WorldWideScience

Sample records for brassica rapa gene

  1. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling

    OpenAIRE

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-01-01

    Background Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. Results We identified 67 carotenoid biosynthetic genes in B. rapa, which were ort...

  2. The impact of genome triplication on tandem gene evolution in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Lu eFang

    2012-11-01

    Full Text Available Whole genome duplication (WGD and tandem duplication (TD are both important modes of gene expansion. However, how whole genome duplication influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751 and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the 3 species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole-genome polyploidization event.

  3. A rich TILLING resource for studying gene function in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Amoah Stephen

    2010-04-01

    Full Text Available Abstract Background The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa and vegetables (eg. B. rapa and B. oleracea. Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. Results Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS to produce a TILLING (Targeting Induced Local Lesions In Genomes population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This

  4. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Parameswari Paul

    Full Text Available Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa. Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309. Chromosomal mapping of the B. rapa Aux/IAA (BrIAA genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA and 36 cross species (BrIAA-AtIAA IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa.

  5. Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Sundelin, Thomas; Jensen, Dan Funck; Lübeck, Mette

    2011-01-01

    is impossible. Discovery of genes expressed during infection and gene organization are the first steps toward a better understanding of the pathogen–host interaction. Here, suppression subtractive hybridization was used to search for the P. brassicae genes expressed during plant infection. One-hundred and forty...... ESTs were found of which 49% proved to be P. brassicae genes. Ten novel P. brassicae genes were identified, and the genomic sequences surrounding four of the ESTs were acquired using genome walking. Alignment of the ESTs and the genomic DNA sequences confirmed that P. brassicae genes are intron rich...... and that the introns are small. These results show that it is possible to discover new P. brassicae genes from a mixed pool of both plant and pathogen cDNA. The results also revealed that some of the P. brassicae genes expressed in Chinese cabbage (Brassica rapa subsp. pekinensis) were identical to the genes expressed...

  6. Shotgun label-free proteomic analysis of clubroot (Plasmodiophora brassicae resistance conferred by the gene Rcr1 in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Tao Song

    2016-07-01

    Full Text Available Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of B. rapa carrying and not carrying the CR gene Rcr1 upon P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs were identified between the resistant and susceptible samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses is triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome related to abiotic stresses, especially the cold-stress tolerance. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism were observed in plants carrying Rcr1, and these functions may all contribute to the clubroot resistance mediated by this CR gene. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and clubroot resistance at large, and identified candidate metabolites or pathways for further confirmation of specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of clubroot resistance.

  7. Isolation and Functional Characterisation of the Genes Encoding △8-Sphingolipid Desaturase from Brassica rapa

    Institute of Scientific and Technical Information of China (English)

    Shu-Fen Li; Li-Ying Song; Wei-Bo Yin; Yu-Hong Chen; Liang Chen; Ji-Lin Li; Richard R.-C. Wang; Zan-Min Hu

    2012-01-01

    △8-Sphingolipid desaturase is the key enzyme that catalyses desaturation at the C8 position of the long-chain base of sphingolipids in higher plants.There have been no previous studies on the genes encoding △8-sphingolipid desaturases in Brassica rapa.In this study,four genes encoding △8-sphingolipid desaturases from B.rapa were isolated and characterised.Phylogenetic analyses indicated that these genes could be divided into two groups:BrD8A,BrD8C and BrD8D in group Ⅰ,and BrD8B in group Ⅱ.The two groups of genes diverged before the separation of Arabidopsis and Brassica.Though the four genes shared a high sequence similarity,and their coding desaturases all located in endoplasmic reticulum,they exhibited distinct expression patterns.Heterologous expression in Saccharomyces cerevisiae revealed that BrD8A/B/C/D were functionally diverse △8-sphingolipid desaturases that catalyse different ratios of the two products 8(Z)- and 8(E)-C18-phytosphingenine.The aluminium tolerance of transgenic yeasts expressing BrD8A/B/C/D was enhanced compared with that of control cells.Expression of BrD8A in A rabidopsis changed the ratio of 8(Z):8(E)-C 18-phytosphingenine in transgenic plants.The information reported here provides new insights into the biochemical functional diversity and evolutionary relationship of △8-sphingolipid desaturase in plants and lays a foundation for further investigation of the mechanism of 8(Z)- and 8(E)-C18-phytosphingenine biosynthesis.

  8. BrFLC2 (flowering locus C) as a candidate gene for a vernalization response QTL in Brassica rapa

    NARCIS (Netherlands)

    Jianjun Zhao, Jianjun; Kulkarni, V.; Liu, Nini; Pino del Carpio, D.; Bonnema, A.B.

    2010-01-01

    Flowering time is an important agronomic trait, and wide variation exists among Brassica rapa. In Arabidopsis, FLOWERING LOCUS C (FLC) plays an important role in modulating flowering time and the response to vernalization. Brassica rapa contains several paralogues of FLC at syntenic regions. BrFLC2

  9. Molecular cloning and characterization of the Dicer-like 2 gene from Brassica rapa.

    Science.gov (United States)

    Yan, Fei; Peng, Jiejun; Lu, Yuwen; Lin, Lin; Zheng, Hongying; Chen, Hairu; Chen, Jianping; Adams, Michael J

    2009-07-01

    Dicer-like proteins (DCLs) are involved in small RNA-mediated development and viral defense in plants. In model plants, at least four DCLs have been found and a number of studies have helped to understand their function. However, the function of the Dicer or DCLs in other plants is still unclear. Here, we report the full-length cDNA sequence of Brassica rapa ssp. chinensis DCL2 (BrDCL2) gene, which contains a 4,179 bp open reading frame (ORF) encoding a protein of 1,392 amino acids. At the 3' end of BrDCL2, clones with three different lengths of 3' untranslated region were found. An alternative splice variant of BrDCL2, BrDCL2sv, in which one intron was retained between exon9 and exon10, was also cloned. Because of a change in the coding sequence resulting in a premature terminal codon, BrDCL2sv was expected to translate a short peptide containing the whole DEXHc domain.

  10. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes.

    Science.gov (United States)

    Dong, Xiangshu; Kim, Wan Kyu; Lim, Yong-Pyo; Kim, Yeon-Ki; Hur, Yoonkang

    2013-02-01

    We investigated the mechanism regulating cytoplasmic male sterility (CMS) in Brassica rapa ssp. pekinensis using floral bud transcriptome analyses of Ogura-CMS Chinese cabbage and its maintainer line in B. rapa 300-K oligomeric probe (Br300K) microarrays. Ogura-CMS Chinese cabbage produced few and infertile pollen grains on indehiscent anthers. Compared to the maintainer line, CMS plants had shorter filaments and plant growth, and delayed flowering and pollen development. In microarray analysis, 4646 genes showed different expression, depending on floral bud size, between Ogura-CMS and its maintainer line. We found 108 and 62 genes specifically expressed in Ogura-CMS and its maintainer line, respectively. Ogura-CMS line-specific genes included stress-related, redox-related, and B. rapa novel genes. In the maintainer line, genes related to pollen coat and germination were specifically expressed in floral buds longer than 3mm, suggesting insufficient expression of these genes in Ogura-CMS is directly related to dysfunctional pollen. In addition, many nuclear genes associated with auxin response, ATP synthesis, pollen development and stress response had delayed expression in Ogura-CMS plants compared to the maintainer line, which is consistent with the delay in growth and development of Ogura-CMS plants. Delayed expression may reduce pollen grain production and/or cause sterility, implying that mitochondrial, retrograde signaling delays nuclear gene expression.

  11. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-abaxial Polarity Establishment in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Jianli eLiang

    2016-02-01

    Full Text Available Alterations in leaf adaxial–abaxial (ad-ab polarity are one of the main factors that are responsible for leaf curvature. In Chinese cabbage, to form a leafy head, leaf incurvature is an essential prerequisite. Identifying ad-ab patterning genes and investigating its genetic variations will facilitate in elucidating the mechanism underlying leaf incurvature during head formation. In the present study we conducted comparative genomic analysis of the identification of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs in Arabidopsis thaliana, indicating that these genes underwent expansion and were retained after whole genome triplication (WGT. We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima’s D indices and nucleotide diversity reduction in heading accessions compared to that in non-heading accessions, indicating that these underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature that is associated in the formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.

  12. A Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of TIFY Family Genes in Brassica rapa.

    Science.gov (United States)

    Saha, Gopal; Park, Jong-In; Kayum, Md Abdul; Nou, Ill-Sup

    2016-01-01

    The TIFY family is a plant-specific group of proteins with a diversity of functions and includes four subfamilies, viz. ZML, TIFY, PPD, and JASMONATE ZIM-domain (JAZ) proteins. TIFY family members, particularly JAZ subfamily proteins, play roles in biological processes such as development and stress and hormone responses in Arabidopsis, rice, chickpea, and grape. However, there is no information about this family in any Brassica crop. This study identifies 36 TIFY genes in Brassica rapa, an economically important crop species in the Brassicaceae. An extensive in silico analysis of phylogenetic grouping, protein motif organization and intron-exon distribution confirmed that there are four subfamilies of BrTIFY proteins. Out of 36 BrTIFY genes, we identified 21 in the JAZ subfamily, seven in the TIFY subfamily, six in ZML and two in PPD. Extensive expression profiling of 21 BrTIFY JAZs in various tissues, especially in floral organs and at different flower growth stages revealed constitutive expression patterns, which suggest that BrTIFY JAZ genes are important during growth and development of B. rapa flowers. A protein interaction network analysis also pointed to association of these proteins with fertility and defense processes of B. rapa. Using a low temperature-treated whole-genome microarray data set, most of the JAZ genes were found to have variable transcript abundance between the contrasting inbred lines Chiifu and Kenshin of B. rapa. Subsequently, the expression of all 21 BrTIFY JAZs in response to cold stress was characterized in the same two lines via qPCR, demonstrating that nine genes were up-regulated. Importantly, the BrTIFY JAZs showed strong and differential expression upon JA treatment, pointing to their probable involvement in JA-mediated growth regulatory functions, especially during flower development and stress responses. Additionally, BrTIFY JAZs were induced in response to salt, drought, Fusarium, ABA, and SA treatments, and six genes (BrTIFY3

  13. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    Science.gov (United States)

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included 'response to heat', 'response to reactive oxygen species (ROS)', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  14. Evolution, expression differentiation and interaction specificity of heterotrimeric G-protein subunit gene family in the mesohexaploid Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Gulab C Arya

    Full Text Available Heterotrimeric G-proteins, comprising of Gα, Gβ, and Gγ subunits, are important signal transducers which regulate many aspects of fundamental growth and developmental processes in all eukaryotes. Initial studies in model plants Arabidopsis and rice suggest that the repertoire of plant G-protein is much simpler than that observed in metazoans. In order to assess the consequence of whole genome triplication events within Brassicaceae family, we investigated the multiplicity of G-protein subunit genes in mesohexaploid Brassica rapa, a globally important vegetable and oilseed crop. We identified one Gα (BraA.Gα1, three Gβ (BraA.Gβ1, BraA.Gβ2, and BraA.Gβ3, and five Gγ (BraA.Gγ1, BraA.Gγ2, BraA.Gγ3, BraA.Gγ4, and BraA.Gγ5 genes from B. rapa, with a possibility of 15 Gαβγ heterotrimer combinations. Our analysis suggested that the process of genome triplication coupled with gene-loss (gene-fractionation phenomenon have shaped the quantitative and sequence diversity of G-protein subunit genes in the extant B. rapa genome. Detailed expression analysis using qRT-PCR assays revealed that the G-protein genes have retained ubiquitous but distinct expression profiles across plant development. The expression of multiple G-protein genes was differentially regulated during seed-maturation and germination stages, and in response to various phytohormone treatments and stress conditions. Yeast-based interaction analysis showed that G-protein subunits interacted in most of the possible combinations, with some degree of subunit-specific interaction specificity, to control the functional selectivity of G-protein heterotrimer in different cell and tissue-types or in response to different environmental conditions. Taken together, this research identifies a highly diverse G-protein signaling network known to date from B. rapa, and provides a clue about the possible complexity of G-protein signaling networks present across globally important Brassica

  15. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis).

    Science.gov (United States)

    Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin

    2015-11-01

    The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.

  16. The genome of the mesopolyploid crop species Brassica rapa

    DEFF Research Database (Denmark)

    Wang, Xiaowu; Wang, Hanzhong; Wang, Jun;

    2011-01-01

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the ...

  17. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  18. Identification of Genome-Wide Variants and Discovery of Variants Associated with Brassica rapa Clubroot Resistance Gene Rcr1 through Bulked Segregant RNA Sequencing

    Science.gov (United States)

    Yu, Fengqun; Zhang, Xingguo; Huang, Zhen; Chu, Mingguang; Song, Tao; Falk, Kevin C.; Deora, Abhinandan; Chen, Qilin; Zhang, Yan; McGregor, Linda; Gossen, Bruce D.; McDonald, Mary Ruth; Peng, Gary

    2016-01-01

    Clubroot, caused by Plasmodiophora brassicae, is an important disease on Brassica species worldwide. A clubroot resistance gene, Rcr1, with efficacy against pathotype 3 of P. brassicae, was previously mapped to chromosome A03 of B. rapa in pak choy cultivar “Flower Nabana”. In the current study, resistance to pathotypes 2, 5 and 6 was shown to be associated with Rcr1 region on chromosome A03. Bulked segregant RNA sequencing was performed and short read sequences were assembled into 10 chromosomes of the B. rapa reference genome v1.5. For the resistant (R) bulks, a total of 351.8 million (M) sequences, 30,836.5 million bases (Mb) in length, produced 120-fold coverage of the reference genome. For the susceptible (S) bulks, 322.9 M sequences, 28,216.6 Mb in length, produced 109-fold coverage. In total, 776.2 K single nucleotide polymorphisms (SNPs) and 122.2 K insertion / deletion (InDels) in R bulks and 762.8 K SNPs and 118.7 K InDels in S bulks were identified; each chromosome had about 87% SNPs and 13% InDels, with 78% monomorphic and 22% polymorphic variants between the R and S bulks. Polymorphic variants on each chromosome were usually below 23%, but made up 34% of the variants on chromosome A03. There were 35 genes annotated in the Rcr1 target region and variants were identified in 21 genes. The numbers of poly variants differed significantly among the genes. Four out of them encode Toll-Interleukin-1 receptor / nucleotide-binding site / leucine-rich-repeat proteins; Bra019409 and Bra019410 harbored the higher numbers of polymorphic variants, which indicates that they are more likely candidates of Rcr1. Fourteen SNP markers in the target region were genotyped using the Kompetitive Allele Specific PCR method and were confirmed to associate with Rcr1. Selected SNP markers were analyzed with 26 recombinants obtained from a segregating population consisting of 1587 plants, indicating that they were completely linked to Rcr1. Nine SNP markers were used for marker

  19. Identification of Yellow Pigmentation Genes in Brassica rapa ssp. pekinensis Using Br300 Microarray

    Directory of Open Access Journals (Sweden)

    Hee-Jeong Jung

    2014-01-01

    Full Text Available The yellow color of inner leaves in Chinese cabbage depends on its lutein and carotene content. To identify responsible genes for yellow pigmentation in leaves, the transcriptome profiles of white (Kenshin and yellow leaves (Wheessen were examined using the Br300K oligomeric chip in Chinese cabbage. In yellow leaves, genes involved in carotene synthesis (BrPSY, BrPDS, BrCRTISO, and BrLCYE, lutein, and zeaxanthin synthesis (BrCYP97A3 and BrHYDB were upregulated, while those associated with carotene degradation (BrNCED3, BrNCED4, and BrNCED6 were downregulated. These expression patterns might support that the content of both lutein and total carotenoid was much higher in the yellow leaves than that in the white leaves. These results indicate that the yellow leaves accumulate high levels of both lutein and β-carotene due to stimulation of synthesis and that the degradation rate is inhibited. A large number of responsible genes as novel genes were specifically expressed in yellow inner leaves, suggesting the possible involvement in pigment synthesis. Finally, we identified three transcription factors (BrA20/AN1-like, BrBIM1, and BrZFP8 that are specifically expressed and confirmed their relatedness in carotenoid synthesis from Arabidopsis plants.

  20. Identification of SSR markers closely linked to the yellow seed coat color gene in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis)

    Science.gov (United States)

    Ren, Yanjing; Wu, Junqing; Zhao, Jing; Hao, Lingyu

    2017-01-01

    ABSTRACT Research on the yellow-seeded variety of heading Chinese cabbage will aid in broadening its germplasm resources and lay a foundation for AA genome research in Brassica crops. Here, an F2 segregating population of 1575 individuals was constructed from two inbred lines (brown-seeded ‘92S105’ and yellow-seeded ‘91-125’). This population was used to identify the linkage molecular markers of the yellow seed coat trait using simple sequence repeat (SSR) techniques combined with a bulk segregant analysis (BSA). Of the 144 SSR primer pairs on the A01-A10 chromosomes from the Brassica database (http://brassicadb.org/brad/), two pairs located on the A06 chromosome showed polymorphic bands between the bulk DNA pools of eight brown-seeded and eight yellow-seeded F2 progeny. Based on the genome sequence, 454 SSR markers were designed to A06 to detect these polymorphic bands and were synthesized. Six SSR markers linked to the seed coat color gene were successfully selected for fine linkage genetic map construction, in which the two closest flanking markers, SSR449a and SSR317, mapped the Brsc-ye gene to a 40.2 kb region with distances of 0.07 and 0.06 cM, respectively. The molecular markers obtained in this report will assist in the marker-assisted selection and breeding of yellow-seeded lines in Brassica rapa L. and other close species. PMID:28069590

  1. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa.

    Science.gov (United States)

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Hur, Yoonkang; Nou, Ill-Sup

    2015-07-01

    Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well.

  2. Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves

    NARCIS (Netherlands)

    Lou, P.; Jianjun Zhao, Jianjun; He, Hongju; Hanhart, C.J.; Pino del Carpio, D.; Verkerk, R.; Custers, J.B.M.; Koornneef, M.; Bonnema, A.B.

    2008-01-01

    Glucosinolates and their breakdown products have been recognized for their effects on plant defense, human health, flavor and taste of cruciferous vegetables. Despite this importance, little is known about the regulation of the biosynthesis and degradation in Brassica rapa. Here, the identification

  3. The Gene Encoding Dihydroflavonol 4-Reductase Is a Candidate for the anthocyaninless Locus of Rapid Cycling Brassica rapa (Fast Plants Type).

    Science.gov (United States)

    Wendell, Douglas L; Vaziri, Anoumid; Shergill, Gurbaksh

    2016-01-01

    Rapid cycling Brassica rapa, also known as Wisconsin Fast Plants, are a widely used organism in both K-12 and college science education. They are an excellent system for genetics laboratory instruction because it is very easy to conduct genetic crosses with this organism, there are numerous seed stocks with variation in both Mendelian and quantitative traits, they have a short generation time, and there is a wealth of educational materials for instructors using them. Their main deficiency for genetics education is that none of the genetic variation in RCBr has yet been characterized at the molecular level. Here we present the first molecular characterization of a gene responsible for a trait in Fast Plants. The trait under study is purple/nonpurple variation due to the anthocyaninless locus, which is one of the Mendelian traits most frequently used for genetics education with this organism. We present evidence that the DFR gene, which encodes dihyroflavonol 4-reductase, is the candidate gene for the anthocyaninless (ANL) locus in RCBr. DFR shows complete linkage with ANL in genetic crosses with a total of 948 informative chromosomes, and strains with the recessive nonpurple phenotype have a transposon-related insertion in the DFR which is predicted to disrupt gene function.

  4. Glucosinolate Accumulation and Related Gene Expression in Pak Choi (Brassica rapa L. ssp. chinensis var. communis [N. Tsen & S.H. Lee] Hanelt) in Response to Insecticide Application.

    Science.gov (United States)

    Zhu, Biao; Yang, Jing; He, Yong; Zang, Yunxiang; Zhu, Zhujun

    2015-11-11

    Glucosinolates and their breakdown products are well-known for their cancer-chemoprotective functions and biocidal activities against pathogens and generalist herbivores. Insecticides are commonly used in the production of pak choi (Brassica rapa L. ssp. chinensis var. communis [N. Tsen & S.H. Lee] Hanelt). We studied the effects of four commonly used insecticides, namely, β-cypermethrin, acephate, pymetrozine, and imidacloprid, on glucosinolate metabolism in pak choi. All insecticides significantly increased both the transcription of glucosinolate biosynthetic genes and the aliphatic and total glucosinolate accumulations in pak choi. β-Cypermethrin and acephate caused gradual and continuous up-regulation of gene expression from 0.5 to 24 h after treatment, whereas pymetrozine and imidacloprid did so more rapidly, reaching a peak at 1 h and returning to normal at 3 h. Our findings indicate that the four insecticides affect glucosinolate metabolism in pak choi plants to various degrees and suggest that glucosinolates may be involved in plant insecticide metabolism.

  5. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea

    NARCIS (Netherlands)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R.; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-01-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea a

  6. Establishment of Ecotilling for Discovery of DNA Polymorphisms in Brassica rapa Natural Population

    Institute of Scientific and Technical Information of China (English)

    WU Jian; SUN Ri-fei; ZHANG Yan-guo; WANG Xiao-wu

    2005-01-01

    Ecotilling is a new approach based on enzyme-mediated heteroduplex cleavage to discover DNA polymorphisms in natural population. We used mung bean nuclease(MBN) instead of routinely used CELI to cleave single base pair mismatches in heteroduplex DNA templates. Nested set of primers were designed to amplify targeted region to avoid the influence of the variation in quality and quantity of the genomic DNA. To reduce the costs in fluorescently labeled primers, we added M13 adapter to 5'end of gene specific primers to make IRD dye labeled M13 forward and reverse primers possibly universal for different genes. A Brassica rapa ZIP gene homologue was subjected to the analysis to practise the feasibility of the method in polymorphisms detection. Our experiment showed this method is efficient in discovering DNA polymorphisms in Brassica rapa natural population.

  7. A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time

    NARCIS (Netherlands)

    Yuan, Y.X.; Wu, J.; Sun, R.F.; Zhang, X.W.; Xu, D.H.; Bonnema, A.B.; Wang, X.W.

    2009-01-01

    FLOWERING LOCUS C (FLC), encoding a MADS-domain transcription factor in Arabidopsis, is a repressor of flowering involved in the vernalization pathway. This provides a good reference for Brassica species. Genomes of Brassica species contain several FLC homologues and several of these colocalize with

  8. The first generation of a BAC-based physical map of Brassica rapa

    Directory of Open Access Journals (Sweden)

    Lee Soo

    2008-06-01

    Full Text Available Abstract Background The genus Brassica includes the most extensively cultivated vegetable crops worldwide. Investigation of the Brassica genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the B. rapa genome is a fundamental tool for analysis of Brassica "A" genome structure. Integration of a physical map with an existing genetic map by linking genetic markers and BAC clones in the sequencing pipeline provides a crucial resource for the ongoing genome sequencing effort and assembly of whole genome sequences. Results A genome-wide physical map of the B. rapa genome was constructed by the capillary electrophoresis-based fingerprinting of 67,468 Bacterial Artificial Chromosome (BAC clones using the five restriction enzyme SNaPshot technique. The clones were assembled into contigs by means of FPC v8.5.3. After contig validation and manual editing, the resulting contig assembly consists of 1,428 contigs and is estimated to span 717 Mb in physical length. This map provides 242 anchored contigs on 10 linkage groups to be served as seed points from which to continue bidirectional chromosome extension for genome sequencing. Conclusion The map reported here is the first physical map for Brassica "A" genome based on the High Information Content Fingerprinting (HICF technique. This physical map will serve as a fundamental genomic resource for accelerating genome sequencing, assembly of BAC sequences, and comparative genomics between Brassica genomes. The current build of the B. rapa physical map is available at the B. rapa Genome Project website for the user community.

  9. The elucidation of stress memory inheritance in Brassica rapa plants.

    Science.gov (United States)

    Bilichak, Andriy; Ilnytskyy, Yaroslav; Wóycicki, Rafal; Kepeshchuk, Nina; Fogen, Dawson; Kovalchuk, Igor

    2015-01-01

    Plants are able to maintain the memory of stress exposure throughout their ontogenesis and faithfully propagate it into the next generation. Recent evidence argues for the epigenetic nature of this phenomenon. Small RNAs (smRNAs) are one of the vital epigenetic factors because they can both affect gene expression at the place of their generation and maintain non-cell-autonomous gene regulation. Here, we have made an attempt to decipher the contribution of smRNAs to the heat-shock-induced transgenerational inheritance in Brassica rapa plants using sequencing technology. To do this, we have generated comprehensive profiles of a transcriptome and a small RNAome (smRNAome) from somatic and reproductive tissues of stressed plants and their untreated progeny. We have demonstrated that the highest tissue-specific alterations in the transcriptome and smRNAome profile are detected in tissues that were not directly exposed to stress, namely, in the endosperm and pollen. Importantly, we have revealed that the progeny of stressed plants exhibit the highest fluctuations at the smRNAome level but not at the transcriptome level. Additionally, we have uncovered the existence of heat-inducible and transgenerationally transmitted tRNA-derived small RNA fragments in plants. Finally, we suggest that miR168 and braAGO1 are involved in the stress-induced transgenerational inheritance in plants.

  10. THE ELUCIDATION OF STRESS MEMORY INHERITANCE IN BRASSICA RAPA PLANTS

    Directory of Open Access Journals (Sweden)

    Andriy eBilichak

    2015-01-01

    Full Text Available Plants are able to maintain the memory of stress exposure throughout their ontogenesis and faithfully propagate it into the next generation. Recent evidence argues for the epigenetic nature of this phenomenon. Small RNAs (smRNAs are one of the vital epigenetic factors because they can both affect gene expression at the place of their generation and maintain non-cell-autonomous gene regulation. Here, we have made an attempt to decipher the contribution of smRNAs to the heat-shock-induced transgenerational inheritance in Brassica rapa plants using sequencing technology. To do this, we have generated comprehensive profiles of a transcriptome and a small RNAome (smRNAome from somatic and reproductive tissues of stressed plants and their untreated progeny. We have demonstrated that the highest tissue-specific alterations in the transcriptome and smRNAome profile are detected in tissues that were not directly exposed to stress, namely, in the endosperm and pollen. Importantly, we have revealed that the progeny of stressed plants exhibit the highest fluctuations at the smRNAome level but not at the transcriptome level. Additionally, we have uncovered the existence of heat-inducible and transgenerationally transmitted tRNA-derived small RNA fragments in plants. Finally, we suggest that miR168 and braAGO1 are involved in the stress-induced transgenerational inheritance in plants.

  11. Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis

    Directory of Open Access Journals (Sweden)

    Paterson Andrew H

    2009-11-01

    Full Text Available Abstract Background The Brassica species, related to Arabidopsis thaliana, include an important group of crops and represent an excellent system for studying the evolutionary consequences of polyploidy. Previous studies have led to a proposed structure for an ancestral karyotype and models for the evolution of the B. rapa genome by triplication and segmental rearrangement, but these have not been validated at the sequence level. Results We developed computational tools to analyse the public collection of B. rapa BAC end sequence, in order to identify candidates for representing collinearity discontinuities between the genomes of B. rapa and A. thaliana. For each putative discontinuity, one of the BACs was sequenced and analysed for collinearity with the genome of A. thaliana. Additional BAC clones were identified and sequenced as part of ongoing efforts to sequence four chromosomes of B. rapa. Strikingly few of the 19 inter-chromosomal rearrangements corresponded to the set of collinearity discontinuities anticipated on the basis of previous studies. Our analyses revealed numerous instances of newly detected collinearity blocks. For B. rapa linkage group A8, we were able to develop a model for the derivation of the chromosome from the ancestral karyotype. We were also able to identify a rearrangement event in the ancestor of B. rapa that was not shared with the ancestor of A. thaliana, and is represented in triplicate in the B. rapa genome. In addition to inter-chromosomal rearrangements, we identified and analysed 32 BACs containing the end points of segmental inversion events. Conclusion Our results show that previous studies of segmental collinearity between the A. thaliana, Brassica and ancestral karyotype genomes, although very useful, represent over-simplifications of their true relationships. The presence of numerous cryptic collinear genome segments and the frequent occurrence of segmental inversions mean that inference of the positions

  12. A Systems genetics approach identifies gene regulatory networks associated with fatty acid composition in brassica rapa seed

    NARCIS (Netherlands)

    Basnet, Ram Kumar; Pino Del Carpio, Dunia; Xiao, Dong; Bucher, Johan; Jin, Mina; Boyle, Kerry; Fobert, Pierre; Visser, R.G.F.; Maliepaard, Chris; Bonnema, Guusje

    2016-01-01

    Fatty acids in seeds affect seed germination and seedling vigor, and fatty acid composition determines the quality of seed oil. In this study, quantitative trait locus (QTL) mapping of fatty acid and transcript abundance was integrated with gene network analysis to unravel the genetic regulation

  13. Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica rapa

    NARCIS (Netherlands)

    Li, J.; Liu, B.; Cheng, F.; Wang, X.; Aarts, M.G.M.; Wu, J.

    2014-01-01

    Genes underlying environmental adaptability tend to be over-retained in polyploid plant species. Zinc deficiency (ZnD) and iron deficiency (FeD), excess Zn (ZnE) and cadmium exposure (CdE) are major environmental problems for crop cultivation, but little is known about the differential expression of

  14. AFLP Marker Linked to Turnip Mosaic Virus Susceptible Gene in Chinese Cabbage (Brassica rapa L.ssp.pekinensis)

    Institute of Scientific and Technical Information of China (English)

    HAN He-ping; SUN Ri-fei; ZHANG Shu-jiang; LI Fei; ZHANG Shi-fan; NIU Xin-ke

    2004-01-01

    Turnip mosaic virus (TuMV) which has several strains causes the most important virusdisease in Chinese cabbage in terms of crop damage. In China, Chinese cabbage is infectedby a mixture of strains, breeding of cultivar for the TuMV resistance has become themajor aim. Screening the molecular marker linked to the TuMV-resistance gene formolecular assisted selection is the major method to improve the breeding efficiency. Inthis study, we used AFLP technique and the method of bulked segregant analysis(BSA) tostudy the progeny of Brp0058 x Brp0108, and identified two DNA molecular marker linked toTurnip mosaic virus-resistance gene with a recombination frequency 7.5 cM and 8.4 cM.

  15. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Directory of Open Access Journals (Sweden)

    King Graham J

    2010-10-01

    Full Text Available Abstract Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola. Results In this study, we identified over 23,000 simple sequence repeats (SSRs from 536 sequenced BACs. 890 SSR markers (designated as BrGMS were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH. Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs, 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species.

  16. Pollination and embryo development in Brassica rapa L. in microgravity

    Science.gov (United States)

    Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M. E.

    2000-01-01

    Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.

  17. Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available To identify genes associated with genic male sterility (GMS that could be useful for hybrid breeding in Chinese cabbage (Brassicarapa ssp. pekinensis, floral bud transcriptome analysis was carried out using a B. rapa microarray with 300,000 probes (Br300K. Among 47,548 clones deposited on a Br300K microarray with seven probes of 60 nt length within the 3' 150 bp region, a total of 10,622 genes were differentially expressed between fertile and sterile floral buds; 4,774 and 5,848 genes were up-regulated over 2-fold in fertile and sterile buds, respectively. However, the expression of 1,413 and 199 genes showed fertile and sterile bud-specific features, respectively. Genes expressed specifically in fertile buds, possibly GMS-related genes, included homologs of several Arabidopsis male sterility-related genes, genes associated with the cell wall and synthesis of its surface proteins, pollen wall and coat components, signaling components, and nutrient supplies. However, most early genes for pollen development, genes for primexine and callose formation, and genes for pollen maturation and anther dehiscence showed no difference in expression between fertile and sterile buds. Some of the known genes associated with Arabidopsis pollen development showed similar expression patterns to those seen in this study, while others did not. BrbHLH89 and BrMYP99 are putative GMS genes. Additionally, 17 novel genes identified only in B. rapa were specifically and highly expressed only in fertile buds, implying the possible involvement in male fertility. All data suggest that Chinese cabbage GMS might be controlled by genes acting in post-meiotic tapetal development that are different from those known to be associated with Arabidopsis male sterility.

  18. Genomic and transcriptomic alterations following hybridisation and genome doubling in trigenomic allohexaploid Brassica carinata × Brassica rapa.

    Science.gov (United States)

    Xu, Y; Zhao, Q; Mei, S; Wang, J

    2012-09-01

    Allopolyploidisation is a prominent evolutionary force that involves two major events: interspecific hybridisation and genome doubling. Both events have important functional consequences in shaping the genomic architecture of the neo-allopolyploids. The respective effects of hybridisation and genome doubling upon genomic and transcriptomic changes in Brassica allopolyploids are unresolved. In this study, amplified fragment length polymorphism (AFLP), methylation-sensitive amplification polymorphism (MSAP) and cDNA-AFLP approaches were used to track genetic, epigenetic and transcriptional changes in both allohexaploid Brassica (ArArBcBcCcCc genome) and triploid hybrids (ArBcCc genome). Results from these groups were compared with each other and also to their parents Brassica carinata (BBCC genome) and Brassica rapa (AA genome). Rapid and dramatic genetic, DNA methylation and gene expression changes were detected in the triploid hybrids. During the shift from triploidy to allohexaploidy, some of the hybridisation-induced alterations underwent reversion. Additionally, novel genetic, epigenetic and transcriptional alterations were also detected. The proportions of A-genome-specific DNA methylation and gene expression alterations were significantly greater than those of BC-genome-specific alterations in the triploid hybrids. However, the two parental genomes were equally affected during the ploidy shift. Hemi-CCG methylation changes induced by hybridisation were recovered after genome doubling. Full-CG methylation changes were a more general process initiated in the hybrid and continued after genome doubling. These results indicate that genome doubling could ameliorate genomic and transcriptomic alterations induced by hybridisation and instigate additional alterations in trigenomic Brassica allohexaploids. Moreover, genome doubling also modified hybridisation-induced progenitor genome-biased alterations and epigenetic alteration characteristics.

  19. Genetic Diversity of European and Chinese Oilseed Brassica rapa Cultivars from Different Breeding Periods

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-guo; Ofori Atta1; LU Chang-ming

    2009-01-01

    The Brassica oilseed crops went through two major breeding bottlenecks during the introgression of genes for zero erucic acid and low glucosinolate content, respectively, which may lead to reduced genetic biodiversity of the crop. This study investigates the impact of these bottlenecks on the genetic diversity within and across European and Chinese winter B. Rapa cultivars. We compared eight cultivars from Europe and China, representing three different seed qualities from three different breeding periods: (1) high erucic acid, high glucosinolates (++); (2) zero erucic acid, high glucosinolates (0+); (3) zero erueic acid, low glueosonolates (00, canola quality). Diversity was estimated on 32 plants per cultivar, with 16 simple sequence repeat (SSR) markers covering each of the B. Rapa linkage groups. The analysis of molecular variance (AMOVA) showed that genetic variations within cultivars, across cultivars and across regions (Europe and China) were significant, with about 60% of the total variation within cultivars. There was a slight, but non-significant loss in genetic diversity within cultivars when comparing the three breeding periods as indicated by effective number of alleles (2.39,2.23, and 1.99 for breeding periods 1, 2, and 3, respectively), Shannon information index (0.93, 0.90, 0.75), and expected heterozygosity (0.51, 0.49, 0.42). By cluster analysis (UPGMA dendrogram) and principal coordinate analysis, Chinese and European cultivars were clearly divided into two distinct groups. In conclusion, quality improvement did not significantly reduce the genetic diversity of European and Chinese B. Rapa cultivars.

  20. Transfer of auxinic herbicide resistance from Brassica kaber to Brassica juncea and Brassica rapa through embryo rescue.

    Science.gov (United States)

    Mithila, J; Hall, J Christopher

    2013-01-01

    Auxinic herbicides are widely used in agriculture to selectively control broadleaf weeds. Prolonged use of auxinic herbicides has resulted in the evolution of resistance to these herbicides in some biotypes of Brassica kaber (wild mustard), a common weed in agricultural crops. In this study, auxinic herbicide resistance from B. kaber was transferred to Brassica juncea and Brassica rapa, two commercially important Brassica crops, by traditional breeding coupled with in vitro embryo rescue. A high frequency of embryo regeneration and hybrid plant establishment was achieved. Transfer of auxinic herbicide resistance from B. kaber to the hybrids was assessed by whole-plant screening of hybrids with dicamba, a widely used auxinic herbicide. Furthermore, the hybrids were tested for fertility (both pollen and pistil) and their ability to produce backcross progeny. The auxinic herbicide-resistant trait was introgressed into B. juncea by backcross breeding. DNA ploidy of the hybrids as well as of the backcross progeny was estimated by flow cytometry. Creation of auxinic herbicide-resistant Brassica crops by non-transgenic approaches should facilitate effective weed control, encourage less tillage, provide herbicide rotation options, minimize occurrence of herbicide resistance, and increase acceptance of these crops.

  1. Genetic analysis of hybrid seed formation ability of Brassica rapa in intergeneric crossings with Raphanus sativus.

    Science.gov (United States)

    Tonosaki, K; Michiba, K; Bang, S W; Kitashiba, H; Kaneko, Y; Nishio, T

    2013-03-01

    A hybridization barrier leads to the inability of seed formation after intergeneric crossings between Brassica rapa and Raphanus sativus. Most B. rapa lines cannot set intergeneric hybrid seeds because of embryo breakdown, but a B. rapa line obtained from turnip cultivar 'Shogoin-kabu' is able to produce a large number of hybrid seeds as a maternal parent by crossings with R. sativus. In 'Shogoin-kabu' crossed with R. sativus, developments of embryos and endosperms were slower than those in intraspecific crossings, but some of them grew to mature seeds without embryo breakdown. Intergeneric hybrid seeds were obtained in a 'Shogoin-kabu' line at a rate of 0.13 per pollinated flower, while no hybrid seeds were obtained in a line developed from Chinese cabbage cultivar 'Chiifu'. F(1) hybrid plants between the lines of 'Shogoin-kabu' and 'Chiifu' set a larger number of hybrid seeds per flower, 0.68, than both the parental lines. Quantitative trait loci (QTLs) for hybrid seed formation were analyzed after intergeneric crossings using two different F(2) populations derived from the F(1) hybrids, and three QTLs with significant logarithm of odds scores were detected. Among them, two QTLs, i.e., one in linkage group A10 and the other in linkage group A01, were detected in both the F(2) populations. These two QTLs had contrary effects on the number of hybrid seeds. Epistatic interaction between these two QTLs was revealed. Possible candidate genes controlling hybrid seed formation ability in QTL regions were inferred using the published B. rapa genome sequences.

  2. DNA Methylation Alterations at 5'-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus.

    Directory of Open Access Journals (Sweden)

    Wanshan Xiong

    Full Text Available DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.

  3. QTL Mapping of Leafy Heads by Genome Resequencing in the RIL Population of Brassica rapa

    OpenAIRE

    Xiang Yu; Han Wang; Weili Zhong; Jinjuan Bai; Pinglin Liu; Yuke He

    2013-01-01

    Leaf heads of cabbage (Brassica oleracea), Chinese cabbage (B. rapa), and lettuce (Lactuca sativa) are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa), we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL) mapping using...

  4. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering.

    Science.gov (United States)

    Song, Mei-Fang; Zhang, Shu; Hou, Pei; Shang, Hong-Zhong; Gu, Hai-Ke; Li, Jing-Juan; Xiao, Yang; Guo, Lin; Su, Liang; Gao, Jian-Wei; Yang, Jian-Ping

    2015-04-01

    Phytochrome B (phyB) is an essential red light receptor that predominantly mediates seedling de-etiolation, shade-avoidance response, and flowering time. In this study, we isolate a full-length cDNA of PHYB, designated BrPHYB, from Chinese cabbage (Brassica rapa L. ssp. pekinensis), and we find that BrphyB protein has high amino acid sequence similarity and the closest evolutionary relationship to Arabidopsis thaliana phyB (i.e., AtphyB). Quantitative reverse transcription (RT)-PCR results indicate that the BrPHYB gene is ubiquitously expressed in different tissues under all light conditions. Constitutive expression of the BrPHYB gene in A. thaliana significantly enhances seedling de-etiolation under red- and white-light conditions, and causes dwarf stature in mature plants. Unexpectedly, overexpression of BrPHYB in transgenic A. thaliana resulted in reduced expression of gibberellins biosynthesis genes and delayed flowering under short-day conditions, whereas AtPHYB overexpression caused enhanced expression of FLOWERING LOCUS T and earlier flowering. Our results suggest that BrphyB might play an important role in regulating the development of Chinese cabbage. BrphyB and AtphyB have conserved functions during de-etiolation and vegetative plant growth and divergent functions in the regulation of flowering time.

  5. Genetic Analysis of Health-Related Secondary Metabolites in a Brassica rapa Recombinant Inbred Line Population

    Directory of Open Access Journals (Sweden)

    Mark G. M. Aarts

    2013-07-01

    Full Text Available The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL population was profiled using High Performance Liquid Chromatography (HPLC and Nuclear Magnetic Resonance (NMR analysis to detect quantitative trait loci (QTLs controlling seed tocopherol and seedling metabolite concentrations. RIL population parent L58 had a higher level of glucosinolates and phenylpropanoids, whereas levels of sucrose, glucose and glutamate were higher in the other RIL population parent, R-o-18. QTL related to seed tocopherol (α-, β-, γ-, δ-, α-⁄γ- and total tocopherol concentrations were detected on chromosomes A3, A6, A9 and A10, explaining 11%–35% of the respective variation. The locus on A3 co-locates with the BrVTE1gene, encoding tocopherol cyclase. NMR spectroscopy identified the presence of organic/amino acid, sugar/glucosinolate and aromatic compounds in seedlings. QTL positions were obtained for most of the identified compounds. Compared to previous studies, novel loci were found for glucosinolate concentrations. This work can be used to design markers for marker-assisted selection of nutritional compounds in B. rapa.

  6. QTL mapping of leafy heads by genome resequencing in the RIL population of Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    Full Text Available Leaf heads of cabbage (Brassica oleracea, Chinese cabbage (B. rapa, and lettuce (Lactuca sativa are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa, we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL mapping using 150 recombinant inbred lines (RILs derived from the cross between heading and non-heading Chinese cabbage. The resequenced genomes of the parents uncovered more than 1 million SNPs. Genotyping of RILs using the high-quality SNPs assisted by Hidden Markov Model (HMM generated a recombination map. The raw genetic map revealed some physical assembly error and missing fragments in the reference genome that reduced the quality of SNP genotyping. By deletion of the genetic markers in which recombination rates higher than 20%, we have obtained a high-quality genetic map with 2209 markers and detected 18 QTLs for 6 head traits, from which 3 candidate genes were selected. These QTLs provide the foundation for study of genetic basis of leafy heads and the other complex traits.

  7. QTL mapping of leafy heads by genome resequencing in the RIL population of Brassica rapa.

    Science.gov (United States)

    Yu, Xiang; Wang, Han; Zhong, Weili; Bai, Jinjuan; Liu, Pinglin; He, Yuke

    2013-01-01

    Leaf heads of cabbage (Brassica oleracea), Chinese cabbage (B. rapa), and lettuce (Lactuca sativa) are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa), we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL) mapping using 150 recombinant inbred lines (RILs) derived from the cross between heading and non-heading Chinese cabbage. The resequenced genomes of the parents uncovered more than 1 million SNPs. Genotyping of RILs using the high-quality SNPs assisted by Hidden Markov Model (HMM) generated a recombination map. The raw genetic map revealed some physical assembly error and missing fragments in the reference genome that reduced the quality of SNP genotyping. By deletion of the genetic markers in which recombination rates higher than 20%, we have obtained a high-quality genetic map with 2209 markers and detected 18 QTLs for 6 head traits, from which 3 candidate genes were selected. These QTLs provide the foundation for study of genetic basis of leafy heads and the other complex traits.

  8. Genetic Analysis of Health-Related Secondary Metabolites in a Brassica rapa Recombinant Inbred Line Population

    NARCIS (Netherlands)

    Bagheri, H.; Soda, El M.; Kim, H.K.; Fritsche, S.; Jung, C.; Aarts, M.G.M.

    2013-01-01

    The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL) population was profiled using High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) analysis to detect quantitative trait loci (QTLs) c

  9. Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa

    NARCIS (Netherlands)

    Jianjun Zhao, Jianjun; Jamar, D.C.L.; Lou, P.; Wang, Y.; Wu, J.; Wang, X.; Bonnema, A.B.; Koornneef, M.; Vreugdenhil, D.

    2008-01-01

    Phytate, being the major storage form of phosphorus in plants, is considered to be an anti-nutritional substance for human, because of its ability to complex essential micronutrients. In the present study, we describe the genetic analysis of phytate and phosphate concentrations in Brassica rapa usin

  10. Characterization of rDNAs and Tandem Repeats in the Heterochromatin of Brassica rapa

    NARCIS (Netherlands)

    Lim, K.B.; Jong, de J.H.S.G.M.; Yang, T.J.; Park, J.Y.; Kwon, S.J.; Kim, J.S.; Lim, M.H.; Kim, J.A.; Jin, M.; Jin, Y.M.; Kim, S.H.; Lim, Y.P.; Bang, J.W.; Kim, H.I.; Park, B.S.

    2005-01-01

    We describe the morphology and molecular organization of heterochromatin domains in the interphase nuclei, and mitotic and meiotic chromosomes, of Brassica rapa, using DAPI staining and fluorescence in situ hybridization (FISH) of rDNA and pericentromere tandem repeats. We have developed a simple me

  11. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa

    NARCIS (Netherlands)

    Lou, P.; Jianjun Zhao, Jianjun; Kim, J.S.; Shen, Shuxing; Pino del Carpio, D.; Song, Xiaofei; Jin, M.; Vreugdenhil, D.; Wang, Xiaowu; Koornneef, M.; Bonnema, A.B.

    2007-01-01

    Wide variation for morphological traits exists in Brassica rapa and the genetic basis of this morphological variation is largely unknown. Here is a report on quantitative trait loci (QTL) analysis of flowering time, seed and pod traits, growth-related traits, leaf morphology, and turnip formation in

  12. Development of a leafy Brassica rapa fixed line collection for genetic diversity and population structure analysis

    NARCIS (Netherlands)

    Pang, W.; Li, X.; Choi, S.R.; Dhandapani, V.; Im, S.; Park, M.Y.; Jang, C.S.; Yang, M.S.; Ham, I.K.; Lee, E.M.; Kim, W.; Lee, S.S.; Bonnema, A.B.; Park, S.; Piao, Z.; Lim, Y.P.

    2015-01-01

    Brassica rapa is an economically important crop with a wide range of morphologies. Developing a set of fixed lines and understanding their diversity has been challenging, but facilitates resource conservation. We investigated the genetic diversity and population structure of 238 fixed lines of leafy

  13. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa

    Science.gov (United States)

    The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects 1) plant volatiles emitted in r...

  14. Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population.

    Science.gov (United States)

    Warwick, S I; Légère, A; Simard, M-J; James, T

    2008-03-01

    The existence of transgenic hybrids resulting from transgene escape from genetically modified (GM) crops to wild or weedy relatives is well documented but the fate of the transgene over time in recipient wild species populations is still relatively unknown. This is the first report of the persistence and apparent introgression, i.e. stable incorporation of genes from one differentiated gene pool into another, of an herbicide resistance transgene from Brassica napus into the gene pool of its weedy relative, Brassica rapa, monitored under natural commercial field conditions. Hybridization between glyphosate-resistant [herbicide resistance (HR)]B. napus and B. rapa was first observed at two Québec sites, Ste Agathe and St Henri, in 2001. B. rapa populations at these two locations were monitored in 2002, 2003 and 2005 for the presence of hybrids and transgene persistence. Hybrid numbers decreased over the 3-year period, from 85 out of approximately 200 plants surveyed in 2002 to only five out of 200 plants in 2005 (St Henri site). Most hybrids had the HR trait, reduced male fertility, intermediate genome structure, and presence of both species-specific amplified fragment length polymorphism markers. Both F(1) and backcross hybrid generations were detected. One introgressed individual, i.e. with the HR trait and diploid ploidy level of B. rapa, was observed in 2005. The latter had reduced pollen viability but produced approximately 480 seeds. Forty-eight of the 50 progeny grown from this plant were diploid with high pollen viability and 22 had the transgene (1:1 segregation). These observations confirm the persistence of the HR trait over time. Persistence occurred over a 6-year period, in the absence of herbicide selection pressure (with the exception of possible exposure to glyphosate in 2002), and in spite of the fitness cost associated with hybridization.

  15. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Xiaonan eLi

    2015-06-01

    Full Text Available Chromosome segment substitution lines (CSSLs represent a powerful method for precise quantitative trait loci (QTL detection of complex agronomical traits in plants. In this study, we used a marker-assisted backcrossing strategy to develop a population consisting of 63 CSSLs, derived from backcrossing of the F1 generated from a cross between two Brassica rapa subspecies: ‘Chiifu’ (ssp. pekinensis, the Brassica A genome-represented line used as the donor, and ‘49caixin’ (ssp. parachinensis, a non-heading cultivar used as the recipient. The 63 CSSLs covered 87.95% of the B. rapa genome. Among them, 39 lines carried a single segment; 15 lines, two segments; and nine lines, three or more segments of the donor parent chromosomes. To verify the potential advantage of these CSSL lines, we used them to locate QTL for six morphology-related traits. A total of 58 QTL were located on eight chromosomes for all six traits: 17 for flowering time, 14 each for bolting time and plant height, 6 for plant diameter, 2 for leaf width, and 5 for flowering stalk diameter. Co-localized QTL were mainly distributed on eight genomic regions in A01, A02, A05, A06, A08, A09, and A10, present in the corresponding CSSLs. Moreover, new chromosomal fragments that harbored QTL were identified using the findings of previous studies. The CSSL population constructed in our study paves the way for fine mapping and cloning of candidate genes involved in late bolting, flowering, and plant architecture-related traits in B. rapa. Furthermore, it has great potential for future marker-aided gene/QTL pyramiding of other interesting traits in B. rapa breeding.

  16. Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L.

    NARCIS (Netherlands)

    Wu, J.; Schat, H.; Koornneef, M.; Wang, X.; Aarts, M.G.M.

    2007-01-01

    Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in

  17. Cytogenetic diversity of simple sequences repeats in morphotypes of Brassica rapa ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Jinshuang Zheng

    2016-07-01

    Full Text Available A significant fraction of the nuclear DNA of all eukaryotes is occupied by simple sequence repeats (SSRs. Although thesis sequences have sparked great interest as a means of studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. This paper report the long-range organization of all possible classes of mono-, di- and tri-nucleotide SSRs in Brassica rapa. Fluorescence in situ hybridization (FISH was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphtypes of B. rapa, with trinucleotide SSRs more prevalent in the genome of B. rapa ssp. chinensis. The chromosomal characterizations of mono-, di- and tri-nucleotide repeats have been acquired. The data has revealed the non-random and motif-dependent chromosome distribution of SSRs in different morphtypes, and allowed the relative variability characterized by SSRs amount and similar chromosomal distribution in centromeric/peri-centromeric heterochromatin. The differences of SSRs in the abundance and distribution indicated the driving force of SSRs in relationship with the evolution of B. rapa species. The results provided a comprehensive view on the SSR sequence distribution and evolution for comparison among morphtypes B. rapa ssp. chinensis.

  18. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy (Brassica rapa var. chinensis).

    Science.gov (United States)

    Zhang, Yanjie; Chen, Guoping; Dong, Tingting; Pan, Yu; Zhao, Zhiping; Tian, Shibing; Hu, Zongli

    2014-12-24

    Bok choy (Brassica rapa var. chinensis) is an important dietary vegetable cultivated and consumed worldwide for its edible leaves. The purple cultivars rich in health-promoting anthocyanins are usually more eye-catching and valuable. Fifteen kinds of anthocyanins were separated and identified from a purple bok choy cultivar (Zi He) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. To investigate the molecular mechanisms underlying anthocyanin accumulation in bok choy, the expression profiles of anthocyanin biosynthetic and regulatory genes were analyzed in seedlings and leaves of the purple cultivar and the green cultivar (Su Zhouqing). Compared with the other tissues, BrTT8 and most of the anthocyanin biosynthetic genes were significantly up-regulated in the leaves and light-grown seedlings of Zi He. The results that heterologous expression of BrTT8 promotes the transcription of partial anthocyanin biosynthetic genes in regeneration shoots of tomato indicate that BrTT8 plays an important role in the regulation of anthocyanin biosynthesis.

  19. DNA-based genetic markers for Rapid Cycling Brassica rapa (Fast Plants type designed for the teaching laboratory.

    Directory of Open Access Journals (Sweden)

    Eryn E. Slankster

    2012-06-01

    Full Text Available We have developed DNA-based genetic markers for rapid-cycling Brassica rapa (RCBr, also known as Fast Plants. Although markers for Brassica rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP based markers and 14 variable number tandem repeat (VNTR-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a nongenic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

  20. Characterization and stress-induced expression analysis of Alfin-like transcription factors in Brassica rapa.

    Science.gov (United States)

    Kayum, Md Abdul; Park, Jong-In; Ahmed, Nasar Uddin; Jung, Hee-Jeong; Saha, Gopal; Kang, Jong-Goo; Nou, Ill-Sup

    2015-08-01

    The Alfin-like (AL) transcription factors (TFs) family is involved in many developmental processes, including the growth and development of roots, root hair elongation, meristem development, etc. However, stress resistance-related function and the regulatory mechanism of these TFs have yet to be elucidated. This study identified 15 Brassica rapa AL (BrAL) TFs from BRAD database, analyzed the sequences and profiled their expression first time in response to Fusarium oxysporum f. sp. conglutinans and Pectobacterium carotovorum subsp. carotovorum in fection, cold, salt and drought stresses in B. rapa. Structural and phylogenetic analyses of 15 BrAL TFs revealed four distinct groups (groups I-IV) with AL TFs of Arabidopsis thaliana. In the expression analyses, ten BrAL TFs showed responsive expression after F. oxysporum f. sp. conglutinans infection, while all BrAL TFs showed responses under cold, salt and drought stresses in B. rapa. Interestingly, ten BrAL TFs showed responses to both biotic and abiotic stress factors tested here. The differentially expressed BrAL TFs thus represent potential resources for molecular breeding of Brassica crops resistant against abiotic and biotic stresses. Our findings will also help to elucidate the complex regulatory mechanism of AL TFs in stress resistance and provide a foundation for further functional genomics studies and applications.

  1. Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment.

    Science.gov (United States)

    Haider, Nadia; Allainguillaume, Joel; Wilkinson, Mike J

    2009-04-01

    Environmental concerns over the cultivation of Genetically Modified (GM) crops largely centre on the ecological consequences following gene flow to wild relatives. One attractive solution is to deploy biocontainment measures that prevent hybridization. Chloroplast transformation is the most advanced biocontainment method but is compromised by chloroplast capture (hybridization through the maternal lineage). To date, however, there is a paucity of information on the frequency of chloroplast capture in the wild. Oilseed rape (Brassica napus, AACC) frequently hybridises with wild Brassica rapa (AA, as paternal parent) and yields B. rapa-like introgressed individuals after only two generations. In this study we used chloroplast CAPS markers that differentiate between the two species to survey wild and weedy populations of B. rapa for the capture of B. napus chloroplasts. A total of 464 B. rapa plants belonging to 14 populations growing either in close proximity to B. napus (i.e. sympatric 1 km) were assessed for chloroplast capture using PCR (trnL-F) and CAPS (trnT-L-Xba I) markers. The screen revealed that two sympatric B. rapa populations included 53 plants that possessed the chloroplast of B. napus. In order to discount these B. rapa plants as F(1) crop-wild hybrids, we used a C-genome-specific marker and found that 45 out of 53 plants lacked the C-genome and so were at least second generation introgressants. The most plausible explanation is that these individuals represent multiple cases of chloroplast capture following introgressive hybridisation through the female germ line from the crop. The abundance of such plants in sympatric sites thereby questions whether the use of chloroplast transformation would provide a sufficient biocontainment for GM oilseed rape in the United Kingdom.

  2. Transformation of Chinese Cabbage (Brassica rapa L. ssp.pekinensis) by Agrobacterium Micro-Injection into Flower Bud

    Institute of Scientific and Technical Information of China (English)

    YAN Ji-yong; HE Yu-ke; CAO Jia-shu

    2003-01-01

    We obtained two lines of Chinese head cabbage (Brassica rapa L. ssp. pekinensis) selfed progenies containing both an anti-sense gene of BcpLH and a gene for resistance to kanamycin by micro-injecting buds of their primary transformants (T0) with Agrobacterium tumefaciens strain LBA4404. 31 positive plants resistant to kanamycien were recovered. Southern blot analysis confirmed the presence of T-DNA in two transgenic plants. One (DHZ-13-1) exhibits the characteristics of out-toward rosette and cauline leaves, and nested flower model in which secondary complete flower developed from the base of the primary ovary and the third flower from the ovary in the secondary flower, and so on, while another(DHZ-6-1) has no phenotype change. ABA and IAA affected the root growth of progeny of DHZ-13-1, but 6-BA was insensitive to hypocotyl growth during its seedling development.

  3. 控制白菜叶片紫色的pur基因初步定位%Primary Mapping of pur, a Gene Controlling Purple Leaf Color in Brassica rapa

    Institute of Scientific and Technical Information of China (English)

    刘瑾; 汪维红; 张德双; 于拴仓; 张凤兰; 赵岫云; 余阳俊; 徐家炳; 卢桂香

    2013-01-01

    In order to map the pur gene controlling purple leaf color in Brassica rapa, a F2 population including 307 individuals was constructed by crossed Chinese Cabbage inbred line 09-680(green leaf)with non-heading Chinese Cabbage inbred line 09N-742 ( purple leaf) . A bulk segregant analysis ( BSA ) technology was conducted by screening 125 PCR-based insertion/deletion ( InDel) markers and 100 simple sequence repeate ( SSR ) markers distributed on 10 linkage groups to screen the polymorphism between the purple and green leaf pools. Of these,two InDel markers BrID 10999 and BrID 10399 were found to be linked to the pur gene. By linkage analysis,two markers were located at the end of A3 ,at the same side of pur gene at distances of 7. 3 ,5. 7 cM Respectively. In order to obtain tightly linked markers on both sides of pur gene, 23 SSR primers derived from three bacterial artificial chromosome ( BAC ) clones were selected, of which one SSR marker BVRCP10-6 from KBrH005P10 was indentified as closely linked to pur gene at a genetic distance of 1. 9 cM, at the other side of the pur gene. These markers could be very helpful for marker-assisted selection( MAS) in purple Chinese cabbage hybrid breeding programs as well as for fine mapping and cloning this gene.%为了定位控制白菜叶片紫色的pur基因,选用大白菜自交系09-680和紫色小白菜09N-742进行杂交构建了一个由307个单株组成的F2群体,采用群体分离分析法(Bulked segregant analysis,BSA)构建紫色和绿色池,对分布在白菜基因组10个连锁群上的125个InDel标记和100个SSR标记进行多态筛选,其中位于A3连锁群末端的2个In-Del标记BrID10999和BrID10399与紫色性状表现连锁.连锁分析发现,2个标记与pur基因的遗传距离分别为7.3,5.7 cM,位于pur基因的同侧.在此基础上,根据这些标记所在区域的BAC序列设计了23对SSR引物,其中来源于KBrH005 P10的SSR标记BVRCP10-6位于pur基因的另一侧,距离pur基因仅1.9 cM.

  4. Erwinia carotovora ssp. carotovora Infection Induced "Defense Lignin" Accumulation and Lignin Biosynthetic Gene Expression in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Erwinia carotovora subsp. carotovora (Ecc) infects and causes soft rot disease in hundreds of crop species including vegetables, flowers and fruits. Lignin biosynthesis has been implicated in defensive reactions to injury and pathogen Infection in plants. In this work, variations of lignin content and gene expression in the molecular interaction between Chinese cabbage and Ecc were investigated. H2O2 accumulation and peroxidase activity were detected by 3, 3'-Dimethoxybenzidine staining at mocked and Ecc-inoculated sites of Chinese cabbage leafstalks. Klason lignin content in inoculated plants increased by about 7.84%, 40.37%, and 43.13% more than that of the mocked site at 12, 24 and 72 h after inoculation, respectively. Gas chromatography detected more p-coumaryl (H) and less coniferyl (G) and sinapyl (S)monolignins in leafstalks of Chinese cabbage. All three monomers increased in Ecc-infected leafstalks, and the Ecc-induced "defense lignin" were composed of more G and H monolignins, and less S monolignin. After searching the expressed sequence tags (EST) data of Chinese cabbage, 12 genes putatively encoding enzymes involved in lignin biosynthesis were selected to study their expression. All of these genes could be Induced by mock inoculation and Ecc infection, while the gene expression lasted for several more hours in the infected samples than in mocked and untreated plants. Our results indicated that "defense lignin" was different from the developmental lignin in composition; G and S monolignins were significantly induced in plants in response to the soft rot Ecc; thus, lignin biosynthesis was differentially regulated and played a role in plant response to the soft rot Ecc.

  5. Determination of n+1 Gamete Transmission Rate of Trisomics and Location of Gene Controlling 2n Gamete Formation in Chinese Cabbage (Brassica rapa)

    Institute of Scientific and Technical Information of China (English)

    Cheng-He Zhang; Xiao-Feng Li; Shu-Xing Shen; He Yuan; Shu-Xin Xuan

    2009-01-01

    A set of trisomics of Chinese cabbage was used for determining the n+1 gamete transmission rate and locating the gene controlling 2n gamete formation on the corresponding chromosome. The results showed that the transmission rates of extra chromosomes in different trisomica varied from 0% to 15.38% by male gametes and from 0% to 17.39% by female gametes. Of the nine F2 populations derived from the hybridizations between each triaomic and Bp058 (2n gamete material), only Tri-4×Bp058 showed that the segregation ratio of plants without 2n gamete formation to plants with 2n gamete formation was 10.38:1, which fitted the expected segregation ratio of the trisomics (AAa) based on the 7.37% of n+1 gamete transmission through female and 5.88% through male. In other populations the segregation ratios varied from 2.48:1 to 3.72:1, which fitted the expected 3:1 segregation ratio of the bisomice (Aa). These results suggested that the gene controlling 2n gamete formation in Chinese cabbage Bp058 was located on chromosome 4. Further trisomic analysis based on the chromosome segregation and the incomplete stochastic chromatid segregation indicated that the gene locus was tightly linked to the centromere.

  6. Aphrodisiac pheromones from the wings of the Small Cabbage White and Large Cabbage White butterflies, Pieris rapae and Pieris brassicae

    NARCIS (Netherlands)

    Yildizhan, S.; Loon, van J.J.A.; Sramkova, A.; Ayasse, M.; Arsene, C.; Broeke, ten C.J.M.; Schulz, S.

    2009-01-01

    The small and large cabbage butterflies, Pieris rapae and P. brassicae, are found worldwide and are of considerable economic importance. The composition of the male scent-producing organs present on the wings was investigated. More than 120 components were identified, but only a small portion proved

  7. Occurrence of Escherichia coli in Brassica rapa L. chinensis irrigated with low quality water in urban areas of Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mhongole, Ofred J.; Mdegela, Robinson H.; Kusiluka, Lughano J. M.;

    2016-01-01

    Low quality water has become valuable resource with restricted or unrestricted use in food production depending on its quality. This study has quantified the occurrence of Escherichia coli in Brassica rapa L. chinensis (Chinese cabbage) vegetables and low quality irrigation water. A total of 106 ...

  8. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa

    Directory of Open Access Journals (Sweden)

    Delourme Régine

    2011-02-01

    Full Text Available Abstract Background The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. Results We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38 populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa. Conclusions Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.

  9. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Selenium (Se is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO in the root of Brassica rapa under Se(IV stress. Se(IV-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR- and nitric oxide synthase (NOS-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  10. Mapping of quantitative trait loci for the bolting trait in Brassica rapa under vernalizing conditions.

    Science.gov (United States)

    Wang, Y G; Zhang, L; Ji, X H; Yan, J F; Liu, Y T; Lv, X X; Feng, H

    2014-05-23

    Premature bolting can occur occasionally during spring cultivation of heading Chinese cabbage in East Asia when the plants encounter low temperatures (vernalization), leading to economic loss. Breeding bolting-resistant cultivars is the best choice for solving this problem. We looked for QTLs responsible for varietal differences in the bolting trait in Brassica rapa under environmental conditions that promote vernalization. To achieve this goal, we constructed a linkage map with 107 simple sequence repeats and 54 insertion/deletion markers based on a segregating population of 186 F2 individuals. The resulting map consisted of 10 linkage groups and covered a total length of 947.1 cM, with an average genetic distance of 5.84 cM between adjacent markers. QTL analysis of the bolting trait was performed by two phenotypic evaluations (bolting index and flowering time) based on the scores in an F2 population in the spring of 2010, and scores in F2:3 families in autumn 2010 and spring 2011, respectively. Twenty-six QTLs that controlled bolting were detected, accounting for 2.6 to 31.2% of the phenotypic variance. The detected QTLs with large effects co-localized mainly on linkage groups A02, A06, and A07. These QTLs may provide useful information for marker-assisted selection in a breeding program for late bolting or bolting-resistant cultivars in B. rapa crops.

  11. Optimization of extraction, characterization and antioxidant activity of polysaccharides from Brassica rapa L.

    Science.gov (United States)

    Wang, Wei; Wang, Xiaoqing; Ye, Hong; Hu, Bing; Zhou, Li; Jabbar, Saqib; Zeng, Xiaoxiong; Shen, Wenbiao

    2016-01-01

    The root of Brassica rapa L. has been traditionally used as a Uyghur folk medicine to cure cough and asthma by Uyghur nationality in Xinjiang Uygur Autonomous Region of China. In the present study, therefore, extraction optimization, characterization and antioxidant activity in vitro of polysaccharides from the root of B. rapa L. (BRP) were investigated. The optimal extraction conditions with an extraction yield of 21.48 ± 0.41% for crude BRP were obtained as follows: extraction temperature 93°C, extraction time 4.3h and ratio of extraction solvent (water) to raw material 75 mL/g. The crude BRP was purified by chromatographic columns of DEAE-52 cellulose and Sephadex G-100, affording three purified fractions of BRP-1-1, BRP-2-1 and BRP-2-2 with average molecular weight of 1510, 1110 and 838 kDa, respectively. Monosaccharide composition analysis indicated that BRP-1-1 was composed of mannose, rhamnose, glucose, galactose and arabinose, BRP-2-1 was composed of rhamnose, galacturonic acid, galactose and arabinose, and BRP-2-2 was composed of rhamnose and galacturonic acid in a molar ratio of 1.27: 54.92. Furthermore, the crude BRP exhibited relatively higher antioxidant activity in vitro than purified fractions; hence, it could be used as a natural antioxidant in functional foods or medicines.

  12. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis).

    Science.gov (United States)

    Huang, X Y; Tao, P; Li, B Y; Wang, W H; Yue, Z C; Lei, J L; Zhong, X M

    2015-03-27

    Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetable crops grown worldwide, and various methods exist for selection, propagation, and cultivation. The entire Chinese cabbage genome has been sequenced, and the heat shock transcription factor family (Hsfs) has been found to play a central role in plant growth and development and in the response to biotic and abiotic stress conditions, particularly in acquired thermotolerance. We analyzed heat tolerance mechanisms in Chinese cabbage. In this study, 30 Hsfs were identified from the Chinese cabbage genome database. The classification, phylogenetic reconstruction, chromosome distribution, conserved motifs, expression analysis, and interaction networks of the Hsfs were predicted and analyzed. Thirty BrHsfs were classified into 3 major classes (class A, B, and C) according to their structural characteristics and phylogenetic comparisons, and class A was further subdivided into 8 subclasses. Distribution mapping results showed that Hsf genes were located on 10 Chinese cabbage chromosomes. The expression profile indicated that Hsfs play differential roles in 5 organs in Chinese cabbage, and likely participate in the development of underground parts and regulation of reproductive growth. An orthologous gene interaction network was constructed, and included MBF1C, ROF1, TBP2, CDC2, and HSP70 5 genes, which are closely related to heat stress. Our results contribute to the understanding of the complexity of Hsfs in Chinese cabbage and provide a basis for further functional gene research.

  13. Increased susceptibility to fungal disease accompanies adaptation to drought in Brassica rapa.

    Science.gov (United States)

    O'Hara, Niamh B; Rest, Joshua S; Franks, Steven J

    2016-01-01

    Recent studies have demonstrated adaptive evolutionary responses to climate change, but little is known about how these responses may influence ecological interactions with other organisms, including natural enemies. We used a resurrection experiment in the greenhouse to examine the effect of evolutionary responses to drought on the susceptibility of Brassica rapa plants to a fungal pathogen, Alternaria brassicae. In agreement with previous studies in this population, we found an evolutionary shift to earlier flowering postdrought, which was previously shown to be adaptive. Here, we report the novel finding that postdrought descendant plants were also more susceptible to disease, indicating a rapid evolutionary shift to increased susceptibility. This was accompanied by an evolutionary shift to increased specific leaf area (thinner leaves) following drought. We found that flowering time and disease susceptibility displayed plastic responses to experimental drought treatments, but that this plasticity did not match the direction of evolution, indicating that plastic and evolutionary responses to changes in climate can be opposed. The observed evolutionary shift to increased disease susceptibility accompanying adaptation to drought provides evidence that even if populations can rapidly adapt in response to climate change, evolution in other traits may have ecological effects that could make species more vulnerable.

  14. Quantitative Trait Locus Analysis of Seed Germination and Seedling Vigor in Brassica rapa Reveals QTL Hotspots and Epistatic Interactions.

    Science.gov (United States)

    Basnet, Ram K; Duwal, Anita; Tiwari, Dev N; Xiao, Dong; Monakhos, Sokrat; Bucher, Johan; Visser, Richard G F; Groot, Steven P C; Bonnema, Guusje; Maliepaard, Chris

    2015-01-01

    The genetic basis of seed germination and seedling vigor is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak choi. We identified 26 QTL regions across all 10 linkage groups for traits related to seed weight, seed germination and seedling vigor under non-stress and salt stress conditions illustrating the polygenic nature of these traits. QTLs for multiple traits co-localized and we identified eight hotspots for quantitative trait loci (QTL) of seed weight, seed germination, and root and shoot lengths. A QTL hotspot for seed germination on A02 mapped at the B. rapa Flowering Locus C (BrFLC2). Another hotspot on A05 with salt stress specific QTLs co-located with the B. rapa Fatty acid desaturase 2 (BrFAD2) locus. Epistatic interactions were observed between QTL hotspots for seed germination on A02 and A10 and with a salt tolerance QTL on A05. These results contribute to the understanding of the genetics of seed quality and seeding vigor in B. rapa and can offer tools for Brassica breeding.

  15. Morpho- biochemical evaluation of Brassica rapa sub-species for salt tolerance

    Directory of Open Access Journals (Sweden)

    Jan Sohail Ahmad

    2016-01-01

    Full Text Available Salt stress is one of the key abiotic stresses that affect both the qualitative and quantitative characters of many Brassica rapa sub-species by disturbing its normal morphobiochemical processes. Therefore, the present research work was designed to study the effect of different NaCl events (0, 50,100 and 150 mmol on morphological and biochemical characters and to screen salt tolerant genotypes among brown, yellow and toria types of B. rapa sub-species. The plants were grown in test tubes with addition of four level of NaCl (0, 50,100 and 150 mmol. The effect of salinity on shoot and root length, shoot/ root fresh and dry weight, relative water content (RWC, proline and chlorophyll a, b, a+b contents was recorded after 4 weeks of sowing. The genotype 22861 (brown type showed excellent morphological and biochemical performance at all stress levels followed by Toria-Sathi and Toria-A respectively as compared to Check variety TS-1. The genotype 26158 (yellow type gave very poor performance and retard growth. The %RWC values and chlorophyll a, b and a+b contents were decreased several folds with the increase of salt concentration. While, the proline contents was increased with raising of salt stress. The brown and toria types showed maximum tolerance to salt stress at early germination stages as compare to yellows one. The present study will serve as model to develop quick salt tolerant genotypes among different plant sub-species against salt stress.

  16. Effects of the veterinary pharmaceutical salinomycin and its formulation on the plant Brassica rapa.

    Science.gov (United States)

    Furtula, V; Stephenson, G L; Olaveson, K M; Chambers, P A

    2012-11-01

    Veterinary pharmaceuticals are emerging contaminants found throughout the environment, and their presence and effects are a matter of concern. The purpose of this study was to compare the phytotoxicity of salinomycin (pure compound = 96 %) and Sacox 120 (formulated product = 120 g salinomycin/kg) to the plant species Brassica rapa as well as to investigate salinomycin persistence in soil. Calculated EC/IC(50) values for salinomycin and Sacox 120 were 1.10 and 2.88 and 2.19 and 18.03 mg/kg, respectively, based on salinomycin concentration. For exposure of B. rapa to salinomycin, significant adverse effects were observed for growth end points at the greater concentrations. For the reproduction end point (i.e., number of buds), as well as root length and wet mass, significant differences were observed at the lower concentrations (stimulating growth) and adverse effects at the greater concentrations. This study confirmed that the toxic effects of Sacox 120 are attributable to the active ingredient salinomycin. Liquid chromatography-electrospray ionization-mass spectrometry analyses confirmed that exposure concentrations of salinomycin were 90 and 83 % of the nominal concentrations, respectively, in the soils amended with either pure or formulated product. At the end of the experiment, after 14 days, salinomycin concentrations for both tests (salinomycin and Sacox 120) decreased to 6.2 and 5.8 % of the nominal exposure concentrations, respectively. Detected salinomycin concentrations in plant shoots ranged from 3.47 to 41.0 ng/g dry shoot. This study shows the importance of using plants as tools to evaluate environmental risk and as a bridge to relate environment and human health risks.

  17. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis.

    Science.gov (United States)

    Diehn, Till A; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P

    2015-01-01

    Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  18. Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin.

    Science.gov (United States)

    Vanjildorj, Enkhchimeg; Song, Seo Young; Yang, Zhi Hong; Choi, Jae Eul; Noh, Yoo Sun; Park, Suhyoung; Lim, Woo Jin; Cho, Kye Man; Yun, Han Dae; Lim, Yong Pyo

    2009-10-01

    We developed a transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin, with high tolerance to soft rot disease. Tolerance was conferred by expression of N-acyl-homoserine lactonase (AHL-lactonase) in Chinese cabbage through an efficient Agrobacterium-mediated transformation method. To synthesize and express the AHL-lactonase in Chinese cabbage, the plant was transformed with the aii gene (AHL-lactonase gene from Bacillus sp. GH02) fused to the PinII signal peptide (protease inhibitor II from potato). Five transgenic lines were selected by growth on hygromycin-containing medium (3.7% transformation efficiency). Southern blot analysis showed that the transgene was stably integrated into the genome. Among these five transgenic lines, single copy number integrations were observed in four lines and a double copy number integration was observed in one transgenic line. Northern blot analysis confirmed that pinIISP-aii fusion gene was expressed in all the transgenic lines. Soft rot disease tolerance was evaluated at tissue and seedling stage. Transgenic plants showed a significantly enhanced tolerance (2-3-fold) to soft rot disease compared to wild-type plants. Thus, expression of the fusion gene pinIISP-aii reduces susceptibility to soft rot disease in Chinese cabbage. We conclude that the recombinant AHL-lactonase, encoded by aii, can effectively quench bacterial quorum-sensing and prevent bacterial population density-dependent infections. To the best of our knowledge, the present study is the first to demonstrate the transformation of Chinese cabbage inbred line Kenshin, and the first to describe the effect of the fusion gene pinIISP-aii on enhancement of soft rot disease tolerance.

  19. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available Yellow seed is a desirable quality trait of the Brassica oilseed species. Previously, several seed coat color genes have been mapped in the Brassica species, but the molecular mechanism is still unknown. In the present investigation, map-based cloning method was used to identify a seed coat color gene, located on A9 in B. rapa. Blast analysis with the Arabidopsis genome showed that there were 22 Arabidopsis genes in this region including at4g09820 to at4g10620. Functional complementation test exhibited a phenotype reversion in the Arabidopsis thaliana tt8-1 mutant and yellow-seeded plant. These results suggested that the candidate gene was a homolog of TRANSPARENT TESTA8 (TT8 locus. BrTT8 regulated the accumulation of proanthocyanidins (PAs in the seed coat. Sequence analysis of two alleles revealed a large insertion of a new class of transposable elements, Helitron in yellow sarson. In addition, no mRNA expression of BrTT8 was detected in the yellow-seeded line. It indicated that the natural transposon might have caused the loss in function of BrTT8. BrTT8 encodes a basic/helix-loop-helix (bHLH protein that shares a high degree of similarity with other bHLH proteins in the Brassica. Further expression analysis also revealed that BrTT8 was involved in controlling the late biosynthetic genes (LBGs of the flavonoid pathway. Our present findings provided with further studies could assist in understanding the molecular mechanism involved in seed coat color formation in Brassica species, which is an important oil yielding quality trait.

  20. High Quality Komatsuna (Brassica rapa L. nothovar Production by Using Silicate Minerals Treated Nutrient Solution

    Directory of Open Access Journals (Sweden)

    Sheheli Islam

    2009-01-01

    Full Text Available Problem statement: Good water quality not only produces good crop yield, but also maintains environmental quality and so with plant, animal and human health. Therefore, protecting the quality of water by using non chemical materials is an emerging issue to be solved. Bakuhan seki having additional negative charge were found to have the capacity of improving condition of water while emitting important minerals essential to life. Because of high cost and scarcity of Bakuhan-seki, experiments continued to find out low cost materials. In this study, a very timely and relevant and costefficient procedure has been described for determining the potential of three minerals of Shikoku Island to improve water quality affecting growth of plants. Approach: Firstly, tap water of Kochi, Japan was treated with different mixtures of silicate minerals and then applied for the germination of Komatsuna (Brassica rapa L. nothovar seeds. The feasibility of these treatments was investigated by measuring root and shoot length of early seedlings. Results: Treatment with Q4S1 showed the highest elongation of seedling parameters compared to other treatments. Where as results of growth tests using Komatsuna in the NFT (Nutrient Film Technique system, showed degree of leaf freshness (SPAD and dry matter contents were higher than controls. Also amount of K and Mg was found higher in applying silicate mineral treated nutrient solution to Komatsuna plants. Conclusion: Therefore, this nutrient solution treatment system can be expected to be applicable in nutri-culture and hydroponics.

  1. Effects of microgravityon the structural organization of Brassica rapa photosynthetic appartus

    Science.gov (United States)

    Adamchuk, N.; Kordyum, E.; Guikema, J.

    Leaf mesophyll cells of 13- and 15-day old Brassica rapa plants grown on board the space shuttle Columbia (STS-87) and in the ground control have been investigated using the methods of light and electron microscopy. 13-day old plants were fixed on orbit and 15-day old plants were fixed after landing. It was shown the essential differences in leaf mesophyll quantitative anatomical and ultrastructural characteristics between spaceflight and ground control variants. Both the volume of palisade parenchyma cells and a number of chloroplasts in those cells increased in spaceflight samples. Simultaneusly, a chloroplast size decreased together with increasing of a relative volume of stromal thylakoids, starch grains and plastoglobuli. It was also noted increasing of stromal thylakoid length. In the same time, both a total length of thylakoids in granae and the grana number diminished in space flight. In addition, the interthylakoid space could be expended and the thylakoid length was more variable in chloroplast granae on microgravity, that correlated with a shrinkage of thylakoids in granal stacks. The obtained data a er discussed with the questions on both the photosynthetic apparatus sensitivity to gravity and its adaptive possibility to microgravity.

  2. Quantitative trait loci × environment interactions for plant morphology vary over ontogeny in Brassica rapa.

    Science.gov (United States)

    Dechaine, Jennifer M; Brock, Marcus T; Iniguez-Luy, Federico L; Weinig, Cynthia

    2014-01-01

    Growth in plants occurs via the addition of repeating modules, suggesting that the genetic architecture of similar subunits may vary between earlier- and later-developing modules. These complex environment × ontogeny interactions are not well elucidated, as studies examining quantitative trait loci (QTLs) expression over ontogeny have not included multiple environments. Here, we characterized the genetic architecture of vegetative traits and onset of reproduction over ontogeny in recombinant inbred lines of Brassica rapa in the field and glasshouse. The magnitude of genetic variation in plasticity of seedling internodes was greater than in those produced later in ontogeny. We correspondingly detected that QTLs for seedling internode length were environment-specific, whereas later in ontogeny the majority of QTLs affected internode lengths in all treatments. The relationship between internode traits and onset of reproduction varied with environment and ontogenetic stage. This relationship was observed only in the glasshouse environment and was largely attributable to one environment-specific QTL. Our results provide the first evidence of a QTL × environment × ontogeny interaction, and provide QTL resolution for differences between early- and later-stage plasticity for stem elongation. These results also suggest potential constraints on morphological evolution in early vs later modules as a result of associations with reproductive timing.

  3. Generation and characterization of Brassica rapa ssp. pekinensis – B. oleracea var. capitata monosomic and disomic alien addition lines

    Indian Academy of Sciences (India)

    Ai xia Gu; Shu Xing Shen; Yan Hua Wang; Jian Jun Zhao; Shu Xin Xuan; Xue Ping Chen; Xiao Feng Li; Shuang Xia Luo; Yu Jing Zhao

    2015-09-01

    Five monosomic alien addition lines (MAALs) of Brassica rapa ssp. pekinensis – B. oleracea var. capitata were obtained by hybridization and backcrossing between B. rapa ssp. pekinensis (female parent) and B. oleracea var. capitata. The alien linkage groups were identified using 42 B. oleracea var. capitata linkage group-specific markers as B. oleracea linkage groups C2, C3, C6, C7 and C8. Based on the chromosomal karyotype of root tip cells, these five MAALs added individual chromosomes from B. oleracea var. capitata: chr 1 (the longest), chr 2 or 3, chr 5 (small locus of 25S rDNA), chr 7 (satellite-carrying) and chr 9 (the shortest). Five disomic alien addition lines were then generated by selfing their corresponding MAALs.

  4. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Till Arvid Diehn

    2015-04-01

    Full Text Available Aquaporins (AQPs are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea and other Brassica species. The recent releases of the genome sequences of B. oleracea and B. rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins.In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of A. thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re- name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  5. Growth and antioxidant response of Brassica rapa var. rapa L. (turnip) irrigated with different compositions of paper and board mill (PBM) effluent.

    Science.gov (United States)

    Iqbal, Shahid; Younas, Umer; Chan, Kim Wei; Saeed, Zohaib; Shaheen, Muhammad Ashraf; Akhtar, Naeem; Majeed, Abdul

    2013-05-01

    Current study presents the effect of irrigation with different compositions (0%, 20%, 40%, 60%, 80% and 100%) of PBM effluent on growth and antioxidant potential of Brassica rapa var. rapa L. plants. Seeds were exposed to different PBM effluent compositions, which resulted in significant decrease in their germination potential with elevated delay index. Significant changes in growth parameters (plant height, number of leaves and leaf area) were recorded for turnip plants at regular intervals (25, 50 and 75 d) as function of PBM effluent proportion. Response of biochemical and antioxidant constituents in different parts of turnip, against stress induced by PBM effluent, was assessed by estimating the contents of chlorophyll (a+b), carotenoids, protein, phenolics, flavonoids, ascorbic acid and malondialdehyde. Antioxidant activity was evaluated by measuring DPPH radical scavenging potential. The results of this study suggest that the impact of PBM effluent irrigation is dependent on concentration of effluent in irrigation mixture and is very clear on plant growth and antioxidant attributes. Maximum benefits were secured at 40% PBM effluent to irrigate turnip plants till maturity while higher concentrations were found useful for shorter period (25-50 d).

  6. Processes affecting genetic structure and conservation: a case study of wild and cultivated Brassica rapa

    DEFF Research Database (Denmark)

    Andersen, Naja Steen; Poulsen, Gert; Andersen, Bente Anni;

    2009-01-01

    a clear distinction of B. rapa and B. napus individuals except for three individuals that seemed to be backcrosses. The backcrossed hybrids descended from two Swedish populations, one wild and one escaped. The overall pattern of genetic variation and structure in B. rapa showed that cultivated and wild B...... cultivar. The study point to that many processes, e.g. spontaneous introgression, naturalisation, breeding and agricultural practise affected the genetic structure of wild and cultivated B. rapa populations....

  7. Development and host utilization in Hyposoter ebeninus (Hymenoptera: Ichneumonidae), a solitary endoparasitoid of Pieris rapae and P. brassicae caterpillars (Lepidoptera: Pieridae)

    NARCIS (Netherlands)

    Harvey, J.A.; Poelman, E.H.; Gols, R.

    2010-01-01

    In many parts of the world, the larvae of the cabbage white butterflies, Pieris rapae and P. brassicae, are considered to be major pests in several economically important brassicaceous crops including various cultivars of cabbage and mustard. Thus far, biological control of these pests has focused o

  8. Yield reduction in Brassica napus, B. rapa, B. juncea, and Sinapis alba caused by flea beetle (Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae)) infestation in northern Idaho.

    Science.gov (United States)

    Brown, Jack; McCaffrey, Joseph P; Brown, Donna A; Harmon, Bradley L; Davis, James B

    2004-10-01

    Phyllotreta cruciferae is an important insect pest of spring-planted Brassica crops, especially during the seedling stage. To determine the effect of early season P. cruciferae infestation on seed yield, 10 genotypes from each of two canola species (Brassica napus L. and Brassica rapa L.) and two mustard species (Brassica juncea L. and Sinapis alba L.) were grown in 2 yr under three different P. cruciferae treatments: (1) no insecticide control; (2) foliar applications of endosulfan; and (3) carbofuran with seed at planting plus foliar application of carbaryl. Averaged over 10 genotypes, B. rapa showed most visible P. cruciferae injury and showed greatest yield reduction without insecticide application. Mustard species (S. alba and B. juncea) showed least visible injury and higher yield without insecticide compared with canola species (B. napus and B. rapa). Indeed, average seed yield of S. alba without insecticide was higher than either B. napus or B. rapa with most effective P. cruciferae control. Significant variation occurred within each species. A number of lines from B. napus, B. juncea, anid S. alba showed less feeding injury and yield reduction as a result of P. cruciferae infestation compared with other lines from the same species examined, thus having potential genetic background for developing resistant cultivars.

  9. Linkage Map Construction and Quantitative Trait Loci Analysis for Bolting Based on a Double Haploid Population of Brassica rapa

    Institute of Scientific and Technical Information of China (English)

    Xu Yang; Yang-Jun Yu; Feng-Lan Zhang; Zhi-Rong Zou; Xiu-Yun Zhao; De-Shuang Zhang; Jia-Bing Xu

    2007-01-01

    Early bolting of Chinese cabbage (Brassica rapa L.) during spring cultivation often has detrimental effects on the yield and quality of the harvested products. Breeding late bolting varieties is a major objective of Chinese cabbage breeding programs. in order to analyze the genetic basis of bolting traits, a genetic map of B. rapa was constructed based on amplified fragment-length polymorphism (AFLP), sequence-related amplified polymorphism (SRAP), simple sequence repeat (SSR), random amplification of polymorphic DNA (RAPD), and isozyme markers. Marker analysis was carried out on 81 double haploid (DH) lines obtained by mlcrospore culture from F1 progeny of two homozygous parents: B. rapa L. ssp. pekinensis (BY) (an extra-early bolting Chinese cabbage line) and B. rapa L. ssp. rapifera (MM) (an extra-late bolting European turnip line). A total of 326 markers including 130 AFLPs, 123 SRAPs, 16 SSRs, 43RAPDs and 14 isozymes were used to construct a linkage map with 10 linkage groups covering 882 cM with an average distance of 2.71 cM between loci. The bolting trait of each DH line was evaluated by the bolting index under controlled conditions. Quantitative trait loci (QTL) analysis was conducted using multiple QTL model mapping with MapQTL5.0 software. Eight QTLs controlling bolting resistance were identified. These QTLs, accounting for 14.1% to 25.2% of the phenotyplc variation with positive additive effects, were distributed into three linkage groups. These results provide useful information for molecular marker-assisted selection of late bolting traits in Chinese cabbage breeding programs.

  10. A Brassica exon array for whole-transcript gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Christopher G Love

    Full Text Available Affymetrix GeneChip® arrays are used widely to study transcriptional changes in response to developmental and environmental stimuli. GeneChip® arrays comprise multiple 25-mer oligonucleotide probes per gene and retain certain advantages over direct sequencing. For plants, there are several public GeneChip® arrays whose probes are localised primarily in 3' exons. Plant whole-transcript (WT GeneChip® arrays are not yet publicly available, although WT resolution is needed to study complex crop genomes such as Brassica, which are typified by segmental duplications containing paralogous genes and/or allopolyploidy. Available sequence data were sampled from the Brassica A and C genomes, and 142,997 gene models identified. The assembled gene models were then used to establish a comprehensive public WT exon array for transcriptomics studies. The Affymetrix GeneChip® Brassica Exon 1.0 ST Array is a 5 µM feature size array, containing 2.4 million 25-base oligonucleotide probes representing 135,201 gene models, with 15 probes per gene distributed among exons. Discrimination of the gene models was based on an E-value cut-off of 1E(-5, with ≤98% sequence identity. The 135 k Brassica Exon Array was validated by quantifying transcriptome differences between leaf and root tissue from a reference Brassica rapa line (R-o-18, and categorisation by Gene Ontologies (GO based on gene orthology with Arabidopsis thaliana. Technical validation involved comparison of the exon array with a 60-mer array platform using the same starting RNA samples. The 135 k Brassica Exon Array is a robust platform. All data relating to the array design and probe identities are available in the public domain and are curated within the BrassEnsembl genome viewer at http://www.brassica.info/BrassEnsembl/index.html.

  11. Occurrence of Escherichia coli in Brassica rapa L. chinensis irrigated with low quality water in urban areas of Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mhongole, Ofred J.; Mdegela, Robinson H.; Kusiluka, Lughano J. M.

    2016-01-01

    Low quality water has become valuable resource with restricted or unrestricted use in food production depending on its quality. This study has quantified the occurrence of Escherichia coli in Brassica rapa L. chinensis (Chinese cabbage) vegetables and low quality irrigation water. A total of 106...... samples including Chinese cabbage (69) and water (37) were collected. The E. coli were cultured in petri film selective E. coli plates at 44°C. The Chinese cabbage irrigated with river water at Fungafunga area indicated significantly (P... than those irrigated with treated wastewater at Mazimbu 10% (n=48, 0.00-1.36 log cfu/g). The mean counts of E. coli in untreated wastewater ranged from 4.59 to 5.56 log cfu/mL, while in treated wastewater was from 0.54 to 1.05 log cfu/mL and in river water it was 2.40 log cfu/mL. Treated wastewater...

  12. Chemical variability and biological activities of Brassica rapa var. rapifera parts essential oils depending on geographic variation and extraction technique.

    Science.gov (United States)

    Saka, Boualem; Djouahri, Abderrahmane; Djerrad, Zineb; Souhila, Terfi; Aberrane, Sihem; Sabaou, Nasserdine; Baaliouamer, Aoumeur; Boudarene, Lynda

    2017-02-01

    In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. GC and GC-MS analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD) techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food. This article is protected by copyright. All rights reserved.

  13. Responses of wheat (Triticum aestivum) and turnip (Brassica rapa) to the combined exposure of carbaryl and ultraviolet radiation.

    Science.gov (United States)

    Lima, Maria P R; Soares, Amadeu M V M; Loureiro, Susana

    2015-07-01

    The increase of ultraviolet (UV) radiation reaching the Earth's surface as a result of increased ozone layer depletion has affected crop production systems and, in combination with pesticides used in agricultural activities, can lead to greater risks to the environment. The impact of UV radiation and carbaryl singly and in combination on Triticum aestivum (wheat) and Brassica rapa (turnip) was studied. The combined exposure was analyzed using the MixTox tool and was based on the conceptual model of independent action, where possible deviations to synergism or antagonism and dose-ratio or dose-level response pattern were also considered. Compared with the control, carbaryl and UV radiation individually led to reductions in growth, fresh and dry weight, and water content for both species. Combined treatment of UV and carbaryl was more deleterious compared with single exposure. For T. aestivum length, no interaction between the 2 stressors was found (independent action), and a dose-level deviation was the best description for the weight parameters. For B. rapa, dose-ratio deviations from the conceptual model were found when length and dry weight were analyzed, and a higher than expected effect on the fresh weight (synergism) occurred with combined exposure.

  14. Development and Characterization of Microsatellite Markers in Brassica rapa ssp.chinensis and Transferability Among Related Species

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Simple sequence repeat (SSR) or microsatellite marker is a valuable tool for several purposes, such as mapping, fingerprinting,and breeding.In the present study, an inter-simple sequence repeat (ISSR)-PCR technique was applied for developing SSR markers in non-heading Chinese cabbage (Brassica rapa). A total of 190 SSRs were obtained. Among these, AG or CT (54.7%) was the most frequent repeat, followed by AC or GT (31.6%) of the microsatellites. The average number of the SSRs length array was 16 and 10 times, respectively. Based on the determined SSR sequences, 143 SSR primer pairs were designed to evaluate their transferabilities among the related species of Brassica. The number of alleles produced per marker averaged 2.91, and the polymorphism information content (PIC) value ranged from 0 to 0.863 with an average of 0.540. Monomorphism was observed in 16 primer pairs. The transferability percentage in CC genome was higher than in BB genome. More loci occurred in the BBCC genome. This result supported the hypothesis that BB genome was divergent from A and C genomes, and AA and CC genomes were relatively close. The polymorphic primers can be exploited for further evolution, fingerprinting, and variety identification.

  15. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa.

    Science.gov (United States)

    Yarkhunova, Yulia; Edwards, Christine E; Ewers, Brent E; Baker, Robert L; Aston, Timothy Llewellyn; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2016-04-01

    Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement.

  16. Mining for Candidate Genes in an Introgression Line by Using RNA Sequencing: The Anthocyanin Overaccumulation Phenotype in Brassica

    Directory of Open Access Journals (Sweden)

    Lulu Xie

    2016-08-01

    Full Text Available Introgression breeding is a widely used method for the genetic improvement of crop plants; however, the mechanism underlying candidate gene flow patterns during hybridization is poorly understood. In this study, we used a powerful pipeline to investigate a Chinese cabbage (Brassica rapa L. ssp. pekinensis introgression line with the anthocyanin overaccumulation phenotype. Our purpose was to analyze the gene flow patterns during hybridization and elucidate the genetic factors responsible for the accumulation of this important pigment compound. We performed RNA-seq analysis by using two pipelines, one with and one without a reference sequence, to obtain transcriptome data. We identified 930 significantly differentially expressed genes (DEGs between the purple-leaf introgression line and B. rapa green cultivar, namely, 389 up-regulated and 541 down-regulated DEGs that mapped to the B. rapa reference genome. Since only one anthocyanin pathway regulatory gene was identified, i.e., Bra037887 (bHLH, we mined unmapped reads, revealing 2,031 de novo assembled unigenes, including c3563g1i2. Phylogenetic analysis suggested that c3563g1i2, which was transferred from the Brassica B genome of the donor parental line Brassica juncea, may represent an R2R3-MYB transcription factor that participates in the ternary transcriptional activation complex responsible for the anthocyanin overaccumulation phenotype of the B. rapa introgression line. We also identified genes involved in cold and light reaction pathways that were highly upregulated in the introgression line, as confirmed using quantitative real-time PCR analysis. The results of this study shed light on the mechanisms underlying the purple leaf trait in Brassica plants and may facilitate the use of introgressive hybridization for many traits of interest.

  17. Anthocyanin Accumulation, Antioxidant Ability and Stability, and a Transcriptional Analysis of Anthocyanin Biosynthesis in Purple Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis).

    Science.gov (United States)

    He, Qiong; Zhang, Zhanfeng; Zhang, Lugang

    2016-01-13

    Heading Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a significant dietary vegetable for its edible heading leaves in Asia countries. The new purple anthocyanin-rich pure line (11S91) was successfully bred, and the anthocyanins were mainly distributed in 2-3 cell layers beneath the leaf epidermis, whereas siliques and stems accumulated only a cell layer of anthocyanins. The anthocyanins of 11S91 were more stable at pHs below 3.0 and temperatures below 45 °C. The total antioxidant ability was highly positive correlated with the anthocyanin content in 11S91. Thirty-two anthocyanins were separated and identified, and 70% of them were glycosylated and acylated cyanidins. The four major anthocyanins present were cyanidin-3-sophoroside(p-coumaroyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(ferulyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(sinapyl-p-coumaroyl)-5-glucoside(malonyl), and cyanidin-3-sophoroside-(sinapyl-ferulyl)-5-glucoside(malonyl). According to the expression of biosynthetic genes and the component profile of anthocyanins in 11S91 and its parents, regulatory genes BrMYB2 and BrTT8 probably activate the anthocyanin biosynthesis but other factors may govern the primary anthocyanins and the distribution.

  18. A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea.

    Science.gov (United States)

    Li, Qinfei; Mei, Jiaqin; Zhang, Yongjing; Li, Jiana; Ge, Xianhong; Li, Zaiyun; Qian, Wei

    2013-08-01

    Brassica rapa (AA) has been used to widen the genetic basis of B. napus (AACC), which is a new but important oilseed crop worldwide. In the present study, we have proposed a strategy to develop new type B. napus carrying genomic components of B. rapa by crossing B. rapa with hexaploid (AACCCC) derived from B. napus and B. oleracea (CC). The hexaploid exhibited large flowers and high frequency of normal chromosome segregation, resulting in good seed set (average of 4.48 and 12.53 seeds per pod by self and open pollination, respectively) and high pollen fertility (average of 87.05 %). It was easy to develop new type B. napus by crossing the hexaploid with 142 lines of B. rapa from three ecotype groups, with the average crossability of 9.24 seeds per pod. The genetic variation of new type B. napus was diverse from that of current B. napus, especially in the A subgenome, revealed by genome-specific simple sequence repeat markers. Our data suggest that the strategy proposed here is a large-scale and highly efficient method to introgress genomic components of B. rapa into B. napus.

  19. A Hypomethylated population of Brassica rapa for forward and reverse Epi-genetics

    Directory of Open Access Journals (Sweden)

    Amoah Stephen

    2012-10-01

    Full Text Available Abstract Background Epigenetic marks superimposed on the DNA sequence of eukaryote chromosomes provide agility and plasticity in terms of modulating gene expression, ontology, and response to the environment. Modulating the methylation status of cytosine can generate epialleles, which have been detected and characterised at specific loci in several plant systems, and have the potential to generate novel and relatively stable phenotypes. There have been no systematic attempts to explore and utilise epiallelic variation, and so extend the range of phenotypes available for selection in crop improvement. We developed an approach for generating novel epialleles by perturbation of the DNA methylation status. 5- Azacytidine (5-AzaC provides selective targeting of 5mCG, which in plants is associated with exonic DNA. Targeted chemical intervention using 5-AzaC has advantages over transgenic or mutant modulation of methyltransferases, allowing stochastic generation of epialleles across the genome. Results We demonstrate the potential of stochastic chemically-induced hypomethylation to generate novel and valuable variation for crop improvement. Systematic analysis of dose–response to 5-AzaC in B. rapa guided generation of a selfed stochastically hypomethylated population, used for forward screening of several agronomic traits. Dose–response was sigmoidal for several traits, similar to that observed for chemical mutagens such as EMS. We demonstrated transgenerational inheritance of some phenotypes. BraRoAZ is a unique hypomethylated population of 1000 E2 sib lines. When compared to untreated controls, 5-Aza C-treated lines exhibited reduced immuno-staining of 5mC on pachytene chromosomes, and Methylation Sensitive Amplified Polymorphism (MSAP profiles that were both divergent and more variable. There was coincident phenotypic variation among these lines for a range of seed yield and composition traits, including increased seed protein content and

  20. Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa).

    Science.gov (United States)

    Thiruvengadam, Muthu; Chung, Ill-Min

    2015-04-15

    The effects of selenium, putrescine, and cadmium on the contents of glucosinolates, total phenolics, flavonoids, carotenoids, chlorophyll, anthocyanin, malondialdehyde, hydrogen peroxide, and antioxidant capacities as well as gene regulation of phenolics, flavonoids, carotenoids, and glucosinolates biosynthesis were investigated in turnip plants. Selenium dioxide (SeO2) treatment significantly induced the amount of gluconasturtiin, glucobrassicanapin, glucoallysin, glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Cadmium chloride (CdCl2)- and putrescine-treated plants had considerably enhanced gluconasturtiin and 4-hydroxyglucobrassicin levels, respectively. Total phenolic and flavonoid content as well as antioxidant capacities were significantly increased in SeO2-treated plants. Lutein was higher in control plants followed by, in decreasing order, SeO2-, putrescine-, and CdCl2-treated plants. The chlorophyll content was significantly decreased and anthocyanin, MDA, and H2O2 levels were significantly increased with CdCl2 treatment. Moreover, plants treated with selenium and cadmium showed significant induction of genes related to glucosinolate, phenolic, and carotenoid biosynthesis. These results demonstrated that SeO2 significantly increased the contents of health-promoting compounds and enhanced the antioxidant capacities of turnip plants.

  1. Genotype-environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes.

    Science.gov (United States)

    El-Soda, Mohamed; Boer, Martin P; Bagheri, Hedayat; Hanhart, Corrie J; Koornneef, Maarten; Aarts, Mark G M

    2014-02-01

    Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adaptation to a wide range of environments. Here, the genetic basis of 20 physiological and morphological traits is explored by describing plant performance and growth in a Brassica rapa recombinant inbred line (RIL) population grown on a sandy substrate supplemented with nutrient solution, under control and drought conditions. Altogether, 54 quantitative trait loci (QTL) were identified, of which many colocated in 11 QTL clusters. Seventeen QTL showed significant QTL-environment interaction (Q×E), indicating genetic variation for phenotypic plasticity. Of the measured traits, only hypocotyl length did not show significant genotype-environment interaction (G×E) in both environments in all experiments. Correlation analysis showed that, in the control environment, stomatal conductance was positively correlated with total leaf dry weight (DW) and aboveground DW, whereas in the drought environment, stomatal conductance showed a significant negative correlation with total leaf DW and aboveground DW. This correlation was explained by antagonistic fitness effects in the drought environment, controlled by a QTL cluster on chromosome A7. These results demonstrate that Q×E is an important component of the genetic variance and can play a great role in improving drought tolerance in future breeding programmes.

  2. Promoting Effects of a Single Rhodopseudomonas palustris Inoculant on Plant Growth by Brassica rapa chinensis under Low Fertilizer Input

    Science.gov (United States)

    Wong, Wai-Tak; Tseng, Ching-Han; Hsu, Shu-Hua; Lur, Huu-Sheng; Mo, Chia-Wei; Huang, Chu-Ning; Hsu, Shu-Chiung; Lee, Kung-Ta; Liu, Chi-Te

    2014-01-01

    Several Rhodopseudomonas palustris strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the R. palustris YSC3, YSC4, and PS3 inoculants on Brassica rapa chinensis (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×106 CFU g−1 soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest that the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture. PMID:25130882

  3. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input.

    Science.gov (United States)

    Wong, Wai-Tak; Tseng, Ching-Han; Hsu, Shu-Hua; Lur, Huu-Sheng; Mo, Chia-Wei; Huang, Chu-Ning; Hsu, Shu-Chiung; Lee, Kung-Ta; Liu, Chi-Te

    2014-09-17

    Several Rhodopseudomonas palustris strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the R. palustris YSC3, YSC4, and PS3 inoculants on Brassica rapa chinensis (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×10(6) CFU g(-1) soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest that the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture.

  4. Origin of new Brassica types from a single intergeneric hybrid between B. rapa and Orychophragmus violaceus by rapid chromosome evolution and introgression

    Indian Academy of Sciences (India)

    Chuan-Yuan Xu; Rui-Hongwan-Yan; Zai-Yun Li

    2007-12-01

    Many novel lines were established from an intergeneric mixoploid between Brassica rapa ($2n = 20$) and Orychophragmus violaceus ($2n = 24$) through successive selections for fertility and viability. Pedigrees of individual F2 plants were advanced to the 10th generation by selfing. Their breeding habit was self-compatible and different from the self-incompatibility of their female parent B. rapa, and these lines were reproductively isolated to different degrees from B. rapa and B. napus. The lines with high productivity showed not only a wide spectrum of phenotypes but also obvious variations in fatty acid profiles of seed oil and glucosinolate contents in seed meal. These lines had $2n = 36$, 37, 38, 39 and 40, with $2n = 38$ being most frequent (64.56%), and no intact O. violaceus chromosomes were detected by genomic in situ hybridization (GISH) analysis. Amplified fragment length polymorphism (AFLP) analyses revealed a high extent of variation in genomic compositions across all the lines. O. violaceus-specific bands, deleted bands in B. rapa and novel bands for two parents were detected in these lines, with novel bands being the most frequent. The morphological and genetic divergence of these novel types derived from a single hybrid is probably due to rapid chromosomal evolution and introgression, and provides new genetic resources for rapeseed breeding.

  5. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    Science.gov (United States)

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon; Uyeno, Yutaka

    2016-05-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10.

  6. Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Hedayat eBagheri

    2012-08-01

    Full Text Available A recombinant inbred line (RIL population was produced based on a wide cross between the rapid-cycling and self-compatible genotypes L58, a Caixin vegetable type, and R-o-18, a yellow sarson oil type. A linkage map based on 160 F7 lines was constructed using 100 SNP, 130 AFLP®, 27 InDel and 13 publicly available SSR markers. The map covers a total length of 1150 cM with an average resolution of 4.3 cM/marker. To demonstrate the versatility of this new population, 17 traits, related to plant architecture and seed characteristics, were subjected to QTL analysis. A total of 47 QTLs were detected, each explaining between 6 to 54% of the total phenotypic variance for the concerned trait. The genetic analysis shows that this population is a useful new tool for analyzing genetic variation for interesting traits in B. rapa, and for further exploitation of the recent availability of the B. rapa whole genome sequence for gene cloning and gene function analysis.

  7. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.A.; Robinson, G.E. [Univ. of Illinois, Urbana, IL (United States); Conner, J.K. [Univ. of Illinois, Champaign, IL (United States)

    1997-01-01

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount of solar UV-B reaching the earth`s surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab.

  8. Inheritance and expression patterns of BN28, a low temperature induced gene in Brassica napus, throughout the Brassicaceae.

    Science.gov (United States)

    Hawkins, G P; Nykiforuk, C L; Johnson-Flanagan, A M; Boothe, J G

    1996-08-01

    Molecular genetics is becoming an important tool in the breeding and selection of agronomically important traits. BN28 is a low temperature induced gene in Brassicaceae species. PCR and Southern blot analysis indicate that BN28 is polymorphic in the three diploid genomes: Brassica rapa (AA), Brassica nigra (BB), and Brassica oleracea (CC). Of the allotetraploids, Brassica napus (AACC) is the only species to have inherited homologous genes from both parental genomes. Brassica juncea (AABB) and Brassica carinata (BBCC) have inherited homologues from the AA and CC genomes, respectively, while Sinapsis arvensis (SS) contains a single homologue from the BB genome and Sinapsis alba (dd) appears to be different from all the diploid parents. All species show message induction when exposed to low temperature. However, differences in expression were noticed at the protein level, with silencing occurring in the BB genome at the level of translation. Results suggest that silencing is occurring in diploid species where duplication may not have occurred. Molecular characterization and inheritance of BN28 homologues in the Brassicaceae may play an important role in determining their quantitative function during exposure to low temperature. Key words : Brassicaceae, BN28, inheritance, polymorphism.

  9. The Prevention of Tipburn on Chinese Cabbage (Brassica rapa L. var. pekinensis (Lour. Olson with Foliar Fertilizers and Biostimulators

    Directory of Open Access Journals (Sweden)

    Borkowski Jan

    2016-06-01

    Full Text Available Investigations were carried out in 2008-2010 on Chinese cabbage (Brassica rapa L. var. pekinensis (Lour. Olson. The main problem in cultivation of this vegetable is physiological disorder – tipburn. It is connected with low level of calcium in young leaves and with water deficiency. In 2008, seeds of Chinese cabbage were sown twice, in April and July. In July, the day temperature was high (25-30 °C and relative air humidity was low (35-50%. In these conditions, the young leaves were injured heavily. Rotting was caused by the activity of bacteria Pectobacterium carotovorum subsp. carotovorum (Jones Hauben et al. However, three times foliar application of 1.5% calcium nitrate or 1.5% Wapnovit significantly reduced the tipburn. Also spraying with 0.03% of Tytanit (containing ions of titanium or with 2.5% of Biochikol 020 PC (containing chitosan gave similar effect. In these conditions, application of 1.5% K-300 (containing potassium oxide and ammonium nitrate exacerbated symptoms of tipburn. Application of Wapnovit or Tytanit reduced instantly rotting of heads contrary to the application of their mixture. In autumn cultivation, when the relative air humidity was 80-100%, spraying with 1.5% solution of K-300 significantly decreased injuries in comparison to control. Application of Wapnovit, K-300, Biochikol, Tytanit or the mixture of Biochikol and calcium nitrate eliminated rotting. In experiments done in the springs of 2009 and 2010, when weather conditions were less favorable for tipburn appearance, a severity of it was lower but application of K-300 increased it appearance. In these experiments, Biochikol and Wapnovit eliminated rotting of heads. The results of three years of study have shown that calcium nitrate, Wapnovit, Tytanit and Biochikol limited occurrence of tipburn and bacterial rotting of Chinese cabbage, but the weather conditions during cultivation had the greatest impact on the severity of tipburn.

  10. Effect of Diffusion on Discoloration of Congo Red by Alginate Entrapped Turnip (Brassica rapa Peroxidase

    Directory of Open Access Journals (Sweden)

    Afaf Ahmedi

    2015-01-01

    Full Text Available Enzymatic discoloration of the diazo dye, Congo red (CR, by immobilized plant peroxidase from turnip “Brassica rapa” is investigated. Partially purified turnip peroxidase (TP was immobilized by entrapment in spherical particles of calcium alginate and was assayed for the discoloration of aqueous CR solution. Experimental data revealed that pH, reaction time, temperature, colorant, and H2O2 concentration play a significant role in dye degradation. Maximum CR removal was found at pH 2.0, constant temperature of 40°C in the presence of 10 mM H2O2, and 180 mg/L of CR. More than 94% of CR was removed by alginate immobilized TP after 1 h of incubation in a batch process under optimal conditions. About 74% removal efficiency was retained after four recycles. Diffusional limitations in alginate beads such as effectiveness factor η, Thiele modulus Φ, and effective diffusion coefficients (De of Congo red were predicted assuming a first-order biodegradation kinetic. Results showed that intraparticle diffusion resistance has a significant effect on the CR biodegradation rate.

  11. STUDI POLA PERTUMBUHAN TANAMAN SAWI (Brassica rapa var. parachinensis L. HIDROPONIK DI DALAM GREENHOUSE TERKONTROL

    Directory of Open Access Journals (Sweden)

    Mareli Telaumbanua

    2016-04-01

    Full Text Available The vegetables should be cultivated in an optimal way to obtain maximum yield. In tropical regions such in Indonesia, the growth of vegetables are influenced by climate factors such as humidity, temperature, nutrients and light. To gain the optimal and controlled condition during the growth periode, mustard plants could be cultivated hydroponically in a greenhouse. This study was conducted to identify the growth pattern of mustard (Brassica rappa var. Parachinensis L. that hydroponically planted in a greenhouse which is equipped with a temperature, nutrients and light control. The aim of this research is to determine the best factors combination that provide the most optimum growth. This research was conducted by three treatments that were temperature, nutrition, and light. Each of the treatment has three variations : temperature (32 °C, 35 °C, and 38 °C, nutrition (2 mS/cm, 5 mS/cm, and 8 mS/cm, and light (7000 lux, 12000 lux, and 17000 lux so there were 27 cultivation spaces or greenhouses used with different micro-climates. The growth rate was determined by the area of the leaf and it was measured during 48 days of cultivation. Control in each greenhouse is done by a pump actuator, incandescent bulbs and TL lamps. The result showed that temperature, nutrients and light affect on the growth of mustard. By single factor analysis, we found that maximum leaf area was produced at a temperature of 35 °C that was 565 cm-, nutrition 5 mS/cm that was 639.27 cm- and 17000 lux light that was 697.42 cm-. In short, the best growth rate was obtained at a temperature of 35 °C, nutrition of 5 mS/cm, and 17000 lux of light yield 1068.82 cm- of leaf area.  Keywords: Light, mustard plants, nutrition, temperature   ABSTRAK Tanaman sayuran harus dibudidayakan dengan optimal agar diperoleh hasil yang maksimal. Di wilayah tropis seperti di  Indonesia,  pertumbuhan  tanaman  sayuran  dipengaruhi  oleh  beberapa  faktor  iklim  seperti

  12. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  13. Cloning of fatty acid elongase1 gene and molecular identification of A and C genome in Brassica species

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The fatty acid elongase 1 (FAE1) genes of Brassic napus were cloned from two cultivars, i.e. Zhong- shuan No. 9 with low erucic acid content, and Zhongyou 821 with high erucic acid content, using the degenerate PCR primers. The sequence analysis showed that there was no intron within the FAE1 genes. The FAE1 genes from Zhongyou 821 contained a coding sequence of 1521 nucleotides, and those cloned from Zhongshuan No. 9 contained a 1517 bp coding sequence. Alignment of the FAE1 sequences from Brassica rapa, B. oleracea and B. napus detected 31 single nucleotide polymorphic sites (2.03%), which resulted in 7 amino-acid substitutions. Further analysis indicated that 19 SNPs were genome-specific, of which, 95% were synonymous mutations. The nucleotide substitution at po- sition 1217 in the FAE1 genes led to a specific site of restricted cleavage. An AvrII cleavage site was present only in the C genome genes and absent in the A genome FAE1 genes. Digestion profile of the FAE1 sequences from B. rapa, B. oleracea and B. napus produced with AvrII confirmed that the FAE1 genes of B. oleracea origin was recognized and digested, while that of B. rapa origin could not. The results indicated that by AvrII cleavage it was possible to distinguish B. rapa from B. oleracea and be- tween the A and C genome of B. napus. In addition, the FAE1 genes could be used as marker genes to detect the pollen flow of B. napus, thus providing an alternative method for risk assessment of gene flow.

  14. Cadmium Disrupts the Balance between Hydrogen Peroxide and Superoxide Radical by Regulating Endogenous Hydrogen Sulfide in the Root Tip of Brassica rapa

    Science.gov (United States)

    Lv, Wenjing; Yang, Lifei; Xu, Cunfa; Shi, Zhiqi; Shao, Jinsong; Xian, Ming; Chen, Jian

    2017-01-01

    Cd (cadmium) stress always alters the homeostasis of ROS (reactive oxygen species) including H2O2 (hydrogen sulfide) and O2•– (superoxide radical), leading to the oxidative injury and growth inhibition in plants. In addition to triggering oxidative injury, ROS has been suggested as important regulators modulating root elongation. However, whether and how Cd stress induces the inhibition of root elongation by differentially regulating endogenous H2O2 and O2•–, rather than by inducing oxidative injury, remains elusive. To address these gaps, histochemical, physiological, and biochemical approaches were applied to investigate the mechanism for Cd to fine-tune the balance between H2O2 and O2•– in the root tip of Brassica rapa. Treatment with Cd at 4 and 16 μM significantly inhibited root elongation, while only 16 μM but not 4 μM of Cd induced oxidative injury and cell death in root tip. Fluorescent and pharmaceutical tests suggested that H2O2 and O2•– played negative and positive roles, respectively, in the regulation of root elongation in the presence of Cd (4 μM) or not. Treatment with Cd at 4 μM led to the increase in H2O2 and the decrease in O2•– in root tip, which may be attributed to the up-regulation of Br_UPB1s and the down-regulation of their predicted targets (four peroxidase genes). Cd at 4 μM resulted in the increase in endogenous H2S in root tip by inducing the up-regulation of LCDs and DCDs. Treatment with H2S biosynthesis inhibitor or H2S scavenger significantly blocked Cd (4 μM)-induced increase in endogenous H2S level, coinciding with the recovery of root elongation, the altered balance between H2O2 and O2•–, and the expression of Br_UPB1s and two peroxidase genes. Taken together, it can be proposed that endogenous H2S mediated the phytotoxicity of Cd at low concentration by regulating Br_UPB1s-modulated balance between H2O2 and O2•– in root tip. Such findings shed new light on the regulatory role of endogenous H2S in

  15. Genetic analysis of drought stress response in Arabidopsis thaliana and Brassica rapa

    NARCIS (Netherlands)

    El-Soda, M.

    2013-01-01

    Drought is the major abiotic stress affecting plant growth and limiting crop productivity worldwide. Plants have evolved three adaptive strategies, drought escape, drought avoidance and drought tolerance, to cope with drought. Knowledge on  how Quantitative Trait Loci (QTL), or genes underlying

  16. Culture and fusion of pollen protoplasts of Brassica oleracea L. var. italica with haploid mesophyll protoplasts of B. rapa L. ssp. pekinensis.

    Science.gov (United States)

    Liu, Fan; Ryschka, U; Marthe, F; Klocke, E; Schumann, G; Zhao, H

    2007-01-01

    Hybrid callus was formed from the successful protoplast fusion between pollen protoplasts of Brassica oleracea var. italica and haploid mesophyll protoplasts of Brassica rapa. The pollen protoplast isolation frequency in broccoli was highly related to the ratio of trinucleate pollens in the male gametophyte population. Large quantities of pollen protoplasts with high vigor could be isolated, and the isolation frequency reached up to 90% in 6.0-7.0 mm long flower buds with about 94.7% trinucleate-stage pollens. Pollen protoplasts could be collected and purified by discontinuous gradient centrifugation. In 1% Na-alginate embedding culture, cell divisions were observed but no further development was found. The haploid mesophyll protoplasts were isolated from in vitro haploid plants of B. rapa. Results strongly showed the variability in culturability of mesophyll protoplasts from different haploid lines. Both pollen protoplasts and haploid mesophyll protoplasts retained a stable round shape in the designed prefusion solution with an osmotic pressure of 0.74 osmol/kg. Polyethylene glycol was used for the protoplast fusion, and 40% polyethylene glycol 4000 enabled the highest fusion frequency of about 20%. Some postfusion protoplasts showed cell divisions up to callus proliferation. Calli were screened by random amplified polymorphic DNA analysis for their hybrid character. Results revealed the existence of the hybrid calli. Some of the hybrid calli grew well with green color and shoot primordia. According to our knowledge, this is the first report about a hybrid formation between two haploid protoplasts. Potential comprehensive applications, as well as problems of this technique, are discussed.

  17. Chemical composition, aroma evaluation, and oxygen radical absorbance capacity of volatile oil extracted from Brassica rapa cv. "yukina" used in Japanese traditional food.

    Science.gov (United States)

    Usami, Atsushi; Motooka, Ryota; Takagi, Ayumi; Nakahashi, Hiroshi; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2014-01-01

    The chemical composition of the volatile oil extracted from the aerial parts of Brassica rapa cv. "yukina" was analyzed using GC-MS, GC-PFPD, and GC-O. A total of 50 compounds were identified. The most prominent constituents were (E)-1,5-heptadiene (40.27%), 3-methyl-3-butenenitrile (25.97%) and 3-phenylpropanenitrile (12.41%). With regard to aroma compounds, 12 compounds were identified by GC-O analysis. The main aroma-active compounds were dimethyl tetrasulfide (sulphury-cabbage, FD = 64), 3-phenylpropanenitrile (nutty, FD = 64), 3-methylindole (pungent, FD = 64), and methional (potato, FD = 32). The antioxidant activity of the aroma-active compounds of the oil was determined using an oxygen radical absorbance capacity (ORAC) assay using fluorescein as the fluorescent probe. The ORAC values were found to be 785 ± 67 trolox equivalents (μmol TE/g) for B. rapa cv. "yukina" oil. The results obtained showed that the volatile oil extracted from the aerial parts is a good dietary source of antioxidants.

  18. Do competitive conditions affect introgression of transgenes from oilseed rape (Brassica napus) to weedy Brassica rapa? AS case study with special reference to transplastomic oilseed rape

    DEFF Research Database (Denmark)

    Johannessen, Marina

    122 examined cases. Field trials with B. napus and B. rapa coexisting in different proportions and densities elucidated how these factors affect the F1-hybridproduction on B. napus. Higher plant density reduced the fitness of mother plants and the abundance of F1-hybrids (at the 1:1 proportion...... weed. The next step in the introgression process wasinvestigated in field trials with F1-hybrids coexisting with B. napus and B. rapa in different proportions and densities. With the highest abundance of F1-hybrids, B. napus was the predominant father and the sirering success of the three possible...... fathersdepended on the density. Progenies from F1-hybrid mother plants grown at the other two proportions were screened merely for individuals sired by B. rapa (BC1rs). The density affected on the production of BC1rs significantly but the effect differed amongproportions with both the highest and lowest...

  19. Genome-Wide Gene Expressions Respond Differently to A-subgenome Origins in Brassica napus Synthetic Hybrids and Natural Allotetraploid

    Science.gov (United States)

    Zhang, Dawei; Pan, Qi; Tan, Chen; Zhu, Bin; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2016-01-01

    The young allotetraploid Brassica napus (2n = 38, AACC) is one of models to study genomic responses to allopolyploidization. The extraction of AA component from natural B. napus and then restitution of progenitor B. rapa should provide a unique opportunity to reveal the genome interplay for gene expressions during the evolution. Herein, B. napus hybrids (2n = 19, AC) between the extracted and extant B. rapa (2n = 20, AA) and the same B. oleracea genotype (2n = 18, CC) were studied by RNA-seq and compared with natural B. napus donor, to reveal the gene expression changes from hybridization and domestication and the effects of A genome with different origins. Upon the initial merger of two diploid genomes, additive gene expression was prevalent in these two hybrids, for non-additively expressed genes only represented a small portion of total expressed genes. A high proportion of genes exhibited expression level dominance, with no preference to either of the parental genomes. Comparison of homoeolog expressions also showed no bias toward any genomes and the parental expression patterns were often maintained in the hybrids and natural allotetraploids. Although, the overall patterns of gene expression were highly conserved between two hybrids, the extracted B. rapa responded less and appeared more compatible for hybridization than the extant B. rapa. Our results suggested that expression level dominance and homoeolog expressions bias were balanced at the initial stage of genome merger, and such balance were largely maintained during the domestication of B. napus, despite the increased extent over time. PMID:27790227

  20. Hypoglycemic Function of Polysaccharides from Brassica rapa L.of Xinjiang%新疆芜菁多糖降血糖作用的研究

    Institute of Scientific and Technical Information of China (English)

    艾克拜尔江·阿巴斯; 李冠; 王静

    2011-01-01

    [目的]检测新疆芜菁多糖的组分结构与对血糖的作用.[方法]采用常规的水提法从芜菁中提取粗多糖,并用Sevag法对其进行脱蛋白,再通过回流、透析等步骤把粗多糖纯化获得芜菁精制多糖.用芜菁精制多糖进行小白鼠血糖实验.对芜菁精制多糖进行DEAE-52离子交换柱层析纯化,对第一个洗脱组分BRPS1再进行Sephadex G-200凝胶柱层析纯度鉴定.此外,用红外光谱法分析BRPS1,并且对离子交换柱层析的7种洗脱组分分别进行了GC-MS分析.[结果]当芜菁精制多糖剂量为400 mg/kg体重时,3 d后的受试小鼠血糖值下降差异显著(P<0.05);6和9 d后的血糖值下降差异极显著(分别是P<0.01和P<0.001);通过DEAE-52离子交换柱层析共分离出7种组分.对第一个洗脱组分BRPSl的Sephadex G-200凝胶柱层析的结果表明,BRPS1是单一的多糖组分;其红外图谱结果表明BRPS1具有多糖的一般结构.对7种洗脱组分的GC-MS分析表明芜菁精制多糖含有6种单糖.[结论]芜菁多糖具有显著的降血糖效果;作为芜菁多糖主要成分的BRPS1为单纯的多糖,具有多糖的一般结构.%[ Objective] To investigate the composition and structure of polysaccharides from Brassica rapa L. of Xinjiang and its effects on blood sugar leveI.[Method]Crude polysaccharide was extracted from Brassica rapa L. by common water extraction method, and then deproteinized by Sevag method. The crude polysaccharide from Brassica rapa L. was further purified by refluxing and dialyzing, and then purified polysaccharide was obtained. Blood sugar level test was performed on white mice by using purified polysaccharide. DEAE - 52 ion - exchange column chromatography was performed on purified polysaccharide and Sephadex G - 200 gel column chromatography was pedormed on the first component BRPS1 for purity analysis. And then infrared analysis was performed on BRPS1; seven components obtained by ion - exchange column chromatography

  1. 利用青海大黄油菜与黑芥人工合成芥菜型油菜%New Brassica juncea Sythesized from Interspecific Hybridization Between B. rapa (Qinghai dahuang) and B. nigra

    Institute of Scientific and Technical Information of China (English)

    赵志刚

    2014-01-01

    Using Brassica rapa and Brassica nigra as materials, new Brassic juncea can be synthesized through interspecific hybridization between B. rapa and B. nigra . The hybrid plants of B. rapa×B. nigra were produced through embryo culture and induced to shoot on culture MS medium. The hybrid plants had an intermediate morphology. Cytological analysis showed that the somatic of F1 plants had 18 chromosomes, which is the sum of gametic chromosomes of female parent B. campestris (2n=AA=20) and male parent B. nigra (2n=BB=16). SSR molecular markers analysis showed that these obtained plants were true interspecific hybrid between B. rapa (Qinghai dahuang) and B. nigra. The results will provide a new method for innovating germplasm resource of Brassiac juncea.%以芸薹属植物青海大黄油菜(Brassica rape)和黑芥(Brassica nigra)为研究对象,对其常规杂交后,通过离体胚培养获得的杂种种子经MS培养基诱导培养成苗,获得了青海大黄油菜与黑芥的杂种F1代植株,形态上表现为中间类型。通过细胞学的方法,鉴定了杂种F1代植株的细胞染色体数为18条,为母本青海大黄油菜(2=AA=20)和父本黑芥(2n=BB=16)的配子染色体数之和;SSR分子鉴定进一步表明,该杂种植株为真杂种。

  2. Cloning and Expression Analysis of Fe Superoxide Dismutase (Fe-SOD) Gene from Winter Turnip Rape (Brassica rapa L.)%白菜型冬油菜铁超氧化物歧化酶(Fe-SOD)基因的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    曾秀存; 刘自刚; 孙万仓; 孙佳; 许耀照; 方彦; 史鹏辉; 杨刚; 孔德晶; 武军艳

    2013-01-01

    [Objective]The objectives of the present study were to clone the Fe-SOD gene of SOD family from an extremely low temperature (-32℃) resistant winter turnip rape (B. rapa L.) cultivar Longyou 7 and analyze its expression under low temperature conditions .[Method]The cDNA sequence of Fe-SOD was isolated by RT-PCR, and the obtained cDNA sequence and the deduced amino acid sequence was analyzed. Semi-quantitative and real time RT-PCR were used to assess the expression of Fe-SOD in response to low temperature stress. The superoxide dismutase enzyme activity was measured by NBT deoxidization method in leaves and roots. [Result]The Fe-SOD gene was isolated from winter turnip rape (GenBank accession number. KF178713). The cDNA sequence of this gene was 645 bp in length, containing a 639 bp opening reading frame (ORF) , encoded a polypeptide of 212 amino acid,and with 99%of amino sequence similarity to a vegetable cultivar of B. rapa (Chiifu). The protein encoded by this gene was a hydrophilic protein without signal-peptide and transmembrane region. The prediction of the second structures indicated that the Fe-SOD was a steady protein with more α-helices. Semi-quantitative and real time RT-PCR result showed that Fe-SOD was expressed upregulatedly in response to early low temperature stress (4℃). However, the expression of this gene was inhibited at the lower temperature stress (-4℃ and-8℃). The result of measured enzyme activity showed that superoxide dismutase enzyme activity in roots was higher than that of leaves,which could make winter turnip rape successfully overwinter.[Conclusion]The Fe-SOD gene cloned from winter turnip rape had genetic characteristics similar with other known species and it might play a role in cold tolerance of the B. rapa cultivar Longyou 7.%[目的]了解 SOD 酶蛋白家族Fe-SOD在超强抗寒冬油菜中的表达情况及其在低温胁迫下的作用。[方法]采用RT-PCR技术克隆超强抗寒白菜型冬油菜陇油7号Fe-SOD

  3. Introgressing Subgenome Components from Brassica rapa and B. carinata to B. juncea for Broadening Its Genetic Base and Exploring Intersubgenomic Heterosis

    Science.gov (United States)

    Wei, Zili; Wang, Meng; Chang, Shihao; Wu, Chao; Liu, Peifa; Meng, Jinling; Zou, Jun

    2016-01-01

    Brassica juncea (AjAjBjBj), is an allotetraploid that arose from two diploid species, B. rapa (ArAr) and B. nigra (BnBn). It is an old oilseed crop with unique favorable traits, but the genetic improvement on this species is limited. We developed an approach to broaden its genetic base within several generations by intensive selection. The Ar subgenome from the Asian oil crop B. rapa (ArAr) and the Bc subgenome from the African oil crop B. carinata (BcBcCcCc) were combined in a synthesized allohexaploid (ArArBcBcCcCc), which was crossed with traditional B. juncea to generate pentaploid F1 hybrids (ArAjBcBjCc), with subsequent self-pollination to obtain newly synthesized B. juncea (Ar/jAr/jBc/jBc/j). After intensive cytological screening and phenotypic selection of fertility and agronomic traits, a population of new-type B. juncea was obtained and was found to be genetically stable at the F6 generation. The new-type B. juncea possesses good fertility and rich genetic diversity and is distinctly divergent but not isolated from traditional B. juncea, as revealed by population genetic analysis with molecular markers. More than half of its genome was modified, showing exotic introgression and novel variation. In addition to the improvement in some traits of the new-type B. juncea lines, a considerable potential for heterosis was observed in inter-subgenomic hybrids between new-type B. juncea lines and traditional B. juncea accessions. The new-type B. juncea exhibited a stable chromosome number and a novel genome composition through multiple generations, providing insight into how to significantly broaden the genetic base of crops with subgenome introgression from their related species and the potential of exploring inter-subgenomic heterosis for hybrid breeding. PMID:27909440

  4. Introgressing subgenome components from Brassica rapa and B. carinata to B. juncea for broadening its genetic base and exploring intersubgenomic heterosis

    Directory of Open Access Journals (Sweden)

    Zili Wei

    2016-11-01

    Full Text Available Brassica juncea (AjAjBjBj, is an allotetraploid that arose from two diploid species, B. rapa (ArAr and B. nigra (BnBn. It is an old oilseed crop with unique favorable traits, but the genetic improvement on this species is limited. We developed an approach to broaden its genetic base within several generations by intensive selection. The Ar subgenome from the Asian oil crop B. rapa (ArAr and the Bc subgenome from the African oil crop B. carinata (BcBcCcCc were combined in a synthesized allohexaploid (ArArBcBcCcCc, which was crossed with traditional B. juncea to generate pentaploid F1 hybrids (ArAjBcBjCc, with subsequent self-pollination to obtain newly synthesized B. juncea (Ar/jAr/jBc/jBc/j. After intensive cytological screening and phenotypic selection of fertility and agronomic traits, a population of new-type B. juncea was obtained and was found to be genetically stable at the F6 generation. The new-type B. juncea possesses good fertility and rich genetic diversity and is distinctly divergent but not isolated from traditional B. juncea, as revealed by population genetic analysis with molecular markers. More than half of its genome was modified, showing exotic introgression and novel variation. In addition to the improvement in some traits of the new-type B. juncea lines, a considerable potential for heterosis was observed in inter-subgenomic hybrids between new-type B. juncea lines and traditional B. juncea accessions. The new-type B. juncea exhibited a stable chromosome number and a novel genome composition through multiple generations, providing insight into how to significantly broaden the genetic base of crops with subgenome introgression from their related species and the potential of exploring inter-subgenomic heterosis for hybrid breeding.

  5. Fast Plants for Finer Science--An Introduction to the Biology of Rapid-Cycling Brassica Campestris (rapa) L.

    Science.gov (United States)

    Tomkins, Stephen P.; Williams, Paul H.

    1990-01-01

    Rapid-cycling brassicas can be used in the classroom to teach concepts such as plant growth, tropisms, floral reproduction, pollination, embryonic development, and plant genetics. Directions on how to obtain them for classroom use and how they may be grown are included. Practical physiology and genetics exercises are listed. (KR)

  6. Analysis of genetic diversity of Brassica rapa var. chinensis using ISSR markers and development of SCAR marker specific for Fragrant Bok Choy, a product of geographic indication.

    Science.gov (United States)

    Shen, X L; Zhang, Y M; Xue, J Y; Li, M M; Lin, Y B; Sun, X Q; Hang, Y Y

    2016-04-25

    Non-heading Chinese cabbage [Brassica rapa var. chinensis (Linnaeus) Kitamura] is a popular vegetable and is also used as a medicinal plant in traditional Chinese medicine. Fragrant Bok Choy is a unique accession of non-heading Chinese cabbage and a product of geographic indication certified by the Ministry of Agriculture of China, which is noted for its rich aromatic flavor. However, transitional and overlapping morphological traits can make it difficult to distinguish this accession from other non-heading Chinese cabbages. This study aimed to develop a molecular method for efficient identification of Fragrant Bok Choy. Genetic diversity analysis, based on inter-simple sequence repeat molecular markers, was conducted for 11 non-heading Chinese cabbage accessions grown in the Yangtze River Delta region. Genetic similarity coefficients between the 11 accessions ranged from 0.5455 to 0.8961, and the genetic distance ranged from 0.0755 to 0.4475. Cluster analysis divided the 11 accessions into two major groups. The primer ISSR-840 amplified a fragment specific for Fragrant Bok Choy. A pair of specific sequence-characterized amplified region (SCAR) primers based on this fragment amplified a target band in Fragrant Bok Choy individuals, but no band was detected in individuals of other accessions. In conclusion, this study has developed an efficient strategy for authentication of Fragrant Bok Choy. The SCAR marker described here will facilitate the conservation and utilization of this unique non-heading Chinese cabbage germplasm resource.

  7. Temperature dependent functional response of Diaeretiella rapae (Hymenoptera: Aphidiidae) to the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae)

    DEFF Research Database (Denmark)

    Moayeri, Hamid R. S.; Madadi, Hossein; Pouraskari, Hossein;

    2013-01-01

    Diaeretiella rapae MacIntosh (Hymenoptera: Aphidiidae) is one of the most common and successful parasitoids of the cabbage aphid. The functional response of D. rapae towards cabbage aphids was examined in laboratory studies at three constant temperatures, 17°C, 25°C and 30°C. D. rapae exhibited...

  8. Analysis of gene expression in resynthesized Brassica napus Allopolyploids using arabidopsis 70mer oligo microarrays.

    Directory of Open Access Journals (Sweden)

    Robert T Gaeta

    Full Text Available BACKGROUND: Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S(5ratio6 alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. METHODOLOGY/PRINCIPAL FINDINGS: We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S(0ratio1 and S(5ratio6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent expression in the allopolyploids were tested. The S(5ratio6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6-15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6-32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S(0ratio1 lines and 0.1-0.2% were nonadditive among all S(5ratio6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S(5ratio6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S(0ratio1 lines. CONCLUSIONS/SIGNIFICANCE: Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization

  9. Characterization of a putative pollen-specific arabinogalactan protein gene, BcMF8, from Brassica campestris ssp. chinensis.

    Science.gov (United States)

    Huang, Li; Cao, Jia-Shu; Zhang, Ai-Hong; Ye, Yi-Qun

    2008-12-01

    The BcMF8 (Brassica campestris male fertility 8) gene, possessing the features of 'classical' arabinogalactan protein (AGP) was isolated from Brassica campestris L. ssp. chinensis, Makino syn. B. rapa L. ssp. chinensis. This gene was highly abundant in the fertile flower buds but silenced in the sterile ones of genic male sterile A/B line ('ZUBajh97-01A/B') in B. campestris. Expression patterns analysis suggested BcMF8 was a pollen-specific gene, whose transcript started to be expressed at the uninucleate stage and maintained throughout to the pollen at pollination stage. BcMF8 is highly homologous to the known pollen-specific AGP genes Sta 39-4 and Sta 39-3 from B. napus. Isolation and multiple alignment of the homologs of BcMF8 gene in the family Cruciferae indicated that BcMF8 was highly conserved in this family, which reflect the conservation in biological function and importance of this putative AGP gene in plant development. Similarity analysis also demonstrated Sta 39-4 and Sta 39-3 may originate from different genomes.

  10. The Anthocyanin Metabolic Profiling Analysis of Three Purple Brassica rapa Vegetables%紫菜薹、紫色芜菁和紫色白菜花青苷分析

    Institute of Scientific and Technical Information of China (English)

    郭宁; 郑姝宁; 武剑; 程锋; 梁建丽; 王晓武

    2014-01-01

    在对紫菜薹(Brassica rapa L.ssp.chinensis var.purpurea Baile.)以及芜菁(Brassica rapa ssp.rapifera Metzg.)和白菜[Brassica rapaL.ssp.chinensis (L.) Makino]中的紫色品种类型叶片中花青苷分布特点研究的基础上,结合利用UFLC-UrV-Q-Trip-MS和UP,LC-Q-TOF-MS两种液相色谱质谱联用(LC-MS)技术,对叶片中花青苷代谢物谱进行分析鉴定.结果表明,花青苷在紫菜薹、紫色芜菁和紫色白菜叶片中积累的部位并不相同,主要分布于紫菜薹和紫色芜菁叶柄的表皮细胞,以及紫色白菜叶片的上表皮细胞中.3种蔬菜中共鉴定出23种花青苷,其中紫菜薹和紫色白菜含有的花青苷种类相同,为17种不同酰基化取代的矢车菊素-3-双/三葡萄糖苷-5-葡萄糖苷;紫色芜菁中检测出与紫菜薹和紫色白菜不同的6种花青苷,为不同酰基化的天竺葵素-3-双葡萄糖苷-5-葡萄糖苷.

  11. Characterization of BcMF23a and BcMF23b, two putative pectin methylesterase genes related to pollen development in Brassica campestris ssp. chinensis.

    Science.gov (United States)

    Lin, Sue; Huang, Li; Yu, Xiaolin; Xiong, Xingpeng; Yue, Xiaoyan; Liu, Tingting; Liang, Ying; Lv, Meiling; Cao, Jiashu

    2017-02-01

    Two homologous genes, Brassica campestris Male Fertility 23a (BcMF23a) and Brassica campestris Male Fertility 23b (BcMF23b), encoding putative pectin methylesterases (PMEs) were isolated from Brassica campestris ssp. chinensis (syn. Brassica rapa ssp. chinensis). These two genes sharing high sequence identity with each other were highly expressed in the fertile flower buds but silenced in the sterile ones of genic male sterile line system ('Bcajh97-01A/B'). Results of RT-PCR and in situ hybridization suggested that BcMF23a and BcMF23b were pollen-expressed genes, whose transcripts were first detected at the binucleate pollen and maintained throughout to the mature pollen grains. Western blot indicated that both of the putative BcMF23a and BcMF23b proteins are approximately 40 kDa, which exhibited extracellular localization revealed by transient expression analysis in the onion epidermal cells. The promoter of BcMF23a was active specifically in pollen during the late pollen developmental stages, while, in addition to the pollen, BcMF23b promoter drove an extra gene expression in the valve margins, abscission layer at the base of the first true leaves, taproot and lateral roots in seedlings.

  12. Uptake of arsenic species by turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) treated with roxarsone and its metabolites in chicken manure.

    Science.gov (United States)

    Huang, Lian Xi; Yao, Li Xian; He, Zhao Huan; Zhou, Chang Min; Li, Guo Liang; Yang, Bao Mei; Li, Ying Fen

    2013-01-01

    Roxarsone is an organoarsenic feed additive that can be metabolised to other higher toxic arsenic (As) species in animal manure such as arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, 3-amino-4-hydroxyphenylarsonic acid and other unknown As species. The accumulation, transport and distribution of As species in turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) amended with roxarsone and its metabolites in chicken manure were investigated. Results showed arsenite was the predominant As form, followed by arsenate in turnip and lettuce plants, and a low content of dimethylarsinic acid was detected only in lettuce roots. Compared with the control plants treated with chicken manure without roxarsone and its metabolites, the treatments containing roxarsone and its metabolites increased arsenite content by 2.0-3.2% in turnip shoots, by 6.6-6.7% in lettuce shoots, by 11-44% in turnip tubers and by 18-20% in lettuce roots at two growth stages. The enhanced proportion of arsenate content in turnip shoots, turnip tubers and lettuce roots was 4.3-14%, 20-35% and 70%, respectively, while dimethylarsinic acid content in lettuce roots increased 2.4 times. Results showed that the occurrence of dimethylarsinic acid in lettuce roots might be converted from the inorganic As species and the uptake of both inorganic and organic As compounds in turnip and lettuce plants would be enhanced by roxarsone and its metabolites in chicken manure. The pathway of roxarsone metabolites introduced into the human body via roxarsone → animal → manure → soil → crop was indicated.

  13. Transgenic Brassica rapa plants over-expressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance.

    Science.gov (United States)

    Kim, Jinhee; Kang, Won-Hee; Hwang, Jeena; Yang, Hee-Bum; Dosun, Kim; Oh, Chang-Sik; Kang, Byoung-Cheorl

    2014-08-01

    The protein-protein interaction between VPg (viral protein genome-linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad-spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge-based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap-binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap-binding pockets, and mutated. Yeast two-hybrid assay and co-immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E-knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild-type were over-expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over-expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge-based approaches for the engineering of broad-spectrum resistance in Chinese cabbage.

  14. 盐胁迫对芜菁种子萌发的影响%Effects of Salt Stress on Seeds Germination of Turnip (Brassica rapa L.)

    Institute of Scientific and Technical Information of China (English)

    施月婕; 高杰; 赵建军

    2011-01-01

    [目的]盐胁迫对芜菁种子萌发的影响,为芜菁栽培土壤选择及抗盐品种的选育提供理论依据.[方法]实验设置5个NaCl浓度梯度20、50、100、150和200 mmol/L和5个NaSO浓度梯度10、50、100、150和200mmol/L,对芜菁种子进行盐胁迫处理,测定其种子发芽率、发芽势、发芽指数和活力指数等.[结果]在NaCl浓度低于150 mmoL/L时,芜菁种子的发芽率、发芽势、相对盐害率与对照差异不大,在浓度为200 mmol/L时受抑制较大,150 mmol/L NaCl溶液适合于芜菁种子耐盐性的选择;在NaSO浓度低于100 mmol/L时对芜菁种子萌发的抑制作用相对较小,当超过150 mmol/L时出现明显的抑制作用,种子的萌发、相对活力指数等指标均呈明显下降的趋势.[结论]盐胁迫对芜菁种子萌发有明显抑制效应,而且随着盐浓度的增加,发芽率、发芽势、相对活力指数逐渐降低、相对盐害率升高,芜菁种子在萌发期间具有一定的耐盐性.%[Objective] This study was carried out to investigate the efFects of different NaC1 and Na2SO4 concentration on tumip( Brassica rapa L. ) seeds gemunation. [ Method] The experiment set six NaC1 concentration streas , which are respectively 0 mmol/L, 20 mmol/L , 50 mmol/L , 100 mmol/L, 150 mmol/L and 200 mmol/L; and six Na2SO4 concentration stress, which are respectively 0 mmol/L, 10 mmol/L, 50 mmol/L, 100 mmol/L, 150mmol/L and 200mmol/L. The seeds of rapa tumip were treated under salt stress and the seeds germination rate, germination potential, germination index. and vitality index were measured . [ Result] The result showed that seeds germination rate, germination potential, and relative salty harming rate had no big difference compared with the control . the inhibition is big when the concentration reached 200 mmol/L. When Na2SO4 concentration is lower than 100 mmol/L,it had little inhibition on tumip seed germination, and when the concentraion is over 150 mmol/L,it has an obvioua

  15. WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops.

    Science.gov (United States)

    Borhan, Mohammad Hossein; Holub, Eric B; Kindrachuk, Colin; Omidi, Mansour; Bozorgmanesh-Frad, Ghazaleh; Rimmer, S Roger

    2010-03-01

    White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.

  16. IDENTIFICATION OF LEAD AND CADMIUM LEVELS IN WHITE CABBAGE (Brassica rapa L., SOIL, AND IRRIGATION WATER OF URBAN AGRICULTURAL SITES IN THE PHILIPPINES

    Directory of Open Access Journals (Sweden)

    Hardiyanto Hardiyanto

    2016-10-01

    Full Text Available Urban agriculture comprises a variety of farming systems, ranging from subsistence to fully commercialized agriculture. Pollution from automobile exhaust, industrial and commercialactivities may affect humans, crops, soil, and water in and around urban agriculture areas. The research aimed to investigate the level and distribution of lead (Pb and cadmium (Cd in white cabbage (Brassica rapa L., soil, and irrigation water taken from urban sites. The research was conducted in Las Piñas and Parañaque, Metro Manila, Philippines. The field area was divided into three sections based on its distance from the main road (0, 25, and 50 m. Irrigation water was taken from canal (Las Piñas and river (Parañaque. Pb and Cd contents of the extract were measured by Atomic Absorption Spectrophotometry. Combined analysis over locations was used. The relationship between distance from the main road and metal contents was measured by Pearson’s correlation. Based on combined analyses, highly significant difference over locations was only showed on Cd content in white cabbage. Cd content in white cabbage grown in Parañaque was higher than that cultivated in Las Piñas, while Cd content in the soil between both sites was comparable.The average Pb content (1.09 µg g-1 dry weight was highest in the white cabbage grown right beside the main road. A similar trend was also observed in the soil, with the highest concentration being recorded at 26 µg g-1 dry weight. There was a negative relationship between distance from the main road and Pb and Cd contents in white cabbage and the soil. Level of Pb in water taken from the canal and river was similar (0.12 mg l-1, whereaslevels of Cd were 0.0084 and 0.0095 mg l-1, respectively. In general, the concentrations of Pb and Cd in white cabbage and soil as well as irrigation water were still in the acceptable limits. In terms of environmental hazards and polluted city environment, it seems that

  17. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    Science.gov (United States)

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  18. Transcriptional responses of Brassica nigra to feeding by specialist insects of different feeding guilds

    Institute of Scientific and Technical Information of China (English)

    Colette Broekgaarden; Roeland E. Voorrips; Marcel Dicke; Ben Vosman

    2011-01-01

    Plants show phenotypic changes when challenged with herbivorous insects. The mechanisms underlying these changes include the activation of transcriptional responses, which are dependent on the attacking insect. Most transcriptomic studies on crucifer-insect interactions have focused on the model plant Arabidopsis thaliana, a species that faces low herbivore pressure in nature. Here, we study the transcriptional responses of plants from a wild black mustard (Brassica nigra) population to herbivores of different feeding guilds using an A. thaliana-bused whole-genome microarray that has previously been shown to be suitable for transcriptomic analyses in Brassica. Transcriptional responses of 5. nigra after infestation with either Pieris rapae caterpillars or Brevicoryne brassicae aphids are analyzed and compared. Additionally, the insect-induced expression changes of some individual genes are analyzed through quantitative real-time polymerase chain reaction. The results show that feeding by both insect species results in the accumulation of transcripts encoding proteins involved in the detoxification of reactive oxygen species, defensive proteins and glucosinolates and this is correlated with experimental evidence in the literature on such biochemical effects. Although genes encoding proteins involved in similar processes are regulated by both insects, there was little overlap in the induction or repression of individual genes. Furthermore, P. rapae and B. brassicae seem to affect different phytohormone signaling pathways. In conclusion, our results indicate that B. nigra activates several defense-related genes in response to P. rapae or B. brassicae feeding, but that the response is dependent on the attacking insect species.

  19. A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa

    Directory of Open Access Journals (Sweden)

    de Ruiter Marjo

    2011-06-01

    Full Text Available Abstract Background Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome. Results Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation. Conclusions In addition to nucleus, the chloroplast is another important organelle that generates a number of small

  20. Characterization and Development of EST-SSRs by Deep Transcriptome Sequencing in Chinese Cabbage (Brassica rapa L. ssp. pekinensis

    Directory of Open Access Journals (Sweden)

    Qian Ding

    2015-01-01

    Full Text Available Simple sequence repeats (SSRs are among the most important markers for population analysis and have been widely used in plant genetic mapping and molecular breeding. Expressed sequence tag-SSR (EST-SSR markers, located in the coding regions, are potentially more efficient for QTL mapping, gene targeting, and marker-assisted breeding. In this study, we investigated 51,694 nonredundant unigenes, assembled from clean reads from deep transcriptome sequencing with a Solexa/Illumina platform, for identification and development of EST-SSRs in Chinese cabbage. In total, 10,420 EST-SSRs with over 12 bp were identified and characterized, among which 2744 EST-SSRs are new and 2317 are known ones showing polymorphism with previously reported SSRs. A total of 7877 PCR primer pairs for 1561 EST-SSR loci were designed, and primer pairs for twenty-four EST-SSRs were selected for primer evaluation. In nineteen EST-SSR loci (79.2%, amplicons were successfully generated with high quality. Seventeen (89.5% showed polymorphism in twenty-four cultivars of Chinese cabbage. The polymorphic alleles of each polymorphic locus were sequenced, and the results showed that most polymorphisms were due to variations of SSR repeat motifs. The EST-SSRs identified and characterized in this study have important implications for developing new tools for genetics and molecular breeding in Chinese cabbage.

  1. BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available Plant non-specific lipid transfer proteins (nsLTPs constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17-80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.

  2. Proteomic Analysis of Two Brassica napus Differing in the Oil Contents and Map Alignment between the DEPs with Arabidopsis and B. rapa

    Institute of Scientific and Technical Information of China (English)

    Maoteng Li; Lu Gan; Xiaodong Wang; Dianrong Li; Hao Wang; Chunhua Fu; Longjiang Yu

    2012-01-01

    Rapeseed (Brassica napus) is one of the most important oilseed crops in the world.Improve the oil content is the main object for breeders at present.Oil contents is an important and complex metabolic trait of B.napus,in our previous studies,about 50 materials with oil content over 50% were obtained.Lots of studies revealed that some factors,such as seed coat,embryo,and endosperm that were all correlated with oil conten,but the studies focus on the proteomic studies on seed oil content were few reported.It is generally considered that the protein content is negatively correlated with oil content,which was further verified with QTL analysis for protein and oil content,Total and oil body protein in mature seeds of two B.napus cultivars with the oil content of 36.49% and 55.19% were analsized by using 2-DE technique.154 differentially expressed proteins (DEPs) have been successfully identified by using MALDI-TOF-MS method.The DEPs were mainly involved in Storage protein,Carbohydrate pathway protein,Cell Growth/Division protein,and Defense/Disease protein.Significant difference of cell growth/division protein both detected in total and oil body protein may be correlated to the size of oil body in B.napus with different oil content.The genome alignment analysis showed that among the 378 key genes,24 genes were underlying the N block,36 genes were underlying the U block and 17 genes were belong to the C block,then the 77 genes were used as candidate genes to do in silico mapping in A4 and C3 chromosomes of TN linkage map.For example,compared with the QTL mapping results and candidate genes,6 of the 24 genes underlying N block of A4 chromosome were mapped on the QTL qA4-1 confidence interval,including AT3G56350,AT3G57620,PGL34,AT3G58450,BGLU27 and BGLU30,and 5 genes were mapped on the QTL qOCDA-2 confidence interval,including AT3G52470,ATELP,MDAR1,FBA8 and AT3G53040.

  3. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  4. 芜菁不同提取物对糖尿病模型小鼠降血糖作用的研究%Study on Hypoglycemic Effect of Different Extracts of Brassica rapa on Diabetic Model Mice

    Institute of Scientific and Technical Information of China (English)

    陈湘宏; 文绍敦; 吴萍; 洒玉萍; 任世存

    2013-01-01

    目的:研究芜菁不同提取物对糖尿病模型小鼠的降血糖作用.方法:给予小鼠腹腔注射链脲佐菌素复制糖尿病模型,尾静脉采血测空腹血糖,以血糖> 11.1 mmol/L为模型复制成功.实验分为空白对照(等容生理盐水)、模型(等容生理盐水)、二甲双胍(0.2 g/kg)组和芜菁水提物高、低剂量(40、20 g/kg),芜菁醇提物高、低剂量(40、20 g/kg),芜菁醚提物高、低剂量(40、20 g/kg)组.灌胃给药,每天1次,连续14d,实验期间分别于复制模型前、后,用药7、14d后剪尾取血检测血糖.末次给药结束后,小鼠摘眼球取血,分离血清测定超氧化物歧化酶(SOD)和丙二醛(MDA)水平,剖取新鲜的胸腺、脾脏,称质量,计算脏器指数.结果:与模型组比较,用药14d后,芜菁各提取物组小鼠血糖值显著降低(P<0.01或P<0.05);芜菁水提物高、低剂量组和芜菁醇提物高剂量组SOD活性显著增强(P<0.01或P<0.05);芜菁各提取物组MDA含量显著减少(P<0.05);除芜菁醇提物低剂量组外,各用药组胸腺指数、脾脏指数显著升高(P<0.01或P<0.05).结论:高原植物芜菁对糖尿病模型小鼠有较明显降血糖作用.%OBJECTIVE: To study the hypoglycemic effect of different extracts of Brassica rapa on diabetic model mice. METHODS: Diabetic mice model was induced by intraperitoneal injection of streptozotocin. Blood glucose monitoring devices was used to measure FPG through tail vein blood, setting blood glucose>11.1 mmol/L for the successful model mice. The selected mice were divided into 9 groups, i.e. blank control group (constant volume of normal saline), model group (constant volume of normal saline), metformin hydrochloride group(0.2 g/kg) ,B. rapa water extract high-dose and low-dose groups (40,20 g/kg), B. rapa ethanol extract high-dose and low-dose groups(40,20 g/kg) and B. rapa ether extract high-dose and low-dose groups (40, 20 g/kg). They were given medicine intragastrically

  5. Impact of total solid content and extraction pH on enzyme-aided recovery of protein from defatted rapeseed (Brassica rapa L.) press cake and physicochemical properties of the protein fractions.

    Science.gov (United States)

    Rommi, Katariina; Ercili-Cura, Dilek; Hakala, Terhi K; Nordlund, Emilia; Poutanen, Kaisa; Lantto, Raija

    2015-03-25

    Pectinase treatment was used to facilitate protein recovery from defatted rapeseed (Brassica rapa) cold-pressing residue in water-lean conditions and without pH adjustment. Effect of extraction pH on protein yield and physiochemical properties of the protein concentrates was assessed. Enzymatic hydrolysis of carbohydrates was feasible at high (40%) solid content and improved protein recovery at pH 6. Comparable protein yields (40-41% of total protein) from enzyme-aided water extraction (pH 6) and nonenzymatic alkaline extraction (pH10) at 10% solid content suggested that after enzymatic treatment, rapeseed protein could be extracted without exposure to alkali. However, water extraction required dilute conditions, whereas alkaline extraction was feasible also at 20% solid content. The water extracts possessed better protein solubility, higher ζ-potential, and smaller particle size than isoelectric precipitates from alkaline extraction, indicating higher dispersion stability. This is suggested to be mediated by electrostatic interactions between proteins and pectic carbohydrates in the water extracts.

  6. Effect of the Antisense BcMF12 Driven by the BcA9 Promoter on Gene Silencing in Brassica campestris L. ssp. chinensis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The study analyzed the silencing of BcMF12 gene regulated by BcA9 promoter in the transgenic pakchoi and confirmed the effect of antisense BcMF12 gene on the pollen development. A conserved BcMF12 gene fragment was amplified from the cDNA of flower buds in pakchoi (Brassica campestris L. ssp. chinensis, syn. B. rapa L. ssp. chinensis) and was fused to the anther specific BcA9 promoter. The plant antisense expression vector was constructed and then introduced into pakchoi via Agrobacterium-mediated transformation. The transgenic plants were screened by antibiotics and molecular analysis. PCR and Southern blot revealed that the antisense BcMF12-GUS fusion gene regulated by BcA9 promoter was integrated into transgenic plants. Northern blot suggested that the expression of BcMF12 gene was down-regulated significantly. The pollen germination rate of transgenic plants with antisense BcMF12 gene decreased as compared with that of the control plants. The expression of the gene BcMF12 related to the pollen development was inhibited by the antisense BcMF12 driven by BcA9 promoter, which consequently affected the pollen development in pakchoi.

  7. Tracing the transcriptomic changes in synthetic Trigenomic allohexaploids of Brassica using an RNA-Seq approach.

    Directory of Open Access Journals (Sweden)

    Qin Zhao

    Full Text Available Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassicarapa, Brassicacarinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B. rapa, were involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant-pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the

  8. 低温胁迫下内源ABA、GA及比值对白菜型和甘蓝型冬油菜抗寒性的响应%Response of endogenous ABA and GA to cold resistance ofBrassica rapa L. andBrassica napus L.

    Institute of Scientific and Technical Information of China (English)

    刘海卿; 赵艳宁; 董小云; 曾秀存; 许耀照; 方园; 武军艳; 陈奇; 孙万仓; 刘自刚; 方彦; 米超; 蒲媛媛

    2016-01-01

    为阐明低温胁迫下激素含量对冬油菜枯叶期的调控和对抗寒性的响应,为冬油菜抗寒性研究提供依据,以8份不同抗寒等级的白菜型和甘蓝型冬油菜为材料,利用盆栽试验,待幼苗长至5~6片真叶时在人工气候箱中进行低温处理(25℃、10℃、2℃、-5℃),分析低温胁迫后冬油菜内源 ABA、GA 含量和叶绿素的变化。回归分析表明温度与ABA含量存在显著的负相关,回归方程符合y=-ax+b,随着温度的降低,内源ABA含量呈先缓慢(10℃)后迅速上升(2℃、-5℃)的趋势,且温度处理间、温度与品种互作间差异极显著;由于激素间的拮抗作用GA含量变化则恰好相反。当在0℃以上低温时,品种间ABA含量无明显差异,当温度降到-5℃,白菜型冬油菜ABA含量明显高于甘蓝型,抗寒性强的品种高于抗寒性弱的品种。ABA含量的升高导致叶绿素含量的变化,随着温度降低,叶绿素含量呈先降低后增加的趋势,但总体呈下降趋势,且白菜型冬油菜和甘蓝型冬油菜之间存在不同的响应机制,这种作用使白菜型冬油菜叶绿素含量低于甘蓝型冬油菜,导致白菜型冬油菜枯叶期提前,提早进入越冬期,增加了对低温冻害的御性和避性。因此,随着温度的降低冬油菜叶片 ABA 含量上升,叶绿素降解,白菜型冬油菜更早进入枯叶期,枯叶期较早和降温后ABA含量高是白菜型冬油菜抗寒性较强的主要原因。%AbstractCold resistance is critical in winter rapeseed production in northern China. The abscisic acid (ABA) plant hormone, also known as “stress hormone” is an important signal molecule for the regulation of plant cold resistance. Study of possible regulatory mechanisms of endogenous ABA and GA is needed to develop a valuable insight into the mechanism of cold resistance both in winter rapeseedBrassica rapa L. andBrassica napus L. Thus we investigated the regulation of endogenous hormones in cold

  9. KANDUNGAN LOGAM BERAT (Pb dan Cd Pada Sawi Hijau (Brassica rapa l. Subsp. Perviridis Bailey Dan Wortel (Daucus Carrota L. Var. Sativa Hoffm YANG BEREDAR DI PASAR KOTA DENPASAR

    Directory of Open Access Journals (Sweden)

    Deni Agung Priandoko

    2013-05-01

    Full Text Available Has been doing a research about the content of heavy metals (Pb and Cdin green mustard (Brassica rapa L. subsp. Perviridis Bailey and carrot (DaucusCarrota L. Var. Sativa Hoffm that exist in the market of Denpasar city. Purposeof this research was to know the content of Pb and Cd in green mustard andcarrots that exist in traditional markets (Badung and Kreneng market Denpasarcity that treated by washing and without washing. Content of Pb and Cd in greenmustard and carrots that analyzed by AAS (atomic absorption spectrophotometer.The results of research shows that contents of Pb in green mustard andcarrots that washed and without washed in Kreneng and Badung Market equal to64.71 ± 6.66 ug / g, 69.58 ± 4.61 ug / g, 62.56 ± 6.99 ug / g, 64.96 ± 7:20 ug / g,62.56 ± 6:56 ug / g, 73, 91 ± 2:51 ug / g, 57.17 ± 8:59 ug / g, 59.71 ± 8.93 ug / gdry weight. Content of Cd that washed and without washed equal to SCK 8.81 ±1.68?g / g, 10, 55 ± 1.78 ug / g, 8.09 ± 1.71 ug / g, 9.30 ± 2:01 ug / g, 8.96 ± 1.72ug / g, 10.09 ± 1:09 ug / g, 7.39 ± 1.6 ug / g 5, 8.14 ± 1.71 ug / g dry weight

  10. Linkage mapping of a dominant male sterility gene Ms-cd1 in Brassica oleracea

    NARCIS (Netherlands)

    Wang, X.; Lou, P.; Bonnema, A.B.; Yang, Boujun; He, H.; Zhang, Y.; Fang, Z.

    2005-01-01

    The dominant male sterility gene Ms-cd1 (c, cabbage; d, dominant) was identified as a spontaneous mutation in the spring cabbage line 79-399-3. The Ms-cd1 gene is successfully applied in hybrid seed production of several Brassica oleracea cultivars in China. Amplified fragment length polymorphism (A

  11. Effect of aqueous extracts of black alder (Alnus glutinosa (LINNAEUS, 1753 GAERTNER, 1791 and elder (Sambucus nigra LINNAEUS, 1753 on the occurrence of Brevicoryne brassicae LINNAEUS, 1758 (Hemiptera, Aphidoidea, its parasitoid Diaeretiella rapae (M’INTOSH, 1855 (Hymenoptera, Ichneumonoidea and predatory Syrphidae on white cabbage

    Directory of Open Access Journals (Sweden)

    Jankowska Beata

    2016-06-01

    Full Text Available The insecticidal and antifeedant effects of aqueous extracts from two common plants (black alder Alnus glutinosa and elder Sambucus nigra on the occurrence of Brevicoryne brassicae, its parasitoid Diaeretiella rapae and predatory Syrphidae on white cabbage were investigated in 2008-2009. Both extracts reduced the number of cabbage aphids, although the Sambucus nigra extract proved to have a better effect. Differences were seen both in the numbers of winged aphids settling on plants and in the overall numbers of aphids on plants during the entire season. There were no significant differences in the degree of parasitization by Diaeretiella rapae in the three experimental combinations. Eight species of Syrphidae were found in the Brevicoryne brassicae colonies: Episyrphus balteatus, Sphaerophoria scripta, S. rueppelli, S. menthastri, Eupeodes corollae, Scaeva pyrastri, Scaeva selenitica and Syrphus vitripennis. The dominant species was Episyrphus balteatus. The largest numbers of syrphid larvae and pupae were collected from cabbage aphid colonies on the control plants. Smaller numbers were recorded on the plot where the cabbages were sprayed with the Sambucus nigra extract. The results of this study indicate that botanical insecticides based on S. nigra have the potential to be incorporated into control programmes for the cabbage aphid.

  12. Comparative transcriptomic analysis of two Brassica napus near-isogenic lines reveals a network of genes that influences seed oil accumulation

    Directory of Open Access Journals (Sweden)

    Jingxue Wang

    2016-09-01

    Full Text Available Rapeseed (Brassica napus is an important oil seed crop, providing more than 13% of the world’s supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus. Using available genomic and transcriptomic resources, we identified 1,750 acyl lipid metabolism (ALM genes that are distributed over 19 chromosomes in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of B. napus, contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs. The high oil NIL, YC13-559, accumulates more than 10% of seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1, LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3, ABI4, ABI5, and WRINKLED1, as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE, and LONG-CHAIN ACYL-CoA SYNTHETASES. We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B. napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.

  13. Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation

    Science.gov (United States)

    Wang, Jingxue; Singh, Sanjay K.; Du, Chunfang; Li, Chen; Fan, Jianchun; Pattanaik, Sitakanta; Yuan, Ling

    2016-01-01

    Rapeseed (Brassica napus) is an important oil seed crop, providing more than 13% of the world’s supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus. Using available genomic and transcriptomic resources, we identified 1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of B. napus, contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs). The high oil NIL, YC13-559, accumulates significantly higher (∼10%) seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1), LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4, ABI5, and WRINKLED1, as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE, and LONG-CHAIN ACYL-CoA SYNTHETASES. We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl-lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B. napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.

  14. Physical Localization and Genetic Mapping of Fertility Restoration Gene Rfo in Canola (Brassica napus L.)

    Science.gov (United States)

    The Ogu cytoplasm for male fertility and its fertility restorer gene Rfo in canola (Brassica napus L.) were originally introgressed from radish (Raphanus sativus L.) and have been widely used for canola hybrid production and breeding. The objective of this study was to determine the physical locati...

  15. Phylogenetic Analysis on SLG and SRK Genes in Brassica and Raphanus

    Institute of Scientific and Technical Information of China (English)

    HE Yu-tang; MA Chao-zhi; FU Ting-dong; TU Jin-xing

    2005-01-01

    S-locus genes were cloned from three Brassica napus and three B. campestris lines by using PCR walking and homologue sequence methods. A phylogenetic gene tree was constructed based on the six cloned genes and fifty-one previously reported SLG/SRK genes of Brassica and Raphanus. The SLGs from R. sativus were dispersed in the phylogenetic tree intermingling with SLG/SRKs from B. oleracea, B. napus and B. campestris. The SLG/SRK genes of class Ⅱ clustered independently in one group. The SLG/SRK genes of class Ⅰ showed to be more divergent than class Ⅱ genes. These results suggested that the divergence of class Ⅰ and class Ⅱ should have occurred before the differentiation of the genera Brassica and Raphanus. In addition, SLG and SRK of the same S haplotypes belonged to the same class. It suggested that class-Ⅰ and class-Ⅱ group divergence occurred first, and then SLG and SRK diverged. The three SC SRK genes from B. napus and B. campestris were grouped into one cluster, displaying difference from the SC SLG of B.oleracea. These three SC SRK genes were close to SI SRK of SI1300, SI271 and guanyou in phylogenetic relationships.These results indicated that SC and SI genes diverged more recently. It is not clear yet whether the differentiation of SC and SI genes was earlier than the differentiation of Brassica and Raphanus. Studies based on more genes are necessary for a comprehensive elucidation of the phylogenetic relationships in Brassicaceae.

  16. 抑制差减杂交法研究复等位基因遗传的大白菜核雄性不育分子机制%The Molecular-mechanism Research of Genic Multiple-allele Inherited Male-sterile in Chinese Cabbage (Brassica rapa L.ssp.chinensis) by Using Suppression Subtractive Hybridization

    Institute of Scientific and Technical Information of China (English)

    冀瑞琴; 宋倩; 辛喜凤; 周雪; 冯辉

    2011-01-01

    AB01, the two-type line of multiple-allele inherited male-sterile Chinese cabbage (Brassica rapa L. ssp. Chinensis ) was bred by our research group, the technology system of this material had been build, but its sterile molecular mechanism was not clear yet. In this research, sterility and fertility cDNA libraries including 27 differentially expressed clones were constructed using the fertile and sterile buds of AB01 by the suppression subtractive hybridization (SSH). According to BLAST screening and functional annotation, 25 ESTs were homology to known sequence of the databases at the National Center for Biotechnical Information (NCBI). The 25 genes, with homology to known proteins, could be divided into 4 groups (7 flowers developing-felated genes, 5 lipid metabolism, 3 energy metabolism genes, 3 chloroplast related genes and 7 encode the unclassified proteins). The results suggested the molecular mechanism of genic multiple-allele inherited male-sterile Chinese cabbage was related with lipid metabolism, energy metabolism and photosynthesis progress.%AB01是本课题组培育的复等位基因遗传的核雄性不育大白菜甲型“两用系”,目前已建立了一套该材料的应用技术体系,但其不育分子机制尚不明确.本研究以AB01的不育株和可育株为材料,利用抑制差减杂交技术构建了正反抑制差减cDNA文库,并通过测序及生物信息学手段寻找育性相关基因,以此来推断该材料的不育分子机制.研究共找到27个差异表达基因,其中25个基因在NCBI数据库中均有同源序列,这些基因中7个与花发育相关,5个与脂类代谢相关,3个与活性氧及能量代谢相关,3个与光合作用及叶绿体合成相关,其余7个为功能未知基因.由此推测复等位基因遗传的核雄性不育大白菜不育的发生与脂类、能量代谢及光合作用有关.

  17. Gene expression programs during Brassica oleracea seed maturation, osmopriming and germination process and the stress tolerance level

    NARCIS (Netherlands)

    Soeda, Y.; Konings, M.C.J.M.; Vorst, O.F.J.; Houwelingen, van A.M.M.L.; Stoopen, G.M.; Maliepaard, C.A.; Kodde, J.; Bino, R.J.; Groot, S.P.C.; Geest, van der A.H.M.

    2005-01-01

    During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were cr

  18. A homolog of the RPS2 disease resistance gene is constitutively expressed in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Malvas Celia C.

    2003-01-01

    Full Text Available In this study, we identified disease resistance gene homologs in Brassica oleracea and assessed their expression in lines resistant and susceptible to Xanthomonas campestris pv. campestris (Xcc. Two DNA fragments of approximately 2.5 kb (BI-16/RPS2 and Lc201/RPS2 were amplified by PCR from two Brassica lines using primers based on an RPS2 homologous sequence previously described in the Brassica oleracea ecotype B117. The sequences of these fragments shared high similarity (95-98% with RPS2 homologs from various Brassica species. The digestion of these fragments with restriction enzymes revealed polymorphisms at the Xba I restriction sites. The length polymorphisms were used as a co-dominant marker in an F2 population developed to segregate for resistance to Xcc, the causal agent of black rot. Linkage analysis showed no significant association between the marker and quantitative trait loci for black rot. RT-PCR with specific primers yielded an expected 453 bp fragment that corresponded to the RPS2 homologs in both resistant and susceptible lines inoculated with the pathogen, as well as in non-inoculated control plants. These results suggest that these homologs are constitutively expressed in B. oleracea.

  19. Brassica napus genome possesses extraordinary high number of CAMTA genes and CAMTA3 contributes to PAMP triggered immunity and resistance to Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Hafizur eRahman

    2016-05-01

    Full Text Available Calmodulin-binding transcription activators (CAMTAs play important roles in various plant biological processes including disease resistance and abiotic stress tolerance. Oilseed rape (Brassica napus L. is one of the most important oil-producing crops worldwide. To date, compositon of CAMTAs in genomes of Brassica species and role of CAMTAs in resistance to the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum are still unknown. In this study, 18 CAMTA genes were identified in oilseed rape genome through bioinformatics analyses, which were inherited from the nine copies each in its progenitors B. rapa and B. oleracea and represented the highest number of CAMTAs in a given plant species identified so far. Gene structure, protein domain organization and phylogentic analyses showed that the oilseed rape CAMTAs were structurally similar and clustered into three major groups as other plant CAMTAs, but had expanded subgroups CAMTA3 and CAMTA4 genes uniquely in rosids species occurring before formation of oilseed rape. A large number of stress response-related cis-elements existed in the 1.5 kb promoter regions of the BnCAMTA genes. BnCAMTA genes were expressed differentially in various organs and in response to treatments with plant hormones and the toxin oxalic acid (OA secreted by S. sclerotiorum as well as the pathogen inoculation. Remarkably, the expression of BnCAMTA3A1 and BnCAMTA3C1 was drastically induced in early phase of S. sclerotiorum infection, indicating their potential role in the interactions between oilseed rape and S. sclerotiorum. Furthermore, inoculation analyses using Arabidopsis camta mutants demonstrated that Atcamta3 mutant plants exhibited significantly smaller disease lesions than wild-type and other Atcamta mutant plants. In addition, compared with wild-type plants, Atcamta3 plants accumulated obviously more hydrogen peroxide in response to the PAMP chitin and exhibited much higher expression of the CGCG

  20. [Gene flow and its ecological risks of transgenic oilseed rape ( Brassica napus)].

    Science.gov (United States)

    Tang, Guixiang; Song, Wenjian; Zhou, Weijun

    2005-12-01

    Transgenic oilseed rape Brassica napus, one of the first genetically modified crops, has now been released to commercial use in Canada and Australia. As a cross-pollinating crop, its natural crossing rate is 30%, and it is liable to cross with other Brassica species. The ecological risk of transgenic oilseed rape has been concerned by the scientists all over the world. There are two ways for the pollens flow of transgenic oilseed rape, one takes place between transgenic oilseed rape and other related wild species, and the other occurs between transgenic and nontransgenic oilseed rape. The gene may flow to other related wild species, but it is unlikely to get hybrids in field. Because the gene can really flow to the conventional oilseed rape, it is necessary to have a sufficient isolation distance in cultivating transgenic oilseed rape.

  1. Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates

    Directory of Open Access Journals (Sweden)

    Rawnak Laila

    2017-01-01

    Full Text Available Clubroot is a soil-borne disease caused by the protist Plasmodiophora brassicae (P. brassicae. It is one of the most economically important diseases of Brassica rapa and other cruciferous crops as it can cause remarkable yield reductions. Understanding P. brassicae genetics, and developing efficient molecular markers, is essential for effective detection of harmful races of this pathogen. Samples from 11 Korean field populations of P. brassicae (geographic isolates, collected from nine different locations in South Korea, were used in this study. Genomic DNA was extracted from the clubroot-infected samples to sequence the ribosomal DNA. Primers and probes for P. brassicae were designed using a ribosomal DNA gene sequence from a Japanese strain available in GenBank (accession number AB526843; isolate NGY. The nuclear ribosomal DNA (rDNA sequence of P. brassicae, comprising 6932 base pairs (bp, was cloned and sequenced and found to include the small subunits (SSUs and a large subunit (LSU, internal transcribed spacers (ITS1 and ITS2, and a 5.8s. Sequence variation was observed in both the SSU and LSU. Four markers showed useful differences in high-resolution melting analysis to identify nucleotide polymorphisms including single- nucleotide polymorphisms (SNPs, oligonucleotide polymorphisms, and insertions/deletions (InDels. A combination of three markers was able to distinguish the geographical isolates into two groups.

  2. Morphological Studies on the Development of Anther of Three Ogura Cytoplasmic Male Sterile Lines and Their Maintainer Lines of Brassica rapa L.ssp.%大白菜Ogura雄性不育系及保持系花药发育的细胞学观察

    Institute of Scientific and Technical Information of China (English)

    王书强; 刘俊英; 崔辉梅

    2011-01-01

    [Objective]The development of anther microspore of three Ogura cytoplasmic male sterile (CMS) lines and their maintainer lines of Brassica rapa L.ssp. pekinensis were studied.[Method]The development of anther of three Ogura cytoplasmic male sterile (CMS) lines and their maintainer lines of Brassica rapa L.ssp.pekinensis were observed from the perspective of cytology.【Result]Microspore abortion of three Ogura CMS lines (OBY, OBK, OD5) have occurred in mononuclear microspore early, and anthers have aborted entirely before blossom.[Conclusion] Tapetum cell of three Ogura CMS lines formed vacuoles is earlier than their maintainer lines. Tapetum cell of three Ogura CMS lines has been degenerating at microsporocyte meiosis stage, and tapetum cell of their maintainer lines degenerated naturally, providing nutrients and space for microsporogenesis.%[目的]研究3个大白菜Ogura雄性不育系及保持系花药小抱子发育过程.[方法]对3对大白菜Ogura雄性不育系及其保持系花药发育进行细胞学观察.[结果]3个大白菜Ogura雄性不育系(OBY,OBK,OD5)的小孢子败育均发生在单核早期,在开花前完全败育.[结论]不育系绒毡层液泡化早于保持系,花粉母细胞减数分裂时不育系绒毡层细胞已开始退化,而保持系(BY,BK,D5)绒毡层自然解体,供给小孢子发育所需的营养物质和发育空间.

  3. Differential regulation of gene products in newly synthesized Brassica napus allotetraploids is not related to protein function nor subcellular localization

    Directory of Open Access Journals (Sweden)

    Valot Benoît

    2007-02-01

    Full Text Available Abstract Background Allopolyploidy is a preeminent process in plant evolution that results from the merger of distinct genomes in a common nucleus via inter-specific hybridization. Allopolyploid formation is usually related to genome-wide structural and functional changes though the underlying mechanisms operating during this "genomic shock" still remain poorly known. The aim of the present study was to investigate the modifications occurring at the proteomic level following an allopolyploidization event and to determine whether these changes are related to functional properties of the proteins. In a previous report, we applied comparative proteomics to synthetic amphiploids of Brassica napus and to its diploid progenitors B. rapa and B. oleracea. Although several hundred polypeptides displayed additivity (i.e. mid-parent values in the amphiploids, many of them showed non-additivity. Here, we report the in silico functional characterization of the "non-additive" proteins (the ones with a non-additive pattern of regulation in synthetic B. napus. Results The complete set of non-additive proteins (335 in the stem and 205 in the root, as well as a subset of additive polypeptides (200 per organ, was identified by mass spectrometry. Several protein isoforms were found, and most of them (~55% displayed "different" or "opposite" patterns of regulation in the amphiploids, i.e. isoforms of the same protein showing both up-regulation and down-regulation in the synthetic B. napus compared to the mid-parent value. Components of protein complexes were identified of which ~50% also displayed "different" or "opposite" patterns of regulation in the allotetraploids. In silico functional categorization of the identified proteins was carried out, and showed that neither functional category nor metabolic pathway were systematically affected by non-additivity in the synthetic amphiploids. In addition, no subcellular compartment was found to be over- or under

  4. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  5. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants. PMID:27493652

  6. 水分-氮肥配合对油菜水分生产效率的影响%Effects of Soil Water and Nitrogen Fertilizer Couplingon on Water Use Efficiency of Rape( Brassica rapa L.)

    Institute of Scientific and Technical Information of China (English)

    赵国苹

    2012-01-01

    [Objective] The purpose was to study the effects of soil water and nitrogen fertilizer conditions on water use efficiency of rape, and discuss its suitable applying level of water and fertilizer. [ Method] A pot culture experiment was conducted in greenhouse. Four water treatments were 50%θf, 60% θf, 70%θf, 80%θf, (θf stood for the field moisture capacity, and each design level was the irrigation upper limit after irrigating) respectively; Amount of pure nitrogen fertilizer were 0, 0. 12, 0. 24, 0. 36 g/kg(soil), and fertilizer was urea (Nitrogen content of 46.2% ). [Result] The results showed that the water use efficiency of rape had a close relation with soil water content and nitrogen fertilizer application amount, and there was also a significant interaction between soil water content and nitrogen fertilizer application amount. The water use efficiency of rape increased with increasing of nitrogen fertilizer application amount, but it would decrease when nitrogen fertilizer application a-mount exceeded a certain dosage, and its trend with soil water was similar. Among different water and nitrogen fertilizer treatments, the change of water use efficiency and rape fresh weight were highly synchronous. The coordinating supplying of soil water and nitrogen fertilizer was important measures to get higher fresh weight and higher water use efficiency. Taking into accounts in all factors, the combination that soil water was controlled 80% field capacity and nitrogen rate was kept 0.24 g/kg(soil) was the best. [Conclusion] The study provides a theoretical basis for reasonable irrigation and fertilization in rape cultivation.%[目的]研究不同水氮条件对油菜(Brassica rapa L.)水分生产效率的影响,探索其合适的水肥供应水平.[方法]采用盆栽试验方法.设置4种水分处理和4种氮素水平.水分处理分别为50%θf、60%θf、70%θf、80%θf(θf代表土壤田间持水量,各设计水平为浇后灌水上

  7. Characterization of a novel gene, BcMF7, that is expressed preferentially in pollen of Brassica campestris L. ssp. Chinensis Makino

    Institute of Scientific and Technical Information of China (English)

    HUANG Li; CAO JiaShu; ZHANG YuChao; YE YiQun

    2007-01-01

    Pollen formation is important for plant sexual reproduction, To identify the genes that are involved in pollen formation, we performed the genome-wide transcriptional profiling in the flower buds of both male meiotic cytokinesis (mmc) mutant and its wild-type plants of Brassica campestris L. ssp. chinensis, syn. B. rapa L. ssp. chinensis, cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis showed that the mmc mutation resulted in changes in expression of a variety of genes. BcMF7, a transcript-derived fragment (TDF) accumulated in the wild-type flower buds was further characterized.The BcMF7 gene has 1161 bp in length with two introns. The full-length BcMF7 cDNA has 609 bp in length and encodes a protein of 129 amino acids. The deduced amino acid sequence of BcMF7 protein shares no similarity to any function-known protein in Swiss-Prot database, but has 8 protein kinase C phosphorylation sites, 2 casein kinase Ⅱ phosphorylation sites, 2 tyrosine kinase phosphorylation sites,2 N-glycosylation sites and 2 N-myristoylation sites. Spatial and temporal expression patterns analysis showed that BcMF7 was expressed exclusively in pollen. The expression signal of BcMF7 was first detected at the tetrad stage of microspore development, reached a peak level at the uninucleate stage,and decreased to a slightly low level at the mature pollen stage. All these results show that BcMF7 may play a certain role in the signal transduction during pollen development.

  8. Characterization of a novel gene, BcMF7,that is expressed preferentially in pollen of Brassica campestris L.ssp. chinensis Makino

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pollen formation is important for plant sexual reproduction. To identify the genes that are involved in pollen formation, we performed the genome-wide transcriptional profiling in the flower buds of both male meiotic cytokinesis (mmc) mutant and its wild-type plants of Brassica campestris L. ssp. chinen-sis, syn. B. rapa L. ssp. chinensis. cDNA-amplified fragment length polymorphism (cDNA-AFLP) analy-sis showed that the mmc mutation resulted in changes in expression of a variety of genes. BcMF7, a transcript-derived fragment (TDF) accumulated in the wild-type flower buds was further characterized. The BcMF7 gene has 1161 bp in length with two introns. The full-length BcMF7 cDNA has 609 bp in length and encodes a protein of 129 amino acids. The deduced amino acid sequence of BcMF7 protein shares no similarity to any function-known protein in Swiss-Prot database, but has 8 protein kinase C phosphorylation sites, 2 casein kinase II phosphorylation sites, 2 tyrosine kinase phosphorylation sites, 2 N-glycosylation sites and 2 N-myristoylation sites. Spatial and temporal expression patterns analysis showed that BcMF7 was expressed exclusively in pollen. The expression signal of BcMF7 was first detected at the tetrad stage of microspore development, reached a peak level at the uninucleate stage, and decreased to a slightly low level at the mature pollen stage. All these results show that BcMF7 may play a certain role in the signal transduction during pollen development.

  9. Heat shock protein genes (hsp20, hsp75 and hsp90) from Pieris rapae: Molecular cloning and transcription in response to parasitization by Pteromalus puparum

    Institute of Scientific and Technical Information of China (English)

    Jia-Ying Zhu; Guo-Xing Wu; Gong-Yin Ye; Cui Hu

    2013-01-01

    Most molecular work on the roles of heat shock proteins (hsps) in host-parasite interaction has focused on vertebrates,rather than invertebrates.Here the full length complementary DNA (cDNA) sequences of three hsp genes (hsp20,hsp75 and hsp90)were amplified from Pieris rapae,and their transcriptional responsiveness to parasitization by the endoparasitic wasp Pteromalus puparum were investigated.The cDNA sequence analysis of hsp20,hsp75 and hsp90 revealed open reading frames of 531,2 328 and 2 157 bp in length,which encode proteins with calculated molecular weights of 19.5,75.48 and 82.7 kDa,respectively.The comparison of amino acid sequences showed that P.rapae hsp20 shared highly divergent homology to that of other insects,while hsp75 and hsp90 showed high homology to their counterparts of other species.The expression analysis indicated that these three genes were influenced in response to parasitization by P.puparum.The hsp20 transcripts in parasitized pupae were higher compared to nonparasitized pupae.The expression of hsp75 and hsp90 were down-regulated following parasitization.The results indicate that hsps are involved in host-parasitoid interactions.

  10. Transgene directionally integrated into C-genome of Brassica napus

    Institute of Scientific and Technical Information of China (English)

    FANG Xiaoping; WANG Zhuan; LI Jun; LUO Lixia; HU Qiong

    2006-01-01

    Integration of a transgene into a C-genome chromosome plays an important role in reducing ecological risk of transgenic Brassica napus.To obtain C-genome transgenic B. napus, herbicide-resistant bar gene was firstly transferred into B.oleracea var. a/bog/abra mediated by Agrobacterium tumefaciens strain LBA4404. Then using the transgenic B. oleracea as paternal plants and 8 nontransgenic varieties of B. rapa as maternal plants, Cgenome transgenic B. napus with bar gene was artificially resynthesized by means of ovary culture and chromosome doubling. Among 67 lines of the resynthesized B. napus, 31 were positive, and 36 were negative according to PCR test for bar gene. At least 2 plants from each line were kept for PPT spray confirmation. The result was in consistence with the PCR test. Genomic Southern blotting of three randomly chosen lines also showed that bar gene had been integrated into the genome of resynthesized B. napus lines.

  11. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene

    Energy Technology Data Exchange (ETDEWEB)

    Grison, R.; Grezes-Besset, B.; Lucante, N. [Rustica Prograin Genetique, Mondonville (France)] [and others

    1996-05-01

    Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants. 31 refs., 1 fig., 2 tabs.

  12. Anthocyanin Accumulation and Molecular Analysis of Correlated Genes in Purple Kohlrabi (Brassica oleracea var. gongylodes L.).

    Science.gov (United States)

    Zhang, Yanjie; Hu, Zongli; Zhu, Mingku; Zhu, Zhiguo; Wang, Zhijin; Tian, Shibing; Chen, Guoping

    2015-04-29

    Kohlrabi (Brassica oleracea var. gongylodes L.) is an important dietary vegetable cultivated and consumed widely for the round swollen stem. Purple kohlrabi shows abundant anthocyanin accumulation in the leaf and swollen stem. Here, different kinds of anthocyanins were separated and identified from the purple kohlrabi cultivar (Kolibri) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. In order to study the molecular mechanism of anthocyanin biosynthesis in purple kohlrabi, the expression of anthocyanin biosynthetic genes and regulatory genes in purple kohlrabi and a green cultivar (Winner) was examined by quantitative PCR. In comparison with the colorless parts in the two cultivars, most of the anthocyanin biosynthetic genes and two transcription factors were drastically upregulated in the purple tissues. To study the effects of light shed on the anthocyanin accumulation of kohlrabi, total anthocyanin contents and transcripts of associated genes were analyzed in sprouts of both cultivars grown under light and dark conditions.

  13. 芜菁挥发油对高脂高糖小鼠降血糖的作用机制%Hypoglycemic mechanism of volatile oil of plateau plant Brassica rapa L. in hyperlipidemic and hyperglycemic mice

    Institute of Scientific and Technical Information of China (English)

    陈湘宏; 刘燕; 翁裕馨; 康文娟; 杨仕兵

    2014-01-01

    Objective To explore the hypoglycemic mechanism of plateau plant Brassica rapa L.(turnip)volatile oil in an animal model of diabetic mice.Methods The volatile oil was extracted using supercritical carbon dioxide extrac-tion method.The diabetic mice model was built by feeding high-fat and high-carbohydrate diet for 4 weeks then intrap-eritoneal injection of streptozotocin (STZ)100 mg/kg for 3 days.The mice with fasting blood glucose in tail vein being greater than 1 1 .0 mmol/L were defined as successful experimental models.Fifty mice were randomly divided into con-trol group,model group,high dose of turnip volatile oil group,low dose of turnip volatile oil group,and positive con-trol (metformin hydrochloride)group,10 in each group.The mice were perfused for 14 days at one time per day.The blood was collected from tail vein and the blood glucose level was measured before and after building the models,and at day 3,7,14 after medication.The blood samples were taken from the mices eyeballs and the glycosylated hemoglobin (HbA1c),triglyceride (TG),total cholesterol (TC),and serum insulin (INS)levels were measured.The fresh spleen and thymus gland were cut and weighed to compute organ index.Results Both high dose and low dose of tur-nip volatile oil had significant influences on the type 2 diabetic model mice,including reduced blood glucose (P<0.01)and HbA1c levels (P<0.05),increased INS level (P<0.05),and decreased TG and TC levels (P<0.01). The turnip volatile oil could protect the thymus in diabetic mice,and enhance the immune ability.Conclusion Turnip volatile oil can reduce hyperglycemia significantly in diabetic model induced by STZ,which may due to the intervention of the biosynthesis of HbAlc and increase of INS level.%目的:探讨芜菁挥发油成分对高脂高糖小鼠动物模型的降血糖作用机制。方法采用超临界二氧化碳萃取仪提取芜菁挥发油成分。高糖高脂饲料喂养小鼠4周后,连续3 d腹

  14. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes

    Directory of Open Access Journals (Sweden)

    Gupta Vibha

    2008-03-01

    Full Text Available Abstract Background Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome and A. thaliana and analyzed the arrangement of 24 (previously described genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. Results IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study with the A and B genomes of B. napus and B. nigra respectively (described earlier, revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. Conclusion IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements

  15. Comparison of five major trichome regulatory genes in Brassica villosa with orthologues within the Brassicaceae.

    Directory of Open Access Journals (Sweden)

    Naghabushana K Nayidu

    Full Text Available Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1, GLABRA 2 (GL2, ENHANCER OF GLABRA 3 (EGL3, and TRANSPARENT TESTA GLABRA 1 (TTG1 and the negative regulator TRIPTYCHON (TRY, were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae.

  16. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  17. Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N; Aslam, M N; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A; Kilian, A; Sharpe, Andrew G; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines 'Lynx-037DH' and 'Monty-028DH'. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed.

  18. 芸薹属二倍体种、四倍体种及人工合成多倍体的基因表达差异%Differential Expression of Genes in Diploid,Tetraploid and Synthesized Polyploids of Brassica

    Institute of Scientific and Technical Information of China (English)

    李晓荣; 李加纳

    2015-01-01

    植物的杂交和多倍化能够导致基因组结构发生变化并最终影响基因的表达。以甘蓝型油菜自然四倍体、人工合成四倍体、五倍体、六倍体及其双亲白菜型油菜和甘蓝为试材,比较研究了35个基因在不同倍性芸薹属材料中的转录表达特性,探讨基因组剂量对基因表达的影响。在研究的35个基因中,80%的基因表现为非加性表达;60%的基因在人工合成四倍体与自然四倍体中表达水平差异显著。在人工合成四倍体、五倍体甘蓝型油菜中,分别发现有2个和1个基因发生沉默。相对于其二倍体亲本白菜和甘蓝,发现1个基因在甘蓝型油菜中基因的表达被激活。结果为探讨基因组剂量与基因表达的关系提供了参考。%Interspecific hybridization and polyploidy can trigger changes in the genome structure and cause alterations in gene expression .In this study ,polyploid effects on the expression of 35 fat‐related genes were studied among natural Brassica napus ,synthetic tetraploid ,pentaploid ,hexaploid ,B. rapa and B. oleracea .Of these genes 80% were non‐additively expressed (28 out of 35) and 60% were differentially ex‐pressed between natural and synthetic tetraploids (21 out of 35) .Compared with their parental species ,the natural and synthetic tetraploids had 11 genes which showed quite different expression patterns .Two and one genes were silent in the synthetic tetraploid and pentaploid ,respectively ,while one gene became active in B. napus .Our data suggest that alteration of ploidy can induce difference in gene expression in Brassi‐ca .This study provides an insight into understanding the relationship between genome dosage and gene ex‐pression in Brassica .

  19. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Parul Goel

    Full Text Available Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT, ammonium transporters (AMT, nitrate reductase (NR, nitrite reductase (NiR, glutamine synthetase (GS, glutamate synthase (GOGAT, glutamate dehydrogenase (GDH, asparagines synthetase (ASN were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl, osmotic (250 mM Mannitol, cold (4°C and heat (42°C stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h, which may be one of the reasons of reduction in plant growth and development under abiotic stresses.

  20. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea.

    Science.gov (United States)

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-07-27

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.

  1. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Harshavardhanan Vijayakumar

    2016-07-01

    Full Text Available Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18 are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS. Currently, understanding of their function(s during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT and cold susceptible (CS lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.

  2. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

    Science.gov (United States)

    Li, Peirong; Zhang, Shujiang; Li, Fei; Zhang, Shifan; Zhang, Hui; Wang, Xiaowu; Sun, Rifei; Bonnema, Guusje; Borm, Theo J. A.

    2017-01-01

    The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U’s triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus, Brassica juncea, and Brassica carinata) that arose through interspecific hybridizations. Despite being extensively studied because of its commercial relevance, several aspects of the origin of the Brassica species and the relationships within and among these six species still remain open questions. Here, we successfully de novo assembled 60 complete chloroplast genomes of Brassica genotypes of all six species. A complete map of the single nucleotide variants and insertions and deletions in the chloroplast genomes of different Brassica species was produced. The chloroplast genome consists of a Large and a Small Single Copy (LSC and SSC) region between two inverted repeats, and while these regions of chloroplast genomes have very different molecular evolutionary rates, phylogenetic analyses of different regions yielded no contradicting topologies and separated the Brassica genus into four clades. B. carinata and B. juncea share their chloroplast genome with one of their hybridization donors B. nigra and B. rapa, respectively, which fits the U model. B. rapa, surprisingly, shows evidence of two types of chloroplast genomes, with one type specific to some Italian broccoletto accessions. B. napus clearly has evidence for two independent hybridization events, as it contains either B. rapa chloroplast genomes. The divergence estimation suggests that B. nigra and B. carinata diverged from the main Brassica clade 13.7 million years ago (Mya), while B. rapa and B. oleracea diverged at 2.18 Mya. The use of the complete chloroplast DNA sequence not only provides insights into comparative genome analysis but also paves the way for a better understanding of the phylogenetic

  3. A Pin gene families encoding components of auxin efflux carriers in Brassica juncea

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues fromBrassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3encoded proteins containing 640 and 635 amino acid residues, respectively, which shared 97.5% identities witheach other and were highly homologous to Arabidopsis PIN1, PIN2 and other putative PIN proteins. BjPIN2and BjPIN3 had similar structures as AtPIN proteins. Northern blot analysis indicated that Bjpin2 wasexpressed in stem, leaf and floral tissues, while Bjpin3 was expressed predominantly in stem and hypocotyls.Two promoter fragments of pin genes, Bjpin-X and Bjpin-Z, were isolated by 'genome walking' techniqueusing primers at 5'-end of pin cDNA. Promoter-gus fusion studies revealed the GUS activities driven byBjpin-X were at internal side of xylem and petal; while those driven by Bjpin-Z were detected at leaf vein,epidermal cell and cortex of stem, vascular tissues and anther. Results of the pin genes with differentexpression patterns in B. juncea suggested the presence of a gene family.

  4. Gene flow from transgenic oilseed rape (Brassica napus L.) to cruciferous weeds under mentor pollen inducement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The alien gene flow between genetically modified glyphosate-resistant rapeseed variety Q3 ( Brassica napus L. ) and four cruciferous weeds was studied under mentor pollen inducement. The results showed that when Thlaspi arvense L., Capsella bursapastoris (L.) Medic, Cardamine hirsuta L. and Rorippa palustris (L.) Besser were pollinated with mentor pollen, the mixed Q3 and the weed, pollen grains aggregated largely and germinated quickly, and the numbers of pollen tubes penetrating into the style and the ovary were greatly increased as compared with corresponding self-pollination groups. Twenty four to forty eight hours after pollination, several pollen tubes were observed to penetrate into the ovule via micropyle in each mentor combination. However, when the mentor progenies were analyzed by PCR, all of them showed negative for the Q3 herbicide-resistant gene. Collectively, these results indicated that crossing between T. arvense, C. bursa-pastoris, C. hirsuta, R. palustris (as female) and Q3 (as male) was highly incompatible and the herbicide-resistant gene could not flow from Q3 to these four weeds.

  5. Isolation and functional analysis of a Brassica juncea gene encoding a component of auxin efflux carrier

    Institute of Scientific and Technical Information of China (English)

    WEI; MIN; NI; XIAO; YA; CHEN; ZHI; HONG; XU; HONG; WEI; XUE

    2002-01-01

    Polar auxin transport plays a divergent role in plant growth and developmental processes including rootand embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsispin gene family was believed to encode a component of auxin efflux carrier (Galweiler et al, 1998). Basedon the Arabidopsis pin1 sequence we have isolated a Brassica juncea cDNA (designated Bjpinl), whichencoded a 70-kDa putative auxin efflux carrier. Deduced BjPIN1 shared 65% identities at protein level withAtPIN1 and was highly homologous to other putative PIN proteins of Arabidopsis (with highest homologyto AtPIN3). Hydrophobic analysis showed similar structures between BjPIN1 and AtPIN proteins. Presenceof 6 exons (varying in size between 65 bp and 1229 bp) and 5 introns (sizes between 89 bp and 463 bp)in the genomic fragment was revealed by comparing the genomic and cDNA sequences. Northern blotanalysis indicated that Bjpinl was expressed in most of the tissues tested, with a relatively higher levelof transcript in flowers and a lower level in root tissues. Promoter-reporter gene fusion studies furtherrevealed the expression of Bjpinl in the mature pollen grains, young seeds, root tip, leaf vascular tissue andtrace bundle, stem epidermis, cortex and vascular cells. BjPIN1 was localized on the plasma membraneas demonstrated through fusion expression of green fluorescent protein (GFP). Auxin efflux carrier activitywas elevated in transgenic Arabidopsis expressing BjPIN1.

  6. A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus

    Directory of Open Access Journals (Sweden)

    Steffi eFritsche

    2012-06-01

    Full Text Available Rapeseed (Brassica napus L. is the most important oil crop of temperate climates. Rapeseed oil contains tocopherols, also known as vitamin E, which is an indispensable nutrient for humans and animals due to its antioxidant and radical scavenging abilities. Moreover, tocopherols are also important for the oxidative stability of vegetable oils. Therefore, seed oil with increased tocopherol content or altered tocopherol composition is a target for breeding. We investigated the role of nucleotide variations within candidate genes from the tocopherol biosynthesis pathway. Field trials were carried out with 229 accessions from a worldwide B. napus collection which was divided into two panels of 96 and 133 accessions. Seed tocopherol content and composition were measured by HPLC. High heritabilities were found for both traits, ranging from 0.62 to 0.94. We identified polymorphisms by sequencing selected regions of the tocopherol genes from the 96 accession panel. Subsequently, we determined the population structure (Q and relative kinship (K as detected by genotyping with genome-wide distributed SSR markers. Association studies were performed using two models, the structure-based GLM+Q and the PK mixed model. Between 26 and 12 polymorphisms within two genes (BnaX.VTE3.a, BnaA.PDS1.c were significantly associated with tocopherol traits. The SNPs explained up to 16.93 % of the genetic variance for tocopherol composition and up to 10.48 % for total tocopherol content. Based on the sequence information we designed CAPS markers for genotyping the 133 accessions from the 2nd panel. Significant associations with various tocopherol traits confirmed the results from the first experiment. We demonstrate that the polymorphisms within the tocopherol genes clearly impact tocopherol content and composition in B. napus seeds. We suggest that these nucleotide variations may be used as selectable markers for breeding rapeseed with enhanced tocopherol quality.

  7. Molecular cloning and primary sequence analysis of a gene encoding a putative shitinase gene in Brassica oleracea var.capitata

    Institute of Scientific and Technical Information of China (English)

    TANGGUOQING; YONGYANBAI; 等

    1996-01-01

    Chitinase,which catalyzes the hydrolysis of the β-1,4-acetyl-D-glucosamine linkages of the fungal cell wall polymer chitin,is involved in inducible plants defense system.By construction of cabbage(Brassica oleracea var. capitata) genomic library and screening the library with pRCH8,a probe of rice chitinase gene fragment,a chitinase genomic sequence was isolated.The complete uncleotide sequence of the putative cabbage chitinase gene (cabch29) was determined,with its longest open reading frame (ORF) encoding a polypeptide of 413 aa.This polypeptide consists of a 21 aa N-terminal signal peptide,two chitin-binding domains different from those of other classes of plant chitinases,and a catalytic domain.Homology analysis illustrated that this cabch29 gene has 58.8% identity at the nucleotide level with the pRCH8 ORF probe and has 50% identity at the amino acid level tiwh the catalytic domains of chitinase from bean,maize and sugar beet.Meanwhile,several kinds of cis-elements,such as TATA box,CAAT box,GATA motif,ASF-1 binding site,wound-response elements and AATAAA,have also been discovered in the flanking region of cabch29 gene.

  8. Identification and characterization of orthologs of AtNHX5 and AtNHX6 in Brassica napus

    Directory of Open Access Journals (Sweden)

    Brett Andrew Ford

    2012-09-01

    Full Text Available Improving crop species by breeding for salt tolerance or introducing salt tolerant traits is one method of increasing crop yields in saline affected areas. The model plant species Arabidopsis thaliana has been extensively studied and there is substantial information available about the function and importance of many genes and proteins involved in salt tolerance. The identification and characterization of A. thaliana orthologs in species such as Brassica napus (oilseed rape can prove difficult due to the significant genomic changes that have occurred since their divergence approximately 20 million years ago. The recently released B. rapa genome provides an excellent resource for comparative studies of Arabidopsis and the cultivated Brassica species, and facilitates the identification of Brassica species orthologs which may be of agronomic importance. Sodium hydrogen antiporter (NHX proteins transport a sodium or potassium ion in exchange for a hydrogen ion in the other direction across a membrane. In A. thaliana there are eight members of the NHX family designated AtNHX1-8 that can be sub-divided into three clades (plasma membrane (PM, intracellular class I (IC-I and intracellular class II (IC-II based on their subcellular localization. In plants, many NHX proteins are primary determinants of salt tolerance and act by transporting Na+ out of the cytosol where it would otherwise accumulate to toxic levels. Significant work has been done analyzing both PM and IC-I clade members role in salt tolerance in a variety of plant species but relatively little analysis has been described for the IC-II clade. Here we describe the identification of B. napus orthologs of AtNHX5 and AtNHX6, using the Brassica rapa genome sequence, macro- and micro-synteny analysis, comparative expression and promoter motif analysis, and highlight the value of these multiple approaches for identifying true orthologs in closely related species with multiple paralogs.

  9. Cloning of Lactate dehydrogenase Gene and Effect on the Waterlogging Tolerance of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ben-bo Xu

    2012-10-01

    Full Text Available To investigate the mechanism on waterlogging tolerance in Brassica napus, 12 B. napus cultivars with different waterlogging tolerance were used in the research and Waterlogging Tolerance Index (WTI was calculated by multiplying relative percentage germination and the relative seedling height. The results indicated that Lactate Dehydrogenase (LDH enzyme activity rapidly increased at 24 h after waterlogging treatment and reached peak between 48-72 h. WTI was correlated with LDH enzyme activity at 24 h after water logging treatment and the correlation coefficient between them was 0.84. Transcription level of the BnLDH had significant difference in the 12 lines after waterlogging treatment. BnLDH expression level was very low before waterlogging treatment and induced by waterlogging treatment and arrived at peak at 48 h. Correlation analysis indicated correlation coefficient between WTI and BnLDH expression at 24 and 48 h after waterlogging treatment was 0.56 and 0.72, respectively. An LDH gene, denoted BnLDH-1, was cloned from oilseeds by the Rapid Amplification of CDNA Ends (RACE from 12 materials and the results indicated all of them had same protein sequence.

  10. Multiple evolutionary events involved in maintaining homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qin Li

    2016-07-01

    Full Text Available The Resistance to Powdery Mildew 8 (RPW8 locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs in Brassica rapa and three in B. oleracea (BoHRs. B. napus (Bn is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs. It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane (EHM encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  11. Selection of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in Brassica napus under various stress conditions.

    Science.gov (United States)

    Wang, Zheng; Chen, Yu; Fang, Hedi; Shi, Haifeng; Chen, Keping; Zhang, Zhiyan; Tan, Xiaoli

    2014-10-01

    Data normalization is essential for reliable output of quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) assays, as the unsuitable choice of reference gene(s), whose expression might be influenced by exogenous treatments in plant tissues, could cause misinterpretation of results. To date, no systematic studies on reference genes have been performed in stressed Brassica napus. In this study, we investigated the expression variations of nine candidate reference genes in 40 samples of B. napus leaves subjected to various exogenous treatments. Parallel analyses by geNorm and NormFinder revealed that optimal reference genes differed across the different sets of samples. The best-ranked reference genes were PP2A and TIP41 for salt stress, TIP41 and ACT7 for heavy metal (Cr(6+)) stress, PP2A and UBC21 for drought stress, F-box and SAND for cold stress, F-box and ZNF for salicylic acid stress, TIP41, ACT7, and PP2A for methyl jasmonate stress, TIP41 and ACT7 for abscisic acid stress, and TIP41, UBC21, and PP2A for Sclerotinia sclerotiorum stress. Two newly employed reference genes, TIP41 and PP2A, showed better performances, suggesting their suitability in multiple conditions. To further validate the suitability of the reference genes, the expression patterns of BnWRKY40 and BnMKS1 were studied in parallel. This study is the first systematic analysis of reference gene selection for qRT-PCR normalization in B. napus, an agriculturally important crop, under different stress conditions. The results will contribute toward more accurate and widespread use of qRT-PCR in gene analysis of the genus Brassica.

  12. 甘蓝型油菜COI1的调控功能分析%Functional Analysis of COI1 Genes in Oilseed Rape (Brassica napus L.)

    Institute of Scientific and Technical Information of China (English)

    王文静; 张洪博; 杨小川; 丁永强; 尹国英; 马浩然; 张洁; 石小于; 张鼎宇; 李加纳

    2015-01-01

    [Objective]CORONATINE INSENSITIVE 1 (COI1) is a critical component of jasmonate (JA) receptor complex. The objective of this study is to investigate the spatial expression pattern and regulatory roles of COI1 gene in oilseed rape (Brassica napus), a staple oil crop in the world. [Method] The COI1 genes in oilseed rape (B. napus) and its parental species B. rapa and B. oleracea were analyzed based on the genomic data. The spatial transcription pattern of COI1 in oilseed rape was analyzed by RT-PCR with specific primers according to the conserved region of COI1 gene homologs. Then, a cDNA fragment of the conserved region was cloned into vector pTRV2 of the tobacco rattle virus-based VIGS (virus-induced gene silencing) system. And, VIGS techniques were applied to silence COI1 genes in oilseed rape. The rape plants shown to have COI1 genes silenced were used to investigate male fertility and aphid resistance.[Result]Analysis of the genomic data of B. rapa, B. oleracea, and B. napus revealed that the genomes of B. rapa and B. oleracea contained 7 highly homologous COI1 genes, which could be classified into 4 subgroups, i.e., COI1a, COI1b.1, COI1b.2, and COI1c, while 8 COI1 genes were presented in the genome of B. napus. Transcriptional assay revealed that the expression of COI1 in oilseed rape is tissue specific. A 505bp fragment of the conserved region of COI1 was introduced into the VIGS vector pTRV2 to develop COI1-silenced plants via VIGS techniques. Twenty-five plants with the transcripts of COI1 down-regulated by over 70% were identified by transcriptional analyses, from which the ten plants with the lowest expression level of COI1 were selected to investigate male fertility and aphid resistance. The results showed that the fertility of COI1-silenced plants was extremely impaired, with no seeds in their siliques. Furthermore, the filaments of COI1-silenced plants were shorter than those of control plants, and over 80%pollens of the COI1-silenced plants were

  13. Genetic differentiation among sexually compatible relatives of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Pipan Barbara

    2013-01-01

    Full Text Available Analysis of gene flow between Brassica napus L. and its sexually compatible relatives that could be found in the wild in Slovenia was performed by microsatellite analysis using fifteen selected primer pairs. Genotypes included in the study were obtained from the field survey of sexually compatible relatives of B. napus in natural habitats around Slovenia and from reference collections. Two different wild species of all the presented sexually compatible relatives of B. napus were found in Slovenia, B. rapa and Sinapis arvensis. The reference genotypes included varieties and wild forms from internal collections as marketable seeds or from gene banks. Reference genotypes were represented by the following species and subspecies: B. napus ssp. napobrassica, B. napus ssp. napus, B. nigra, B. oleracea, B. rapa ssp. oleifera, Diplotaxis muralis; D. tenuifolia, Raphanus raphanistrum, R. sativus, R. sativus var. oleiformis, Rapistrum rugosum, S. alba and S. arvensis. Estimation of gene flow described by average number of migrants was 0.72 followed by 0.20 migrants. Due to the observed gene migrations, genetic drift and selection, Hardy-Weinberg equilibrium was not met. The mean number of alleles over all loci was 16.9, the average polymorphic information content was 0.43. We found four highly divergent and polymorphic loci (Na12-C08, Na10-A08, Ni3-G04b and BRMS-050 at statistically significant level (p<0.05 of gene flow detected. Over all gene diversity intra-individual among populations (0.55 was lower than inter-individual among population (0.77. The results of genetic linkages based standard genetic distance and unweighted pair group method with arithmetic mean clustering method, generally divided the genotypes in three divergent groups. Similar results were obtained by principal coordinate analysis where three main groups were constructed according to three factors. A real number of genetic clusters demonstrated a clear separation between populations

  14. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    Directory of Open Access Journals (Sweden)

    Go-Eun Yi

    2015-07-01

    Full Text Available Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28 and one indolic transcription factor-related gene, Bol030761 (MYB51, were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  15. Characterization of transcriptional activation and inserted-into-gene preference of various transposable elements in the Brassica species.

    Science.gov (United States)

    Gao, Caihua; Xiao, Meili; Jiang, Lingyan; Li, Jiana; Yin, Jiaming; Ren, Xiaodong; Qian, Wei; Oscar, Ortegón; Fu, Donghui; Tang, Zhanglin

    2012-07-01

    Transposable elements (TEs) have attracted increasing attention because of their tremendous contributions to genome reorganization and gene variation through dramatic proliferation and excision via transposition. However, less known are the transcriptional activation of various TEs and the characteristics of TE insertion into genomes at the genome-wide level. In the present study, we focused on TE genes for transposition and gene disruption by insertion of TEs in expression sequences of Brassica, to investigate the transcriptional activation of TEs, the biased insertion of TEs into genes, and their salient characteristics. Long terminal repeat (LTR-retrotransposon) accounted for the majority of these active TE genes (70.8%), suggesting that transposition activation varied with TE type. 6.1% genes were interrupted by LTR-retrotransposons, which indicated their preference for insertion into genes. TEs were preferentially inserted into cellular component-specific genes acted as "binding" elements and involved in metabolic processes. TEs have a biased insertion into some host genes that were involved with important molecular functions and TE genes exhibited spatiotemporal expression. These results suggested that various types of transposons differentially contributed to gene variation and affected gene function.

  16. 茉莉酸甲酯与水杨酸诱导的大白菜叶片与根系硫苷含量系统性变化研究%Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation

    Institute of Scientific and Technical Information of China (English)

    Yun-xiang ZANG; Jia-li GE; Ling-hui HUANG; Fei GAO; Xi-shan LV; Wei-wei ZHENG; Seung-beom HONG; Zhu-jun ZHU

    2015-01-01

      结论:茉莉酸甲酯与水杨酸处理后,大白菜根系比叶片积累更多的硫苷,吲哚族硫苷比其他种类的硫苷积累更快;茉莉酸甲酯诱导硫苷合成的效果好于水杨酸,而且诱导时间更长;茉莉酸甲酯与水杨酸在诱导大白菜根系硫苷合成过程中具有反协同效应。%Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Re-gardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. Al three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that ac-cumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elici-tation. Thus, accumulation of IGS is a major metabolic hallmark of SA-and MeJA-mediated systemic response sys-tems. SA exerted an antagonistic effect on

  17. Seed-borne viral dsRNA elements in three cultivated Raphanus and Brassica plants suggest three cryptoviruses.

    Science.gov (United States)

    Li, Liqiang; Liu, Jianning; Zhang, Qiong; Fu, Runying; Zhu, Xiwu; Li, Chao; Chen, Jishuang

    2016-04-01

    Since the 1970s, several dsRNA viruses, including Radish yellow edge virus, Raphanus sativus virus 1, Raphanus sativus virus 2, and Raphanus sativus virus 3, have been identified and reported as infecting radish. In the present study, in conjunction with a survey of seed-borne viruses in cultivated Brassica and Raphanus using the dsRNA diagnostic method, we discovered 3 novel cryptoviruses that infect Brassica and Raphanus: Raphanus sativus partitivirus 1, which infects radish (Raphanus sativus); Sinapis alba cryptic virus 1, which infects Sinapis alba; and Brassica rapa cryptic virus 1 (BrCV1), which infects Brassica rapa. The genomic organization of these cryptoviruses was analyzed and characterized. BrCV1 might represent the first plant partitivirus found in Gammapartitivirus. Additionally, the evolutionary relationships among all of the partitiviruses reported in Raphanus and Brassica were analyzed.

  18. Anthocyanins facilitate tungsten accumulation in Brassica

    Energy Technology Data Exchange (ETDEWEB)

    Hale, K.L.

    2002-11-01

    Accumulation of molybdenum in Brassica was recently found to be correlated with anthocyanin content, involving the formation of a blue complex. Here the role of anthocyanins in tungsten sequestration was investigated using three species of Brassica: B. rapa (cv. Fast plants), B. juncea (Indian mustard) and B. oleracea (red cabbage). Seedlings of B. rapa and B. juncea turned blue when supplied with colourless tungstate. The blue compound co-localized with anthocyanins in the peripheral cell layers, and the degree of blueness was correlated with anthocyanin content. The direct involvement of anthocyanins in the blue coloration was evident when purified anthocyanins showed a colour change from pink to blue in vitro upon addition of tungstate, over a wide pH range. Anthocyanin production was upregulated 3-fold by W in B. juncea, possibly reflecting a function for anthocyanins in W tolerance or sequestration. The presence of anthocyanins facilitated W accumulation in B. rapa: anthocyanin-containing seedlings accumulated 3-fold more W than an anthocyaninless mutant. There was no correlation between anthocyanin content and W tolerance under these conditions. The nature of the interaction between anthocyanins and tungstate was investigated. X-ray absorption spectroscopy showed no change in the local chemical environment of Wupon uptake of tungstate by the plant; HPLC analysis of purified anthocyanin with or without tungstate showed no peak shift after metal treatment.

  19. Comprehensive analysis of the flowering genes in Chinese cabbage and examination of evolutionary pattern of CO-like genes in plant kingdom

    Science.gov (United States)

    Song, Xiaoming; Duan, Weike; Huang, Zhinan; Liu, Gaofeng; Wu, Peng; Liu, Tongkun; Li, Ying; Hou, Xilin

    2015-09-01

    In plants, flowering is the most important transition from vegetative to reproductive growth. The flowering patterns of monocots and eudicots are distinctly different, but few studies have described the evolutionary patterns of the flowering genes in them. In this study, we analysed the evolutionary pattern, duplication and expression level of these genes. The main results were as follows: (i) characterization of flowering genes in monocots and eudicots, including the identification of family-specific, orthologous and collinear genes; (ii) full characterization of CONSTANS-like genes in Brassica rapa (BraCOL genes), the key flowering genes; (iii) exploration of the evolution of COL genes in plant kingdom and construction of the evolutionary pattern of COL genes; (iv) comparative analysis of CO and FT genes between Brassicaceae and Grass, which identified several family-specific amino acids, and revealed that CO and FT protein structures were similar in B. rapa and Arabidopsis but different in rice; and (v) expression analysis of photoperiod pathway-related genes in B. rapa under different photoperiod treatments by RT-qPCR. This analysis will provide resources for understanding the flowering mechanisms and evolutionary pattern of COL genes. In addition, this genome-wide comparative study of COL genes may also provide clues for evolution of other flowering genes.

  20. Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea).

    Science.gov (United States)

    Yang, Jing-Hua; Zhang, Ming-Fang; Yu, Jing-Quan

    2009-02-01

    The transcriptional patterns of mitochondrial respiratory related genes were investigated in cytoplasmic male-sterile and fertile maintainer lines of stem mustard, Brassica juncea. There were numerous differences in nad2 (subunit 2 of NADH dehydrogenase) between stem mustard CMS and its maintainer line. One novel open reading frame, hereafter named orfB gene, was located at the downstream of mitochondrial nad2 gene in the CMS. The novel orfB gene had high similarity with YMF19 family protein, orfB in Raphanus sativus, Helianthus annuus, Nicotiana tabacum and Beta vulgaris, orfB-CMS in Daucus carota, atp8 gene in Arabidopsis thaliana, 5' flanking of orf224 in B. napus (nap CMS) and 5' flanking of orf220 gene in CMS Brassica juncea. Three copies probed by specific fragment (amplified by primers of nad2F and nad2R from CMS) were found in the CMS line following Southern blotting digested with HindIII, but only a single copy in its maintainer line. Meanwhile, two transcripts were shown in the CMS line following Northern blotting while only one transcript was detected in the maintainer line, which were probed by specific fragment (amplified by primers of nad2F and nad2R from CMS). Meanwhile, the expression of nad2 gene was reduced in CMS bud compared to that in its maintainer line. We thus suggested that nad2 gene may be co-transcripted with CMS-associated orfB gene in the CMS. In addition, the specific fragment that was amplified by primers of nad2F and nad2R just spanned partial sequences of nad2 gene and orfB gene. Such alterations in the nad2 gene would impact the activity of NADH dehydrogenase, and subsequently signaling, inducing the expression of nuclear genes involved in male sterility in this type of cytoplasmic male sterility.

  1. Fine mapping of the epistatic suppressor gene (esp) of a recessive genic male sterility in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Xu, Zhenghua; Xie, Yanzhou; Hong, Dengfeng; Liu, Pingwu; Yang, Guangsheng

    2009-09-01

    9012AB, a recessive genic male sterility (RGMS) line derived from spontaneous mutation in Brassica napus, has been playing an important role in rapeseed hybrid production in China. The male sterility of 9012AB is controlled by two recessive genes (ms3 and ms4) interacting with one recessive epistatic suppressor gene (esp). The objective of this study was to develop PCR-based markers tightly linked to the esp gene and construct a high-resolution map surrounding the esp gene. From the survey of 512 AFLP primer combinations, 3 tightly linked AFLP markers were obtained and successfully converted to codominant or dominant SCAR markers. Furthermore, a codominant SSR marker (Ra2G08) associated with the esp gene was identified through genetic map integration. For fine mapping of the esp gene, these PCR-based markers were analyzed in a large BC1 population of 2545 plants. The esp gene was then genetically restricted to a region of 1.03 cM, 0.35 cM from SSR marker Ra2G08 and 0.68 cM from SCAR marker WSC6. The SCAR marker WSC5 co-segregated with the target gene. These results lay a solid foundation for map-based cloning of esp and will facilitate the selection of RGMS lines and their temporary maintainers.

  2. Flowering Without Vernalization in Winter Canola (Brassica napus: use of Virus-Induced Gene Silencing (VIGS to accelerate genetic gain

    Directory of Open Access Journals (Sweden)

    Raúl Álvarez-Venegas

    2010-01-01

    Full Text Available Ciclos de reproducción cortos y la oportunidad de incrementar la ganancia genética, junto con el estudio de las bases moleculares de la vernalización, son áreas esenciales de investigación dentro de la biología de plantas. Varios métodos se han empleado para lograr el silenciamiento génico en plantas, pero ninguno reportado a la fecha para canola (Brassica napus, y en particular para inducir la floración sin vernalización en líneas de invierno a través del uso de secuencias sentido de DNA en vectores diseñados para el silenciamiento génico inducido por virus (VIGS. La presente investigación provee los métodos para transitoriamente regular a la baja, por medio de VIGS, genes de la vernalización en plantas anuales de invierno, específicamente la familia de genes de Flowering Locus C (FLC en canola de invierno (BnFLC1 a BnFLC5. La regulación a la baja de estos genes permite a las plantas anuales de invierno florecer sin vernalización y, consecuentemente, provee los medios para acelerar la ganancia genética. El sistema de silenciamiento propuesto puede ser utilizado para regular a la baja familias de genes, para determinar la función génica, y para inducir la floración sin la vernalización en líneas de invierno tanto del género Brassica como de muchos cultivos importantes de invierno.

  3. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  4. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2009-07-01

    Full Text Available Abstract Background Serial analysis of gene expression (LongSAGE was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus. The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP. Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species.

  5. De novo transcriptome of Brassica juncea seed coat and identification of genes for the biosynthesis of flavonoids.

    Directory of Open Access Journals (Sweden)

    Xianjun Liu

    Full Text Available Brassica juncea, a worldwide cultivated crop plant, produces seeds of different colors. Seed pigmentation is due to the deposition in endothelial cells of proanthocyanidins (PAs, end products from a branch of flavonoid biosynthetic pathway. To elucidate the gene regulatory network of seed pigmentation in B. juncea, transcriptomes in seed coat of a yellow-seeded inbred line and its brown-seeded near- isogenic line were sequenced using the next-generation sequencing platform Illumina/Solexa and de novo assembled. Over 116 million high-quality reads were assembled into 69,605 unigenes, of which about 71.5% (49,758 unigenes were aligned to Nr protein database with a cut-off E-value of 10(-5. RPKM analysis showed that the brown-seeded testa up-regulated 802 unigenes and down-regulated 502 unigenes as compared to the yellow-seeded one. Biological pathway analysis revealed the involvement of forty six unigenes in flavonoid biosynthesis. The unigenes encoding dihydroflavonol reductase (DFR, leucoantho-cyanidin dioxygenase (LDOX and anthocyanidin reductase (ANR for late flavonoid biosynthesis were not expressed at all or at a very low level in the yellow-seeded testa, which implied that these genes for PAs biosynthesis be associated with seed color of B. juncea, as confirmed by qRT-PCR analysis of these genes. To our knowledge, it is the first time to sequence the transcriptome of seed coat in Brassica juncea. The unigene sequences obtained in this study will not only lay the foundations for insight into the molecular mechanisms underlying seed pigmentation in B.juncea, but also provide the basis for further genomics research on this species or its allies.

  6. Transcriptomics profiling of Indian mustard (Brassica juncea) under arsenate stress identifies key candidate genes and regulatory pathways.

    Science.gov (United States)

    Srivastava, Sudhakar; Srivastava, Ashish K; Sablok, Gaurav; Deshpande, Tejaswini U; Suprasanna, Penna

    2015-01-01

    Arsenic (As) is a non-essential element, a groundwater pollutant, whose uptake by plants produces toxic effects. The use of As-contaminated groundwater for irrigation can affect the crop productivity. Realizing the importance of the Brassica juncea as a crop plant in terms of oil-yield, there is a need to unravel mechanistic details of response to As stress and identify key functional genes and pathways. In this research, we studied time-dependent (4-96 h) transcriptome changes in roots and shoots of B. juncea under arsenate [As(V)] stress using Agilent platform. Among the whole transcriptome profiled genes, a total of 1,285 genes showed significant change in expression pattern upon As(V) exposure. The differentially expressed genes were categorized to various signaling pathways including hormones (jasmonate, abscisic acid, auxin, and ethylene) and kinases. Significant effects were also noticed on genes related to sulfur, nitrogen, CHO, and lipid metabolisms along with photosynthesis. Biochemical assays were conducted using specific inhibitors of glutathione and jasmonate biosynthesis, and kinases. The inhibitor studies revealed interconnection among sulfur metabolism, jasmonate, and kinase signaling pathways. In addition, various transposons also constituted a part of the altered transcriptome. Lastly, we profiled a set of key functional up- and down-regulated genes using real-time RT-PCR, which could act as an early indicators of the As stress.

  7. Identification of candidate genes for Fusarium yellows resistance in Chinese cabbage by differential expression analysis.

    Science.gov (United States)

    Shimizu, Motoki; Fujimoto, Ryo; Ying, Hua; Pu, Zi-jing; Ebe, Yusuke; Kawanabe, Takahiro; Saeki, Natsumi; Taylor, Jennifer M; Kaji, Makoto; Dennis, Elizabeth S; Okazaki, Keiichi

    2014-06-01

    Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F(2) populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.

  8. Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus

    Directory of Open Access Journals (Sweden)

    Niklas eKörber

    2016-03-01

    Full Text Available In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. % as well as require high experimental effort due to their quantitative inheritance and the importance of genotype*environment interaction. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i genome regions associated with the examined agronomic and seed quality traits, (ii the interrelationship of population structure and the detected associations, and (iii candidate genes for the revealed associations. The diversity set used in this study consisted of 405 Brassica napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P-value 100 and a sequence identity of > 70 % to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations.

  9. 西藏芜菁营养成分测定及提高缺氧耐受性的动物实验研究%Determination on nutritional content of Tibetan turnip(Brassica rapa L.) and experimental study on improvement of mice hypoxia tolerance

    Institute of Scientific and Technical Information of China (English)

    刘晔峰; 龚凌霄; 刘连亮; 蔡华芳; 吴晓琴; 张英

    2012-01-01

    芜菁是产自藏区的一种古老作物,是藏民及其爱畜牦牛进入高海拔地区作业的必备食材,栽培历史悠久。以西藏芜菁为原料,参照国标方法测定了其氨基酸组成,维生素和微量元素含量,发现其氨基酸组成种类繁多,微量元素含量丰富,并对其抗缺氧能力进行了研究,分别用低、中、高三个剂量(0.5、1.0、2.0g/kg.d)的芜菁冻干粉连续灌胃ICR小鼠7天,并设置红景天阳性药物对照组和蒸馏水空白对照组,用秒表记录小鼠在缺氧条件下的存活时间,解剖后取肝脏测定蛋白含量和SOD活力。研究结果表明,芜菁粉的高剂量组和阳性对照组能显著改善小鼠的缺氧耐受力,中、高剂量组和阳性对照组的肝脏SOD活力均得到显著提高。同时,各组实验小鼠间的体重和肝体指数均无显著差异。结果表明西藏芜菁能够显著提高实验小鼠的缺氧耐受性和体内抗氧化活性。%Turnip(Brassica rapa L.)was a magic plant in high altitudes,it was used as a kind of food with a long history for Tibetan and yak.We used Tibetan turnip as material,assay the amino acid,mineral element and Vitamins contents in it.The anti-hypoxic effect of turnip frozen-dry powder on ICR mice was studied.To investigate the extension of the mice hypoxia tolerance,three doses(0.5,1.0,2.0g/kg·bw·d)was set.And Rhodiola rosea was taken as a positive control and distilled water was as a blank control,the survival time of mice in hypoxia under ordinary pressure was the evaluating indicator.Weigh the mice liver and assay protein contents and SOD activity.The research indicated that high dose at 2.0g/kg·bw·d of turnip powder and positive control showed a significant extension effect on the mice hypoxia tolerance;mid-and high-doses as well as positive control had a significant promotion on liver SOD activity;and the body weight index and hepatopancreas somatic indices of all tested mice were not of obvious

  10. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.

    Science.gov (United States)

    Li, Haibo; Zhu, Lixia; Yuan, Gaigai; Heng, Shuangping; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2016-08-01

    Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5'-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica.

  11. Global Analysis of Gene Expression Profiles in Brassica napus Developing Seeds Reveals a Conserved Lipid Metabolism Regulation with Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Ya Niu; Guo-Zhang Wu; Rui Ye; Wen-Hui Lin; Qiu-Ming Shi; Liang-Jiao Xue; Xiao-Dong Xu; Yao Li; Yu-Guang; Hong-Wei Xue

    2009-01-01

    In order to study Brassica napus fatty acid (FA) metabolism and relevant regulatory networks, a systematic identification of fatty acid (FA) biosynthesis-related genes was conducted. Following gene identification, gene expression profiles during B. napus seed development and FA metabolism were performed by cDNA chip hybridization (>8000 EST clones from seed). The results showed that FA biosynthesis and regulation, and carbon flux, were conserved between B. napus and Arabidopsis. However, a more critical role of starch metabolism was detected for B. napus seed FA metabolism and storage-component accumulation when compared with Arabidopsis. In addition, a crucial stage for the transition of seed-to-sink tissue was 17-21 d after flowering (DAF), whereas FA biosynthesis-related genes were highly expressed pri-marily at 21 DAF. Hormone (auxin and jasmonate) signaling is found to be important for FA metabolism. This study helps to reveal the global regulatory network of FA metabolism in developing B. napus seeds.

  12. Rapid Identification of Candidate Genes for Seed Weight Using the SLAF-Seq Method in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Xinxin Geng

    Full Text Available Seed weight is a critical and direct trait for oilseed crop seed yield. Understanding its genetic mechanism is of great importance for yield improvement in Brassica napus breeding. Two hundred and fifty doubled haploid lines derived by microspore culture were developed from a cross between a large-seed line G-42 and a small-seed line 7-9. According to the 1000-seed weight (TSW data, the individual DNA of the heaviest 46 lines and the lightest 47 lines were respectively selected to establish two bulked DNA pools. A new high-throughput sequencing technology, Specific Locus Amplified Fragment Sequencing (SLAF-seq, was used to identify candidate genes of TSW in association analysis combined with bulked segregant analysis (BSA. A total of 1,933 high quality polymorphic SLAF markers were developed and 4 associated markers of TSW were procured. A hot region of ~0.58 Mb at nucleotides 25,401,885-25,985,931 on ChrA09 containing 91 candidate genes was identified as tightly associated with the TSW trait. From annotation information, four genes (GSBRNA2T00037136001, GSBRNA2T00037157001, GSBRNA2T00037129001 and GSBRNA2T00069389001 might be interesting candidate genes that are highly related to seed weight.

  13. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1, respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.

  14. Molecular Cloning and Characterization of a Novel Gene Involved in Fatty Acid Synthesis in Brassica napus L.

    Institute of Scientific and Technical Information of China (English)

    XIAO Gang; ZHANG Zhen-qian; LIU Rui-yang; YIN Chang-fa; WU Xian-meng; TAN Tai-long; GUAN Chun-yun

    2013-01-01

    Based on the sequence of a novel expressed sequence tag (EST), the full-length cDNA of 1 017 nucleotides was cloned from Brassica napus cv. Xiangyou 15 through rapid amplification of cDNA ends (RACE). The gene was designated as Bnhol34 (HQ585980), encoding a protein of 338 amino acids. BLAST analysis showed no high degree of sequence identity to any known gene. The calculated molecular weight of the Bnhol34 protein was 36.23 kDa, and the theoretical isoelectric point was 8.74. The Bnhol34 was also cloned from a high oleic acid mutant 854-1 through homologous cloning. There was no difference between the two Bnhol34 genes. Bnhol34 was localized in a tissue-specific manner in B. napus, and its expression level was about eight-fold greater in Xiangyou 15 seeds than in 854-1. The promoter region sequences of Bnhol34 were then isolated from Xiangyou 15 and 854-1, and a 93-bp deletion was found to occur in the Bnhol34 promoter region of 854-1. Three abscisic acid-responsive cis-elements (ABRE) were identified in the promoter region of Xiangyou 15. Real-time PCR analyses revealed that exogenous abscisic acid increased Bnhol34 expression by about four-fold in Xiangyou 15 seeds, yet did not change Bnhol34 expression in 854-1. It appeared that Bnhol34 might be abscisic acid insensitive in 854-1.

  15. Cloning and sequence analysis of a mutation-type cinnamate 4-hydroxylase gene from Brassica oleracea L. var. acephala DC.

    Institute of Scientific and Technical Information of China (English)

    Anhe CHEN; Jiana LI; Yourong CHAI; Rui WANG; Jun LU

    2008-01-01

    A 2431-bp full-length cinnamate 4-hydroxylase gene, BoC4H, was cloned from Brassica oleracea L. var. acephala DC.. It contains 2 introns. Its mRNA is 1715 bp, encoding a deduced 481-amino-acid polypeptide with wide homologies to C4Hs from other plants. It possesses cytochrome P450 conserved domains and motifs such as the haem-iron binding motif, the E-R-R triad, the T-con-taining binding pocket motif and the hinge motif neces-sary for optimal orientation of the enzyme. It also has most of the canonical C4H/CYP73A5-featured sub-strate-recognition sites (SRSs) and active site residues. However, owing to a single-base deletion at C2242 and subsequent frame shift within the 3' coding region as com-pared with C4H genes from Arabidopsis thaliana and other plants, BoC4H shows a 36-aa deletion/variation at its C-terminus and the SRS6 motif together with active site residues therein are absent. Thus BoC4H may be of no function or low activity. BoC4H is a membrane protein and is probably associated with the endoplasmic reticu-lure. Its secondary structure is dominated by alpha helices and random coils. The Swiss-Model could not predict its tertiary structure. B. oleracea contains a C4H gene family with at least 5 members.

  16. Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus

    Science.gov (United States)

    Lu, Kun; Peng, Liu; Zhang, Chao; Lu, Junhua; Yang, Bo; Xiao, Zhongchun; Liang, Ying; Xu, Xingfu; Qu, Cunmin; Zhang, Kai; Liu, Liezhao; Zhu, Qinlong; Fu, Minglian; Yuan, Xiaoyan; Li, Jiana

    2017-01-01

    Yield is one of the most important yet complex crop traits. To improve our understanding of the genetic basis of yield establishment, and to identify candidate genes responsible for yield improvement in Brassica napus, we performed genome-wide association studies (GWAS) for seven yield-determining traits [main inflorescence pod number (MIPN), branch pod number (BPN), pod number per plant (PNP), seed number per pod (SPP), thousand seed weight, main inflorescence yield (MIY), and branch yield], using data from 520 diverse B. napus accessions from two different yield environments. In total, we detected 128 significant single nucleotide polymorphisms (SNPs), 93 of which were revealed as novel by integrative analysis. A combination of GWAS and transcriptome sequencing on 21 haplotype blocks from samples pooled by four extremely high-yielding or low-yielding accessions revealed the differential expression of 14 crucial candiate genes (such as Bna.MYB83, Bna.SPL5, and Bna.ROP3) associated with multiple traits or containing multiple SNPs associated with the same trait. Functional annotation and expression pattern analyses further demonstrated that these 14 candiate genes might be important in developmental processes and biomass accumulation, thus affecting the yield establishment of B. napus. These results provide valuable information for understanding the genetic mechanisms underlying the establishment of high yield in B. napus, and lay the foundation for developing high-yielding B. napus varieties. PMID:28261256

  17. Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species.

    Directory of Open Access Journals (Sweden)

    Payal Bansal

    Full Text Available Fixed heterosis resulting from favorable interactions between the genes on their homoeologous genomes in an allopolyploid is considered analogous to classical heterosis accruing from interactions between homologous chromosomes in heterozygous plants of a diploid species. It has been hypothesized that fixed heterosis may be one of the causes of low classical heterosis in allopolyploids. We used Indian mustard (Brassica juncea, 2n = 36; AABB as a model system to analyze this hypothesis due to ease of its resynthesis from its diploid progenitors, B. rapa (2n = 20; AA and B. nigra (2n = 16; BB. Both forms of heterosis were investigated in terms of ploidy level, gene action and genetic diversity. To facilitate this, eleven B. juncea genotypes were resynthesized by hybridizing ten near inbred lines of B. rapa and nine of B. nigra. Three half diallel combinations involving resynthesized B. juncea (11×11 and the corresponding progenitor genotypes of B. rapa (10×10 and B. nigra (9×9 were evaluated. Genetic diversity was estimated based on DNA polymorphism generated by SSR primers. Heterosis and genetic diversity in parental diploid species appeared not to predict heterosis and genetic diversity at alloploid level. There was also no association between combining ability, genetic diversity and heterosis across ploidy. Though a large proportion (0.47 of combinations showed positive values, the average fixed heterosis was low for seed yield but high for biomass yield. The genetic diversity was a significant contributor to fixed heterosis for biomass yield, due possibly to adaptive advantage it may confer on de novo alloploids during evolution. Good general/specific combiners at diploid level did not necessarily produce good general/specific combiners at amphiploid level. It was also concluded that polyploidy impacts classical heterosis indirectly due to the negative association between fixed heterosis and classical heterosis.

  18. Cloning the Promoter of BcNA1 from Brassica napus and Fad2 Gene from Arabidopsis thaliana and Construction of the Plant Expression Vector

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The upstream regulatory region of a seed-specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6% with the reported data. The coding region of oleic acid desaturase gene was then cloned from Arabidopsis thaliana. The sequencing analysis indicated that the sequence of the PCR product was just the same as reported before. In addition, the plant expression vector harboring the seed-specific promoter and trans-Fad2 gene was constructed.

  19. Phenolic Composition Analysis and Gene Expression in Developing Seeds of Yellow-and Black-seeded Brassica napus

    Institute of Scientific and Technical Information of China (English)

    Jinjin Jiang; Yanlin Shao; Aimin Li; Chunliang Lu; Yongtai Zhang; Youping Wang

    2013-01-01

    Breeders have focused on yellow-seeded Brassica napus (rapeseed) for its better quality compared with the black-seeded variety.Moreover,flavonoids have been associated with this kind of rapeseed.In this study,we applied lipid chromatography-electrospray ionization mass spectrometry (LC-ESI-MSn) to compare flavonoids in developing seeds of natural black-seeded B.napus and yellow-seeded introgression lines selected from progenies of B.napus-Sinapis alba somatic hybrids.Aside from the most abundant phenolic compounds (sinapine and sinapic acid) and 1,2-disinapoylglucose,16 different flavonoids were identified and quantified,including (-)-epicatechin,five monocharged oligomers of (-)-epicatechin ([DP 2]-,[DP 3]-,[DP 4] [DP 2]-B2 and [DP 2]-B5),quercetin,kaempferol,isorhamnetin-dihexoside,kaempferol-sinapoyl-trihexoside,isorhamnetinsinapoyl-trihexoside,isorhamnetin-hexoside-sulfate,and isorhamnetin-3-O-glucoside.Most of the flavonoids accumulated with seed development,whereas some rapidly decreased during maturation.The content of these flavonoids was lower in the yellow-seeded materials than in the black seeds.In addition,variations of insoluble procyanidin oligomers and soluble phenolic acids were observed among both rapeseed varieties.Transcriptome changes of genes participating in the flavonoid pathway were discovered by quantitative reverse transcription polymerase chain reaction analysis.Consistent with flavonoid changes identified by high performance liquid chromatography analysis,the expression of most genes in the flavonoid biosynthetic pathway was also downregulated.

  20. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Changming; Chen, Guoju; Cao, Bihao; Lei, Jianjun

    2015-11-11

    Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.

  1. Transgenic tobacco plants expressing BoRS1 gene from Brassica oleracea var. acephala show enhanced tolerance to water stress

    Indian Academy of Sciences (India)

    Dongqin Tang; Hongmei Qian; Lingxia Zhao; Danfeng Huang; Kexuan Tang

    2005-12-01

    Water stress is by far the leading environmental stress limiting crop yields worldwide. Genetic engineering techniques hold great promise for developing crop cultivars with high tolerance to water stress. In this study, the Brassica oleracea var. acephala BoRS1 gene was transferred into tobacco through Agrobacterium-mediated leaf disc transformation. The transgenic status and transgene expression of the transgenic plants was confirmed by polymerase chain reaction (PCR) analysis, Southern hybridization and semi-quantitative one step RT-PCR analysis respectively. Subsequently, the growth status under water stress, and physiological responses to water stress of transgenic tobacco were studied. The results showed that the transgenic plants exhibited better growth status under water stress condition compared to the untransformed control plants. In physiological assessment of water tolerance, transgenic plants showed more dry matter accumulation and maintained significantly higher levels of leaf chlorophyll content along with increasing levels of water stress than the untransformed control plants. This study shows that BoRS1 is a candidate gene in the engineering of crops for enhanced water stress tolerance.

  2. Site-Specific Gene Targeting Using Transcription Activator-Like Effector (TALE)-Based Nuclease in Brassica oleracea

    Institute of Scientific and Technical Information of China (English)

    Zijian Sun; Nianzu Li; Guodong Huang; Junqiang Xu; Yu Pan; Zhimin Wang; Qinglin Tang; Ming Song; Xiaojia Wang

    2013-01-01

    Site-specific recognition modules with DNA nuclease have tremendous potential as molecular tools for genome targeting. The type III transcription activator-like effectors (TALEs) contain a DNA binding domain consisting of tandem repeats that can be engineered to bind user-defined specific DNA sequences. We demonstrated that customized TALE-based nucleases (TALENs), constructed using a method called“unit assembly”, specifically target the endogenous FRIGIDA gene in Brassica oleracea L. var. capitata L. The results indicate that the TALENs bound to the target site and cleaved double-strand DNA in vitro and in vivo, whereas the effector binding elements have a 23 bp spacer. The T7 endonuclease I assay and sequencing data show that TALENs made double-strand breaks, which were repaired by a non-homologous end-joining pathway within the target sequence. These data show the feasibility of applying customized TALENs to target and modify the genome with deletions in those organisms that are still in lacking gene target methods to provide germplasms in breeding improvement.

  3. Site-specific gene targeting using transcription activator-like effector (TALE)-based nuclease in Brassica oleracea.

    Science.gov (United States)

    Sun, Zijian; Li, Nianzu; Huang, Guodong; Xu, Junqiang; Pan, Yu; Wang, Zhimin; Tang, Qinglin; Song, Ming; Wang, Xiaojia

    2013-11-01

    Site-specific recognition modules with DNA nuclease have tremendous potential as molecular tools for genome targeting. The type III transcription activator-like effectors (TALEs) contain a DNA binding domain consisting of tandem repeats that can be engineered to bind user-defined specific DNA sequences. We demonstrated that customized TALE-based nucleases (TALENs), constructed using a method called "unit assembly", specifically target the endogenous FRIGIDA gene in Brassica oleracea L. var. capitata L. The results indicate that the TALENs bound to the target site and cleaved double-strand DNA in vitro and in vivo, whereas the effector binding elements have a 23 bp spacer. The T7 endonuclease I assay and sequencing data show that TALENs made double-strand breaks, which were repaired by a non-homologous end-joining pathway within the target sequence. These data show the feasibility of applying customized TALENs to target and modify the genome with deletions in those organisms that are still in lacking gene target methods to provide germplasms in breeding improvement.

  4. Capturing sequence variation among flowering-time regulatory gene homologues in the allopolyploid crop species Brassica napus

    Directory of Open Access Journals (Sweden)

    Sarah eSchiessl

    2014-08-01

    Full Text Available Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC, homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus and a swede (B. napus ssp. napobrassica, which show extreme differences in winter-hardiness, vernalization requirement and flowering behaviour. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalisation, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species.

  5. Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus

    Directory of Open Access Journals (Sweden)

    Yan Xiaohong

    2013-01-01

    Full Text Available Abstract Background The fertile and sterile plants were derived from the self-pollinated offspring of the F1 hybrid between the novel restorer line NR1 and the Nsa CMS line in Brassica napus. To elucidate gene expression and regulation caused by the A and C subgenomes of B. napus, as well as the alien chromosome and cytoplasm from Sinapis arvensis during the development of young floral buds, we performed a genome-wide high-throughput transcriptomic sequencing for young floral buds of sterile and fertile plants. Results In this study, equal amounts of total RNAs taken from young floral buds of sterile and fertile plants were sequenced using the Illumina/Solexa platform. After filtered out low quality data, a total of 2,760,574 and 2,714,441 clean tags were remained in the two libraries, from which 242,163 (Ste and 253,507 (Fer distinct tags were obtained. All distinct sequencing tags were annotated using all possible CATG+17-nt sequences of the genome and transcriptome of Brassica rapa and those of Brassica oleracea as the reference sequences, respectively. In total, 3231 genes of B. rapa and 3371 genes of B. oleracea were detected with significant differential expression levels. GO and pathway-based analyses were performed to determine and further to understand the biological functions of those differentially expressed genes (DEGs. In addition, there were 1089 specially expressed unknown tags in Fer, which were neither mapped to B. oleracea nor to B. rapa, and these unique tags were presumed to arise basically from the added alien chromosome of S. arvensis. Fifteen genes were randomly selected and their expression levels were confirmed by quantitative RT-PCR, and fourteen of them showed consistent expression patterns with the digital gene expression (DGE data. Conclusions A number of genes were differentially expressed between the young floral buds of sterile and fertile plants. Some of these genes may be candidates for future research on CMS in

  6. Fine-Mapping and Analysis of Cgl1, a Gene Conferring Glossy Trait in Cabbage (Brassica oleracea L. var. capitata)

    Science.gov (United States)

    Liu, Zezhou; Fang, Zhiyuan; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Liu, Yumei; Li, Zhansheng; Sun, Peitian; Tang, Jun; Liu, Dongming; Zhang, Zhenxian; Yang, Limei

    2017-01-01

    Cuticular waxes covering the outer plant surface impart a whitish appearance. Wax-less cabbage mutant shows glossy in leaf surface and plays important roles in riching cabbage germplasm resources and breeding brilliant green cabbage. This is the first report describing the characterization and fine-mapping of a wax biosynthesis gene using a novel glossy Brassica oleracea mutant. In the present paper, we identified a glossy cabbage mutant (line10Q-961) with a brilliant green phenotype. Genetic analyses indicated that the glossy trait was controlled by a single recessive gene. Preliminary mapping results using an F2 population containing 189 recessive individuals revealed that the Cgl1 gene was located at the end of chromosome C08. Several new markers closely linked to the target gene were designed according to the cabbage reference genome sequence. Another population of 1,172 recessive F2 individuals was used to fine-map the Cgl1 gene to a 188.7-kb interval between the C08SSR61 simple sequence repeat marker and the end of chromosome C08. There were 33 genes located in this region. According to gene annotation and homology analyses, the Bol018504 gene, which is a homolog of CER1 in Arabidopsis thaliana, was the most likely candidate for the Cgl1 gene. Its coding and promoter regions were sequenced, which indicated that the RNA splice site was altered because of a 2,722-bp insertion in the first intron of Bol018504 in the glossy mutant. Based on the FGENESH 2.6 prediction and sequence alignments, the PLN02869 domain, which controls fatty aldehyde decarbonylase activity, was absent from the Bol018504 gene of the 10Q-961 glossy mutant. We inferred that the inserted sequence in Bol018504 may result in the glossy cabbage mutant. This study represents the first step toward the characterization of cuticular wax biosynthesis in B. oleracea, and may contribute to the breeding of new cabbage varieties exhibiting a brilliant green phenotype.

  7. Screening different Brassica spp. germplasm for resistance to Rhizoctonia solani AG-2-1 and AG-8

    Science.gov (United States)

    Poor stands of canola seedlings in Pacific Northwest (PNW) have been associated with Rhizoctonia solani AG-2-1 and AG-8. A total of eighty five genotypes of Brassica napus, B. rapa, B. carinata, B. juncea and Sinapsis alba were evaluated in the growth chamber for their resistance to both R. solani A...

  8. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    NARCIS (Netherlands)

    Poelman, E.H.; Loon, van J.J.A.; Dam, van N.M.; Vet, L.E.M.; Dicke, M.

    2010-01-01

    2. Here we studied the effect of early-season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to ana

  9. Development and characterization of Brassica juncea – fruticulosa introgression lines exhibiting resistance to mustard aphid (Lipaphis erysimi Kalt

    Directory of Open Access Journals (Sweden)

    Atri Chhaya

    2012-11-01

    Full Text Available Abstract Background Mustard aphid is a major pest of Brassica oilseeds. No source for aphid resistance is presently available in Brassica juncea . A wild crucifer, Brassica fruticulosa is known to be resistant to mustard aphid. An artificially synthesized amphiploid, AD-4 (B. fruticulosa × B. rapa var. brown sarson was developed for use as a bridge species to transfer fruticulosa resistance to B. juncea. Using the selfed backcross we could select a large number of lines with resistance to mustard aphid. This paper reports cytogenetic stability of introgression lines, molecular evidence for alien introgression and their reaction to mustard aphid infestation. Results Majority of introgression lines had expected euploid chromosome number(2n= 36, showed normal meiosis and high pollen grain fertility. Well-distributed and transferable simple-sequence repeats (SSR markers for all the 18 B. juncea chromosomes helped to characterize introgression events. Average proportions of recipient and donor genome in the substitution lines were 49.72 and 35.06%, respectively. Minimum alien parent genome presence (27.29% was observed in the introgression line, Ad3K-280 . Introgressed genotypes also varied for their resistance responses to mustard aphid infestations under artificial release conditions for two continuous seasons. Some of the test genotypes showed consistent resistant reaction. Conclusions B.juncea-fruticulosa introgression set may prove to be a very powerful breeding tool for aphid resistance related QTL/gene discovery and fine mapping of the desired genes/QTLs to facilitate marker assisted transfer of identified gene(s for mustard aphid resistance in the background of commercial mustard genotypes.

  10. Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis

    OpenAIRE

    Ayele, Mulu; Haas, Brian J.; Kumar, Nikhil; Wu, Hank; Xiao, Yongli; Van Aken, Susan; Utterback, Teresa R.; WORTMAN, Jennifer R.; White, Owen R.; Town, Christopher D

    2005-01-01

    Through comparative studies of the model organism Arabidopsis thaliana and its close relative Brassica oleracea, we have identified conserved regions that represent potentially functional sequences overlooked by previous Arabidopsis genome annotation methods. A total of 454,274 whole genome shotgun sequences covering 283 Mb (0.44×) of the estimated 650 Mb Brassica genome were searched against the Arabidopsis genome, and conserved Arabidopsis genome sequences (CAGSs) were identified. Of these ...

  11. Molecular cloning of a Brassica napus thiohydroximate S-glucosyltransferase gene and its expression in Escherichia coli.

    Science.gov (United States)

    Marillia, Elizabeth-France; MacPherson, Jim M.; Tsang, Edward W. T.; Van Audenhove, Katrien; Keller, Wilf A.; GrootWassink, Jan W. D.

    2001-10-01

    A genomic clone encoding a thiohydroximate S-glucosyltransferase (S-GT) was isolated from Brassica napus by library screening with probes generated by PCR using degenerated primers. Its corresponding cDNA was amplified by rapid amplification of cDNA ends (RACE) PCR and also cloned by cDNA library screening. The genomic clone was 5 896 bp long and contained a 173-bp intron. At least two copies of the S-GT gene were present in B. napus. The full-length cDNA clone was 1.5 kb long and contained an open reading frame encoding a 51-kDa polypeptide. The deduced amino acid sequence shared a significant degree of homology with other glucosyltransferases characterized in other species, including a highly conserved motif within this family of enzymes corresponding to the glucose-binding domain. The recombinant protein was expressed in Escherichia coli, and the enzyme activity was tested by a biochemical assay based on the measure of glucose incorporation. The high thiohydroximate S-GT activity detected from the recombinant protein confirmed that this clone was indeed a S-glucosyltransferase.

  12. Brassica napus L. Homeodomain Leucine-Zipper Gene BnHB6 Responds to Abiotic and Biotic Stresses

    Institute of Scientific and Technical Information of China (English)

    Shun-Wu YU; Li-Da ZHANG; Kai-Jing ZUO; Dong-Qin TANG; Xiao-Fen SUN; Ke-Xuan TANG

    2005-01-01

    Ahomeodomain leucine-zipper(HD-Zip) gene BnHB6 (GenBank accession No. AY336103) was isolated from oilseed rape (Brassica napus L.) following drought treatment through rapid amplification of cDNA ends (RACE). The full-length cDNA of BnHB6 was 1 611 bp and contained a 936-bp open reading frame encoding 311 amino acids. Sequence analysis indicated that BnHB6 belonged to the HD-Zip I subfamily.High-stringency Southern boltting analysis showed that BnHB6 appeared in rape as a single copy but had homologous genes. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that BnHB6 was expressed in several tissues tested under control conditions, but that expression was significantly upregulated in shoots by mannitol, NaCl, cold treatment, anaerobic culture, wounding, H2O2, abscisic acid (ABA), and salicylic acid (SA) treatments, but not by ultraviolet treatment. Further RTPCR analysis revealed that BnHB6 was a late-responsive gene, the expression of which was not activated by NaCl, cold treatment, H2O2, ABA, and SA at an early time point (20 min) of treatment in the shoot. However, after a certain period of treatment, the induced expression culminated and then declined until the next peak occurred. Tissue-specific analysis revealed that BnHB6 was expressed at certain levels in the roots, shoots, and flowers, and the roots were found to respond to the osmotic stimuli more rapidly than shoots to increase the expression of BnHB6. The present study implies that BnHB6 plays a positive role as a regulator of biotic and abiotic stresses on growth during seedling establishment.

  13. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  14. BnSIP1-1, a Trihelix Family Gene, Mediates Abiotic Stress Tolerance and ABA Signaling in Brassica napus

    Science.gov (United States)

    Luo, Junling; Tang, Shaohua; Mei, Fengling; Peng, Xiaojue; Li, Jun; Li, Xiaofei; Yan, Xiaohong; Zeng, Xinhua; Liu, Fang; Wu, Yuhua; Wu, Gang

    2017-01-01

    The trihelix family genes have important functions in light-relevant and other developmental processes, but their roles in response to adverse environment are largely unclear. In this study, we identified a new gene, BnSIP1-1, which fell in the SIP1 (6b INTERACTING PROTEIN1) clade of the trihelix family with two trihelix DNA binding domains and a fourth amphipathic α-helix. BnSIP1-1 protein specifically targeted to the nucleus, and its expression can be induced by abscisic acid (ABA) and different stresses. Overexpression of BnSIP1-1 improved seed germination under osmotic pressure, salt, and ABA treatments. Moreover, BnSIP1-1 decreased the susceptibility of transgenic seedlings to osmotic pressure and ABA treatments, whereas there was no difference under salt stress between the transgenic and wild-type seedlings. ABA level in the transgenic seedlings leaves was higher than those in the control plants under normal condition. Under exogenous ABA treatment and mannitol stress, the accumulation of ABA in the transgenic plants was higher than that in the control plants; while under salt stress, the difference of ABA content before treatment was gradually smaller with the prolongation of salt treatment time, then after 24 h of treatment the ABA level was similar in transgenic and wild-type plants. The transcription levels of several general stress marker genes (BnRD29A, BnERD15, and BnLEA1) were higher in the transgenic plants than the wild-type plants, whereas salt-responsive genes (BnSOS1, BnNHX1, and BnHKT) were not significantly different or even reduced compared with the wild-type plants, which indicated that BnSIP1-1 specifically exerted different regulatory mechanisms on the osmotic- and salt-response pathways in seedling period. Overall, these findings suggested that BnSIP1-1 played roles in ABA synthesis and signaling, salt and osmotic stress response. To date, information about the involvement of the Brassica napus trihelix gene in abiotic response is scarce

  15. Comprehensive Analysis of the CDPK-SnRK Superfamily Genes in Chinese Cabbage and Its Evolutionary Implications in Plants

    Science.gov (United States)

    Wu, Peng; Wang, Wenli; Duan, Weike; Li, Ying; Hou, Xilin

    2017-01-01

    The CDPK-SnRK (calcium-dependent protein kinase/Snf1-related protein kinase) gene superfamily plays important roles in signaling pathways for disease resistance and various stress responses, as indicated by emerging evidence. In this study, we constructed comparative analyses of gene structure, retention, expansion, whole-genome duplication (WGD) and expression patterns of CDPK-SnRK genes in Brassica rapa and their evolution in plants. A total of 49 BrCPKs, 14 BrCRKs, 3 BrPPCKs, 5 BrPEPRKs, and 56 BrSnRKs were identified in B. rapa. All BrCDPK-SnRK proteins had highly conserved kinase domains. By statistical analysis of the number of CDPK-SnRK genes in each species, we found that the expansion of the CDPK-SnRK gene family started from angiosperms. Segmental duplication played a predominant role in CDPK-SnRK gene expansion. The analysis showed that PEPRK was more preferentially retained than other subfamilies and that CPK was retained similarly to SnRK. Among the CPKs and SnRKs, CPKIII and SnRK1 genes were more preferentially retained than other groups. CRK was closest to CPK, which may share a common evolutionary origin. In addition, we identified 196 CPK genes and 252 SnRK genes in 6 species, and their different expansion and evolution types were discovered. Furthermore, the expression of BrCDPK-SnRK genes is dynamic in different tissues as well as in response to abiotic stresses, demonstrating their important roles in development in B. rapa. In summary, this study provides genome-wide insight into the evolutionary history and mechanisms of CDPK-SnRK genes following whole-genome triplication in B. rapa.

  16. Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing.

    Science.gov (United States)

    Chen, S W; Liu, T; Gao, Y; Zhang, C; Peng, S D; Bai, M B; Li, S J; Xu, L; Zhou, X Y; Lin, L B

    2016-01-01

    Clubroot significantly affects plants of the Brassicaceae family and is one of the main diseases causing serious losses in B. napus yield. Few studies have investigated the clubroot-resistance mechanism in B. napus. Identification of clubroot-resistant genes may be used in clubroot-resistant breeding, as well as to elucidate the molecular mechanism behind B. napus clubroot-resistance. We used three B. napus transcriptome samples to construct a transcriptome sequencing library by using Illumina HiSeq™ 2000 sequencing and bioinformatic analysis. In total, 171 million high-quality reads were obtained, containing 96,149 unigenes of N50-value. We aligned the obtained unigenes with the Nr, Swiss-Prot, clusters of orthologous groups, and gene ontology databases and annotated their functions. In the Kyoto encyclopedia of genes and genomes database, 25,033 unigenes (26.04%) were assigned to 124 pathways. Many genes, including broad-spectrum disease-resistance genes, specific clubroot-resistant genes, and genes related to indole-3-acetic acid (IAA) signal transduction, cytokinin synthesis, and myrosinase synthesis in the Huashuang 3 variety of B. napus were found to be related to clubroot-resistance. The effective clubroot-resistance observed in this variety may be due to the induced increased expression of these disease-resistant genes and strong inhibition of the IAA signal transduction, cytokinin synthesis, and myrosinase synthesis. The homology observed between unigenes 0048482, 0061770 and the Crr1 gene shared 94% nucleotide similarity. Furthermore, unigene 0061770 could have originated from an inversion of the Crr1 5'-end sequence.

  17. Identification and Analysis of MS5(d): A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes.

    Science.gov (United States)

    Zeng, Xinhua; Yan, Xiaohong; Yuan, Rong; Li, Keqi; Wu, Yuhua; Liu, Fang; Luo, Junling; Li, Jun; Wu, Gang

    2016-01-01

    Here, we report the identification of the Brassica-specific gene MS5(d), which is responsible for male sterility in Brassica napus. The MS5(d) gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5(d) gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5(d), encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5(d) likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.

  18. Influence of light and temperature on gene expression leading to accumulation of specific flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica

    Directory of Open Access Journals (Sweden)

    Susanne eNeugart

    2016-03-01

    Full Text Available Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 µmol m-2 s-1 or 100 µmol m-2 s-1 at 10°C, or at 400 µmol m-2 s-1 with 5°C or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5°C or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides

  19. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  20. Timing of gene expression from different genetic systems in shaping leucine and isoleucine contents of rapeseed (Brassica napus L.) meal

    Indian Academy of Sciences (India)

    Guo Lin Chen; Jian Guo Wu; Murali-Tottekkaad Variath; Chun Hai Shi

    2011-12-01

    Experiments were conducted on rapeseed (Brassica napus L.) using a diallel design with nine parents: Youcai 601, Double 20-4, Huashuang 3, Gaoyou 605, Zhongyou 821, Eyouchangjia, Zhong R-888, Tower and Zheshuang 72. The seed developmental process was divided into five stages, namely initial (days 1–15 after flowering), early (days 16–22 after flowering), middle (days 23–29), late (days 30–36), and maturing (days 37–43) developmental stages. The variation of dynamic genetic effects for leucine and isoleucine contents of rapeseed meal was analysed at five developmental stages, across different environments using the genetic models with time-dependent measures. The results from unconditional and conditional analyses indicated that the expression of diploid embryo, cytoplasmic and diploid maternal plant genes were important for leucine and isoleucine contents at different developmental stages of rapeseed, particularly at the initial and early developmental stages. Among different genetic systems, nutrition quality traits were mainly controlled by the accumulative or net maternal main effects and their GE interaction effects, except at maturity when the net diploid embryo effects were larger. The expression of genes was affected by the environmental conditions on 15, 22, 29 or 36 days after flowering, but was more stable at mature stage. For the isoleucine content the narrow-sense heritabilities on 15, 22, 29, 36, and 43 days after flowering were 43.0, 65.7, 60.1, 65.5 and 78.2%, respectively, while for the leucine content the corresponding narrow-sense heritabilities were relatively smaller. The interaction heritabilities were more important than the general heritabilities at the first three developmental times. The improvement for isoleucine content could be achieved by selection based on the higher narrow-sense heritabilities. Various genetic systems exhibited genetic correlations among the developmental times or leucine and isoleucine contents. A

  1. Genetic Transformation of Brassica campestris L. ssp. pekinensis via Agrobacterium- with Bt Gene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of Agrobacterium-mediated transformation, 43 kanamycin-resistant buds of Chinese cabbage were got. PCR, PCR-Southern blot and dot blot analysis were used to identify and characterize the putative transgenic plants. 26 plants had the predicted bands of the fragment of npt II gene. Insect bioassays of 4 transformants showed that toxic protein had been translated and the translation levels were different among these transformants.

  2. Effect of Heavy Metals in Plants of the Genus Brassica

    Directory of Open Access Journals (Sweden)

    Miguel P. Mourato

    2015-08-01

    Full Text Available Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra.

  3. A duplicated coxI gene is associated with cytoplasmic male sterility in an alloplasmic Brassica juncea line derived from somatic hybridization with Diplotaxis catholica

    Indian Academy of Sciences (India)

    Aruna Pathania; Rajesh Kumar; V. Dinesh Kumar; Ashutosh; K. K. Dwivedi; P. B. Kirti; P. Prakash; V. L. Chopra; S. R. Bhat

    2007-08-01

    A cytoplasmic male sterile (CMS) line of Brassica juncea was derived by repeated backcrossing of the somatic hybrid (Diplotaxis catholica + B. juncea) to B. juncea. The new CMS line is comparable to euplasmic lines for almost all characters, except for flowers which bear slender, needle-like anthers with aborted pollen. Detailed Southern analysis revealed two copies of coxI gene in the CMS line. One copy, coxI-1 is similar to the coxI gene of B. juncea, whereas the second copy, coxI-2 is present in a novel rearranged region. Northern analysis with eight mitochondrial gene probes showed altered transcript pattern only for the coxI gene. Two transcripts of 2.0 and 2.4 kb, respectively, were detected in the CMS line. The novel 2.4 kb transcript was present in floral bud tissue but absent in the leaf tissue. In plants where male sterility broke down under high temperature during the later part of the growing season, the 2.4 kb coxI transcript was absent, which suggested its association with the CMS. The two coxI genes from the CMS line showed two amino acid changes in the coding region. The novel coxI gene showed unique repeats in the 5′ region suggesting recombination of mitochondrial genomes of the two species. The possible role of the duplicated coxI gene in causing male sterility is discussed.

  4. Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait.

    Science.gov (United States)

    Yu, Xiaona; Choi, Su Ryun; Ramchiary, Nirala; Miao, Xinyang; Lee, Su Hee; Sun, Hae Jeong; Kim, Sunggil; Ahn, Chun Hee; Lim, Yong Pyo

    2013-10-01

    Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines '835' (susceptible) and 'B2' (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.

  5. Comparative mapping reveals similar linkage of functional genes to QTL of yield-related traits between Brassica napus and Oryza sativa

    Indian Academy of Sciences (India)

    Fupeng Li; Chaozhi Ma; Qingfang Chen; Touming Liu; Jinxiong Shen; Jinxing Tu; Yongzhong Xing; Tingdong Fu

    2012-08-01

    Oryza sativa and Brassica napus—two important crops for food and oil, respectively—share high seed yield as a common breeding goal. As a model plant, O. sativa genomics have been intensively investigated and its agronomic traits have been advanced. In the present study, we used the available information on O. sativa to conduct comparative mapping between O. sativa and B. napus, with the aim of advancing research on seed-yield and yield-related traits in B. napus. Firstly, functional markers (from 55 differentially expressed genes between a hybrid and its parents) were used to detect B. napus genes that co-localized with yield-related traits in an F2∶3 population. Referring to publicly available sequences of 55 B. napus genes, 53 homologous O. sativa genes were subsequently detected by screening, and their chromosomal locations were determined using silico mapping. Comparative location of yield-related QTL between the two species showed that a total of 37 O. sativa and B. napus homologues were located in similar yield-related QTL between species. Our results indicate that homologous genes between O. sativa and B. napus may have consistent function and control similar traits, which may be helpful for agronomic gene characterization in B. napus based on what is known in O. sativa.

  6. Curd development associated gene (CDAG1) in cauliflower (Brassica oleracea L. var. botrytis) could result in enlarged organ size and increased biomass.

    Science.gov (United States)

    Li, Hui; Liu, Qian; Zhang, Qingli; Qin, Erjun; Jin, Chuan; Wang, Yu; Wu, Mei; Shen, Guangshuang; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    The curd is a specialized organ and the most important product organ of cauliflower (Brassica oleracea L. var. botrytis). However, the mechanism underlying the regulation of curd formation and development remains largely unknown. In the present study, a novel homologous gene containing the Organ Size Related (OSR) domain, namely, CDAG1 (Curd Development Associated Gene 1) was identified in cauliflower. Quantitative analysis indicated that CDAG1 showed significantly higher transcript levels in young tissues. Functional analysis demonstrated that the ectopic overexpression of CDAG1 in Arabidopsis and cauliflower could significantly promote organ growth and result in larger organ size and increased biomass. Organ enlargement was predominantly due to increased cell number. In addition, 228 genes involved in the CDAG1-mediated regulatory network were discovered by transcriptome analysis. Among these genes, CDAG1 was confirmed to inhibit the transcriptional expression of the endogenous OSR genes, ARGOS and ARL, while a series of ethylene-responsive transcription factors (ERFs) were found to increased expression in 35S:CDAG1 transgenic Arabidopsis plants. This implies that CDAG1 may function in the ethylene-mediated signal pathway. These findings provide new insight into the function of OSR genes, and suggest potential applications of CDAG1 in breeding high-yielding crops.

  7. A novel orf108 co-transcribed with the atpA gene is associated with cytoplasmic male sterility in Brassica juncea carrying Moricandia arvensis cytoplasm.

    Science.gov (United States)

    Ashutosh; Kumar, Pankaj; Dinesh Kumar, V; Sharma, Prakash C; Prakash, Shyam; Bhat, Shripad R

    2008-02-01

    Mitochondrial atpA transcripts were examined in cytoplasmic male sterile (CMS) and fertility restorer lines of CMS (Moricandia arvensis) Brassica juncea. Male sterile flowers had longer atpA transcripts than male fertiles. The mitochondrial atpA region of the CMS line was cloned and sequenced. The 5' and 3' ends of the atpA transcripts of the CMS and the fertility restorer lines were mapped and full-length transcripts were cloned and sequenced. A novel orf108 (open reading frame 108) co-transcribed with the atpA gene was found in the male sterile flowers. In the fertility restorer line, the transcript was cleaved within orf108 to yield monocistronic atpA transcripts.

  8. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    JIAN Hongju

    2016-09-01

    Full Text Available Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers and SWEETs (Sugars Will Eventually be Exported Transporters play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported. In our study, 22 and 68 members of the SUT/SUCs and SWEET gene families, respectively, were identified in the oilseed rape (Brassica napus genome through homology searches. An analysis of the chromosomal distribution, phylogenetic relationships, gene structures, motifs and the cis-acting regulatory elements in the promoters of BnSUC and BnSWEET genes were analysed. Furthermore, we examined the expression of the 18 BnSUC and 16 BnSWEET genes in different tissues of ‘ZS11’ and the expression of 9 BnSUC and 7 BnSWEET genes in ‘ZS11’ under various conditions, including biotic stress (Sclerotinia sclerotiorum, abiotic stresses (drought, salt and heat, and hormone treatments (abscisic acid, auxin, cytokinin, brassinolide, gibberellin and salicylic acid. In conclusion, our study provides the first comprehensive analysis of the oilseed rape SUC and SWEET gene families. Information regarding the phylogenetic relationships, gene structure and expression profiles of the SUC and SWEET genes in the different tissues of oilseed rape helps to identify candidates with potential roles in specific developmental processes. Our study advances our understanding of the important roles of sucrose transport in oilseed rape.

  9. Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene, BjCHI1.

    Science.gov (United States)

    Gao, Ying; Zan, Xin-Li; Wu, Xue-Feng; Yao, Lei; Chen, Yu-Ling; Jia, Shuang-Wei; Zhao, Kai-Jun

    2014-02-01

    Chitinases are a group of pathogenesis-related proteins. The Brassica juncea chitinase gene BjCHI1 is highly inducible by pathogenic fungal infection, suggesting that the promoter of BjCHI1 might contain specific cis-acting element responsive to fungal attack. To identify the fungus-responsive element in BjCHI1 promoter (BjC-P), a series of binary plant transformation vectors were constructed by fusing the BjC-P or its deletion-derivatives to β-glucuronidase (GUS) reporter gene. Expression of the GUS reporter gene was systematically assayed by a transient gene expression system in Nicotiana benthamiana leaves treated with fungal elicitor Hexa-N-Acetyl-Chitohexaose, as well as in transgenic Arabidopsis plants inoculated with fungus Botrytis cinerea. The histochemical and quantitative GUS assays showed that the W-box-like element (GTAGTGACTCAT) in the region (-668 to -657) was necessary for the fungus-response, although there were another five W-box-like elements in BjC-P. In addition, gain-of-function analysis demonstrated that the fragment (-409 to -337) coupled to the W-box-like element was needed for full magnitude of the fungal induction. These results revealed the existence of a novel regulation mechanism of W-box-like element involved in plant pathogenic resistance, and will benefit the potential application of BjC-P in engineering crops.

  10. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L.

    Directory of Open Access Journals (Sweden)

    Go-Eun Yi

    2016-10-01

    Full Text Available Glucosinolates have anti-carcinogenic properties. In the recent decades, the genetics of glucosinolate biosynthesis has been widely studied, however, the expression of specific genes involved in glucosinolate biosynthesis under exogenous phytohormone treatment has not been explored at the subspecies level in Brassica oleracea. Such data are vital for strategies aimed at selective exploitation of glucosinolate profiles. This study quantified the expression of 38 glucosinolate biosynthesis-related genes in three B. oleracea subspecies, namely cabbage, broccoli and kale, and catalogued associations between gene expression and increased contents of individual glucosinolates under methyl jasmonate (MeJA and salicylic acid (SA treatments. Glucosinolate accumulation and gene expression in response to phytohormone elicitation was subspecies specific. For instance, cabbage leaves showed enhanced accumulation of the aliphatic glucoiberin, progoitrin, sinigrin and indolic neoglucobrassicin under both MeJA and SA treatment. MeJA treatment induced strikingly higher accumulation of glucobrassicin (GBS in cabbage and kale and of neoglucobrassicin (NGBS in broccoli compared to controls. Notably higher expression of ST5a (Bol026200, CYP81F1 (Bol028913, Bol028914 and CYP81F4 genes was associated with significantly higher GBS accumulation under MeJA treatment compared to controls in all three subspecies. CYP81F4 genes, trans-activated by MYB34 genes, were expressed at remarkably high levels in all three subspecies under MeJA treatment, which also induced in higher indolic NGBS accumulation in all three subspecies. Remarkably higher expression of MYB28 (Bol036286, ST5b, ST5c, AOP2, FMOGS-OX5 (Bol031350 and GSL-OH (Bol033373 was associated with much higher contents of aliphatic glucosinolates in kale leaves compared to the other two subspecies. The genes expressed highly could be utilized in strategies to selectively increase glucosinolate compounds in B. oleracea

  11. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yi Wang

    Full Text Available Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.

  12. 油菜开花时间调控基因SVP的克隆与表达特性分析%Molecular Cloning and Expression Pattern of SVP Gene Influencing Flowering Time in Brassica napus and Brassica juncea

    Institute of Scientific and Technical Information of China (English)

    潘丹丹; 毛群飞; 张金顺; 杨丹; 赵福永

    2013-01-01

    应用同源克隆法和RT-PCR技术分别从异源四倍体油菜湘油15号和四川黄籽花序组织中克隆了Short vegetative phase(SV)基因的同源基因,分别命名为BnSVP-1、BnSVP-2、BnSVP-3、BnSVP-4、BnSVP-5和BjSVP-1、BjSVP-2、BjSVP-3,GenBank登录号分别为JQ906717、JQ906718、JQ906719、JQ906720、JQ316471和JQ906715、JQ906716、JQ316472.序列分析结果表明,这些SVP同源基因编码区长726 bp,编码241个氨基酸残基,具有典型的MIKC结构域,是一类MADS-box调控基因.表达结果分析表明,光周期和GA3处理会使SVP基因的表达模式发生改变,而春化处理后的表达模式与对照相似,其表达模式的改变会导致开花时间提早;在开花前,SVP基因在根、茎、叶组织中均有表达,花期,在花器官的雄蕊、雌蕊和萼片中均有表达,在花瓣中无表达;幼角果的角果皮中该基因的表达水平要高于幼嫩种子.%Mutiple homologs of short vegetative phase (SVP) were isolated from inflorescences of allotetraploid rapeseed cultivars Xiangyou No. 15 (Brassica napus L. ) and Sichuan Yellow-seeded (Brassica juncea L. ) by using homologous cloning and reverse transcription PCR technology, which was designated BnSVP-1 ,BnSVP-2 ,BnSVP-3, BnSVP-4,BnSVP-5 and BjSVP-1 ,BjSVP-2 ,BjSVP-3, respectively. All these sequences have been deposited in Gen-Bank with accession number JQ906717 , JQ906718 , JQ906719, JQ906720, JQ316471 and JQ906715 , JQ906716, JQ316472 respectively. Results of sequence analysis showed that each homolog was 726 bp and encoded 241 amino acids with typical M,I,K and C domain of MADS-box gene. The SVP expression pattern of Xiangyou No. 15 after been treated with photoperiod, GA3 spraying and vernalization was studied, the results demonstrated that different photoperiods and GA3 spraying could change its expression in the stem or root,but vernalization did not. The expression change would result in early flowering. In rapeseed, SVP expressed in root, stem

  13. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea.

    Science.gov (United States)

    Bhalla, Prem L; Singh, Mohan B

    2008-01-01

    Agrobacterium-mediated transformation is widely used for gene delivery in plants. However, commercial cultivars of crop plants are often recalcitrant to transformation because the protocols established for model varieties are not directly applicable to them. The genus Brassica includes the oil seed crop, canola (B. napus), and vegetable crop varieties of Brassica oleracea, including cauliflower, broccoli and cabbage. Here, we describe an efficient protocol for Agrobacterium-mediated transformation using seedling explants that is applicable to various Brassica varieties; this protocol has been used to genetically engineer commercial cultivars of canola and cauliflower in our laboratory. Young seedling explants are inoculated with Agrobacterium on the day of explant preparation. Explants are grown for 1 week in the absence of a selective agent before being transferred to a selective medium to recover transgenic shoots. Transgenic shoots are subjected to an additional round of selection on medium containing higher levels of the selective agent and a low-carbohydrate source; this helps to eliminate false-positive plants. Use of seedling explants offers flexible experiment planning and a convenient explant source. Using this protocol, transgenic plants can be obtained in 2.5 to 3.5 months.

  14. Cloning and Sequence Analysis of a DFR Gene from Brassica campestris L.var. oleifera DC.%白菜型油菜DFR基因的克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    李运涛; 李加纳; 柴友荣; 杨成军; 雷波

    2005-01-01

    By using RACE (rapid amplification of cDNA ends) based homologous cloning strategy, we have successfully isolated the genomic and full-length cDNA sequences of a gene encoding typical DFR (dihydroflavonol-4-reductase) from black-seeded Brassica campestris L. var. oleifera DC.. The gene, designated BcDFR here, is 1 722bp in length and harbors 5 introns with typical splice sites of plant DFR genes. BcDFR cDNA is 1 311bp in length with a 1 158bp ORF as well as a 25bp 5′ UTR and a 128bp 3′ UTR. The encoded BcDFR protein is 385 aa with a calculated Mw of 42.85kD and a pI value of 5.55. The nucleotide and amino acid sequences of this gene share extensive homologies to plant DFR genes of wide origins especially high similarities to Cruciferous DFR genes. Sequence analyses such as phylogenetic analysis, conserved domain search and substrate specificity region detection all indicated that BcDFR gene is a quite potentially biofunctional gene. Its cloning enables us to further dissect the possible relatedness between DFR gene and Brassica seed coat color traits and to create transgenic novel yellow-seeded rapeseed germplasm through antisense- or RNAi-suppression of DFR gene expression in black-seeded elite cultivars.

  15. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    Science.gov (United States)

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes.

  16. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  17. Cloning and Characterization of the Microspore Development-Related Gene BcMF2 in Chinese Cabbage Pak-Choi (Brassica campestris L. ssp. chinensis Makino)

    Institute of Scientific and Technical Information of China (English)

    Yong-Qin WANG; Wan-Zhi YE; Jia-Shu CAO; Xiao-Lin YU; Xun XIANG; Gang LU

    2005-01-01

    For the sake of providing some important information relevant to the study of the molecular mechanism of genic male sterility in plants, gene differential expression in flower buds at different developmental stages, as well as in rosette leaves, florescence leaves, and scapes was analyzed using cDNA amplified fragment length polymorphism (cDNA-AFLP) in the genic male sterile A and fertile B line of Chinese cabbage pak-choi. Following amplification of 125 pairs of primer combinations, 11 differential fragments were obtained, of which eight were from the B line and the other three were from the A line. Of 11 differential fragments, four were verified by Northern hybridization that were expressed preferentially in fertile flower buds. Results of GenBank BLAST showed that one fragment was with unknown function,whereas the other fragments have strong nucleotide sequence similarities with the polygalacturonase (PG)gene, the pectinesterase (PE) gene, and the polygalacturonase inhibitory protein (PGIP4) gene. Only fulllength cDNA from the differential fragment BcMF-A18T16-1 was amplified by rapid amplification of cDNA ends (RACE) and Northern analysis showed that this fragment was expressed only in medium and largesized flower buds of the B line. The full-length cDNA, designated as BcMF2 (Brassica campestris Male Fertile 2), was 1 485 bp long and was composed of a 1 263-bp open reading frame, which had 83% nucleotide similarity to a PG gene from Arabidopsis encoding polygalacturonase. Analysis of the basic structure of the protein revealed that it had one polygalacturonase active site (RVTCGPGHGLSVGS) at 256th site of amino acids and was classified as being a member of family 28 of the glycosyl hydrolases. The role of the BcMF2 gene on microspore development is discussed in the present paper.

  18. Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Szała, Laurencja; Sosnowska, Katarzyna; Popławska, Wiesława; Liersch, Alina; Olejnik, Anna; Kozłowska, Katarzyna; Bocianowski, Jan; Cegielska-Taras, Teresa

    2016-09-01

    Resynthesized (RS) oilseed rape (Brassica napus L.) is potentially of great interest for hybrid breeding. However, a major problem with the direct use of RS B. napus is the quality of seed oil (high level of erucic acid) and seed meal (high glucosinolate content), which does not comply with double-low quality oilseed rape. Thus, additional developments are needed before RS B. napus can be introduced into breeding practice. In this study, RS oilseed rape was obtained through crosses between B. rapa ssp. chinensis var. chinensis and B. oleracea ssp. acephala var. sabellica. RS plant was then crossed with double-low (00) winter oilseed rape lines containing the Rfo gene for Ogura cytoplasmic male sterility (CMS ogu) system. Populations of doubled haploids (DH) were developed from these F1 hybrids using the microspore in vitro culture method. The seeds of semi-RS DH lines were analyzed for erucic acid and glucosinolate content. Among the populations of semi-RS DHs four 00-quality lines with the Rfo gene were selected. Using 344 AFLP markers to estimate genetic relatedness, we showed that the RS lines and semi-RS lines formed clusters that were clearly distinct from 96 winter oilseed rape parental lines of F1 hybrids.

  19. Homeotic-like modification of stamens to petals is associated with aberrant mitochondrial gene expression in cytoplasmic male sterile Ogura Brassica juncea

    Indian Academy of Sciences (India)

    Gargi Meur; K. Gaikwad; S. R. Bhat; S. Prakash; P. B. Kirti

    2006-08-01

    We have previously reported correction of severe leaf chlorosis in the cytoplasmic male sterile Ogura (also called Ogu) Brassica juncea line carrying Ogura cytoplasm by plastid substitution via protoplast fusion. Two cybrids obtained from the fusion experiment, Og1 and Og2, were green and carried the plastid genome of B. juncea cv. RLM198. While Og1 displayed normal flower morphology comparable to that of its euplasmic B. juncea counterpart except for sterile anthers, Og2 retained homeotic-like floral modification of stamens to petal-like structures and several other floral deformities observed in the chlorotic (Ogu) B. juncea cv. RLM198 (or OgRLM). With respect to the mitochondrial genome, Og1 showed 81% genetic similarity to the fertile cultivar RLM while Og2 showed 93% similarity to OgRLM. In spite of recombination and rearrangements in the mitochondrial genomes in the cybrids, expression patterns of 10 out of 11 mitochondrial genes were similar in all the three CMS lines; the only exception was atp6, whose expression was altered. While Og1 showed normal atp6 transcript similar to that in RLM, in Og2 and OgRLM weak expression of a longer transcript was detected. These results suggest that the homeotic-like changes in floral patterning leading to petaloid stamens in Og2 and OgRLM may be associated with aberrant mitochondrial gene expression.

  20. Analysis of Differential Gene Expression Pattern in Brassica napus Hybrid Huayouza 6 and Its Parents Using Arabidopsis cDNA Microarray

    Institute of Scientific and Technical Information of China (English)

    SHEN Jun-ru; WU Jian-yong; ZHANG Jian; LIU Ping-wu; YANG Guang-sheng

    2006-01-01

    Huayouza 6, a new semi-winter Brassica napus variety with high-yield, good quality, prematurity and extensive adaptability, was derived from the cross between the female parent 8086A and male parent 7-5. Two cDNA-based Arabidopisis microarray were used to analyze gene differential expression in bud of an elite B. napus hybrid Huayouza6 and its parents,in which there were 83 over-expression transcripts and 331 under-expression transcripts between Huayouza 6 and its female parent 8086A and 94 over-expression transcripts, and 423 under-expression transcripts were demonstrated betweenHuayouza 6 and its male parent 7-5. Further analysis showed that there were significant number of genes responsible for photosynthesis, and its implication for heterosis was discussed. Northern analysis of phosphoribulokinase coincided with its expression pattern derived from hybridization of Arabidopsis cDNA microarray and B. napus mRNA, this system of heterologous hybridization analysis should be applicable to other close relatives of Arabidopsis thaliana.

  1. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress.

    Science.gov (United States)

    Kubala, Szymon; Wojtyla, Łukasz; Quinet, Muriel; Lechowska, Katarzyna; Lutts, Stanley; Garnczarska, Małgorzata

    2015-07-01

    Osmopriming is a pre-sowing treatment that enhances germination performance and stress tolerance of germinating seeds. Brassica napus seeds showed osmopriming-improved germination and seedling growth under salinity stress. To understand the molecular and biochemical mechanisms of osmopriming-induced salinity tolerance, the accumulation of proline, gene expression and activity of enzymes involved in proline metabolism and the level of endogenous hydrogen peroxide were investigated in rape seeds during osmopriming and post-priming germination under control (H2O) and stress conditions (100 mM NaCl). The relationship between gene expression and enzymatic activity of pyrroline-5-carboxylate synthetase (P5CS), ornithine-δ-aminotransferase (OAT) and proline dehydrogenase (PDH) was determined. The improved germination performance of osmoprimed seeds was accompanied by a significant increase in proline content. The accumulation of proline during priming and post-priming germination was associated with strong up-regulation of the P5CSA gene, down-regulation of the PDH gene and accumulation of hydrogen peroxide. The up-regulated transcript level of P5CSA was consistent with the increase in P5CS activity. This study shows, for the first time, the role of priming-induced modulation of activities of particular genes and enzymes of proline turnover, and its relationship with higher content of hydrogen peroxide, in improving seed germination under salinity stress. Following initial stress-exposure, the primed seeds acquired stronger salinity stress tolerance during post-priming germination, a feature likely linked to a 'priming memory'.

  2. Screening of Candidate Leaf Morphology Genes by Integration of QTL Mapping and RNA Sequencing Technologies in Oilseed Rape (Brassica napus L.)

    Science.gov (United States)

    Jian, Hongju; Yang, Bo; Zhang, Aoxiang; Zhang, Li; Xu, Xinfu; Li, Jiana; Liu, Liezhao

    2017-01-01

    Leaf size and shape play important roles in agronomic traits, such as yield, quality and stress responses. Wide variations in leaf morphological traits exist in cultivated varieties of many plant species. By now, the genetics of leaf shape and size have not been characterized in Brassica napus. In this study, a population of 172 recombinant inbred lines (RILs) was used for quantitative trait locus (QTL) analysis of leaf morphology traits. Furthermore, fresh young leaves of extreme lines with more leaf lobes (referred to as ‘A’) and extreme lines with fewer lobes (referred to as ‘B’) selected from the RIL population and leaves of dissected lines (referred to as ‘P’) were used for transcriptional analysis. A total of 31 QTLs for the leaf morphological traits tested in this study were identified on 12 chromosomes, explaining 5.32–39.34% of the phenotypic variation. There were 8, 6, 2, 5, 8, and 2 QTLs for PL (petiole length), PN (lobe number), LW (lamina width), LL (Lamina length), LL/LTL (the lamina size ratio) and LTL (leaf total length), respectively. In addition, 74, 1,166 and 1,272 differentially expressed genes (DEGs) were identified in ‘A vs B’, ‘A vs P’ and ‘B vs P’ comparisons, respectively. The Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to predict the functions of these DEGs. Gene regulators of leaf shape and size, such as ASYMMETRIC LEAVES 2, gibberellin 20-oxidase 3, genes encoding gibberellin-regulated family protein, genes encoding growth-regulating factor and KNOTTED1-like homeobox were also detected in DEGs. After integrating the QTL mapping and RNA sequencing data, 33 genes, including a gene encoding auxin-responsive GH3 family protein and a gene encoding sphere organelles protein-related gene, were selected as candidates that may control leaf shape. Our findings should be valuable for studies of the genetic control of leaf morphological trait regulation in B. napus. PMID

  3. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds.

    Science.gov (United States)

    Sotelo, Tamara; Soengas, Pilar; Velasco, Pablo; Rodríguez, Víctor M; Cartea, María Elena

    2014-01-01

    Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.

  4. Cloning and analysis of a γ-tocopherol methyltransferase gene from Brassica oleracea and the function of its recombinant protein

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The full-length cDNA (BoTMT) of γ-TMT is obtained from Brassica oleracea by 3′- and 5′-RACE methods. The 1265 bp cDNA contains an open reading frame of 1044 bp, which encodes a protein of 347 amino acids with a predicted chloroplast transit peptide and two S-adenosylmethionine (SAM)-binding domains. Sequence analysis shows that the deduced protein shares 41.8%~86.5% similarity to known γ-TMTs. Semi-quantitative RT-PCR reveals that BoTMT is expressed preferentially in flowers and leaves of B. oleracea. The recombinant γ-TMT protein is obtained by cloning its encoding region into the prokaryotic expression vector pET30a. The protein expressed in E. coli accounts for 22% of total bacterial protein. The enzyme activity assay indicates that the recombinant protein has relatively high activity to convert γ-tocopherol to α-tocopherol in vitro.

  5. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds.

    Directory of Open Access Journals (Sweden)

    Tamara Sotelo

    Full Text Available Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds. Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.

  6. Cytoplasmic male sterility and inter and intra subgenomic heterosis studies in Brassica species: A review

    Directory of Open Access Journals (Sweden)

    Rameeh Valiollah

    2014-01-01

    Full Text Available Plants of the genus Brassica comprise a remarkably diverse group of crops and encompass varieties that are grown as oilseeds, vegetables, condiment mustards and forages. One of the basic requirements for developing hybrid varieties in oilseed Brassica is the availability of proven heterosis. The development of hybrid cultivars has been successful in many Brassica spp. Midparent heterosis and high-parent heterosis (heterobeltiosis have extensively been explored and utilized for boosting various quantity and quality traits in rapeseed. Heterosis is commercially exploited in rapeseed and its potential use has been demonstrated in turnip rape (B. rapa L. and Indian mustard (B. juncea L. for seed yield and most of the agronomic traits. The oilseed rape plant, B. napus, possesses two endogenous male sterile cytoplasms, nap and pol. Ogura type of cytoplasmic male sterility was first discovered in Japanese wild radish and other male-sterile Brassicas (Ogura bearing cytoplasm derived from interspecific crosses. Information concerning the allelic frequencies of restorers can be useful in trying to understand their evolutionary origins. The ogu, pol and nap cytoplasms of B. napus induce sterility in all, some, and only a few cultivars, respectively. In this study, different kinds of male sterility, combining ability and heterosis of qualitative and quantitative traits in different Brassica species will be reviеwed.

  7. Alteration of mitochondrial genomes containing atpA genes in the sexual progeny of cybrids between Raphanus sativus cms line and Brassica napus cv. Westar.

    Science.gov (United States)

    Sakai, T; Imamura, J

    1992-09-01

    We have investigated the fate of the mitochondrial genomes of cybrids derived from "donor-recipient" protoplast fusion between X-irradiated Raphanus sativus (cms line) and iodoacetamide-treated Brassica napus cv. Westar. Two out of ten fusion products were male-sterile with the diploid chromosome number of B. napus. The mitochondrial (mt) genomes of the cybrids and their progeny were further analyzed by DNA-DNA hybridizaion using the pea mitochondrial ATPase subunit gene (atpA) as a probe. One cybrid, 18-3, had a 3.0 kb fragment characteristic of B. napus and a 2.0 kb non-parental fragment when the BamHI-digested DNA was hybridized with the probe. In the first-backcrossed progeny of this cybrid, the hybridization pattern was not stably inherited. A 4.0 kb radish fragment, not detectable in the cybrid, appeared in one of the BC1 generation siblings, and the 2.0 kb non-parental fragment was lost in another. The hybridization patterns in BC1 progeny siblings of cybrid 12-9 were also varied. The alteration of mtDNA in the cybrid progeny continued to the BC2 generation. There was no clear evidence of a heteroplasmic state or of sub-stoichiometric molecules in the mt genome of cybrid 18-3. A possible cause of the observed alteration in the mt genome is discussed.

  8. Molecular cloning and characterization of a novel pollen predominantly membrane protein gene BcMF12 from Brassica campestris ssp. chinensis.

    Science.gov (United States)

    Song, Jianghua; Zhang, Lixin; Cao, Jiashu

    2009-11-01

    A novel membrane protein gene, BcMF12, was isolated from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino) using rapid amplification of the cDNA ends based on a pollen-specific cDNA fragment (DN237936). The cDNA was 1,155 bp in length with an open reading frame of 894 bp capable of encoding a putative polypeptide of 297 amino acids with an estimated molecular mass of 34.6 kDa and a predicted isoelectric point of 9.6. Comparative and bioinformatics analyses revealed that BcMF12 showed high similarities with some membrane protein sequences previously published in the public database and contained six highly conserved transmembrane domains corresponding to six highly hydrophobic regions. This indicates that BcMF12 may be a putative membrane protein. RNA gel blot analysis indicated that the transcripts of BcMF12 were abundant in the flower bud, flower and anther, but not detected in the root, stem, leaf and pistil. Moreover, the BcMF12 transcripts were detectable at the late stages of pollen development. Morphological investigations of pollen from the BcMF12 antisense transgenic plants showed that most of pollen grains of transgenic plants were abnormal. These results strongly suggest that BcMF12 is a novel pollen-preferentially membrane protein which play an important role during the pollen development in Chinese cabbage.

  9. Construction of plant seed-specific expression vectors pSCB and pSCAB and the obtainment of transgenic Brassica napus H165 expressing poly-3-hydroxybutyrate synthetic genes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The seed-specific promoter and transit peptide were amplified and fused to the three genes phbA, phbB and phbC encoding PHB synthetic enzymes, respectively. Seed-specific expression vectors pSCB containing phbC and phbB, and pSCAB containing phbC, phbB and phbA, were constructed by introducing the genes with promoter and peptide into the binary vector pBI101. Transgenic Brassica napus H165 were obtained by Agrobacterium-mediated transformation with these vectors. They were confirmed by PCR, Southern and RT-PCR analyses.

  10. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers

    Directory of Open Access Journals (Sweden)

    Allender Charlotte J

    2010-03-01

    Full Text Available Abstract Background The amphiploid species Brassica napus (oilseed rape, Canola is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types, 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species. Results Three chloroplast haplotypes occurred in B. napus. The most prevalent haplotype (found in 79% of accessions was not present within the C genome accessions but was found at low frequencies in B. rapa. Chloroplast haplotypes characteristic of B. napus were found in a small number of wild and weedy B. rapa populations, and also in two accessions of cultivated B. rapa 'brocoletto'. Whilst introgression of the B. napus chloroplast type in the wild and weedy B. rapa populations has been proposed by other studies, the presence of this haplotype within the two brocoletto accessions is unexplained. Conclusions The distribution of chloroplast haplotypes eliminate any of the C genome species as being the maternal ancestor of the majority of the B. napus accessions. The presence of multiple chloroplast

  11. Cloning, Sequence Analysis and Expression Patterns during Seed Germination of a Rapeseed (Brassica napus L. G-x-S-x-G-motif Lipase Gene

    Directory of Open Access Journals (Sweden)

    Imen GLAIED GHRAM

    2016-12-01

    Full Text Available Lipases catalyze the hydrolysis of ester bonds in triacylglycerides, generating glycerol and free fatty acids. These enzymes are encoded by extremely complex gene families, and appear to fulfil many different biological functions. Although they are present in all types of organisms, available information on plant lipases is still very limited, as compared to their bacterial and animal counterparts. A full-length clone, BnLIP, encoding a putative lipase, has been isolated by PCR amplification of Brassica napus genomic DNA, with oligonucleotide primers derived from the sequence of an Arabidopsis thaliana homologue. The clone included an open reading frame of 1581 bp encoding a polypeptide of 526 amino acids, with a calculated molecular mass of 59.5 kDa. Analysis of the deduced protein sequence, sequence alignment with homologous proteins from related plant species, and a phylogenetic analysis revealed that the BnLIP protein belongs to the ‘classical’ GxSxG-motif lipase family. RT-PCR assays indicated that the BnLIP gene is expressed specifically, but only transiently, during seed germination: the lipase mRNA was not present at detectable levels in ungerminated seeds, was detected only three days after seed imbibition, but its levels decreased rapidly afterwards. No expression was observed in roots, stems or leaves of adult plants. This expression pattern suggests that BnLIP is one of the lipases involved in the hydrolysis of triacylglycerides stored in rapeseed seeds, ultimately providing nutrients and energy to sustain seedling growth until photosynthesis is activated.

  12. BcMF26a and BcMF26b Are Duplicated Polygalacturonase Genes with Divergent Expression Patterns and Functions in Pollen Development and Pollen Tube Formation in Brassica campestris.

    Directory of Open Access Journals (Sweden)

    Meiling Lyu

    Full Text Available Polygalacturonase (PG is one of the cell wall hydrolytic enzymes involving in pectin degradation. A comparison of two highly conserved duplicated PG genes, namely, Brassica campestris Male Fertility 26a (BcMF26a and BcMF26b, revealed the different features of their expression patterns and functions. We found that these two genes were orthologous genes of At4g33440, and they originated from a chromosomal segmental duplication. Although structurally similar, their regulatory and intron sequences largely diverged. QRT-PCR analysis showed that the expression level of BcMF26b was higher than that of BcMF26a in almost all the tested organs and tissues in Brassica campestris. Promoter activity analysis showed that, at reproductive development stages, BcMF26b promoter was active in tapetum, pollen grains, and pistils, whereas BcMF26a promoter was only active in pistils. In the subcellular localization experiment, BcMF26a and BcMF26b proteins could be localized to the cell wall. When the two genes were co-inhibited, pollen intine was formed abnormally and pollen tubes could not grow or stretch. Moreover, the knockout mutants of At4g33440 delayed the growth of pollen tubes. Therefore, BcMF26a/b can participate in the construction of pollen wall by modulating intine information and BcMF26b may play a major role in co-inhibiting transformed plants.

  13. Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization.

    Science.gov (United States)

    Zlobin, I E; Kholodova, V P; Rakhmankulova, Z F; Kuznetsov, Vl V

    2015-08-01

    In the present study, the influence of 50 and 100 µM CuSO4 was investigated starting from 3 h till 72 h treatment of 4-weeks Brassica napus plants. High CuSO4 concentrations in nutrient medium resulted in the rapid copper accumulation in plants, especially in roots, much slower and to lower degree in leaves. Copper excess induced early decrease in the leaf water content and temporary leaf wilting. The decrease in content of photosynthetic pigments became significant to 24 h of excessive copper treatments and reached 35 % decrease to 72 h, but there were no significant changes in maximum quantum efficiency of photosystem II photochemistry. The copper excess affected the expression of ten genes involved in heavy metal homeostasis and copper detoxification. The results showed the differential and organ-specific expression of most genes. The potential roles of copper-activated genes encoding heavy metal transporters (ZIP5, NRAMP4, YSL2, and MRP1), metallothioneins (MT1a and MT2b), low-molecular chelator synthesis enzymes (PCS1 and NAS2), and metallochaperones (CCS and HIPP06) in heavy metal homeostasis and copper ion detoxification were discussed. The highest increase in gene expression was shown for NRAMP4 in leaves in spite of relatively moderate Cu accumulation there. The opinion was advanced that the NRAMP4 activation can be considered among the early reactions in the defense of the photosystem II against copper excess.

  14. Differential expression of salt tolerance related genes in Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee

    Institute of Scientific and Technical Information of China (English)

    Yang QIU; Xi-xiang LI; Hai-ying ZHI; Di SHEN; Peng LU

    2009-01-01

    We examined salt tolerance responsive genes in Pak-choi under salt stress and analyze their potential function. The mRNA differential display was used to screen the transcript derived fragments (TDFs) related to salinity tolerance in tolerant and moderately tolerant Pak-choi germplasm. Seventy-eight primer combinations generated 101 differential cDNA fragments, which were divided into 10 expression types. Seven cDNA sequences (GenBank accession Nos. DQ006915-DQ006921) obtained and sequenced were highly homologous to some known expression genes or the genes related to the signaling pathways in plants under different abiotic stress.

  15. Craniometric variation and homogeneity in prehistoric/protohistoric Rapa Nui (Easter Island) regional populations.

    Science.gov (United States)

    Stefan, V H

    1999-12-01

    Discrete cranial morphological traits of prehistoric/protohistoric Rapa Nui (Easter Island) inhabitants have been examined and have illustrated distinct regional or tribal differences; however, craniometric traits have not been as extensively evaluated to determine if similar regional population differences exist. This study examines the range of variability of Rapa Nui craniometrics and utilizes population genetic techniques to evaluate the level of homogeneity/heterogeneity within the island populations. The data consist of 50 cranio-facial measurements of Rapanui (Easter Islanders) skeletal material from the Late Prehistoric (1680-1722) and Protohistoric (1722-1868) periods. The sample was divided into five tribal regions: North, Northeast, South, Southwest, and West. General linear models (GLM) statistical analyses revealed one variable significant for males and 10 for females across tribal regions, totaling 11 regionally significant variables. Discriminant function analyses utilizing crossvalidation provided classification error rates of 55.8% males and 59.0% for females when utilizing those eleven significant variables. Minimum F(ST) values for males (0.06378) and females (0.09409) were calculated from unbiased Mahalanobis D(2) values. These values indicate that males have greater between-group homogeneity than females. The determinant ratio for the Northeast tribal region was the only significant ratio, yet all but one of the regional determinant ratios displayed a pattern of greater male than female mobility. These results indicate that significant craniometric differences between the tribal regions did not exist in prehistoric/protohistoric Rapa Nui populations, supporting the findings of previous research which has documented the homogeneity of the craniometrics of those tribal populations. The calculated minimum F(ST) values indicate the existence of different levels of heterogeneity between the male and female Rapa Nui regional populations resulting

  16. Isolation and sequence analysis of anthocyanidin synthase gene BaANS from Brassica albograbra%芥蓝Brassica albograbra花青素合成酶基因BaANS的克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    赵蓉蓉; 蒋明; 贺蔡明; 朱雅琴; 周敏

    2010-01-01

    根据NCBI数据库中的已知序列设计简并引物,分别从芥蓝(Brassica albograbra)叶片基因组DNA和cDNA中克隆到了花青素合成酶基因.基因命名为BaANS,该基因全长1 369 bp,具一个长度为292 bp的内含子,编码区长度为1 077 bp,编码358个氨基酸,序列已提交到NCBI,登录号为GU170203.序列比对结果表明,BaANS与甘蓝、拟南芥、紫罗兰、白菜和芥菜等的ANS有较高的相似性.

  17. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA. The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062 and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total

  18. Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-06-01

    Full Text Available Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL, “HO”, and a heat-sensitive cabbage line (HSCL, “JK”, by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13 were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS. Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress.

  19. Isolation and Expression Analysis of Two Cold-Inducible Genes Encoding Putative CBF Transcription Factors from Chinese Cabbage (Brassica pekinensis Rupr.)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two homologous genes of the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBF/DREB1) transcriptional activator were isolated by RT-PCR from Chinese cabbage (Brassica pekinensis Rupr.cv. Qinbai 5) and were designated as BcCBF1 and BcCBF2. Each encodes a putative CBF/DREB1 protein with an AP2 (Apetal2) DNA-binding domain, a putative nuclear localization signal, and a possible acidic activation domain. Deduced amino acid sequences show that BcCBF1 is very similar to the Arabidopsis CBF1, whereas BcCBF2 is different in that it contains two extra regions of 24 and 20 amino acids in the acidic domain. The mRNA accumulation profiles indicated that the expression of BcCBF1 and BcCBF2 is strongly induced by cold treatment, but does not respond similarly to dehydration or abscisic acid (ABA) treatment. However,the cold-induced accumulation of BcCBF2 mRNA was rapid but short-lived compared with that of BcCBF1.The mRNA levels of both BcCBF1 and BcCBF2 were higher in leaves than in roots when plants were exposed to cold, whereas, salt stress caused higher accumulation of BcCBF2 mRNA in roots than in leaves,suggesting that the organ specificity of the gene expression of the BcCBFs is probably stress dependent.In addition, the accumulation of BcCBF1 and BcCBF2 mRNAs was greatly enhanced by light compared with darkness when seedlings were exposed to cold. It is concluded that the two BcCBF proteins may be involved in the process of plant response to cold stress through an ABA-independent pathway and that there is also a cross-talk between the light signaling conduction pathway and the cold response pathway in B. pekinensis as In Arabidopsis.

  20. Effects of the endophyte Acremonium alternatum on oilseed rape (Brassica napus development and clubroot progression

    Directory of Open Access Journals (Sweden)

    SUSANN AUER

    2014-06-01

    Full Text Available The clubroot pathogen Plasmodiophora brassicae infects economically important Brassica crops such as oilseed rape and vegetable brassicas. Clubroot results in abnormally growing roots and restricts the flow of water and nutrients to the upper plant parts, thereby inducing wilting. Yield loss affects about half the percentage of infected plants. Due to its complex and well-adapted life cycle the pathogen is difficult to control by chemical and cultural means and therefore continues to spread around the globe. Infested fields can no longer be used effectively for cultivation of crop plants for at least the next ten years. Despite costly breeding of resistant cultivars, recent research leans towards alternative, low-impact and environmentally friendly methods to control clubroot. To this end we have previously identified the endophyte Acremonium alternatum, a known biological control agent in several countries, to show promising antagonistic effects in clubroot-infected A. thaliana and Chinese cabbage (Brassica rapa. Here, we will describe its effect on the growth, development and clubroot control of oilseed rape (Brassica napus. While the clubroot symptoms were not clearly reduced after co-inoculation with A. alternatum and P. brassicae on oilseed rape roots, the aboveground plant parts were delayed in senescence and produced more seeds, which is indicative of an increase in yield after A. alternatum treatment. The long-term goal of this work is to contribute to a fundamental understanding of endophyte-plant interactions and an effective reduction of clubroot to be used in integrated pest management for oilseed rape and other cabbage varieties.

  1. Rapa Nui (Easter Island)’s Stone Worlds

    OpenAIRE

    Sue Hamilton

    2013-01-01

    This article explores the spatial, architectural and conceptual relationships between landscape places, stone quarrying, and stone moving and building during Rapa Nui’s statue-building period. These are central themes of the ‘Rapa Nui Landscapes of Construction Project’ and are discussed using aspects of the findings of our recent fieldwork. The different scales of expression, from the detail of the domestic sphere to the monumental working of quarries, are considered. It is suggested that th...

  2. RESIDUOS DE PLAGUICIDAS ORGANOFOSFORADOS EN CABEZUELA DE BRÓCOLI (Brassica oleracea) DETERMINADOS POR CROMATOGRAFÍA DE GASES

    OpenAIRE

    Ma. Antonia PÉREZ; Segura, Antonio; Rosario GARCÍA; Teresa COLINAS; Pérez, Mario; Vázquez, Antonio; Navarro, Hermilio

    2009-01-01

    Este trabajo documenta el historial de manejo de plagas del cultivo de brócoli y determinación de los residuos de plaguicidas organofosforados mediante cromatografía de gases en cabezuelas listas para su comercialización en 23 sitios de producción. Los resultados indican que las plagas de mayor incidencia en el brócoli son Brevicoryne brassicae, Trichoplusia ni, Copitarsia consueta, Artogeia rapae, Trialeurodes sp y Bermisia tabaci, reportadas con una frecuencia de 82.5, 80, 80, 70 y 37.7 % p...

  3. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica)

    OpenAIRE

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plan...

  4. Influence of light and temperature on gene expression leading to accumulation of specific flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica)

    OpenAIRE

    Susanne eNeugart; Angelika eKrumbein; Rita Maria eZrenner

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plan...

  5. An Efficient Method for Adventitious Root Induction from Stem Segments of Brassica Species.

    Science.gov (United States)

    Srikanth, Sandhya; Choong, Tsui Wei; Yan, An; He, Jie; Chen, Zhong

    2016-01-01

    Plant propagation via in vitro culture is a very laborious and time-consuming process. The growth cycle of some of the crop species is slow even in the field and the consistent commercial production is hard to maintain. Enhanced methods of reduced cost, materials and labor significantly impact the research and commercial production of field crops. In our studies, stem-segment explants of Brassica species were found to generate adventitious roots (AR) in aeroponic systems in less than a week. As such, the efficiency of rooting from stem explants of six cultivar varieties of Brassica spp was tested without using any plant hormones. New roots and shoots were developed from Brassica alboglabra (Kai Lan), B. oleracea var. acephala (purple kale), B. rapa L. ssp. chinensis L (Pai Tsai, Nai Bai C, and Nai Bai T) explants after 3 to 5 days of growing under 20 ± 2°C cool root zone temperature (C-RZT) and 4 to 7 days in 30 ± 2°C ambient root zone temperature (A-RZT). At the base of cut end, anticlinal and periclinal divisions of the cambial cells resulted in secondary xylem toward pith and secondary phloem toward cortex. The continuing mitotic activity of phloem parenchyma cells led to a ring of conspicuous white callus. Root initials formed from the callus which in turn developed into ARs. However, B. rapa var. nipposinica (Mizuna) explants were only able to root in C-RZT. All rooted explants were able to develop into whole plants, with higher biomass obtained from plants that grown in C-RZT. Moreover, explants from both RZTs produced higher biomass than plants grown from seeds (control plants). Rooting efficiency was affected by RZTs and explant cuttings of donor plants. Photosynthetic CO2 assimilation rate (Asat ) and stomatal conductance (gssat ) were significantly differentiated between plants derived from seeds and explants at both RZTs. All plants in A-RZT had highest transpiration rates.

  6. A systems genetics study of seed quality and seedling vigour in Brassica rapa

    NARCIS (Netherlands)

    Basnet, R.K.

    2015-01-01

    Summary Seed is the basic and most critical input for seed propagated agricultural crops: seed quality and seedling vigour determine plant establishment, growth and development in both natural and agricultural ecosystems. Seed quality and seedling vigour are mainly determined by the

  7. Gravity control of growth form in brassica rapa and arabidopsis thaliana (brassicaceae): consequences for secondary metabolism

    NARCIS (Netherlands)

    Allen, J.; Bisbee, P.A.; Darnell, R.L.; Kuang, A.; Levine, L.H.; Musgrave, M.E.; van Loon, J.J.W.A.

    2009-01-01

    How gravity influences the growth form and flavor components of plants is of interest to the space program because plants could be used for food and life support during prolonged missions away from the planet, where that constant feature of Earth’s environment does not prevail. We used plant growth

  8. A Genetic Linkage Map of Brassica rapa Based on AFLP Markers

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian-jun; WANG Xiao-wu; Guusje Bonnema; SUN Ri-fei; XU Ze-yong; Dick Vreugdenhi; Maarten Koornneef

    2005-01-01

    A F2 mapping population was developed by crossing a Chinese cabbage-pe-tsai variety CC156 and an oil type Rapid cycling RC144 which were different from each other in morphology, maturity, self-compatibility, plant height, etc. Using 244 AFLP markers a map was constructed containing 10 main linkage groups covering a total distance of 857 cM,corresponding to 3.5 cM per marker. Length of linkage groups varied from 43 to 125 cM and the number of AFLP markers linkage to each group ranged from 7 to 41.

  9. Activity of cellulase from Thermoactinomycetes and Bacillus spp. isolated from Brassica waste compost Atividade de celulase de Termoactinomicetos e Bacillus spp. isolados de resíduos derivados de compostos de Brassica

    Directory of Open Access Journals (Sweden)

    Chen-Chin Chang

    2009-06-01

    Full Text Available Plant wastes present a high cellulose content, which is an ideal organic material for composting. Five strains of thermophiles from processed Brassica waste were isolated, and the hydrolytic activity on various cellulosic biomass substrata and their temperature profiles were determined. 16S rRNA sequencing identified these strains as Thermoactinomyces and Bacillus spp. Maximal cellulase activity corresponded to 2.3 U mL-1 of enzyme. The application of these strains on Brassica rapa residues demonstrates increased total nitrogen content. TA-3, a Thermoactinomycetes sp. strain, performs best among all inoculants, increasing the nitrogen content from 0.74 to 0.91%, and decreasing the carbon content from 15.4 to 12.2%, showing its high efficiency and bioactivity during compositing.Resíduos vegetais apresentam alta concentração de celulose, que é um material orgânico ideal para preparação de composto. Cinco linhagens de termófilos foram isoladas de resíduos processados de Brassica e a atividade hidrolítica em vários substratos contendo celulose e seus padrões de temperatura foram determinados. O seqüenciamento de rRNA 16S permitiu a identificação dessas isolados como Thermoactinomyces e Bacillus spp. A atividade máxima de celulase foi determinada como de 2,3 U mL-1 de enzima. O uso dessas linhagens em resíduos de Brassica rapa resultou em um aumento total do conteúdo de nitrogênio. TA-3, uma linhagem de Thermoactinomycetes sp., apresentou melhor desempenho entre os inoculantes, aumentando o conteúdo de nitrogênio de 0,74 para 0,91%, e diminuindo o conteúdo de carbono de 15,4 para 12,2%, mostrando sua alta eficiência e bioatividade durante a compostagem.

  10. Cloning and characterization of the nicotianamine synthase gene in Eruca vesicaria subsp sativa.

    Science.gov (United States)

    Huang, B L; Cheng, C; Zhang, G Y; Su, J J; Zhi, Y; Xu, S S; Cai, D T; Zhang, X K; Huang, B Q

    2015-12-22

    Nicotianamine (NA) is a ubiquitous metabolite in plants that bind heavy metals, is crucial for metal homeostasis, and is also an important metal chelator that facilitates long-distance metal transport and sequestration. NA synthesis is catalyzed by the enzyme nicotianamine synthase (NAS). Eruca vesicaria subsp sativa is highly tolerant to Ni, Pb, and Zn. In this study, a gene encoding EvNAS was cloned and characterized in E. vesicaria subsp sativa. The full-length EvNAS cDNA sequence contained a 111-bp 5'-untranslated region (UTR), a 155-bp 3'-UTR, and a 966-bp open reading frame encoding 322-amino acid residues. The EvNAS genomic sequence contained no introns, which is similar to previously reported NAS genes. The deduced translation of EvNAS contained a well-conserved NAS domain (1-279 amino acids) and an LIKI-CGEAEG box identical to some Brassica NAS and to the LIRL-box in most plant NAS, which is essential for DNA binding. Phylogenetic analysis indicated that EvNAS was most closely related to Brassica rapa NAS3 within the Cruciferae, followed by Thlaspi NAS1, Camelina NAS3, and Arabidopsis NAS3. A reverse transcription-polymerase chain reaction indicated that EvNAS expression was greatest in the leaves, followed by the flower buds and hypocotyls. EvNAS was moderately expressed in the roots.

  11. Cell division and endoreduplication play important roles in stem swelling of tuber mustard (Brassica juncea Coss. var. tumida Tsen et Lee).

    Science.gov (United States)

    Shi, H; Wang, L L; Sun, L T; Dong, L L; Liu, B; Chen, L P

    2012-11-01

    We investigated spatio-temporal variations in cell division and the occurrence of endoreduplication in cells of tuber mustard stems during development. Cells in the stem had 8C nuclei (C represents DNA content of a two haploid genome), since it is an allotetraploid species derived from diploid Brassica rapa (AA) and B. nigra (BB), thus indicating the occurrence of endoreduplication. Additionally, we observed a dynamic change of cell ploidy in different regions of the swollen stems, with a decrease in 4C proportion in P4-1 and a sharp increase in 8C cells that became the dominant cell type (86.33% at most) in the inner pith cells. Furthermore, cDNAs of 14 cell cycle genes and four cell expansion genes were cloned and their spatial transcripts analysed in order to understand their roles in stem development. The expression of most cell cycle genes peaked in regions of the outer pith (P2 or P3), some genes regulating S/G2 and G2/M (BjCDKB1;2, BjCYCB1;1 and BjCYCB1;2) significantly decrease in P5 and P6, while G1/S regulators (BjE2Fa, BjE2Fb and BjE2Fc) showed a relative high expression level in the inner pith (P5) where cells were undergoing endoreduplication. Coincidentally, BjXTH1and BjXTH2 were exclusively expressed in the endoreduplicated cells. Our results suggest that cells of outer pith regions (P2 and P3) mainly divide for cell proliferation, while cells of the inner pith expand through endoreduplication. Endoreduplication could trigger expression of BjXTH1 and BjXTH2 and thus function in cell expansion of the pith tissue.

  12. Cloning and characterization of the dehydration-responsive element-binding protein 2A gene in Eruca vesicaria subsp sativa.

    Science.gov (United States)

    Huang, B L; Zhang, X K; Li, Y Y; Li, D Y; Ma, M Y; Cai, D T; Wu, W H; Huang, B Q

    2016-08-05

    Eruca vesicaria subsp sativa is one of the most tolerant Cruciferae species to drought, and dehydration-responsive element-binding protein 2A (DREB2A) is involved in responses to salinity, heat, and particularly drought. In this study, a gene encoding EvDREB2A was cloned and characterized in E. vesicaria subsp sativa. The full-length EvDREB2A cDNA sequence contained a 388-bp 5'-untranslated region (UTR), a 348-bp 3'-UTR, and a 1002-bp open reading frame that encoded 334 amino acid residues. The theoretical isoelectric point of the EvDREB2A protein was 4.80 and the molecular weight was 37.64 kDa. The genomic sequence of EvDREB2A contained no introns. Analysis using SMART indicated that EvDREB2A contains a conserved AP2 domain, similar to other plant DREBs. Phylogenetic analysis revealed that EvDREB2A and DREB2As from Brassica rapa, Eutrema salsugineum, Arabidopsis thaliana, Arabidopsis lyrata, and Arachis hypogaea formed a small subgroup, which clustered with DREB2Bs from A. lyrata, A. thaliana, Camelina sativa, and B. rapa to form a larger subgroup. EvDREB2A is most closely related to B. rapa DREB2A, followed by DREB2As from E. salsugineum, A. thaliana, A. hypogaea, and A. lyrata. A quantitative real-time polymerase chain reaction indicated that EvDREB2A expression was highest in the leaves, followed by the roots and hypocotyls, and was lowest in the flower buds. EvDREB2A could be used to improve drought tolerance in crops.

  13. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Jian Wu

    Full Text Available Stem rot caused by Sclerotinia sclerotiorum in many important dicotyledonous crops, including oilseed rape (Brassica napus, is one of the most devastating fungal diseases and imposes huge yield loss each year worldwide. Currently, breeding for Sclerotinia resistance in B. napus, as in other crops, can only rely on germplasms with quantitative resistance genes. Thus, the identification of quantitative trait locus (QTL for S. sclerotiorum resistance/tolerance in this crop holds immediate promise for the genetic improvement of the disease resistance. In this study, ten QTLs for stem resistance (SR at the mature plant stage and three QTLs for leaf resistance (LR at the seedling stage in multiple environments were mapped on nine linkage groups (LGs of a whole genome map for B. napus constructed with SSR markers. Two major QTLs, LRA9 on LG A9 and SRC6 on LG C6, were repeatedly detected across all environments and explained 8.54-15.86% and 29.01%-32.61% of the phenotypic variations, respectively. Genotypes containing resistant SRC6 or LRA9 allele showed a significant reduction in disease lesion after pathogen infection. Comparative mapping with Arabidopsis and data mining from previous gene profiling experiments identified that the Arabidopsis homologous gene of IGMT5 (At1g76790 was related to the SRC6 locus. Four copies of the IGMT5 gene in B. napus were isolated through homologous cloning, among which, only BnaC.IGMT5.a showed a polymorphism between parental lines and can be associated with the SRC6. Furthermore, two parental lines exhibited a differential expression pattern of the BnaC.IGMT5.a gene in responding to pathogen inoculation. Thus, our data suggested that BnaC.IGMT5.a was very likely a candidate gene of this major resistance QTL.

  14. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  15. Role of Relative Humidity in Processing and Storage of Seeds and Assessment of Variability in Storage Behaviour in Brassica spp. and Eruca sativa

    Directory of Open Access Journals (Sweden)

    A. Suma

    2013-01-01

    Full Text Available The role of relative humidity (RH while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40±2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa.

  16. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa.

    Science.gov (United States)

    Suma, A; Sreenivasan, Kalyani; Singh, A K; Radhamani, J

    2013-01-01

    The role of relative humidity (RH) while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40 ± 2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa.

  17. Analysis of the genome of a Korean isolate of the Pieris rapae granulovirus enabled by its separation from total host genomic DNA by pulse-field electrophoresis.

    Directory of Open Access Journals (Sweden)

    Yong Hun Jo

    Full Text Available BACKGROUND: Most traditional genome sequencing projects involving viruses include the culture and purification of the virus particles. However, purification of virions may yield insufficient material for traditional sequencing. The electrophoretic method described here provides a strategy whereby the genomic DNA of the Korean isolate of Pieris rapae granulovirus (PiraGV-K could be recovered in sufficient amounts for sequencing by purifying it directly from total host DNA by pulse-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The total genomic DNA of infected P. rapae was embedded in agarose plugs, treated with restriction nuclease and methylase, and then PFGE was used to separate PiraGV-K DNA from the DNA of P. rapae, followed by mapping of fosmid clones of the purified viral DNA. The double-stranded circular genome of PiraGV-K was found to encode 120 open reading frames (ORFs, which covered 92% of the sequence. BLAST and ORF arrangement showed the presence of 78 homologs to other genes in the database. The mean overall amino acid identity of PiraGV-K ORFs was highest with the Chinese isolate of PiraGV (~99%, followed up with Choristoneura occidentalis ORFs at 58%. PiraGV-K ORFs were grouped, according to function, into 10 genes involved in transcription, 11 involved in replication, 25 structural protein genes, and 15 auxiliary genes. Genes for Chitinase (ORF 10 and cathepsin (ORF 11, involved in the liquefaction of the host, were found in the genome. CONCLUSIONS/SIGNIFICANCE: The recovery of PiraGV-K DNA genome by pulse-field electrophoretic separation from host genomic DNA had several advantages, compared with its isolation from particles harvested as virions or inclusions from the P. rapae host. We have sequenced and analyzed the 108,658 bp PiraGV-K genome purified by the electrophoretic method. The method appears to be generally applicable to the analysis of genomes of large viruses.

  18. Arabidopsis mutant bik1 exhibits strong resistance to Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2016-09-01

    Full Text Available Botrytis-induced kinase1 (BIK1, a receptor-like cytoplasmic kinase, plays an important role in resistance against pathogens and insects in Arabidopsis thaliana. However, it remains unknown whether BIK1 functions against Plasmodiophora brassicae, an obligate biotrophic protist that attacks cruciferous plants and induces gall formation on roots. Here, we investigated the potential roles of receptors FLS2, BAK1 and BIK1 in the infection of P. brassicae cruciferous plants. Wild-type plants, fls2 and bak1 mutants showed typical symptom on roots, and the galls were filled with large quantities of resting spores, while bik1 mutant plants exhibited strong resistance to P. brassicae. Compared with that of the wild-type plants, the root hair and cortical infection rate of bik1 mutant were significantly reduced by about 40-50%. A considerable portion of bik1 roots failed to form typical galls. Even if some small galls were formed, they were filled with multinucleate secondary plasmodia. The bik1 plants accumulated less reactive oxygen species (ROS at infected roots than other mutants and wild-type plants. Exogenous salicylic acid (SA treatment alleviated the clubroot symptoms in wild-type plants, and the expression of the SA signaling marker gene PR1 was significantly increased in bik1. Both sid2 (salicylic acid induction-deficient 2 and npr1-1 (non-expresser of PR genes that regulate systemic acquired resistance (SAR mutants showed increased susceptibility to P. brassicae compared with wild-type plants. These results suggest that the resistance of bik1 to P. brassicae is possibly mediated by SA inducible mechanisms enhance the resistance to clubroot disease.

  19. 甘蓝型油菜BnFAD8基因编码序列的克隆和表达谱分析%Cloning and expression characteristics of fatty acid desaturase 8 gene from rape (Brassica napus L.)

    Institute of Scientific and Technical Information of China (English)

    刘绵学; 王茂华; 向俊蓓; 杨毅; 李旭锋

    2011-01-01

    通过比对拟南芥等同源基因,克隆了甘蓝型油菜FAD8基因中的保守序列.以得到的FAD8(Fatty Acid Desaturase 8)保守序列片段为信息探针,在GenBank的EST数据库中检索高度同源的EST,并通过人工拼接及RT-PCR得到油菜该基因的全长为1299 bp的cDNA序列,命名为BnFAD8.序列分析结果中发现该基因符合质体定位的ω3脂肪酸脱饱和酶序列特征.通过比较22℃和8℃处理的甘蓝型油菜的BnFAD8基因表达谱,发现该基因在常温下仅存在痕量表达;而在低温条件下在叶中表达出现较大幅度的升高.推测BnFAD8基因和油菜的低温调控存在联系.%Brassica napus fatty acid desaturase 8 (FAD8) belongs to cold-induced omega 3 fatty acid desaturase.By aligning Arabidopsis FAD8 and other homologous FAD8 genes, one highly conserved sequence of FAD8 from rape was cloned in study.Using the FAD8 conserved sequence as a querying probe, highly homologous EST were obtained from database of GenBank and a putative complete ORF of 1299 bp (named: BnFAD8) was assembled according to the rape clone.Furthermore, the full length cDNA of Brassica napus FAD8 was cloned by RT-PCR with two primers designed based on this assembled cDNA sequence.Features of plasmid-located o3 fatty acid desaturase were found in sequence analysis of cDNA cloned.As shown in expression profile result, BnFAD8 was highly expressed in leaves at 8 ℃, but only trace-level expression in leaves at 22 ℃, which suggested that BnFAD8 involved in the process of rape cold acclimation.

  20. The pangenome of an agronomically important crop plant Brassica oleracea.

    Science.gov (United States)

    Golicz, Agnieszka A; Bayer, Philipp E; Barker, Guy C; Edger, Patrick P; Kim, HyeRan; Martinez, Paula A; Chan, Chon Kit Kenneth; Severn-Ellis, Anita; McCombie, W Richard; Parkin, Isobel A P; Paterson, Andrew H; Pires, J Chris; Sharpe, Andrew G; Tang, Haibao; Teakle, Graham R; Town, Christopher D; Batley, Jacqueline; Edwards, David

    2016-11-11

    There is an increasing awareness that as a result of structural variation, a reference sequence representing a genome of a single individual is unable to capture all of the gene repertoire found in the species. A large number of genes affected by presence/absence and copy number variation suggest that it may contribute to phenotypic and agronomic trait diversity. Here we show by analysis of the Brassica oleracea pangenome that nearly 20% of genes are affected by presence/absence variation. Several genes displaying presence/absence variation are annotated with functions related to major agronomic traits, including disease resistance, flowering time, glucosinolate metabolism and vitamin biosynthesis.

  1. Genomic advances will herald new insights into the Brassica: Leptosphaeria maculans pathosystem.

    Science.gov (United States)

    Hayward, A; McLanders, J; Campbell, E; Edwards, D; Batley, J

    2012-03-01

    The study of the relationship between plants and phytopathogenic fungi is one of the most rapidly moving fields in the plant sciences, the findings of which have contributed to the development of new strategies and technologies to protect crops. Plants employ sophisticated mechanisms to perceive and appropriately defend themselves against pathogens. A good example of plant and pathogen evolution is the gene-for-gene interaction between the fungal pathogen Leptosphaeria maculans, the causal agent of blackleg disease, and Brassica crops. This interaction has been studied at the genetic and physiological level due to its agro-economic importance. The newly available genome sequence for Brassica spp. and L. maculans will provide the resources to study the co-evolution of this plant and pathogen. Particularly, an understanding of the co-evolution of genes responsible for virulence and resistance will lead to improved plant protection strategies for Brassica canola and provide a model to understand plant-pathogen interactions in other major crops. This review summarises the research-to-date in the study of the Brassica-L. maculans gene-for-gene interaction, with a focus on the genetics of resistance in Brassica and the wealth of information to be gained from genome sequencing efforts.

  2. Genome-Wide Analysis of the bZIP Gene Family Identifies Two ABI5-Like bZIP Transcription Factors, BrABI5a and BrABI5b, as Positive Modulators of ABA Signalling in Chinese Cabbage

    Science.gov (United States)

    Hu, Xiaochen; Sun, Congcong; Li, Yanlin; Wang, Dandan; Wang, Qinhu; Pei, Guoliang; Zhang, Yanfeng; Guo, Aiguang; Zhao, Huixian; Lu, Haibin; Mu, Xiaoqian; Hu, Jingjiang; Zhou, Xiaona; Xie, Chang Gen

    2016-01-01

    bZIP (basic leucine zipper) transcription factors coordinate plant growth and development and control responses to environmental stimuli. The genome of Chinese cabbage (Brassica rapa) encodes 136 putative bZIP transcription factors. The bZIP transcription factors in Brassica rapa (BrbZIP) are classified into 10 subfamilies. Phylogenetic relationship analysis reveals that subfamily A consists of 23 BrbZIPs. Two BrbZIPs within subfamily A, Bra005287 and Bra017251, display high similarity to ABI5 (ABA Insensitive 5). Expression of subfamily A BrbZIPs, like BrABI5a (Bra005287/BrbZIP14) and BrABI5b (Bra017251/BrbZIP13), are significantly induced by the plant hormone ABA. Subcellular localization assay reveal that both BrABI5a and BrABI5b have a nuclear localization. BrABI5a and BrABI5b could directly stimulate ABA Responsive Element-driven HIS (a HIS3 reporter gene, which confers His prototrophy) or LUC (LUCIFERASE) expression in yeast and Arabidopsis protoplast. Deletion of the bZIP motif abolished BrABI5a and BrABI5b transcriptional activity. The ABA insensitive phenotype of Arabidopsis abi5-1 is completely suppressed in transgenic lines expressing BrABI5a or BrABI5b. Overall, these results suggest that ABI5 orthologs, BrABI5a and BrABI5b, have key roles in ABA signalling in Chinese cabbage. PMID:27414644

  3. The terrestrial Isopoda (Crustacea, Oniscidea of Rapa Nui (Easter Island, with descriptions of two new species

    Directory of Open Access Journals (Sweden)

    Stefano Taiti

    2015-07-01

    Full Text Available Nine species of terrestrial isopods are reported for the Polynesian island of Rapa Nui (Easter Island based upon museum materials and recent collections from field sampling. Most of these animals are non-native species, but two are new to science: Styloniscus manuvaka sp. n. and Hawaiioscia rapui sp. n. Of these, the former is believed to be a Polynesian endemic as it has been recorded from Rapa Iti, Austral Islands, while the latter is identified as a Rapa Nui island endemic. Both of these new species are considered ‘disturbance relicts’ and appear restricted to the cave environment on Rapa Nui. A short key to all the oniscidean species presently recorded from Rapa Nui is provided. We also offered conservation and management recommendations for the two new isopod species.

  4. The terrestrial Isopoda (Crustacea, Oniscidea) of Rapa Nui (Easter Island), with descriptions of two new species.

    Science.gov (United States)

    Taiti, Stefano; Wynne, J Judson

    2015-01-01

    Nine species of terrestrial isopods are reported for the Polynesian island of Rapa Nui (Easter Island) based upon museum materials and recent collections from field sampling. Most of these animals are non-native species, but two are new to science: Styloniscusmanuvaka sp. n. and Hawaiiosciarapui sp. n. Of these, the former is believed to be a Polynesian endemic as it has been recorded from Rapa Iti, Austral Islands, while the latter is identified as a Rapa Nui island endemic. Both of these new species are considered 'disturbance relicts' and appear restricted to the cave environment on Rapa Nui. A short key to all the oniscidean species presently recorded from Rapa Nui is provided. We also offered conservation and management recommendations for the two new isopod species.

  5. Induction and mechanism of cucumber resistance to anthracnose induced by Pieris rapae extract

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pieris rapae extract was sprayed on the surface of cucumber leaf to determine the induction of resistance to anthracnose.The enzyme activities of peroxidase (POD) and polyphenoloxidase (PPO) were detected on cucumber leaves after P.rapae extract induction and pathogen challenge.The results showed that the disease index of cucumber anthracnose was significantly decreased after the cucumber was induced with the P.rapae extract at a concentration of 5.0 mg·mL-1.The POD and PPO activities in foliar-applied P.rapae extract without pathogen inoculation (PETO) or with pathogen inoculation (PETI) were relatively higher than those with no-P.rapae extract treatment and without pathogen inoculation (CONO) or with pathogen inoculation (CONI),respectively.The results suggested that the increased levels of POD and PPO activities in PETO and PETI play an important role in the induction of resistance to cucumber anthracnose.

  6. Molecular cloning, characterization and expression profiling of a serine protease gene Pr-SP1 in Pieris rapae(Lepidoptera: Pieridae)%菜粉蝶丝氨酸蛋白酶基因Pr-SP1的克隆及其表达谱分析

    Institute of Scientific and Technical Information of China (English)

    朱洋铿; 方琦; 胡萃; 叶恭银

    2011-01-01

    Insects mainly rely on innate immune responses to resist foreign invasion. Activation of the serine proteinase cascades, involved in hemolymph melanization and antimicrobial peptide synthesis, plays an important role. To define the role of serine proteinases in the innate immune responses of Pieris rapae, a cDNA fragment of a serine proteinase gene, Pr-SPl screened by RT-PCR using degenerate primer, was sorted out in this article. The full-length cDNA of Pr-SPl was cloned using RACE strategy. The cDNA length was found to be 1 489 bp, including a 1 059 bp open reading frame, which encodes 353 amino acids with a 20-amino-acid signal peptide. The predicted protein molecular mass and pi are 36. 85 kDa and 6.41, respectively. Multiple sequence alignment result revealed that Pr-SPl shares high identities with its homologs in other insect species, which also possesses a clip and active catalytic domain at N-terminus and C-terminus, respectively. Real-time quantitative PCR and Western blotting results indicated that Pr-SPl was primarily transcribed in granulocytes in the pupal stage and the protein product of Pr-SPl was detected mainly in plasma. Pr-SPl was transcribed and its protein product expressed in different developmental stages and instars. The highest and lowest transcript and expression levels appeared in 5 th instar larvae and egg stages, respectively. The transcript level of Pr-SPl and expression level of Pr-SPl' s protein product could be induced by Escherichia coli, Micrococcus luteus and Pichia pastoris. According to these results, Pr SPl could be considered as a candidate of Spatzle processing enzyme, which may participate in the innate immune responses in P. Rapae.%昆虫主要依靠先天免疫反应来抵御外源异物的入侵,而与血淋巴黑化及抗菌肽合成等过程密切相关的丝氨酸蛋白酶激活级联反应在其中起着重要作用.为阐明丝氨酸蛋白酶在菜粉蝶Pieris rapae免疫中的作用,本文通过简并引物RT-PCR

  7. Insect Resistance Analysis on the Transgenic Bt Gene Brassica napus L.%转Bt基因油菜的抗虫性分析

    Institute of Scientific and Technical Information of China (English)

    万丽丽; 王转茸; 辛强; 董发明; 洪登峰; 杨光圣

    2016-01-01

    利用农杆菌介导的遗传转化分别将Cry1C和Cry2A的2个单价Bt基因转入油菜(Brassica napusL.),以两个纯合的转基因抗虫油菜为亲本,通过有性杂交的方法将不同Bt基因聚合,培育双价Bt抗虫油菜,并对其抗虫性和种子品质性状进行评价.结果表明,Cry1C、Cry2A在聚合后均能稳定表达,和单价Cry1C转基因植株相比,双价株系中蛋白质含量明显降低,以Cry2A为母本的聚合株系蛋白质含量降低更多,Cry1C在遗传上存在母本效应.室内接种小菜蛾二龄幼虫结果显示,转化单价和双价聚合Bt基因的抗虫性增强,其中转化单价Cry1C的抗虫性优于双价聚合Bt基因和单价Cry2A基因的转基因植株.玻璃温室栽培转基因植株,单价Bt和双价聚合Bt基因的转基因植株能生存而非转基因植株受到严重虫害而死亡.对抗性优良的单价和双价聚合的转基因植株种子品质测定发现,与未受到虫害的受体材料双低优良恢复系7-5的含油量和硫苷含量差异不显著,从而达到抗性改良的目的.

  8. Taxonomy Icon Data: field mustard [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available S.png Brassica_rapa_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+rapa&t=L http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brassica+rapa&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brass...ica+rapa&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+rapa&t=NS ...

  9. Infestation of Polish Agricultural Soils by Plasmodiophora Brassicae Along The Polish-Ukrainian Border

    Directory of Open Access Journals (Sweden)

    Jędryczka Małgorzata

    2014-07-01

    Full Text Available There has been a rapid, worldwide increase in oilseed rape production that has resulted in enormous intensification of oilseed rape cultivation, leading to tight rotations. This in turn, has caused an accumulation of pests as well as foliar and soil-borne diseases. Recently, clubroot has become one of the biggest concerns of oilseed rape growers. Clubroot is caused by the soil-borne protist Plasmodiophora brassicae Woronin. The pathogen may be present in groundwater, lakes, and irrigation water used in sprinkling systems. It can be easily transmitted from one field to another not only by water, but also by soil particles and dust transmitted by wind and on machinery. The aim of our overall study was to check for P. brassicae infestation of Polish agricultural soils. This paper presents the 2012 results of a study performed along the Polish-Ukrainian border in two provinces: Lublin (Lubelskie Voivodeship and the Carpathian Foothills (Podkarpackie Voivodeship, in south-east Poland. Monitoring was done in 11 counties, including nine rural and two municipal ones. In total, 40 samples were collected, out of which 36 were collected from fields located in rural areas and four from municipal areas, with two per municipal region. Each sample was collected at 8-10 sites per field, using a soil auger. The biotest to detect the presence of P. brassicae was done under greenhouse conditions using seedlings of the susceptible Brassicas: B. rapa ssp. pekinensis and the Polish variety of oilseed rape B. napus cv. Monolit. Susceptible plants grown in heavily infested soils produced galls on their roots. A county was regarded as free from the pathogen, if none of the bait plants became infected. The pathogen was found in three out of 40 fields monitored (7.5% in the Carpathian Foothill region. The fields were located in two rural counties. The pathogen was not found in Lublin province, and was also not detected in any of the municipal counties. The detection with

  10. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus and two Leptosphaeria species.

    Directory of Open Access Journals (Sweden)

    Rohan G T Lowe

    Full Text Available Leptosphaeria maculans 'brassicae' is a damaging fungal pathogen of canola (Brassica napus, causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa 'canadensis', colonises cotyledons but causes few stem cankers. We describe the complement of genes encoding carbohydrate-active enzymes (CAZys and peptidases of these fungi, as well as of four related plant pathogens. We also report dual-organism RNA-seq transcriptomes of these two Leptosphaeria species and B. napus during disease. During the first seven days of infection L. biglobosa 'canadensis', a necrotroph, expressed more cell wall degrading genes than L. maculans 'brassicae', a hemi-biotroph. L. maculans 'brassicae' expressed many genes in the Carbohydrate Binding Module class of CAZy, particularly CBM50 genes, with potential roles in the evasion of basal innate immunity in the host plant. At this time, three avirulence genes were amongst the top 20 most highly upregulated L. maculans 'brassicae' genes in planta. The two fungi had a similar number of peptidase genes, and trypsin was transcribed at high levels by both fungi early in infection. L. biglobosa 'canadensis' infection activated the jasmonic acid and salicylic acid defence pathways in B. napus, consistent with defence against necrotrophs. L. maculans 'brassicae' triggered a high level of expression of isochorismate synthase 1, a reporter for salicylic acid signalling. L. biglobosa 'canadensis' infection triggered coordinated shutdown of photosynthesis genes, and a concomitant increase in transcription of cell wall remodelling genes of the host plant. Expression of particular classes of CAZy genes and the triggering of host defence and particular metabolic pathways are consistent with the necrotrophic lifestyle of L. biglobosa 'canadensis', and the hemibiotrophic life style of L. maculans 'brassicae'.

  11. Mitochondrial atpA gene is altered in a new orf220-type cytoplasmic male-sterile line of stem mustard (Brassica juncea).

    Science.gov (United States)

    Yang, Jing-Hua; Huai, Yan; Zhang, Ming-Fang

    2009-02-01

    The purpose of this research is to identify the probable mitochondrial factor associated with cytoplasmic male sterility (cms) by comparative analysis of cms and its isogenic maintainer lines in stem mustards. Dramatic variations in the morphology of floral organs were observed in cms stem mustard. Mitochondrial atpA gene was shown to be altered in cms compared with that in its maintainer line, of which mitochondrial atpA gene from its maintainer line was sequenced to encode 507 amino acids. It was indicative of high homology with mitochondrial atpA genes from other species, even as high as 94% in similarity with Oryza sativa in terms of amino acid constituents. However, only 429 amino acids were deduced in cms showing 83% similarity with atpA gene from its maintainer line. Two copies were observed in its maintainer line, but only one was found in cms. Such numerous differences of mitochondrial atpA gene between cms and its maintainer lines may not be the results of evolutionary divergence but the rearrangements of mitochondria. Expression of mitochondrial atpA gene was shown to be down-regulated in cms by using Northern blot. Consequently, mitochondrial ATP synthesis was severely decreased more than one fold in cms stem mustard indicating deficiency in mitochondrial ATP synthesis in this type of cms. Therefore, we deduced that mitochondrial atpA gene altered in cms could be associated with male-sterility in this type of cms.

  12. 表达雪花莲外源凝集素基因的油菜转基因植株的获得%Production of Transgenic Rape ( Brassica napus L.) Plants Expressing Snowdrop Lectin ( Galanthus nivalis Agglutinin) Gene

    Institute of Scientific and Technical Information of China (English)

    唐克轩; 徐亚男; 李旭峰; 孙小芬

    2001-01-01

    利用农杆菌系LBA4404(pCAMBIA3300RG)转化优良甘蓝型油菜恢复系W723的下胚轴节段.pCAM-BIA3300RG含有RRss1启动子引导的雪花莲外源凝集素基因(gna)和CaMV-35S启动子引导的除草剂抗性基因(bar).经过两轮除草剂(2.5 mg/L bialaphos)筛选(两周/轮),除草剂抗性再生芽被转入生根培养基中生根.对根系旺盛生长的植株中所含gna基因进行PCR分析.PCR分析证实了这些植株确为转基因植株.利用Western印迹法对随机选择的5株含gna基因的转基因植株的分析发现,其中4株表达了gna基因.目前正对这些表达gna基因的转基因植株进行后代遗传分离分析.%Hypocotyl segments of an elite rape ( Brassica napus L. ) restorer line, W723, were transformed with the Agrobacterium tumefaciens strain LBA4404 (pCAMBIA3300RG). pCAMBIA3300RG contained the snowdrop lectin gene (gna) driven by the Rice Sucrose Synthase 1 (Rss1) promoter and the herbicide-resistance gene (bar)under the control of the CaMV-35S promoter. After 2 rounds of herbicide (2.5 ng/L bialaphos) selection (2 weeks/round), the regenerated herbicide-resistant shoots were transferred to rooting medium. Plants with vigorously growing roots were subjected to PCR analysis for the presence of the gna gene. PCR analysis confirmed their transgenic status. Western blot analysis revealed that 4 out of 5 randomly selected gna-containing tranegenic plants expressing the GNA. These GNA-expressing transgenic plants are undergoing segregation analysis for the transgenes in the following generations.

  13. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.

    Science.gov (United States)

    Sharma, Arti; Chauhan, Rajinder Singh

    2012-01-01

    Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  14. In Silico Identification and Comparative Genomics of Candidate Genes Involved in Biosynthesis and Accumulation of Seed Oil in Plants

    Directory of Open Access Journals (Sweden)

    Arti Sharma

    2012-01-01

    Full Text Available Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  15. MorphologiCal and Cytogenetic Analysis on the Advanced Generations of Generic Hybrids between Brassica napus and Orychophragmus violaceu

    Institute of Scientific and Technical Information of China (English)

    Zhigang ZHAO; Dezhi DU; Zaiyun LI

    2012-01-01

    Objective This study aimed to reveal the genetic changes of advanced generation hybrids between Brassica napus and Orychophragmus violaceus. [Method] The morphological characteristics such as the plant shape, branching sites, leaf shape, leaf color, primary branches and secondary branches, as well as the cytolog- ical characteristics of the advanced generation hybrids (Fs-F10) between B. napus and O. violaceus were observed. [Result] The morphology analysis revealed that the hybrid progeny was more like B. rapa in leaf shape, leaf color, plant shape and ear- ly flowering phenotype, whereas more like B. napus in number of secondary branch- es, silique length and 1 000-seed weight. Analysis on the cytogenetics characteristics showed that these advanced inbred progenies were hypoploids with less than 38 chromosomes; moreover, all the chromosomes from O. violaceus had been lost. Chromosome pairings at meiotic diakinesis of hybrids between the advanced inbred progenies and B. rapa revealed that chromosomes lost in hypoploids possibly be- longed to the C genome of B. oleracea. With generations developing, chromosomes number of plants from two populations gradually increased and developed into the number of B. napus (2n=38). [Conclusion] This study will provide reference to reveal the source of chromosome lost in hypoploids and the morphological change of hybrids.

  16. Developmental and Genotypic Variation in Leaf Wax Content and Composition, and in Expression of Wax Biosynthetic Genes in Brassica oleracea var. capitata

    Science.gov (United States)

    Laila, Rawnak; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Suh, Mi Chung; Kim, Juyoung; Nou, Ill-Sup

    2017-01-01

    Cuticular waxes act as a protective barrier against environmental stresses. In the present study, we investigated developmental and genotypic variation in wax formation of cabbage lines, with a view to understand the related morphology, genetics and biochemistry. Our studies revealed that the relative expression levels of wax biosynthetic genes in the first-formed leaf of the highest-wax line remained constantly higher but were decreased in other genotypes with leaf aging. Similarly, the expression of most of the tested genes exhibited decrease from the inner leaves to the outer leaves of 5-month-old cabbage heads in the low-wax lines in contrast to the highest-wax line. In 10-week-old plants, expression of wax biosynthetic genes followed a quadratic function and was generally increased in the early developing leaves but substantially decreased at the older leaves. The waxy compounds in all cabbage lines were predominately C29-alkane, -secondary alcohol, and -ketone. Its deposition was increased with leaf age in 5-month-old plants. The high-wax lines had dense, prominent and larger crystals on the leaf surface compared to low-wax lines under scanning electron microscopy. Principal component analysis revealed that the higher expression of LTP2 genes in the lowest-wax line and the higher expression of CER3 gene in the highest-wax line were probably associated with the comparatively lower and higher wax content in those two lines, respectively. This study furthers our understanding of the relationships between the expression of wax biosynthetic genes and the wax deposition in cabbage lines. Highlight: In cabbage, expression of wax-biosynthetic genes was generally decreased in older and senescing leaves, while wax deposition was increased with leaf aging, and C29-hydrocarbon was predominant in the wax crystals. PMID:28119701

  17. The terrestrial Isopoda (Crustacea, Oniscidea) of Rapa Nui (Easter Island), with descriptions of two new species

    OpenAIRE

    Stefano Taiti; Judson Wynne

    2015-01-01

    Abstract Nine species of terrestrial isopods are reported for the Polynesian island of Rapa Nui (Easter Island) based upon museum materials and recent collections from field sampling. Most of these animals are non-native species, but two are new to science: Styloniscus manuvaka sp. n. and Hawaiioscia rapui sp. n. Of these, the former is believed to be a Polynesian endemic as it has been recorded from Rapa Iti, Austral Islands, while the latter is identified as a Rapa Nui island endemic. Both ...

  18. Alterations of RNA Editing for the Mitochondrial ATP9 Gene in a New orf220-type Cytoplasmic Male-sterile Line of Stem Mustard (Brassica juncea var. tumida)

    Institute of Scientific and Technical Information of China (English)

    Jing-Hua Yang; Ming-Fang Zhang; Jing-Quan Yu

    2007-01-01

    RNA editing for the mitochondrial ATP9 gene of encoding regions has been observed in both cytoplasmic malesterile and maintainer lines of stem mustard, where its editing capacity varied spatially and temporally in the cytoplasmic male sterility (CMS) line. There were four RNA editing sites for the mitochondrial ATP9 gene according to its normal editing sites in mustard, of which three sites occurred as C-to-U changes and one as a U-to-C change.As a result, the hydrophobicity of deduced ATP9 protein was reduced due to the conversions at its 17th, 45th and 64th positions. Meanwhile, the conservation of deduced ATP9 protein was enhanced by changes at the 56th position.Loss of a specific editing site for ATP9 was observed in juvenile roots, senile roots, senile leaves and floret buds of the CMS line. Comparatively, complete RNA editing for ATP9 gene was retained in juvenile roots, juvenile leaves and floret buds of its maintainer line; however, the loss of a specific editing site for ATP9 gene occurred at senile roots and senile leaves in its maintainer line. These observations allow us to produce a hypothesis that the dysfunction of a specific mitochondrisl gene arising from RNA editing could probably be a factor triggering CMS and organ senescence through unknown cross-talk pathways during development.

  19. Fine Mapping of a Recessive Genic Male Sterility Gene (Ms 1) in Rapeseed (Brassica napus )%甘蓝型油菜隐性上位互作核不育基因(Ms1)精细定位

    Institute of Scientific and Technical Information of China (English)

    江莹芬; 陈凤祥; 李强生; 胡宝成; 吴新杰; 侯树敏; 范志雄; 费维新; 荣松柏

    2011-01-01

    Genie male sterility is one of the most valuable resources for heterosis utilization in Brassica napus. The recessive epistatic genic male sterile line 9012A has been playing an increasing role in hybrid cultivar development in China. That sterility is controlled by two pairs of recessive duplicated sterile genes (msl and msl) and one pair of recessive epistatic inhibitor gene {rf). Homozygosity at the rf locus (rfrf) inhibits the expression of the two recessive malt sterility genes in homozygous ms lmslms2ms2 plants and results in a male fertile phenotype (TAM line, mslmslms2ms2rfrf). In this study, 884 pairs of AFLP and 506 pairs of SRAP maker system were used for investigating the genotype of Ms lms lms2ms2rfrfand mslmslms2ms2rfrf segregated in a NIL population of 304 individuals. As a result, we obtained 14 makers tightly linked with the Msl gene, of which 4 markers co-segregated. The AFLP marker E-ACA/P-CTG reported by Ke et al. Has a genetic distance of 0.1 cM in our research population. BLAST analysis with sequences of tightly linked makers shows that, some of the sequences have high similarities with those genomic DNA sequences from Arabidopsis chromosome 5. Most notably, these sequences generated from the most tightly linked markers with Msl gene were perfectly anchored to one of the terminal of chromosome C9 of Brassica olerecea. All of these results of this study will benefit for map-based cloning and maker assistant selection of Ms 1 gene. Additionally, the segregation of the markers link with Msl gene which has been reported by other authors was investigated and compared in our segregated population in this paper.%甘蓝型油菜细胞核雄性不育是杂种优势利用的重要途径.隐性上位互作核不育系9012A已经广泛用于杂交种子生产,其不育性受两对隐性重叠不育基因(ms1和ms2)与一对隐性上位抑制基因(rf互作控制.ms1和ms2同时纯合(ms1ms1ms2ms2)表现不育,但隐性纯合rf(rfrf)对ms1ms1ms2ms2的表

  20. Control Four Species of Aphid on Vegetables with Diaeretiella rapae (McIntosh) (Hymenoptera:Braconidae)%菜蚜茧蜂对4种蔬菜蚜虫的控制作用研究

    Institute of Scientific and Technical Information of China (English)

    张立猛; 田泽华; 计思贵; 谷星慧; 周文兵; 杨海林

    2016-01-01

    菜蚜茧蜂(Diaeretiella rapae)是蔬菜蚜虫的重要天敌。为了明确菜蚜茧蜂对我国常见4种蔬菜蚜虫的控制作用,通过室内试验,研究了菜蚜茧蜂对萝卜蚜、甘蓝蚜、豌豆蚜和蚕豆蚜的寄生作用。结果表明:菜蚜茧蜂对萝卜蚜和甘蓝蚜具有较好的控制作用,放蜂后21 d,其寄生率多在20%以上;对豌豆蚜的寄生作用较弱,放蜂后21 d,寄生率最高不超过10%;对蚕豆蚜寄生率最低,多在1%左右,只有极少数蚜虫被寄生。%Diaeretiella rapae, an important parasitoid of aphids in the world, was released with 6 ratio to controlLipaphis erysimi, Brevicoryne brassicae,Acyrthosiphon pisum andAphis craccivorain Yuxi City Yunnan Province. The results showed that the parasitoid could controlLipaphis erysimi andBrevicoryne brassicae availably, and the parasitism was above 20% after releasing the parasitoid in 21 days, but the parasitism was only 10% to controlAcyrthosiphon pisum, and only 1% to controlAphis craccivora. The results provided evidence to control the aphids on vegetables by releasingDiaeretiella rapae(McIntosh).

  1. Genes encoding biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution

    Science.gov (United States)

    Comparative genomics is a useful tool to investigate gene and genome evolution. Biotin carboxylase (BC), an important subunit of heteromeric ACCase that is a rate-limiting enzyme in fatty acid biosynthesis in dicots, catalyzes ATP, biotin-carboxyl-carrier protein and CO2 to form carboxybiotin-carbo...

  2. Study on Agrobacterium tumefaciens-mediated Transformation of Brassica campestris L. with Fusion Gene Ycoil-bFGF%农杆菌介导油菜油体基因与碱性成纤维细胞生长因子融合基因转化油菜研究

    Institute of Scientific and Technical Information of China (English)

    徐岩; 肖艳双; 杜金霞; 汪洪; 郑伟; 李营; 庞实锋

    2009-01-01

    [Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Method] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF was introduced into the rapeseed (Brassica campestris L.) by Agrobacterium tumefaciens-mediated transformation; meanwhile regeneration conditions of rapeseed were also optimized, and the regenerated resistant plantlets were detected by PCR and Southern blot. [Result] This fusion gene had been integrated into rapeseed genome successfully, and the optimized conditions of transformation and regeneration were as follows: explants pre-culture for 2 d, co-culture for 3 d, bacteria solution OD600 for 0.3 and infection time for 5 min. [Conclusion] The results laid a solid foundation for extraction, isolation and purification of protein in transgenic plant seeds.

  3. Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae.

    Science.gov (United States)

    Ahuja, Ishita; van Dam, Nicole Marie; Winge, Per; Trælnes, Marianne; Heydarova, Aysel; Rohloff, Jens; Langaas, Mette; Bones, Atle Magnar

    2015-02-01

    The Brassicaceae family is characterized by a unique defence mechanism known as the 'glucosinolate-myrosinase' system. When insect herbivores attack plant tissues, glucosinolates are hydrolysed by the enzyme myrosinase (EC 3.2.1.147) into a variety of degradation products, which can deter further herbivory. This process has been described as 'the mustard oil bomb'. Additionally, insect damage induces the production of glucosinolates, myrosinase, and other defences. Brassica napus seeds have been genetically modified to remove myrosinase-containing myrosin cells. These plants are termed MINELESS because they lack myrosin cells, the so-called toxic mustard oil mines. Here, we examined the interaction between B. napus wild-type and MINELESS plants and the larvae of the cabbage moth Mamestra brassicae. No-choice feeding experiments showed that M. brassicae larvae gained less weight and showed stunted growth when feeding on MINELESS plants compared to feeding on wild-type plants. M. brassicae feeding didn't affect myrosinase activity in MINELESS plants, but did reduce it in wild-type seedlings. M. brassicae feeding increased the levels of indol-3-yl-methyl, 1-methoxy-indol-3-yl-methyl, and total glucosinolates in both wild-type and MINELESS seedlings. M. brassicae feeding affected the levels of glucosinolate hydrolysis products in both wild-type and MINELESS plants. Transcriptional analysis showed that 494 and 159 genes were differentially regulated after M. brassicae feeding on wild-type and MINELESS seedlings, respectively. Taken together, the outcomes are very interesting in terms of analysing the role of myrosin cells and the glucosinolate-myrosinase defence system in response to a generalist cabbage moth, suggesting that similar studies with other generalist or specialist insect herbivores, including above- and below-ground herbivores, would be useful.

  4. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae.

    Science.gov (United States)

    Rännbäck, Linda-Marie; Cotes, Belen; Anderson, Peter; Rämert, Birgitta; Meyling, Nicolai V

    2015-01-01

    Biological control of pests in agroecosystems could be enhanced by combining multiple natural enemies. However, this approach might also compromise the control efficacy through intraguild predation (IGP) among the natural enemies. Parasitoids may be able to avoid the risk of unidirectional IGP posed by entomopathogenic fungi through selective oviposition behavior during host foraging. Trybliographa rapae is a larval parasitoid of the cabbage root fly, Delia radicum. Here we evaluated the susceptibility of D. radicum and T. rapae to two species of generalist entomopathogenic fungi, Metarhizium brunneum isolate KVL 04-57 and Beauveria bassiana isolate KVL 03-90. Furthermore, T. rapae oviposition behavior was assessed in the presence of these entomopathogenic fungi either as infected hosts or as infective propagules in the environment. Both fungi were pathogenic to D. radicum larvae and T. rapae adults, but with variable virulence. When host patches were inoculated with M. brunneum conidia in a no-choice situation, more eggs were laid by T. rapae in hosts of those patches compared to control and B. bassiana treated patches. Females that later succumbed to mycosis from either fungus laid significantly more eggs than non-mycosed females, indicating that resources were allocated to increased oviposition due to perceived decreased life expectancy. When presented with a choice between healthy and fungal infected hosts, T. rapae females laid more eggs in healthy larvae than in M. brunneum infected larvae. This was less pronounced for B. bassiana. Based on our results we propose that T. rapae can perceive and react towards IGP risk posed by M. brunneum but not B. bassiana to the foraging female herself and her offspring. Thus, M. brunneum has the potential to be used for biological control against D. radicum with a limited risk to T. rapae populations.

  5. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Surya Kant

    Full Text Available Delay of leaf senescence through genetic modification can potentially improve crop yield, through maintenance of photosynthetically active leaves for a longer period. Plant growth hormones such as cytokinin regulate and delay leaf senescence. Here, the structural gene (IPT encoding the cytokinin biosynthetic enzyme isopentenyltransferase was fused to a functionally active fragment of the AtMYB32 promoter and was transformed into canola plants. Expression of the AtMYB32xs::IPT gene cassette delayed the leaf senescence in transgenic plants grown under controlled environment conditions and field experiments conducted for a single season at two geographic locations. The transgenic canola plants retained higher chlorophyll levels for an extended period and produced significantly higher seed yield with similar growth and phenology compared to wild type and null control plants under rainfed and irrigated treatments. The yield increase in transgenic plants was in the range of 16% to 23% and 7% to 16% under rainfed and irrigated conditions, respectively, compared to control plants. Most of the seed quality parameters in transgenic plants were similar, and with elevated oleic acid content in all transgenic lines and higher oil content and lower glucosinolate content in one specific transgenic line as compared to control plants. The results suggest that by delaying leaf senescence using the AtMYB32xs::IPT technology, productivity in crop plants can be improved under water stress and well-watered conditions.

  6. Sequence analysis of the gene correlated with cytoplasmic male sterility (CMS) in rape-seed (Brassica napus) Polima and Shaan 2A

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    orf224 is a CMS-related mitochondrial gene discovered in Polima cytoplasm. Shaan 2A CMS line is the parent of the first rapeseed hybrid cultivar Qinyou No. 2that has been grown in many regions of China. In this work,genomic DNA of Polima CMS line and Shaan 2A CMS line were used as templates, two primers of specific oligonucleoamplification fragments were cloned into pGEM-T Easy vectors and DNA sequences were determined. The CMSassociated gene, orf224-1 present in Shaan 2A CMS line, has a sequence highly homologous to the orf224 of the Polima CMS line, except for one nucleotide at position +398. There were only one base (AAC→AGC) and one amino acid (Asn →Ser) differences between the two. The homologies of the two sequences in nucleotide and. amino acid were 99.9 % and 99.6%, respectively. It is concluded that orf224 in Polima CMS line and orf224-1 of Shaan 2A CMS line are the allele at the same locus in mitochondria.``

  7. 抗虫基因转化花椰菜的研究%Transformation of insect-resistant gene into cauliflower ( Brassica oleracea L.Var.Botrytis)

    Institute of Scientific and Technical Information of China (English)

    吕玲玲; 雷建军; 宋明; 李立云; 曹必好

    2004-01-01

    通过根癌农杆菌介导,将抗虫基因-豇豆胰蛋白酶抑制剂(Cowpea Trypsin Inhibitor,简称CpTI)基因导入花椰菜无菌苗的下胚轴和子叶中.卡那霉素(Kanamycin,简称Kan)的筛选浓度为15mg/L,抑制农杆菌生长的抗生素选用羧苄青霉素(Carbencillin,简称Carb),浓度为500mg/L.对所获得的14株Kan抗性植株进行PCR扩增,结果显示有8株为阳性;对PCR阳性植株进行Southern分子杂交检测,结果证明CpTI基因已被整合到花椰菜植株的基因组中.%Cowpea Trypsin Inhibitor (CpTI) gene was transferred into the cotyledons and hypocotyls of cauliflower by Agrobacterium-mediated transformation method. The best selective concentration of kanamycin (kan) was 15 mg L-1. The concentration of carbencillin (carb) was 500 mg L-1. 14 transgenic cauliflower plants were obtained. The putative transformants were assayed by PCR and Southern blotting analysis. The results indicated that CpTI gene was transferred into cauliflower successfully.

  8. High Quality Komatsuna (Brassica rapa L. nothovar) Production by Using Silicate Minerals Treated Nutrient Solution

    OpenAIRE

    Sheheli Islam; Kumagai Kazunori; Noriko Takeda; Katsumi Ishikawa

    2009-01-01

    Problem statement: Good water quality not only produces good crop yield, but also maintains environmental quality and so with plant, animal and human health. Therefore, protecting the quality of water by using non chemical materials is an emerging issue to be solved. Bakuhan seki having additional negative charge were found to have the capacity of improving condition of water while emitting important minerals essential to life. Because of high cost and scarcity of Bakuhan-...

  9. Hydrogen Sulfide Alleviates Cadmium-Induced Cell Death through Restraining ROS Accumulation in Roots of Brassica rapa L. ssp. pekinensis

    Science.gov (United States)

    2015-01-01

    Hydrogen sulfide (H2S) is a cell signal molecule produced endogenously and involved in regulation of tolerance to biotic and abiotic stress in plants. In this work, we used molecular biology, physiology, and histochemical methods to investigate the effects of H2S on cadmium- (Cd-) induced cell death in Chinese cabbage roots. Cd stress stimulated a rapid increase of endogenous H2S in roots. Additionally, root length was closely related to the cell death rate. Pretreatment with sodium hydrosulfide (NaHS), a H2S donor, alleviated the growth inhibition caused by Cd in roots—this effect was more pronounced at 5 μM NaHS. Cd-induced cell death in roots was significantly reduced by 5 μM NaHS treatment. Under Cd stress, activities of the antioxidant enzymes were significantly enhanced in roots. NaHS + Cd treatment made their activities increase further compared with Cd exposure alone. Enhanced antioxidant enzyme activity led to a decline in reactive oxygen species accumulation and lipid peroxidation. In contrast, these effects were reversed by hydroxylamine, a H2S inhibitor. These results suggested that H2S alleviated the cell death caused by Cd via upregulation of antioxidant enzyme activities to remove excessive reactive oxygen species and reduce cell oxidative damage. PMID:26078819

  10. Hydrogen Sulfide Alleviates Cadmium-Induced Cell Death through Restraining ROS Accumulation in Roots of Brassica rapa L. ssp. pekinensis

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2015-01-01

    Full Text Available Hydrogen sulfide (H2S is a cell signal molecule produced endogenously and involved in regulation of tolerance to biotic and abiotic stress in plants. In this work, we used molecular biology, physiology, and histochemical methods to investigate the effects of H2S on cadmium- (Cd- induced cell death in Chinese cabbage roots. Cd stress stimulated a rapid increase of endogenous H2S in roots. Additionally, root length was closely related to the cell death rate. Pretreatment with sodium hydrosulfide (NaHS, a H2S donor, alleviated the growth inhibition caused by Cd in roots—this effect was more pronounced at 5 μM NaHS. Cd-induced cell death in roots was significantly reduced by 5 μM NaHS treatment. Under Cd stress, activities of the antioxidant enzymes were significantly enhanced in roots. NaHS + Cd treatment made their activities increase further compared with Cd exposure alone. Enhanced antioxidant enzyme activity led to a decline in reactive oxygen species accumulation and lipid peroxidation. In contrast, these effects were reversed by hydroxylamine, a H2S inhibitor. These results suggested that H2S alleviated the cell death caused by Cd via upregulation of antioxidant enzyme activities to remove excessive reactive oxygen species and reduce cell oxidative damage.

  11. Screening Brassica species for glucosinolate content.

    Science.gov (United States)

    Antonious, George F; Bomford, Michael; Vincelli, Paul

    2009-03-01

    Glucosinolates (GSLs), a group of compounds found in Brassica plants, are toxic to some soil-borne plant pathogens because of the toxicity of their hydrolysis products, isothiocyanates. Other phytochemicals found in Brassica plants, such as phenols and ascorbic acid, may compliment the activity of GSLs. A survey of Brassica accessions from the national germplasm repository was conducted to identify potential cover crops that could be soil-incorporated for use as biofumigants. Ten Brassica accessions that demonstrated relative cold tolerance, rapid maturity, and superior biomass production were selected. The selected accessions were grown under three climatic conditions (fall greenhouse, winter high tunnel, and spring field) to investigate whether growing conditions affect their GSL, phenol, and ascorbic acid content. The selected accessions included seven accessions of Brassica juncea (Indian mustard), one of Brassica napus (oil seed rape), one of Brassica campestris (field mustard), and one of Eruca sativa (arugula). Separation of GSLs from the selected Brassica accessions was achieved using ion-exchange sephadex in disposable pipette tips. Quantification of total GSLs was based on inactivation of the endogenous thioglucosidase and liberation of the glucose moiety from the GSL molecule by addition of standardized thioglucosidase (myrosinase) and colorimetry. GSL concentration of greenhouse, high tunnel, and field-grown shoots (leaves and stems) averaged 24, 40 and 76 micromoles g(-1) fresh weight, respectively. Accessions of B. juncea generally had the highest GSL content. A comparison of accessions revealed that Ames 8887 of B. juncea contained the greatest GSL concentration, but had the lowest biomass yield and ascorbic acid concentration, in part because phytochemical concentration tended to be negatively correlated with biomass yield. More promising was B. juncea accession 'Pacific Gold' which coupled high biomass yield with above-average GSL production, but

  12. Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum

    Institute of Scientific and Technical Information of China (English)

    Jia-ying ZHU; Qi FANG; Gong-yin YE; Cui HU

    2011-01-01

    Parasitism by the endoparasitoid wasp Pteromalus puparum causes alterations in the plasma proteins of Pieris rapae. Analysis of plasma proteins using a proteomic approach showed that seven proteins were differentially expressed in the host pupae after 24-h parasitism. They were masquerade-like serine proteinase homolog (MSPH),enolase (Eno), bilin-binding protein (BBP), imaginal disc growth factor (IDGF), ornithine decarboxylase (ODC), cellular retinoic acid binding protein (CRABP), and one unknown function protein. The full length cDNA sequences of MSPH,Eno, and BBP were successfully cloned using rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the transcript levels of MSPH and BBP in the fat bodies of host pupae were inducible in response to the parasitism and their variations were consistent with translational changes of these genes after parasitism, while the transcript levels of Eno and IDGF were not affected by parasitism. This study will contribute to the better understanding of the molecular bases of parasitoid-induced host alterations associated with innate immune responses, detoxification, and energy metabolism.

  13. 利用SSCP技术分析甘蓝型油菜10个功能基因序列差异%Polymorphism Analysis of Ten Functional Genes in Brassica napus Using SSCP Method

    Institute of Scientific and Technical Information of China (English)

    李媛媛; 陈庆芳; 傅廷栋; 马朝芝

    2012-01-01

    以甘蓝型油菜SI-1300和Eagle为材料,利用DNA单链构象多态性(single-strand conformation polymorphism,SSCP)技术,对10对功能基因特异性引物进行多态性分析,每对引物均检测到1个多态性位点.随后随机挑选10个多态性片段进行测序,并利用bl2seq软件比较测序序列与基因原始序列.结果显示测序序列与所对应的基因原始序列之间相似程度平均高达98%,差异碱基数平均仅为2.3个.进一步选取5对引物比较分析两个材料间的差异扩增片 段序列,发现差异扩增片段在2个材料中高度保守,平均相似度达97%;在所测序的5对引物扩增序列中,共存在39个单核苷酸多态性(single-nucleotide polymorphisms,SNPs)和5个插入/缺失突变(insertion-deletions,INDELs),SNP和INDEL的发生频率分别为1 SNP/30 bp和1 INDEL/233 bp.结果表明,SSCP标记能够真实代表原始功能基因,甘蓝型油菜功能基因序列在不同材料间高度保守,其遗传变异类型主要来源于SNP.%A sensitive technology is very necessary to detect the polymorphisms of functional genes in different cultivars, for the coding sequences of functional genes tend to be conserved even between species. Single-strand conformational polymorphism (SSCP) is a desirable method for DNA polymorphism analysis because of its high sensitivity and cost effectiveness. In previous publications, we developed 177 functional markers corresponding to 111 differentially expressed genes between the parents of a Brassica napus hybrid. And, 45 functional markers involved in 39 genes or expressed sequence tags (ESTs) were linked to the QTLs of 12 yield-related traits in the F2 population from SI-1300xEagle using SSCP analysis. In the present research, we sequenced some polymorphic bands detected by SSCP analysis to confirm the high sensitivity of SSCP analysis. Firstly, a total of ten primer pairs, which were designed according to ten B. Napus functional genes or ESTs, were used to

  14. Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris

    DEFF Research Database (Denmark)

    Mikkelsen, T.R.; Jensen, J.; Bagger Jørgensen, Rikke

    1996-01-01

    Different cultivars/transgenic lines of oilseed rape (Brassica napus) were crossed (as females) with different cultivars/populations of Brassica campestris. All cross combinations produced seed, with an average seed set per pollination of 9.8. Backcrossing of selected interspecific hybrids (as...

  15. Clubroot in the cole crops: the interaction between Plasmodiophora brassicae and Brassica oleracea.

    NARCIS (Netherlands)

    Voorrips, R.E.

    1996-01-01

    The clubroot disease of the cole crops ( Brassica oleracea ) and other crucifers is caused by the fungus Plasmodiophora brassicae . It is an important disease, affecting an estimated 10 % of the total cultured area world-wide. The potential of cultural practices to reduce crop losses due to clubroot

  16. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra

    NARCIS (Netherlands)

    Khaling, E.; Papazian, S.; Poelman, E.H.; Holopainen, J.K.; Albrectsen, B.R.; Blande, J.D.

    2015-01-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under eleva

  17. A genome-wide association study reveals new loci for resistance to clubroot disease in Brassica napus

    Directory of Open Access Journals (Sweden)

    Lixia Li

    2016-09-01

    Full Text Available Rapeseed (Brassica napus L. is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin. Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population. In addition, a genome-wide association study of 472 accessions for clubroot resistance (CR was performed with 60K Brassica Infinium SNP arrays for the first time. In total, 9 QTLs were detected, 7 of which were novel through integrative analysis. Furthermore, additive effects in genetic control of CR in rapeseed among the above loci were found. By bioinformatic analyses, the candidate genes of these loci were predicted, which indicated that TIR-NBS gene family might play an important role in CR. It is believable that the results presented in our study could provide valuable information for understanding the genetic mechanism and molecular regulation of CR.

  18. EST sequencing and fosmid library construction in a non-model moth, Mamestra brassicae, for comparative mapping.

    Science.gov (United States)

    Kamimura, Manabu; Tateishi, Ken; Tanaka-Okuyama, Makiko; Okabe, Takuya; Shibata, Fukashi; Sahara, Ken; Yasukochi, Yuji

    2012-11-01

    Genome data are useful for both basic and applied research; however, it is difficult to carry out large-scale genome analyses using species with limited genetic or genomic resources. Here, we describe a cost-effective method to analyze the genome of a non-model species, using the cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae). First, we conducted expression sequence tag (EST) analysis. In this analysis, we performed PCR-based prescreening of a non-normalized embryonic cDNA library to eliminate already sequenced cDNAs from further sequencing, which significantly increased the percentage of unique genes. Next, we constructed a fosmid library of M. brassicae and isolated 120 clones containing 119 putative single copy genes by PCR-based screening with primer sets designed from the ESTs. Finally, we showed that the isolated fosmid clones could be used as probes for multicolor fluorescence in situ hybridization (FISH) analysis against an M. brassicae chromosome and confirmed conserved gene order between M. brassicae and the silkworm, Bombyx mori. Thus, we developed new genomic resources for comparative genome analysis in M. brassicae using robust and relatively low cost methods that can be applied to any non-model organism.

  19. A search of Brassica SI-involved orthologs in buckwheat leads to novel buckwheat sequence identification: MLPK possibly involved in SI response

    Directory of Open Access Journals (Sweden)

    Banović Bojana

    2010-01-01

    Full Text Available Self-incompatibility (SI systems, gamethophytic (GSI and sporophytic (SSI, prevent self-pollination in angiosperms. Buckwheat displays heteromorphic SSI, with pollination allowed only between different flower morphs - thrum and pin. The physiology of thrum and pin morph SI responses are entirely different, resembling homomorphic Brassica SSI and Prunus GSI responses, respectively. Considering angiosperm species may share ancestral SI genes, we examined the presence of Brassica and Prunus SI-involved gene orthologs in the buckwheat genome. We did not find evidence of SRK, SLG and SP11 Brassica or S-RNase and SFB Prunus orthologs in the buckwheat genome, but we found a Brassica MLPK ortholog. We report the partial nucleotide sequence of the buckwheat MLPK and discuss the possible implications of this finding.

  20. Transfer of hygromycin resistance into Brassica napus using total DNA of a transgenic B. nigra line.

    Science.gov (United States)

    Golz, C; Köhler, F; Schieder, O

    1990-09-01

    The successful transfer of a marker gene (hpt gene) from Brassica nigra into B. napus via direct gene transfer was demonstrated. Total DNA was isolated from a hygromycin-resistant callus line, which contained three to five copies of the hpt gene. This line had been produced via direct gene transfer with the hygromycin resistance-conferring plasmid pGL2. The treatment of B. napus protoplasts with genomic DNA of B. nigra (HygR) resulted in relative transformation frequencies of 0.1-0.4%. Similar transformation rates were obtained in direct gene transfer experiments using B. napus protoplasts and plasmid pGL2.

  1. Collembola of Rapa Nui (Easter Island) with descriptions of five endemic cave-restricted species.

    Science.gov (United States)

    Bernard, Ernest C; Soto-Adames, Felipe N; Wynne, J Judson

    2015-04-24

    Eight species of Collembola are reported from recent collections made in caves on the Polynesian island of Rapa Nui (Easter Island). Five of these species are new to science and apparently endemic to the island: Coecobrya aitorererere n. sp., Cyphoderus manuneru n. sp., Entomobrya manuhoko n. sp., Pseudosinella hahoteana n. sp. and Seira manukio n. sp. The Hawaiian species Lepidocyrtus olena Christiansen & Bellinger and the cosmopolitan species Folsomia candida Willem also were collected from one or more caves. Coecobrya kennethi Jordana & Baquero, recently described from Rapa Nui and identified as endemic, was collected in sympatric association with C. aitorererere n.sp. With the exception of F. candida, all species are endemic to Rapa Nui or greater Polynesia and appear to be restricted to the cave environment on Rapa Nui. A key is provided to separate Collembola species reported from Rapa Nui. We provide recommendations to aid in the conservation and management of these new Collembola, as well as the other presumed cave-restricted arthropods.

  2. Field Efficacy Trials of Different Pesticides against Pieris rapae and Plutella xylostella

    Institute of Scientific and Technical Information of China (English)

    Zhao; Li; Hong; Wenying; Wu; Yanjun; Wang; Yanxin; Chen; Rui; Zhang; Linying

    2014-01-01

    Field efficacy trials of different pesticides against Pieris rapae and Plutella xylostella showed that seven pesticides had certain control effects against P.rapae and P. xylostella. 240 g/L Chlorfenapyr SC had the most ideal control effect,with quick effect and long persistence,and the control effects against P. rapae and P. xylostella were 91. 96% and 95. 73% after application for 7 d,respectively. 25% Thiamethoxam WDG 3 000 times dilution had the poorest control effect,and quick effect and persistence were not ideal; the control effects against P. rapae and P. xylostella were 49. 21% and 57. 20% after application for 7 d,respectively. The remaining pesticides had good control effect against both P. rapae and P. xylostella,with certain persistence. Slight injury such as yellowing tender leaves appeared in the area treated with 50% thiocyclam SP,although the injury was reversible,it was still not recommended to use; no other treatments had adverse effects on growth of cabbage.

  3. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae

    DEFF Research Database (Denmark)

    Rännbäck, Linda-Marie; Cotes, Belen; Anderson, Peter;

    2015-01-01

    brunneum isolate KVL 04-57 and Beauveria bassiana isolate KVL 03-90. Furthermore, T. rapae oviposition behavior was assessed in the presence of these entomopathogenic fungi either as infected hosts or as infective propagules in the environment. Both fungi were pathogenic to D. radicum larvae and T. rapae...

  4. Cloning and expression analysis of SRK gene fragment in non-heading Chinese cabbage%不结球白菜S位点受体激酶基因片段的克隆与表达分析

    Institute of Scientific and Technical Information of China (English)

    张爱芬; 王立; 侯喜林; 刘同坤; 李英

    2011-01-01

    Using primers SR KF/SRKR,964 bp gDNA (BcSRK-I)and 646 bp cDNA sequences of S locus receptor kinase gene were obtained from serf-incompatible line 03 of Brassica campestris ssp. chinensis Makino. Sequence alignment and phylogenetic analysis revealed that DNA and cDNA of BcSRK-I belonged to kinase domain,containing 4 exons and 3 introns,and coded 215 amino acids.Furthermore, its similarity was over 90% with the SRK gene of Brassica rapa, Brassica oleracea and Brassica oleracea var. alboglabra.Real-time PCR analysis showed there was a significant difference between self-incompatible and seff-compatible lines. BcSRK-1 was highly expressed in stigmas of self-incompatible line. Howerer,in self-compatible line,BcSRK-1 was expressed in an even lower level whether in stigmas, buds or leaves.%以不结球白菜自交不亲和系03的基因组DNA和柱头cDNA为模板,利用引物SRKF/SRKR扩增获得长度为964bp和646bp的SRK基因片段.序列比较分析表明,克降的基因片段属于SRK基因的激酶域,该序列包含4个外显子和3个内含子,编码215个氨基酸,与芜菁、甘蓝、芥蓝等SRK基因有90%以上的相似性.荧光定量PCR分析结果表明:自交不亲和系03和自交亲和系105不同组织中SRK基因的表达水平存在显著的差异,SRK基因主要在自交不亲和系的柱头中高度表达,自交亲和系中该基因的表达主要分布于叶片、花蕾和柱头组织中.

  5. 转拟南芥P5CS1基因增强羽衣甘蓝的耐旱性%Expression of AtP5CS1 Gene Enhanced Drought Tolerance of Transgenic Brassica oleracea Plants

    Institute of Scientific and Technical Information of China (English)

    李鸿雁; 李大红

    2014-01-01

    To increase drought tolerance in Brassica oleracea,Δ1-pyrroline-5-carboxylate synthetase (P5CS) cDNA from Arabidopsis thaliana was transferred to B. oleracea plants mediated by agrobacterium, the P5CS1 mRNA expression, proline content, root traits, dry weight, fresh weight and whole plant survival rate of trans-genic lines and wild type plants under drought stress were detected. The results showed that under 15%PEG6000 osmotic stress, the expression of P5CS1 mRNA was signiifcantly increased. The proline content of transgenic plants was 2.4 times that of the wild type. The length of taproot, lateral root length, lateral root num-ber, the fresh weight and dry weight of whole plant were higher than those of the wild type, and the dry weight/fresh weight was lower than those of the wild type. The average survival of transgenic plants was 78%, signiif-cantly higher than that of wide type. These data showed AtP5CS1 gene expression in B. oleracea signiifcantly improved drought tolerance of transgenic plants.%为提高羽衣甘蓝的耐旱性,本文将拟南芥Δ1-吡咯啉-5-羧酸合成酶(P5CS1)基因经农杆菌介导转入羽衣甘蓝植株中,检测转基因株系与野生型植株在干旱胁迫下P5CS1 mRNA表达量、幼苗脯氨酸含量、株系根系性状、整株干重、鲜重和整株存活率。结果表明,在15%PEG6000渗透胁迫下,转基因植株的P5CS1基因mRNA表达量明显增加,转基因植株脯氨酸含量是野生型的2.4倍;主根长、最长侧根长、侧根数目、整株干重和鲜重均高于野生型,干重/鲜重则低于野生型,转基因植株的平均存活率为78%,极显著高于野生型。数据显示, AtP5CS1基因在羽衣甘蓝中的表达明显改善了转基因植株的耐旱性。

  6. Identification of antioxidant capacity -related QTLs in Brassica oleracea.

    Science.gov (United States)

    Sotelo, Tamara; Cartea, María Elena; Velasco, Pablo; Soengas, Pilar

    2014-01-01

    Brassica vegetables possess high levels of antioxidant metabolites associated with beneficial health effects including vitamins, carotenoids, anthocyanins, soluble sugars and phenolics. Until now, no reports have been documented on the genetic basis of the antioxidant activity (AA) in Brassicas and the content of metabolites with AA like phenolics, anthocyanins and carotenoids. For this reason, this study aimed to: (1) study the relationship among different electron transfer (ET) methods for measuring AA, (2) study the relationship between these methods and phenolic, carotenoid and anthocyanin content, and (3) find QTLs of AA measured with ET assays and for phenolic, carotenoid and anthocyanin contents in leaves and flower buds in a DH population of B. oleracea as an early step in order to identify genes related to these traits. Low correlation coefficients among different methods for measuring AA suggest that it is necessary to employ more than one method at the same time. A total of 19 QTLs were detected for all traits. For AA methods, seven QTLs were found in leaves and six QTLs were found in flower buds. Meanwhile, for the content of metabolites with AA, two QTLs were found in leaves and four QTLs were found in flower buds. AA of the mapping population is related to phenolic compounds but also to carotenoid content. Three genomic regions determined variation for more than one ET method measuring AA. After the syntenic analysis with A. thaliana, several candidate genes related to phenylpropanoid biosynthesis are proposed for the QTLs found.

  7. 芸苔EPSPs基因cDNA的克隆和表达载体的构建%The Cloning and Analysis of the cDNA of EPSPs Gene from Brassica campestris

    Institute of Scientific and Technical Information of China (English)

    游大慧; 骞宇; 王健美; 郭经宇; 杨毅; 李旭锋

    2004-01-01

    作者从芸苔(Brassica campestris)中用RT-PCR方法获得了EPSPs基因的cDNA.与其他物种中的EPSPs基因进行了比对和分析发现:芸苔EPSPs基因的cDNA与欧洲油菜的同源性最高,为93%,与水稻同源性最低,仅为64%.将芸苔EPSPs的ORF片段插入到GTK融合表达载体中,为EPSPs的原核表达奠定了基础.

  8. Enzymatic properties of phenoloxidase from Pieris rapae (Lepidoptera) larvae

    Institute of Scientific and Technical Information of China (English)

    CHAO-BIN XUE; WAN-CHUN LUO; QING-XI CHEN; QIN WANG; LI-NA KE

    2006-01-01

    The kinetic parameters of partially purified phenoloxidase (PO, EC. 1.14.18.1) from the 5th instar larvae of Pieris rapae (Lepidoptera) were determined, using L-3, 4-dihydroxyphenylalanine (L-DOPA) as substrate. The optimal pH and temperature of the enzyme for the oxidation of L-DOPA were determined to be at pH 7.0 and at 42℃,respectively. The enzyme was stable between pH 6.5 and 7.4 and at temperatures lower than 37℃. At pH 6.8 and 37℃, the Michaelis constant (Km) and maximal velocity (Vm) of the enzyme for the oxidation of L-DOPA were determined to be 0.80 mmol/L and 1.84 μmol/ L/min, respectively. Tetra-hexylresorcinol and 4-dodecylresorcinol effectively inhibited activity of phenoloxidase and this inhibition was reversible and competitive, with the IC50 of 1.50 and 1.12μmol/L, respectively. The inhibition constants were estimated to be 0.50 and 0.47μmol/L, respectively.

  9. Rapa Nui: Tradition, modernity and alterglobalization in intercultural education

    Directory of Open Access Journals (Sweden)

    Fidel Molina

    2013-07-01

    Full Text Available In this research are described, analyze and compare the manifestations of the intercultural education in a difficult situation as it is Rapa Nui Island (Easter Island, traditionally isolated, in the “navel of the world” (Te pito o Te Henua, but “discovered” and assimilated by the western people and recoveredfor the intercultural idea that it surpasses this assimilation and/or global homogenization, in a alterglobalization context. We have analyzed four depth interviews and two biographical stories (lifehistories, dividing of the hypothesis of the necessity of a clear link between interculturality and education, to rethink the identity and the cultural continuity of their citizens. The obtained results suggest them programs of immersion in the school are not sufficient if they do not go accompanied of a holistic institutional work in the diverse scopes: cultural, educative, economic, environmental politician, leisure, etc. The construction of the identity sends again to individual and collective scopes, with the participation of the subject and the community. In this sense, intergenerational solidarity plays a fundamental role.

  10. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L.

    Science.gov (United States)

    Zou, Zhongwei; Ishida, Masahiko; Li, Feng; Kakizaki, Tomohiro; Suzuki, Sho; Kitashiba, Hiroyasu; Nishio, Takeshi

    2013-01-01

    SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F(2) populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.

  11. BIOACTIVITIES AND MECHANISM OF SPIRO ENOL ETHER ANALOGUES AGAINST PIERIS RAPAE

    Institute of Scientific and Technical Information of China (English)

    Zhi-xiangZhang; Dong-meiCheng; Han-hongXu; Yu-linWu; andJun-faFan

    2004-01-01

    Nineteen kinds of spiro enol ether analogues were screened with larvae of Pieris rapae for antifeedant activity. The results showed that the antifeedant activity of compounds No.20 and No.12 was higher than others. In non-choice test, AFC50 values within 24 h of compounds No.20 and No.12 against 3rd instar larvae of P. rapae were 226.93ug/mL and 370.00ug/mL, and that in choice test against 4th larvae were 280.54 ug/mL and 398.88 ug/mL, respectively. Compd. No.20 could prolong the eggs hatch time and reduce the haemolymph content and the protein content in haemolymph of 4th instar larvae obviously. Compd. No.20 could protect tested leaves and control larvae of P. rapae effectively.

  12. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae

    DEFF Research Database (Denmark)

    Rännbäck, Linda-Marie; Cotes, Belen; Anderson, Peter;

    2015-01-01

    Biological control of pests in agroecosystems could be enhanced by combining multiple natural enemies. However, this approach might also compromise the control efficacy through intraguild predation (IGP) among the natural enemies. Parasitoids may be able to avoid the risk of unidirectional IGP...... posed by entomopathogenic fungi through selective oviposition behavior during host foraging. Trybliographa rapae is a larval parasitoid of the cabbage root fly, Delia radicum. Here we evaluated the susceptibility of D. radicum and T. rapae to two species of generalist entomopathogenic fungi, Metarhizium...

  13. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.

    Science.gov (United States)

    Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

    2015-05-01

    The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids.

  14. 大白菜隐性细胞核雄性不育恢复基因BrMsf3的标记%SRAP Marker Analysis of Recessive Genic Male Sterile Restoring Gene in Chinese Cabbage

    Institute of Scientific and Technical Information of China (English)

    张慧; 张淑江; 李菲; 章时蕃; 孙日飞

    2011-01-01

    对一大白菜隐性细胞核雄性不育系454AB的恢复基因BrMsf3进行了SRAP标记,构建包含320个单株的分离群体,筛选SRAP标记1 128个,筛选出与恢复基因BrMsf3连锁的2个标记BMe10SA4和M52K2,与恢复基因BrMsf3的遗传距离为4.35 cM和7.74 cM.%Genic male sterility lines were widely used in F1 seed production in Chinese cabbage ( Brassica rapa L. ssp. pekinensis ) . A recessive genic male sterile line 454AB which contained 320 individuals was constructed for this study. SRAP techniques and bulked segregant analysis ( BSA ) were used to screen markers linked to the RGMS restoring gene. Among the 1 128 primer combinations, only BMel0SA4 and M52K2 showed polymorphism between bulks of male sterile and fertile. The genic distances between restoring gene with BMe10SA4 and M52K2 were 4.35 cM and 7.74 cM, respectively.

  15. 甘蓝型油菜MYB4基因反义植物表达载体的构建%Construction of Antisense Plant Expressing Vector of MYB4 Gene of Brassica napus

    Institute of Scientific and Technical Information of China (English)

    尹锐; 柴友荣

    2013-01-01

    将甘蓝型油菜(Brassica napusL.)MYB4基因家族共保守的467 bp反义片段构建到中间栽体pCambia2301G中,替换GUS基因,由CaMV35S启动子驱动,形成了反义植物表达载体,命名为pCambi-a2301G-MYB4A,并转化到根癌农杆菌(Agrobacterium tumefaciens)LBA4404中形成工程菌株,为进一步研究甘蓝型油菜MY B4基因家族的功能奠定基础.

  16. Drought, vegetation change, and human history on Rapa Nui (Isla de Pascua, Easter Island)

    Science.gov (United States)

    Mann, Daniel; Edwards, James; Chase, Julie; Beck, Warren; Reanier, Richard; Mass, Michele; Finney, Bruce; Loret, John

    2008-01-01

    Stratigraphic records from lake sediment cores and slope deposits on Rapa Nui document prehistoric human impacts and natural environmental changes. A hiatus in sedimentation in Rano Raraku suggests that this lake basin dried out sometime after 4090-4410 cal yr BP and refilled only decades to centuries before AD 1180-1290. Widespread ecosystem changes caused by forest clearance by Polynesian farmers began shortly after the end of this drought. Terrestrial sections show a chronology of burning and soil erosion similar to the lake cores. Although changing sediment types and shifts in the pollen rain suggest that droughts occurred earlier in the Holocene, as yet there is no evidence for droughts occurring after AD 1180-1290. The timing of the agricultural colonization of Rapa Nui now seems well established at ca. AD 1200 and it was accompanied by rapid deforestation that was probably exacerbated by the island's small size, its droughty climate, and the rarity of primeval fires. Detailed records of a large interval of Rapa Nui's ecological history remain elusive due to the drought hiatus in the Rano Raraku sediment record. We find no evidence for a "rat outbreak impact" on Rapa Nui's vegetation preceding anthropogenic forest clearance.

  17. Restriction enzyme analysis of the genomes of Plodia interpunctella and Pieris rapae granulosis viruses.

    Science.gov (United States)

    Tweeten, K A; Bulla, L A; Consigli, R A

    1980-07-30

    The DNAs from the granulosis viruses of Plodia interpunctella and Pieris rapae were clearly distinguishable based on restriction endonuclease fragment patterns. By sizing single- and double-digestion products approximate molecular weights of 72 x 10(2) and 75 x 10(6), respectively, were estimated for the viral genomes.

  18. Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora

    NARCIS (Netherlands)

    Arikawa, K; Wakakuwa, M; Qiu, XD; Kurasawa, M; Stavenga, DG; Qiu, Xudong

    2005-01-01

    The eyes of the female small white butterfly, Pieris rapae crucivora, are furnished with three classes of short-wavelength photoreceptors, with sensitivity peaks in the ultraviolet (UV) (lambda(max) = 360 nm), violet (V) (lambda max = 425 nm), and blue (B) (lambda(max) = 453 nm) wavelength range. An

  19. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    Science.gov (United States)

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.

  20. A Simplified Seed Transformation Method for Obtaining Transgenic Brassica napus Plants

    Institute of Scientific and Technical Information of China (English)

    SONG Li; ZHAO De-gang; WU Yong-jun; TIAN Xiao-e

    2009-01-01

    We report here a seed transformation of sonication-assisted,no-tissue culture to rapidly produce transgenic Brassica napus plants.This method comprises the steps of treating seeds by ultrasonic wave,inoculating Agrobacterium tumefaciens with a recombinant ChlFN-a gene and germinating directly of treatment seed on wet filter papers.The obtained transformants were verified by GUS histochemical assay and nested PCR amplification.It suggests that seed transformation has a potential use in genetic transformation of rape.

  1. Analysis of DNA Methylation Patterns in Resynthesized Brassica napus and Diploid Parents%人工合成甘蓝型油菜及其亲本的甲基化变异模式分析

    Institute of Scientific and Technical Information of China (English)

    谢涛; 戎浩; 蒋金金; 孔月琴; 冉丽萍; 吴健; 王幼平

    2016-01-01

    The genetic background of Brassica napus, one of the most important oil crops in China, is relatively narrow due to the short history of its polyploid origin. Resynthesized B. napus provides an optimal model for researches on plant polyploidization. In the present study, we compared the DNA methylation levels in synthesized B. napus (F1 generation) and diploid parents using high-performance liquid chromatography (HPLC) and DNA methylation-sensitive amplification polymorphism (MSAP) analysis. HPLC analysis indicated methylation rates of 8.33%and 15.88%in B. rapa and B. oleracea, respectively. While the methylation rate of two hybrids was 10.29%and 12.83%, which were in-between of the parents’ values. MSAP analysis proved the different methylation levels in F1 generation and diploids, with the lowest and highest methylation levels identified in B. rapa and B. ole-racea, respectively. Variance of the DNA methylation in F1 was 23.71%, among which 6.60%and 10.16%were inherited from A and C genome, respectively. Sequence analysis of MSAP polymorphic fragments indicated genes involved in multiple molecular functions were changed during polyploidization. Expression analysis of these genes agreed to the corresponding methylation changes. This study provides preliminary basis for understanding epigenetic variations during B. napus polyploidization.%甘蓝型油菜作为多倍体起源和发生的历史较短,遗传背景较为狭窄,人工合成甘蓝型油菜可作为植物多倍化研究的优选模型,本文以人工合成的甘蓝型油菜为材料,通过 HPLC 分析发现白菜型油菜和甘蓝的甲基化率分别为8.33%和15.88%,2个杂种株系的全基因组甲基化水平介于双亲之间,分别为10.29%和12.83%。MSAP分析发现杂种F1代及其亲本的甲基化水平存在明显差异(白菜型油菜<杂种F1<甘蓝),杂种F1代的甲基化变异(23.71%)中来自A、C 基因组的变异分别占6.60%和10.16%。MSAP 差异性条带的序列分析发现

  2. Recent progress in drought and salt tolerance studies in Brassica crops.

    Science.gov (United States)

    Zhang, Xuekun; Lu, Guangyuan; Long, Weihua; Zou, Xiling; Li, Feng; Nishio, Takeshi

    2014-05-01

    Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.

  3. The fusion of genomes leads to more options: A comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana.

    Science.gov (United States)

    Hirschmann, Felix; Papenbrock, Jutta

    2015-06-01

    Sulfotransferases (SOTs) (EC 2.8.2.-) play a crucial role in the glucosinolate (Gl) biosynthesis, by catalyzing the final step of the core glucosinolate formation. In Arabidopsis thaliana the three desulfo (ds)-Gl SOTs AtSOT16, AtSOT17 and AtSOT18 were previously characterized, showing different affinities to ds-Gls. But can the knowledge about these SOTs be generally transferred to other Gl-synthesizing plants? It was investigated how many SOTs are present in the economically relevant crop plant Brassica napus L., and if it is possible to predict their characteristics by sequence analysis. The recently sequenced B. napus is a hybrid of Brassica rapa and Brassica oleracea. By database research, 71 putative functional BnSOT family members were identified and at least eleven of those are putative ds-Gl SOTs. Besides the homologs of AtSOT16 - 18, phylogenetic analyses revealed new subfamilies of ds-Gl SOTs, which are not present in A. thaliana. Three of the B. napus ds-Gl SOT proteins were expressed and purified, and characterized by determining the substrate affinities to different ds-Gls. Two of them, BnSOT16-a and BnSOT16-b, showed a significantly higher affinity to an indolic ds-Gl, similarly to AtSOT16. Additionally, BnSOT17-a was characterized and showed a higher affinity to long chained aliphatic Gls, similarly to AtSOT17. Identification of homologs to AtSOT18 was less reliable, because putative SOT18 sequences are more heterogeneous and confirmation of similar characteristics was not possible.

  4. NAPUS 2000 Rapeseed (Brassica napus breeding for improved human nutrition

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2001-01-01

    Full Text Available Following a competition announcement of the Federal Ministry of Research and Education (BMBF a project dealing with the improvement of the nutritional value of oilseed rape (Brassica napus for food applications and human nutrition was worked out and started in autumn 1999. A number of partners (Figure 2 are carrying out a complex project reaching from the discovery, characterisation, isolation and transfer of genes of interest up to breeding of well performing varieties combined with important agronomic traits. Economic studies and processing trials as well as nutritional investigations of the new qualities are undertaken. B. napus seed quality aspects with respect to seed coat colour, oil composition, lecithin and protein fractions and antioxidants like tocopherols and resveratrol will be improved.

  5. cDNA-AFLP analysis reveals differential gene expression in incompatible interaction between infected non-heading Chinese cabbage and Hyaloperonospora parasitica.

    Science.gov (United States)

    Xiao, Dong; Liu, Shi-Tuo; Wei, Yan-Ping; Zhou, Dao-Yun; Hou, Xi-Lin; Li, Ying; Hu, Chun-Mei

    2016-01-01

    Non-heading Chinese cabbage (Brassica rapa ssp. chinensis) is one of the main green leafy vegetables in the world, especially in China, with significant economic value. Hyaloperonospora parasitica is a fungal pathogen responsible for causing downy mildew disease in Chinese cabbage, which greatly affects its production. The objective of this study was to identify transcriptionally regulated genes during incompatible interactions between non-heading Chinese cabbage and H. parasitica using complementary DNA-amplified fragment length polymorphism (cDNA-AFLP). We obtained 129 reliable differential transcript-derived fragments (TDFs) in a resistant line 'Suzhou Qing'. Among them, 121 upregulated TDFs displayed an expression peak at 24-48 h post inoculation (h.p.i.). Fifteen genes were further selected for validation of cDNA-AFLP expression patterns using quantitative reverse transcription PCR. Results confirmed the altered expression patterns of 13 genes (86.7%) revealed by the cDNA-AFLP. We identified four TDFs related to fungal resistance among the 15 TDFs. Furthermore, comparative analysis of four TDFs between resistant line 'Suzhou Qing' and susceptible line 'Aijiao Huang' showed that transcript levels of TDF14 (BcLIK1_A01) peaked at 48 h.p.i. and 25.1-fold increased in the resistant line compared with the susceptible line. Similarly, transcript levels of the other three genes, TDF42 (BcCAT3_A07), TDF75 (BcAAE3_A06) and TDF88 (BcAMT2_A05) peaked at 24, 48 and 24 h.p.i. with 25.1-, 100- and 15.8-fold increases, respectively. The results suggested that the resistance genes tended to transcribe at higher levels in the resistance line than in the susceptible line, which may provide resistance against pathogen infections. The present study might facilitate elucidating the molecular basis of the infection process and identifying candidate genes for resistance improvement of susceptible cultivars.

  6. Cytogenetics of intergeneric hybrids between Brassica species and Orychophragmus violaceus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the sexual intergeneric hybrids between the cultivated Brassica species and Orychophragmus violaceus, both complete separation and partial separation of the parental genomes were found to occur during mitosis and meiosis under genetic control. The cytogenetics of these hybrids was species-specific for Brassica parents. The different chromosome behavior of hybrids with three Brassica diploids ( B. campestris , B. nigra and B. oleracea ) might contribute to the different cytogenetics of hybrids with three tetraploids ( B. napus, B. juncea and B. carinata). Owing to the parental genome separation, Brassica homozygous plants and aneuploids with various chromosome constitutions were identifiable in the progenies of these hybrids, which were valuable for the study of the structure and evolution of Brassica genome and for the breeding of Brassica crops.

  7. 抗菌肽基因转化大白菜获得抗病转基因植株及稳定遗传%Pathogen-resistant Transgenic Plant of Brassica pekinensis by TransferingAntibacterial Peptide Gene and Its Genetic Stability

    Institute of Scientific and Technical Information of China (English)

    王关林; 方宏筠; 王火旭; 李洪艳; 魏毓堂

    2002-01-01

    软腐病是大白菜( Brassica pekinensis Rupr.)的三大病害之一.抗菌肽对软腐病菌有很强的杀伤作用.建立了根癌土壤杆菌( Agrobacterium tumefaciens ) EHA105(pMOG410)工程菌的高频转化载体系统,将抗菌肽基因导入目前推广种植的大白菜AB-81自交系,获得了转基因植株.PCR及 Southern blotting分子杂交鉴定表明抗菌肽基因已整合到白菜基因组.转基因植株提取液的体外抑菌实验、试管苗及盆栽转基因植株的病原菌接种抗病测试结果表明转基因植株具有明显的抗病特性,并且能稳定遗传,转基因植株R1自交分离比为3∶1,R5的转基因植株保持抗Km和抗病特性,可望以其为亲本选育出大白菜抗软腐病的新品种.%The soft rot infected by pathogenic bacterium Erwinia aroideae Holland is one of the three serious diseases of Chinese cabbage ( Brassica pekinensis Rupr.). By constructing vector system of high frequency transformation mediated by Agrobacterium tumefaciens EHA105, anti-bacterial peptide gene with strong bactericidal action to pathogenic bacteria was introduced into Chinese cabbage AB-81 self-bred line and the transgenic plants were obtained. PCR and Southern blotting detection showed that target gene was integrated into plant genome of Chinese cabbage. The tests of bacteriostasis action of the extract from transgenic plants in vitro, and the assay of disease-resistant of transgenic plantlets in the tube and the pot by perfusing inoculation with pathogenic bacteria showed obvious resistance to soft rot. This resistance can be a stable heredity by genetic analysis of generations of transgenic plants disease of soft rot was still kept in the R5. These results indicated the possibility of breeding new varieties of anti-soft rot Chinese cabbage by transgenic plants as parents.

  8. Geographic expansion of the cabbage butterfly (Pieris rapae)and the evolution of highly UV-reflecting females

    Institute of Scientific and Technical Information of China (English)

    Yuya Fukano; Toshiyuki Satoh; Tadao Hirota; Yudai Nishide; Yoshiaki Obara

    2012-01-01

    Reflection ofultraviolet (UV) light by the wings of the female Eurasian cabbage butterfly,Pieris rapae,shows a large geographic variation.The wings of the female of the European subspecies,P rapae rapae,reflect little UV light,while butterflies of the Asian subspecies,P.rapae crucivora,may reflect it strongly or at only intermediate levels.The geographic region where P.rapae originated remains to be determined.Moreover,it is not clear if females with wings that reflect little UV light are ancestral to females with wings that reflect UV strongly or vice versa.In the present study,we aimed to determine the geographic origin and ancestral UV pattern of cabbage butterflies through mitochondrial DNA (mtDNA) sequence analysis and amplified fragment length polymorphism (AFLP) analysis.The results of these investigations suggest that P rapae is of European origin and that it has expanded its distribution eastward to Asia.It follows that the ancestral subspecies is the type with UV-absorbing wings.Lower nucleotide diversities and haplotype network patterns ofmtDNA derived from East Asian populations suggest that population expansion from Europe to East Asia probably occurred fairly recently and at a rapid rate.

  9. Complete sequence of heterogenous-composition mitochondrial genome (Brassica napus and its exogenous source

    Directory of Open Access Journals (Sweden)

    Wang Juan

    2012-11-01

    Full Text Available Abstract Background Unlike maternal inheritance of mitochondria in sexual reproduction, somatic hybrids follow no obvious pattern. The introgressed segment orf138 from the mitochondrial genome of radish (Raphanus sativus to its counterpart in rapeseed (Brassica napus demonstrates that this inheritance mode derives from the cytoplasm of both parents. Sequencing of the complete mitochondrial genome of five species from Brassica family allowed the prediction of other extraneous sources of the cybrids from the radish parent, and the determination of their mitochondrial rearrangement. Results We obtained the complete mitochondrial genome of Ogura-cms-cybrid (oguC rapeseed. To date, this is the first time that a heterogeneously composed mitochondrial genome was sequenced. The 258,473 bp master circle constituted of 33 protein-coding genes, 3 rRNA sequences, and 23 tRNA sequences. This mitotype noticeably holds two copies of atp9 and is devoid of cox2-2. Relative to nap mitochondrial genome, 40 point mutations were scattered in the 23 protein-coding genes. atp6 even has an abnormal start locus whereas tatC has an abnormal end locus. The rearrangement of the 22 syntenic regions that comprised 80.11% of the genome was influenced by short repeats. A pair of large repeats (9731 bp was responsible for the multipartite structure. Nine unique regions were detected when compared with other published Brassica mitochondrial genome sequences. We also found six homologous chloroplast segments (Brassica napus. Conclusions The mitochondrial genome of oguC is quite divergent from nap and pol, which are more similar with each other. We analyzed the unique regions of every genome of the Brassica family, and found that very few segments were specific for these six mitotypes, especially cam, jun, and ole, which have no specific segments at all. Therefore, we conclude that the most specific regions of oguC possibly came from radish. Compared with the chloroplast genome

  10. The Clubroot Pathogen (Plasmodiophora brassicae Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Linda Jahn

    2013-11-01

    Full Text Available The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1 in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA and transcription factors (ARF. As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3, the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.

  11. Plastid transformation in cabbage (Brassica oleracea L. var. capitata L.) by the biolistic process.

    Science.gov (United States)

    Tseng, Menq-Jiau; Yang, Ming-Te; Chu, Wan-Ru; Liu, Cheng-Wei

    2014-01-01

    Cabbage (Brassica oleracea L. var. capitata L.) is one of the most important vegetable crops grown worldwide. Scientists are using biotechnology in addition to traditional breeding methods to develop new cabbage varieties with desirable traits. Recent biotechnological advances in chloroplast transformation technology have opened new avenues for crop improvement. In 2007, we developed a stable plastid transformation system for cabbage and reported the successful transformation of the cry1Ab gene into the cabbage chloroplast genome. This chapter describes the methods for cabbage transformation using biolistic procedures. The following sections are included in this protocol: preparation of donor materials, coating gold particles with DNA, biolistic bombardment, as well as the regeneration and selection of transplastomic cabbage plants. The establishment of a plastid transformation system for cabbage offers new possibilities for introducing new agronomic and horticultural traits into Brassica crops.

  12. Isolation and sequence analysis of chalcone synthase gene BaCHS from Brassica albograbra%芥蓝查尔酮合成酶基因BaCHS的克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    蒋明; 苗立祥; 胡齐赞; 贺蔡明; 陈珍

    2009-01-01

    查尔酮合成酶基因是类黄酮生物合成途径的关键基因,在植物发育和逆境反应中起着重要作用.根据已发表的查尔酮合成酶基因序列设计全长引物,以芥蓝(Brassica albograbra)叶片基因组DNA和花蕾cDNA为模板,克隆到了芥蓝查尔酮合成酶基因全长序列,命名为BaCHS.该基因DNA全长为1 263 bp,具一个长度为75 bp的内含子,编码区长度为1 188 bp,编码395个氨基酸.序列比对结果表明,BaCHS基因编码的氨基酸序列与其他十字花科植物之间的同源性很高,仅存在个别氨基酸残基的差别.

  13. Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia.

    Science.gov (United States)

    Chen, S; Nelson, M N; Ghamkhar, K; Fu, T; Cowling, W A

    2008-01-01

    Oilseed rape (Brassica napus) in Australia and China have similar origins, with introductions from Europe, Canada, and Japan in the mid 20th century, and there has been some interchange of germplasm between China and Australia since that time. Allelic diversity of 72 B. napus genotypes representing contemporary germplasm in Australia and China, including samples from India, Europe, and Canada, was characterized by 55 polymorphic simple sequence repeat (SSR) markers spanning the entire B. napus genome. Hierarchical clustering and two-dimensional multidimensional scaling identified a Chinese group (China-1) that was separated from "mixed group" of Australian, Chinese (China-2), European, and Canadian lines. A small group from India was distinctly separated from all other B. napus genotypes. Chinese genotypes, especially in the China-1 group, have inherited unique alleles from interspecific crossing, primarily with B. rapa, and the China-2 group has many alleles in common with Australian genotypes. The concept of "private alleles" is introduced to describe both the greater genetic diversity and the genetic distinctiveness of Chinese germplasm, compared with Australian germplasm, after 50 years of breeding from similar origins.

  14. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  15. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  16. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J.; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions. PMID:26870056

  17. Intergeneric Crosses between Eruca sativa Mill. and Brassica Species%芸芥(Eruca sativa Mill.)与芸薹属(Brassica L.)3个油用种的远缘杂交

    Institute of Scientific and Technical Information of China (English)

    孙万仓; 官春云; 孟亚雄; 刘自刚; 张涛; 李栒; 杨随庄; 令利军; 陈社元; 曾秀存; 王鹤龄

    2005-01-01

    采用芸芥(Eruca sativa Mill.)与芸薹属3个油用种(Brassica napus,Brassica juncea,Brassica rapa)进行杂交,共授粉15 990朵花,获得1 257个角果,711粒杂交种子,结角率为7.86%,亲和指数0.045.经形态学鉴定,无论芸芥作母本还是芸薹属的3个油用种作母本,F1植株均为偏母植株.杂交所获得角果的角粒数很低,许多角果为空角果,但在多数角果中可见到许多败育胚的残迹,这些败育胚中可能不乏杂种胚.对角果生长发育测量结果表明,远缘杂交角果在授粉后9d左右停止生长,据此推断杂种胚的败育时期可能就在授粉后9 d左右.采用苯胺蓝染色法,在荧光显微镜下对芸芥与甘蓝型油菜杂交时花粉在柱头上的黏合、萌发及萌发花粉管在柱头和花柱中的生长、伸长情况的观察结果表明,异源花粉很难在柱头上黏合和萌发,同时在花粉黏合的部位及其附近柱头乳突细胞内产生大量胼胝质;萌发的少量花粉粒,其花粉管进入柱头也比较困难.表明芸芥与芸薹属杂交,存在严重的生殖隔离障碍,而且主要是受精前障碍.

  18. Brassica cytogenetics-a historical journey and my personal reminiscence

    Institute of Scientific and Technical Information of China (English)

    Shyam Prakash

    2010-01-01

    本文综述了芸薹属细胞遗传学从染色体数目鉴定到分子细胞生物学的发展历程.芸薹属细胞遗传学研究始于日本科学家N. Takamine对白菜型油菜Brassica rapa (syn. B.campestris)体细胞染色体数目的鉴定.俄国植物学家G.D. Karpechenko首次成功地合成了萝卜甘蓝(Raphanobrassica),这项成果的获得是实验室杂交合成新物种的里程碑.日本科学家Morinaga和Nagaharu U率先开展了基因组研究,揭示了芸薹属作物的细胞遗传学结构.二十世纪三十年代广泛开展了体细胞染色体的核型研究.随后,G. Rbbelen在1960年对粗线期染色体进行研究,提出了原始核型的遗传结构.但由于芸薹属染色体非常小,没有明显的形态标识,因此很难获得可靠的核型,近年来由于分子细胞遗传学的迅速发展,科学家采用以rDNA为探针的荧光原位杂交(FISH)技术成功地构建了分子核型.二十世纪50年代初期以来,由于组织培养技术的发展,人工合成了自然界已有的芸薹属栽培异源多倍体种,并进行了芸薹属作物和野生种之间的远缘杂交研究.1980年后发展起来的原生质体再生和融合技术更加促进了大量体细胞杂种的合成,包括相当数量的族间组合.虽然野生种质的基因尚待发掘,但这些实验大大拓展了异源倍性物种已有的遗传基础,增加了近缘野生种质资源的可利用价值.近年来开展的拟南芥和芸薹属物种之间的比较基因组学研究,不仅阐述了进化过程,也使芸薹和拟南芥成为近年来实验生物学的模式植物,为进一步开展细胞遗传学研究奠定了基础.

  19. RAPA: a novel in vitro method to evaluate anti-bacterial skin cleansing products.

    Science.gov (United States)

    Ansari, S A; Gafur, R B; Jones, K; Espada, L A; Polefka, T G

    2010-04-01

    Development of efficacious anti-bacterial skin cleansing products has been limited by the availability of a pre-clinical (in vitro) method to predict clinical efficacy adequately. We report a simple and rapid method, designated as rapid agar plate assay (RAPA), that uses the bacteriological agar surface as a surrogate substrate for skin and combines elements of two widely used in vivo (clinical) methods (Agar Patch and Cup Scrub). To simulate the washing of the human hand or forearm skin with the test product, trypticase soy agar plates were directly washed with the test product and rinsed under running tap water. After air-drying the washed plates, test bacteria (Staphylococcus aureus or Escherichia coli) were applied and the plates were incubated at 37 degrees C for 18-24 h. Using S. aureus as the test organism, anti-bacterial bar soap containing triclocarbanilide showed a strong linear relationship (R(2) = 0.97) between bacterial dose and their per cent reduction. A similar dose-response relationship (R(2) = 0.96) was observed for anti-bacterial liquid hand soap against E. coli. RAPA was able to distinguish between anti-bacterial products based on the nature and level of actives in them. In limited comparative tests, results obtained by RAPA were comparable with the results obtained by clinical agar patch and clinical cup scrub methods. In conclusion, RAPA provides a simple, rugged and reproducible in vitro method for testing the relative efficacy of anti-bacterial skin cleansing products with a likelihood of comparable clinical efficacy. Further testing is warranted to improve the clinical predictability of this method.

  20. RAPESEED (Brassica napus and Brassica campestris) A NEW OILSEED CROP FOR TURKEY

    OpenAIRE

    KURAL, Aynur

    1995-01-01

    Rapeseed (Brassica napus and Brassica campestris L.) is an important oil crop in many parts of the world. Rapeseed is well-adapted to cool, moist growing conditions and requires fewer heat units than either soybean or sunflower for maturity. Rapeseed oil can be used for human consumption (Canola) and ındustrial purposes. Oil from Canola cultivars must contain less than 2% erucic acid compared with 40-45% in industrial use rape varieties. The meal remaining after oil extraction of Canola seed ...

  1. Molecular biology of Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Siemens, Johannes; Bulman, Simon; Rehn, Frank

    2009-01-01

    of several genes have been revealed, and the expression of those genes has been linked to development of clubroot to some extent. In addition, the sequence data have reinforced the inclusion of the plasmodiophorids within the Cercozoa. The recent successes in molecular biology have produced new approaches......Initially, molecular techniques were used to detect and distinguish Plasmodiophora pathotypes in soil. Meanwhile, chromosomes from 2.2 Mb to 680 kb are characterized and the total genome size is estimated to be approximately 20 Mb. Furthermore, the genomic gene structure and the cDNA structure...

  2. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van

    1997-01-01

    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are us

  3. Dispersal behaviour of Trichogramma brassicae in maize fields

    NARCIS (Netherlands)

    Suverkropp, B.P.; Bigler, F.; Lenteren, van J.C.

    2009-01-01

    Glue-sprayed maize plants were used to study dispersal behaviour of the egg parasitoid Trichogramma brassicae Bezdenko (Hymenoptera Trichogrammatidae) in maize fields. To estimate the distance covered during an initial flight, T. brassicae were studied in a field cage with 73 glue-sprayed plants. Mo

  4. Epidemiological studies on Brassica vegetables and cancer risk

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Goldbohm, R.A.; Poppel, G. van; Verhagen, H.; Brandt, P.A. van den

    1996-01-01

    This paper gives an overview of the epidemiological data concerning the cancer-preventive effect of brassica vegetables, including cabbage, kale, broccoli, Brussels sprouts, and cauliflower. The protective effect of brassicas against cancer may be due to their relatively high content of glucosinolat

  5. Transcriptomic basis for drought-resistance in Brassica napus L.

    Science.gov (United States)

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering. PMID:28091614

  6. Transcriptomic basis for drought-resistance in Brassica napus L.

    Science.gov (United States)

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.

  7. The Molecular Characteristics of Ogura Cytoplasmic Male Sterility Related Gene orf138 in Cabbage (Brassica oleracea var.capitata)%甘蓝细胞质雄性不育相关基因orf138的分子特性分析

    Institute of Scientific and Technical Information of China (English)

    朱琴; 康宗利; 简元才; 丁云花; 康俊根

    2012-01-01

    以甘蓝Ogura细胞质雄性不育系为材料,找出能够有效鉴定由orf138导致的甘蓝CMS的标记,并明确此基因在甘蓝Ogu CMS基因组中的位置.根据萝卜CMS相关基因orf138的序列信息,设计特异引物,并在甘蓝不同类型不育系和保持系中鉴定PCR产物的稳定性.随后利用Tail-PCR技术,扩增获得此基因的侧翼序列并进行了生物信息学分析.根据orf138的全长序列设计引物B0138300BF/R,在甘蓝不育型材料中,能够稳定扩增出300 bp左右的单一条带,而在其他细胞质不育类型和可育材料中均未扩出条带,经多次验证结果稳定可靠.甘蓝中orf138的上下游侧翼序列有效碱基1789 bp,通过生物信息学分析,获得包括起始密码和终止密码的orf138的完整序列共417 bp.同源性比对结果显示:与甘蓝型油菜、白菜和萝卜的or38片段具有高度保守性.分析侧翼序列表明甘蓝orf138的3’端是由ORF83、trnfM、ORF125等基因片段构成的一个复杂序列.获得了甘蓝OguCMS特异的分子鉴定标记,明确了orf138在甘蓝线粒体中的位置,以上结果为甘蓝雄性不育的进一步研究奠定良好的基础.%The objective was to develop effective specific markers of Ogura cytoplasmic male sterility (Ogu CMS) line in Brassica oleracea and illustrate the upstream and downstream genome sequence arrangement of the CMS gene orf!38. The orfl38 gene fragment in cabbage CMS line was amplified based on specific primers designed according to radish orfl38 gene sequence information. The upstream and downstream mitochondrion sequences of orfl38 sterile line were identified by use of Tail-PCR technology. Ogu CMS specific primer B0I38300 BF/R was designed according to the full-length sequence of orf138. It could stably amplify a single PCR product of about 300 bp in OguCMS cabbage line, while never in fertile maintainer lines and other types of cytoplasmic male sterility lines. Upstream and downstream flanking sequence of

  8. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease.

    Science.gov (United States)

    Lovelock, David A; Šola, Ivana; Marschollek, Sabine; Donald, Caroline E; Rusak, Gordana; van Pée, Karl-Heinz; Ludwig-Müller, Jutta; Cahill, David M

    2016-10-01

    Salicylic acid (SA) biosynthesis, the expression of SA-related genes and the effect of SA on the Arabidopsis-Plasmodiophora brassicae interaction were examined. Biochemical analyses revealed that, in P. brassicae-infected Arabidopsis, the majority of SA is synthesized from chorismate. Real-time monitored expression of a gene for isochorismate synthase was induced on infection. SA can be modified after accumulation, either by methylation, improving its mobility, or by glycosylation, as one possible reaction for inactivation. Quantitative reverse transcription-polymerase chain reaction (qPCR) confirmed the induction of an SA methyltransferase gene, whereas SA glucosyltransferase expression was not changed after infection. Col-0 wild-type (wt) did not provide a visible phenotypic resistance response, whereas the Arabidopsis mutant dnd1, which constitutively activates the immune system, showed reduced gall scores. As dnd1 showed control of the pathogen, exogenous SA was applied to Arabidopsis in order to test whether it could suppress clubroot. In wt, sid2 (SA biosynthesis), NahG (SA-deficient) and npr1 (SA signalling-impaired) mutants, SA treatment did not alter the gall score, but positively affected the shoot weight. This suggests that SA alone is not sufficient for Arabidopsis resistance against P. brassicae. Semi-quantitative PCR revealed that wt, cpr1, dnd1 and sid2 showed elevated PR-1 expression on P. brassicae and SA + P. brassicae inoculation at 2 and 3 weeks post-inoculation (wpi), whereas NahG and npr1 showed no expression. This work contributes to the understanding of SA involvement in the Arabidopsis-P. brassicae interaction.

  9. 构建结球甘蓝K IN基因在叶绿体基因组定点表达的载体%Construction of Chloroplast Site-specific Integration Expression Vector Harboring KIN Gene of Cabbage (Brassica oleracea L. var. capitata L.)

    Institute of Scientific and Technical Information of China (English)

    陶鹏; 黄小云; 李必元; 王五宏; 岳智臣; 雷娟利; 钟新民

    2015-01-01

    获得叶绿体基因组定点整合表达载体是开展结球甘蓝叶绿体基因组的遗传转化研究的第一步。本研究克隆了CMS结球甘蓝的抗冻蛋白K IN基因,发现该基因定位于结球甘蓝的2号染色体上。通过构建中间载体pKA和pAI,将K IN基因的编码区构建到了CMS结球甘蓝叶绿体基因组定点整合表达载体pIKAA中。该载体以TrnA 和TrnI基因片段作为同源整合片段,能整合到CMS结球甘蓝叶绿体基因组中。此外,该载体是双顺反子形式的,即在转录的单条mRNA上,同时包含了K IN和aadA 基因编码区。将pIKAA转化到大肠杆菌中,结果显示转化有该载体的大肠杆菌能够在含有氨苄青霉素(AMP)和壮观霉素(SPEC)的固体LB平板中生长。研究结果可为后期CMS结球甘蓝叶绿体基因组的遗传转化体系的建立奠定基础。%To construct chloroplast site-specific integration expression vector is the first step for carrying on genetic transformation of cabbage chloroplast genome (Brassica oleracea L. var. capitata L.). In this study, antifree-ze protein KIN gene was cloned from cytoplasmic male sterility (CMS) cabbage (Brassica oleracea L. var. capitata L.), and was located in 2 chromosome in B. oleracea genome. By constructing the intermediate vector pKA and pAI, coding region of KIN gene was inserted into the site-specific integration expression vector (pIKAA) of CMS cabbage chloroplast. Due to the fragments of TrnA and TrnI used as homologous integration fragments, the pIKAA could target to chloroplast genomes of CMS cabbage. In addition, the pIKAA vector was bicistronic. The single transcribed mRNA from the pIKAA vector contained simultaneously coding regions of KIN and aadA gene. The vector was transformed into E. coli that can grow in LB containing ampicillin and spectinomycin. The study might lay essential basis in establishment of genetic transformation system of chloroplast genome of CMS cabbage.

  10. Comparative Leave Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis

    Directory of Open Access Journals (Sweden)

    Muhammad Adnan Mushtaq

    2016-03-01

    Full Text Available The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all Brassica species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes of anthocyanin especially Dihydroflavonol 4-Reductase (DFR, Anthocyanidin Synthase (ANS and Transparent Testa 19 (TT19, were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8, was co-up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5 which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8, GLYCOLATE OXIDASE 1 (GOX1 and GLUTAMINE SYNTHETASE 1;4 (GLN1;4 related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future.

  11. Brassica juncea Lines with Substituted Chimeric GFP-CENH3 Give Haploid and Aneuploid Progenies on Crossing with Other Lines

    OpenAIRE

    Watts, Anshul; Singh, Sunil K.; Bhadouria, Jyoti; Naresh, Vasupalli; Bishoyi, Ashok K.; K.A. Geetha; Chamola, Rohit; Pattanayak, Debasis; Bhat, Shripad R.

    2017-01-01

    Haploids and doubled haploids are invaluable for basic genetic studies and in crop improvement. A novel method of haploid induction through genetic engineering of the Centromere Histone Protein gene, CENH3, has been demonstrated in Arabidopsis. The present study was undertaken to develop haploid inducer (HI) lines of Brassica juncea based on the principles elaborated in Arabidopsis. B. juncea was found to carry three copies of CENH3 which generated five different transcripts, of which three t...

  12. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Directory of Open Access Journals (Sweden)

    Giattina Emily

    2011-09-01

    Full Text Available Abstract Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF of Bacterial Artificial Chromosome (BAC clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account

  13. Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago.

    Directory of Open Access Journals (Sweden)

    Huy D Nguyen

    Full Text Available Turnip mosaic potyvirus (TuMV is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs, and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro, protein 3(P3, nuclear inclusion b protein (NIb, and coat protein (CP]. Three genes (HC-Pro, P3, and NIb, but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world.

  14. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity.

    Science.gov (United States)

    Gouhier-Darimont, Caroline; Schmiesing, André; Bonnet, Christelle; Lassueur, Steve; Reymond, Philippe

    2013-01-01

    Insect egg deposition activates plant defence, but very little is known about signalling events that control this response. In Arabidopsis thaliana, oviposition by Pieris brassicae triggers salicylic acid (SA) accumulation and induces the expression of defence genes. This is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here, the involvement of known signalling components of PTI in response to oviposition was studied. Treatment with P. brassicae egg extract caused a rapid induction of early PAMP-responsive genes. In addition, expression of the defence gene PR-1 required EDS1, SID2, and, partially, NPR1, thus implicating the SA pathway downstream of egg recognition. PR-1 expression was triggered by a non-polar fraction of egg extract and by an oxidative burst modulated through the antagonistic action of EDS1 and NUDT7, but which did not depend on the NADPH oxidases RBOHD and RBOHF. Searching for receptors of egg-derived elicitors, a receptor-like kinase mutant, lecRK-I.8, was identified which shows a much reduced induction of PR-1 in response to egg extract treatment. These results demonstrate the importance of the SA pathway in response to egg-derived elicitor(s) and unravel intriguing similarities between the detection of insect eggs and PTI in Arabidopsis.

  15. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-06-01

    Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.

  16. [Somatic hybridization between Brassica napus and Eruca sativa mill].

    Science.gov (United States)

    Zhang, Chuanli; Yang, Zhixin; Gui, Xuemei; Liu, Yating; Mao, Xiaoqiang; Xia, Guoyin; Lin, Liangbin

    2008-05-01

    In order to expand gene resources and improve Brassica napus cultivars, protoplasts isolated from hypocotyls of Brassica napus cv. Huayou No. 3 and Eruca sativa were fused by PEG-high Ca2+-high pH. Fusion frequency was up to 18.2% when fusion system contained 5 x 10(5) protoplasts/mL, and when PEG concentration of fusion agents were 35% and when fusion time was 25 min. Then the fused protoplasts were cultured by the method of thin liquid layer at the density of 1 x 10(5) protoplasts/mL in improved KM8p medium supplemented with 1.0 mg/L 2,4-D, 0.5 mg/L NAA, 0.5 mg/L 6-BA, 200 mg/L inositol, 300 mg/L protein hydrolysate, and the combinations of 0.1 mol/L sucrose and 0.2 mol/L glucose and 0.2 mol/L mannitol for osmotic regulator, the frequency of callus regeneration was up to 6.8%. When the micro-calli transferred to the proliferation medium that contained B5 salts, 0.087 mol/L sucrose, 0.2 mg/L 2,4-D, 0.5 mg/L NAA, 0.2 mg/L 6-BA and 0.5% Agar, pH 5.8, have grown up to 3-5 mm of diameter, the calli were transferred to the differentiation medium that contained MS salts, 0.087 mol/L sucrose, 0.1 mg/L IAA, 0.8 mg/L 6-BA, 0.8% Agar, pH5.8, the shoots were regenerated in 4 weeks and its frequency was up to 32.8%. Then 2-3 cm shoots were transferred to 1/2 MS medium with 0.5 mg/L IBA+0.2mg/L 6-BA, plantlets were obtained in 14 days and the plantlet frequency was up to 88%. When the protoplasts of Eruca sativa were treated with UV radiation for 2 minutes calli and plantlets have been regenerated, treated for 4 min only calli have been regenerated, and treated for more than 5 min calli have not been regenerated. The callus regeneration and callus proliferation and plant regeneration from symmetric fusion were more than from asymmetric fusion. 16 hybrid plantlets have been regenerated on 21 piece of hybrid calli identified by cytology method.

  17. Study on the Infection and Pathogenesis of Nosema bombycis in Pieris rapae Study on the Infection and Pathogenesis of Nosema bombycis in Pieris rapae Study on the Infection and Pathogenesis of Nosema bombycis in Pieris rapae%家蚕微孢子(Nosema bombycis)对菜青虫(Pieris rapae)的感染与致病性研究

    Institute of Scientific and Technical Information of China (English)

    孙胜; 宗浩; 杨小蓉

    2001-01-01

    利用家蚕微孢子不污染蔬菜与环境,不感染人、畜,甚至不会伤害害虫天敌的特点,首次用其作为生物农药进行试验,并对重要蔬菜害虫菜青虫做了感染与致病性研究,结果证明微孢子能大量寄生在菜青虫体内,并得到理想的防治效果.%Nosema bombycis does not do harm to the environment andvegetables. Nor does it infect the human being, domestic animals, even the natural enemies of insect pests. The experiments are made to study Nosema bombycis as the bioagrochemical. The research is carried out on infection and pathogenesis in vegetable-crop insect pest Pieris rapae. And the experiments prove that a great number of Nosema bombycis can be parasitic to the Pieris rapae and produce the desired preventive results.

  18. The foraging behavior of Diaeretiella rapae (Hymenoptera: Braconidae on Diuraphis noxia (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Tazerouni Zahra

    2011-01-01

    Full Text Available Host stage preference, functional response and mutual interference of Diaeretiella rapae (McIntosh (Hymenoptera: Braconidae: Aphidiinae on Diuraphis noxia (Mordvilko (Hemiptera: Aphididae were investigated under defined laboratory conditions (20±1°C; 60±5% relative humidity; 16 h light/8 h dark photoperiod. Nicholson’s model and linear regression were used to determine per capita search-efficiency and the interference coefficient, respectively. There was a significant difference between the rates of parasitism on different stages of D. noxia. The highest parasitism percentage was observed on the third instar nymphs of D. noxia in both choice and no-choice preference tests. Results of logistic regression revealed a type II functional response. The estimated values of search-efficiency (a and handling time (Th were 0.072 h-1 and 0.723 h, respectively. The maximum attack rate was calculated to be 33.22. The per capita search-efficiency decreased from 0.011 to 0.004 (h-1 as parasitoid densities increased from 1 to 8. Therefore, different host-parasitoid ratios can affect the efficacy of D. rapae.

  19. Influence of cornicle droplet secretions of the cabbage aphid, Brevicoryne brassicae, on parasitism behavior of naïve and experienced Diaeretiella rapae

    DEFF Research Database (Denmark)

    Moayeri, Hamid R. S.; Rasekh, Arash; Enkegaard, Annie

    2014-01-01

    Insects have evolved amazing methods of defense to ward off enemies. Many aphids release cornicle secretions when attacked by predators and parasitoids. These secretions contain an alarm pheromone that alerts other colony members of danger, thereby providing indirect fitness benefits to the relea......Insects have evolved amazing methods of defense to ward off enemies. Many aphids release cornicle secretions when attacked by predators and parasitoids. These secretions contain an alarm pheromone that alerts other colony members of danger, thereby providing indirect fitness benefits...

  20. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  1. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for

  2. THE BRINE SHRIMP (ARTEMIA SALINA) LETHALITY OF Brassica oleracea var. capitata

    OpenAIRE

    O.T. TÜZÜN, E. GÜRKAN, F. HIRLAK,

    2015-01-01

    This work covers up the bio-activities of the five fractions obtained from the ethanolic extract of Brassica oleracea var. capitata (Cruciferae).Key Words: Brassica oleracea var. capitata, Brine shrimp (Artemia salina)

  3. Oil Body Biogenesis during Brassica napus Embryogenesis

    Institute of Scientific and Technical Information of China (English)

    Yu-Qing He; Yan Wu

    2009-01-01

    Although the oil body is known to be an important membrane enclosed compartment for oil storage in seeds, we have little understanding about its biogenesis during embryogenesis. In the present study we investigated the oil body emergence and variations in Brassica napus cv. Topas. The results demonstrate that the oil bodies could be detected already at the heart stage, at the same time as the embryos began to tum green, and the starch grains accumulated in the chloroplast stroma. In comparison, we have studied the development of oil bodies between Arabidopsis thaliana wild type (Col) and the low-seed-oil mutant wrinkled1-3. We observed that the oil body development in the embryos of Col is similar to that of B. napus cv. Topas, and that the size of the oil bodies was obviously smaller in the embryos of wrinkled1-3. Our results suggest that the oil body biogenesis might be coupled with the embryo chloroplast.

  4. Cloning and functions analysis of a pyruvate dehydrogenase kinase in Brassica napus.

    Science.gov (United States)

    Li, Rong-Jun; Hu, Zhi-Yong; Zhang, Hua-Shan; Zhan, Gao-Miao; Wang, Han-Zhong; Hua, Wei

    2011-08-01

    Pyruvate dehydrogenase kinase (PDK) is a negative regulator of the mitochondrial pyruvate dehydrogenase complex (mtPDC), which plays a key role in intermediary metabolism. In this study, a 1,490-bp PDK in Brassica napus (BnPDK1) was isolated and cloned from Brassica cDNA library. BnPDK1 has an 1,104 open reading frame encoding 367 amino acids. Genomic DNA gel blot analysis result indicated that BnPDK1 is a multi-copy gene. RNA gel blot analysis and RNA in situ hybridization were used to determine the expression of BnPDK1 in different organs. BnPDK1 gene was ubiquitously expressed in almost all the tissues tested, having the highest expression in the stamen and the young silique. Over-expression of BnPDK1 in transgenic Arabidopsis lines would repress the PDC activity, and resulted in the decrease of seed oil content and leaf photosynthesis. These results implied that BnPDK1 was involved in the regulation of fatty acid biosynthesis in developing seeds.

  5. New Insights into Nested Long Terminal Repeat Retrotransposons in Brassica Species

    Institute of Scientific and Technical Information of China (English)

    Lijuan Wei; Meili Xiao; Zeshan An; Bi Ma; Annaliese S.Mason; Wei Qian; Jiana Li

    2013-01-01

    Long terminal repeat (LTR) retrotransposons,one of the foremost types of transposons,continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation.Many LTR-TEs preferentially insert within other LTR-TEs,but the cause and evolutionary significance of these nested LTR-TEs are not well understood.In this study,a total of 1.52 Gb of Brassica sequence containing 2020 bacterial artificial chromosomes (BACs) was scanned,and six bacterial artificial chromosome (BAC) clones with extremely nested LTR-TEs (LTR-TEs density:7.24/kb)were selected for further analysis.The majority of the LTR-TEs in four of the six BACs were found to be derived from the rapid proliferation of retrotransposons originating within the BAC regions,with only a few LTR-TEs originating from the proliferation and insertion of retrotransposons from outside the BAC regions approximately 5-23 Mya.LTR-TEs also preferably inserted into TA-rich repeat regions.Gene prediction by Genescan identified 207 genes in the 0.84 Mb of total BAC sequences.Only a few genes (3/207) could be matched to the Brassica expressed sequence tag (EST) database,indicating that most genes were inactive after retrotransposon insertion.Five of the six BACs were putatively centromeric.Hence,nested LTR-TEs in centromere regions are rapidly duplicated,repeatedly inserted,and act to suppress activity of genes and to reshuffle the structure of the centromeric sequences.Our results suggest that LTR-TEs burst and proliferate on a local scale to create nested LTR-TE regions,and that these nested LTR-TEs play a role in the formation of centromeres.

  6. Chemosensory basis of behavioural plasticity in response to deterrent plant chemicals in the larva of the Small Cabbage White butterfly Pieris rapae

    NARCIS (Netherlands)

    Zhou, D.S.; Wang, C.Z.; Loon, van J.J.A.

    2009-01-01

    Behavioural and electrophysiological responsiveness to three chemically different secondary plant substances was studied in larvae of Pieris rapae L. (Lepidoptera: Pieridae). Three groups of caterpillars were studied that during their larval development were exposed to different rearing diets: an ar

  7. High efficiency production and genomic in situ hybridization analysis of Brassica aneuploids and homozygous plants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Interspecific and intergeneric hybridizations have been widely used in plant genetics and breeding to construct stocks for genetic analysis and to introduce into crops the desirable traits and genes from their relatives. The intergeneric crosses between Brassica juncea (L.) Czern. & Coss., B. carinata A. Braun and Orychophragmus violaceus (L.) O. E. Schulz were made and the plants produced were subjected to genomic in situ hybridization analysis. The mixoploids from the cross with B. juncea were divided into three groups. The partially fertile mixoploids in the first group (2n = 36-42) mainly contained the somatic cells and pollen mother cells (PMCs) with the 36 chromosomes of B. juncea and additional chromosomes of O. violaceus. The mixoploids (2n = 30-36) in the second and third groups were morphologically quite similar to the mother plants B. juncea and showed nearly normal fertility. The plants in the second group produced the majority of PMCs (2n = 36) with their chromosomes paired and segregated normally, but 1-4 pairs of the O. violaceus chromosomes were included in some PMCs. The plants in the third group produced only PMCs with the 36 B. juncea chromosomes, which were paired and segregated normally. The mixoploids (2n = 29-34) from the cross with B. carinata produced the majority of PMCs (2n = 34) with normal chromosome pairing and segregation, but some plants had some PMCs with 1-3 pairs of chromosomes from O. violaceus and other plants had only PMCs with the B. carinata chromosomes. The Brassica homozygous plants and aneuploids with complete or partial chromosome complements of Brassica parents and various numbers of O. violaceus chromosomes were derived from these progeny plants. The results in this study provided the molecular cytogenetic evidence for the separation of parental genomes which was previously proposed to occur in the hybridizations of these two genera.

  8. Assessing intrasample variation: analysis of Rapa Nui (Easter Island) museum cranial collections example.

    Science.gov (United States)

    Stefan, Vincent H

    2004-05-01

    Osteological studies both old and new have utilized various Polynesian cranial samples, individually or in combination, to assess the racial composition of prehistoric Polynesians as a group, with regards to other Pacific populations, or to represent the Polynesian peoples as a whole in various multivariate analyses of worldwide populations. However, few of these studies have assessed the degree of intrasample variation produced when data derived from skeletal samples from different Polynesian islands (populations) are pooled to represent "Polynesians" as a whole. A similar argument can be made when data derived from various museum skeletal samples of the same Polynesian population are pooled to produce a larger sample representing that particular Polynesian population (Murrill [1968] Cranial and postcranial skeletal remains from Easter Island; Minneapolis: University of Minnesota Press; Stefan [2002] Am. J. Phys. Anthropol. [Suppl.] 34:147). This study examined Easter Island crania curated at various museums in North America, South America, and Europe to assess whether significant differences exist among the museum collections of Rapa Nui (Easter Island) skeletal material. A NORM statistical program (Schafer and Olsen [1997] NORM, version 1.01; University Park: Pennsylvania State University) for multiple imputation of incomplete multivariate datasets was utilized to estimate missing data. A variance comparison method, which utilizes variance/covariance matrices derived from "hypothesis" and "baseline/reference" samples (Key and Jantz [1990] Hum. Evol. 5:457-469; Key and Jantz [1990] Am. J. Phys. Anthropol. 82:53-59) was used to compare the Rapa Nui museum samples. This method is designed to test whether variability in a "hypothesis" museum sample exceeds "normal within-group variability" represented by the "baseline/reference" sample. The method was applied to six Rapa Nui museum samples (AANMW, MNHN-KB, MNHN-NAE, NHM, MH, and AMNH). The results indicate that the

  9. Positive correlation of methamidophos resistance between Lipaphis erysimi and Diaeretilla rapae and effects of methamidophos ingested by host insect on the parasitoid

    Institute of Scientific and Technical Information of China (English)

    Gang Wu; Yong-Wen Lin; Tadashi Miyata; Shu-Ren Jiang; Lian-Hui Xie

    2009-01-01

    Temporal and spatial correlated variations on the methamidophos resistance and biomolecular rate constant of acetylcholinesterase to insecticides were found between the turnip aphid, Lipaphis erysimi and its endoparasitoid, Diaeretilla rapae, collected from field colonies and an insecticide-free field insectarium in Fujian, China. Compared to the related susceptible iusectarium population, L. erysimi and D. rapae displayed 7.4-29.2- and 2.6-9.2-fold resistance ratios, respectively. In addition, two populations of L. erysimi with different methamidophos resistance levels, that is, a field (with 5.8-fold resistance ratio) and an insectarium population, were used to study the effects of methamidophos ingested by the host insect on D. rapae development. The percentage of D. rapae cocoon formation decreased significantly when the parasitized L. erysimi were fed on cauliflower leaves treated with methamidophos at lethal concentration dosages 10 (LC10) or LC50. At LC50 dosages the percentage of D. rapae cocoon formation and adult emergence decreased significantly. When the parasitized L. erysimi were fed on methamidophos at LC50 dosage, no D. rapae cocoons were found. When the field or insectarium L. erysimi were treated with methamidophos at LC10, the susceptibility to methamidophos in the adult D. rapae emerged from the treated host insect was similar to the control. However, the susceptibility to methamidophos in the adult D. rapae became lower than the control when the host insects were treated at LC50 dosages. The data thus suggested that the methamidophos ingested by the host insect L. erysimi could be an important factor in the endoparasitoids' insecticide resistance development. The natural selectivity would favor the parasitoids that had developed an insensitivity to the insecticide(s).

  10. 青花菜C3H型锌指蛋白基因 BoCCCH2的克隆与表达%Cloning and expression of a C3H-type zinc finger protein gene BoCCCH2 from Brassica oleracea var . italica

    Institute of Scientific and Technical Information of China (English)

    蒋明; 刘青娥; 章燕如; 祝琦; 龚秀; 俞可可; 周秀倩

    2016-01-01

    , translation , repair , metabolism and signaling . According to the number and order of cysteine and histidine residues , zinc finger proteins were classified into several different types , such as C2H2 , C2C2 , C2C2C2 , C2HC and C3H . For example , C3H‐type ones contain one to six typical motifs with three cysteine residues and one histidine residue . However , their functions are little known , and no gene has been reported in broccoli . In this study , a C3H‐type zinc finger protein gene BoCCCH2 was isolated from broccoli , and later the expression patterns in different organs as well as leaves infected by H . parasitica and B . cinerea were studied . Results indicated that BoCCCH2 contained no intron , and the full length of coding sequence was 1 740 bp encoding 579 amino acids . The deduced protein sequence contained two ANK domains and two CCCH zinc finger structures , respectively , and the CCCH zinc finger types were C —X8 —C—X5 —C—X3 —H and C—X5 —C—X4 —C—X3 — H . Reverse transcription‐polymerase chain reaction results showed that the BoCCCH2 was expressed in roots , leaves , stalks , young siliques , flower buds and flowers , with highest level in roots . Expression levels increased when challenged by both H . parasitica and B . cinerea . When infected by H . parasitica , expression levels increased after 24 h , and decreased after 72 h , while infected by B . cinerea , the highest level was detected after 6 h , and slowed down in 12 h . Homologous sequences were downloaded from NCBI ( National Center for Biotechnology Information) website , including Citrus sinensis , Gossypium raimondii , Populus trichocarpa , Ricinus communis , Prunus persica , P . mume , Malus domestica , Fragaria vesca , Phaseolus vulgaris , Glycine soja , B . rapa, Camelinasativa , Capsella rubella , Arabidopsis thaliana and Eutrema salsugineum . Phylogenetic analysis results revealed that BoCCCH2 was grouped with homogeneous sequences from other Cruciferae plants

  11. 转Bt和抗菌肽融合基因油菜植株的获得与鉴定研究%Attainment and Identification of Transgene Rape (Brassica napus)with Bt and Antibiotic Peptide Syncretic Gene

    Institute of Scientific and Technical Information of China (English)

    杨凯; 韩伟; 温莹; 刘丹丹; 薛春蕾; 逯晓萍

    2011-01-01

    Rape is one of important oil crop that were widely grown in China. The diseases occures to rape easily,especially for white spot and black spot that caused by fungi. The variety of Huayou No. 6 was used for tranferring Bt and Antibiotic peptide syncretic gene(Bt-AMP), glyphosate as selective marker, by the method of agrobacterium-mediated transformation. The test of PCR and southern blot proved the exogenous DNA was integrated on the genome of rape; RT-PCR test showed the expression of transcriptional level of the introduced gene in rape plant. The tranformation rate of Bt-AMP was 2.33%. The research provided new germ for rape breeding of disease resistance.%油菜极易遭受各种病虫害的侵害,其中白斑病和黑斑病都属于真菌引起的病害.以优良品种花油6号为材料,以抗菌肽和Bt融合基因为目标基因,以草甘膦为筛选标记基因,采用农杆菌介导的方法转入油菜获得转基因植株.经PCR和Southem检测表明外源基因已整合到油菜的基因组DNA中;经RT-PCR检测表明目的基因已在油菜转基因植株的转录水平表达;目的基因(Bt-AMP)的遗传转化率为2.33%.研究结果可为油菜的抗性遗传改良提供新种质.

  12. Bidens meyeri (Asteraceae, Coreopsideae: a new critically endangered species from Rapa, Austral Islands

    Directory of Open Access Journals (Sweden)

    Vicki Funk

    2014-10-01

    Full Text Available Bidens meyeri (Asteraceae/Compositae is described and illustrated from Rapa, Austral Islands, (French Polynesia. This new species is presumed to be most closely related to Bidens saint-johniana from nearby Marotiri Island. Bidens meyeri may be distinguished from B. saint-johniana based on the length of the peduncle (3 cm versus 10 cm, apex of the inner involucral bracts (glabrous vs. puberulent, smaller leaves (2.0–2.3 cm vs. 5–6 cm, and the general smaller size of the new species. Known from less than 50 individuals and restricted to one remote location, Bidens meyeri falls into the IUCN Critically Endangered (CR category. The new species is named in honor of Dr. Jean-Yves Meyer, Délégation à la Recherche, Polynésie Française,

  13. Bidensmeyeri (Asteraceae, Coreopsideae): a new critically endangered species from Rapa, Austral Islands.

    Science.gov (United States)

    Funk, Vicki A; Wood, Kenneth R

    2014-01-01

    Bidensmeyeri (Asteraceae/Compositae) is described and illustrated from Rapa, Austral Islands, (French Polynesia). This new species is presumed to be most closely related to Bidenssaint-johniana from nearby Marotiri Island. Bidensmeyeri may be distinguished from Bidenssaint-johniana based on the length of the peduncle (3 cm versus 10 cm), apex of the inner involucral bracts (glabrous vs. puberulent), smaller leaves (2.0-2.3 cm vs. 5-6 cm), and the general smaller size of the new species. Known from less than 50 individuals and restricted to one remote location, Bidensmeyeri falls into the IUCN Critically Endangered (CR) category. The new species is named in honor of Dr. Jean-Yves Meyer, Délégation à la Recherche, Polynésie Française.

  14. Disruption of germination and seedling development in Brassica napus by mutations causing severe seed hormonal imbalance

    Directory of Open Access Journals (Sweden)

    Tung eNguyen

    2016-03-01

    Full Text Available The Brassica napus (oilseed rape accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologues revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homoeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2-6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the

  15. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因%Identification of Drought Stress-Responsive Genes in Leaves of Brassica napus by RNA Sequencing

    Institute of Scientific and Technical Information of China (English)

    卢坤; 张琳; 曲存民; 梁颖; 唐章林; 李加纳

    2015-01-01

    [目的]利用RNA Sequencing (RNA-Seq)技术比较2种不同生长条件下甘蓝型油菜苗期叶片转录组,鉴定油菜叶片干旱胁迫应答相关基因,从转录组水平揭示油菜适应干旱胁迫环境的分子机制.[方法]提取正常生长(ZY)和自然失水处理(ZY8D)的六叶期甘蓝型油菜中油821的叶片总RNA,以Illumina Hiseq 2000平台进行RNA-Seq分析.利用NGSQCTookit v2.3.3去除低质量和包含模糊碱基的reads.以甘蓝型油菜亲本物种白菜染色体v1.5和甘蓝Scaffold v1.0为参考序列,采用TopHat2-Cufflinks-Cuffmerge-Cuffdiff标准流程进行差异表达基因(differential expressed genes,DEGs)筛选.对上调和下调DEGs分别采用Cytoscape v3.1.0中的BiNGO和KOBAS2.0进行基因本体(gene ontology,GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)代谢途径富集分析.选择上调和下调DEGs各3个,以实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)验证RNA-Seq结果的可靠性.[结果]过滤低质量reads后,ZY和ZY8D分别保留了26 192 312和28 378 899对高质量reads用于DEGs筛选,其中86.6%和85.8%的reads能准确比对到参考序列上,说明RNA-Seq结果和参考序列可靠.DEGs鉴定结果表明3 657个基因受干旱胁迫诱导差异表达,其中上调表达基因1 431个,下调表达基因2 226个.GO富集分析发现上调表达基因主要与非生物胁迫响应和化学刺激响应相关,其中,参与水分胁迫响应和脱落酸(abscisic acid,ABA)刺激响应的基因分别有127和141个,而下调表达基因与植物病原菌防御、蛋白激酶活性和水杨酸(salicylic acid,SA)刺激相关.KEGG富集分析表明上调表达基因主要富集于苯丙烷和类胡萝卜素的生物合成及淀粉与蔗糖代谢途径,而下调表达基因主要富集于植物-病原菌互作和植物激素ABA、SA和茉莉酸(jasmonic acid,JA)信号转导途径.qRT-PCR检测6个DEGs的表达模式与RNA-Seq分析结果一致,

  16. The Acquisition and Expression Analysis of Polygalacturonase Gene MF6 Related to the Fertility ofBrassica napus L.%油菜育性相关多聚半乳糖醛酸酶基因MF6的获得及表达分析

    Institute of Scientific and Technical Information of China (English)

    黄荣仙; 唐志康; 郭世星; 牛应泽

    2012-01-01

    本研究目的在于利用化学杀雄剂“化杀灵WP1”锈导甘蓝型油菜R121产生雄性不育,并对花蕾中的差异表达基因进行分离、筛选及定量表达分析.首先,通过抑制消减杂交技术(SSH)和反向Northern斑点杂交技术,分离和筛选出在雄性不育花蕾中差异表达的基因片段.然后,将差异片段测序后在NCBI数据库中进行同源性比对及功能分析.最后,对差异表达基因进行反转录荧光定量表达(RT-QPCR)分析.本研究从筛选出来的6个阳性克隆中获得一个与多聚半乳糖醛酸酶基因(MF6) 100%同源的基因片段,该基因被认为与花粉生长发育及花粉成熟密切相关.对MF6基因在不同长度及不同育性花蕾中的表达量进行了定量分析,结果显示,MF6基因在雄性可育花蕾中的表达量均高于雄性不育花蕾,且在蕾长1.00 mm~1.50 mm和3.50 mm~4.00mm时分别达到了18.53倍和43.15倍的差异.因此,我们推测“化杀灵WP1”主要通过抑制花粉母细胞减数分裂时期中MF6基因的表达,使花粉产生败育:同时,MF6基因的表达可能也与花丝的伸长生长有关.%The purpose of this study is to analyze the differentially expressed genes in the buds of male sterile plants which were induced by a male sterilizing chemical" Hua-Sha-Ling WP1" in Brassica napus L. Rl 21. First, we isolated the differentially expressed gene fragments from the male sterile buds through the suppression subtractive hybridization(SSH) and the reverse northern dot blotting. Then, homology comparisons and functional analysis were conducted through online database NCBI. Finally, the differentially expressed gene was further analyzed through reverse transcription quantitative PCR. In the results, we obtained a gene fragment which is 100% homologous to the gene of polygalacturonase (MF6) in Arabidopsis from the 6 positive clones. It has been reported that the polygalacturonase gene (MF6) is closely related to the development

  17. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy.

    Science.gov (United States)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert; Branca, Ferdinando; Bagger Jørgensen, Rikke

    2014-12-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed.

  18. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis.

    Science.gov (United States)

    Mushtaq, Muhammad A; Pan, Qi; Chen, Daozong; Zhang, Qinghua; Ge, Xianhong; Li, Zaiyun

    2016-01-01

    The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future.

  19. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Jordan eHay

    2014-12-01

    Full Text Available The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using Brassica napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA. Using this combined approach we characterize the difference in metabolic flux of developing seeds of two Brassica napus genotypes contrasting in starch and

  20. The tolerant responses to NaCl Stress in IrrE-transgenic Brassica napus%转IrrE基因甘蓝型油菜对NaCl胁迫的耐受性应答

    Institute of Scientific and Technical Information of China (English)

    奉斌; 代其林; 刘婷婷; 田霞; 龚元亚; 孙英坤; 杜世章; 王劲

    2011-01-01

    The tolerant responses to NaC1 stress in IrrE-transgenic Brassica napus were studied. The results showed that the activity of peroxidas (POD), superoxide dismutase (SOD) and catalase (CAT) in transgenic Brassica napus was gradually increased under 200 mmol/L NaCl during 0~48 h, but the activity of POD, SOD and CAT in non-transgenic Brassica napus was increased during 0~24 h and subsequently decreased after 24 h. The content of proline and the dissoluble proein in transgenic Brassica hapus was higher than non-transgenic Brassica napus, but the content of malonaldehyde(MDA) in transgenie Brassica napus was lower than non-transgenic Brassica napus. Therefore, IrrE gene enhanced the activities of three antioxidant enzymes in transgenic Brassica napus, and then enhanced the tolerance of Brassica napus against NaCl stress.%以转IrrE基因甘蓝型油菜为材料,研究了转IrrE基因甘蓝型油菜幼苗对NaCl胁迫的耐受性应答情况.在200mmol/L NaCl胁迫下,随着胁迫时间的延长,转IrrE基因和野生型油菜的POD、SOD和CAT三种抗氧化酶活性均增加,其中野生型油菜的三种抗氧化酶在24h后达到峰值,随后逐渐下降,而转IrrE基因油菜的三种抗氧化酶活性却持续增加,并在相同的胁迫时间内均高于野生型油菜的酶活性;同时转IrrE基因油菜的脯氨酸和可溶性蛋白质含量均比野生型油菜的高,但其丙二醛(MDA)的含量比野生型油菜的低.结果表明,IrrE基因作为一种转录因子可能广泛参与了油菜幼苗对NaCl胁迫的耐受性应答过程,从而提高了植物对NaCl胁迫的耐受能力.

  1. Classification of temperature response in germination of Brassicas

    Science.gov (United States)

    Since soil temperature affects germination and emergence of canola (Brassica napus L.), mustard [B. juncea (L.) Czerniak. and Sinapsis alba L.], and camelina [Camelina sativa (L.) Crantz.], planting dates have to be adjusted to prevent crop failures. These crops can be used as biofuel feedstocks, a...

  2. Processing of Brassica seeds for feedstock in biofuels production

    Science.gov (United States)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  3. Movement and host finding of Trichogramma brassicae on maize plants

    NARCIS (Netherlands)

    Suverkropp, B.P.; Bigler, F.; Lenteren, van J.C.

    2010-01-01

    Direct observation of searching patterns and residence times of Trichogramma brassicae Bezdenko on maize plants were made at 18 degrees C and 25 degrees C. Temperature had a strong effect on the residence times: parasitoids spent an average of 44.9 minutes on the plant at 18 degrees C and 20.8 minut

  4. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings

    NARCIS (Netherlands)

    Jonge, de Jennifer; Kodde, Jan; Severing, Edouard I.; Bonnema, Guusje; Angenent, Gerco C.; Immink, Richard G.H.; Groot, Steven P.C.

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and oc

  5. Functional properties of a chitinase promoter from cabbage (Brassica oleracea var.capitata)

    Institute of Scientific and Technical Information of China (English)

    TANGGUOQING; YONGYANBAI; 等

    1996-01-01

    The 5'-region of the chitinase gene cabch29,derived from Brassica oleracea var.capitata,has been sequenced and analyzed for cis-acting elements important in controlling gene expression in transgenic tobacco plants.Different 5'-deletion fragments were linked to reporter gene β-glucuronidase (GUS) as translational fusions,and the expression of these chimeric genes was analyzed in vegetative organs and tissues.Sequences up to-651 showed some basal GUS activity with nearly equal levels in wounded and intact tissues.The addition of further upstream sequences(-651 to-1284) enhanced expression level,and the expression driven by this fragment was inducible by a factor of two to three-fold by wounding.Histochemical analysis of different tissue from transgenic plants that contain cabch29 promoter-gus fusion gene demonstrated woundinducible and tissue-specific cabch29 promoter activity in plants containing the 1308 base pair fragment.The location of GUS activity appears to be cell-specific,being highest in vascular cells and epidermal cells of stem,leaf and roots.Meanwhile,the temporal and spatial expression of cabch29-GUS fusion gene has been investigated.Among the different vegetative organs,a high level of GUS activity was observed in stem and a moderate one in roots;whereas,wounding stress led to a high level of GUS in stem and moderate one in leaf.

  6. Incorporation of hygromycin resistance in Brassica nigra and its transfer to B. napus through asymmetric protoplast fusion.

    Science.gov (United States)

    Sacristán, M D; Gerdemann-Knörck, M; Schieder, O

    1989-08-01

    With the idea to develop a selection system for asymmetric somatic hybrids between oilseed rape (Brassica napus) and black mustard (B. nigra), the marker gene hygromycin resistance was introduced in this last species by protoplast transformation with the disarmed Agrobacterium tumefaciens strain C58 pGV 3850 HPT. The B. nigra lines used for transformation had been previously selected for resistance to two important rape pathogens (Phoma lingam, Plasmodiophora brassicae). Asymmetric somatic hybrids were obtained through fusion of X-ray irradiated (mitotically inactivated) B. nigra protoplasts from transformed lines as donor with intact protoplasts of B. napus, using the hygromycin resistance as selection marker for fusion products. The somatic hybrids hitherto obtained expressed both hygromycin phosphotransferase and nopaline synthase genes. Previous experience with other plant species had demonstrated that besides the T-DNA, other genes of the donor genome can be co-transferred. In this way, the produced hybrids constitute a valuable material for studying the possibility to transfer agronomically relevant characters - in our case, diseases resistances - through asymmetric protoplast fusion.

  7. Serotonin-induced mate rejection in the female cabbage butterfly, Pieris rapae crucivora

    Science.gov (United States)

    Obara, Yoshiaki; Fukano, Yuya; Watanabe, Kenta; Ozawa, Gaku; Sasaki, Ken

    2011-11-01

    Virgin female cabbage butterflies, Pieris rapae crucivora, accept and mate with courting males, whereas mated females reject them and assume the "mate refusal posture". This study tested whether the biogenic amines, serotonin (5HT), dopamine (DA), and octopamine (OA), were responsible for this change in behavior. The results showed that 2-3-day-old virgin females fed with 5HT rejected courting males significantly more frequently compared with controls fed on sucrose. In contrast, the proportions of courting males rejected by virgin females fed with either DA or OA did not differ from sucrose-fed controls. Oral application of each amine resulted in significantly increased levels of the amine applied (or its metabolite) in the brain. The results strongly suggest that 5HT or a 5HT metabolite may be responsible for the post-mating change in behavioral response of 2-3-day-old virgin females to courting males. Similar effects of 5HT treatment were observed in 6-8-day-old virgin females, but in this case the results were only marginally different from the controls, suggesting that the effect may decline with increasing female age.

  8. RAPA NUI, ISLA DE PASCUA OR EASTER ISLAND: TRADITION, MODERNITY AND ALTERGLOBALIZATION IN INTERCULTURAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Fidel Molina

    2013-04-01

    Full Text Available In this research are described, analyze and compare the manifestations of the intercultural education in a difficult situation as it is Rapa Nui Island, traditionally isolated, in the “navel of the world” (Te pito o Te Henua, but “discovered” and assimilated by the western people and recovered for the intercultural idea that it surpasses this assimilation and/or global homogenization, in a alterglobalization context. We have analyzed four depth interviews and two biographical stories (life histories, dividing of the hypothesis of the necessity of a clear link between interculturality and education, to rethink the identity and the cultural continuity of their citizens. The obtained results suggest them programs of immersion in the school are not sufficient if they do not go accompanied of a holistic institutional work in the diverse scopes: cultural, educative, economic, environmental politician, leisure, etc. The construction of the identity sends again to individual and collective scopes, with the participation of the subject and the community. In this sense, intergenerational solidarity plays a fundamental role.

  9. Genetic diversity in Brassica species and Eruca sativa for yield associated parameters

    OpenAIRE

    Kanwal Mahwish; Farhatullah; Rabbani Ashiq M.; Iqbal Sidra; Fayyaz Laila; Afzal M.

    2014-01-01

    Brassica species are vulnerable to narrow genetic base due to the ignorance of their wild relatives which possess many superior characters. This study was aimed to explore the genetic diversity in five Brassica species from U triangle as well as in their wild relative Eruca sativa. For the complete insight of genetic diversity, four accessions, each from five species of genus Brassica along with one species of Eruca collected from different geographical loc...

  10. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus.

    Science.gov (United States)

    Zhu, Lixia; Yang, Zonghui; Zeng, Xinhua; Gao, Jie; Liu, Jie; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2017-04-01

    We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.

  11. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus.

    Science.gov (United States)

    Hatzig, Sarah V; Frisch, Matthias; Breuer, Frank; Nesi, Nathalie; Ducournau, Sylvie; Wagner, Marie-Helene; Leckband, Gunhild; Abbadi, Amine; Snowdon, Rod J

    2015-01-01

    Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.). A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60k SNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigor, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding. Conditions during seed production and storage were shown to have a profound effect on seed vigor, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologs of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1), ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4), and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1), which have been shown previously to play a role in seed germination and seedling growth in A. thaliana.

  12. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    Science.gov (United States)

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.

  13. Polynesian land use decisions in Hawai`i and Rapa Nui (Easter Island) (Invited)

    Science.gov (United States)

    Chadwick, O.; Ladefoged, T. N.; Haoa, S.; Stevenson, C.; Vitousek, P.

    2009-12-01

    Over the span of several centuries ancient Hawaiians and Rapanui (Easter Islanders) developed a range of intensive agricultural systems in their volcanic homelands. In leeward Kohala (Hawai`i) people targeted relatively young geologic substrates that were naturally enriched soil nutrient zones to construct a 60 km2 intensive rain-fed field system. A series of earthen and rock embankments and trails were built to facilitate sweet potato and dryland taro production and distribution. By comparing nutrient levels under embankments of different ages it has been possible to document significant nutrient depletion over approximately 150 years of pre-European gardening. On the wet windward side of Kohala leaching driven by high rainfall depleted soil nutrients in upland areas naturally, to levels unsuitable for intensive rain-fed agriculture. As an alternative, people exploited colluvial and alluvial zones for intensive rain-fed and irrigated agriculture, respectively. Analyses from Pololu in Kohala and Halawa on Moloka`i suggests that soil nutrient levels within colluvial zones were rejuvenated by erosion and deposition from fresh bedrock. In alluvial areas, soil nutrient levels were enhanced through the deposition of soluble elements via weathering of minerals along the flowpath between rainfall and delivery of irrigation water to Hawaiian crops. On Rapa Nui the lack of perennial streams meant that people were reliant on intensive rain-fed systems for their subsistence and surplus needs. In response to the matrix of geologic substrate ages and rainfall levels several innovative agricultural strategies were employed. Basalt outcrops were intentionally broken apart and large quantities of rock were distributed over the barren landscape. In places these “rock gardens” consisted of boulder concentrations and/or smaller rock veneers, whereas in other zones rocks were mulched into the soil to a depth of 30 cm to create growing medium. The advantages of these techniques

  14. Experimental analysis of the liquid-feeding mechanism of the butterfly Pieris rapae.

    Science.gov (United States)

    Lee, Seung Chul; Kim, Bo Heum; Lee, Sang Joon

    2014-06-01

    The butterfly Pieirs rapae drinks liquid using a long proboscis. A high pressure gradient is induced in the proboscis when cibarial pump muscles contract. However, liquid feeding through the long proboscis poses a disadvantage of high flow resistance. Hence, butterflies may possess special features to compensate for this disadvantage and succeed in foraging. The main objective of this study is to analyze the liquid-feeding mechanism of butterflies. The systaltic motion of the cibarial pump organ was visualized using the synchrotron X-ray imaging technique. In addition, an ellipsoidal pump model was established based on synchrotron X-ray micro-computed tomography. To determine the relationship between the cyclic variation of the pump volume and the liquid-feeding flow, velocity fields of the intake flow at the tip of the proboscis were measured using micro-particle image velocimetry. Reynolds and Womersley numbers of liquid-feeding flow in the proboscis were ~1.40 and 0.129, respectively. The liquid-feeding flow could be characterized as a quasi-steady state laminar flow. Considering these results, we analyzed the dimensions of the feeding apparatus on the basis of minimum energy consumption during the liquid-feeding process. The relationship between the proboscis and the cibarial pump was determined when minimum energy consumption occurs. As a result, the volume of the cibarial pump is proportional to the cube of the radius of the proboscis. It seems that the liquid-feeding system of butterflies and other long-proboscid insects follow the cube relationship. The present results provide insights into the feeding strategies of liquid-feeding butterflies.

  15. EXPRESSION OF CHITINASE GENE IN TRANSGENIC RAPE PLANTS

    Directory of Open Access Journals (Sweden)

    Lu Longdou

    2005-08-01

    Full Text Available The hypocotyl and cotyledon of Brassica napus L. H165 and Brassica juncea DB3 were transformed with chitinase gene and herbicide-resistance gene by co-culture with Agrobacterium tumefacients LBA4404, and rape plants were obtained which could grow on the medium containing herbicide. The PCR result showed that exotic genes were integrated in the genome of the rape. Further study was performed to determine the impact of temperature on the transgenic rate and the differentiation of explants.

  16. Genetic variation in the hTAS2R38 taste receptor and brassica vegetable intake

    DEFF Research Database (Denmark)

    Gorovic, Nela; Afzal, Shoaib; Tjonneland, Anne

    2011-01-01

    bitter taste receptor haplotypes were not associated with the daily intake of brassica vegetables in our study, and no association between the haplotypes and any of the other variables tested was found. We have demonstrated that the hTAS2R38 haplotypes are not associated with brassica vegetable intake...

  17. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy

    DEFF Research Database (Denmark)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert

    2014-01-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population str...

  18. Nutritional and nutraceutical potential of rape (Brassica napus L. Var. napus) and "tronchuda" cabbage (Brassica oleraceae L. Var. costata) inflorescences

    OpenAIRE

    Batista, Cátia Emanuela Oliveira; Barros, Lillian; Carvalho, Ana Maria; Isabel C. F. R. Ferreira

    2011-01-01

    Two traditional cultivated vegetables highly consumed among Northern Portuguese regions were tested for their chemical composition, nutritional profile and in vitro antioxidant properties using four assays: 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging activity, reducing power, inhibition of -carotene bleaching and inhibition of lipid peroxidation by thiobarbituric acid reactive substances (TBARS) assay. The studied varieties of two Brassica species, locally known as “grelos” (rap...

  19. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Chunqing Liu

    2015-08-01

    Full Text Available Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74% of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  20. Global Dynamic Transcriptome Programming of Rapeseed (Brassica napus L.) Anther at Different Development Stages

    Science.gov (United States)

    Li, Zhanjie; Zhang, Peipei; Lv, Jinyang; Cheng, Yufeng; Cui, Jianmin; Zhao, Huixian; Hu, Shengwu

    2016-01-01

    Rapeseed (Brassica napus L.) is an important oil crop worldwide and exhibits significant heterosis. Effective pollination control systems, which are closely linked to anther development, are a prerequisite for utilizing heterosis. The anther, which is the male organ in flowering plants, undergoes many metabolic processes during development. Although the gene expression patterns underlying pollen development are well studied in model plant Arabidopsis, the regulatory networks of genome-wide gene expression during rapeseed anther development is poorly understood, especially regarding metabolic regulations. In this study, we systematically analyzed metabolic processes occurring during anther development in rapeseed using ultrastructural observation and global transcriptome analysis. Anther ultrastructure exhibited that numerous cellular organelles abundant with metabolic materials, such as elaioplast, tapetosomes, plastids (containing starch deposits) etc. appeared, accompanied with anther structural alterations during anther development, suggesting many metabolic processes occurring. Global transcriptome analysis revealed dynamic changes in gene expression during anther development that corresponded to dynamic functional alterations between early and late anther developmental stages. The early stage anthers preferentially expressed genes involved in lipid metabolism that are related to pollen extine formation as well as elaioplast and tapetosome biosynthesis, whereas the late stage anthers expressed genes associated with carbohydrate metabolism to form pollen intine and to accumulate starch in mature pollen grains. Finally, a predictive gene regulatory module responsible for early pollen extine formation was generated. Taken together, this analysis provides a comprehensive understanding of dynamic gene expression programming of metabolic processes in the rapeseed anther, especially with respect to lipid and carbohydrate metabolism during pollen development. PMID

  1. Inhibitory Kinetics of p-Substituted Benzaldehydes on Polyphenol Oxidase from the Fifth Instar of Pieris Rapae L.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Polyphenol oxidase (PPO) is the enzyme responsible for enzymatic browning during the growth of insects. It is also involved in defense reactions and is related with immunities in insects. PPO,a metalloenzyme oxidase, catalyzes the oxidation of o-diphenol to o-quinone. The present paper describes the effects of benzaldehyde and its p-substituted derivatives on the activity of PPO from the fifth instar of Pieris rapae L. PPO from the fifth instar of Pieris rapae L. was purified using ammonium sulfate fractionation and chromatography on Sephadex G-100. The enzyme kinetics was characterized using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. The results show that benzaldehyde, p-hydroxybenzaldehyde, p-chlorobenzaldehyde, and p-cyanobenzaldehyde can inhibit the PPO activity for the oxidation of L-DOPA. The inhibitor concentration leading to 50% activity lost, IC50, was estimated to be 5.90, 5.62, 2.83, and 2.91 mmol/L for the four tested inhibitors, respectively. Kinetic analyses show that the inhibitory effects of these compounds are reversible. Benzaldehyde, p-hydroxybenzaldehyde, and p-chlorobenzaldehyde are noncompetitive inhibitors while p-cyanobenzaldehyde is a mixed-type inhibitor. The inhibition constants were determined for all four inhibitors.p-chlorobenzaldehyde and p-cyanobenzaldehyde were more potent inhibitors than the other compounds. These results provide a basis for developing PPO inhibition-based pesticides.

  2. Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact.

    Science.gov (United States)

    Stevenson, Christopher M; Puleston, Cedric O; Vitousek, Peter M; Chadwick, Oliver A; Haoa, Sonia; Ladefoged, Thegn N

    2015-01-27

    Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact.

  3. In vivo real-time monitoring of aphrodisiac pheromone release of small white cabbage butterflies (Pieris rapae).

    Science.gov (United States)

    Li, Yue; Mathews, Robert A

    2016-01-01

    The study of insect behavior is of practical importance for developing possible control methods in Integrated Pest Management. Currently, one model of butterfly mating behavior suggests that the initial location of potential mates occurs visually followed by the release of one or more short-range male aphrodisiac pheromones. This model is supported by data obtained from field observations and inferences based on the behavioral effects of chemicals extracted or isolated using indirect and offline techniques. In this study, we performed in vivo real-time monitoring of the male aphrodisiac pheromones released by the small white cabbage male butterfly (Pieris rapae Linnaeus) using confined direct analysis in real time (cDART) mass spectrometry. cDART is a new method easily adapted to the study in real time of chemicals released into the environment by virtually any insect. The major compound released by the male Pieris rapae was identified as ferrulactone. The experimental results reported here indicate that the release of ferrulactone occurs less than 1s after the male visualizes its partner, and reaches a maximum after about one half minute. This study is the first reported in vivo detection and monitoring of butterfly male aphrodisiac pheromones in real time.

  4. A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase involved in thiamin biosynthesis.

    Science.gov (United States)

    Kim, Y S; Nosaka, K; Downs, D M; Kwak, J M; Park, D; Chung, I K; Nam, H G

    1998-08-01

    We report the characterization of a Brassica napus cDNA clone (pBTHI) encoding a protein (BTHI) with two enzymatic activities in the thiamin biosynthetic pathway, thiamin-phosphate pyrophosphorylase (TMP-PPase) and 2-methyl-4-amino-5-hydroxymethylpyrimidine-monophosphate kinase (HMP-P kinase). The cDNA clone was isolated by a novel functional complementation strategy employing an Escherichia coli mutant deficient in the TMP-PPase activity. A biochemical assay showed the clone to confer recovery of TMP-PPase activity in the E. coli mutant strain. The cDNA clone is 1746 bp long and contains an open reading frame encoding a peptide of 524 amino acids. The C-terminal part of BTH1 showed 53% and 59% sequence similarity to the N-terminal TMP-PPase region of the bifunctional yeast proteins Saccharomyces THI6 and Schizosaccharomyces pombe THI4, respectively. The N-terminal part of BTH1 showed 58% sequence similarity to HMP-P kinase of Salmonella typhimurium. The cDNA clone functionally complemented the S. typhimurium and E. coli thiD mutants deficient in the HMP-P kinase activity. These results show that the clone encodes a bifunctional protein with TMP-PPase at the C-terminus and HMP-P kinase at the N-terminus. This is in contrast to the yeast bifunctional proteins that encode TMP-PPase at the N-terminus and 4-methyl-5-(2-hydroxyethyl)thiazole kinase at the C-terminus. Expression of the BTH1 gene is negatively regulated by thiamin, as in the cases for the thiamin biosynthetic genes of microorganisms. This is the first report of a plant thiamin biosynthetic gene on which a specific biochemical activity is assigned. The Brassica BTH1 gene may correspond to the Arabidopsis TH-1 gene.

  5. A stable isotope (δ13C and δ15N) perspective on human diet on Rapa Nui (Easter Island) ca. AD 1400-1900.

    Science.gov (United States)

    Commendador, Amy S; Dudgeon, John V; Finney, Bruce P; Fuller, Benjamin T; Esh, Kelley S

    2013-10-01

    Ecological and environmental evidence suggests that Rapa Nui was among the most marginally habitable islands in Eastern Polynesia, with only a fraction of the biotic diversity found on archipelagos to the west, and capable of sustaining many fewer cultigens traditionally transported by Polynesian colonizers. However, archaeological evidence for human dietary adaptations under such restrictions is limited. Little is known about the particulars of the subsistence base and dietary changes on Rapa Nui that may be associated with a hypothesized late prehistoric decline in the quality and diversity of food sources. To better understand prehistoric Rapa Nui diet we examined stable carbon and nitrogen isotope compositions of human teeth along with archaeological faunal material thought to comprise the Rapa Nui food web. Our results indicate that contrary to previous zooarchaeological studies diet was predominantly terrestrial throughout the entire sequence of occupation, with reliance on rats, chickens and C3 plants. While a few individuals may have had access to higher trophic level marine resources, this is evident only later in time (generally post-AD 1600). A decline in (15)N through time was observed, and may be attributed to declines in available terrestrial proteins; however, presently we cannot rule out the effect of changing soil and plant baseline δ(15)N. Our results also suggest differential access to higher trophic level marine resources among contemporaneous populations, but more research is required to clarify this observation.

  6. Molecular Cloning, Expression Analysis and Localization of Exo70A1 Related to Self Incompatibility in Non-Heading Chinese Cabbage (Brassica campestrisssp. chinensis)

    Institute of Scientific and Technical Information of China (English)

    WANG Li; GE Ting-ting; PENG Hai-tao; WANG Cheng; LIU Tong-kun; HOU Xi-lin; LI Ying

    2013-01-01

    The exocyst is a conserved protein complex, and required for vesicles tethering, fusion and polarized exocytosis. Exo70A1, the exocyst subunit, is essential for assembly of the exocyst complex. To better understand potential roles of Exo70A1 in non-heading Chinese cabbage (Brassica campestrisssp. chinensis), we obtained the full-length cDNA ofExo70A1 gene, which consisted of 1917 bp and encoded a protein of 638 amino acids. BlastX showed BcExo70A1 shared 94.9% identity with Brassica oleraceavar. acephala (AEI26267.1), and clustered into a same group with other homologues inB. oleracea var. acephala andBrassica napus. Subcellular localization analysis showed BcExo70A1 was localized to punctate structures in cytosol of onion epithelial cells. Results showed that BcExo70A1 was widely presented in stamens, young stems, petals, unpollinated pistils, roots and leaves of self compatible and incompatible plants. The transcripts ofBcExo70A1 in non-heading Chinese cabbage declined during initial 1.5 h after incompatible pollination, while an opposite trend was presented after compatible pollination. Our study reveals that BcExo70A1 could play essential roles in plant growth and development, and is related to the rejection of self pollen in non-heading Chinese cabbage.

  7. A developmentally regulated Cre-lox system to generate marker-free transgenic Brassica napus plants.

    Science.gov (United States)

    Kopertekh, Lilya; Broer, Inge; Schiemann, Joachim

    2012-01-01

    In this chapter, a strategy for engineering marker-free Brassica napus plants is described. It is based on the Cre-lox site-specific recombination system and includes three essential steps. At first, the binary vector pLH-nap-lx-cre-35S-bar-lx-vst has been designed. In this vector, the cre gene and the bar expression cassette are flanked by two lox sites in direct orientation. The lox-flanked sequence is placed between a seed-specific napin promoter and a coding region for the vstI gene. At the second step, the cre-bar vector was transferred into B. napus hypocotyl explants by Agrobacterium tumefaciens-mediated transformation. Finally, T1 progeny was tested for excision of the marker gene at phenotypic and molecular levels. PCR, sequencing, and Southern blot analysis confirmed complete and precise deletion of the lox-flanked DNA region. This developmentally regulated Cre-lox system can be applied to remove undesirable DNA in transgenic plants propagated by seeds.

  8. Control of rapeseed clubroot by screened antagonistic microorganisms against Plasmodiophora brassicae%油菜根肿病菌拮抗微生物的筛选及其防治效果测定

    Institute of Scientific and Technical Information of China (English)

    王靖; 黄云; 张艳; 姚佳

    2011-01-01

    Hundreds of microbes were isolated from rhizosphere soil, root, stem and twigs of plants species for rapeseed clubroot (Plasmodiophora brassicae) control. The plant species included ginkgo tree ( Ginkgo biloba ), tea tree ( Camellia sinensis), Ormosia yaanensis, Chinese cabbage ( Brassica rapa), and also rapeseed ( Brassica napus). A total of 421 bacterias, 155 fungi and 368 actinomycete strains were isolated. From the results of gemination rate investigation of P. brassicae resting spore after inoculation of isolated strains, 5.46% of bacteria, 0.65% of fungi and 4.35% of actinomycetes were found, all of them could decrease the gemination rates of P. brassicae below 45%. Among these strains, antagonistic strains actinomycete A316, Al0 and fungi T1 had the best potential in biological control of rapeseed clubroot. The resting spore germination inhibition rates reached 77.11%, 72.54% and 69.01%, respectively. Their control efficiencies were 73.60%, 70.94%, 67.10% in pot experiment and 65.84%, 59.59%, 61.24% in field experiment.%以寻找对油菜根肿病菌具有生物防治作用的拮抗微生物为主要目的,采集茶树、红豆树、银杏树、白菜和油菜的根际土壤及根、茎、叶、枝条等样品进行分离,通过测定根肿病菌休眠孢子接种这些微生物后的萌发率来筛选拮抗菌株,并在室内盆栽及大田试验中评价了10株拮抗微生物的防治效果.实验共分离出细菌421株、真菌155株、放线菌368株,使休眠孢子萌发率低于45%的菌株仅分别占5.4%、0.65%、4.35%.其中放线菌A316、A10和真菌T1对根肿病的生防潜力最大,对休眠孢子萌发的抑制率分别高达77.11%、72.54%、69.01%,室内盆栽防效分别为73.60%、70.94%、67.10%,大田防效依次达65.84%、59.59%、61.24%.

  9. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens.

    Science.gov (United States)

    Rustagi, Anjana; Kumar, Deepak; Shekhar, Shashi; Yusuf, Mohd Aslam; Misra, Santosh; Sarin, Neera Bhalla

    2014-06-01

    Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44-62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56-71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.

  10. Study on the spectral response of Brassica Campestris L. leaf to the copper pollution

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Brassica Campestis L. was cultivated in the soil at the laboratory. The red edge,the visual spectrum and the near-infrared spectrum of Brassica Campestis L. leaf were used to explore the spectral response of Brassica Campestis L. leaf to the copper stress. As the Cu content in the soil gets increased,the copper level in Brassica Campestris L. leaf would be increased,and the chlorophyll level in Brassica Campestris L. leaf would be decreased. As a result,the visual spectral reflectance (A1) of Brassica Campestris L. leaf is increased,and the blue-shift (moving towards the shorter waveband) degree (S) of the red edge (the ascending region of the re-flectivity at 680―740 nm) gets increased. However,the near-infrared spectral re-flectance (A2) decreases. With the correlation coefficient R2 more than 0.95,these parameters of A1,A2 and S can be perfectly used to simulate and predict the copper level in Brassica Campestris L. leaf.

  11. Study on the spectral response of Brassica Campestris L. leaf to the copper pollution

    Institute of Scientific and Technical Information of China (English)

    LIU SuHong; LIU XinHui; HOU Juan; CHI GuangYu; CUI BaoShan

    2008-01-01

    Brassica Campestis L. was cultivated in the soil at the laboratory. The red edge, the visual spectrum and the near-infrared spectrum of Brassica Campestis L. leaf were used to explore the spectral response of Brassica Campestis L. leaf to the copper stress. As the Cu content in the soil gets increased, the copper level in Brassica Campestris L. leaf would be increased, and the chlorophyll level in Brassica Campestris L. leaf would be decreased. As a result, the visual spectral reflectance (A1) of Brassica Campestris L. leaf is increased, and the blue-shift (moving towards the shorter waveband) degree (S) of the red edge (the ascending region of the reflectivity at 680-740 nm) gets increased. However, the near-infrared spectral reflectance (A2) decreases. With the correlation coefficient R2 more than 0.95, these parameters of A1,A2 and S can be perfectly used to simulate and predict the copper level in Brassica Campestris L. leaf.

  12. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration.

    Science.gov (United States)

    Cheng, Fan; Liu, Yu-Feng; Lu, Guang-Yuan; Zhang, Xue-Kun; Xie, Ling-Li; Yuan, Cheng-Fei; Xu, Ben-Bo

    2016-04-01

    Researchers have proven that nanomaterials have a significant effect on plant growth and development. To better understand the effects of nanomaterials on plants, Zhongshuang 11 was treated with different concentrations of graphene oxide. The results indicated that 25-100mg/l graphene oxide treatment resulted in shorter seminal root length compared with the control samples. The fresh root weight decreased when treated with 50-100mg/l graphene oxide. The graphene oxide treatment had no significant effect on the Malondialdehyde (MDA) content. Treatment with 50mg/l graphene oxide increased the transcript abundance of genes involved in ABA biosynthesis (NCED, AAO, and ZEP) and some genes involved in IAA biosynthesis (ARF2, ARF8, IAA2, and IAA3), but inhibited the transcript levels of IAA4 and IAA7. The graphene oxide treatment also resulted in a higher ABA content, but a lower IAA content compared with the control samples. The results indicated that graphene oxide modulated the root growth of Brassica napus L. and affected ABA and IAA biosynthesis and concentration.

  13. Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus.

    Science.gov (United States)

    Zhang, Qian; Lee, Bok-Rye; Park, Sang-Hyun; Zaman, Rashed; Avice, Jean-Christophe; Ourry, Alain; Kim, Tae-Hwan

    2015-02-01

    To investigate the regulatory interactions between S assimilation and N metabolism in Brassica napus, de novo synthesis of amino acids and proteins was quantified by (15)N and (34)S tracing, and the responses of transporter genes, assimilatory enzymes and metabolites pool involving in nitrate and sulfate metabolism were assessed under continuous sulfur supply, sulfur deprivation and sulfate resupply after 3 days of sulfur (S) deprivation. S-deprived plants were characterized by a strong induction of sulfate transporter genes, ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and by a repressed activity of nitrate reductase (NR) and glutamine synthetase (GS). Sulfate resupply to the S-deprived plants strongly increased cysteine, amino acids and proteins concentration. The increase in sulfate and cysteine concentration caused by sulfate resupply was not matched with the expression of sulfate transporters and the activity of ATPS and APR which were rapidly decreased by sulfate resupply. A strong induction of O-acetylserine(thiol)lyase (OASTL), NR and GS upon sulfate resupply was accompanied with the increase in cysteine, amino acids and proteins pool. Sulfate resupply resulted in a strong increase in de novo synthesis of amino acids and proteins, as evidenced by the increases in N and S incorporation into amino acids (1.8- and 2.4-fold increase) and proteins (2.2-and 6.3-fold increase) when compared to S-deprived plants. The results thus indicate that sulfate resupply followed by S-deprivation accelerates nitrate assimilation for protein synthesis.

  14. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris.

    Science.gov (United States)

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Lv, Meiling; Miao, Ying; Cao, Jiashu

    2014-11-01

    PECTATE LYASE-LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense-RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10-4, -5, and -6). In fertilization experiments, fewer seeds were harvested when the antisense-RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non-germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture.

  15. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris

    Institute of Scientific and Technical Information of China (English)

    Jingjing Jiang; Lina Yao; Youjian Yu; Meiling Lv; Ying Miao; Jiashu Cao

    2014-01-01

    PECTATE LYASE‐LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense‐RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10‐4,‐5, and‐6). In fertilization experiments, fewer seeds were harvested when the antisense‐RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non‐germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture.