteurs (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Cerre, P.; Mestre, E. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - Within the general programme of storage and treatment of radioactive waste produced by the various operations carried out in an atomic center, it is useful to consider separately the problem of certain waste from reactors, which, because of its size and physical nature, has to be stored with a view to being later treated and finally evacuated. The solution which we propose for this storage problem is presented in this paper. (authors) [French] - Dans le cadre du stockage et du conditionnement des dechets radioactifs provenant des diverses manipulations effectuees dans un centre atomique, il y a lieu de considerer a part certains dechets des reacteurs qui, par leur dimension et leur nature physique doivent etre stockes en vue de leur reprise ulterieure pour un conditionnement et une evacuation definitifs. La solution que nous avons apportee a ce stockage fait l'objet de l'expose qui suit. (auteurs)

  19. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  20. Development of experimental apparatus for evaluating corrosion resistance of cladding materials applied for advanced power reactor. 1

    Energy Technology Data Exchange (ETDEWEB)

    Inohara, Yasuto; Ioka, Ikuo; Fukaya, Kiyoshi; Tachibana, Katsumi; Suzuki, Tomio; Kiuchi, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kuroda, Yuji; Miyamoto, Satoshi [Japan Atomic Power Co., Tokyo (Japan)

    2001-03-01

    On the development of cladding materials for advanced power reactors, it is important to clarify long performance and to control the compatibility to high temperature water at heat conducting surfaces under heavy irradiation. On the present study, the high temperature water loop with an autoclave was made for examining the corrosion behavior up to the super critical water range and for developing the simulation testing technique under irradiation in the hot cell. The loop is applicable to immersion tests in the temperature and pressure ranges up to 450degC and 25 MPa that are covered the surface temperature range of fuel claddings. One of the characteristics of this apparatus is a pair of sapphire windows of autoclave for in-situ observations, and a phase transition from water to super critical water conditions was clearly verified through these windows. In this apparatus, it is possible to control the temperature, pressure and Dissolved Oxygen (DO) within a fluctuations of few % on three phases, namely, water, steam and super critical water. (author)

  1. Experimental Investigation of the Root Cause Mechanism and Effectiveness of Mitigating Actions for Axial Offset Anomaly in Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Said Abdel-Khalik

    2005-07-02

    Axial offset anomaly (AOA) in pressurized water reactors refers to the presence of a significantly larger measured negative axial offset deviation than predicted by core design calculations. The neutron flux depression in the upper half of high-power rods experiencing significant subcooled boiling is believed to be caused by the concentration of boron species within the crud layer formed on the cladding surface. Recent investigations of the root-cause mechanism for AOA [1,2] suggest that boron build-up on the fuel is caused by precipitation of lithium metaborate (LiBO2) within the crud in regions of subcooled boiling. Indirect evidence in support of this hypothesis was inferred from operating experience at Callaway, where lithium return and hide-out were, respectively, observed following power reductions and power increases when AOA was present. However, direct evidence of lithium metaborate precipitation within the crud has, heretofore, not been shown because of its retrograde solubility. To this end, this investigation has been undertaken in order to directly verify or refute the proposed root-cause mechanism of AOA, and examine the effectiveness of possible mitigating actions to limit its impact in high power PWR cores.

  2. Experimental study of the effect of void reactivity feedback on the behavior of the scaled model boiling water reactor

    Science.gov (United States)

    Meftah, Khaled

    A Scaled Model Boiling Water Reactor (SMBWR) model uses low pressure (i.e., 0.095 MPa) water in a heated channel 0.5 meters in length with four electrically heated fuel simulator rods. The axial void profile in the channel is measured using conductivity probes and the power to the heaters is modulated according to the void fraction to simulate void reactivity feedback. The steam from the heated channel is passed through a valve that reduces the pressure to 0.012 MPa where the steam is condensed in conditions similar to those found in a conventional BWR condenser. The feedwater flow rate, heater power, and instrumentation in the facility are controlled and monitored through a Quadra 950 computer running LabVIEW software. The void fraction signals are analyzed to identify the different flow regimes and determine the vapor velocity in the SMBWR channel using features of the probability density function and power spectral density. The void coefficient of reactivity is modified in the BWR scale model through the LabVIEW interface and the effect on the behavior of the channel is directly observed. The system response is reported for abrupt stepwise pressure changes and abrupt stepwise power changes. The response is typical of that expected for a BWR. The void reactivity feedback effect is also examined by analyzing the frequency response of the channel void fraction at steady state.

  3. Development and verification test of integral reactor major components - Development of MCP impeller design, performance prediction code and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung Kyoon; Oh, Woo Hyoung; Song, Jae Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    The present study is aimed at developing a computational code for design and performance prediction of an axial-flow pump. The proposed performance prediction method is tested against a model axial-flow pump streamline curvature method. The preliminary design is made by using the ideal velocity triangles at inlet and exit and the three dimensional blade shape is calculated by employing the free vortex design method. Then the detailed blading design is carried out by using experimental database of double circular arc cambered hydrofoils. To computationally determine the design incidence, deviation, blade camber, solidity and stagger angle, a number of correlation equations are developed form the experimental database and a theorical formula for the lift coefficient is adopted. A total of 8 equations are solved iteratively using an under-relaxation factor. An experimental measurement is conducted under a non-cavitating condition to obtain the off-design performance curve and also a cavitation test is carried out by reducing the suction pressure. The experimental results are very satisfactorily compared with the predictions by the streamline curvature method. 28 refs., 26 figs., 11 tabs. (Author)

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  5. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  6. Local Neutron Flux Distribution Measurements by Wire-Dosimetry in the AMMON Experimental Program in the EOLE Reactor

    Directory of Open Access Journals (Sweden)

    Gruel A.

    2016-01-01

    Full Text Available Dosimetry measurements were carried out during the AMMON experimental program, in the EOLE facility. Al-0.1 wt% Au wires were positioned along curved fuel plates of JHR-type assemblies to investigate the azimuthal and axial gold capture rate profiles, directly linked to the thermal and epithermal flux. After irradiation, wires were cut into small segments (a few mm, and the gold capture rate of each part was measured by gamma spectrometry on the MADERE platform. This paper presents results in the “hafnium” configuration, and more specifically the azimuthal flux profile characterization. The final uncertainty on each measured wire lies below 1% (at 2 standard deviations. Experimental profiles are in a good agreement against Monte Carlo calculations, and the 4% capture rate increase at the plate edge is well observed. The flux dissymmetry due to assembly position in the core is also measured, and shows a 10% discrepancy between the two edges of the plate.

  7. REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Daniel S. Wendt

    2007-11-01

    The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

  8. REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD-BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Daniel S. Wendt; Steven P. Antal; Michael Z. Podowski

    2007-11-01

    The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

  9. Experimental evaluation and modeling of liquid jet penetration to estimate droplet size in a three-phase riser reactor

    Institute of Scientific and Technical Information of China (English)

    Ali Akbar Jamali; Shahrokh Shahhosseini; Yaghoub Behjat

    2016-01-01

    In this work, the effects of injecting an evaporating liquid jet into solid–gas flow are experimentally investigated. A new model (SHED model) and a supplementary model (spray model) have also been proposed to investigate some flow-field characteristics in three-phase fluidized bed with the mean relative error 4.3%between model and measured results. Some experiments were conducted to study the influences of flow-field parameters such as liquid volumetric flow rate, injection velocity, jet angle and gas superficial velocity as well as solid mass flux on the jet penetration depth (JPD). In addition, independent variables were experimentally employed to propose two empirical correlations for JPD by using multiple regression method and spray cone angle (SCA) by using dimensional analysis technique. The mean relative errors between the JPD and SCA correlations versus ex-perimental data were 7.5%and 3.9%, respectively. In addition, in order to identify the variable effect, a parametric study was carried out. Applying the proposed model can avoid direct use of expensive devices to measure JPD and to predict droplet size.

  10. Preliminary experimental results using the thermal-hydraulic integral test facility (VISTA) for the pilot plant of the system integrated modular advanced reactor, SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; Pak, Hyun Sik; Cho, Seok; Pak, Choon Kyung; Lee, Sung Jae; Song, Chul Hwa; Chung, Moon Ki [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Preliminary experimental tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual heat removal (PRHR) systems. Its scaled ratio with respect to the SMART-P is 1/1 in height and 1/96 in volume and heater power. So far, several steady states and transient tests have been carried out to verify the overall thermal hydraulic primary and secondary characteristics in a range of 10% to 100% power operation. As results of preliminary results, the steady state conditions were found to coincide with the expected design values of the SMART-P. But the major thermal hydraulic parameters are greatly affected by the initial water level and the nitrogen pressure in the reactor upper annular cavity. In the PRHR transient tests, the steam inlet temperature of the PRHR system is found to drop suddenly from a superheated condition to a saturated condition at the end period of PRHR operation.

  11. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    Science.gov (United States)

    Lemaire, R.; Menanteau, S.

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>105 K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  12. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, R., E-mail: romain.lemaire@mines-douai.fr; Menanteau, S. [Mines Douai, EI, F-59508 Douai (France)

    2016-01-15

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10{sup 5} K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  13. Analysis and interpretation of residence time distribution experimental curves in FM01-LC reactor using axial dispersion and plug dispersion exchange models with closed-closed boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, Fernando F. [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340, Mexico, D.F. (Mexico); Cruz-Diaz, Martin R., E-mail: mcruz@tese.edu.m [Division de Quimica y Bioquimica, Tecnologico de Estudios Superiores de Ecatepec, Av. Tecnologico S/N Esq. Av. Hank Gonzalez, Valle de Anahuac, C.P. 55120, Ecatepec, Edo. de Mex (Mexico); Rivero, Eligio P. [Departamento de Ingenieria y Tecnologia, Universidad Nacional Autonoma de Mexico, Facultad de Estudios Superiores Cuautitlan, Av. Primero de Mayo, Cuautitlan Izcalli, C.P. 54740, Edo. de Mex (Mexico); Gonzalez, Ignacio [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340, Mexico, D.F. (Mexico)

    2010-12-15

    The liquid phase mixing flow pattern at low (20 < Re < 120) and intermediate liquid flow rate (120 < Re < 400) was studied by means of residence time distribution (RTD) experimental curve in an up-flow Filter Press electrochemical reactor (FM01-LC) bench scale. For this purpose, a plastic turbulence promoter was used with stainless-steel and platinised titanium structural meshes as electrodes in channel configuration. To visualize and determine the mixing flow pattern in the liquid phase, the stimulus-response technique was employed using dextran blue (D{sub M} = 1.058 x 10{sup -11} m{sup 2} s{sup -1}, 25 {sup o}C, in water) as model tracer. A theoretical analysis and approximation RTD experimental curves with axial dispersion model (ADM) and plug dispersion exchange model (PDE), with 'closed-closed vessel' boundary conditions were used in order to establish a better approximation of the axial dispersion, stagnant zones, channelling and by-pass (preference flow) effects present at low and intermediate Re. RTD curves show that the liquid flow pattern in the FM01-LC deviates considerably from axial dispersion model at low Re, where the FM01-LC exhibits large channelling, stagnant zones, and dead zone. The PDE model represents fairly this deviation from ideal flow (less dead zone).

  14. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  15. General meeting. Technical reunion: the numerical and experimental simulation applied to the Reactor Physics; Assemblee generale. Reunion technique: la simulation numerique et experimentale appliquee a la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    The SFEN (French Society on Nuclear Energy), organized the 18 october 2001 at Paris, a technical day on the numerical and experimental simulation, applied to the reactor Physics. Nine aspects were discussed, giving a state of the art in the domain:the french nuclear park; the future technology; the controlled thermonuclear fusion; the new organizations and their implications on the research and development programs; Framatome-ANP markets and industrial code packages; reactor core simulation at high temperature; software architecture; SALOME; DESCARTES. (A.L.B.)

  16. Experimental Measurements of Heat Transfer through a Lunar Regolith Simulant in a Vibro-Fluidized Reactor Oven

    Science.gov (United States)

    Nayagam, Vedha; Berger, Gordon M.; Sacksteder, Kurt R.; Paz, Aaron

    2012-01-01

    Extraction of mission consumable resources such as water and oxygen from the planetary environment provides valuable reduction in launch-mass and potentially extends the mission duration. Processing of lunar regolith for resource extraction necessarily involves heating and chemical reaction of solid material with processing gases. Vibrofluidization is known to produce effective mixing and control of flow within granular media. In this study we present experimental results for vibrofluidized heat transfer in lunar regolith simulants (JSC-1 and JSC-1A) heated up to 900 C. The results show that the simulant bed height has a significant influence on the vibration induced flow field and heat transfer rates. A taller bed height leads to a two-cell circulation pattern whereas a single-cell circulation was observed for a shorter height. Lessons learned from these test results should provide insight into efficient design of future robotic missions involving In-Situ Resource Utilization.

  17. Characteristic evaluation of high compression seismic isolator for International Thermonuclear Experimental Reactor (ITER). Verification test of sub-scaled rubber bearings. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki [Hitachi Ltd., Tokyo (Japan); Nakahira, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yabana, Shuichi; Matsuda, Akihiro; Ohtori, Yasuki [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-11-01

    The International Thermonuclear Experimental Reactor (ITER) is designed to withstand the seismic load of 2 m/s{sup 2} at the ground level as a standard seismic condition. In case of severe seismic load over 2 m/s{sup 2}, an application of the seismic isolation to the tokamak building is studied so as to reduce the seismic load below 2 m/s{sup 2}. The seismic isolation with high compressive pressure of 7.35MPa to 14.7MPa is considered as a candidate, because the tokamak weight is large to the building size and the number of seismic isolator (rubber bearing) is limited in the available space of the building. Although many studies were executed in the past in order to apply the seismic isolation to the nuclear plant, the test data can not be applied to the ITER due to low compressive pressure of about 2.45MPa to 4.90MPa. Based on the above, it is therefore necessary to evaluate the various kinds of dynamic and mechanical characteristics of the rubber bearings under the high compressive pressure and to obtain the database for the design of the seismic isolation system of the ITER. The report describes the summary of the test results of the sub-scaled rubber bearings executed under the high compression condition in 1997 to 1999. (author)

  18. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  19. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    Science.gov (United States)

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  20. The improvement of control rod in experimental fast reactor JOYO. The development of a sodium bonded type control rod

    Energy Technology Data Exchange (ETDEWEB)

    Soga, T.; Miyakawa, S.; Mitsugi, T. [Japan Nuclear Cycle Development Inst., Oarai Engineering Center, Irradiation Center, Irradiation and Administration Section, Oarai, Ibaraki (Japan)

    1999-06-01

    that the cladding strength sufficient to withstand stress accounting for decreased thickness by the ACCI zone. (5) The wet wash and storage method was selected for disposing of the spent sodium bonded control rods, based upon experimental results at the JOYO facilities. The effects from storing sodium bonded control rods in wet storage were evaluated. The results indicated that these effect would not pose a safety problem. (author)

  1. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, F-13108 Saint Paul lez Durance (France); Vacelet, H. [CERCA, Romans (France); Dornbusch, D. [Technicatome, Aix en Provence (France)

    2000-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs from activation analysis to power reactor fuel qualification. In this paper the main characteristics of the Jules Horowitz Reactor are presented. Safety criteria are explained. Finally, merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel are discussed. (author)

  2. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor

    Science.gov (United States)

    Singh, M. J.; De Esch, H. P. L.

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H- accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  3. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor.

    Science.gov (United States)

    Singh, M J; De Esch, H P L

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H(-) accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  4. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    Science.gov (United States)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  5. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  6. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors

    OpenAIRE

    Zweibaum, Nicolas

    2015-01-01

    The development of advanced nuclear reactor technology requires understanding of complex, integrated systems that exhibit novel phenomenology under normal and accident conditions. The advent of passive safety systems and enhanced modular construction methods requires the development and use of new frameworks to predict the behavior of advanced nuclear reactors, both from a safety standpoint and from an environmental impact perspective. This dissertation introduces such frameworks for scaling ...

  7. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  8. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  9. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  10. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  11. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  12. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  13. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  14. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  15. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors

    Science.gov (United States)

    Zweibaum, Nicolas

    The development of advanced nuclear reactor technology requires understanding of complex, integrated systems that exhibit novel phenomenology under normal and accident conditions. The advent of passive safety systems and enhanced modular construction methods requires the development and use of new frameworks to predict the behavior of advanced nuclear reactors, both from a safety standpoint and from an environmental impact perspective. This dissertation introduces such frameworks for scaling of integral effects tests for natural circulation in fluoride-salt-cooled, high-temperature reactors (FHRs) to validate evaluation models (EMs) for system behavior; subsequent reliability assessment of passive, natural- circulation-driven decay heat removal systems, using these validated models; evaluation of life cycle carbon dioxide emissions as a key environmental impact metric; and recommendations for further work to apply these frameworks in the development and optimization of advanced nuclear reactor designs. In this study, the developed frameworks are applied to the analysis of the Mark 1 pebble-bed FHR (Mk1 PB-FHR) under current investigation at the University of California, Berkeley (UCB). (Abstract shortened by UMI.).

  16. An experimental substantiation of the emergency cooldown system project for the KLT-40S reactor installation of a floating nuclear cogeneration station

    Science.gov (United States)

    Balunov, B. F.; Shcheglov, A. A.; Il'in, V. A.; Saikova, E. N.; Bol'Shukhin, M. A.; Bykh, O. A.; Khizbullin, A. M.; Sokolov, A. N.

    2011-05-01

    Results from thermal-hydraulic tests of a full-scale module of the emergency cooldown system for a KLT-40S reactor installation are presented. The validity of the solutions adopted in its design is shown. Recommendations for calculating the heat transfer coefficients during steam flow condensation and condensate cooling are given.

  17. Experimental study of the hydrodynamic instabilities occurring in boiling-water reactors; Etude experimentale des instabilites hydrodynamiques survenant dans les reacteurs nucleaires a ebullition

    Energy Technology Data Exchange (ETDEWEB)

    Fabreca, S. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-01

    The subjects is an experimental out-of pile loop study of the hydrodynamic oscillations occurring in boiling-water reactors. The study was carried out at atmospheric pressure and at pressure of about 8 atmospheres, in channels heated electrically by a constant and uniform specified current. In the test at 8 atmospheres the channel was a round tube of approximately 6 mm interior diameter. At 1 atmosphere a ring-section channel was used, 10 * 20 mm in diameter, with an inner heating tube and an outer tube of pyrex. It was possible to operate with natural convection and also with forced convection with test-channel by-pass. The study consists of 3 parts: 1. Preliminary determination of the laws governing pressure-drop during boiling. 2. Determination of the fronts at which oscillation appears, within a wide range of the parameters involved. 3. A descriptive study of the oscillations and measurement of the periods. The report gives the oscillation fronts with natural and forced convection for various values of the singular pressure drop at the channel inlet and for various riser lengths. The results are presented in non-dimensional form, which is available, in first approximation, for all geometric scales and for all fluids. Besides the following points were observed: - the wall (nature and thickness) can be an important factor ; - oscillation can occur in a horizontal channel. (author) [French] II a ete effectue une etude experimentale, en boucle hors-pile, des oscillations hydrodynamiques survenant dans les reacteurs a ebullition. L'etude a ete effectuee a la pression atmospherique et a une pression voisine de 8 atmospheres dans des canaux chauffes electriquement a puissance imposee constante et uniforme. Dans les essais a 8 atmospheres le canal etait un tube circulaire de diametre interieur 6 mm environ. A 1 atmosphere le canal etait de section annulaire 10 * 20 mm avec un tube interieur chauffant et un tube exterieur en pyrex. Le fonctionnement etait possible

  18. Speech by Prime Minister Francois Fillon. Visit of the Jules Horowitz experimental reactor works on the Commissariat a l'Energie et aux Energies Alternatives site. Cadarache, May 3, 2010; Discours du Premier ministre Francois FILLON Cadarache, lundi 3 mai 2010. Visite du chantier du Reacteur experimental Jules Horowitz sur le site du Commissariat a l'Energie Atomique et aux Energies Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    In this speech, the French Prime Minister evokes the present context, the importance of strategic technologies, and the challenge of investing in these technologies within a context of reduction of public expenses. He comments the decision of his government to finance research and education activities in different domains, and more specifically in the energy sector with this fourth generation Jules Horowitz experimental reactor. He recalls that the nuclear sector has always been very important to the eyes of the successive French governments, and outlines how this reactor will contribute to reactor operational optimization, lifetime extension and safety, nuclear fuel development, etc.

  19. Comparison between experimental and computational measures of the sample GU3 irradiated in The Goscen NPP reactor; Comparacion entre las medidas experimentales y computacionales de la muestra GU3 irradiada en el reactor Goscen NPP

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rivada, A.; Tore, C.

    2014-07-01

    For improvement and validation of neutron codes with calculated burning requires experimental measurements of the isotope inventory of irradiated fuel. The quality of these codes of calculation is fundamental to the security of the transport and storage of the same studies. The comparison was conducted between the calculated values and experimental measures MONTEBURNS and SCALE of the sample codes GU3. (Author)

  20. Experimental investigation of neutronic characteristics of the IR-8 reactor to confirm the results of calculations by MCU-PTR code

    Energy Technology Data Exchange (ETDEWEB)

    Surkov, A. V., E-mail: surkov.andrew@gmail.com; Kochkin, V. N.; Pesnya, Yu. E.; Nasonov, V. A.; Vihrov, V. I.; Erak, D. Yu. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    A comparison of measured and calculated neutronic characteristics (fast neutron flux and fission rate of {sup 235}U) in the core and reflector of the IR-8 reactor is presented. The irradiation devices equipped with neutron activation detectors were prepared. The determination of fast neutron flux was performed using the {sup 54}Fe (n, p) and {sup 58}Ni (n, p) reactions. The {sup 235}U fission rate was measured using uranium dioxide with 10% enrichment in {sup 235}U. The determination of specific activities of detectors was carried out by measuring the intensity of characteristic gamma peaks using the ORTEC gamma spectrometer. Neutron fields in the core and reflector of the IR-8 reactor were calculated using the MCU-PTR code.

  1. Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-26

    The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.

  2. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  3. Neutronics calculation of an heterogeneous compact and thermal core by means of deterministic and stochastic transport theory. Application to the experimental reactor of the University of Strasbourg; Modelisation neutronique d`un coeur thermique compact et heterogene en theorie du transport deterministe et probabiliste. Application au reacteur experimental de l`Universite de Strasbourg

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Ch

    1997-11-28

    The aim of this work is to create, validate theoretically and experimentally a calculation route for a thermal irradiation reactor. This is the research reactor of the University of Strasbourg, which presents all of characteristics of this reactor-type: compact and heterogeneous core, slab-type fuel with a high 235-uranium enrichment. This calculation route is based on the first use of the following two modern transport methods: the TDT method and the Monte Carlo method. The former, programmed within the APOLLO2 code, is a two dimensional collision probabilities method. The later, used by the TRIPOLI4 code, is a stochastic method. Both can be applied to complex geometries. After a few theoretical reminders about transport codes, a set of integral experiments is described which have been realized within the research reactor of the University of Strasbourg. One of them has been performed for this study. At the beginning of the theoretical part, significant errors are apparent due to the use of calculation route based on homogenization, condensation and the diffusion approximation. An extensive comparison between the discrete ordinates method and the TDT method carries out that the use of the TDT method is relevant for the studied reactor. The treatment of axial leakage with this method is the only disadvantage. Therefore, the use of the code TRIPOLI4 is recommended for a more accurate study of leakage within a reflector. By means of the experimental data, the ability of our calculation route is confirmed for essential neutronics questions such as the critical mass determination, the power distribution and the fuel management. (author)

  4. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  5. Sonochemical Reactors.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  6. 2 MW液态钍基熔盐实验堆主屏蔽温度场分析%Temperature field analysis for the main shielding of the 2-MW thorium-based molten salt experimental reactor

    Institute of Scientific and Technical Information of China (English)

    何杰; 夏晓彬; 蔡军; 潘登; 彭玉; 黄建平; 张国庆

    2016-01-01

    Background:Molten salt reactor is a fourth generation advanced reactor. The concrete wall is the key part of this high-temperature reactor shielding, so temperature field analysis is important. Purpose: This study attempts to calculate the temperature field of the TMSR-LF1 (2-MW liquid-fueled molten salt experimental reactor) shielding, and judge if it meets the design requirements. Methods: In accordance with the problem that MCNP (Monte Carlo N Particle Transport Code) results cannot be directly imported into Fluent, a program which converts MCNP results to the spatial distribution of power density, and imports the spatial distribution of power density into the Fluent in the form of User-Defined Function (UDF) was developed by using Python programming language to realize the coupling of the two. According to TMSR-LF1 design parameters, a one-eight physical and thermal model of the whole reactor is established, using code MCNP and Fluent. Reactor radiation shielding thermal analysis adopts the assumptions that the different environment temperatures are 5°C, 18°C, 25°C, 30°C, 35°C and 40°C, respectively.Results: The maximal values of temperature and temperature gradient in the radiation shielding concrete wall are 67.42 °C and 78.40 °C·m?1, which are lower than limit values.Conclusion: The radiation shielding concrete wall can meet the design requirements.%反应堆主屏蔽是核反应堆的重要组成部分,用来有效降低反应堆运行时屏蔽体外的辐射剂量水平,以满足反应堆部件材料对辐射限制的要求.温度是影响反应堆主屏蔽性能的重要因素.针对2 MWth液态熔盐堆(2-MW liquid-fueled molten salt experimental reactor,TMSR-LF1),采用MCNP软件获得功率分布后,利用Fluent软件对主屏蔽进行温度场计算.计算过程中利用Python语言编写了程序(MCNP to Fluent,MTF)来实现将MCNP(Monte Carlo N Particle Transport Code)计算结果转换为功率密度的空间分布,

  7. 白腐真菌生物膜反应器中活性艳红 X-3B脱色与降解的实验研究%Experimental Study on Decolorization and Degradation of Reactive Brilliant Red X-3B in a White Rot Fungal Biofilm Reactor

    Institute of Scientific and Technical Information of China (English)

    黄民生; 黄荣; 程永前; 张国莹

    2001-01-01

    Experimental results of an azo dye(reactive brilliant red X-3B, RBR X-3B) decolorization and degradation in a white rot fungal biofilm reactor were introduced and discussed. The fungal biofilm reactor is highly potential for dye decolorization and degradation with the highest decoloring rate of 95% within 96 hours reaction time at initial pH 4.5 under high nitrogen level (HN) (24 mmol/L ammonium tartrate) condition. Experimental conditions, such as nutrient nitrogen levels in reaction mixture and initial pH, significantly affected dye decolorization and degradation. Effluents from this biofilm reactor can be well treated to meet the discharging requirements by use of chemical flocculation. RBR X-3B was first absorbed onto fungal biomass and then degraded gradually. The SH-13 fungus monopolized the biofilm throughout the experiments, though the reactor was exposed to open air for 4 months.

  8. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling; Precipitation turbulente d'oxalate d'uranium en reacteur vortex - etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer de Gelicourt, Y

    2004-03-15

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  9. The Glucose Water Distribution Start UASB Reactor Experimental Study%葡萄糖配水启动UASB反应器实验研究

    Institute of Scientific and Technical Information of China (English)

    梁贤军; 张欣; 李尚科; 白晶

    2013-01-01

    the pilot study is effective in a single volume of 31L UASB reactor, with pig manure as culture, reactor tem-perature to room temperature, the water for glucose water, control water pH value in 6.5~7.5 between, after 135 days of launch, CODCr volume load from the 0.5kg/ ( m3.d ) to 4.0KG ( m3.d ), CODCr removal rate can reach over 90%. Be-cause the start time is not long, the reactor has appeared only sludge flocs, granular sludge has not appeared yet, start al-most completed.%  该试验研究是在一个有效容积为31L的UASB反应器中进行的,以猪粪为菌种,反应器温度为常温,试验用水为葡萄糖配水,控制进水pH值在6.5~7.5之间,经过135 d的启动,CODCr的容积负荷由最初的0.5 kg/(m3.d)增至4.0 kg/(m3.d),CODCr去除率达到90%以上。由于启动时间不长,反应器内只出现了污泥絮体,颗粒污泥尚未出现,启动基本完成。

  10. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    Science.gov (United States)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  11. Experimental results of acetone hydrogenation on a heat exchanger type reactor for solar chemical heat pump; Solar chemical heat pump ni okeru acetone suisoka hanno netsu kaishu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, T.; Doi, T.; Tanaka, T.; Ando, Y. [Electrotechnical Laboratory, Tsukuba (Japan); Miyahara, R.; Kamoshida, J. [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    With the purpose of converting solar heat energy to industrial heat energy, an experiment of acetone hydrogenation was carried out using a heat exchanger type reactor that recovers heat generated by acetone hydrogenation, an exothermic reaction, and supplies it to an outside load. In the experiment, a pellet-like activated carbon-supported ruthenium catalyst was used for the acetone hydrogenation with hydrogen and acetone supplied to the catalyst layer at a space velocity of 400-1,200 or so. In the external pipe of the double-pipe type reactor, a heating medium oil was circulated in parallel with the flow of the reactant, with the heat of reaction recovered that was generated from the acetone hydrogenation. In this experiment, an 1wt%Ru/C catalyst and a 5wt%Ru/C catalyst were used so as to examine the effects of variation in the space velocity. As a result, from the viewpoint of recovering the heat of reaction, it was found desirable to increase the reaction speed by raising catalytic density and also to supply the reactant downstream inside the reaction pipe by increasing the space velocity. 1 ref., 6 figs., 1 tab.

  12. CFD simulation and experimental validation of co-combustion of chicken litter and MBM with pulverized coal in a flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, J.M.; Venneker, B.C.H.; di Nola, G.; de Jong, W.; Spliethoff, H. [Energy Technology section, Delft University of Technology, Leeghwaterstraat 44, NL-2628 CA Delft (Netherlands)

    2008-09-15

    The influence of co-combustion of solid biomass fuels with pulverized coal on burnout and CO emissions was studied using a flow reactor. The thermal input on a fuel feeding basis of the test rig was approximately 7 kW. Accompanied with the measurements, a reactor model using the CFD code AIOLOS was set up and first applied for two pure coal flames (with and without air staging). Reasonable agreement between measurements and simulations was found. An exception was the prediction of the CO concentration under sub-stoichiometric conditions (primary zone). As model input for the volatile matter release, the HTVM (high temperature volatile matter as defined by IFRF [IFRF, www.handbook.ifrf.net/handbook/glossary.html. ]) was used. Furthermore, a relatively slow CO oxidation rate obtained from the literature and the ERE (Extended Resistance Equation) model for char combustion were selected. Furthermore, the model was used for simulating co-firing of coal with chicken litter (CL) and meat and bone meal (MBM). The conditions applied are relevant for future co-firing practice with high thermal shares of secondary fuels (larger than 20%). The major flue gas concentrations were quite well described, however, CO emission predictions were only qualitatively following the measured trends when O{sub 2} is available and severely under-predicted under substoichiometric conditions. However, on an engineering level of accuracy, and concerning burnout, this work shows that co-combustion of the fuels can reasonably well be described with coal combustion sub-models. (author)

  13. Jules Horowitz Reactor, basic design

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P

    2003-07-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: - represent a significant step in term of performances and experimental capabilities, - be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements, - reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (authors)

  14. 中国实验快堆主蒸汽系统优化设计及分析研究%Optimization design and analysis on main steam system of China Experimental Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    纪西胜; 吴强; 牛敬娟

    2012-01-01

    The function of the main steam system of China Experimental Fast Reactor (CEFR) is to transfer the steam from SG to the turbine to generate power and to discharge the steam from reactor in case of accidental condition. However, the reactor automatically shut down many times due to improper operation of valves, affecting the stability of the system and increasing operation cost. In order to optimize the steam system process flow, this paper introduced the bypass and worked out the design parameters, and finally gave qualitative analysis of the calculation result in special condition.%中国实验快堆三回路主蒸汽系统主要功能是将蒸汽发生器产生的蒸汽送至汽轮发电机组,辅助功能是在事故工况下排出反应堆产生的热量.调试期间多次因主蒸汽系统阀门手动操作而引起停堆,影响了系统的稳定性,增加了运行成本.本文对主蒸汽系统进行了优化设计、增加旁路管道,并对此条件下的过热器反暖操作和特殊工况下压力损失计算结果进行定性分析,确定了设计参数,优化了主蒸汽系统的工艺流程.

  15. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  16. Final Safety Analysis Addenda to Hazards Summary Report, Experimental Breeder Reactor II (EBR-II): upgrading of plant protection system. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Allen, N. L.; Keeton, J. M.; Sackett, J. I. [comps.

    1980-06-01

    This report is the second in a series of compilations of the formal Final Safety Analysis Addenda (FSAA`s) to the EBR-II Hazard Summary Report and Addendum. Sections 2 and 3 are edited versions of the original FSAA`s prepared in support of certain modifications to the reactor-shutdown-system portion of the EBR-II plant-protection system. Section 4 is an edited version of the original FSAA prepared in support of certain modifications to a system classified as an engineered safety feature. These sections describe the pre- and postmodification system, the rationale for the modification, and required supporting safety analysis. Section 5 provides an updated description and analysis of the EBR-II emergency power system. Section 6 summarizes all significant modifications to the EBR-II plant-protection system to date.

  17. Final safety analysis addendum to hazard summary report, experimental breeder reactor No. II (EBR-II): the EBR-II cover-gas cleanup system

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, R M; Monson, L R; Price, C C; Hooker, D W

    1979-04-01

    This report evaluates abnormal and accident conditions postulated for the EBR-II cover-gas cleanup system (CGCS). Major considerations include loss of CGCS function with a high level of cover-gas activity, loss of the liquid-nitrogen coolant required for removing fission products from the cover gas, contamination of the cover gas from sources other than the reactor, and loss of system pressure boundary. Calculated exposures resulting from the maximum hypothetical accident (MHA) are less than 2% of the 25-Rem limit stipulated in U.S. Regulation 10 CFR 100; i.e., a person standing at any point on an exclusion boundary (area radius of 600 m) for 2 h following onset of the postulated release would receive less than 0.45 Rem whole-body dose. The on-site whole-body dose (10 m from the source) would be less than 16 Rem.

  18. 中国实验快堆全堆芯流量分配计算与试验%Calculation and Test of Core Flow Rate Distribution of China Experimental Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    刘一哲; 薛秀丽; 许义军; 冯预恒; 侯志峰

    2012-01-01

    Based on the core and primary circuit design of China Experimental Fast Reactor(CEFR), a multiple-channel thermal-hydraulic analysis code DAEMON was developed to calculate the core flow rate distribution and unsymmetric coefficient in different conditions. In the commissioning stage, a series of full-scale tests for reactor core were performed in CEFR with a permanent-magnet sodium flow meter. The numerical results of code DAEMON showed a good agreement with test data. The core hydraulic design was also validated with a view to the requirements of design criteria, commissioning and operation specifications.%针对中国实验快堆(CEFR)堆芯和一回路的设计特点,开发水力特性计算程序DAEMON,完成不同工况下的全堆芯流量分配计算,给出流量分配不均匀性等参数.在反应堆调试阶段,进行全堆芯流量分配试验.结果表明,程序计算值与试验值符合较好.在此基础上,验证了CEFR堆芯的流体力学设计,并为反应堆调试和运行提供了基础数据.

  19. Startup of an industrial adiabatic tubular reactor

    NARCIS (Netherlands)

    Verwijs, J.W.; Berg, van den H.; Westerterp, K.R.

    1992-01-01

    The dynamic behaviour of an adiabatic tubular plant reactor during the startup is demonstrated, together with the impact of a feed-pump failure of one of the reactants. A dynamic model of the reactor system is presented, and the system response is calculated as a function of experimentally-determine

  20. Analysis of sodium experimental circuits pre-heating for the development of nuclear reactors; Analise do pre-aquecimento de circuitos experimentais a sodio para desenvolvimento de reatores nuclares

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, Ione Walmir

    1995-09-01

    To satisfy the experimental requirements of sodium loops for nuclear reactors development, a preheating system, consisting of tubular haters, is analyzed. The tubular heaters are usually comprised of a nickel-chromium wire centered in a metal sheath and insulated by magnesium oxide. Practical and simplified methods for the preheating parameters calculations and for the heaters elements determination and section are presented. A thermal method to evaluate the sodium mass in a tank is presented, using the preheating system, when the tank geometry or the sodium level are unknown. The materials employed and the installation procedures of the preheating system are indicated. It is described a procedure, step, to make the connection between the electrical resistance and the conductor wire, to assure the heat dissipation and the air-tight of the heater element. Several suggestions are presented to clarify some doubts, to define correction factors, to develop technology, and to give continuity to the present work. (author). 37 refs., 22 figs.

  1. Siegel FIRST EXPERIMENTAL DISCOVERY of Granular-Giant-Magnetoresistance (G-GMR) DiagnosES/ED Wigner's-Disease/.../Spinodal-Decomposition in ``Super''Alloys Generic Endemic Extant in: Nuclear-Reactors/ Petrochemical-Plants/Jet/ Missile-Engines/...

    Science.gov (United States)

    Hoffman, Ace; Wigner-Weinberg, Eugene-Alvin; Siegel, Edward Carl-Ludwig Sidney; ORNL/Wigner/Weinberg/Siegel/Hollifeld/Yu/... Collaboration; ANL/Fermi/Wigner/Arrott/Weeks/Bader/Freeman/Sinha/Palazlotti/Nichols/Petersen/Rosner/Zimmer/... Collaboration; BNL/Chudahri/Damask/Dienes/Emery/Goldberg/Bak//Bari/Lofaro/... Collaboration; LLNL-LANL/Hecker/Tatro/Meara/Isbell/Wilkins/YFreund/Yudof/Dynes/Yang/... Collaboration; WestinKLouse/EPRI/PSEG/IAEA/ABB/Rickover/Nine/Carter/Starr/Stern/Hamilton/Richards/Lawes/OGrady/Izzo Collaboration

    2013-03-01

    Siegel[APS Shock-Physics Mtg., Chicago(11)] carbides solid-state chemistry[PSS (a)11,45(72); Semis. & Insuls. 5: 39,47,62 (79)], following: Weinberg-Siegel-Loretto-Hargraves-Savage-Westwood-Seitz-Overhauser-..., FIRST EXPERIMENTAL DISCOVERY of G-GMR[JMMM 7, 312(78); Google: ``If LEAKS Could KILL Ana Mayo''] identifIED/IES GENERIC ENDEMIC EXTANT domination of old/new (so mis-called) ``super''alloys': nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe/Co-based (so mis-called) ''super''alloys (182/82; Hastelloy-X,600,304/304L-Stainless-Steels,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms!!!): THERMAL: Wigner's-disease(WD physics) [J.Appl.Phys.17,857(46)]/ Ostwald-ripening

  2. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H.; Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France))

    1992-01-01

    Most of the first generation of fast reactors that were operated at significant power levels employed solid metal fuels. They were constructed in the United States and United Kingdom in the 1950s and included Experimental Breeder Reactor (EBR)-I and -II operated by Argonne National Laboratory, United States, the Enrico Fermi Reactor operated by the Atomic Power Development Associates, United States and DFR operated by the U.K. Atomic Energy Authority (UKAEA). Their paper tracer pre-development of fast reactor fuel from these early days through the 1980s including ceramic fuels.

  3. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  4. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  5. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  6. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  7. Verification of Remote Inspection Techniques for Reactor Internal Structures of Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Lee, Jae Han

    2007-02-15

    The reactor internal structures and components of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection as major in-service inspection (ISI) methods of reactor internal structures and components. Reactor internals of LMR can not be visually examined due to opaque liquid sodium. The under-sodium viewing techniques using an ultrasonic wave should be applied for the visual inspection of reactor internals. Recently, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium inspection. In this study, visualization technique, ranging technique and monitoring technique have been suggested for the remote inspection of reactor internals by using the waveguide sensor. The feasibility of these remote inspection techniques using ultrasonic waveguide sensor has been evaluated by an experimental verification.

  8. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karasiov, A.V. [D.V. Efremov Scientific Rresearch Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Greenwood, L.R. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  9. Reactor and method of operation

    Science.gov (United States)

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  10. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    Energy Technology Data Exchange (ETDEWEB)

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    2013-09-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimental study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.

  11. Experimental investigation of heat transfer during severe accident of a Pressurized Heavy Water Reactor with simulated decay heat generation in molten pool inside calandria vessel

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Sumit Vishnu, E-mail: svprasad@barc.gov.in; Nayak, Arun Kumar, E-mail: arunths@barc.gov.in

    2016-07-15

    Highlights: • Scaled test facility simulating the calandria vessel and calandria vault water of PHWR with simulated decay heat was built. • Experiments conducted with simulant material at about 1200 °C. • Experimental result shows that melt coolability and growth rate of crust thickness are affected by presence of decay heat. • No gap was observed between the crust and vessel on opening. • Result shows that vessel integrity is intact with presence of water inside water tank in both cases. - Abstract: The present study focuses on experimental investigation in a scaled facility of an Indian PHWR to investigate the coolability of molten corium with simulated decay heat in the simulated calandria vessel. Molten borosilicate glass was used as the simulant due to its comparable heat transfer characteristics similar to prototypic material. About 60 kg of the molten material was poured into the test section at about 1200 °C. Decay heat in the melt pool was simulated using four high watt heaters cartridges, each having 9.2 kW. The temperature distributions inside the molten pool, across the vessel wall thickness and vault water were measured. Experimental results obtained are compared with the results obtained previously for no decay heat case. The results indicated that presence of decay heat seriously affects the coolability behaviour and formation of crust in the melt pool. The location and magnitude of maximum heat flux and surface temperature of the vessel also are affected in the presence of decay heat.

  12. Experimental Software Design of Neutron Residual Stress Diffractometer at China Advanced Research Reactor%中国先进研究堆中子残余应力谱仪实验软件设计

    Institute of Scientific and Technical Information of China (English)

    刘晓龙; 李眉娟; 刘蕴韬; 陈东风; 刘新智; 高建波; 阳林峰; 韩松柏; 李玉庆

    2016-01-01

    The experimental software of the neutron residual stress diffractometer at China Advanced Research Reactor (CARR) was designed .According to the principle of residual stress measurement by neutron diffraction and the geometry of diffractometer , the measurement procedures were analyzed and the functions needed for residual stress measurement were proposed .Based on the motion control and data acquisition system of the diffractometer ,the implement method of these functions was designed .Then the software was realized by LabVIEW language and tested by neutron beam .The experi-mental software for CARR neutron residual stress diffractometer was successfully accomplished .%设计开发了中国先进研究堆(CARR)中子残余应力谱仪的实验软件.基于中子衍射法测量了残余应力的基本原理和谱仪构型,分析了中子残余应力测量方法,提出了残余应力测量所需的功能.在谱仪运动控制和数据采集系统的基础上,设计了各项功能的流程方法,并使用LabVIEW语言编写了相应的程序.利用中子束全面测试软件的各项功能,完成了CARR中子残余应力谱仪实验软件的设计开发.

  13. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data; Modelisation des phenomenes physiques dans les reacteurs de recherche a l'aide de developpements realises dans les methodes de transport et qualification

    Energy Technology Data Exchange (ETDEWEB)

    Rauck, St

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  14. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    Science.gov (United States)

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data.

  15. Minimum quench power dissipation and current non-uniformity in international thermonuclear experimental reactor type NbTi cable-in-conduit conductor samples under direct current conditions

    Science.gov (United States)

    Rolando, G.; van Lanen, E. P. A.; Nijhuis, A.

    2012-05-01

    The level of current non-uniformity in NbTi cable-in-conduit conductors (CICCs) sections near the joints in combination with the magnetic field profile needs attention in view of proper joint design. The strand joule power and current distribution at quench under DC conditions of two samples of ITER poloidal field coil conductors, as tested in the SULTAN facility, and of the so called PFCI model coil insert, have been analyzed with the numerical cable model JackPot. The precise trajectories of all individual strands, joint design, cabling configuration, spatial distribution of the magnetic field, sample geometry, and experimentally determined interstrand resistance distributions have been taken into account. Although unable to predict the quench point due to the lack of a thermal-hydraulic routine, the model allows to assess the instantaneous strand power at quench and its local distribution in the cable once the quench conditions in terms of current and temperature are experimentally known. The analysis points out the relation of the above mentioned factors with the DC quench stability of both short samples and coils. The possible small scale and local electrical-thermal interactions were ignored in order to examine the relevance of such effects in the overall prediction of the CICC performance. The electromagnetic code shows an excellent quantitative predictive potential for CICC transport properties, excluding any freedom for matching the results. The influence of the local thermal effects in the modeling is identified as being marginal and far less than the generally accepted temperature margin for safe operation.

  16. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Damiano, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehta, Chaitanya [Univ. of Tennessee, Knoxville, TN (United States); Collins, Price [Univ. of Tennessee, Knoxville, TN (United States); Lish, Matthew [Univ. of Tennessee, Knoxville, TN (United States); Cady, Brian [Univ. of Tennessee, Knoxville, TN (United States); Lollar, Victor [Univ. of Tennessee, Knoxville, TN (United States); de Wet, Dane [Univ. of Tennessee, Knoxville, TN (United States); Bayram, Duygu [Univ. of Tennessee, Knoxville, TN (United States)

    2015-12-15

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  17. Study on the Adaptability of Etheriifcation Feedstock to Reactor Type

    Institute of Scientific and Technical Information of China (English)

    Mao Junyi; Yuan Qing; Wang Lei; Huang Tao

    2016-01-01

    A reactive C5 oleifns and methanol etheriifcation kinetic model based on E-R mechanism was established and three different types of reactors including the adiabatic ifxed-bed liquid reactor, the external loop reactor and the mixed-phase reactor were constructed by Aspen Plus. The adaptability of reactive C5 oleifns to these reactors was studied and simulated using various gasoline fractions with different oleifns content. After the theoretical model was validated by the experimental data of the etheriifcation of three C5 light cut fractions from different gasoline sources in different reactors, the simulated isoamylene conversion with reactive C5 olefin contents increasing from 10% to 60% was studied in the three different types of reactors for etheriifcation with methanol, respectively. Test results show that there is an obvious adaptability of the feedstock composition to the reactor type to achieve a high conversion.

  18. Precision spectroscopy with reactor anti-neutrinos

    CERN Document Server

    Huber, P; Huber, Patrick; Schwetz, Thomas

    2004-01-01

    In this work we present an accurate parameterization of the anti-neutrino flux produced by the isotopes 235U, 239Pu and 241Pu in nuclear reactors. We determine the coefficients of this parameterization, as well as their covariance matrix, by performing a fit to spectra inferred from experimentally measured beta spectra. Subsequently we show that flux shape uncertainties play only a minor role in the KamLAND experiment, however, we find that future reactor neutrino experiments to measure the mixing angle $\\theta_{13}$ are sensitive to the fine details of the reactor neutrino spectra. Finally, we investigate the possibility to determine the isotopic composition in nuclear reactors through an anti-neutrino measurement. We find that with a 3 month exposure of a one ton detector the isotope fractions and the thermal reactor power can be determined at a few percent accuracy, which may open the possibility of an application for safeguard or non-proliferation objectives.

  19. Experimental study on tar destruction in a two stage fixed-bed reactor%两段式固定床反应器中焦油脱除的实验研究

    Institute of Scientific and Technical Information of China (English)

    吴文广; 罗永浩; 陈祎; 苏毅; 陈亮; 王芸

    2012-01-01

    通过两段式固定床反应器实验,研究了热裂解、部分氧化和炭层转化三种方法对焦油脱除的效果,并研究了生物质种类、反应温度、停留时间、生物质焦的粒径及种类等因素对热解焦油的脱除和转化规律.结果表明,随着温度的升高,三种脱除方法中焦油生成量下降,且降幅逐渐减小,实验过程中无论采取何种方法,都难以将焦油完全脱除;部分氧化和炭层转化对焦油的脱除效果都较相同温度条件下的热裂解要好,且在焦油脱除效果上,炭层转化>部分氧化>热裂解;联合部分氧化和炭层转化可达最高的焦油脱除效率,三种生物质热解焦油经1000℃联合脱除后产量分别为,稻秆0.43%、玉米秆0.61%和杉木屑1.15%,转化率分别达到98.28%、97.23%和96.29%;相同实验条件下稻秆的热解焦油最容易脱除,这与其物料中含氧量较高有关;生物质焦种类对焦油的脱除效果影响较小.%Methods of thermal cracking, partial oxidation and char bed conversion on tar destruction has been investigated by a two stage fixed-bed reactor, effects of fuel type, temperature, residence time, char particle size and char type on tar destruction are considered. The result indicates that tar conversion efficiency increase with the second stage reactor temperature increasing in all three kinds of conversion methods. Partial oxidation and char bed conversion is more effective in tar destruction compared to thermal cracking. Associated with partial oxidation and thermal cracking, char bed can get least tar yield. Three kinds of biomass tar yield in the experimental condition of 1 000℃ is: rice straw 0.43% , corn straw 0. 61% and fir sawdust 1. 15% , and the corresponding tar conversion efficiency is 98.28% , 97. 23% and 96.29% respectively. Tar yield content of each conversion methods are decreasing with reactor temperature increase. It is really difficult to removal all tar

  20. Fábrica de maquinaria Brunsviga en Braunschweig

    Directory of Open Access Journals (Sweden)

    Henn, Walter

    1959-10-01

    Full Text Available La fábrica de máquinas de calcular Brunsviga, S. A., fue fundada en el año 1871 y, desde entonces, las demandas comerciales han dado origen a una serie de ampliaciones que quedan fielmente reflejadas en las diversas edificaciones que componen el heterogéneo conjunto, ya que al lado de las construcciones de entramado de madera del siglo pasado, se alzan otras de estructura de hormigón armado y de acero. La última —y parece ser definitiva ampliación, puesto que las posibilidades del solar ya han quedado agotadas— se ha efectuado recientemente, ganando, con ello, 2.500 m2 de superficie útil la factoría.

  1. Experimental and CFD Studies of Coolant Flow Mixing within Scaled Models of the Upper and Lower Plenums of NGNP Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Anand, Nk [Texas A & M Univ., College Station, TX (United States)

    2016-03-30

    A 1/16th scaled VHTR experimental model was constructed and the preliminary test was performed in this study. To produce benchmark data for CFD validation in the future, the facility was first run at partial operation with five pipes being heated. PIV was performed to extract the vector velocity field for three adjacent naturally convective jets at statistically steady state. A small recirculation zone was found between the pipes, and the jets entered the merging zone at 3 cm from the pipe outlet but diverged as the flow approached the top of the test geometry. Turbulence analysis shows the turbulence intensity peaked at 41-45% as the jets mixed. A sensitivity analysis confirmed that 1000 frames were sufficient to measure statistically steady state. The results were then validated by extracting the flow rate from the PIV jet velocity profile, and comparing it with an analytic flow rate and ultrasonic flowmeter; all flow rates lie within the uncertainty of the other two methods for Tests 1 and 2. This test facility can be used for further analysis of naturally convective mixing, and eventually produce benchmark data for CFD validation for the VHTR during a PCC or DCC accident scenario. Next, a PTV study of 3000 images (1500 image pairs) were used to quantify the velocity field in the upper plenum. A sensitivity analysis confirmed that 1500 frames were sufficient to precisely estimate the flow. Subsequently, three (3, 9, and 15 cm) Y-lines from the pipe output were extracted to consider the output differences between 50 to 1500 frames. The average velocity field and standard deviation error that accrued in the three different tests were calculated to assess repeatability. The error was varied, from 1 to 14%, depending on Y-elevation. The error decreased as the flow moved farther from the output pipe. In addition, turbulent intensity was calculated and found to be high near the output. Reynolds stresses and turbulent intensity were used to validate the data by

  2. Experimental results of 2-propanol dehydrogenation with a falling-liquid film reactor for solar chemical heat pump; Solar chemical heat pump ni okeru ryuka ekimakushiki 2-propanol bunkai hanno jikken

    Energy Technology Data Exchange (ETDEWEB)

    Doi, T.; Tanaka, T.; Ando, Y.; Takashima, T. [Electrotechnical Laboratory, Tsukuba (Japan); Koike, M.; Kamoshida, J. [Shibaura Institute of Technology, Tokyo (Japan)

    1997-11-25

    A solar chemical heat pump is intended to attempt multi-purposed effective utilization of solar energy by raising low temperature solar heat of about 100 degC to 150 to 200 degC by utilizing chemical reactions. The chemical heat pump under the present study uses a 2-propanol (IPA)/acetone/hydrogen system which can utilize low-temperature solar heat and has large temperature rising degree. It was found from the result of experiments and analyses that IPA dehydrogenation reaction can improve more largely the heat utilization rate in using a falling-liquid film reactor than using a liquid phase suspended system. As an attempt to improve further the heat utilization rate, this paper reports the result of experimental discussions on inclination angles of a reaction vessel and feed liquid flow rate which would affect the fluid condition of the liquid film. As a result of the experiments, the initial deterioration in the catalyst has settled in about 15 hours, and its activity has decreased to about 60% of the initial activity. It was made clear that the influence of the inclination angle of the reaction vessel on the reaction is small. 5 refs., 7 figs.

  3. µ-reactors for Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Jensen, Robert

    catalyst surface area by reacting off an adsorbed layer of oxygen with CO. This procedure can be performed at temperatures low enough that sintering of Pt nanoparticles is not an issue. Some results from the reactors are presented. In particular an unexpected oscillation phenomenon of CO-oxidation on Pt...... nanoparticles are presented in detail. The sensitivity of the reactors are currently being investigated with CO oxidation on Pt thin films as a test reaction, and the results so far are presented. We have at this point shown that we are able to reach full conversion with a catalyst area of 38 µm2 with a turn......This thesis is the summary of my work on the µ-reactor platform. The concept of µ-reactors is presented and some of the experimental challenges are outlined. The various experimental issues regarding the platform are discussed and the actual implementation of three generations of the setup...

  4. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  5. Equipment for neutron measurements at VR-1 Sparrow training reactor.

    Science.gov (United States)

    Kolros, Antonin; Huml, Ondrej; Kríz, Martin; Kos, Josef

    2010-01-01

    The VR-1 sparrow reactor is an experimental nuclear facility for training, student education and teaching purposes. The sparrow reactor is an educational platform for the basic experiments at the reactor physic and dosimetry. The aim of this article is to describe the new experimental equipment EMK310 features and possibilities for neutron detection by different gas filled detectors at VR-1 reactor. Among the EMK310 equipment typical attributes belong precise set-up, simple control, resistance to electromagnetic interference, high throughput (counting rate), versatility and remote controllability. The methods for non-linearity correction of pulse neutron detection system and reactimeter application are presented.

  6. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hiroto

    1995-02-07

    A reactor container of the present invention has a structure that the reactor container is entirely at the same temperature as that at the inlet of the reactor and, a hot pool is incorporated therein, and the reactor container has is entirely at the same temperature and has substantially uniform temperature follow-up property transiently. Namely, if the temperature at the inlet of the reactor core changes, the temperature of the entire reactor container changes following this change, but no great temperature gradient is caused in the axial direction and no great heat stresses due to axial temperature distribution is caused. Occurrence of thermal stresses caused by the axial temperature distribution can be suppressed to improve the reliability of the reactor container. In addition, since the laying of the reactor inlet pipelines over the inside of the reactor is eliminated, the reactor container is made compact and the heat shielding structures above the reactor and a protection structure of container walls are simplified. Further, secondary coolants are filled to the outside of the reactor container to simplify the shieldings. The combined effects described above can improve economical property and reliability. (N.H.).

  7. Calculation and experimental validation of 127I transmutation rate in Xi' an pulsed reactor%西安脉冲堆127I嬗变计算方法与实验验证

    Institute of Scientific and Technical Information of China (English)

    王立鹏; 江新标; 赵柱民; 李雪松; 吴宏春

    2013-01-01

    为了开展129I的热中子嬗变的研究,在西安脉冲堆上开展了127I靶件辐照实验.以探索实验条件,对127I靶件的嬗变率进行了蒙特卡罗计算,并与实验测量值进行了比对.利用NJOY程序,以ENDF/BⅦ.0库为基础,制作了127I在西安脉冲堆堆芯辐照温度下的MCNP格式截面库,与MCNP自带库(ENDF/BⅥ.2)同温度下截面库进行了比较,在不可分辨共振区做了改进,使用新制的截面库,利用MCNP程序对ORIGEN2数据库中的127I辐射俘获截面进行了修正,结合ORIGEN2程序分析了127I靶件在西安脉冲堆实际辐照后的嬗变率和核素的变化,研究了中子能谱和辐照时间对靶件嬗变计算的影响.使用MCNPX自带的燃耗模块CINDER' 90对127I靶件的嬗变情况进行模拟,结果与ORIGEN2基本一致,与实验数值有2%~3%的偏差,主要原因是MCNP计算中子通量密度存在误差.%In order to develop the research on 129I transmutation in the thermal reactor, 127I target was irradiated in Xi'an pulsed reactor(XAPR) to explore the condition for experiment in XAPR. The Monte Carlo method was used in the calculation of 127I target transmutation rate, and the results were compared with the experimental data. The NJOY software was used to generate 137 I ace format neutron cross section at XAPR operating temperature based on ENDF/B VII. 0 library. New cross section was compared with old ENDF/B VI library and developed in the unresolved resonance region. MCNP was used to modify the 127 I cross section of ORIGEN2 by adopting a new cross section, then transmutation of 127 I target was calculated to analyze changes of transmutation rate and nuclides, also the influence of neutron spectrum and irradiating time on transmutation was studied. The CINDER'90 software, a depletion mode of MCNPX, was also used to model the transmutation condition, the analytical result was consistent with ORIGEN2, but was a little different from the experimental data (2%-3% error

  8. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  9. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  10. Nuclear reactors built, being built, or planned, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  11. Feasibility Research on Radioisotope Production in China Experimental Fast Reactor%利用中国实验快堆生产放射性同位素的可行性研究

    Institute of Scientific and Technical Information of China (English)

    陈晓亮; 杨佳音; 陈效先

    2014-01-01

    China Experimental Fast Reactor (CEFR) is used not only for all kinds of fuels and materials irradiation ,but also as a good platform for production of radioiso-topes .Irradiation performance of CEFR was described in this paper .The production and the specific activity of 32 P ,33 P ,35 S ,89 Sr ,14 C and 60 Co were obtained by calculation code .T he results show that high purity 32 P ,33 P and 35 S can be obtained in CEFR core , and none carrier 89Sr can be produced by fast neutron (n ,p) reaction .Meanwhile ,high specific activity 14 C and 60 Co can be produced in CEFR blanket by setting moderator .It is feasible to product these radioisotopes in CEFR .%中国实验快堆(CEFR)不仅能进行各种燃料、材料辐照实验,也是放射性同位素生产的优良平台。本文对CEFR的辐照性能进行了描述,并利用计算程序对适宜在CEFR上生产的同位素32 P、33 P、35 S、89 Sr、14 C、60 Co进行理论计算,得到了产量和比活度等参数。计算结果表明,在CEFR堆芯辐照可得到纯度极高的32 P、33 P、35 S ,利用快中子的(n ,p)反应可得到无载体的89 Sr ,在CEFR反射层布置慢化材料可得到比活度较高的14 C、60 Co。以上结果表明,在CEFR上生产同位素是可行的。

  12. Development of Thermal-Hydraulic Steady-State Analysis Program for Primary Loop of China Experimental Fast Reactor%中国实验快堆一回路热工水力稳态计算程序开发

    Institute of Scientific and Technical Information of China (English)

    饶彧先; 崔满满; 郭赟

    2012-01-01

    针对中国实验快堆(CEFR)的具体结构和稳态运行特点,利用Fortran语言开发了CEFR一回路热工水力稳态计算程序.重点开发了有关钠的多种物性的子程序、适应不同工况的钠的流动与换热计算子程序,并对关系式进行了对比分析,最后建立了稳态计算模型并开发了程序.在此基础上,对CEFR的一回路系统在满功率下的稳态热工水力特性进行了计算分析,所获得的结果同设计参数吻合,证明了所开发的子程序及稳态程序的正确性.%According to the characteristics of structure and steady-state for primary loop of China Experimental Fast Reactor (CEFR), a thermal-hydraulic steady-state analysis program was developed by using Fortran language. This paper focused on the development of a set of subroutine of physical properties of sodium and the sodium flow and heat transfer correlations for different operation conditions. And the difference among these correlations was compared. The calculation program was developed based on the steady model. At last, the thermal-hydraulic characteristics of steady-state of the primary loop of CEFR at full power were calculated. The calculation results are consistent with the design parameters and the correctness of the developed subroutines and steady-state calculation program was proved.

  13. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  14. Training experience at Experimental Breeder Reactor II

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, J.W.; McCormick, R.P.; McCreery, H.I.

    1978-01-01

    The EBR-II Training Group develops, maintains,and oversees training programs and activities associated with the EBR-II Project. The group originally spent all its time on EBR-II plant-operations training, but has gradually spread its work into other areas. These other areas of training now include mechanical maintenance, fuel manufacturing facility, instrumentation and control, fissile fuel handling, and emergency activities. This report describes each of the programs and gives a statistical breakdown of the time spent by the Training Group for each program. The major training programs for the EBR-II Project are presented by multimedia methods at a pace controlled by the student. The Training Group has much experience in the use of audio-visual techniques and equipment, including video-tapes, 35 mm slides, Super 8 and 16 mm film, models, and filmstrips. The effectiveness of these techniques is evaluated in this report.

  15. Edificios del reactor nuclear experimental. Madrid

    Directory of Open Access Journals (Sweden)

    de Cabanyes, Cayetano

    1959-03-01

    Full Text Available La antigua división entre edificios industriales y edificios arquitectónicos está siendo felizmente superada en España, y los campos específicos de la Arquitectura y de la Ingeniería tienden a mezclarse y a ser tratados conjuntamente por ambas técnicas. Sólo beneficios cabe esperar de este trabajo combinado, y el reconocimiento de que el todo orgánico de un gran edificio no se podrá nunca reducir a una de sus partes (arquitectura, estructura, instalaciones, puede ser la base para una mejor productividad nacional en este campo de la edificación.

  16. The RES Reactor. A test reactor for the French naval propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Pivet, Sylvestre [CEA, Centre de Cadarache, F-13108 Saint Paul lez Durance (France); Minguet, Jean-Luc [AREVA-Technicatome, BP17, 91192 Gif-sur-Yvette (France)

    2006-07-01

    In the Cadarache nuclear research centre the French Atomic Energy Commission (CEA) operates, with the support of TECHNICATOME as nuclear operator, the experimental facilities which are necessary for the French naval propulsion program. Since the sixties these facilities have brought a large contribution to the development and to the technical support for the nuclear propulsion; they have been used also to train the French Navy operators. The last experimental reactor, the RNG, is now at the end of its life cycle after thirty years of a profitable operation. A replacement reactor is needed to sustain any evolution of the naval propulsion reactors as well as to guarantee a safe operation and a high level of availability of the existing onboard reactors. The aim of the RES program is namely to build such a test facility. Its construction program started in 2003. By the year 2009 the RES reactor will take over the mission of the RNG. We present hereafter: - A brief history of the French experimental reactors built in support to the naval propulsion, - The needs of the naval propulsion and the related objectives of the RES program, - The corresponding architecture and main characteristics of the RES facility, - The current status of the RES construction. The contents of the paper is as follows: 1. Introduction; 2. History of the French nuclear propulsion experimental reactors; 3. Needs of the naval propulsion and related objectives of the RES reactor; 4. RES architecture and main characteristics; 4.1. The pool module; 4.2. The reactor module; 4.3. The RES reactor, an innovative concept; 5. Realisation status; 6. Conclusion. To summarize, from the year 2009 the RES will be an efficient facility available for irradiation and qualification programs. Its large experimental capabilities will allow relevant fuel and core irradiations. This will give access to a real progress in the knowledge of fuel and core physics as well as in the related simulation tools. This reactor

  17. Experimental Investigation of Hot Block Rewetting Process during Nuclear Reactor Emergency Cooling%堆芯应急冷却热块再淹没过程实验研究

    Institute of Scientific and Technical Information of China (English)

    刘斌; 陈德奇; 潘良明

    2013-01-01

    实验模拟核反应堆堆芯失水后堆芯熔融物和被加热压力容器壁等热块再淹没时的应急冷却过程.实验研究发现,液滴飞溅对热块钢板起到了预冷作用,在淹没液位上升的过程中,热块纵向导热越来越强,被淹没位置具有很高的中心冷却速率;热块被淹没位置的中心冷却速率并不随浸没速率单调变化,而是在一定区间内呈起伏变化,这说明在某个淹没速率下存在一个最小中心冷却速率的区间,因此在进行应急冷却时要避免这个区间;在高温情况下,冷却的初始温度对中心冷却速率影响不大.%An experimental investigation was carried out to simulate the process of emergency cooling rewetting of the hot block such as molten material and pressure vessel wall in nuclear reactor core under the serious accident. According to the present experimental study, the liquid spatters can pre-cool the hot block; the heat transfer in the y direction has been enhanced with the increasing liquid level and the central temperature cooling speed is very high. The experiments reveal the nonlinear relationship between the center temperature dropping speed and the liquid level increasing speed, and it shows an U-shape trend which suggests that a minimum center temperature dropping speed exists during rewetting with a certain liquid level increasing speed which should be avoid. With higher initial temperature, the temperature dropping speed is affected by the initial temperature mildly.

  18. A nanoliter-scale open chemical reactor.

    Science.gov (United States)

    Galas, Jean-Christophe; Haghiri-Gosnet, Anne-Marie; Estévez-Torres, André

    2013-02-01

    An open chemical reactor is a container that exchanges matter with the exterior. Well-mixed open chemical reactors, called continuous stirred tank reactors (CSTR), have been instrumental for investigating the dynamics of out-of-equilibrium chemical processes, such as oscillations, bistability, and chaos. Here, we introduce a microfluidic CSTR, called μCSTR, that reduces reagent consumption by six orders of magnitude. It consists of an annular reactor with four inlets and one outlet fabricated in PDMS using multi-layer soft lithography. A monolithic peristaltic pump feeds fresh reagents into the reactor through the inlets. After each injection the content of the reactor is continuously mixed with a second peristaltic pump. The efficiency of the μCSTR is experimentally characterized using a bromate, sulfite, ferrocyanide pH oscillator. Simulations accounting for the digital injection process are in agreement with experimental results. The low consumption of the μCSTR will be advantageous for investigating out-of-equilibrium dynamics of chemical processes involving biomolecules. These studies have been scarce so far because a miniaturized version of a CSTR was not available.

  19. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  20. Conduction heat transfer in a cylindrical dielectric barrier discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sadat, H. [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)], E-mail: hamou.sadat@univ-poitiers.fr; Dubus, N. [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France); Pinard, L.; Tatibouet, J.M.; Barrault, J. [Laboratoire en catalyse et chimie organique, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)

    2009-04-15

    The thermal behaviour of a dielectric barrier discharge reactor is studied. The experimental tests are performed on a laboratory reactor with two working fluids: helium and air. A simple heat conduction model for calculating the heat loss is developed. By using temperature measurements in the internal and external electrodes, a thermal resistance of the reactor is defined. Finally, the percentage of the input power that is dissipated to the environment is given.

  1. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  2. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  3. Gas-liquid autoxidation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, M.; Paludetto, R.; Carra, S.

    1986-01-01

    A procedure for the simulation of autoxidation gas-liquid reactors has been developed based both on mathematical models and laboratory experiments. It has been shown that the complex radical chain mechanism of the autoxidation process can be simulated through two global parallel reactions, whose rates are obtained by assuming pseudo-steady-state concentration values for all the radical species involved. Using ethylbenzene autoxidation as a model reaction, an experimental analysis has been performed in order to estimate all the kinetic parameters of the model. The effect of the interaction between gas-liquid mass-transfer phenomena and the complex kinetic mechanism on the overall performance of an autoxidation reactor has been examined in detail within the framework of the liquid film model.

  4. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  5. SNTP program reactor design

    Science.gov (United States)

    Walton, Lewis A.; Sapyta, Joseph J.

    1993-06-01

    The Space Nuclear Thermal Propulsion (SNTP) program is evaluating the feasibility of a particle bed reactor for a high-performance nuclear thermal rocket engine. Reactors operating between 500 MW and 2,000 MW will produce engine thrusts ranging from 20,000 pounds to 80,000 pounds. The optimum reactor arrangement depends on the power level desired and the intended application. The key components of the reactor have been developed and are being tested. Flow-to-power matching considerations dominate the thermal-hydraulic design of the reactor. Optimal propellant management during decay heat cooling requires a three-pronged approach. Adequate computational methods exist to perform the neutronics analysis of the reactor core. These methods have been benchmarked to critical experiment data.

  6. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  7. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  8. Modeling of operating history of the research nuclear reactor

    Science.gov (United States)

    Naymushin, A.; Chertkov, Yu; Shchurovskaya, M.; Anikin, M.; Lebedev, I.

    2016-06-01

    The results of simulation of the IRT-T reactor operation history from 2012 to 2014 are presented. Calculations are performed using continuous energy Monte Carlo code MCU-PTR. Comparison is made between calculation and experimental data for the critical reactor.

  9. Multi purpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raina, V.K. [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)]. E-mail: vkrain@magnum.barc.ernet.in; Sasidharan, K. [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sengupta, Samiran [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, Tej [Research Reactor Services Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2006-04-15

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor.

  10. INVAP's Research Reactor Designs

    Directory of Open Access Journals (Sweden)

    Eduardo Villarino

    2011-01-01

    Full Text Available INVAP, an Argentine company founded more than three decades ago, is today recognized as one of the leaders within the research reactor industry. INVAP has participated in several projects covering a wide range of facilities, designed in accordance with the requirements of our different clients. For complying with these requirements, INVAP developed special skills and capabilities to deal with different fuel assemblies, different core cooling systems, and different reactor layouts. This paper summarizes the general features and utilization of several INVAP research reactor designs, from subcritical and critical assemblies to high-power reactors.

  11. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1997-04-04

    An LMFBR type reactor comprises a plurality of reactor cores in a reactor container. Namely, a plurality of pot containing vessels are disposed in the reactor vessel and a plurality of reactor cores are formed in a state where an integrated-type fuel assembly is each inserted to a pot, and a coolant pipeline is connected to each of the pot containing-vessel to cool the reactor core respectively. When fuels are exchanged, the integrated-type fuel assembly is taken out together with the pot from the reactor vessel in a state where the integrated-type fuel assembly is immersed in the coolants in the pot as it is. Accordingly, coolants are supplied to each of the pot containing-vessel connected with the coolant pipeline and circulate while cooling the integrated-type fuel assembly for every pot. Then, when the fuels are exchanged, the integrated type fuel assembly is taken out to the outside of the reactor together with the pot by taking up the pot from the pot-containing vessel. Then, neutron economy is improved to thereby improve reactor power and the breeding ratio. (N.H.)

  12. Reactor pulse repeatability studies at the annular core research reactor

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, K.R. [Applied Nuclear Technologies, Sandia National Laboratories, Mail Stop 1146, Post Office Box 5800, Albuquerque, NM 87185-1146 (United States); Trinh, T.Q. [Nuclear Facility Operations, Sandia National Laboratories, Mail Stop 0614, Post Office Box 5800, Albuquerque, NM 87185-1146 (United States); Luker, S. M. [Applied Nuclear Technologies, Sandia National Laboratories, Mail Stop 1146, Post Office Box 5800, Albuquerque, NM 87185-1146 (United States)

    2011-07-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories is a water-moderated pool-type reactor designed for testing many types of objects in the pulse and steady-state mode of operations. Personnel at Sandia began working to improve the repeatability of pulse operations for experimenters in the facility. The ACRR has a unique UO{sub 2}-BeO fuel that makes the task of producing repeatable pulses difficult with the current operating procedure. The ACRR produces a significant quantity of photoneutrons through the {sup 9}Be({gamma}, n){sup 8}Be reaction in the fuel elements. The photoneutrons are the result of the gammas produced during fission and in fission product decay, so their production is very much dependent on the reactor power history and changes throughout the day/week of experiments in the facility. Because the photoneutrons interfere with the delayed-critical measurements required for accurate pulse reactivity prediction, a new operating procedure was created. The photoneutron effects at delayed critical are minimized when using the modified procedure. In addition, the pulse element removal time is standardized for all pulse operations with the modified procedure, and this produces less variation in reactivity removal times. (authors)

  13. Flow-induced Vibration Test on Radiation Vessel Assembly of China Experimental Fast Reactor%中国实验快堆辐照容器组件流致振动实验

    Institute of Scientific and Technical Information of China (English)

    翟伟明; 周平; 程道喜; 苏喜平; 齐晓光; 杨兵

    2015-01-01

    在水力实验台架上利用DASP-V10振动测量系统对中国实验快堆结构材料辐照容器组件进行流致振动实验。通过实验,得到组件前5阶固有振动特性(固有频率、振型)及额定流量工况(0.6 m3/h)和120%额定流量工况下组件的振动响应及动态应变响应。实验以固有振动特性测量结果来指导开展组件在运行工况下的流致振动实验,并根据得到的流致振动结果结合组件固有振动特性从振动力学原理上阐述了辐照容器组件共振现象的产生及其对组件运行的影响。%Responses of the radiation vessel assembly of China Experimental Fast Reac-tor to flow-induced vibration were measured by DASP-V1 0 vibration system in a ther-mal-hydraulic test facility.The first five intrinsic frequencies and mode shapes of assem-bly were obtained by the test.Vibration and dynamic strains responses were obtained during the dynamic tests which were operated in the rated flow of 0.6 m3/h and 120% of the rated flow.The flow-induced vibration test was operated to follow the results of the test measurements for intrinsic vibration characteristics.Results of the two tests give the reason why the resonance vibration occurrs and explain its effect to the assembly based on vibration mechanics.

  14. The antineutrino energy structure in reactor experiments

    CERN Document Server

    Novella, P

    2015-01-01

    The recent observation of an energy structure in the reactor antineutrino spectrum is reviewed. The reactor experiments Daya Bay, Double Chooz and RENO have reported a consistent excess of antineutrinos deviating from the flux predictions, with a local significance of about 4$\\sigma$ between 4 and 6 MeV of the positron energy spectrum. The possible causes of the structure are analyzed in this work, along with the different experimental approaches developed to identify its origin. Considering the available data and results from the three experiments, the most likely explanation concerns the reactor flux predictions and the associated uncertainties. Therefore, the different current models are described and compared. The possible sources of incompleteness or inaccuracy of such models are discussed, as well as the experimental data required to improve their precision.

  15. Gaseous fuel reactor systems for aerospace applications

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.

    1977-01-01

    Research on the gaseous fuel nuclear rocket concept continues under the programs of the U.S. National Aeronautics and Space Administration (NASA) Office for Aeronautics and Space Technology and now includes work related to power applications in space and on earth. In a cavity reactor test series, initial experiments confirmed the low critical mass determined from reactor physics calculations. Recent work with flowing UF6 fuel indicates stable operation at increased power levels. Preliminary design and experimental verification of test hardware for high-temperature experiments have been accomplished. Research on energy extraction from fissioning gases has resulted in lasers energized by fission fragments. Combined experimental results and studies indicate that gaseous-fuel reactor systems have significant potential for providing nuclear fission power in space and on earth.

  16. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...

  17. Investigating the Spectral Anomaly with Different Reactor Antineutrino Experiments

    CERN Document Server

    Buck, Christian; Haser, Julia; Lindner, Manfred

    2015-01-01

    The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in the neutrino flux predictions. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between flux models and experimental results. We combine experiments at reactors which are highly enriched in ${}^{235}$U with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment.

  18. A porous medium approach for the fluid structure interaction modelling of a water pressurized nuclear reactor core fuel assemblies: simulation and experimentation; Une approche milieu poreux pour la modeisation de l'interaction fluide-structure des assemblages combustibles dans un coeur de reacteur a eau pressurisee: simulation et experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, G.

    2008-10-15

    The designing of a pressurized water reactor core subjected to seismic loading, is a major concern of the nuclear industry. We propose, in this PhD report, to establish the global behaviour equations of the core, in term of a porous medium. Local equations of fluid and structure are space averaged on a control volume, thus we define an equivalent fluid and an equivalent structure, of which unknowns are defined on the whole space. The non-linear fuel assemblies behaviour is modelled by a visco-elastic constitutive law. The fluid-structure coupling is accounted for by a body force, the expression of that force is based on empirical formula of fluid forces acting on a tube subject to an axial flow. The resulting equations are solved using a finite element method. A validation of the model, on three experimental device, is proposed. The first one presents two fuel assemblies subjected to axial flow. One of the two fuel assemblies is deviated from its position of equilibrium and released, while the other is at rest. The second one presents a six assemblies row, immersed in water, placed on a shaking table that can simulate seismic loading. Finally, the last one presents nine fuel assemblies network, arranged in a three by three, subject to an axial flow. The displacement of the central fuel assembly is imposed. The simulations are in agreement with the experiments, the model reproduces the influence of the flow of fluid on the dynamics and coupling of the fuel assemblies. (author)

  19. Antineutrino reactor safeguards - a case study

    CERN Document Server

    Christensen, Eric; Jaffke, Patrick

    2013-01-01

    Antineutrinos have been proposed as a means of reactor safeguards for more than 30 years and there has been impressive experimental progress in neutrino detection. In this paper we conduct, for the first time, a case study of the application of antineutrino safeguards to a real-world scenario - the North Korean nuclear crisis in 1994. We derive detection limits to a partial or full core discharge in 1989 based on actual IAEA safeguards access and find that two independent methods would have yielded positive evidence for a second core with very high confidence. To generalize our results, we provide detailed estimates for the sensitivity to the plutonium content of various types of reactors, including most types of plutonium production reactors, based on detailed reactor simulations. A key finding of this study is that a wide class of reactors with a thermal power of less than 0.1-1 GWth can be safeguarded achieving IAEA goals for quantitative sensitivity and timeliness with detectors right outside the reactor ...

  20. Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.

    Science.gov (United States)

    Paspek, Stephen C.; And Others

    1980-01-01

    Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)

  1. A reference worldwide model for antineutrinos from reactors

    CERN Document Server

    Baldoncini, Marica; Fiorentini, Giovanni; Mantovani, Fabio; Ricci, Barbara; Strati, Virginia; Xhixha, Gerti

    2014-01-01

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillate...

  2. Creation of a neutrino laboratory for search for sterile neutrino at SM-3 reactor

    CERN Document Server

    Serebrov, A P; Samoylov, R M; Fomin, A K; Zinoviev, V G; Neustroev, P V; Golovtsov, V L; Gruzinsky, N V; Solovey, V A; Cherniy, A V; Zherebtsov, O M; Martemyanov, V P; Zinoev, V G; Tarasenkov, V G; Aleshin, V I; Petelin, A L; Pavlov, S V; Izhutov, A L; Sazontov, S A; Ryazanov, D K; Gromov, M O; Afanasiev, V V; Matrosov, L N; Matrosova, M Yu

    2015-01-01

    In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.

  3. Light water reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  4. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  5. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  6. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  7. Investigation of materials for fusion power reactors

    Science.gov (United States)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  8. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  9. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  10. Characterization of the performances of an innovative heat-exchanger/reactor

    OpenAIRE

    Théron, Felicie; Anxionnaz-Minvielle, Zoé; Cabassud, Michel; Gourdon, Christophe; Tochon, Patrice

    2014-01-01

    International audience; The use of heat exchanger/reactors (HEX/reactors) is a promising way to overcome the barrier of poor heat transfer in batch reactors. However to reach residence time long enough to complete the chemistry,low Reynolds number has to be combined with both a plug flow behaviour and the intensification of heat and mass transfers. This work concerns the experimental approach used to characterize an innovative HEX/reactor. The pilot is made of three process plates sandwiched ...

  11. Gas cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-01

    Although most of the development work on fast breeder reactors has been devoted to the use of liquid metal cooling, interest has been expressed for a number of years in alternative breeder concepts using other coolants. One of a number of concepts in which interest has been retained is the Gas-Cooled Fast Reactor (GCFR). As presently envisioned, it would operate on the uranium-plutonium mixed oxide fuel cycle, similar to that used in the Liquid Metal Fast Breeder Reactor (LMFBR), and would use helium gas as the coolant.

  12. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  13. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  14. Dismantling design for the loop rooms on the MR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.; Fecitt, L. [NUKEM Limited, Dounreay (United Kingdom); Gorlinsky, Yu.E. [RRC Kurchatov Institute, Moscow (Russian Federation); Harman, N.F.; Jackson, R. [Serco Technical and Assurance Services, Warrington (United Kingdom); Kolyadin, V.I. [RRC Kurchatov Institute, Moscow (Russian Federation); Lobach, Yu.N., E-mail: lobach@kinr.kiev.u [Institute for Nuclear Research of NASU, pr.Nauki, 47, 03680 Kiev (Ukraine); Pavlenko, V.I. [RRC Kurchatov Institute, Moscow (Russian Federation)

    2009-12-15

    The recently completed international co-operation project was aimed at planning for decommissioning the MR reactor identified as a pilot plant for the decommissioning of the other shutdown reactors on the site. The MR reactor was a pool-type, materials testing reactor with the total thermal power of 50 MW which incorporated pressure tubes containing fuel under test. The MR facility includes the reactor with its nine loop rig rooms containing pumps, heat exchangers and experimental equipment as well as systems and equipment located in other buildings in the complex. The objective of the MR reactor decommissioning project was to identify dismantling equipment and the decommissioning methodology for the reactor, loop rooms and redundant services to permit the refit and re-use of the building for a different nuclear related purpose. The dismantling design comprises two separate, but combined, tasks, namely, the dismantling of reactor installation itself and dismantling of experimental loops. The techniques proposed to undertake the dismantling operations within the loop rooms are described. Two options have been developed for removing contaminated equipment from the high radiation field loop rooms and packaging the waste into approved waste containers. The benefits and detriments of both methods have been identified, which allows implementing the safe, timely and cost-effective decommissioning.

  15. ANAEROBIC DIGESTION AND THE DENITRIFICATION IN UASB REACTOR

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2008-01-01

    Full Text Available The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was constituted by two units: first one was a nitrification reactor with 35 L volume and 15 d of sludge age. This system was fed with raw sanitary waste. Second unit was an UASB, with 7.8 L and 6 h of hydraulic detention time, fed with ¾ of effluent nitrification reactor and ¼ of raw sanitary waste. This work had as objective to evaluate the performance of the UASB reactor. In terms of removal efficiency, of bath COD and nitrogen, it was verified that the anaerobic digestion process was not affected. The removal efficiency of organic material expressed in COD was 71%, performance already expected for a reactor of this type. It was also observed that the denitrification process happened; the removal nitrate efficiency was 90%. Therefore, the denitrification process in reactor UASB is viable.

  16. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  17. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  18. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  19. Helias reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C.D. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Grieger, G. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Harmeyer, E. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kisslinger, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Karulin, N. [Nuclear Fusion Institute, Moscow (Russian Federation); Maurer, W. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Nuehrenberg, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Rau, F. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Wobig, H. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1995-10-01

    The present status of Helias reactor studies is characterised by the identification and investigation of specific issues which result from the particular properties of this type of stellarator. On the technical side these are issues related to the coil system, while physics studies have concentrated on confinement, alpha-particle behaviour and ignition conditions. The usual assumptions have been made in those fields which are common to all toroidal fusion reactors: blanket and shield, refuelling and exhaust, safety and economic aspects. For blanket and shield sufficient space has been provided, a detailed concept will be developed in future. To date more emphasis has been placed on scoping and parameter studies as opposed to fixing a specific set of parameters and providing a detailed point study. One result of the Helias reactor studies is that physical dimensions are on the same order as those of tokamak reactors. However, it should be noticed that this comparison is difficult in view of the large spectrum of tokamak reactors ranging from a small reactor like Aries, to a large device such as SEAFP. The notion that the large aspect ratio of 10 or more in Helias configurations also leads to large reactors is misleading, since the large major radius of 22 m is compensated by the average plasma radius of 1.8 m and the average coil radius of 5 m. The plasma volume of 1400 m{sup 3} is about the same as the ITER reactor and the magnetic energy of the coil system is about the same or even slightly smaller than envisaged in ITER. (orig.)

  20. Future Reactor Experiments

    OpenAIRE

    He, Miao

    2013-01-01

    The measurement of the neutrino mixing angle $\\theta_{13}$ opens a gateway for the next generation experiments to measure the neutrino mass hierarchy and the leptonic CP-violating phase. Future reactor experiments will focus on mass hierarchy determination and the precision measurement of mixing parameters. Mass hierarchy can be determined from the disappearance of reactor electron antineutrinos based on the interference effect of two separated oscillation modes. Relative and absolute measure...

  1. Reactor Neutrino Experiments

    OpenAIRE

    Cao, Jun

    2007-01-01

    Precisely measuring $\\theta_{13}$ is one of the highest priority in neutrino oscillation study. Reactor experiments can cleanly determine $\\theta_{13}$. Past reactor neutrino experiments are reviewed and status of next precision $\\theta_{13}$ experiments are presented. Daya Bay is designed to measure $\\sin^22\\theta_{13}$ to better than 0.01 and Double Chooz and RENO are designed to measure it to 0.02-0.03. All are heading to full operation in 2010. Recent improvements in neutrino moment measu...

  2. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  3. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  4. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)

    1999-04-01

    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.

  5. Design of the fuel element 'snow-flake' in uranium oxide, canned with aluminium, for the experimental reactor EL 3 (1960); Etude d'un element combustible en oxyde d'uranium gaine d'aluminium, type ''cristal de neige'' pour la pile EL 3 (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Gauthron, M.; Guibert, B. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This report sums up the main studies have been carried out on the fuel element 'Snowflake' (uranium oxide, canned with aluminium), designed to replace the present element of the experimental reactor EL3 in order to increase the reactivity without modifying the neutron flux/thermal power ratio. (author) [French] Ce rapport resume les principales etudes qui ont ete faites sur l'element combustible 'Cristal de Neige' (a oxyde d'uranium, gaine d'aluminium) destine a remnlacer l'element actuel du reacteur experimental EL3, afin d'en augmenter la reactivite sans modifier le rapport flux neutronique-puissance thermique. (auteur)

  6. Coupled Transport Phenomena in Corrugated Photocatalytic Reactors

    Institute of Scientific and Technical Information of China (English)

    Adam A. Donaldson; ZHANG Zisheng

    2011-01-01

    Corrugated reactors are known for their use in applications requiring UV-exposure, whereby media flowing within the corrugated channel react with a photo-active catalyst impregnated on the surface (i.e. TiO2). The performance in these systems is dependent on catalyst properties and reactivity for a given light source, in conjunc-tion with the coupled transport of reactants within the media and photons falling incident to the catalyst surface. Experimental and computational analyses of local mass transfer and radiation pattems for a broad range of corrugation angles, depths, and non-idealities introduced during manufacture (i.e. fold curvature) are thus integrated to the design and optimization of these systems. This work explores techniques for determining incident energy distribu-tions on the surface of corrugated reactor geometries with non-ideal cross-sectional profiles, and the local and overall mass transfer rates obtained using computational fluid dynamics and experimental analysis. By examining the reaction kinetics for the photo-degradation of 4-chlorophenol over a TiO2 catalyst, the effects of surface area, energy incidence with photon recapture, and local mass transfer on overall reactor performance are presented to highlight ootimization concerns for these tvoes of reactors.

  7. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  8. REACTOR GROUT THERMAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  9. Three controllable factors of steady operation of EGSB reactor

    Institute of Scientific and Technical Information of China (English)

    LI Hui-li; LU Bing-nan; LI Fang

    2008-01-01

    The bench- scale EGSB (expanded granular sludge bed) reactor was operated to study the effect of sludge loading rate, pH value and nutrient element on the operation of the EGSB reactor and the control rule of these factors. Continuous flow was used to treat synthetic wastewater containing dextrose and beer, and the temperature of reactor was controlled at mesophiles temperature (33 ℃). The experimental results demonstrated trolled by adding sodium bicarbonate, the proper additive quantity was 1000-1200 mg/L; the additive quantity wastewater with 400-5000 mg/L COD concentration. The COD removal efficiency was over 85%. The operation of the EGSB reactor was steady and the EGSB reactor had strong anti-shock load ability.

  10. Modeling of a Reverse Flow Reactor for Methanol Synthesis

    Institute of Scientific and Technical Information of China (English)

    陈晓春; P.L.Silveston; 等

    2003-01-01

    An accurate one-dimensional,heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall,and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented.Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation.Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained.The model was found to closely predict the reactor performance under a wide range of parameters were obtained.The model was found to closely predict the reactor preformance under a wide range of operating conditions,such as carbon oxide concentrations,volumetric flow rate,and cyclic period.

  11. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  12. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takeshi; Iida, Masaaki; Moriki, Yasuyuki

    1994-10-18

    A reactor core is divided into a plurality of coolants flowrate regions, and electromagnetic pumps exclusively used for each of the flowrate regions are disposed to distribute coolants flowrates in the reactor core. Further, the flowrate of each of the electromagnetic pumps is automatically controlled depending on signals from a temperature detector disposed at the exit of the reactor core, so that the flowrate of the region can be controlled optimally depending on the burning of reactor core fuels. Then, the electromagnetic pumps disposed for every divided region are controlled respectively, so that the coolants flowrate distribution suitable to each of the regions can be attained. Margin for fuel design is decreased, fuels are used effectively, as well as an operation efficiency can be improved. Moreover, since the electromagnetic pump has less flow resistance compared with a mechanical type pump, and flow resistance of the reactor core flowrate control mechanism is eliminated, greater circulating flowrate can be ensured after occurrence of accident in a natural convection using a buoyancy of coolants utilizable for after-heat removal as a driving force. (N.H.).

  13. 移动床生物膜反应器处理极低C/N废水试验研究%Experimental studies of extremely low C/N wastewater treatment with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    陈建磊; 戴海平

    2011-01-01

    在常温下采用移动床生物膜反应器处理低C/N比废水.结果显示:在填料填充比为40%、进水氨氮质量浓度为25 mg/L条件下,出水氨氮质量浓度基本稳定在4 mg/L左右,氨氮去除率在80%以上,硝化效果突出;进水C/N不足1时,TN及COD去除率分别能达到55%、60%以上,说明移动床生物膜反应器用于处理极低C/N废水具有良好效果.%The extremely low C/N wastewater is treated with moving bed biofilm reactor at the normal temperature. The results show that: With the 40% filling proportion of the packing and about 25 mg/L ammonia nitrogen of the influent, the ammonia nitrogen of the effluent water is stably 4 mg/L, and the removal efficiency of the ammonia nitrogen is above 80%, the nitrification effect is prominent; while the C/N of influent is below 1 the removal rate of TN and COD can reach over 55%, and 60% respectively. These facts show that the moving bed biofilm reactor plays a good role in dealing with the extremely low C/N wastewater.

  14. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  15. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  16. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  17. Operation of Reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 Annual Report of SPR Operation Chu Shaochu Having overseen by National Nuclear Safety Administration and specialists, the reactor restarted up successfully after Safety renovation on April 16, 1996. In August 1996 the normal operation of SPR was approved by the authorities of Naitonal Nuclear Safety Administration. 1 Operation status In 1996, the reactor operated safely for 40 d and the energy released was about 137.3 MW·d. The operation status of SPR is shown in table 1. The reactor started up to higher power (power more than 1 MW) and lower power (for physics experiments) 4 times and 14 times respectively. Measurement of control rod efficiency and other measurement tasks were 2 times and 5 times respectively.

  18. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  19. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  20. Nuclear reactors built, being built, or planned, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  1. Nuclear reactors built, being built, or planned: 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  2. Methods for quantifying uncertainty in fast reactor analyses.

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Fischer, P. F.

    2008-04-07

    Liquid-metal-cooled fast reactors in the form of sodium-cooled fast reactors have been successfully built and tested in the U.S. and throughout the world. However, no fast reactor has operated in the U.S. for nearly fourteen years. More importantly, the U.S. has not constructed a fast reactor in nearly 30 years. In addition to reestablishing the necessary industrial infrastructure, the development, testing, and licensing of a new, advanced fast reactor concept will likely require a significant base technology program that will rely more heavily on modeling and simulation than has been done in the past. The ability to quantify uncertainty in modeling and simulations will be an important part of any experimental program and can provide added confidence that established design limits and safety margins are appropriate. In addition, there is an increasing demand from the nuclear industry for best-estimate analysis methods to provide confidence bounds along with their results. The ability to quantify uncertainty will be an important component of modeling that is used to support design, testing, and experimental programs. Three avenues of UQ investigation are proposed. Two relatively new approaches are described which can be directly coupled to simulation codes currently being developed under the Advanced Simulation and Modeling program within the Reactor Campaign. A third approach, based on robust Monte Carlo methods, can be used in conjunction with existing reactor analysis codes as a means of verification and validation of the more detailed approaches.

  3. Study of the uniform corrosion of an aluminium alloy used for the fuel cladding of the Jules Horowitz experimental reactor; Etude de la corrosion uniforme d'un alliage d'aluminium utilise comme gainage du combustible nucleaire du reacteur experimental Jules Horowitz

    Energy Technology Data Exchange (ETDEWEB)

    Wintergerst, M. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI), 91 - Gif-sur-Yvette (France)

    2008-07-01

    For the Jules Horowitz new material testing reactor, an aluminium base alloy, AlFeNi, will be used for the cladding of the fuel plates. Taking into account the thermal properties of the alloy and of its oxide, the corrosion of the fuel cans presents many problems. The aim of this thesis is to provide a growing kinetic of the oxide layer at the surface of the AlFeNi fuel can in order to predict the life time of fuel element. Thus the mechanism of degradation of the cladding will be describe in order to integrate the different parameters of the operating reactor. (A.L.B.)

  4. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  5. An Overview of Reactor Concepts, a Survey of Reactor Designs.

    Science.gov (United States)

    1985-02-01

    Public Affairs Office and is releasaole to the National Technical Information Services (NTIS). At NTIS, it will be available to the general public...Reactors that use deu- terium (heavy water) as a coolant can use natural uranium as a fuel. The * Canadian reactor, CANDU , utilizes this concept...reactor core at the top and discharged at the Dotton while the reactor is in operation. The discharged fuel can then b inspected to see if it can De used

  6. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  7. Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders

    Science.gov (United States)

    Karpov, I. V.; Ushakov, A. V.; Lepeshev, A. A.; Fedorov, L. Yu.

    2017-01-01

    A reactor for producing nanopowders in the plasma of a low-pressure arc discharge has been developed. As a plasma source, a pulsed cold-cathode arc evaporator has been applied. The design and operating principle of the reactor have been described. Experimental data on how the movement of a gaseous mixture in the reactor influences the properties of nanopowders have been presented.

  8. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  9. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  10. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  11. Identification of Chemical Reactor Plant’s Mathematical Model

    Directory of Open Access Journals (Sweden)

    Pyakillya Boris

    2015-01-01

    Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.

  12. Experimental Study of Big Row Spacing Cultivation of Tomato Using Straw Biological Reactor Technology%应用秸秆生物反应堆技术大行距栽培番茄试验研究

    Institute of Scientific and Technical Information of China (English)

    王继涛; 张翔; 温学萍; 赵玮; 俞风娟; 汪金山

    2015-01-01

    应用秸秆生物反应堆技术能有效地改善设施内环境因素、减缓病害发生、提高产量效益,但此项技术在开沟过程中比较费工费力,为了降低秸秆生物反应堆技术劳动用工和生产投入,特开展秸秆生物反应堆技术大行距栽培番茄试验研究。结果表明:仅挖沟、埋秸秆、起垄、铺设滴管、定植环节比对照每公顷节省劳动用工35.7%,节约成本16810.5元/hm2,上市期提前5 d,产量增加26.68%,病虫害发病率明显降低。综合田间生长势及室内考种数据,建议在宁夏地区大面积推广应用秸秆生物反应堆技术大行距栽培番茄。%The application of the straw biological reactor technology can effectively improve the environmental factors within the facility, slow down the occurrence of the disease and improve the yield and benefit. But with this technology, in the process of ditching, a lot of work and effort are needed. In order to reduce the labor employment and production inputs in the utilization of the technology, an experiment research on the big row spacing cultivation of tomato using the straw biologi-cal reactor technology was conducted. The results showed that compared with the control, only in the links such as ditching, straw burring, ridging, laying of dropper and planting, 35.7% of the labor employment per hectare, 16,810.5 yuan/hm2 of the cost could be saved the marketing time could be advance by 5 days, the yield could be increased by 26.68% and the inci-dence of pests and diseases could be lowered significantly. In considering the comprehensive growth potential in the field and the indoor test data it is suggested that the big row spacing cultivation of tomato using the straw biological reactor technology should be extended and applied in large areas in Ningxia.

  13. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  14. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  15. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  16. Experimental research on sewage treatment with a concrete eco-membrane biological reactor with micro aeration%微曝气混凝土生态膜法污水处理试验研究

    Institute of Scientific and Technical Information of China (English)

    蒋娜莎; 金腊华

    2011-01-01

    为提高污染物去除效率,在渠式混凝土膜生物反应器内部的部分反应槽中增加间歇性的微曝气,增强反应器的好氧氧化作用;采用连续流运行方式,对实际生活污水进行了污水处理实验.实验结果表明,微曝气混凝土生态膜法的污水处理效率高:CODcx去除率>70%、BOD5去除率>80%、氨氮去除率>75%、总氮和总磷的去除率均>50%,出水水质基本达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级B标准要求.%In order to improve pollutant removal effects,sewage treatment experiments have been made with a homemade channel concrete eco-membrane biological reactor,in which micro aeration is adopted at some bed of the channel to increase intermittent micro aeration and enhance aerobic oxidation of the reactor. Experiments on treating actual sewage are carried out by continuous flowing operations. The results show that the technology of concrete eco-membrane with micro aeration has optimal sewage purification effects,I.e. GODcr removal rate>70% , BOD5 removal rate>80% , ammonia nitrogen removal rate>75% ,and both of total nitrogen and total phosphorus removal rate >50%. The effluent water quality can basically reach the requirements of B standard of the first class of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).

  17. Experimental study on the treatment of wastewater from food waste by a new type of internal circulation reactor%新型IC反应器处理餐厨垃圾废水的实验研究

    Institute of Scientific and Technical Information of China (English)

    王罕; 蒋文化; 顾礼炜; 马三剑

    2014-01-01

    采用内循环厌氧反应器(IC)处理餐厨垃圾废水。结果表明:采用快速提升负荷至5 kg/(m3·d)并稳定运行19 d这一启动方式有利于提高污泥的活性。负荷提升中后期,出水pH高于进水pH。IC处理餐厨垃圾废水的最大容积负荷为25.2 kg/(m3·d),此时COD去除率下降到86%。稳定运行期,当进水COD达到22.4 mg/L,出水COD稳定在1650~1950 mg/L,COD去除率高达91.8%。%The new type of internal circulation (IC ) reactor has been used for treating the wastewater from food waste water. The results show that in the start-up period,the start-up form of raising the load rapidly to 5 kg/(m3·d) and running the system steadily for 19 d,is good for improving the sludge activity. In the mid late period of load lifting,the pH of effluent is higher than that of influent. The maximum volume load of food-waste wastewater treated by IC reactor is 25.2 kg/(m3·d). At this time,the COD removing rate declines to 86%. In the steadily running period,when COD concentration of influent reaches 22.4 mg/L,the COD concentration of effluent stabilizes between 1 650-1 950 mg/L,and the COD removing rate reaches 91.8%.

  18. Experimental Study on Characteristics of Photosynthetic Bacteria in Continuously Hydrogen Production Reactor%连续制氢反应器中光合细菌特性试验研究

    Institute of Scientific and Technical Information of China (English)

    李亚丽

    2011-01-01

    [Objective] The study was to lay a foundation for the industrialization development of hydrogen production with photosynthetic bacteria. [Method] With the mixed bacteria of photosynthetic bacteria as the tested strains, the concentration change, hydrogen producing characteristics of the photosynthetic bacteria and the relationship between bacteria number and hydrogen yield were studied. [ Result] The photosynthetic bacteria concentration and hydrogen yield in the 2#, 3# compartment of continuously hydrogen production reactor was the most. In the same compartment, the photosynthetic bacteria concentration and hydrogen yield on the 2nd, 3rd d was the most. [Conclusion] The hydrogen yield of photosynthetic bacteria in reactor was reduced with the reduction of its concentration.%[目的]为光合细菌制氢的工业化发展奠定基础.[方法]以光合细菌混合菌群为试验菌种,研究其在连续制氢反应器中的浓度变化、产氢特性及细菌数量与产氢量的关系.[结果]连续制氢反应器的2#、3#隔室光合细菌浓度最大,产氢量也最大.同一隔室内,第2、3d光合细菌浓度和产氢量均达到最大.[结论]产氢量随反应器中光合细菌数量的减少而减少.

  19. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  20. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  1. Chromatographic and Related Reactors.

    Science.gov (United States)

    1988-01-07

    special information about effects of surface heteroge- neity in the methanation reaction. Studies of an efficient multicolumn assembly for measuring...of organic basic catalysts such as pyridine and 4-methylpicoline. It was demonstrated that the chromatographic reactor gave special information about...Programmed Reaction to obtain special information about surface heterogeneity in the methanation reaction. Advantages of stopped flow over steady state

  2. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  3. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  4. The First Reactor.

    Science.gov (United States)

    Department of Energy, Washington, DC.

    On December 2, 1942, in a racquet court underneath the West Stands of Stagg Field at the University of Chicago, a team of scientists led by Enrico Fermi created the first controlled, self-sustaining nuclear chain reaction. This updated and revised story of the first reactor (or "pile") is based on postwar interviews (as told to Corbin…

  5. MULTISTAGE FLUIDIZED BED REACTOR

    Science.gov (United States)

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  6. Brazilian multipurpose reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Brazilian Multipurpose Reactor (RMB) Project is an action of the Federal Government, through the Ministry of Science Technology and Innovation (MCTI) and has its execution under the responsibility of the Brazilian National Nuclear Energy Commission (CNEN). Within the CNEN, the project is coordinated by the Research and Development Directorate (DPD) and developed through research units of this board: Institute of Nuclear Energy Research (IPEN); Nuclear Engineering Institute (IEN); Centre for Development of Nuclear Technology (CDTN); Regional Center of Nuclear Sciences (CRCN-NE); and Institute of Radiation Protection and Dosimetry (IRD). The Navy Technological Center in Sao Paulo (CTMSP) and also the participation of other research centers, universities, laboratories and companies in the nuclear sector are important and strategic partnerships. The conceptual design and the safety analysis of the reactor and main facilities, related to nuclear and environmental licensing, are performed by technicians of the research units of DPD / CNEN. The basic design was contracted to engineering companies as INTERTHECNE from Brazil and INVAP from Argentine. The research units from DPD/CNEN are also responsible for the design verification on all engineering documents developed by the contracted companies. The construction and installation should be performed by specific national companies and international partnerships. The Nuclear Reactor RMB will be a open pool type reactor with maximum power of 30 MW and have the OPAL nuclear reactor of 20 MW, built in Australia and designed by INVAP, as reference. The RMB reactor core will have a 5x5 configuration, consisting of 23 elements fuels (EC) of U{sub 3}Si{sub 2} dispersion-type Al having a density of up to 3.5 gU/cm{sup 3} and enrichment of 19.75% by weight of {sup 23{sup 5}}U. Two positions will be available in the core for materials irradiation devices. The main objectives of the RMB Reactor and the other nuclear and radioactive

  7. Status and problems of fusion reactor development.

    Science.gov (United States)

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  8. Status of the Prediction of Reactor Anti-neutrino Spectra

    Science.gov (United States)

    Fallot, Muriel

    2015-04-01

    New generation neutrino physics experiments at reactors have recently determined the value of the θ13 mixing angle. Even though their principle is to use multiple detectors allowing to minimize the influence of reactor and nuclear physics ingredients on their results, these ingredients cannot be totally eliminated. They include reactor simulations, but also new computations of reactor anti-neutrino energy spectra. Recently, after a new computation of the reactor anti-neutrino energy spectra, based on the conversion of integral data of the beta spectra from 235U, and 239;241Pu, a deficit of reactor anti-neutrinos measured by short baseline experiments was pointed out. This is called the reactor anomaly, a new puzzle in the neutrino physics area. Since then, numerous new experimental neutrino projects have emerged. In parallel, computations of the anti-neutrino spectra independent from the ILL data would be desirable. One possibility is the use of the summation method, summing all the contributions of the fission product beta decay branches that can be found in nuclear databases. Studies have shown that in order to obtain reliable summation anti-neutrino energy spectra, new nuclear physics measurements of selected fission product beta decay properties are required. Lately, the first integral measurement of the beta spectrum associated to fast fission of 238U has been performed. Even more recently, the question of the influence of forbidden decays in the determination of reactor anti-neutrino energy spectrum has been raised. At this conference, we will present the methods used to compute reactor anti-neutrino energy spectra, the recent published developments on the topic, remaining open questions and some experimental outlooks.

  9. Modeling Chemical Reactors I: Quiescent Reactors

    CERN Document Server

    Michoski, C E; Schmitz, P G

    2010-01-01

    We introduce a fully generalized quiescent chemical reactor system in arbitrary space $\\vdim =1,2$ or 3, with $n\\in\\mathbb{N}$ chemical constituents $\\alpha_{i}$, where the character of the numerical solution is strongly determined by the relative scaling between the local reactivity of species $\\alpha_{i}$ and the local functional diffusivity $\\mathscr{D}_{ij}(\\alpha)$ of the reaction mixture. We develop an operator time-splitting predictor multi-corrector RK--LDG scheme, and utilize $hp$-adaptivity relying only on the entropy $\\mathscr{S}_{\\mathfrak{R}}$ of the reactive system $\\mathfrak{R}$. This condition preserves these bounded nonlinear entropy functionals as a necessarily enforced stability condition on the coupled system. We apply this scheme to a number of application problems in chemical kinetics; including a difficult classical problem arising in nonequilibrium thermodynamics known as the Belousov-Zhabotinskii reaction where we utilize a concentration-dependent diffusivity tensor $\\mathscr{D}_{ij}(...

  10. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  11. Tritium release from lithium silicate and lithium aluminate, in-reactor and out-of-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.

    1965-11-03

    Considerable technology has developed for production of tritium in metallic target systems. At normal N-Reactor temperatures ({approximately} 300{degrees}C), aluminum-lithium alloys appear to offer a satisfactory system for tritium production. However, reactor safety requirements have generated interest in a target system which will hold the lithium in place at temperatures to 1200{degrees}C. At the same time, gas retention at irradiation temperatures ({approximately}300{degrees}C) must be acceptable, and extraction of the product must be practical. To determine in-reactor gas release characteristics of the silicate and aluminate materials, targets were irradiated in quartz and aluminum capsules. Following irradiation, the gas (condensible and noncondensible fractions) released in-reactor was recovered by drilling the capsules. Subsequently, the targets were recovered and heated in a laboratory vacuum system to investigate characteristics of tritium and helium evolution as a function of temperature. The experimental procedures are discussed briefly, with details in the Appendix. The results of the study are discussed in terms of in-reactor release and later in terms of laboratory extractions.

  12. Fischer-Tropsch Slurry Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Gamwo, I.K.; Harke, F.W. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas, solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.

  13. Reactor monitoring using antineutrino detectors

    Science.gov (United States)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  14. Reactor vessel support system. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  15. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Saha, P., E-mail: pradip.saha@ge.com [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Aksan, N. [GRNSPG Group, University of Pisa (Italy); Andersen, J. [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Yan, J. [Westinghouse Electric Co., Columbia, SC (United States); Simoneau, J.P. [AREVA, Lyon (France); Leung, L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Bertrand, F. [CEA, DEN, DER, F-13108 Saint-Paul-Lez-Durance (France); Aoto, K.; Kamide, H. [Japan Atomic Energy Agency, Chiyoda-ku, Tokyo (Japan)

    2013-11-15

    The paper archives the proceedings of an expert panel discussion on the issues and future direction of thermal-hydraulic research and development in nuclear power reactors held at the NURETH-14 conference in Toronto, Canada, in September 2011. Thermal-hydraulic issues related to both operating and advanced reactors are presented. Advances in thermal-hydraulics have significantly improved the performance of operating reactors. Further thermal-hydraulics research and development is continuing in both experimental and computational areas for operating reactors, reactors under construction or ready for near-term deployment, and advanced Generation-IV reactors. As the computing power increases, the fine-scale multi-physics computational models, coupled with the systems analysis code, are expected to provide answers to many challenging problems in both operating and advanced reactor designs.

  16. Hydrolysis of Olive Oil with Immobilized Lipase in a Tapered Column Reactor

    Institute of Scientific and Technical Information of China (English)

    杨伯伦; 赵国胜; 林宏业

    2003-01-01

    Lipase was immobilized in ion exchange resin and then used in the hydrolysis of olive oil to produce fatty acids and glycerol. The time course of hydrolysis of olive oil was investigated in a stirred tank reactor using both of the free and immobilized lipases to find the yield of activity of immobilized enzyme. Continuous hydrolysis of olive oil was also carried out in a tapered column reactor and a cylindrical column reactor with a bottom ID of 10 mm at different upward flow rates. It can be known from experimental results that the degree of hydrolysis of olive oil in the tapered column reactor is moderately better than that in the cylindrical column reactor, the pressure drop in the tapered column reactor is much smaller than that in the cylindrical column reactor.

  17. Preliminary three-dimensional neutronics design and analysis of helium-cooled blanket for a multi-functional experimental fusion-fission hybrid reactor%多功能聚变裂变混合实验堆FDS-MFX氦冷包层三维中子学初步设计与分析

    Institute of Scientific and Technical Information of China (English)

    刘金超; FDS团队; 金鸣; 王明煌; 蒋洁琼; 王国忠; 邱岳峰; 宋婧; 邹俊; 吴宜灿

    2011-01-01

    FDS-MFX(Multi-Functional eXperimental fusion-fission hybrid reactor)是一个基于现实可行技术的多功能聚变裂变混合实验堆概念,分3个阶段相继开展实验研究,分别采用纯氚增殖包层、铀燃料包层和乏燃料包层.本文重点对其中铀燃料包层后期阶段中高浓缩铀模块的摆放方式和尺寸进行优化,给出一个区平均最大功率密度约为100 MW/m3,235U装料量约为1 t,氚增殖率为1.05的三维初步中子学方案.%A multi-functional experimental fusion-fission hybrid reactor concept named FDS-MFX , which is based on viable fusion and fission technologies, has been proposed. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this paper,the design optimization for the layout and the size of high enriched uranium modules inlater stage of uranium-fueled blanket has been performed.Finally,proposing a preliminarythree-dimension neutronies design with maximum average Power Density(Pdmax)100 MW/m3,loaded mass of the 235U 1 000 kg and TBR(Tritium Breeding Ratio)1.05.

  18. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  19. Pilot experimental investigation on preparation of nanometer calcium carbonate with microstructure reactor%微反应器制备纳米碳酸钙的中试实验研究

    Institute of Scientific and Technical Information of China (English)

    丁涛; 郑长征; 陈绪奎

    2011-01-01

    利用微反应器制备纳米碳酸钙,得到平均粒径在25 ~ 55nm之间的超细CaCO3颗粒.研究了不同操作条件对颗粒粒径的影响,并使用XRD、TEM、比表面积仪(BET)等仪器对样品进行了分析.结果表明,在优化条件下制得的纳米CaCO3颗粒有很好的分散性能,同时CO2的利用率可达到80%以上.%Using the preparation of nanometer calcium carbonate microstructure reactor pilot experiment, Ultra-fine calcium carbonate particles with average crystal between 25-SSmn are produced by membrane dispersion precipitation technology. The influence of the different operating conditions on the particle size are investigated and the samples are analyzed by using XRD, TEM, specific surface area instrument (BET). The results show that the prepared nanometer calcium carbonate particles have good dispersibility under the optimum conditions,at the same time the utilization of CO2 up to 80%.

  20. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  1. MEANS FOR COOLING REACTORS

    Science.gov (United States)

    Wheeler, J.A.

    1957-11-01

    A design of a reactor is presented in which the fuel elements may be immersed in a liquid coolant when desired without the necessity of removing them from the reactor structure. The fuel elements, containing the fissionable material are in plate form and are disposed within spaced slots in a moderator material, such as graphite to form the core. Adjacent the core is a tank containing the liquid coolant. The fuel elements are mounted in spaced relationship on a rotatable shaft which is located between the core and the tank so that by rotation of the shaft the fuel elements may be either inserted in the slots in the core to sustain a chain reaction or immersed in the coolant.

  2. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  3. Measuring techniques in gas–liquid and gas–liquid–solid reactors

    OpenAIRE

    Boyer, Cristophe; Billet, Anne-Marie; Wild, Gabriel

    2002-01-01

    International audience; This article offers an overview of the intrumentation techniques developped for multiphase flow analysis either in gas/liquid or in gas/liquid/solid reactors. To characterize properly such reactors, experimental data have to be acquired at different space scale or time frequency. The existing multiphase flow metering described give information concerning reactor hydrodynamics such as pressure, phases holdups, phases velocities, flow regime, size and shape of dispersed ...

  4. The application of research reactor Maria for analysis of thorium use in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S.; Andrzejewski, K.; Myslek-Laurikainen, B.; Pytel, B.; Szczurek, J. [Dep. Thorium Project, Institute of Atomic Energy POLATOM, 05-400 Otwock-Swierk (Poland); Polkowska-Motrenko, H. [Institute of Nuclear Chemistry and Technology, ul.Dorodna 16 03-195 Warszawa (Poland)

    2010-07-01

    The MARIA reactor, pool-type light-water cooled and beryllium moderated nuclear research reactor was used to evaluate the {sup 233}U breeding during the experimental irradiation of the thorium samples. The level of impurities concentrations was determined using ICP-MS method. The associated development of computer programs for analysis of application of thorium in EPR reactor consist of PC version of CORD-2/GNOMER system are presented. (authors)

  5. Reactor Neutrino Spectra

    OpenAIRE

    Hayes, A. C.; Vogel, Petr

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we ...

  6. REACTOR MODERATOR STRUCTURE

    Science.gov (United States)

    Greenstreet, B.L.

    1963-12-31

    A system for maintaining the alignment of moderator block structures in reactors is presented. Integral restraining grids are placed between each layer of blocks in the moderator structure, at the top of the uppermost layer, and at the bottom of the lowermost layer. Slots are provided in the top and bottom surfaces of the moderator blocks so as to provide a keying action with the grids. The grids are maintained in alignment by vertical guiding members disposed about their peripheries. (AEC)

  7. Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Y. [Mechanical Engineering Department, Nigde University, 51100 Nigde (Turkey)

    2009-03-15

    The effects of heat transfer mechanisms on the charging process in metal hydride reactors are studied under various charging pressures. Three different cylindrical reactors with the same base dimensions are designed and manufactured. The first one is a closed cylinder cooled with natural convection, the fins are manufactured around the second reactor and the third reactor is cooled with water circulating around the reactor. The temperatures of the reactor at several locations are measured during charging with a range of pressure of 1-10 bar. The third reactor shows the lowest temperature increase with the fastest charging time under all charging pressures investigated. The effective heat transfer coefficients of the reactors are also calculated according to the experimental results and they are found to be 5.5 {+-} 1 W m{sup -2} K{sup -1}, 35 {+-} 2 W m{sup -2} K{sup -1} and 113 {+-} 1 W m{sup -2} K{sup -1}, respectively. The experimental results showed that the charging of hydride reactors is mainly heat transfer dependent and the reactor with better cooling exhibits the fastest charging characteristics. (author)

  8. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  9. International working group on gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-15

    The purpose of the meeting was to provide a forum for exchange of information on safety and licensing aspects for gas-cooled reactors in order to provide comprehensive review of the present status and of directions for future applications and development. Contributions were made concerning the operating experience of the Fort St. Vrain (FSV) HTGR Power Plant in the United States of America, the experimental power station Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany, and the CO/sub 2/-cooled reactors in the United Kingdom such as Hunterson B and Hinkley Point B. The experience gained at each of these reactors has proved the high safety potential of Gas-cooled Reactor Power Plants.

  10. Microprocessor tester for the treat upgrade reactor trip system

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.

  11. Use of tower reactors for continuous ethanol production

    Directory of Open Access Journals (Sweden)

    M.C. Viegas

    2002-04-01

    Full Text Available The purpose of this work was to develop a continuous fermentation system operating with a tower reactor using some flocculent yeast strains isolated from an industrial process. The strain was an used in the trial of the proposed system, composed of two serial glass tower reactor. The effects of the following variables were studied on the yield and productivity of the system: total reducing sugar (TRS, concentration in feeding, recycle flow in the second reactor, residence time and diameter/height ratio of the reactors. It was observed that the TRS concentration in feeding and residence time is the variables that interfere most with the productivity of the system. Yield was not affected by any of the variables within the range of values studied. All trials were performed according to a factorial experimental design (making up a total of 19 trials and the results were evaluated by response surface.

  12. The reactor core TRIGA Mark-III with fuels type 30/20; El nucleo del reactor TRIGA Mark-III con combustible tipo 30/20

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F., E-mail: fortunato.aguilar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    This work describes the calculation series carried out with the program MCNP5 in order to define the configuration of the reactor core with fuels 30/20 (fuels with 30% of uranium content in the Or-Zr-H mixture and a nominal enrichment of 20%). To select the configuration of the reactor core more appropriate to the necessities and future uses of the reactor, the following criterions were taken into account: a) the excess in the reactor reactivity, b) the switch out margin and c) to have new irradiation facilities inside the reactor core. Taking into account these criterions is proceeded to know the characteristics of the components that form the reactor core (dimensions, geometry, materials, densities and positions), was elaborated a base model of the reactor core, for the MCNP5 code, with a configuration composed by 85 fuel elements, 4 control bars and the corresponding structural elements. The high reactivity excess obtained with this model, gave the rule to realize other models of the reactor core in which the reactivity excess and the switch out margin were approximate to the values established in the technical specifications of the reactor operation. Several models were realized until finding the satisfactory model; this is composite for 74 fuels, 4 control bars and 6 additional experimental positions inside the reactor core. (Author)

  13. Models of iodine behavior in reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.; Beahm, E.C.; Kress, T.S.

    1992-10-01

    Models are developed for many phenomena of interest concerning iodine behavior in reactor containments during severe accidents. Processes include speciation in both gas and liquid phases, reactions with surfaces, airborne aerosols, and other materials, and gas-liquid interface behavior. Although some models are largely empirical formulations, every effort has been made to construct mechanistic and rigorous descriptions of relevant chemical processes. All are based on actual experimental data generated at the Oak Ridge National Laboratory (ORNL) or elsewhere, and, hence, considerable data evaluation and parameter estimation are contained in this study. No application or encoding is attempted, but each model is stated in terms of rate processes, with the intention of allowing mechanistic simulation. Taken together, this collection of models represents a best estimate iodine behavior and transport in reactor accidents.

  14. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  15. Design of Uranium Solution Critical Experimental Device

    Institute of Scientific and Technical Information of China (English)

    YI; Da-yong; GUO; Zhi-jia; YAO; Cheng-zhi; SHI; Chen-lei

    2012-01-01

    <正>In 2012, Department of reactor engineering design completes the design and mechanical analysis of Uranium solution critical experimental device. According to user’s requirements and nuclear safety regulations, design and analysis mainly involves two sets of core structure, uranium solution loop, water loop and experimental bench, etc. The core which includes a core vessel, reactor core support, safety rods, control rods, and so on, is used for containing uranium solution and fuel element and fulfilling the

  16. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic

  17. Benchmark Evaluation of the NRAD Reactor LEU Core Startup Measurements

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bess; T. L. Maddock; M. A. Marshall

    2011-09-01

    The Neutron Radiography (NRAD) reactor is a 250-kW TRIGA-(Training, Research, Isotope Production, General Atomics)-conversion-type reactor at the Idaho National Laboratory; it is primarily used for neutron radiography analysis of irradiated and unirradiated fuels and materials. The NRAD reactor was converted from HEU to LEU fuel with 60 fuel elements and brought critical on March 31, 2010. This configuration of the NRAD reactor has been evaluated as an acceptable benchmark experiment and is available in the 2011 editions of the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) and the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Significant effort went into precisely characterizing all aspects of the reactor core dimensions and material properties; detailed analyses of reactor parameters minimized experimental uncertainties. The largest contributors to the total benchmark uncertainty were the 234U, 236U, Er, and Hf content in the fuel; the manganese content in the stainless steel cladding; and the unknown level of water saturation in the graphite reflector blocks. A simplified benchmark model of the NRAD reactor was prepared with a keff of 1.0012 {+-} 0.0029 (1s). Monte Carlo calculations with MCNP5 and KENO-VI and various neutron cross section libraries were performed and compared with the benchmark eigenvalue for the 60-fuel-element core configuration; all calculated eigenvalues are between 0.3 and 0.8% greater than the benchmark value. Benchmark evaluations of the NRAD reactor are beneficial in understanding biases and uncertainties affecting criticality safety analyses of storage, handling, or transportation applications with LEU-Er-Zr-H fuel.

  18. The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants

    NARCIS (Netherlands)

    Neomagus, H.W.J.P.; Saracco, G.; Wessel, H.F.W.; Versteeg, G.F.

    2000-01-01

    This paper provides an experimental and modelling analysis of the performance of a membrane reactor with separate feed of reactants for the combustion of methane. In this reactor concept methane and air streams are fed at opposite sides of a Pt/γ-Al2O3-activated porous membrane which hosts their rea

  19. The JHR reactor: a multipurpose asset for materials; Le reacteur RHJ: polyvalence au service des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Iracane, D.; Yvon, P. [CEA Saclay, Dir. de l' Energie Nucleaire, 91 - Gif sur Yvette (France)

    2007-07-01

    The creeping obsolescence of experimental irradiation reactors around the world, in the European Union in particular, means that the Jules Horowitz Reactor (JHR), due to be commissioned by CEA in 2014, at Cadarache, is an essential addition, whether it be for the investigation of materials, or of novel fuels. Its capabilities extend beyond the requirements of investigations relating to fourth-generation systems. (authors)

  20. Creep-fatigue Interaction Research under High Temperature Condition of Fast Reactor Sodium Pipe

    Institute of Scientific and Technical Information of China (English)

    HU; Li-na

    2015-01-01

    The working temperature of the pipe in primary loop cooling system and decay heat remove system of China Experimental Fast Reactor(CEFR)is higher than material creep temperature(427℃).The design life of the reactor is30a.The pipe works under the repeated thermal load and mechanical load at run time.In order to

  1. Decay heat measurement on fusion reactor materials and validation of calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Decay heat rates for 32 fusion reactor relevant materials irradiated with 14-MeV neutrons were measured for the cooling time period between 1 minute and 400 days. With using the experimental data base, validity of decay heat calculation systems for fusion reactors were investigated. (author)

  2. Fast pyrolysis in a novel wire-mesh reactor: decomposition of pine wood and model compounds

    NARCIS (Netherlands)

    Hoekstra, E.; Swaaij, van W.P.M.; Kersten, S.R.A.; Hogendoorn, J.A.

    2012-01-01

    In fast pyrolysis, biomass decomposition processes are followed by vapor phase reactions. Experimental results were obtained in a unique wire-mesh reactor using pine wood, KCl impregnated pine wood and several model compounds (cellulose, xylan, lignin, levoglucosan, glucose). The wire-mesh reactor w

  3. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  4. Fast reactor programme in India

    Indian Academy of Sciences (India)

    P Chellapandi; P R Vasudeva Rao; Prabhat Kumar

    2015-09-01

    Role of fast breeder reactor (FBR) in the Indian context has been discussed with appropriate justification. The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the same are the major highlights of this paper.

  5. Acceptability of reactors in space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  6. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  7. Hydrogen Production in Fusion Reactors

    OpenAIRE

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M; Uenosono, C.

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  8. Experimental characterization and modeling for the growth rate of oxide coatings from liquid solutions of metalorganic precursors by ultrasonic pulsed injection in a cold-wall low-pressure reactor

    Science.gov (United States)

    Krumdieck, Susan Pran

    Several years ago, a method for depositing ceramic coatings called the Pulsed-MOCVD system was developed by the Raj group at Cornell University in association with Dr. Harvey Berger and Sono-Tek Corporation. The process was used to produce epitaxial thin films of TiO2 on sapphire substrates under conditions of low pressure, relatively high temperature, and very low growth rate. The system came to CU-Boulder when Professor Raj moved here in 1997. It is quite a simple technique and has several advantages over typical CVD systems. The purpose of this dissertation is two-fold; (1) understand the chemical processes, thermodynamics, and kinetics of the Pulsed-MOCVD technique, and (2) determine the possible applications by studying the film structure and morphology over the entire range of deposition conditions. Polycrystalline coatings of ceramic materials were deposited on nickel in the low-pressure, cold-wall reactor from metalorganic precursors, titanium isopropoxide, and a mixture of zirconium isopropoxide and yttria isopropoxide. The process utilized pulsed liquid injection of a dilute precursor solution with atomization by ultrasonic nozzle. Thin films (less than 1mum) with fine-grained microstructure and thick coatings (up to 1mum) with columnar-microstructure were deposited on heated metal substrates by thermal decomposition of a single liquid precursor. The influence of each of the primary deposition parameters, substrate temperature, total flow rate, and precursor concentration on growth rate, conversion efficiency and morphology were investigated. The operating conditions were determined for kinetic, mass transfer, and evaporation process control regimes. Kinetic controlled deposition was found to produce equiaxed morphology while mass transfer controlled deposition produced columnar morphology. A kinetic model of the deposition process was developed and compared to data for deposition of TiO2 from Ti(OC3H7) 4 precursor. The results demonstrate that growth

  9. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  10. Aerosol flow reactor method for synthesis of drug nanoparticles.

    Science.gov (United States)

    Eerikäinen, Hannele; Watanabe, Wiwik; Kauppinen, Esko I; Ahonen, P Petri

    2003-05-01

    An aerosol flow reactor method, a one-step continuous process to produce nanometer-sized drug particles with unimodal size distribution, was developed. This method involves first dissolving the drug material in question into a suitable solvent, which is then followed by atomising the solution as fine droplets into carrier gas. A heated laminar flow reactor tube is used to evaporate the solvent, and solid drug nanoparticles are formed. In this study, the effect of drying temperature on the particle size and morphology was examined. A glucocorticosteroid used for asthma therapy, beclomethasone dipropionate, was selected as an experimental model drug. The geometric number mean particle diameter increases significantly with increasing reactor temperatures due to formation of hollow nanoparticles. Above 160 degrees C, however, further increase in temperature results in decreasing particle size. The produced nanoparticles are spherical and show smooth surfaces at all studied experimental conditions.

  11. Background Studies for the MINER Coherent Neutrino Scattering Reactor Experiment

    CERN Document Server

    Agnolet, G; Barker, D; Beck, R; Carroll, T J; Cesar, J; Cushman, P; Dent, J B; De Rijck, S; Dutta, B; Flanagan, W; Fritts, M; Gao, Y; Harris, H R; Hays, C C; Iyer, V; Jastram, A; Kadribasic, F; Kennedy, A; Kubik, A; Ogawa, I; Lang, K; Mahapatra, R; Mandic, V; Martin, R D; Mast, N; McDeavitt, S; Mirabolfathi, N; Mohanty, B; Nakajima, K; Newhouse, J; Newstead, J L; Phan, D; Proga, M; Roberts, A; Rogachev, G; Salazar, R; Sander, J; Senapati, K; Shimada, M; Strigari, L; Tamagawa, Y; Teizer, W; Vermaak, J I C; Villano, A N; Walker, J; Webb, B; Wetzel, Z; Yadavalli, S A

    2016-01-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 meters) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5 to 20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  12. FAST NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  13. Biparticle fluidized bed reactor

    Science.gov (United States)

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  14. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  15. Remote Inspection Techniques for Reactor Internals of Liquid Metal Reactor by using Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Seok Hun; Lee, Jae Han

    2006-02-15

    The primary components such as a reactor core, heat exchangers, pumps and internal structures of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection and continuous monitoring as major in-service inspection (ISI) methods of reactor internal structures. Reactor core and internal structures of LMR can not be visually examined due to an opaque liquid sodium. The under-sodium viewing and remote inspection techniques by using an ultrasonic wave should be applied for the in-service inspection of reactor internals. The remote inspection techniques using ultrasonic wave have been developed and applied for the visualization and ISI of reactor internals. The under sodium viewing technique has a limitation for the application of LMR due to the high temperature and irradiation environment. In this study, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium viewing and remote inspection. The Lamb wave propagation of a waveguide sensor has been analyzed and the zero-order antisymmetric A{sub 0} plate wave was selected as the application mode of the sensor. The A{sub 0} plate wave can be propagated in the dispersive low frequency range by using a liquid wedge clamped to the waveguide. A new technique is presented which is capable of steering the radiation beam angle of a waveguide sensor without a mechanical movement of the sensor assembly. The steering function of the ultrasonic radiation beam can be achieved by a frequency tuning method of the excitation pulse in the dispersive range of the A{sub 0} mode. The technique provides an opportunity to overcome the scanning limitation of a waveguide sensor. The beam steering function has been evaluated by an experimental verification. The ultrasonic C-scanning experiments are performed in water and the feasibility of the ultrasonic waveguide sensor has been verified. The various remote

  16. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  17. Household energy consumption: the future is in our hands. ITER, an experimental fusion reactor. Do CO{sub 2}-free energies exist? Liquefied natural gas, king of the gas market; Consommation d'energie domestique: prenons l'avenir entre nos mains. ITER, un reacteur experimental de fusion. Existe-t-il des energies sans CO{sub 2}? Le gaz naturel liquefie, force motrice du marche du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2008-07-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - Household energy consumption - the future is in our hands: With energy resources growing scarcer and more expensive, everyone has a duty to conserve energy. Because combating global warming also means adopting simple habits and using the right equipment - with help from our governments to lead us to change. A practical look at what we can do. 2 - ITER, an experimental fusion reactor: The entire international community is trying to reproduce here on Earth the fusion of hydrogen atoms occurring naturally in the Sun, lured by the promise of a virtually inexhaustible source of energy. More on ITER from the project's Director General. 3 - Do CO{sub 2}-free energies exist?: As nations struggle to reduce greenhouse gas emissions, the question is moot. Environmental engineer Jean-Marc Jancovici gives us his point of view. 4 - Liquefied natural gas, king of the gas market: LNG's many advantages are enticing industry to develop supply routes and infrastructure to meet strong demand. But the race for LNG is not without its limits.

  18. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  19. Scaling Study for Experimental Test of Advanced Reactor Analysis of Passive Feature of Containment and Its Simulation Hierarchy%先进反应堆安全壳非能动特性分析及模拟架构

    Institute of Scientific and Technical Information of China (English)

    李胜强; 李卫华; 姜胜耀

    2013-01-01

    Different containment safety features are analyzed. Combined with the accident process analysis and physical model classification, a containment system analysis hierarchy, which can be applied to advanced containment system simulation and experimental verification, is built. Different physical models, experimental methodology, scaling criteria, PIRT, mathematical models and test process logic are included. It attempts to provide theoretical support and design reference for future containment system characteristics verification experiments. It is also applicable for the system simulation, including complex coupling of physical phenomena and processes.%分析具有不同安全特征的安全壳系统,结合对事故过程机制及其物理模型分析,形成一整套适用于先进反应堆安全壳系统性能模拟的理论及试验验证分析体系架构,包括模拟需考虑的物理模型、模拟方法、模拟准则即等级划分、模拟数学模型以及相应试验验证流程..

  20. Important problems of future thermonuclear reactors*

    Directory of Open Access Journals (Sweden)

    Sadowski Marek J.

    2015-06-01

    Full Text Available This paper concerns important and difficult problems connected with a design and construction of thermonuclear reactors, which have to use nuclear fusion reactions of heavy isotopes of hydrogen, i.e., deuterium (D and tritium (T. There are described conditions in which such reactions can occur, and different methods of a high-temperature plasma generation, i.e., high-current electrical discharges, intense microwave pulses, and injection of energetic neutral atoms (NBI. There are also presented experimental facilities which can contain hot plasma for an appropriate period, and particularly so-called tokamaks. The second part presents the technical problems which must be solved in order to build a thermonuclear reactor, that might be used for energetic purposes. There are considered problems connected with a choice of constructional materials for a vacuum chamber, its internal parts, external windings generating a magnetic field, and necessary shields. The next part considers the handling of radioactive tritium; the using of alpha particles (4He for additional heating of plasma; recuperation of hydrogen isotopes absorbed in the tokamak internal parts, and a removal of a helium excess. There is presented a scheme of a future thermonuclear power plant and critical comments on a road map which should enable the construction of an industrial thermonuclear reactor (DEMO.

  1. Applications for reactor-pumped lasers

    Science.gov (United States)

    Lipinski, R. J.; McArthur, D. A.

    Nuclear reactor-pumped lasers (RPL's) have been developed in the US by the Department of Energy for over two decades, with the primary research occurring at Sandia National Laboratories and Idaho National Engineering Laboratory. The US program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1,271, 1,733, 1,792, 2,032, 2,630, 2,650, and 3,370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, and 3-D ceramic lithography. In addition, a ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth's shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night.

  2. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  3. Uranium arc fission reactor for space propulsion

    Science.gov (United States)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  4. Comparative microbial analysis before and after foaming incidents in biogas reactors

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; De Francisci, Davide; Treu, Laura

    2014-01-01

    retention time (HRT) of all reactors was kept constant at 15 days. The whole experiment was divided into two periods. During the first period, the reactors were fed only with cattle manure. Once steady state conditions were reached, liquid sample from all reactors was obtained for DNA extraction...... foam was steady, samples were taken again for DNA extraction and metagenomic analysis. Results from the present study revealed significant variations in the microbiology of the manure-based biogas reactors after foam initiation. A number of genera could be linked to foaming as they produce...... and metagenomic analysis. After sampling, the feedstock composition of each reactor was changed by the addition of gelatine or Na-Oleate or glucose (second experimental period). As a consequence, foam formation was observed in all reactors approximately after one HRT period. Once the daily volume of the formed...

  5. Civilian Power Program. Part 1, Summary, Current status of reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Author, Not Given

    1959-09-01

    This study group covered the following: delineation of the specific objectives of the overall US AEC civilian power reactor program, technical objectives of each reactor concept, preparation of a chronological development program for each reactor concept, evaluation of the economic potential of each reactor type, a program to encourage the the development, and yardsticks for measuring the development. Results were used for policy review by AEC, program direction, authorization and appropriation requests, etc. This evaluation encompassed civilian power reactors rated at 25 MW(e) or larger and related experimental facilities and R&D. This Part I summarizes the significant results of the comprehensive effort to determine the current technical and economic status for each reactor concept; it is based on the 8 individual technical status reports (Part III).

  6. A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors

    Science.gov (United States)

    Dolnik, Milos; Epstein, Irving R.

    1993-01-01

    The dynamical behavior of the chlorine dioxide-iodide reaction has been studied in a system consisting of two continuous flow stirred tank reactors (CSTRs). The reactors are coupled by computer monitoring of the electrochemical potential in each reactor, which is then used to control the input into the other reactor. Two forms of coupling are employed: reciprocally triggered, exponentially decreasing stimulation, and alternating mass exchange. The reaction, which exhibits oscillatory and excitable behavior in a single CSTR, displays neuronlike bursting behavior with both forms of coupling. Reciprocal stimulation yields bursting in both reactors, while with alternating mass exchange, bursting is observed in one reactor and complex oscillation in the other. A simple model of the reaction gives good agreement between the experimental observations and numerical simulations.

  7. Design and operation of a filter reactor for continuous production of a selected pharmaceutical intermediate

    DEFF Research Database (Denmark)

    Christensen, Kim Müller; Pedersen, Michael Jønch; Dam-Johansen, Kim;

    2012-01-01

    A novel filter reactor system for continuous production of selected pharmaceutical intermediates is presented and experimentally verified. The filter reactor system consists of a mixed flow reactor equipped with a bottom filter, to retain solid reactant particles, followed by a conventional plug...... flow reactor, where residual reactant is converted by titration. A chemical case study, production of the pharmaceutical intermediate allylcarbinol by a reaction between allylmagnesium chloride and 2-chloro-thioxanthone, in the presence of a side reaction is considered. The synthesis is conducted......-batch operation, are reduced impurity formation and the use of much lower reactor volumes (factor of 1000 based on the laboratory reactor) and less solvent consumption (from 5.8 to 2.3L/kg reactant). Added challenges include handling of continuous solid powder feeding, stable pumping of reactive slurries...

  8. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Korecka, Lucie [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic)]. E-mail: lucie.korecka@upce.cz; Jezova, Jana [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Bilkova, Zuzana [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Benes, Milan [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Hradcova, Olga [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Slovakova, Marcela [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France); Viovy, Jean-Louis [Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France)

    2005-05-15

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized.

  9. The GENEPI accelerator operation feedback at the MASURCA reactor facility

    Science.gov (United States)

    Destouches, C.; Fruneau, M.; Belmont, J. L.; Do Pinhal, J.; Albrand, S.; Carreta, J. M.; Chaussonnet, P.; De Conto, J. M.; Fontenille, A.; Fougeras, P.; Garrigue, A.; Guisset, M.; Laurens, J. M.; Loiseaux, J. M.; Marchand, D.; Micoud, R.; Mellier, F.; Perbet, E.; Planet, M.; Ravel, J. C.; Richaud, J. P.

    2006-06-01

    The MUSE-4 experiment, dedicated to the Accelerator Driven System (ADS) development studies, was achieved in the MASURCA nuclear reactor facility from 2000 to 2004. An external neutron source was introduced in a lead buffer zone located at the centre of the reactor core in order to simulate the spallation source. This paper deals with the GENEPI accelerator operation feedback at the MASURCA reactor facility during the MUSE-4 experimental campaign. After a presentation of the MASURCA mock-up facility and of the experimental programme objectives, the different phases of the accelerator design and realization are detailed. Its installation in the MASURCA nuclear facility, achieved in June 2000, is described concerning the technical and administrative topics. Then, the accelerator operation feedback is given concerning maintenance, tritium target management, source monitoring, technical evolutions, etc. The accelerator partial dismantling, achieved in the first part of 2005, is also presented. In addition, the GENEPI contribution to the MUSE-4 programme is presented in terms of experimental results and experimental measurement method improvements. Also, GENEPI 2, an evolution of the GENEPI concept, is described. This accelerator, is coupled to the PEREN facility which is dedicated to the nuclear cross-section measurements. Last, this paper makes a synthesis of the GENEPI operation feedback at the MASURCA facility and proposes recommendations for future projects involving accelerators used in nuclear reactor environment.

  10. Study of fast reactor safety test facilities. Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods. (DG)

  11. The Performance of Structured Packings in Trickle-Bed Reactors

    NARCIS (Netherlands)

    Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped packi

  12. The performance of structured packings in trickle-bed reactors.

    NARCIS (Netherlands)

    Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, van W.P.M.

    1999-01-01

    An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped packi

  13. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  14. Thermochemical reactor systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  15. Chemical-vapor-deposition reactor

    Science.gov (United States)

    Chern, S.

    1979-01-01

    Reactor utilizes multiple stacked trays compactly arranged in paths of horizontally channeled reactant gas streams. Design allows faster and more efficient deposits of film on substrates, and reduces gas and energy consumption. Lack of dead spots that trap reactive gases reduces reactor purge time.

  16. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  17. Hydrodynamic Behavior of Three-Phase Airlift Loop Slurry Reactor

    Institute of Scientific and Technical Information of China (English)

    任飞; 王金福; 王铁峰; 金涌

    2002-01-01

    A novel fiber optic probe system and a set of commercial ultrasonic Doppler velocimeters have been used to study the hydrodynamic behavior of a three-phase airlift loop (TPAL) slurry reactor. Experiments have been carried out in a loop reactor with 100 mm inner diameter and 2.5 m height, in which air, tap water and silica gel particles are used as the gas, liquid and solid phase, respectively. The radial profile of gas holdup, bubble size, bubble rising velocity, liquid circulating velocity, and the influence of the main operating conditions such as superficial gas velocity and solids concentration have been studied experimentally in the TPAL slurry reactor. The experimental results show that the bubble characteristics are different in various flow regimes and the radial profiles of some hydrodynamic parameters in the TPAL slurry reactor are more uniform than those in traditional three-phase reactors. The distribution of the bubble size and bubble rising velocity can be described by a lognormal function. The influence of superficial gas velocity on the hydrodynamic parameters is more remarkable than that of the solids concentration.

  18. Simulation of reactivity accidents utilizing the IGR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Asmolov, V.G.; Tukhvatulin, Sh.T.; Cherepnin, Yu.S.

    1994-12-31

    The Impulse Graphite Reactor (IGR) is located on the Semipalatinsk nuclear test site - 50 km southwest of the town of Kurchatov (Semipalatinsk-21), Republic of Kazakhstan. The reactor has been in operation since January 8, 1961. One of the principal objectives of the IGR program has been to obtain direct experimental data on the behavior of fuel elements and reactor components under accident conditions. Measurements include determination of threshold destructive characteristics. These data are then used to develop and verify the computational models used to analyze accident consequences. The IGR has a cubical core assembled from uranium-loaded graphite blocks. The core is reflected with the same graphite blocks but without the uranium loading. The reactor has a negative temperature coefficient and is operated by a system of vertical control and safety rods. Two vertical chambers, one within the reactor core and one at the core-reflector interface, provide two channels to carry out experimental studies of materials and systems under accident conditions. The central channel can accommodate hardened capsules that allow melting and destruction of fuel assemblies. The IGR parameters are provided.

  19. Waste tyre pyrolysis: modelling of a moving bed reactor.

    Science.gov (United States)

    Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M

    2010-12-01

    This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model.

  20. Antineutrino Monitoring of Thorium Reactors

    CERN Document Server

    Akindele, Oluwatomi A; Norman, Eric B

    2015-01-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuels types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring.Thorium molten salt reactors (MSR) breed U-233, that if diverted constitute an IAEA direct use material. The antineutrino spectrum from the fission of U-233 has been determined, the feasibility of detecting the diversion of a significant quantity, 8 kg of U-233, within the IAEA timeliness goal of 30 days has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario at a 25 meter standoff by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos. It was found that the diversion of a signifi...

  1. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  2. Unsteady processes in catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matros, Yu.Sh.

    1985-01-01

    In recent years a realization has occurred that reaction and reactor dynamics must be considered when designing and operating catalytic reactors. In this book, the author has focussed on both the processes occurring on individual porous-catalyst particles as well as the phenomena displayed by collections of these particles in fixed-bed reactors. The major topics discussed include the effects of unsteady-state heat and mass transfer, the influence of inhomogeneities and stagnant regions in fixed beds, and reactor operation during forced cycling of operating conditions. Despite the title of the book, attention is also paid to the determination of the number and stability of fixed-bed steady states, with the aim of describing the possibility of controlling reactors at unstable steady states. However, this development is somewhat dated, given the recent literature on multiplicity phenomena and process control.

  3. A model of reactor kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.S.; Thompson, B.R.

    1988-09-01

    The analytical model of nuclear reactor transients, incorporating both mechanical and nuclear effects, simulates reactor kinetics. Linear analysis shows the stability borderline for small power perturbations. In a stable system, initial power disturbances die out with time. With an unstable combination of nuclear and mechanical characteristics, initial disturbances persist and may increase with time. With large instability, oscillations of great magnitude occur. Stability requirements set limits on the power density at which particular reactors can operate. The limiting power density depends largely on the product of two terms: the fraction of delayed neutrons and the frictional damping of vibratory motion in reactor core components. As the fraction of delayed neutrons is essentially fixed, mechanical damping largely determines the maximum power density. A computer program, based on the analytical model, calculates and plots reactor power as a nonlinear function of time in response to assigned values of mechanical and nuclear characteristics.

  4. Metallic fuels for advanced reactors

    Science.gov (United States)

    Carmack, W. J.; Porter, D. L.; Chang, Y. I.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.; Lee, C. B.; Mizuno, T.; Delage, F.; Somers, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor Program, the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. This paper presents an evaluation of metallic alloy fuels. Early US fast reactor developers originally favored metal alloy fuel due to its high fissile density and compatibility with sodium. The goal of fast reactor fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional fast spectrum nuclear fuel while destroying recycled actinides. This will provide a mechanism for closure of the nuclear fuel cycle. Metal fuels are candidates for this application, based on documented performance of metallic fast reactor fuels and the early results of tests currently being conducted in US and international transmutation fuel development programs.

  5. Compatibility of sodium with ceramic oxides employed in nuclear reactors; Compatibilidad del sodio con oxidos ceramicos utilizados en reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Acena Moreno, V.

    1981-07-01

    This work is a review of experiments carried out up to the present time on the corrosion and compatibility of ceramic oxides with liquid sodium at temperatures corresponding to those in fast breeder reactors. The review also includes the results of a thermo-dynamic/liquid sodium reactions. The exercise has been conducted with a view to effecting experimental studies in the future. (Author)

  6. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  7. Report on Thermal Neutron Diffusion Length Measurement in Reactor Grade Graphite Using MCNP and COMSOL Multiphysics

    OpenAIRE

    2013-01-01

    Neutron diffusion length in reactor grade graphite is measured both experimentally and theoretically. The experimental work includes Monte Carlo (MC) coding using 'MCNP' and Finite Element Analysis (FEA) coding suing 'COMSOL Multiphysics' and Matlab. The MCNP code is adopted to simulate the thermal neutron diffusion length in a reactor moderator of 2m x 2m with slightly enriched uranium ($^{235}U$), accompanied with a model designed for thermal hydraulic analysis using point kinetic equations...

  8. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  9. Neutrino Experiments at Reactors

    Science.gov (United States)

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  10. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  11. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  12. Post irradiation examination of thermal reactor fuels

    Science.gov (United States)

    Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.

    2008-12-01

    The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.

  13. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    Energy Technology Data Exchange (ETDEWEB)

    Villar Colome, J. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Universitat Polytechnica de Catalunya (Spain)

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  14. Reactor service life extension program

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, G.R.; Sindelar, R.L.; Ondrejcin, R.S.; Baumann, E.W.

    1990-12-31

    A review of the Savannah River Site production reactor systems was initiated in 1980 and led to implementation of the Reactor Materials Program in 1984 to assess reactor safety and reactor service life. The program evaluated performance of the reactor tanks, primary coolant piping, and thermal shields, components of welded construction that were fabricated from Type 304 stainless steel. The structural integrity analysis of the primary coolant system has shown that the pressure boundary is not susceptible to gross rupture, including a double ended guillotine break or equivalent large area bank. Residual service life is potentially limited by two material degradation modes, irradiation damage and intergranular stress corrosion cracking. Analysis of the structural integrity of the tanks and piping has shown that continued safe operation of the reactors for several additional decades is not limited by the material performance of the primary coolant system. Although irradiation damage has not degraded material behavior to an unacceptable level, past experience has revealed serious difficulties with repair welding on irradiated stainless steel. Stress corrosion can be mitigated by newly identified limits on impurity concentrations in the coolant water and by stress mitigation of weld residual stresses. Work continues in several areas: the effects of helium on mechanical behavior of irradiated stainless steel; improved weld methods for piping and the reactor tanks; and a surveillance program to track irradiation effects on the tank walls.

  15. Reactor service life extension program

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, G.R.; Sindelar, R.L.; Ondrejcin, R.S.; Baumann, E.W.

    1990-01-01

    A review of the Savannah River Site production reactor systems was initiated in 1980 and led to implementation of the Reactor Materials Program in 1984 to assess reactor safety and reactor service life. The program evaluated performance of the reactor tanks, primary coolant piping, and thermal shields, components of welded construction that were fabricated from Type 304 stainless steel. The structural integrity analysis of the primary coolant system has shown that the pressure boundary is not susceptible to gross rupture, including a double ended guillotine break or equivalent large area bank. Residual service life is potentially limited by two material degradation modes, irradiation damage and intergranular stress corrosion cracking. Analysis of the structural integrity of the tanks and piping has shown that continued safe operation of the reactors for several additional decades is not limited by the material performance of the primary coolant system. Although irradiation damage has not degraded material behavior to an unacceptable level, past experience has revealed serious difficulties with repair welding on irradiated stainless steel. Stress corrosion can be mitigated by newly identified limits on impurity concentrations in the coolant water and by stress mitigation of weld residual stresses. Work continues in several areas: the effects of helium on mechanical behavior of irradiated stainless steel; improved weld methods for piping and the reactor tanks; and a surveillance program to track irradiation effects on the tank walls.

  16. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Program

    Science.gov (United States)

    McGuire, Thomas

    2015-11-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. An overview of the concept and its diamagnetic, high beta magnetically encapsulated linear ring cusp confinement scheme will be given. The analytical model of the major loss mechanisms and predicted performance will be discussed, along with the major physics challenges. Key features of an operational CFR reactor will be highlighted. The proposed developmental path following the current experimental efforts will be presented. ©2015 Lockheed Martin Corporation. All Rights Reserved.

  17. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  18. Assessment of torsatrons as reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, J.F. (Oak Ridge National Lab., TN (United States)); Painter, S.L. (Australian National Univ., Canberra, ACT (Australia))

    1992-12-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R[sub 0] = 6.6-8.8 m, on-axis magnetic field B[sup 0] = 4.8-7.5 T, B[sub max] (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions.

  19. Advanced sodium fast reactor accident source terms :

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding Rates of radionuclide leaching from fuel by liquid sodium Surface enrichment of sodium pools by dissolved and suspended radionuclides Thermal decomposition of sodium iodide in the containment atmosphere Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  20. Methodological developments and qualification of calculation schemes for the modelling of photonic heating in the experimental devices of the future Jules Horowitz material testing reactor (RJH); Developpements methodologiques et qualification de schemas de calcul pour la modelisation des echauffements photoniques dans les dispositifs experimentaux du futur reacteur d'irradiation technologiques Jules Horowitz (RJH)

    Energy Technology Data Exchange (ETDEWEB)

    Blanchet, D

    2006-07-01

    The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*{sigma}) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO{sub 2}). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)