WorldWideScience

Sample records for brane theory

  1. Exotic Brane Junctions from F-theory

    CERN Document Server

    Kimura, Tetsuji

    2016-01-01

    Applying string dualities to F-theory, we obtain various $[p,q]$-branes whose constituents are standard branes of codimension two and exotic branes. We construct junctions of the exotic five-branes and their Hanany-Witten transitions associated with those in F-theory. In this procedure, we understand the monodromy of the single $5^2_2$-brane. We also find the objects which are sensitive to the branch cut of the $5^2_2$-brane. Considering the web of branes in the presence of multiple exotic five-branes analogous to the web of five-branes with multiple seven-branes, we obtain novel brane constructions for $SU(2)$ gauge theories with $n$ flavors and their superconformal limit with enhanced $E_{n+1}$ symmetry in five, four, and three dimensions. Hence, adapting the techniques of the seven-branes to the exotic branes, we will be able to construct F-theories in diverse dimensions.

  2. Supersymmetry and Branes in M-theory Plane-waves

    CERN Document Server

    Kim, N; Kim, Nakwoo; Yee, Jung-Tay

    2003-01-01

    We study brane embeddings in M-theory plane-waves and their supersymmetry. The relation with branes in AdS backgrounds via the Penrose limit is also explored. Longitudinal planar branes are originated from AdS branes while giant gravitons of AdS spaces become spherical branes which are realized as fuzzy spheres in the massive matrix theory.

  3. Ultraviolet singularities in classical brane theory

    CERN Document Server

    Lechner, Kurt

    2010-01-01

    We construct for the first time an energy-momentum tensor for the electromagnetic field of a p-brane in arbitrary dimensions, entailing finite energy-momentum integrals. The construction relies on distribution theory and is based on a Lorentz-invariant regularization, followed by the subtraction of divergent and finite counterterms supported on the brane. The resulting energy-momentum tensor turns out to be uniquely determined. We perform the construction explicitly for a generic stationary brane. For a brane in arbitrary motion our approach provides a new paradigm for the derivation of the, otherwise divergent, self-force of the brane. The so derived self-force is automatically finite and guarantees, by construction, energy-momentum conservation.

  4. Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry

    Science.gov (United States)

    Sakatani, Yuho; Uehara, Shozo

    2016-11-01

    We propose a novel approach to the brane worldvolume theory based on the geometry of extended field theories: double field theory and exceptional field theory. We demonstrate the effectiveness of this approach by showing that one can reproduce the conventional bosonic string and membrane actions, and the M 5 -brane action in the weak-field approximation. At a glance, the proposed 5-brane action without approximation looks different from the known M 5 -brane actions, but it is consistent with the known nonlinear self-duality relation, and it may provide a new formulation of a single M 5 -brane action. Actions for exotic branes are also discussed.

  5. Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry.

    Science.gov (United States)

    Sakatani, Yuho; Uehara, Shozo

    2016-11-04

    We propose a novel approach to the brane worldvolume theory based on the geometry of extended field theories: double field theory and exceptional field theory. We demonstrate the effectiveness of this approach by showing that one can reproduce the conventional bosonic string and membrane actions, and the M5-brane action in the weak-field approximation. At a glance, the proposed 5-brane action without approximation looks different from the known M5-brane actions, but it is consistent with the known nonlinear self-duality relation, and it may provide a new formulation of a single M5-brane action. Actions for exotic branes are also discussed.

  6. Cosmological constant and gravitational theory on D-brane

    CERN Document Server

    Shiromizu, T; Torii, T; Shiromizu, Tetsuya; Koyama, Kazuya; Torii, Takashi

    2003-01-01

    In a toy model we derive the gravitational equation on a self-gravitating curved D-brane. The effective theory on the brane is drastically changed from the ordinal Einstein equation. The net cosmological constant on the brane depends on a tuning between the brane tension and the brane charges. Moreover, non-zero matter stress tensor exists if the net cosmological constant is not zero. This fact indicates a direct connection between matters on the brane and the dark energy.

  7. Non-Lagrangian theories from brane junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ling [Chalmers Univ. of Technology, Goeteborg (Sweden); Mitev, Vladimir [Humboldt Univ., Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Taki, Masato [RIKEN Nishina Center, Saitama (Japan). Mathematical Physics Lab.; Yagi, Futoshi [International School of Advanced Studies (SISSA), Trieste (Italy); INFN, Trieste (Italy); Korea Institute for Advanced Study (KIAS), Seoul (Korea, Republic of)

    2013-10-15

    In this article we use 5-brane junctions to study the 5D T{sub N} SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed W{sub N} Toda theories.

  8. Defects and permutation branes in the Liouville field theory

    DEFF Research Database (Denmark)

    Sarkissian, Gor

    2009-01-01

    The defects and permutation branes for the Liouville field theory are considered. By exploiting cluster condition, equations satisfied by permutation branes and defects reflection amplitudes are obtained. It is shown that two types of solutions exist, discrete and continuous families.......The defects and permutation branes for the Liouville field theory are considered. By exploiting cluster condition, equations satisfied by permutation branes and defects reflection amplitudes are obtained. It is shown that two types of solutions exist, discrete and continuous families....

  9. Perturbative anti-brane potentials in heterotic M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Gray, James [Institut d' Astrophysique de Paris and APC, Universite de Paris 7, 98 bis, Bd. Arago 75014, Paris (France); Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Ovrut, Burt [Department of Physics, University of Pennsylvania, Philadelphia, PA 19104-6395 (United States)

    2007-01-15

    We derive the perturbative four-dimensional effective theory describing heterotic M theory with branes and anti-branes in the bulk space. The back-reaction of both the branes and anti-branes is explicitly included. To first order in the heterotic {epsilon}{sub S} expansion, we find that the forces on branes and anti-branes vanish and that the KKLT procedure of simply adding to the supersymmetric theory the probe approximation to the energy density of the anti-brane reproduces the correct potential. However, there are additional non-supersymmetric corrections to the gauge-kinetic functions and matter terms. The new correction to the gauge kinetic functions is important in a discussion of moduli stabilization. At second order in the {epsilon}{sub S} expansion, we find that the forces on the branes and anti-branes become non-vanishing. These forces are not precisely in the naive form that one may have anticipated and, being second order in the small parameter {epsilon}{sub S}, they are relatively weak. This suggests that moduli stabilization in heterotic models with anti-branes is achievable. (authors)

  10. Constraints on the effective fluid theory of stationary branes

    CERN Document Server

    Armas, Jay

    2014-01-01

    We develop further the effective fluid theory of stationary branes. This formalism applies to stationary blackfolds as well as to other equilibrium brane systems at finite temperature. The effective theory is described by a Lagrangian containing the information about the elastic dynamics of the brane embedding as well as the hydrodynamics of the effective fluid living on the brane. The Lagrangian is corrected order-by-order in a derivative expansion, where we take into account the dipole moment of the brane which encompasses finite-thickness corrections, including transverse spin. We describe how to extract the thermodynamics from the Lagrangian and we obtain constraints on the higher-derivative terms with one and two derivatives. These constraints follow by comparing the brane thermodynamics with the conserved currents associated with background Killing vector fields. In particular, we fix uniquely the one- and two-derivative terms describing the coupling of the transverse spin to the background space-time. ...

  11. Can we live on a D-brane? -- Effective theory on a self-gravitating D-brane --

    CERN Document Server

    Shiromizu, T; Onda, S; Torii, T; Torii, Takashi

    2003-01-01

    We consider a D-brane coupled with gravity in type IIB supergravity on S^5 and derive the effective theory on the D-brane in two different ways, that is, holographic and geometrical projection methods. We find that the effective equations on the brane obtained by these methods coincide. The theory on the D-brane described by the Born-Infeld action is not like Einstein-Maxwell theory in the lower order of the gradient expansion, i.e., the Maxwell field does not appear in the theory. Thus the careful analysis and statement for cosmology on self-gravitating D-brane should be demanded in realistic models.

  12. D-brane anti-D-brane system in string theory

    CERN Document Server

    Hyakutake, Y

    2003-01-01

    In this paper, we review a system of D-brane and anti-D-brane in type II superstring theories. [A. Sen, hep-th/9904207 and references there in; Y.Hyakutake, Master-Th., Doctor-Th. (in Japanese)] This system is unstable an tachyonic modes, which have negative mass squared, appear from open strings between D-brane and anti-D-brane. The effective field theory on the world-volume is described by U(1) x U(1) gauge theory with a complex tachyon field. Since the mass squared of the techyon field is negative, a tachyon potential would be like a wine bottle. In order to make the system stable, the tachyon rolls down the potential and gets some vacuum expectation value. This is called the tachyon condensation mechanism. During this mechanism, Dp-brane and anti-Dp-brane annihilate completely, if we admit Sen's conjecture. The suspicions between tachyon condensation and Hawking radiation are also discussed. (author)

  13. Brane Cosmology and Higher Derivative Theory

    CERN Document Server

    Naboulsi, R

    2003-01-01

    In this paper, we have considered a cosmological model with density perturbation and decreasing cosmological constant of the form Lambda = 3beta (frac{dot{R}^2}{R^2}) + delta (frac{ddot{R}}{R}), beta, gamma = const. Inspired from brane cosmology, we supposed the presence of exotic density related to the cosmological constant by the formula 2Lambda = 3m^2, where m is a constant having the dimension of Hubble constant. Their effects on the evolution of the spatially, flat FRW cosmoligical model of the Universe is analyzed in the framework of higher derivative theory. The Universe is found to be accelerating with time with no initial singularity for beta < frac{1}{3} and the cosmological constant is found to decrease as t^{-2} but smaller than 3H^2. The presence of interacting scalar field is also discussed.

  14. D-brane Instantons in Type II String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Cvetic, Mirjam; /Pennsylvania U.; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Weigand, Timo; /SLAC

    2009-06-19

    We review recent progress in determining the effects of D-brane instantons in N=1 supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract D-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function and higher fermionic F-terms. This includes a discussion of multi-instanton effects and the implications of background fluxes for the instanton sector. Our presentation also highlights, but is not restricted to the computation of D-brane instanton effects in quiver gauge theories on D-branes at singularities. We then summarize the concrete consequences of stringy D-brane instantons for the construction of semi-realistic models of particle physics or SUSY-breaking in compact and non-compact geometries.

  15. D-brane Instantons in Type II String Theory

    CERN Document Server

    Blumenhagen, Ralph; Kachru, Shamit; Weigand, Timo

    2009-01-01

    We review recent progress in determining the effects of D-brane instantons in N=1 supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract D-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function and higher fermionic F-terms. This includes a discussion of multi-instanton effects and the implications of background fluxes for the instanton sector. Our presentation also highlights, but is not restricted to the computation of D-brane instanton effects in quiver gauge theories on D-branes at singularities. We then summarize the concrete consequences of stringy D-brane instantons for the construction of semi-realistic models of particle physics or SUSY-breaking in compact and non-compact geometries.

  16. S-brane Solutions in Supergravity Theories

    CERN Document Server

    Chen, C M; Gutperle, M; Chen, Chiang-Mei; Gal'tsov, Dmitri V.; Gutperle, Michael

    2002-01-01

    In this paper time dependent solutions of supergravities with dilaton and arbitrary rank antisymmetric tensor field are found. Although the solutions are nonsupersymmetric the equations of motions can be integrated in a simple form. Such supergravity solutions are related to Euclidean or spacelike branes (S-branes).

  17. Effective Field Theories and Matching for Codimension-2 Branes

    CERN Document Server

    Burgess, C P; De Rham, C; Tasinato, G

    2009-01-01

    It is generic for the bulk fields sourced by branes having codimension two and higher to diverge at the brane position, much as does the Coulomb potential at the position of its source charge. This complicates finding the relation between brane properties and the bulk geometries they source. (These complications do not arise for codimension-1 sources, such as in RS geometries, because of the special properties unique to codimension one.) Understanding these relations is a prerequisite for phenomenological applications involving higher-codimension branes. Using codimension-2 branes in extra-dimensional scalar-tensor theories as an example, we identify the classical matching conditions that relate the near-brane asymptotic behaviour of bulk fields to the low-energy effective actions describing how space-filling codimension-2 branes interact with the surrounding extra-dimensional bulk. We do so by carefully regulating the near-brane divergences, and show how these may be renormalized in a general way. Among the ...

  18. Stable D8-branes and tachyon condensation in type 0 open string theory

    NARCIS (Netherlands)

    Eyras, E

    1999-01-01

    We consider non-BPS D8 (and D7) branes in type 0 open string theory and describe under which circumstances these branes are stable. We find stable non-BPS D7 and D8 in type 0 with and without D9-branes in the background. By extending the descent relations between D-branes to type 0 theories, the non

  19. Supersymmetric action of multiple D0-branes from matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Masako E-mail: asano@post.kek.jp; Sekino, Yasuhiro E-mail: sekino@th.phys.titech.ac.jp

    2002-11-11

    We study one-loop effective action of Berkooz-Douglas matrix theory and obtain non-Abelian action of D0-branes in the longitudinal 5-brane background. In this paper, we extend the analysis of hep-th/0201248 and calculate the part of the effective action containing fermions. We show that the effective action is manifestly invariant under the loop-corrected SUSY transformation, and give the explicit transformation laws. The effective action consists of blocks which are closed under the SUSY, and it includes the supersymmetric completion of the couplings to the longitudinal 5-branes proposed by Taylor and Van Raamsdonk as a subset.

  20. Supersymmetric gauge theories, intersecting branes and free fermions

    Science.gov (United States)

    Dijkgraaf, Robbert; Hollands, Lotte; Sułkowski, Piotr; Vafa, Cumrun

    2008-02-01

    We show that various holomorphic quantities in supersymmetric gauge theories can be conveniently computed by configurations of D4-branes and D6-branes. These D-branes intersect along a Riemann surface that is described by a holomorphic curve in a complex surface. The resulting I-brane carries two-dimensional chiral fermions on its world-volume. This system can be mapped directly to the topological string on a large class of non-compact Calabi-Yau manifolds. Inclusion of the string coupling constant corresponds to turning on a constant B-field on the complex surface, which makes this space non-commutative. Including all string loop corrections the free fermion theory is elegantly formulated in terms of holonomic D-modules that replace the classical holomorphic curve in the quantum case.

  1. Supersymmetric Gauge Theories, Intersecting Branes and Free Fermions

    CERN Document Server

    Dijkgraaf, Robbert; Sulkowski, Piotr; Vafa, Cumrun

    2008-01-01

    We show that various holomorphic quantities in supersymmetric gauge theories can be conveniently computed by configurations of D4-branes and D6-branes. These D-branes intersect along a Riemann surface that is described by a holomorphic curve in a complex surface. The resulting I-brane carries two-dimensional chiral fermions on its world-volume. This system can be mapped directly to the topological string on a large class of non-compact Calabi-Yau manifolds. Inclusion of the string coupling constant corresponds to turning on a constant B-field on the complex surface, which makes this space non-commutative. Including all string loop corrections the free fermion theory is elegantly formulated in terms of holonomic D-modules that replace the classical holomorphic curve in the quantum case.

  2. Towards a classification of branes in theories with eight supercharges

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Riccioni, Fabio [INFN Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Romano, Luca [Dipartimento di Fisica and INFN Sezione di Roma, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2014-05-16

    We provide a classification of half-supersymmetric branes in quarter-maximal supergravity theories with scalars parametrising coset manifolds. We show that the results previously obtained for the half-maximal theories give evidence that half-supersymmetric branes correspond to the real longest weights of the representations of the brane charges, where the reality properties of the weights are determined from the Tits-Satake diagrams associated to the global symmetry groups. We show that the resulting brane structure is universal for all theories that can be uplifted to six dimensions. We also show that when viewing these theories as low-energy theories for the suitably compactified heterotic string, the classification we obtain is in perfect agreement with the wrapping rules derived in previous works for the same theory compactified on tori. Finally, we relate the branes to the R-symmetry representations of the central charges and we show that in general the degeneracies of the BPS conditions are twice those of the half-maximal theories and four times those of the maximal ones.

  3. Towards a classification of branes in theories with eight supercharges

    Science.gov (United States)

    Bergshoeff, Eric A.; Riccioni, Fabio; Romano, Luca

    2014-05-01

    We provide a classification of half-supersymmetric branes in quarter-maximal supergravity theories with scalars parametrising coset manifolds. We show that the results previously obtained for the half-maximal theories give evidence that half-supersymmetric branes correspond to the real longest weights of the representations of the brane charges, where the reality properties of the weights are determined from the Tits-Satake diagrams associated to the global symmetry groups. We show that the resulting brane structure is universal for all theories that can be uplifted to six dimensions. We also show that when viewing these theories as low-energy theories for the suitably compactified heterotic string, the classification we obtain is in perfect agreement with the wrapping rules derived in previous works for the same theory compactified on tori. Finally, we relate the branes to the R-symmetry representations of the central charges and we show that in general the degeneracies of the BPS conditions are twice those of the half-maximal theories and four times those of the maximal ones.

  4. Thermodynamics of spinning branes and their dual field theories

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2000-01-01

    We discuss general spinning p-branes of string and M-theory and use their thermodynamics along with the correspondence between near-horizon brane solutions and field theories with 16 supercharges to describe the thermodynamic behavior of these theories in the presence of voltages under the R......-symmetry. The thermodynamics is used to provide two pieces of evidence in favor of a smooth interpolation function between the free energy at weak and strong coupling of the field theory. (i) A computation of the boundaries of stability shows that for the D2, D3, D4, M2 and M5-branes the critical values of Omega/T in the two...... for non-commutative field theories....

  5. Towards a classification of branes in theories with eight supercharges

    CERN Document Server

    Bergshoeff, Eric A; Romano, Luca

    2014-01-01

    We provide a classification of half-supersymmetric branes in quarter-maximal supergravity theories with scalars parametrising coset manifolds. Guided by the results previously obtained for the half-maximal theories, we are able to show that half-supersymmetric branes correspond to the real longest weights of the representations of the brane charges, where the reality properties of the weights are determined from the Tits-Satake diagrams associated to the global symmetry groups. We show that the resulting brane structure is universal for all theories that can be uplifted to six dimensions. We also show that when viewing these theories as low-energy theories for the suitably compactified heterotic string, the classification we obtain is in perfect agreement with the wrapping rules derived in previous works for the same theory compactified on tori. Finally, we relate the branes to the R-symmetry representations of the central charges and we show that in general the degeneracies of the BPS conditions are twice th...

  6. Non-abelian action of D0-branes from Matrix theory in the longitudinal 5-brane background

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Masako E-mail: asano@hep-th.phys.s.u-tokyo.ac.jp; Sekino, Yasuhiro E-mail: sekino@th.phys.titech.ac.jp

    2002-09-09

    We study one-loop effective action of Berkooz-Douglas Matrix theory and obtain non-abelian action of D0-branes in the background field produced by longitudinal 5-branes. Since these 5-branes do not have D0-brane charge and are not present in BFSS Matrix theory, our analysis provides an independent test for the coupling of D-branes to general weak backgrounds proposed by Taylor and Van Raamsdonk from the analysis of the BFSS model. The proposed couplings appear in the Berkooz-Douglas effective action precisely as expected, which suggests the consistency of the two matrix models. We also point out the existence of the terms which are not given by the symmetrized trace prescription in the Matrix theory effective action.

  7. D-branes in T-fold conformal field theory

    CERN Document Server

    Kawai, Shinsuke

    2008-01-01

    We investigate boundary dynamics of orbifold conformal field theory involving T-duality twists. Such models typically appear in contexts of non-geometric string compactifications that are called monodrofolds or T-folds in recent literature. We use the framework of boundary conformal field theory to analyse the models from a microscopic world-sheet perspective. In these backgrounds there are two kinds of D-branes that are analogous to bulk and fractional branes in standard orbifold models. The bulk D-branes in T-folds allow intuitive geometrical interpretations and are consistent with the classical analysis based on the doubled torus formalism. The fractional branes, on the other hand, are `non-geometric' at any point in the moduli space and their geometric counterparts seem to be missing in the doubled torus analysis. We compute cylinder amplitudes between the bulk and fractional branes, and find that the lightest modes of the open string spectra show intriguing non-linear dependence on the moduli (location o...

  8. Bouncing Model in Brane World Theory

    CERN Document Server

    Maier, Rodrigo; Soares, Ivano Damião

    2013-01-01

    We examine the nonlinear dynamics of a closed Friedmann-Robertson-Walker universe in the framework of Brane World formalism with a timelike extra dimension. In this scenario, the Friedmann equations contain additional terms arising from the bulk-brane interaction which provide a concrete model for nonsingular bounces in the early phase of the Universe. We construct a nonsingular cosmological scenario sourced with dust, radiation and a cosmological constant. The structure of the phase space shows a nonsingular orbit with two accelerated phases, separated by a smooth transition corresponding to a decelerated expansion. Given observational parameters we connect such phases to a primordial accelerated phase, a soft transition to Friedmann (where the classical regime is valid), and a graceful exit to a de Sitter accelerated phase.

  9. Exotic branes in Double Field Theory

    Directory of Open Access Journals (Sweden)

    Musaev Edvard

    2016-01-01

    Full Text Available The non-geometric Q- and R-monopole are shown to be a particular case of the DFT-monopole solution. The notion of magnetic charge for the solutions is defined and shown to be equal to the magnetic charge of the NS5-brane solution. This is a talk presented by the author at the conference QUARKS’16 in St.-Petersburg.

  10. Topics in brane world and quantum field theory

    Science.gov (United States)

    Corradini, Olindo

    In the first part of the thesis we study various issues in the Brane World scenario with particular emphasis on gravity and the cosmological constant problem. First, we study localization of gravity on smooth domain-wall solutions of gravity coupled to a scalar field. In this context we discuss how the aforementioned localization is affected by including higher curvature terms in the theory, pointing out among other things that, general combinations of such terms lead to delocalization of gravity with the only exception of the Gauss-Bonnet combination (and its higher dimensional counterparts). We then find a solitonic 3-brane solution in 6D bulk in the Einstein-Hilbert-Gauss-Bonnet theory of gravity. Near to the brane the metric is that for a product of the 4D flat Minkowski space with a 2D wedge whose deficit angle is proportional to the brane tension. Consistency tests imposed on such backgrounds appear to require the localized matter on the brane to be conformal. We then move onto infinite volume extra dimension Brane World scenarios where we study gravity in a codimension-2 model, generalizing the work of Dvali, Gabadadze and Porrati to tensionful branes. We point out that, in the presence of the bulk Gauss-Bonnet combination, the Einstein-Hilbert term is induced on the brane already at the classical level. Consistency tests are presented here as well. To conclude we discuss, using String Theory, an interesting class of large-N gauge theories which have vanishing energy density even though these theories are non-covariant and non-supersymmetric. In the second part of the thesis we study a formulation of Quantum Mechanical Path Integrals in curved space. Such Path Integrals present superficial divergences which need to be regulated. We perform a three-loop calculation in mode regularization as a nontrivial check of the non-covariant counterterms required by such scheme. We discover that dimensional regularization can be successfully adopted to evaluate the

  11. Branes from Moyal Deformation Quantization of Generalized Yang Mills Theories

    CERN Document Server

    Castro, C

    1999-01-01

    It is shown that a Moyal deformation quantization of the SO(4k) Generalized Yang-Mills (GYM) theory action in D=4k dimensions, for spacetime independent field configurations, in the $\\hbar \\to 0$ limit, yields the Dolan-Tchrakian p-brane action after fixing the conformal and world volume reparametrization invariance, associated with the p-brane world volume dimension p+1=4k, embedded in a D=4k target spacetime background. The gauge fields/target spacetime coordinates correspondence is required but no large N limit is necessary.

  12. Graph Theory and Qubit Information Systems of Extremal Black Branes

    CERN Document Server

    Belhaj, Adil; Segui, Antonio

    2014-01-01

    Using graph theory based on Adinkras, we consider once again the study of extremal black branes in the framework of quantum information. More precisely, we propose a one to one correspondence between qubit systems, Adinkras and certain extremal black branes obtained from type IIA superstring compactified on T^n. We accordingly interpret the real Hodge diagram of T^n as the geometry of a class of Adinkras formed by 2^n bosonic nodes representing n qubits. In this graphic representation, each node encodes information on the qubit quantum states and the charges of the extremal black branes built on T^n. The correspondence is generalized to n superqubits associated with odd and even geometries on the real supermanifold T^{n|n}. Using a combinatorial computation, general expressions describing the number of the bosonic and the fermionic states are obtained.

  13. Effective theory for close limit of two branes

    CERN Document Server

    Shiromizu, T; Takahashi, K; Shiromizu, Tetsuya; Koyama, Kazuya; Takahashi, Keitaro

    2003-01-01

    We discuss the effective theory for the close limit of two branes in a covariant way. To do so we solve the five dimensional Einstein equation along the direction of extra dimension. Using the Taylor expansion we formally solve the bulk and derive the effective theory describing the close limit systems. We will also discuss the radion dynamics and braneworld black holes for the close limit in our formulation.

  14. Open parabosonic string theory between two parallel Dp-branes

    Energy Technology Data Exchange (ETDEWEB)

    Hamam, D.; Belaloui, N. [Laboratoire de Physique Theorique, Universite de Jijel (Algeria); Laboratoire de Physique Mathematique et Subatomique, Universite Mentouri Constantine (Algeria)

    2012-06-27

    We investigate an open parabosonic string theory between two parallel Dp-branes. The spectrum is constructed and the partition function is derived. A common chord between the development of this latter and the degeneracy of the states for each mass level is obtained. The theory is consistent and with no tachyon. The Virasoro algebra is derived and compared to the one of the ordinary case.

  15. 2d (0,2) Quiver Gauge Theories and D-Branes

    CERN Document Server

    Franco, Sebastian; Lee, Sangmin; Seong, Rak-Kyeong; Yokoyama, Daisuke

    2015-01-01

    We initiate a systematic study of 2d (0,2) quiver gauge theories on the worldvolume of D1-branes probing singular toric Calabi-Yau 4-folds. We present an algorithm for efficiently calculating the classical mesonic moduli spaces of these theories, which correspond to the probed geometries. We also introduce a systematic procedure for constructing the gauge theories for arbitrary toric singularities by means of partial resolution, which translates to higgsing in the field theory. Finally, we introduce Brane Brick Models, a novel class of brane configurations that consist of D4-branes suspended from an NS5-brane wrapping a holomorphic surface, tessellating a 3-torus. Brane Brick Models are the 2d analogues of Brane Tilings and allow a direct connection between geometry and gauge theory.

  16. D-branes in Type IIA and Type IIB theories from tachyon condensation

    CERN Document Server

    Kluson, J

    2000-01-01

    In this paper we will construct all D-branes in Type IIA and Type IIB theories via tachyon condensation. We also propose form of Wess-Zumino term for non-BPS D-brane and we will show that tachyon condensation in this term leads to standard Wess-Zumino term for BPS D-brane.

  17. Dark Solitons, D-branes and Noncommutative Tachyon Field Theory

    CERN Document Server

    Giaccari, Stefano

    2016-01-01

    In this paper we discuss the boson/vortex duality by mapping the Gross-Pitaevskii theory into an effective string theory, both with and without boundaries. Through the effective string theory, we find the Seiberg-Witten map between the commutative and the noncommutative tachyon field theories, and consequently identify their soliton solutions with the D-branes in the effective string theory. We perform various checks of the duality map and the identification of classical solutions. This new insight of the duality between the Gross-Pitaevskii theory and the effective string theory allows us to test many results of string theory in Bose-Einstein condensates, and at the same time help us understand the quantum behavior of superfluids and cold atom systems.

  18. Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra

    CERN Document Server

    Honma, Yoshinori; Shiba, Shotaro

    2011-01-01

    We derive the super Yang-Mills action of Dp-branes on a torus T^{p-4} from the nonabelian (2,0) theory with Lie 3-algebra. Our realization is based on Lie 3-algebra with pairs of Lorentzian metric generators. The resultant theory then has negative norm modes, but it results in a unitary theory by setting VEV's of these modes. This procedure corresponds to the torus compactification, therefore by taking a transformation which is equivalent to T-duality, the Dp-brane action is obtained. We also study type IIA/IIB NS5-brane and Kaluza-Klein monopole systems by taking other VEV assignments. Such various compactifications can be realized in the nonabelian (2,0) theory, since both longitudinal and transverse directions can be compactified, which is different from the BLG theory. We finally discuss U-duality among these branes, and show that most of the moduli parameters in U-duality group are recovered. Especially in D5-brane case, the whole U-duality relation is properly reproduced.

  19. Brane Physics in Non-Critical Theories

    CERN Document Server

    Sturla, Mauricio B

    2010-01-01

    In this Thesis, we focus on the study of the low energy approximation to non-critical string theories. We present an exhaustive study of their solutions, which are divided in three cases: vacuum, NSNS charged, and RR charged solutions. In the first case, we find all possible solutions, including the previously known ones, which are special cases of ours. In the second case, we present the fundamental non-critical string, doubly localized in Minkowski \\times the cigar vacuum. There are only a few known solutions doubly localized. Also, we completely solve the problem of finding NSNS solutions that fill all the Minkowski space. In the third case, we present new parametric families that contain some of the previously known solutions at particular values of the parameters. For the latter families, we have obtained the gauge duals in the context of the gauge/gravity duality, and we show that, in a particular region of the parameter space, these theories can confine. Finally, we study the obtained YM in D=3 and YM ...

  20. D-branes, symplectomorphisms and noncommutative gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Martin, I.; Ovalle, J.; Restuccia, A

    2001-09-01

    It is shown that the dual of the double compactified D=11 Supermembrane and a suitable compactified D=10 Super 4D-brane with nontrivial wrapping on the target space may be formulated as non-commutative gauge theories. The Poisson bracket over the world-volume is intrinsically defined in terms of the minima of the hamiltonian of the theory, which may be expressed in terms of a non degenerate 2-form. A deformation of the Poisson bracket in terms of the Moyal brackets is then performed. A non-commutative gauge theory in terms of the Moyal star bracket is obtained. It is shown that all these theories may be described in terms of symplectic connections on symplectic fibrations, the world volume being its base manifold and the (sub)group of volume preserving diffeomorphisms, p = 2 (p > 2), generate the symplectomorphisms which preserve the (infinite dimensional) Poisson bracket of the fibration.

  1. D-branes, symplectomorphisms and noncommutative gauge theories

    Science.gov (United States)

    Martín, I.; Ovalle, J.; Restuccia, A.

    It is shown that the dual of the double compactified D=11 Supermembrane and a suitable compactified D=10 Super 4D-brane with nontrivial wrapping on the target space may be formulated as non-commutative gauge theories. The Poisson bracket over the world-volume is intrinsically defined in terms of the minima of the hamiltonian of the theory, which may be expressed in terms of a non degenerate 2-form. A deformation of the Poisson bracket in terms of the Moyal brackets is then performed. A non-commutative gauge theory in terms of the Moyal star bracket is obtained. It is shown that all these theories may be described in terms of symplectic connections on symplectic fibrations, the world volume being its base manifold and the (sub)group of volume preserving diffeomorphisms, p = 2 ( p > 2), generate the symplectomorphisms which preserve the (infinite dimensional) Poisson bracket of the fibration.

  2. World-volume Effective Action of Exotic Five-brane in M-theory

    CERN Document Server

    Kimura, Tetsuji; Yata, Masaya

    2016-01-01

    We study the world-volume effective action of an exotic five-brane, known as the M-theory $5^3$-brane (M$5^3$-brane) in eleven dimensions. The supermultiplet of the world-volume theory is the $\\mathcal{N} = (2, 0)$ tensor multiplet in six dimensions. The world-volume action contains three Killing vectors $\\hat{k}_{\\hat{I}} {}^M \\ (\\hat{I} =1,2,3)$ associated with the $U(1)^3$ isometry. We find the effective T-duality rule for the eleven-dimensional backgrounds that transforms the M5-brane effective action to that of the M$5^3$-brane. We also show that our action provides the source term for the M$5^3$-brane geometry in eleven-dimensional supergravity

  3. Supersymmetric M5 brane theories on R × CP2

    Science.gov (United States)

    Kim, Hee-Cheol; Lee, Kimyeong

    2013-07-01

    We propose 4 and 12 supersymmetric conformal Yang-Mills-Chern-Simons theories on R × CP2 as multiple representations of the theory on M5 branes. These theories are obtained by twisted Zk modding and dimensional reduction of the 6d (2,0) superconformal field theory on R × S5 and have a discrete coupling constant 1/{g_{{YM}^2}}=k/{4{π^2}} with natural number k. Instantons in these theories are expected to represent the Kaluza-Klein modes. For the k = 1 , 2 cases, we argue that the number of supersymmetries in our theories should be enhanced to 32 and 16, respectively. For the k = 3 case, only the 4 supersymmetric theory gets the supersymmetric enhancement to 8. For the 4 supersymmetric case, the vacuum structure becomes more complicated as there are degenerate supersymmetric vacua characterized by fuzzy spheres. We calculate the perturbative part of the SU( N ) gauge group Euclidean path integral for the index function at the symmetric phase of the 4 supersymmetric case and confirm it with the known half-BPS index. From the similar twisted Z k modding of the AdS7 × S4 geometry, we speculate that the M region is for k ≲ N 1/3 and the type IIA region is N 1/3 ≲ k ≲ N. When nonperturbative corrections are included, our theories are expected to produce the full index of the 6d (2,0) theory.

  4. Fermi surface behavior in the ABJM M2-brane theory

    Science.gov (United States)

    DeWolfe, Oliver; Henriksson, Oscar; Rosen, Christopher

    2015-06-01

    We calculate fermionic Green's functions for states of the three-dimensional Aharony-Bergman-Jafferis-Maldacena M2-brane theory at large N using the gauge-gravity correspondence. We embed extremal black brane solutions in four-dimensional maximally supersymmetric gauged supergravity, obtain the linearized Dirac equations for each spin-1 /2 mode that cannot mix with a gravitino, and solve these equations with infalling boundary conditions to calculate retarded Green's functions. For generic values of the chemical potentials, we find Fermi surfaces with universally non-Fermi liquid behavior, matching the situation for four-dimensional N =4 super-Yang-Mills. Fermi surface singularities appear and disappear discontinuously at the point where all chemical potentials are equal, reminiscent of a quantum critical point. One limit of parameter space has zero entropy at zero temperature, and fermionic fluctuations are perfectly stable inside an energy region around the Fermi surface. An ambiguity in the quantization of the fermions is resolved by supersymmetry.

  5. Dp-brane Tension from Tachyons and B-field in Vacuum String Field Theory

    CERN Document Server

    Matlock, P; Viswanathan, K S; Yang, Y

    2002-01-01

    We consider tachyonic string-field fluctuations about a Dp-brane background in the geometrical (CFT) formulation of vacuum string field theory. We then extend this analysis to the case of a background B-field. We find that the standard results for D-brane tension are reproduced in both cases.

  6. Gravity in a stabilized brane world model in five-dimensional Brans-Dicke theory

    CERN Document Server

    Mikhailov, A S; Smolyakov, M N; Volobuev, I P

    2008-01-01

    Linearized equations of motion for gravitational and scalar fields are found and solved in a stabilized brane world model in five-dimensional Brans-Dicke theory. The physical degrees of freedom are isolated, the mass spectrum of Kaluza-Klein excitations is found and the coupling constants of these excitations to matter on the negative tension brane are calculated.

  7. Hagedorn Behavior of Little String Theories from string corrections to NS5-branes

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2000-01-01

    We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string-corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string...... correction generates the correct temperature dependence of the entropy near the Hagedorn temperature. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals....

  8. F-theory from Fundamental Five-branes

    CERN Document Server

    Linch, William D

    2015-01-01

    We describe the worldvolume for the bosonic sector of the lower-dimensional F-theory that embeds 4D, N=1 M-theory and the 3D Type II superstring. The worldvolume (5-brane) theory is that of a single 6D gauge 2-form $X_{MN}(\\sigma^P)$ whose field strength is selfdual. Thus unlike string theory, the spacetime indices are tied to the worldsheet ones: In the Hamiltonian formalism, the spacetime coordinates are a $\\mathbf{10}$ of the GL(5) of the 5 $\\sigma$'s (neglecting $\\tau$). The current algebra gives a rederivation of the F-bracket. The background-independent subalgebra of the Virasoro algebra gives the usual section condition, while a new type of section condition follows from Gau\\ss{}'s law, tying the worldvolume to spacetime: Solving just the old condition yields M-theory, while solving only the new one gives the manifestly T-dual version of the string, and the combination produces the usual string. We also find a covariant form of the condition that dimensionally reduces the string coordinates.

  9. On the Supersymmetric Index of the M-theory 5-brane and Little String Theory

    CERN Document Server

    Bonelli, G

    2001-01-01

    We propose a six-dimensional framework to calculate the supersymmetric index of M-theory 5-branes wrapped on a six-manifold with product topology $M_4\\times T^2$, where $M_4$ is a holomorphic 4-cycle in a Calabi-Yau three-fold. This is obtained by zero-modes counting of the self-dual tensor contribution plus ``little'' string states and correctly reproduces the known results which can be obtained by shrinking or blowing the $T^2$ volume parameter. We also extract the geometric moduli space of the multi M5-brane system and infer the generic structure of the supersymmetric index for more general geometries.

  10. F-theory and the landscape of intersecting D7-branes

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Andreas

    2010-02-05

    In this work, the moduli of D7-branes in type IIB orientifold compactifications and their stabilization by fluxes is studied from the perspective of F-theory. In F-theory, the moduli of the D7-branes and the moduli of the orientifold are unified in the moduli space of an elliptic Calabi-Yau manifold. This makes it possible to study flux the stabilization of D7-branes in an elegant manner. To answer phenomenological questions, one has to translate the deformations of the elliptic Calabi-Yau manifold of F-theory back to the positions and the shape of the D7-branes. We address this problem by constructing the homology cycles that are relevant for the deformations of the elliptic Calabi-Yau manifold.We show the viability of our approach for the case of elliptic two- and three-folds. Furthermore, we discuss a consistency conditions related to the intersections between D7-branes and orientifold planes which is automatically fulfilled in F-theory. Finally, we use our results to study the flux stabilization of D7-branes on the orientifold K3 x T{sup 2}/Z{sub 2} using F-theory on K3 x K3. In this context, we derive conditions on the fluxes to stabilize a given configuration of D7-branes. (orig.)

  11. Brane worlds theories with one or two extra dimensions

    CERN Document Server

    Salvio, Alberto

    2013-01-01

    This book is roughly divided in three parts. The first one is a general introduction to theories with extra dimensions and, more specifically, to brane worlds. Both old-fashioned topics (such as Kaluza-Klein theories) and more modern aspects (e.g. Large Extra Dimensions and Randall-Sundrum models) are discussed. The second and third parts (which we refer to as Part I and II respectively) are essentially two monographs. There, the reader is guided through the construction of the 4D effective field theory derived from higher dimensional (in particular five-dimensional and six-dimensional) models. Part I is devoted to the study of how the heavy Kaluza-Klein modes contribute to the low energy dynamics of the light modes. Part II concerns instead the analysis of the spectrum arising from non-standard compactifications of six-dimensional (supersymmetric) theories, involving a warp factor and conical defects in the internal manifold. Several applications of the above mentioned topics are discussed, providing an up t...

  12. AdS(3) OM theory and the self-dual string or membranes ending on the five-brane

    NARCIS (Netherlands)

    Berman, DS; Sundell, P

    2002-01-01

    We describe properties of the M-theory five-brane containing Q coincident self-dual strings on its worldvolume. This is the five-brane description of Q membranes ending on the five-brane. In particular, we consider a Maldacena-like low energy limit in the six-dimensional worldvolume which yields a n

  13. M-Theory Brane as Giant Graviton and the Fractional Quantum Hall Effect

    CERN Document Server

    Huo, R

    2006-01-01

    A small number of M-theory branes as giant gravitons in the M-theory sector of LLM geometry is studied as a probe. The abelian way shows that the low energy effective action for M-theory brane is exactly the 2d electron subject to a vertical magnetic field. We also briefly discuss the microscopic description of M2-brane giant graviton in this geometry, in the language of a combination of D0-branes as fuzzy 2-spheres. Then we go to the well-established Noncommutative Chern-Simons theory description. After quantization, well behaved Fractional Quantum Hall Effect is demonstrated. This goes beyond the original LLM description and should be some indication of novel geometry.

  14. Implication of U-duality for black branes in string/M-theory

    Science.gov (United States)

    Bhowmick, Samrat

    2016-12-01

    U-duality symmetry of M-theory and S- and T-duality of string theory can be used to study various black brane solutions. We explore some aspect of this idea here. This symmetry can be used to get relations among various components of the metric of the black brane. These relations in turn give relations among various components of the energy-momentum tensor. We show that, using these relations, without knowing the explicit form of form fields, we can get the black brane solutions. These features were studied previously in the context of M-theory. Here, we extensively studied them in string theory (type II supergravity). We also show that this formulation works for exotic branes. We give an example of a time-dependent system where this method is essential.

  15. Effective theory approach to brane world black holes

    CERN Document Server

    McFadden, P L; Fadden, Paul L. Mc; Turok, Neil

    2004-01-01

    We derive static spherically-symmetric vacuum solutions of the low-energy effective action for the two brane Randall-Sundrum model. The solutions with non-trivial radion belong to a one-parameter family describing traversable wormholes between the branes and a black hole, and were first discovered in the context of Einstein gravity with a conformally-coupled scalar field. From a brane world perspective, a distinctive feature of all the solutions with non-trivial radion is a brane intersection about which the bulk geometry is conical but the induced metrics on the branes are regular. Contrary to earlier claims in the literature, we show these solutions are stable under monopole perturbations.

  16. Radion stability and induced, on-brane geometries in an effective scalar-tensor theory of gravity

    CERN Document Server

    Kar, Sayan; SenGupta, Soumitra

    2013-01-01

    About a decade ago, using a specific expansion scheme, effective, on-brane scalar tensor theories of gravity were proposed by Kanno and Soda (Phys.Rev. {\\bf D 66} 083506 ,(2002)) in the context of the warped two brane model of Randall--Sundrum. The inter-related effective theories on both the branes were derived with the space-time dependent radion field playing a crucial role. Taking a re-look at this effective theory, we find cosmological and spherically symmetric, static solutions sourced by a radion--induced, effective stress energy, as well as additional, on-brane matter. The distance between the branes (governed by the time or space dependent radion) is shown to be stable and asymptotically non-zero, thereby setting aside any possibility of brane collisions. It turns out that the inclusion of on-brane matter plays a decisive role in stabilising the radion - a fact which we demonstrate through our solutions.

  17. D-branes in String theory Melvin backgrounds

    CERN Document Server

    Dudas, E A

    2002-01-01

    We determine the consistent D-brane configurations in type II nonsupersymmetric Melvin Background. The D-branes are analysed from three complementary points of view: the effective Born-Infeld action, the open string partition function and the boundary state approach. We show the agreement of the results obtained by the three different approaches. Among the surprising features is the existence of supersymmetric branes, some of them having a quasi-periodic direction. We also discuss the generalisation to backgrounds with several magnetic fields, some of them preserving in the closed and the open spectra some amount of supersymmetry. The case of rational magnetic flux, equivalent to freely-acting noncompact orbifolds, is also studied. It allows more possibilities of consistent D-brane configurations.

  18. Confining k-string tensions with D-Branes in Super Yang-Mills theories

    CERN Document Server

    Ridgway, Jefferson M

    2008-01-01

    We discuss confining k strings in four dimensional gauge theories using D5 branes in AdS5xS5, and D3 branes in Klebanov-Strassler and Maldacena-Nunez backgrounds. We present two results: The first that confining k string tensions in N=4 can be calculated using D5 branes in AdS5xS5 with a cut-off in the bulk AdS. Using an embedding of R2 times S4 in S5, we show that the D5 brane replicates a string of rank k in the antisymmetric representation. The second result shows that the S-Dual calculation to hep-th/0111078 reproduces the action in the Klebanov-Strassler and Maldacena-Nunez backgrounds exactly, while providing a more natural manifestation of the string charge k.

  19. Metric factorizability and equivalence of brane world models with Brans-Dicke theory

    CERN Document Server

    Chakraborty, Sumanta

    2015-01-01

    In the standard brane world models, the bulk metric ansatz is usually assumed to be factorizable in brane and bulk coordinates. However it is not self evident that it is always possible to factorize the bulk metric. Using gradient expansion scheme, which involves, expansion of bulk quantities in terms of the brane to bulk curvature ratio, as perturbative parameter, we have explicitly shown that upto second order in perturbative expansion, metric factorizability is a valid assumption. We have also argued from our result that the same should be true for all orders in the perturbation scheme. We further establish that the non-local terms present in the bulk gravitational field equation can be replaced by radion field and the effective action on the brane obtained thereof resembles Brans-Dicke theory of gravity.

  20. 5-brane webs, symmetry enhancement, and duality in 5d supersymmetric gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Oren [Department of Physics, Technion, Israel Institute of Technology,Haifa, 32000 (Israel); Rodríguez-Gómez, Diego [Department of Physics, Universidad de Oviedo,Avda. Calvo Sotelo 18, 33007, Oviedo (Spain); Zafrir, Gabi [Department of Physics, Technion, Israel Institute of Technology,Haifa, 32000 (Israel)

    2014-03-25

    We present a number of investigations of 5d N=1 supersymmetric gauge theories that make use of 5-brane web constructions and the 5d superconformal index. These include an observation of enhanced global symmetry in the 5d fixed point theory corresponding to SU(N) gauge theory with Chern-Simons level ±N, enhanced global symmetries in quiver theories, and dualities between quiver theories and non-quiver theories. Instanton contributions play a crucial role throughout.

  1. D p-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra

    Science.gov (United States)

    Honma, Yoshinori; Ogawa, Morirou; Shiba, Shotaro

    2011-04-01

    We derive the super Yang-Mills action of D p-branes on a torus T p-4 from the nonabelian (2, 0) theory with Lie 3-algebra [1]. Our realization is based on Lie 3-algebra with pairs of Lorentzian metric generators. The resultant theory then has negative norm modes, but it results in a unitary theory by setting VEV's of these modes. This procedure corresponds to the torus compactification, therefore by taking a transformation which is equivalent to T-duality, the D p-brane action is obtained. We also study type IIA/IIB NS5brane and Kaluza-Klein monopole systems by taking other VEV assignments. Such various compactifications can be realized in the nonabelian (2, 0) theory, since both longitudinal and transverse directions can be compactified, which is different from the BLG theory. We finally discuss U-duality among these branes, and show that most of the moduli parameters in U-duality group are recovered. Especially in D5-brane case, the whole U-duality relation is properly reproduced.

  2. Branes in extended spacetime

    CERN Document Server

    Sakatani, Yuho

    2016-01-01

    We propose a novel approach to the brane worldvolume theory based on the geometry of extended field theories; double field theory and exceptional field theory. We demonstrate the effectiveness of this approach by showing that one can reproduce the conventional bosonic string/membrane actions, and the M5-brane action in the weak field approximation. At a glance, the proposed 5-brane action without approximation looks different from the known M5-brane actions, but it is consistent with the known non-linear self-duality relation, and it may provide a new formulation of a single M5-brane action. Actions for exotic branes are also discussed.

  3. Brane realization of q-theory and the cosmological constant problem

    CERN Document Server

    Klinkhamer, F R

    2016-01-01

    We discuss the cosmological constant problem using the properties of a freely-suspended two-dimensional condensed-matter film, i.e., an explicit realization of a 2D brane. The large contributions of vacuum fluctuations to the surface tension of this film are cancelled in equilibrium by the thermodynamic potential arising from the conservation law for particle number. In short, the surface tension of the film vanishes in equilibrium due to a thermodynamic identity. This 2D brane can be generalized to a 4D brane with gravity. For the 4D brane, the analogue of the 2D surface tension is the 4D cosmological constant, which is also nullified in full equilibrium. The 4D brane theory provides an alternative description of the phenomenological $q$-theory of the quantum vacuum. As for other realizations of the vacuum variable $q$, such as the 4-form field-strength realization, the main ingredient is the conservation law for the variable $q$, which makes the vacuum a self-sustained system. For a vacuum within this class...

  4. Dynamical angled brane

    Science.gov (United States)

    Maeda, Kei-ichi; Uzawa, Kunihito

    2016-12-01

    We discuss the dynamical D p -brane solutions describing any number of D p branes whose relative orientations are given by certain SU(2) rotations. These are the generalization of the static angled D p -brane solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show that the particular orientation of the smeared D3-brane configuration can provide an example of colliding branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.

  5. Black Hole Entropy and Superconformal Field Theories on Brane-Antibrane Systems

    CERN Document Server

    Halyo, E

    2004-01-01

    We obtain the enropy of Schwarzschild and charged black holes in D>4 from superconformal gases that live on p=10-D dimensional brane-antibrane systems wrapped on T^p. The preperties of the strongly coupled superconformal theories such as the appearance of hidden dimensions (for p=1,4) and fractional strings (for p=5) are crucial for our results. In all cases, the Schwarzschild radius is given by the transverse fluctuations of the branes and antibranes due to the finite temperature. We show that our results can be generalized to multicharged black holes.

  6. On the 4D effective theory in warped compactifications with fluxes and branes

    CERN Document Server

    Koyama, K; Koyama, K; Arroja, Frederico; Koyama, Kayoko; Koyama, Kazuya

    2006-01-01

    We present a systematic way to derive the four-dimensional effective theories for warped compactifications with fluxes and branes in the ten-dimensional type IIB supergravity. The ten-dimensional equations of motion are solved using the gradient expansion method and the effective four-dimensional equations of motions are derived by imposing the consistency condition that the total derivative terms with respect to the six-dimensional internal coordinates vanish when integrated over the internal manifold. By solving the effective four-dimensional equations, we can find the gravitational backreaction to the warped geometry due to the dynamics of moduli fields, branes and fluxes.

  7. The Cost of Seven-brane Gauge Symmetry in a Quadrillion F-theory Compactifications

    CERN Document Server

    Halverson, James

    2016-01-01

    We study seven-branes in $O(10^{15})$ four-dimensional F-theory compactifications where seven-brane moduli must be tuned in order to achieve non-abelian gauge symmetry. The associated compact spaces $B$ are the set of all smooth weak Fano toric threefolds. By a study of fine star regular triangulations of three dimensional reflexive polytopes, the number of such spaces is estimated to be $5.8\\times 10^{14}\\lesssim N_\\text{bases}\\lesssim 1.8\\times 10^{17}$. Typically hundreds or thousands of moduli must be tuned to achieve symmetry for $h^{11}(B)<10$, but the average number drops sharply into the range $O(25)$-$O(200)$ as $h^{11}(B)$ increases. For some low rank groups, such as $SU(2)$ and $SU(3)$, there exist examples where only a few moduli must be tuned in order to achieve seven-brane gauge symmetry.

  8. Exact relations between M2-brane theories with and without Orientifolds

    CERN Document Server

    Honda, Masazumi

    2015-01-01

    We study partition functions of low-energy effective theories of M2-branes, whose type IIB brane constructions include orientifolds. We mainly focus on circular quiver superconformal Chern-Simons theory on S^3, whose gauge group is O(2N+1)x USp(2N)x ... x O(2N+1)x USp(2N). This theory is a natural generalization of N=5 ABJM theory with the gauge group O(2N+1)_{2k}x USp(2N)_{-k}. We find that the partition function of this type of theory has a simple relation to the one of the M2-brane theories without the orientifolds, whose gauge group is U(N)x ... x U(N). By using this relation, we determine an exact form of the grand partition function of the O(2N+1)_2 x USp(2N)_{-1} ABJM theory, where its supersymmetry is expected to enhance to N=6. As another interesting application, we discuss that our result gives a natural physical interpretation of a relation between grand partition functions of the U(N+1)_4 x U(N)_{-4} ABJ theory and U(N)_2 x U(N)_{-2} ABJM theory, recently conjectured by Grassi-Hatsuda-Marino. We a...

  9. Brane world scenarios

    Indian Academy of Sciences (India)

    Dileep P Jatkar

    2003-02-01

    We review proposals of brane world models which attempt to combine gauge theories with gravity at TeV scale by confining the gauge theory to a three-brane embedded in higher dimensional bulk. Gravity, however, propagates in the directions transverse to the brane as well.

  10. D-branes and Non-Perturbative Quantum Field Theory: Stringy Instantons and Strongly Coupled Spintronics

    CERN Document Server

    Musso, Daniele

    2012-01-01

    The non-perturbative dynamics of quantum field theories is studied using theoretical tools inspired by string formalism. Two main lines are developed: the analysis of stringy instantons in a class of four-dimensional N=2 gauge theories and the holographic study of the minimal model for a strongly coupled unbalanced superconductor. The field theory instanton calculus admits a natural and efficient description in terms of D-brane models. In addition, the string viewpoint offers the possibility of generalizing the ordinary instanton configurations. Even though such generalized, or stringy, instantons would be absent in a purely field-theoretical, low-energy treatment, we demonstrate that they do alter the IR effective description of the brane dynamics by introducing contributions related to the string scale. In the first part of this thesis we compute explicitly the stringy instanton corrections to the effective prepotential in a class of quiver gauge theories. In the second part of the thesis, we present a deta...

  11. Large-Scale Structure in Brane-Induced Gravity I. Perturbation Theory

    CERN Document Server

    Scoccimarro, Roman

    2009-01-01

    We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, the effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since weak lensing is entirely unaffected by the extra nonlinear physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant that depends on space and time. ...

  12. Equivalence between Born–Infeld tachyon and effective real scalar field theories for brane structures in warped geometry

    Energy Technology Data Exchange (ETDEWEB)

    Bernardini, A.E., E-mail: alexeb@ufscar.br; Bertolami, O., E-mail: orfeu.bertolami@fc.up.pt

    2013-10-07

    An equivalence between Born–Infeld and effective real scalar field theories for brane structures is built in some specific warped space–time scenarios. Once the equations of motion for tachyon fields related to the Born–Infeld action are written as first-order equations, a simple analytical connection with a particular class of real scalar field superpotentials can be found. This equivalence leads to the conclusion that, for a certain class of superpotentials, both systems can support identical thick brane solutions as well as brane structures described through localized energy densities, T{sub 00}(y), in the 5th dimension, y. Our results indicate that thick brane solutions realized by the Born–Infeld cosmology can be connected to real scalar field brane scenarios which can be used to effectively map the tachyon condensation mechanism.

  13. Instanton-monopole correspondence from M-branes on S1 and little string theory

    Science.gov (United States)

    Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2016-03-01

    We study Bogomol'nyi-Prasad-Sommerfield (BPS) excitations in M5-M2-brane configurations with a compact transverse direction, which are also relevant for type IIa and IIb little string theories. These configurations are dual to a class of toric elliptically fibered Calabi-Yau manifolds XN with manifest S L (2 ,Z )×S L (2 ,Z ) modular symmetry. They admit two dual gauge theory descriptions. For both, the nonperturbative partition function can be written as an expansion of the topological string partition function of XN with respect to either of the two modular parameters. We analyze the resulting BPS-counting functions in detail and find that they can be fully constructed as linear combinations of the BPS-counting functions of M5-M2-brane configurations with noncompact transverse directions. For certain M2-brane configurations, we also find that the free energies in the two dual theories agree with each other, which points to a new correspondence between instanton and monopole configurations. These results are also a manifestation of T-duality between type IIa and IIb little string theories.

  14. Solitons in Seiberg-Witten Theory and D-branes in the Derived Category

    CERN Document Server

    Aspinwall, Paul S; Aspinwall, Paul S.; Karp, Robert L.

    2003-01-01

    We analyze the "geometric engineering" limit of a type II string on a suitable Calabi-Yau threefold to obtain an N=2 pure SU(2) gauge theory. The derived category picture together with Pi-stability of B-branes beautifully reproduces the known spectrum of BPS solitons in this case in a very explicit way. Much of the analysis is particularly easy since it can be reduced to questions about the derived category of CP1.

  15. Supersymmetry Projection Rules on Exotic Branes

    CERN Document Server

    Kimura, Tetsuji

    2016-01-01

    We study the supersymmetry projection rules on exotic branes in type II string theories and M-theory. They justify the validity of the exotic duality between standard branes and exotic branes of codimension two. By virtue of the supersymmetry projection rules on various branes, we can apply the exotic duality to a system which involves multiple non-parallel branes.

  16. Exotic branes and non-perturbative seven branes

    NARCIS (Netherlands)

    Eyras, E; Lozano, Y

    2000-01-01

    We construct the effective action of certain exotic branes in the Type Ii theories which are not predicted by their space-time supersymmetry algebras. We analyze in detail the case of the NS-7B brane, S-dual to the D7-brane, and connected by T-duality to other exotic branes in Type IIA: the KK-6A br

  17. On n-ary algebras, branes and poly-vector gauge theories in noncommutative Clifford spaces

    Science.gov (United States)

    Castro, Carlos

    2010-09-01

    In this paper, poly-vector-valued gauge field theories in noncommutative Clifford spaces are presented. They are based on noncommutative (but associative) star products that require the use of the Baker-Campbell-Hausdorff formula. Using these star products allows the construction of actions for noncommutative p-branes (branes moving in noncommutative spaces). Noncommutative Clifford-space gravity as a poly-vector-valued gauge theory of twisted diffeomorphisms in Clifford spaces would require quantum Hopf algebraic deformations of Clifford algebras. We proceed with the study of n-ary algebras and find an important relationship among the n-ary commutators of the noncommuting spacetime coordinates [X1, X2, ..., Xn] with the poly-vector-valued coordinates X123sdotsdotsdotn in noncommutative Clifford spaces given by [X1, X2, ..., Xn] = n!X123sdotsdotsdotn. The large N limit of n-ary commutators of n hyper-matrices {\\bf X}_{i_1 i_2 \\cdots i_n} leads to Eguchi-Schild p-brane actions for p + 1 = n. A noncomutative n-ary • product of n functions is constructed which is a generalization of the binary star product * of two functions and is associated with the deformation quantization of n-ary structures and deformations of the Nambu-Poisson brackets.

  18. D-brane gauge theories from toric singularities of the form $C^3/\\Gamma$ and $C^4/\\Gamma$

    OpenAIRE

    Sarkar, Tapobrata

    2000-01-01

    We discuss examples of D-branes probing toric singularities, and the computation of their world-volume gauge theories from the geometric data of the singularities. We consider several such examples of D-branes on partial resolutions of the orbifolds ${\\bf C^3/Z_2\\times Z_2}$,${\\bf C^3/Z_2\\times Z_3}$ and ${\\bf C^4/Z_2\\times Z_2 \\times Z_2}$.

  19. Quantum Metamorphosis of Conformal Transformation in D3-Brane Yang-Mills Theory

    CERN Document Server

    Jevicki, A; Yoneya, T

    1998-01-01

    We show how the linear special conformal transformation in four-dimensional N=4 super Yang-Mills theory is metamorphosed into the nonlinear and field-dependent transformation for the collective coordinates of Dirichlet 3-branes, which agrees with the transformation law for the space-time coordinates in the anti-de Sitter (AdS) space-time. Our result provides a new and strong support for the conjectured relation between AdS supergravity and super conformal Yang-Mills theory (SYM). Furthermore, our work sheds elucidating light on the nature of the AdS/SYM correspondence.

  20. Supersymmetric M5 Brane Theories on R x CP2

    CERN Document Server

    Kim, Hee-Cheol

    2012-01-01

    We propose 4 and 12 supersymmetric Yang-Mills-Chern-Simons theories on $\\mathrm{R\\times CP^2}$ obtained by twisted $\\mathrm{Z}_k$ moddings and dimensional reduction of the 6d (2,0) superconformal field theories on $\\mathrm{R\\times S^5}$. These theories have a discrete coupling constant $\\frac{1}{g^2_{YM}} =\\frac{k}{4\\pi^2}$ so that instantons represent the Kaluza-Klein modes correctly. We calculate the perturbative part of the SU(N) gauge group Euclidean path integral for the index function and confirm it with the known half-BPS index. The scalar and fermionic fields have the conformal dimension prescribed by the 6d theory. From the similar twisted $Z_k$ modding of the $\\mathrm{AdS_7\\times S^4}$ geometry, we speculate that the $M$ region is for $k\\lesssim N^{1/3}$ and the type IIA region is $N^{1/3}\\lesssim k \\lesssim N$. When nonperturbative corrections are included, our theory is expected to produce the full index of the 6d (2,0) theory.

  1. BV analysis of tachyon fluctuation around multi-brane solutions in cubic string field theory

    Science.gov (United States)

    Hata, Hiroyuki

    2016-05-01

    We study whether the tachyon mode exists as a physical fluctuation on the 2-brane solution and on the tachyon vacuum solution in cubic open string field theory. Our analysis is based on the Batalin-Vilkovisky formalism. We first construct a set of six string states which corresponds to the set of fields and anti-fields containing the tachyon field. Whether the tachyon field can exist as a physical fluctuation is determined by the 6 × 6 matrix defining the anti-bracket in the present sector. If the matrix is degenerate/non-degenerate, the tachyon field is physical/unphysical. Calculations for the pure-gauge type solutions in the framework of the KBc algebra and using the K ɛ -regularization lead to the expected results. Namely, the matrix for the anti-bracket is degenerate/non-degenerate in the case of the 2-brane/tachyon-vacuum solution. Our analysis is not complete, in particular, in that we have not identified the four-fold degeneracy of tachyon fluctuation on the 2-brane solution, and moreover that the present six states do not satisfy the hermiticity condition.

  2. D2-brane Chern-Simons theories: F-maximization = a-maximization

    CERN Document Server

    Fluder, Martin

    2015-01-01

    We study a system of N D2-branes probing a generic Calabi-Yau three-fold singularity in the presence of a non-zero quantized Romans mass n. We argue that the low-energy effective N = 2 Chern-Simons quiver gauge theory flows to a superconformal fixed point in the IR, and construct the dual AdS_4 solution in massive IIA supergravity. We compute the free energy F of the gauge theory on S^3 using localization. In the large N limit we find F = c(nN)^{1/3}a^{2/3}, where c is a universal constant and a is the a-function of the "parent" four-dimensional N = 1 theory on N D3-branes probing the same Calabi-Yau singularity. It follows that maximizing F over the space of admissible R-symmetries is equivalent to maximizing a for this class of theories. Moreover, we show that the gauge theory result precisely matches the holographic free energy of the supergravity solution, and provide a similar matching of the VEV of a BPS Wilson loop operator.

  3. A Note on Dimer Models and D-brane Gauge Theories

    CERN Document Server

    Agarwal, Prarit; Sarkar, Tapobrata

    2008-01-01

    The connection between quiver gauge theories and dimer models has been well studied. It is known that the matter fields of the quiver gauge theories can be represented using the perfect matchings of the dimer model. We conjecture that the perfect matchings give information about the charge matrix of the quiver gauge theory. Further, we perform explicit computations on some aspects of partial resolutions of toric singularities using dimer models. We analyse these with graph theory techniques, using the perfect matchings of orbifolds of the form $\\BC^3/\\Gamma$, where the orbifolding group $\\Gamma$ may be noncyclic. Using these, we study the construction of the superpotential of gauge theories living on D-branes which probe these singularities, including the case where one or more adjoint fields are present upon partial resolution. Applying a combination of open and closed string techniques to dimer models, we also study some aspects of their symmetries.

  4. Aspects of string theory compactifications. D-brane statistics and generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Gmeiner, F.

    2006-05-26

    In this thesis we investigate two different aspects of string theory compactifications. The first part deals with the issue of the huge amount of possible string vacua, known as the landscape. Concretely we investigate a specific well defined subset of type II orientifold compactifications. We develop the necessary tools to construct a very large set of consistent models and investigate their gauge sector on a statistical basis. In particular we analyse the frequency distributions of gauge groups and the possible amount of chiral matter for compactifications to six and four dimensions. In the phenomenologically relevant case of four-dimensional compactifications, special attention is paid to solutions with gauge groups that include those of the standard model, as well as Pati-Salam, SU(5) and flipped SU(5) models. Additionally we investigate the frequency distribution of coupling constants and correlations between the observables in the gauge sector. These results are compared with a recent study of Gepner models. Moreover, we elaborate on questions concerning the finiteness of the number of solutions and the computational complexity of the algorithm. In the second part of this thesis we consider a new mathematical framework, called generalised geometry, to describe the six-manifolds used in string theory compactifications. In particular, the formulation of T-duality and mirror symmetry for nonlinear topological sigma models is investigated. Therefore we provide a reformulation and extension of the known topological A- and B-models to the generalised framework. The action of mirror symmetry on topological D-branes in this setup is presented and the transformation of the boundary conditions is analysed. To extend the considerations to D-branes in type II string theory, we introduce the notion of generalised calibrations. We show that the known calibration conditions of supersymmetric branes in type IIA and IIB can be obtained as special cases. Finally we investigate

  5. Discrete torsion, de Sitter tunneling vacua and AdS brane: U(1) gauge theory on D4-brane and an effective curvature

    CERN Document Server

    Singh, Abhishek K; Singh, Sunita; Kar, Supriya

    2013-01-01

    The U(1) gauge dynamics on a $D_4$-brane is revisited, with a two form, to construct an effective curvature theory in a second order formalism. We exploit the local degrees in a two form, and modify its dynamics in a gauge invariant way, to incorporate a non-perturbative quantum fluctuation into an effective $D_4$-brane. Interestingly, the near horizon $D_4$-brane is shown to describe an asymptotic Anti de Sitter (AdS) in a semi-classical regime. Using Weyl scaling(s), we obtain the emergent rotating geometries leading to primordial de Sitter (dS) and AdS vacua in a quantum regime. Under a discrete transformation, we re-arrange the emergent mixed dS patches to describe a Schwazschild-like dS (SdS) and a topological-like dS (TdS) black holes. We analyze the Hawking radiations from a SdS vacuum to arrive at a Nariai geometry, where the discrete torsion forms a condensate. We perform thermal analysis to identify a Nariai vacuum with a TdS, where the condensate tunnels down to a stable AdS, underlying an effectiv...

  6. Brane Resolution Through Fibration

    CERN Document Server

    Vazquez-Poritz, Justin F

    2012-01-01

    We consider p-branes with one or more circular directions fibered over the transverse space. The fibration, in conjunction with the transverse space having a blown-up cycle, enables these p-brane solutions to be completely regular. Some such circularly-wrapped D3-brane solutions describe flows from SU(N)^3 N=2 theory, F_0 theory, as well as an infinite family of superconformal quiver gauge theories, down to three-dimensional field theories. We discuss the operators that are turned on away from the UV fixed points. Similarly, there are wrapped M2-brane solutions which describe smooth flows from known three-dimensional supersymmetric Chern-Simons matter theories, such as ABJM theory. We also consider p-brane solutions on gravitational instantons, and discuss various ways in which U-duality can be applied to yield other non-singular solutions.

  7. Exotic branes and nongeometric backgrounds

    NARCIS (Netherlands)

    de Boer, J.; Shigemori, M.

    2010-01-01

    When string or M theory is compactified to lower dimensions, the U-duality symmetry predicts so-called exotic branes whose higher-dimensional origin cannot be explained by the standard string or M-theory branes. We argue that exotic branes can be understood in higher dimensions as nongeometric backg

  8. Branes and wrapping rules

    CERN Document Server

    Bergshoeff, Eric A

    2011-01-01

    We show that the branes of ten-dimensional IIA/IIB string theory must satisfy, upon toroidal compactification, specific wrapping rules in order to reproduce the number of supersymmetric branes that follows from a supergravity analysis. The realization of these wrapping rules suggests that IIA/IIB string theory contains a whole class of generalized Kaluza-Klein monopoles.

  9. M-theory and E10: Billiards, Branes, and Imaginary Roots

    CERN Document Server

    Brown, J; Helfgott, C; Brown, Jeffrey; Ganor, Ori J.; Helfgott, Craig

    2004-01-01

    Eleven dimensional supergravity compactified on $T^{10}$ admits classical solutions describing what is known as billiard cosmology - a dynamics expressible as an abstract (billiard) ball moving in the 10-dimensional root space of the infinite dimensional Lie algebra E10, occasionally bouncing off walls in that space. Unlike finite dimensional Lie algebras, E10 has negative and zero norm roots, in addition to the positive norm roots. The walls above are related to physical fluxes that, in turn, are related to positive norm roots (called real roots) of E10. We propose that zero and negative norm roots, called imaginary roots, are related to physical branes. Adding `matter' to the billiard cosmology corresponds to adding `walls' associated to imaginary roots. The, as yet, mysterious relation between E10 and M-theory on $T^{10}$ can now be expanded as follows: real roots correspond to fluxes or instantons, and imaginary roots correspond to particles and branes (in the cases we checked). Interactions between fluxe...

  10. Black hole thermalization rate from brane anti-brane model

    CERN Document Server

    Lifschytz, G

    2004-01-01

    We develop the quasi-particle picture for Schwarzchild and far from extremal black holes. We show that the thermalization equations of the black hole is recovered from the model of branes and anti-branes. This can also be viewed as a field theory explanation of the relationship between area and entropy for these black holes. As a by product the annihilation rate of branes and anti-branes is computed.

  11. Black hole thermalization rate from brane anti-brane model

    Energy Technology Data Exchange (ETDEWEB)

    Lifschytz, Gilad E-mail: giladl@research.haifa.ac.il

    2004-08-01

    We develop the quasi-particle picture for Schwarzchild and far from extremal black holes. We show that the thermalization equations of the black hole is recovered from the model of branes and anti-branes. This can also be viewed as a field theory explanation of the relationship between area and entropy for these black holes. As a by product the annihilation rate of branes and anti-branes is computed. (author)

  12. Branes and Wrapping Rules

    NARCIS (Netherlands)

    Bergshoeff, E.; Riccioni, F.

    2012-01-01

    We show that the branes of ten-dimensional IA/IIB string theory must satisfy, upon toroidal compactification, specific wrapping rules in order to reproduce the number of supersymmetric branes that follows from a supergravity analysis. The realization of these wrapping rules suggests that IA/IIB stri

  13. Interaction of moving branes with background massless and tachyon fields in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Z., E-mail: z.rezaei@aut.ac.ir; Kamani, D., E-mail: kamani@aut.ac.ir [Amirkabir University of Technology (Tehran Polytechnic), Physics Department (Iran, Islamic Republic of)

    2012-02-15

    Using the boundary state formalism, we study a moving Dp-brane in a partially compact space-time in the presence of background fields: the Kalb-Ramond field B{sub {mu}{nu}}, a U(1) gauge field A{sub {alpha}}, and the tachyon field. The boundary state enables us to obtain the interaction amplitude of two branes with the above back-ground fields. The branes are parallel or perpendicular to each other. Because of the presence of background fields, compactification of some space-time directions, motion of the branes, and the arbitrariness of the dimensions of the branes, the system is rather general. Due to the tachyon fields and velocities of the branes, the behavior of the interaction amplitude reveals obvious differences from the conventional behavior.

  14. D-brane scattering and annihilation

    NARCIS (Netherlands)

    D'Amico, Guido; Gobbetti, Roberto; Kleban, Matthew; Schillo, Marjorie

    2015-01-01

    We study the dynamics of parallel brane-brane and brane-antibrane scattering in string theory in flat spacetime, focusing on the pair production of open strings that stretch between the branes. We are particularly interested in the case of scattering at small impact parameter b

  15. 5D Super Yang-Mills Theory in 4D Superspace, Superfield Brane Operators, and Applications to Orbifold GUTs

    CERN Document Server

    Hebecker, A

    2002-01-01

    A manifestly gauge invariant formulation of 5-dimensional supersymmetric Yang-Mills theories in terms of 4d superfields is derived. It relies on a supersymmetry and gauge-covariant derivative operator in the $x^5$ direction. This formulation allows for a systematic study of higher-derivative operators by combining invariant 4d superfield expressions under the additional restriction of 5d Lorentz symmetry. In cases where the 5d theory is compactified on a gauge-symmetry-breaking orbifold, the formalism can be used for a simple discussion of possible brane operators invariant under the restricted symmetry of the fixed points. This is particularly relevant to recently constructed grand unified theories in higher dimensions (orbifold GUTs). Several applications, including proton decay operators and brane-localized mass terms, are discussed.

  16. Analytical approach to the D3-brane gravity dual for 3d Yang-Mills theory

    CERN Document Server

    Forkel, Hilmar

    2015-01-01

    The complexity of "top-down" string-dual candidates for strongly-coupled Yang-Mills theories and in particular for QCD almost always prohibits their exact analytical or even comprehensive numerical treatment. This impedes both a thorough quantitative analysis and the development of more realistic gravity duals. To mitigate these impediments, we devise an analytical approach to top-down duals on the basis of controlled, uniformly converging high-accuracy approximations for the normalizable string modes corresponding to gauge-theory states. We demonstrate the potential of this approach in Witten's dual for $3d$ Yang-Mills theory, i.e. in the near-horizon limit of non-extremal $D\\text{3}$-branes, compactified on $S^{1}$. We obtain accurate analytical approximations to the bulk modes which satisfy the boundary conditions exactly. On their basis, analytical results for masses, sizes, pole residues and correlation functions of glueball excitations are derived by spectral methods. These approximations can be systema...

  17. Instanton-Monopole Correspondence from M-Branes on $\\mathbb{S}^1$ and Little String Theory

    CERN Document Server

    Hohenegger, Stefan; Rey, Soo-Jong

    2015-01-01

    We study BPS excitations in M5-M2-brane configurations with a compact transverse direction, which are also relevant for type IIa and IIb little string theories. These configurations are dual to a class of toric elliptically fibered Calabi-Yau manifolds $X_N$ with manifest $SL(2,\\mathbb{Z})\\times SL(2,\\mathbb{Z})$ modular symmetry. They admit two dual gauge theory descriptions. For both, the non-perturbative partition function can be written as an expansion of the topological string partition function of $X_N$ with respect to either of the two modular parameters. We analyze the resulting BPS counting functions in detail and find that they can be fully constructed as linear combinations of the BPS counting functions of M5-M2-brane configurations with non-compact transverse directions. For certain M2-brane configurations, we also find that the free energies in the two dual theories agree with each other, which points to a new correspondence between instanton and monopole configurations. These results are also a ...

  18. Cosmological study of some S-brane solutions in M-theory

    CERN Document Server

    Agudelo, J A; Idarraga, A

    2015-01-01

    Some years ago it was observed that it is possible to describe late-time cosmic acceleration in the SM2-brane solution with hyperbolic compactification model supplemented by cold dark matter. Here we present a cosmological description of this solution but when the geometry of the internal space is plane and spherical including dark matter in the phenomenological setting. Two different but equivalent methods are used, obtaining an $4-dim$ effective model by dimensional reduction and the direct solution of the $d-dim$ field equations respectively. The main objective is to complement the study of accelerating cosmologies from M/string theories, analyzing the time evolution of the model in the pure dark energy and dark energy including cold dark matter contexts, showing that only in some cases it is marginally possible to describe late time cosmic acceleration. Additionally, under certain considerations, the cosmological scenario is analyzed for the intersections SM2$\\bot$SM2 and SM2$\\bot$SM5, which give rise to ...

  19. Phases of R-charged Black Holes, Spinning Branes and Strongly Coupled Gauge Theories

    CERN Document Server

    Cvetic, M; Cvetic, Mirjam; Gubser, Steven S.

    1999-01-01

    We study the thermodynamic stability of charged black holes in gauged supergravity theories in D=5, D=4 and D=7. We find explicitly the location of the Hawking-Page phase transition between charged black holes and the pure anti-de Sitter space-time, both in the grand-canonical ensemble, where electric potentials are held fixed, and in the canonical ensemble, where total charges are held fixed. We also find the explicit local thermodynamic stability constraints for black holes with one non-zero charge. In the grand-canonical ensemble, there is in general a region of phase space where neither the anti-de Sitter space-time is dynamically preferred, nor are the charged black holes thermodynamically stable. But in the canonical ensemble, anti-de Sitter space-time is always dynamically preferred in the domain where black holes are unstable. We demonstrate the equivalence of large R-charged black holes in D=5, D=4 and D=7 with spinning near-extreme D3-, M2- and M5-branes, respectively. The mass, the charges and the ...

  20. NS-branes in 5d brane world models

    CERN Document Server

    Park, Eun Kyung

    2010-01-01

    We study codimension-1 brane solutions of the 5d brane world models compactified on $S_1 / \\mathbb{Z}_2$. In string theoretical setup they suggest that the background branes located at orbifold fixed points should be NS-branes (in the five dimensional sense), rather than D-branes. Indeed, the existence of the background NS-branes is indispensable to obtain flat geometry $M_4 \\times S_1 / \\mathbb{Z}_2$ where $M_4$ represents the 4d Minkowski spacetime, and without these branes the 5d metric becomes singular everywhere. This result is very reminiscent of the $(p+3)$d effective string theory \\cite{1} where the NS-NS type $p$-brane is indispensable to obtain a flat geometry $R_2$ or $R_2 /\\mathbb{Z}_n$ on the transverse dimensions. Without this NS-NS type $p$-brane the 2d transverse space becomes a pin-shaped singular space. The correspondence between these two theories leads us to a conjecture that the whole flat backgrounds of the string theory inherently invovle the NS-branes implicitly in their ansatz, and he...

  1. Radion stability and induced, on-brane geometries in an effective scalar-tensor theory of gravity II

    CERN Document Server

    Kar, Sayan; SenGupta, Soumitra

    2015-01-01

    In our earlier article (Phys.Rev. {\\bf D 88} 083506,(2013)) we had obtained spherically symmetric, static on-brane geometries in the Kanno-Soda effective scalar-tensor theory of gravity. The solution found was the extremal Reissner--Nordstrom black hole (the Majumdar-Papapetrou solution). In this article, we extend our analysis to more general, spherically symmetric, static geometries which are non-extremal in nature. The solution is nothing other than the well-known Reissner--Nordstrom solution. We find the radion field profiles for the various cases and also look into the issue of radion stability. Finally, the energy-momentum tensor for the effective on-brane matter is obtained and we observe that it can satisfy all energy conditions for a certain region of the parameter space of the solution.

  2. Black Brane World Scenarios

    CERN Document Server

    Moon, S H

    2001-01-01

    We consider a brane world residing in the interior region inside the horizon of extreme black branes. In this picture, the size of the horizon can be interpreted as the compactification size. The large mass hierarchy is simply translated into the large horizon size, which is provided by the magnitude of charges carried by the black branes. Hence, the macroscopic compactification size is a quantity calculable from the microscopic theory which has only one physical scale, and its stabilization is guaranteed from the charge conservation.

  3. Branes as BIons

    CERN Document Server

    Gibbons, G W

    1999-01-01

    A BIon may be defined as a finite energy solution of a non-linear field theory with distributional sources. By contrast a soliton is usually defined to have no sources. I show how harmonic coordinates map the exteriors of the topologically and causally non-trivial spacetimes of extreme p-branes to BIonic solutions of the Einstein equations in a topologically trivial spacetime in which the combined gravitational and matter energy momentum is located on distributional sources. As a consequence the tension of BPS p-branes is classically unrenormalized. The result holds equally for spacetimes with singularities and for those, like the M-5-brane, which are everywhere singularity free.

  4. (2,2) and (0,4) Supersymmetric Boundary Conditions in 3d N = 4 Theories and Type IIB Branes

    CERN Document Server

    Chung, Hee-Joong

    2016-01-01

    The half-BPS boundary conditions preserving N = (2,2) and N = (0,4) supersymmetry in 3d N = 4 supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Bogomolony-like equations and Nahm-like equations arise in the vector multiplet BPS boundary conditions and Robin-type boundary conditions appear for the hypermultiplet coupled to vector multiplet. The half-BPS boundary conditions are realized in the brane configurations of Type IIB string theory.

  5. $S^1/T^2$ Compactifications of 6d $\\mathcal{N}=(1,0)$ Theories and Brane Webs

    CERN Document Server

    Ohmori, Kantaro

    2015-01-01

    We consider the circle and torus compactification of a certain subclass of 6d $\\mathcal{N}=(1,0)$ SCFTs which are Higgsable to the higher rank E-string theories. Using the T-duality between Type I' and Type IIB, we found that the $S^1$ compactification of the theories can be realized by 5-brane webs describing the 5d uplifting of a specified class S theory, generalizing the result by Benini, Benvenuti and Tachikawa. We checked the above result by calculating conformal and flavor central charges of the 4d torus compactified theory both from the tensor branch structure of the 6d theory and from the predicted class S description.

  6. Non-extremal branes

    Directory of Open Access Journals (Sweden)

    Pablo Bueno

    2015-04-01

    Full Text Available We prove that for arbitrary black brane solutions of generic Supergravities there is an adapted system of variables in which the equations of motion are exactly invariant under electric–magnetic duality, i.e. the interchange of a given extended object by its electromagnetic dual. We obtain thus a procedure to automatically construct the electromagnetic dual of a given brane without needing to solve any further equation. We apply this procedure to construct the non-extremal (p,q-string of Type-IIB String Theory (new in the literature, explicitly showing how the dual (p,q-five-brane automatically arises in this construction. In addition, we prove that the system of variables used is suitable for a generic characterization of every double-extremal Supergravity brane solution, which we perform in full generality.

  7. D-branes and Azumaya/matrix noncommutative differential geometry,II: Azumaya/matrix supermanifolds and differentiable maps therefrom -- with a view toward dynamical fermionic D-branes in string theory

    CERN Document Server

    Liu, Chien-Hao

    2014-01-01

    In this Part II of D(11), we introduce new objects: super-$C^k$-schemes and Azumaya super-$C^k$-manifolds with a fundamental module (or, synonymously, matrix super-$C^k$-manifolds with a fundamental module), and extend the study in D(11.1) ([L-Y3], arXiv:1406.0929 [math.DG]) to define the notion of `differentiable maps from an Azumaya/matrix supermanifold with a fundamental module to a real manifold or supermanifold'. This allows us to introduce the notion of `fermionic D-branes' in two different styles, one parallels Ramond-Neveu-Schwarz fermionic string and the other Green-Schwarz fermionic string. A more detailed discussion on the Higgs mechanism on dynamical D-branes in our setting, taking maps from the D-brane world-volume to the space-time in question and/or sections of the Chan-Paton bundle on the D-brane world-volume as Higgs fields, is also given for the first time in the D-project. Finally note that mathematically string theory begins with the notion of a differentiable map from a string world-sheet...

  8. Electromagnetic Force on a Brane

    CERN Document Server

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza-Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also ...

  9. A walk through superstring theory with an application to Yang-Mills theory: K-strings and D-branes as gauge/gravity dual objects

    Science.gov (United States)

    Stiffler, Kory M.

    Superstring theory is one current, promising attempt at unifying gravity with the other three known forces: the electromagnetic force, and the weak and strong nuclear forces. Though this is still a work in progress, much effort has been put toward this goal. A set of specific tools which are used in this effort are gauge/gravity dualities. This thesis consists of a specific implementation of gauge/gravity dualities to describe k-strings of strongly coupled gauge theories as objects dual to Dp-branes embedded in confining supergravity backgrounds from low energy superstring field theory. Along with superstring theory, k-strings are also commonly investigated with lattice gauge theory and Hamiltonian methods. A k-string is a colorless combination of quark-antiquark source pairs, between which a color flux tube develops. The two most notable terms of the k-string energy are, for large quark anti-quark separation L, the tension term, proportional to L, and the Coulombic 1/L correction, known as the Luscher term. This thesis provides an overview of superstring theories and how gauge/gravity dualities emerge from them. It shows in detail how these dualities can be used for the specific problem of calculating the k-string energy in 2 + 1 and 3 + 1 space-time dimensions as the energy of D p-branes in the dual gravitational theory. A detailed review of k-string tension calculations is given where good agreement is found with lattice gauge theory and Hamiltonian methods. In reviewing the k-string tension, we also touch on how different representations of k-strings can be described with Dp-branes through gauge/gravity dualities. The main result of this thesis is how the Luscher term is found to emerge as the one loop quantum corrections to the Dp-brane energy. In 2+1 space-time dimensions, we have Luscher term data to compare with from lattice gauge theory, where we find good agreement.

  10. Teleparallel loop quantum cosmology in a system of intersecting branes

    Science.gov (United States)

    Sepehri, Alireza; Pradhan, Anirudh; Beesham, Aroonkumar; de Haro, Jaume

    2016-09-01

    Recently, some authors have removed the big bang singularity in teleparallel Loop Quantum Cosmology (LQC) and have shown that the universe may undergo a number of oscillations. We investigate the origin of this type of teleparallel theory in a system of intersecting branes in M-theory in which the angle between them changes with time. This system is constructed by two intersecting anti-D8-branes, one compacted D4-brane and a D3-brane. These branes are built by joining M0-branes which develop in decaying fundamental strings. The compacted D4-brane is located between two intersecting anti-D8 branes and glues to one of them. Our universe is located on the D3 brane which wraps around the D4 brane from one end and sticks to one of the anti-D8 branes from the other one. In this system, there are three types of fields, corresponding to compacted D4 branes, intersecting branes and D3-branes. These fields interact with each other and make the angle between branes oscillate. By decreasing this angle, the intersecting anti-D8 branes approach each other, the D4 brane rolls, the D3 brane wraps around the D4 brane, and the universe contracts. By separating the intersecting branes and increasing the angle, the D4 brane rolls in the opposite direction, the D3 brane separates from it and the expansion branch begins. Also, the interaction between branes in this system gives us the exact form of the relevant Lagrangian for teleparallel LQC.

  11. Teleparallel loop quantum cosmology in a system of intersecting branes

    Directory of Open Access Journals (Sweden)

    Alireza Sepehri

    2016-09-01

    Full Text Available Recently, some authors have removed the big bang singularity in teleparallel Loop Quantum Cosmology (LQC and have shown that the universe may undergo a number of oscillations. We investigate the origin of this type of teleparallel theory in a system of intersecting branes in M-theory in which the angle between them changes with time. This system is constructed by two intersecting anti-D8-branes, one compacted D4-brane and a D3-brane. These branes are built by joining M0-branes which develop in decaying fundamental strings. The compacted D4-brane is located between two intersecting anti-D8 branes and glues to one of them. Our universe is located on the D3 brane which wraps around the D4 brane from one end and sticks to one of the anti-D8 branes from the other one. In this system, there are three types of fields, corresponding to compacted D4 branes, intersecting branes and D3-branes. These fields interact with each other and make the angle between branes oscillate. By decreasing this angle, the intersecting anti-D8 branes approach each other, the D4 brane rolls, the D3 brane wraps around the D4 brane, and the universe contracts. By separating the intersecting branes and increasing the angle, the D4 brane rolls in the opposite direction, the D3 brane separates from it and the expansion branch begins. Also, the interaction between branes in this system gives us the exact form of the relevant Lagrangian for teleparallel LQC.

  12. Cosmic D--term Strings as Wrapped D3 Branes

    CERN Document Server

    Halyo, E

    2004-01-01

    We describe cosmic D--term strings as D3 branes wrapped on a resolved conifold. The matter content that gives rise to D--term strings is shown to describe the world--volume theory of a space--filling D3 brane transverse to the conifold which itself is a wrapped D5 brane. We show that, in this brane theory, the tension of the wrapped D3 brane mathces that of the D--term string. We argue that there is a new type of cosmic string which arises from fractional D1 branes on the world--volume of a fractional D3 brane.

  13. Brane Tilings, M2-branes and Orbifolds

    CERN Document Server

    Davey, John

    2011-01-01

    Brane Tilings represent one of the largest classes of superconformal theories with known gravity duals in 3+1 and also 2+1 dimensions. They provide a useful link between a large class of quiver gauge theories and their moduli spaces, which are the toric Calabi-Yau (CY) singularities. This thesis includes a discussion of an algorithm that can be used to generate all brane tilings with any given number of superpotential terms. All tilings with at most 8 superpotential terms have been generated using an implementation of this method. Orbifolds are a subject of central importance in string theory. It is widely known that there may be two or more orbifolds of a space by a finite group. Abelian Calabi-Yau orbifolds of the form $\\BC^3 / \\Gamma$ can be counted according to the size of the group $|\\Gamma|$. Three methods of counting these orbifolds will be given. A brane tiling together with a set of Chern Simons levels is sufficient to define a quiver Chern-Simons theory which describes the worldvolume theory of the ...

  14. D-brane gauge theories from toric singularities of the form C{sup 3}/{gamma} and C{sup 4}/{gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Tapobrata E-mail: tapo@theory.tifr.res.in

    2001-02-12

    We discuss examples of D-branes probing toric singularities, and the computation of their world-volume gauge theories from the geometric data of the singularities. We consider several such examples of D-branes on partial resolutions of the orbifolds C{sup 3}/Z{sub 2}xZ{sub 2}, C{sup 3}/Z{sub 2}xZ{sub 3} and C{sup 4}/Z{sub 2}xZ{sub 2}xZ{sub 2}.

  15. Electroelasticity of Charged Black Branes

    CERN Document Server

    Armas, Jay; Obers, Niels A

    2013-01-01

    We present the first order corrected dynamics of fluid branes carrying higher-form charge by obtaining the general form of their equations of motion to pole-dipole order. Assuming linear response theory, we characterize the corresponding effective theory of stationary bent charged (an)isotropic fluid branes in terms of two sets of response coefficients, the Young modulus and the piezoelectric moduli. We subsequently find large classes of examples in gravity of this effective theory, by constructing stationary strained charged black brane solutions to first order in a derivative expansion. Using solution generating techniques and bent neutral black branes as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton gravity. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D-branes of type II string theory. By subsequently measuring the be...

  16. Dynamical Decay of Brane-Antibrane and Dielectric Brane

    CERN Document Server

    Hashimoto, K

    2002-01-01

    Using D-brane effective field theories, we study dynamical decay of unstable brane systems : (i) a parallel brane-antibrane pair with separation l and (ii) a dielectric brane. In particular we give explicitly the decay width of these unstable systems, and describe how the decay proceeds after the tunnel effect. The decay (i) is analysed by the use of a tachyon effective action on the Dp-Dpbar. A pair annihilation starts by nucleation of a bubble of a tachyon domain wall which represents a throat connecting these branes, and the tunneling decay width is found to be proportional to exp(-l^{p+1} T_{Dp}). We study also the decay leaving topological defects corresponding to lower-dimensional branes, which may be relevant for recent inflationary braneworld scenario. As for the decay (ii), first we observe that Dp-branes generically ``curl up'' in a nontrivial RR field strength. Using this viewpoint, we compute the decay width of the dielectric D2-branes by constructing relevant Euclidean bounce solutions in the sha...

  17. Exotic branes and nongeometric backgrounds.

    Science.gov (United States)

    de Boer, Jan; Shigemori, Masaki

    2010-06-25

    When string or M theory is compactified to lower dimensions, the U-duality symmetry predicts so-called exotic branes whose higher-dimensional origin cannot be explained by the standard string or M-theory branes. We argue that exotic branes can be understood in higher dimensions as nongeometric backgrounds or U folds, and that they are important for the physics of systems which originally contain no exotic charges, since the supertube effect generically produces such exotic charges. We discuss the implications of exotic backgrounds for black hole microstate (non-)geometries.

  18. Holonomies of Intersecting Branes

    CERN Document Server

    Kalkkinen, J

    2004-01-01

    We discuss the geometry of string and M-theory gauge fields in Deligne cohomology. In particular, we show how requiring string structure (or loop space Spin-C structure) on the five-brane leads to topological conditions on the flux in the relative Deligne cohomology of the bulk - brain pair.

  19. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    Science.gov (United States)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  20. Comments on new multiple-brane solutions based on Hata-Kojita duality in open string field theory

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Toru [Institute of Physics, The University of Tokyo,Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Department of Physics, Ochanomizu University,Otsuka, Bunkyo-ku, Tokyo 2-1-1 (Japan)

    2014-05-06

    Recently, Hata and Kojita proposed a new energy formula for a class of solutions in Witten’s open string field theory based on a novel symmetry of correlation functions they found. Their energy formula can be regarded as a generalization of the conventional energy formula by Murata and Schnabl. Following their proposal, we investigate their new ansatz for the classical solution representing double D-branes. We present a regularized definition of this solution and show that the solution satisfies the equation of motion when it is contracted with the solution itself and when it is contracted with any states in the Fock space. However, the Ellwood invariant and the boundary state of the solution are the same as those for the perturbative vacuum. This result disagrees with an expectation from the Ellwood conjecture.

  1. Branes and Quantization

    CERN Document Server

    Gukov, Sergei

    2008-01-01

    The problem of quantizing a symplectic manifold (M,\\omega) can be formulated in terms of the A-model of a complexification of M. This leads to an interesting new perspective on quantization. From this point of view, the Hilbert space obtained by quantization of (M,\\omega) is the space of (Bcc,B') strings, where Bcc and B' are two A-branes; B' is an ordinary Lagrangian A-brane, and Bcc is a space-filling coisotropic A-brane. B' is supported on M, and the choice of \\omega is encoded in the choice of Bcc. As an example, we describe from this point of view the representations of the group SL(2,R). Another application is to Chern-Simons gauge theory.

  2. Gravity localization on hybrid branes

    Energy Technology Data Exchange (ETDEWEB)

    Veras, D.F.S., E-mail: franklin@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760, Fortaleza, Ceará (Brazil); Cruz, W.T., E-mail: wilamicruz@gmail.com [Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Juazeiro do Norte, 63040-540 Juazeiro do Norte, Ceará (Brazil); Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760, Fortaleza, Ceará (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760, Fortaleza, Ceará (Brazil)

    2016-03-10

    This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-like kinks, the so-called hybrid branes. In such scenarios, the thin brane behavior is manifested when the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. The massive modes, although not localized in the brane, have important phenomenological implications such as corrections to the Newton's law. We study such corrections in the usual thick domain wall and in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing behavior from the Kaluza–Klein theories. Further, we show that the 4D gravitational force is slightly increased at short distances. The first eigenstate contributes highly for the correction to the Newton's law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of numerical techniques for solving the equations of the massive modes is useful for matching possible phenomenological measurements in the gravitational law as a probe to warped extra dimensions.

  3. Gravity localization on hybrid branes

    Science.gov (United States)

    Veras, D. F. S.; Cruz, W. T.; Maluf, R. V.; Almeida, C. A. S.

    2016-03-01

    This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-like kinks, the so-called hybrid branes. In such scenarios, the thin brane behavior is manifested when the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. The massive modes, although not localized in the brane, have important phenomenological implications such as corrections to the Newton's law. We study such corrections in the usual thick domain wall and in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing behavior from the Kaluza-Klein theories. Further, we show that the 4D gravitational force is slightly increased at short distances. The first eigenstate contributes highly for the correction to the Newton's law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of numerical techniques for solving the equations of the massive modes is useful for matching possible phenomenological measurements in the gravitational law as a probe to warped extra dimensions.

  4. Randall-Sundrum model with {lambda}<0 and bulk brane viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl

    2008-04-17

    We study the effect of the inclusion of bulk brane viscosity on brane world (BW) cosmology in the framework of the Eckart's theory, we focus in the Randall-Sundrum model with negative tension on the brane.

  5. Massive gravity on a brane

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Z.; Graesser, M.L.; Grojean, C.; Pilo, L.

    2003-12-11

    At present no theory of a massive graviton is known that is consistent with experiments at both long and short distances. The problem is that consistency with long distance experiments requires the graviton mass to be very small. Such a small graviton mass however implies an ultraviolet cutoff for the theory at length scales far larger than the millimeter scale at which gravity has already been measured. In this paper we attempt to construct a model which avoids this problem. We consider a brane world setup in warped AdS spacetime and we investigate the consequences of writing a mass term for the graviton on a the infrared brane where the local cutoff is of order a large (galactic) distance scale. The advantage of this setup is that the low cutoff for physics on the infrared brane does not significantly affect the predictivity of the theory for observers localized on the ultraviolet brane. For such observers the predictions of this theory agree with general relativity at distances smaller than the infrared scale but go over to those of a theory of massive gravity at longer distances. A careful analysis of the graviton two-point function, however, reveals the presence of a ghost in the low energy spectrum. A mode decomposition of the higher dimensional theory reveals that the ghost corresponds to the radion field. We also investigate the theory with a brane localized mass for the graviton on the ultraviolet brane, and show that the physics of this case is similar to that of a conventional four dimensional theory with a massive graviton, but with one important difference: when the infrared brane decouples and the would-be massive graviton gets heavier than the regular Kaluza-Klein modes, it becomes unstable and it has a finite width to decay off the brane into the continuum of Kaluza-Klein states.

  6. Brane content of branes' states

    Science.gov (United States)

    Mkrtchyan, Ruben

    2003-04-01

    The problem of decomposition of unitary irreps of (super)tensorial (i.e., extended with tensorial charges) Poincaré algebra w.r.t. its different subalgebras is considered. This requires calculation of little groups for different configurations of tensor charges. Particularly, for preon states (i.e., states with maximal supersymmetry) in different dimensions the particle content is calculated, i.e., the spectrum of usual Poincaré representations in the preon representation of tensorial Poincaré. At d=4 results coincide with (and may provide another point of view on) the Vasiliev's results in field theories in generalized space-time. The translational subgroup of little groups of massless particles and branes is shown to be (and coincide with, at d=4) a subgroup of little groups of “pure branes” algebras, i.e., tensorial Poincaré algebras without vector generators. At 11d it is shown that, contrary to lower dimensions, spinors are not homogeneous space of Lorentz group, and one have to distinguish at least 7 different kinds of preons.

  7. Consistency and Derangements in Brane Tilings

    CERN Document Server

    Hanany, Amihay; Ramgoolam, Sanjaye; Seong, Rak-Kyeong

    2015-01-01

    Brane tilings describe Lagrangians (vector multiplets, chiral multiplets, and the superpotential) of four dimensional $\\mathcal{N}=1$ supersymmetric gauge theories. These theories, written in terms of a bipartite graph on a torus, correspond to worldvolume theories on $N$ D$3$-branes probing a toric Calabi-Yau threefold singularity. A pair of permutations compactly encapsulates the data necessary to specify a brane tiling. We show that geometric consistency for brane tilings, which ensures that the corresponding quantum field theories are well behaved, imposes constraints on the pair of permutations, restricting certain products constructed from the pair to have no one-cycles. Permutations without one-cycles are known as derangements. We illustrate this formulation of consistency with known brane tilings. Counting formulas for consistent brane tilings with an arbitrary number of chiral bifundamental fields are written down in terms of delta functions over symmetric groups.

  8. Three-branes in twelve dimensions

    CERN Document Server

    Hewson, S F

    1999-01-01

    In this note we discuss the theory of super-threebranes in a spacetime of signature (10,2). Upon reduction, the threebrane provides us with the classical representations of the M-2-brane and the type IIB superstring. Many features of the original super (2+2)-brane theory are clarified. In particular, the (10,2) superspace and the spinors required to construct the brane action are discussed.

  9. T-Branes and Monodromy

    CERN Document Server

    Cecotti, Sergio; Heckman, Jonathan J; Vafa, Cumrun

    2010-01-01

    We introduce T-branes, or "triangular branes," which are novel non-abelian bound states of branes characterized by the condition that on some loci, their matrix of normal deformations, or Higgs field, is upper triangular. These configurations refine the notion of monodromic branes which have recently played a key role in F-theory phenomenology. We show how localized matter living on complex codimension one subspaces emerge, and explain how to compute their Yukawa couplings, which are localized in complex codimension two. Not only do T-branes clarify what is meant by brane monodromy, they also open up a vast array of new possibilities both for phenomenological constructions and for purely theoretical applications. We show that for a general T-brane, the eigenvalues of the Higgs field can fail to capture the spectrum of localized modes. In particular, this provides a method for evading some constraints on F-theory GUTs which have assumed that the spectral equation for the Higgs field completely determines a loc...

  10. Teleparallel loop quantum cosmology in a system of intersecting branes

    CERN Document Server

    Sepehri, Alireza; Beesham, A; de Haro, Jaume

    2016-01-01

    Recently, some authors have removed the big bang singularity in teleparallel Loop Quantum Cosmology (LQC) and have shown that the universe may undergo a number of oscillations. We investigate the origin of this type of teleparallel theory in a system of intersecting branes in M-theory in which the angle between them changes with time. This system is constructed by two intersecting anti-D8-branes, one compacted D4-brane and the other a D3-brane. These branes are built by joining M0-branes which develop in decaying fundamental strings. The compacted D4-brane is located between two intersecting anti-D8 branes and glues to one of them. Our universe is located on the D3 brane which wraps the D4 brane from one end and sticks to one of the anti-D8 branes from another one. In this system, there are three types of ?elds, corresponding to compacted D4 branes, intersecting branes and D3-branes. These ?elds interact with each other and make the angle between branes oscillate. By decreasing this angle and approaching the ...

  11. An Associative and Noncommutative Product for the Low Energy Effective Theory of a D-Brane in Curved Backgrounds and Bi-Local Fields

    CERN Document Server

    Hayasaka, K; Hayasaka, Kiyoshi; Nakayama, Ryuichi

    2002-01-01

    We point out that when a D-brane is placed in an NS-NS B field background with non-vanishing field strength (H=dB) along the D-brane worldvolume, the coordinate of one end of the open string does not commute with that of the other in the low energy limit. The degrees of the freedom associated with both ends are not decoupled and accordingly, the effective action must be quite different from that of the ordinary noncommutative gauge theory for a constant B background. We construct an associative and noncommutative product which operates on the coordinates of both ends of the string and propose a new type of noncommutative gauge action for the low energy effective theory of a Dp-brane. This effective theory is bi-local and lives in twice as large dimensions (2D=2(p+1)) as in the H=0 case. When viewed as a theory in the D-dimensional space, this theory is non-local and we must force the two ends of the string to coincide. We will then propose a prescription for reducing this bi-local effective action to that in ...

  12. Electromagnetic force on a brane

    Science.gov (United States)

    Li, Li-Xin

    2016-11-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory.

  13. Standard model on D-branes

    Indian Academy of Sciences (India)

    David Bailin

    2003-02-01

    I briefly outline previous work on getting the (supersymmetric) standard model from string theory, and then describe two ecent attempts using D-branes. The first uses D3- and D7- branes and gives a supersymmetric standard model with extra vector-like matter and an intermediate unification scale. The second uses intersecting D4-branes and yields a non-supersymmetric spectrum with TeV-scale unification.

  14. Black hole microstates from branes at angle

    CERN Document Server

    Pieri, Lorenzo

    2016-01-01

    We derive the leading g_s perturbation of the SUGRA fields generated by a supersymmetric configuration of respectively 1, 2 or 4 D3-branes intersecting at an arbitrary angle via the computation of the string theory disk scattering amplitude of one massless NSNS field interacting with open strings stretched between the branes. The configuration with four branes is expected to be relevant for black hole microstate counting in four dimensions.

  15. Band spectrum is D-brane

    CERN Document Server

    Hashimoto, Koji

    2015-01-01

    We show that band spectrum of topological insulators can be identified as the shape of D-branes in string theory. The identification is based on a relation between the Berry connection associated with the band structure and the ADHM/Nahm construction of solitons whose geometric realization is available with D-branes. We also show that chiral and helical edge states are identified as D-branes representing a noncommutative monopole.

  16. Graviton and Dark Matter in a Hot Homogenous Isotropic Brane Universe A Relativistic Theory of Gravitation Approach

    CERN Document Server

    Naboulsi, R

    2003-01-01

    It is shown that in the context of geodetic brane cosmology that the produced gas of gravitons in the RTG could not be just the dark matter which manifests itself as a ``missing energy'' in our universe.

  17. Black Branes as Piezoelectrics

    CERN Document Server

    Armas, Jay; Obers, Niels A

    2012-01-01

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  18. Black branes as piezoelectrics.

    Science.gov (United States)

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  19. A Walk Through Superstring Theory With an Application to Yang-Mills Theory: K-strings and D-branes as Gauge/Gravity Dual Objects

    CERN Document Server

    Stiffler, Kory

    2010-01-01

    Superstring theory is one current, promising attempt at unifying gravity with the other three known forces: the electromagnetic force, and the weak and strong nuclear forces. Though this is still a work in progress, much effort has been put toward this goal. A set of specific tools which are used in this effort are gauge/gravity dualities. This thesis consists of a specific implementation of gauge/gravity dualities to describe k-strings of strongly coupled gauge theories as objects dual to Dp-branes embedded in confining supergravity backgrounds from low energy superstring field theory. Along with superstring theory, k-strings are also commonly investigated with lattice gauge theory and Hamiltonian methods. A k-string is a colorless combination of quark-antiquark source pairs, between which a color flux tube develops. The two most notable terms of the k-string energy are, for large quark anti-quark separation L, the tension term, proportional to L, and the Coulombic 1/L correction, known as the Luscher term. ...

  20. Dimensional Reduction for D3-brane Moduli

    CERN Document Server

    Cownden, Brad; Marsh, M C David; Underwood, Bret

    2016-01-01

    Warped string compactifications are central to many attempts to stabilize moduli and connect string theory with cosmology and particle phenomenology. We present a first-principles derivation of the low-energy 4D effective theory from dimensional reduction of a D3-brane in a warped Calabi-Yau compactification of type IIB string theory with imaginary self-dual 3-form flux, including effects of D3-brane motion beyond the probe approximation, and find the metric on the moduli space of brane positions, the universal volume modulus, and axions descending from the 4-form potential. As D3-branes may be considered as carrying either electric or magnetic charges for the self-dual 5-form field strength, we present calculations in both duality frames. Our results are consistent with, but extend significantly, earlier results on the low-energy effective theory arising from D3-branes in string compactifications.

  1. Dimensional reduction for D3-brane moduli

    Science.gov (United States)

    Cownden, Brad; Frey, Andrew R.; Marsh, M. C. David; Underwood, Bret

    2016-12-01

    Warped string compactifications are central to many attempts to stabilize moduli and connect string theory with cosmology and particle phenomenology. We present a first-principles derivation of the low-energy 4D effective theory from dimensional reduction of a D3-brane in a warped Calabi-Yau compactification of type IIB string theory with imaginary self-dual 3-form flux, including effects of D3-brane motion beyond the probe approximation, and find the metric on the moduli space of brane positions, the universal volume modulus, and axions descending from the 4-form potential. As D3-branes may be considered as carrying either electric or magnetic charges for the self-dual 5-form field strength, we present calculations in both duality frames. Our results are consistent with, but extend significantly, earlier results on the low-energy effective theory arising from D3-branes in string compactifications.

  2. Cosmological Spacetimes from Negative Tension Brane Backgrounds

    CERN Document Server

    Burgess, C P; Rey, S J; Tasinato, G

    2002-01-01

    We put forward a viable nonsingular cosmology emerging out of negative-tension branes. The cosmology is based on a general class of solutions in Einstein-dilaton-Maxwell theory, presented in {\\tt hep-th/0106120}. We argue that solutions with hyperbolic or planar symmetry describe gravitational interactions due to a pair of negative-tension $q$-branes. These spacetimes are static near each brane, but become time-dependent and expanding at late times -- in some cases asymptotically approaching flat space. We interpret this expansion as being the spacetime's response to the branes presence. The time-dependent regions provide explicit realizations of cosmological spacetimes having past horizons without naked past singularities, and the past horizons are reminiscent of the S-brane solutions. We prove that the singularities in the static regions are repulsive to timelike geodesics, extract a cosmological `bounce' interpretation, compute the explicit charge and tension of the branes, analyse the classical stability ...

  3. Bouncing Brane Cosmologies from Warped String Compactifications

    CERN Document Server

    Kachru, S

    2003-01-01

    We study the cosmology induced on a brane probing a warped throat region in a Calabi-Yau compactification of type IIB string theory. For the case of a BPS D3-brane probing the Klebanov-Strassler warped deformed conifold, the cosmology described by a suitable brane observer is a bouncing, spatially flat Friedmann-Robertson-Walker universe with time-varying Newton's constant, which passes smoothly from a contracting to an expanding phase. In the Klebanov-Tseytlin approximation to the Klebanov-Strassler solution the cosmology would end with a big crunch singularity. In this sense, the warped deformed conifold provides a string theory resolution of a spacelike singularity in the brane cosmology. The four-dimensional effective action appropriate for a brane observer is a simple scalar-tensor theory of gravity. In this description of the physics, a bounce is possible because the relevant energy-momentum tensor can classically violate the null energy condition.

  4. Brane Baldness vs. Superselection Sectors

    CERN Document Server

    Marolf, D M; Marolf, Donald; Peet, Amanda W.

    1999-01-01

    The search for intersecting brane solutions in supergravity is a large and profitable industry. Recently, attention has focused on finding localized forms of known `delocalized' solutions. However, in some cases, a localized version of the delocalized solution simply does not exist. Instead, localized separated branes necessarily delocalize as the separation is removed. This phenomenon is related to black hole no-hair theorems, i.e. `baldness.' We continue the discussion of this effect and describe how it can be understood, in the case of Dirichlet branes, in terms of the corresponding intersection field theory. When it occurs, it is associated with the quantum mixing of phases and lack of superselection sectors in low dimensional field theories. We find surprisingly wide agreement between the field theory and supergravity both with respect to which examples delocalize and with respect to the rate at which this occurs.

  5. Branes and integrable lattice models

    CERN Document Server

    Yagi, Junya

    2016-01-01

    This is a brief review of my work on the correspondence between four-dimensional $\\mathcal{N} = 1$ supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.

  6. Interacting Open Bosonic String in the Proper-Time Gauge: Covariant Open Bosonic String Field Theory on Multiple D-Branes

    CERN Document Server

    Lee, Taejin

    2016-01-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. On multiple D-branes, the string field takes values in the Lie-algebra of $U(N)$ group and the three-string vertex function must be invariant under the global $U(N)$ transformation. This requirement together with the condition that the string field theory reduces to the non-Abelian gauge field theory in the zero-slope limit, uniquely determines the three-string vertex function. We also examine the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit they reduce to the tree diagrams with four external gauge fields with an intermediate massless gauge field propa...

  7. Brane Brick Models, Toric Calabi-Yau 4-Folds and 2d (0,2) Quivers

    CERN Document Server

    Franco, Sebastian; Seong, Rak-Kyeong

    2015-01-01

    We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2d (generically) N=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

  8. Brane induced gravity: Ghosts and naturalness

    CERN Document Server

    Eglseer, Ludwig; Schneider, Robert

    2015-01-01

    Linear stability of brane induced gravity in two codimensions on a static pure tension background is investigated. By explicitly calculating the vacuum persistence amplitude of the corresponding quantum theory, we show that the parameter space is divided into two regions - one corresponding to a stable Minkowski vacuum on the brane and one being plagued by ghost instabilities. This analytical result affirms a recent nonlinear, but mainly numerical analysis. The main result is that the ghost is absent for a sufficiently large brane tension, in perfect agreement with a value expected from a natural effective field theory point of view. Unfortunately, the linearly stable parameter regime is either ruled out phenomenologically or destabilized due to nonlinearities. We argue that inflating brane backgrounds constitute the remaining window of opportunity. In the special case of a tensionless brane, we find that the ghost exists for any nonzero value of the induced gravity scale. Regarding this case, there are contr...

  9. Hydrodynamics and Elasticity of Charged Black Branes

    DEFF Research Database (Denmark)

    Gath, Jakob

    charge and a dilaton coupling. For the case of Maxwell black branes we furthermore compute the charge diffusion constant. We find that the shear viscosity to entropy bound is saturated and comment on proposed bounds for the bulk viscosity to entropy ratio. With the transport coecients we compute......)isotropic uid branes in terms of two sets of response coecients, the Young modulus and the piezoelectric moduli. We subsequently consider a large class of examples in gravity of this effective theory. In particular, we consider dilatonic black p-branes in two different settings: charged under a Maxwell gauge...... as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton theory. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D...

  10. Branes in supergorups

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, Thomas

    2009-06-15

    In this thesis we initiate a systematic study of branes in Wess-Zumino-Novikov-Witten models with Lie supergroup target space. We start by showing that a branes' worldvolume is a twisted superconjugacy class and construct the action of the boundary WZNW model. Then we consider symplectic fermions and give a complete description of boundary states including twisted sectors. Further we show that the GL(1 vertical stroke 1) WZNW model is equivalent to symplectic fermions plus two scalars. We then consider the GL(1 vertical stroke 1) boundary theory. Twisted and untwisted Cardy boundary states are constructed explicitly and their amplitudes are computed. In the twisted case we find a perturbative formulation of the model. For this purpose the introduction of an additional fermionic boundary degree of freedom is necessary. We compute all bulk one-point functions, bulk-boundary two-point functions and boundary three-point functions. Logarithmic singularities appear in bulk-boundary as well as pure boundary correlation functions. Finally we turn to world-sheet and target space supersymmetric models. There is N=2 superconformal symmetry in many supercosets and also in certain supergroups. In the supergroup case we find some branes that preserve the topological A-twist and some that preserve the B-twist. (orig.)

  11. T-branes through 3d mirror symmetry

    Science.gov (United States)

    Collinucci, Andrés; Giacomelli, Simone; Savelli, Raffaele; Valandro, Roberto

    2016-07-01

    T-branes are exotic bound states of D-branes, characterized by mutually non-commuting vacuum expectation values for the worldvolume scalars. The M/F-theory geometry lifting D6/D7-brane configurations is blind to the T-brane data. In this paper, we make this data manifest, by probing the geometry with an M2-brane. We find that the effect of a T-brane is to deform the membrane worldvolume superpotential with monopole operators, which partially break the three-dimensional flavor symmetry, and reduce super-symmetry from {N} = 4 to {N} = 2. Our main tool is 3d mirror symmetry. Through this language, a very concrete framework is developed for understanding T-branes in M-theory. This leads us to uncover a new class of {N} = 2 quiver gauge theories, whose Higgs branches mimic those of membranes at ADE singularities, but whose Coulomb branches differ from their {N} = 4 counterparts.

  12. T-branes through 3d mirror symmetry

    CERN Document Server

    Collinucci, Andres; Savelli, Raffaele; Valandro, Roberto

    2016-01-01

    T-branes are exotic bound states of D-branes, characterized by mutually non-commuting vacuum expectation values for the worldvolume scalars. The M/F-theory geometry lifting D6/D7-brane configurations is blind to the T-brane data. In this paper, we make this data manifest, by probing the geometry with an M2-brane. We find that the effect of a T-brane is to deform the membrane worldvolume superpotential with monopole operators, which partially break the three-dimensional flavor symmetry, and reduce supersymmetry from N=4 to N=2. Our main tool is 3d mirror symmetry. Through this language, a very concrete framework is developed for understanding T-branes in M-theory. This leads us to uncover a new class of N=2 quiver gauge theories, whose Higgs branches mimic those of membranes at ADE singularities, but whose Coulomb branches differ from their N=4 counterparts.

  13. Brane content of branes' states

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, Ruben

    2003-04-17

    The problem of decomposition of unitary irreps of (super)tensorial (i.e., extended with tensorial charges) Poincare algebra w.r.t. its different subalgebras is considered. This requires calculation of little groups for different configurations of tensor charges. Particularly, for preon states (i.e., states with maximal supersymmetry) in different dimensions the particle content is calculated, i.e., the spectrum of usual Poincare representations in the preon representation of tensorial Poincare. At d=4 results coincide with (and may provide another point of view on) the Vasiliev's results in field theories in generalized space-time. The translational subgroup of little groups of massless particles and branes is shown to be (and coincide with, at d=4) a subgroup of little groups of 'pure branes' algebras, i.e., tensorial Poincare algebras without vector generators. At 11d it is shown that, contrary to lower dimensions, spinors are not homogeneous space of Lorentz group, and one have to distinguish at least 7 different kinds of preons.

  14. Exact Holography of the Mass-deformed M2-brane Theory at Finite $N$

    CERN Document Server

    Jang, Dongmin; Kwon, O-Kab; Tolla, D D

    2016-01-01

    We test the holographic relation between the vacuum expectation values (vevs) of gauge invariant operators in ${\\cal N} = 6$ ${\\rm U}_{k}(N)\\times {\\rm U}_{-k}(N)$ mass-deformed ABJM theory and the LLM geometries with $\\mathbb{Z}_k$ orbifold in 11-dimensional supergravity. To do that, we apply the Kaluza-Klein reduction to construct a 4-dimensional gravity theory and implement the holographic renormalization procedure. We obtain an exact holographic relation for the vevs of the chiral primary operator with conformal dimension $\\Delta = 1$, which is given by $\\langle {\\cal O}^{(\\Delta=1)}\\rangle= N^{\\frac32} \\, f_{(\\Delta=1)}$, for {\\it finite} $N$ and $k=1$. Here factor $f_{(\\Delta)}$ is independent of $N$. Our results involve infinite number of exact dual relations for all possible supersymmetric Higgs vacua and so provide a nontrivial test of gauge/gravity duality away from the conformal fixed point without taking the usual large $N$ limit. We also extend our results to the case of $k\

  15. Black branes on the linear dilaton background

    CERN Document Server

    Clément, G; Clement, Gerard; Gal'tsov, Dmitri

    2004-01-01

    We show that the complete static black p-brane supergravity solution with a single charge contains two and only two branches with respect to behavior at infinity in the transverse space. One branch is the standard family of asymptotically flat black branes, and another is the family of black branes which asymptotically approach the linear dilaton background with antisymmetric form flux (LDB). Such configurations were previously obtained in the near-horizon near-extreme limit of the dilatonic asymptotically flat $p$-branes, and used to describe the thermal phase of field theories involved in the DW/QFT dualities and the thermodynamics of little string theory in the case of the NS5-brane. Here we show by direct integration of the Einstein equations that the asymptotically LDB $p$-branes are indeed exact supergravity solutions, and we prove a new uniqueness theorem for static $p$-brane solutions satisfying cosmic censorship. In the non-dilatonic case, our general non-asymptotically flat p-branes are uncharged bl...

  16. Cosmology from quantum potential in a system of oscillating branes

    Science.gov (United States)

    Sepehri, Alireza

    2016-11-01

    energy is produced and leads to an increase in the velocity of opening of M3. In these conditions, our universe, which is located on this brane, expands very fast and experiences an inflation epoch. Finally, by reducing the fields in 11-dimensional M-theory to the fields in four-dimensional universe, we show that our theory matches with quantum field theory prescriptions.

  17. Self-gravitating branes again

    Science.gov (United States)

    Kofinas, Georgios; Irakleidou, Maria

    2014-03-01

    We raise on theoretical grounds the question of the physical relevance of Israel matching conditions and their generalizations to higher codimensions, the standard cornerstone of the braneworld and other membrane scenarios. Our reasoning is based on the incapability of the conventional matching conditions to accept the Nambu-Goto probe limit, the inconsistency of codimension-2 and -3 classical defects for D=4 and the probable inconsistency of high enough codimensional defects for any D since there is no high enough Lovelock density to support them. We propose alternative matching conditions which seem to overcome the previous puzzles. Instead of varying the brane-bulk action with respect to the bulk metric at the brane position, we vary with respect to the brane embedding fields so that the gravitational backreaction is included ("gravitating Nambu-Goto matching conditions"). Here, we consider in detail the case of a codimension-2 brane in 6-dim Einstein-Gauss-Bonnet gravity, prove its consistency for an axially symmetric cosmological configuration and show that the theory possesses richer structure compared to the standard theory. The cosmologies found have the Friedmann behavior and extra correction terms. For a radiation brane one solution avoids a cosmological singularity and undergoes accelerated expansion near the minimum scale factor. In the presence of an induced gravity term, there naturally appears in the theory the effective cosmological constant scale λ /(M64rc2), which for a brane tension λ ˜M64 (e.g. TeV4) and rc˜H0-1 gives the observed value of the cosmological constant.

  18. Brane/antibrane Configurations in Type IIA and M-Theory

    Science.gov (United States)

    Marsano, Joseph

    We investigate the relation between large N duality applied to systems of D5's and /lineD5's wrapping vanishing cycles of local CY in type IIB and M-theory lifts of the NS5/D4//lineD4 systems in type IIA to which they are related by T-duality. Through a simple example based on a local CY constructed using an A2 singularity, we review this well-known correspondence in the supersymmetric setting and describe the manner in which it generalizes when antibranes are added. Agreement between the IIB and IIA pictures, which supports the assertion that {N}=2 supersymmetry is spontaneously broken in these systems at string tree level, is demonstrated when gs ≪ 1. Novel nonholomorphic features can arise away from this regime and their physical origin is discussed. This note is based on talks given at KITP, Harvard University, TIFR, the University of Tokyo at Hongo, the 2007 Les Houches Summer School, and the 2007 Simons Workshop, is based on work done in collaboration with K. Papadodimas and M. Shigemori, and contains some previously unpublished results.

  19. On the Microscopic Perspective of Black Branes Thermodynamic Geometry

    Directory of Open Access Journals (Sweden)

    Stefano Bellucci

    2010-09-01

    Full Text Available We study thermodynamic state-space geometry of the black holes in string theory and M-theory. For a large number of microstates, we analyze the intrinsic state-space geometry for (i extremal and non-extremal black branes in string theory, (ii multi-centered black brane configurations, (iv small black holes with fractional branes, and (v fuzzy rings in the setup of Mathur’s fuzzballs and subensemble theory. We extend our analysis for the black brane foams and bubbling black brane solutions in M-theory. We discuss the nature of state-space correlations of various black brane configurations, and show that the notion of state-space manifolds describes the associated coarse-grained interactions of the corresponding microscopic CFT data.

  20. Brane Couplings from Bulk Loops

    OpenAIRE

    Georgi, Howard; Grant, Aaron K.; Hailu, Girma

    2000-01-01

    We compute loop corrections to the effective action of a field theory on a five-dimensional $S_1/Z_2$ orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

  1. Little Groups of Preon Branes

    CERN Document Server

    Mkrtchyan, H G

    2003-01-01

    Little groups for preon branes (i.e. configurations of branes with maximal (n-1)/n fraction of survived supersymmetry) for dimensions d=2,3,...,11 are calculated for all massless, and partially for massive orbits. For massless orbits little groups are semidirect product of d-2 translational group $T_{d-2}$ on a subgroup of (SO(d-2) $\\times$ R-invariance) group. E.g. at d=9 the subgroup is exceptional $G_2$ group. It is also argued, that 11d Majorana spinor invariants, which distinguish orbits, are actually invariant under d=2+10 Lorentz group. Possible applications of these results include construction of field theories in generalized space-times with brane charges coordinates, different problems of group's representations decompositions, spin-statistics issues.

  2. Little Groups of Preon Branes

    Science.gov (United States)

    MKRTCHYAN, H.; MKRTCHYAN, R.

    Little groups for preon branes (i.e. configurations of branes with maximal (n-1)/n fraction of survived supersymmetry) for dimensions d=2,3,…,11 are calculated for all massless, and partially for massive orbits. For massless orbits little groups are semidirect product of d-2 translational group Td-2 on a subgroup of (SO(d-2) × R-invariance) group. E.g. at d=9 the subgroup is exceptional G2 group. It is also argued, that 11D Majorana spinor invariants, which distinguish orbits, are actually invariant under d=2+10 Lorentz group. Possible applications of these results include construction of field theories in generalized spacetimes with brane charges coordinates, different problems of group's representations decompositions, spin-statistics issues.

  3. Isometric Embeddings and Noncommutative Branes in Homogeneous Gravitational Waves

    CERN Document Server

    Halliday, S; Halliday, Sam; Szabo, Richard J.

    2005-01-01

    We characterize the worldvolume theories on symmetric D-branes in a six-dimensional Cahen-Wallach pp-wave supported by a constant Neveu-Schwarz three-form flux. We find a class of flat noncommutative euclidean D3-branes analogous to branes in a constant magnetic field, as well as curved noncommutative lorentzian D3-branes analogous to branes in an electric background. In the former case the noncommutative field theory on the branes is constructed from first principles, related to dynamics of fuzzy spheres in the worldvolumes, and used to analyse the flat space limits of the string theory. The worldvolume theories on all other symmetric branes in the background are local field theories. The physical origins of all these theories are described through the interplay between isometric embeddings of branes in the spacetime and the Penrose-Gueven limit of AdS3 x S3 with Neveu-Schwarz three-form flux. The noncommutative field theory of a non-symmetric spacetime-filling D-brane is also constructed, giving a spatially...

  4. Brane Brick Models and 2d (0,2) Triality

    CERN Document Server

    Franco, Sebastian; Seong, Rak-Kyeong

    2016-01-01

    We provide a brane realization of 2d (0,2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.

  5. D7-brane chaotic inflation

    Directory of Open Access Journals (Sweden)

    Arthur Hebecker

    2014-10-01

    Full Text Available We analyze string-theoretic large-field inflation in the regime of spontaneously-broken supergravity with conventional moduli stabilization by fluxes and non-perturbative effects. The main ingredient is a shift-symmetric Kähler potential, supplemented by flux-induced shift symmetry breaking in the superpotential. The central technical observation is that all these features are present for D7-brane position moduli in Type IIB orientifolds, potentially allowing for a realization of the axion monodromy proposal in a string theory compactification. Furthermore, our model is explicit enough to address issues of control and moduli stabilization quantitatively. On the one hand, in the large complex structure regime the D7-brane position moduli inherit a shift symmetry from their mirror-dual Type IIA Wilson lines. On the other hand, the Type IIB flux superpotential generically breaks this shift symmetry and allows, by appealing to the large flux discretuum, to tune the relevant coefficients to be small. The shift-symmetric direction in D7-brane moduli space can then play the role of the inflaton: While the D7-brane circles a certain trajectory on the Calabi–Yau many times, the corresponding F-term energy density grows only very slowly, thanks to the above-mentioned tuning of the flux. To be successful our model requires that the dilaton, all complex structure moduli and all D7-brane moduli except the inflaton are fixed at leading order by fluxes. Then the large-field inflationary trajectory can be realized in a regime where Kähler, complex structure and other brane moduli are stabilized in a conventional manner, as we demonstrate using the example of the Large Volume Scenario.

  6. D7-brane chaotic inflation

    Science.gov (United States)

    Hebecker, Arthur; Kraus, Sebastian C.; Witkowski, Lukas T.

    2014-10-01

    We analyze string-theoretic large-field inflation in the regime of spontaneously-broken supergravity with conventional moduli stabilization by fluxes and non-perturbative effects. The main ingredient is a shift-symmetric Kähler potential, supplemented by flux-induced shift symmetry breaking in the superpotential. The central technical observation is that all these features are present for D7-brane position moduli in Type IIB orientifolds, potentially allowing for a realization of the axion monodromy proposal in a string theory compactification. Furthermore, our model is explicit enough to address issues of control and moduli stabilization quantitatively. On the one hand, in the large complex structure regime the D7-brane position moduli inherit a shift symmetry from their mirror-dual Type IIA Wilson lines. On the other hand, the Type IIB flux superpotential generically breaks this shift symmetry and allows, by appealing to the large flux discretuum, to tune the relevant coefficients to be small. The shift-symmetric direction in D7-brane moduli space can then play the role of the inflaton: While the D7-brane circles a certain trajectory on the Calabi-Yau many times, the corresponding F-term energy density grows only very slowly, thanks to the above-mentioned tuning of the flux. To be successful our model requires that the dilaton, all complex structure moduli and all D7-brane moduli except the inflaton are fixed at leading order by fluxes. Then the large-field inflationary trajectory can be realized in a regime where Kähler, complex structure and other brane moduli are stabilized in a conventional manner, as we demonstrate using the example of the Large Volume Scenario.

  7. Non-geometric branes are DFT monopoles

    CERN Document Server

    Bakhmatov, Ilya; Musaev, Edvard T

    2016-01-01

    The double field theory monopole solution by Berman and Rudolph is shown to reproduce non-geometric backgrounds with non-vanishing Q- and R-flux upon an appropriate choice of physical and dual coordinates. The obtained backgrounds depend non-trivially on dual coordinates and have only trivial monodromies. Upon smearing the solutions along the dual coordinates one reproduces the known $5^2_2$ solution for the Q-brane and co-dimension 1 solution for the R-brane. The T-duality invariant magnetic charge is explicitly calculated for all these backgrounds and is found to be equal to the magnetic charge of (unsmeared) NS5-brane.

  8. Enveloping branes and brane-world singularities

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios; Cotsakis, Spiros [CERN-Theory Division, Department of Physics, Geneva 23 (Switzerland); Klaoudatou, Ifigeneia [University of the Aegean, Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering, Samos (Greece)

    2014-12-01

    The existence of envelopes is studied for systems of differential equations in connection with the method of asymptotic splittings which allows one to determine the singularity structure of the solutions. The result is applied to brane-worlds consisting of a 3-brane in a five-dimensional bulk, in the presence of an analog of a bulk perfect fluid parameterizing a generic class of bulk matter. We find that all flat brane solutions suffer from a finite-distance singularity contrary to previous claims. We then study the possibility of avoiding finite-distance singularities by cutting the bulk and gluing regular solutions at the position of the brane. Further imposing physical conditions such as finite Planck mass on the brane and positive energy conditions on the bulk fluid, excludes, however, this possibility as well. (orig.)

  9. Brane Brick Models in the Mirror

    CERN Document Server

    Franco, Sebastian; Seong, Rak-Kyeong; Vafa, Cumrun

    2016-01-01

    Brane brick models are Type IIA brane configurations that encode the $2d$ $\\mathcal{N}=(0,2)$ gauge theories on the worldvolume of D1-branes probing toric Calabi-Yau 4-folds. We use mirror symmetry to improve our understanding of this correspondence and to provide a systematic approach for constructing brane brick models starting from geometry. The mirror configuration consists of D5-branes wrapping 4-spheres and the gauge theory is determined by how they intersect. We also explain how $2d$ $(0,2)$ triality is realized in terms of geometric transitions in the mirror geometry. Mirror symmetry leads to a geometric unification of dualities in different dimensions, where the order of duality is $n-1$ for a Calabi-Yau $n$-fold. This makes us conjecture the existence of a quadrality symmetry in $0d$. Finally, we comment on how the M-theory lift of brane brick models connects to the classification of $2d$ $(0,2)$ theories in terms of 4-manifolds.

  10. Holographic backgrounds from D-brane probes

    CERN Document Server

    Moskovic, Micha

    2014-01-01

    This thesis focuses on the derivation of holographic backgrounds from the field theory side, without using any supergravity equations of motion. Instead, we rely on the addition of probe D-branes to the stack of D-branes generating the background. From the field theory description of the probe branes, one can compute an effective action for the probes (in a suitable low-energy/near-horizon limit) by integrating out the background branes. Comparing this action with the generic probe D-brane action then allows to determine the holographic background dual to the considered field theory vacuum. In the first part, the required pre-requisites of field and string theory are recalled and this strategy to derive holographic backgrounds is explained in more detail on the basic case of D3-branes in flat space probed by a small number of D-instantons. The second part contains our original results, which have already appeared in arXiv:1301.3738, arXiv:1301.7062 and arXiv:1312.0621. We first derive the duals to three conti...

  11. Holography of Dyonic Dilaton Black Branes

    CERN Document Server

    Goldstein, Kevin; Kachru, Shamit; Prakash, Shiroman; Trivedi, Sandip P; Westphal, Alexander

    2010-01-01

    We study black branes carrying both electric and magnetic charges in Einstein-Maxwell theory coupled to a dilaton-axion in asymptotically anti de Sitter space. After reviewing and extending earlier results for the case of electrically charged branes, we characterise the thermodynamics of magnetically charged branes. We then focus on dyonic branes in theories which enjoy an $SL(2,R)$ electric-magnetic duality. Using $SL(2,R)$, we are able to generate solutions with arbitrary charges starting with the electrically charged solution, and also calculate transport coefficients. These solutions all exhibit a Lifshitz-like near-horizon geometry. The system behaves as expected for a charged fluid in a magnetic field, with non-vanishing Hall conductance and vanishing DC longitudinal conductivity at low temperatures. Its response is characterised by a cyclotron resonance at a frequency proportional to the magnetic field, for small magnetic fields. Interestingly, the DC Hall conductance is related to the attractor value ...

  12. BPS quantization of the five-brane

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman

    1997-02-01

    We give a unified description of all BPS states of M-theory compactified on T5 in terms of the five-brane. We compute the mass spectrum and degeneracies and find that the SO(5, 5, ZU-duality symmetry naturally arises as a T-duality by assuming that the world-volume theory of the five-brane itself is described by a string theory. We also consider the compactification on S 1/ Z2 × T 4, and give a new explanation for its correspondence with heterotic string theory by exhibiting its dual equivalence to M-theory on K3 × S1.

  13. BPS quantization of the five-brane

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    We give a unified description of all BPS states of M-theory compactified on T^5 in terms of the five-brane. We compute the mass spectrum and degeneracies and find that the SO(5,5,Z) U-duality symmetry naturally arises as a T-duality by assuming that the world-volume theory of the five-brane itself is described by a string theory. We also consider the compactification on S^1/Z_2 \\times T^4, and give a new explanation for its correspondence with heterotic string theory by exhibiting its dual equivalence to M-theory on K3\\times S^1.

  14. Spiked instantons from intersecting D-branes

    Directory of Open Access Journals (Sweden)

    Nikita Nekrasov

    2017-01-01

    Full Text Available The moduli space of spiked instantons that arises in the context of the BPS/CFT correspondence [22] is realised as the moduli space of classical vacua, i.e. low-energy open string field configurations, of a certain stack of intersecting D1-branes and D5-branes in Type IIB string theory. The presence of a constant B-field induces an interesting dynamics involving the tachyon condensation.

  15. Spiked instantons from intersecting D-branes

    Science.gov (United States)

    Nekrasov, Nikita; Prabhakar, Naveen S.

    2017-01-01

    The moduli space of spiked instantons that arises in the context of the BPS/CFT correspondence [22] is realised as the moduli space of classical vacua, i.e. low-energy open string field configurations, of a certain stack of intersecting D1-branes and D5-branes in Type IIB string theory. The presence of a constant B-field induces an interesting dynamics involving the tachyon condensation.

  16. Spiked Instantons from Intersecting D-branes

    CERN Document Server

    Nekrasov, Nikita

    2016-01-01

    The moduli space of spiked instantons that arises in the context of the BPS/CFT correspondence is realised as the moduli space of classical vacua, i.e. low-energy open string field configurations, of a certain stack of intersecting D1-branes and D5-branes in Type IIB string theory. The presence of a constant B-field induces an interesting dynamics involving the tachyon condensation.

  17. Non-Abelian BIonic Brane Intersections

    CERN Document Server

    Cook, P; Murugan, J; Cook, Paul; Koch, Robert de Mello; Murugan, Jeff

    2003-01-01

    We study "fuzzy funnel" solutions to the non-Abelian equations of motion of the D-string. Our funnel describes n^6/360 coincident D-strings ending on n^3/6 D7-branes, in terms of a fuzzy six-sphere which expands along the string. We also provide a dual description of this configuration in terms of the world volume theory of the D7-branes.

  18. On the Production of Open Strings from Brane Anti-Brane Annihilation

    CERN Document Server

    Leblond, L

    2006-01-01

    We investigate the leading contribution to open string production in the time dependent background of the Brane Anti-Brane. This is a 1-loop diagram and we use Boundary Conformal Field Theory (BCFT) techniques to study it. We show that the amplitude to a single open string naively diverges when one looks at it as an expansion in oscillator levels. Nevertheless, we show that once we sum over all oscillator levels we get a finite result. We also clarify where to perform the inverse Wick rotation in this kind of problems. This calculation could have important consequences for the theory of reheating in brane inflationary models.

  19. Universality in all-{alpha}{sup Prime} order corrections to BPS/non-BPS brane world volume theories

    Energy Technology Data Exchange (ETDEWEB)

    Hatefi, Ehsan, E-mail: ehatefi@ictp.it [International Centre for Theoretical Physics, Strada Costiera 11, Trieste (Italy); Park, I.Y., E-mail: inyongpark05@gmail.com [Department of Natural and Physical Sciences, Philander Smith College, Little Rock, AR 72223 (United States)

    2012-11-21

    Knowledge of all-{alpha}{sup Prime} higher derivative corrections to leading order BPS and non-BPS brane actions would serve in future endeavor of determining the complete form of the non-abelian BPS and tachyonic effective actions. In this paper, we note that there is a universality in the all-{alpha}{sup Prime} order corrections to BPS and non-BPS branes. We compute amplitudes between one Ramond-Ramond C-field vertex operator and several SYM gauge/scalar vertex operators. Specifically, we evaluate in closed form string correlators of two-point amplitudes A{sup C{phi}}, A{sup CA}, a three-point amplitude A{sup C{phi}{phi}}, and a four-point amplitude A{sup C{phi}{phi}{phi}}. We carry out pole and contact term analysis. In particular we reproduce some of the contact terms and the infinite massless poles of A{sup C{phi}{phi}{phi}} by SYM vertices obtained through the universality.

  20. Theoretical and Observational Constraints on Brane Inflation and Study of Scalar Perturbations through the Effective Field Theory Formalism

    CERN Document Server

    Sypsas, Spyros

    2014-01-01

    In this thesis, consisting of two main parts, we study observational signatures of cosmic (super)strings in the context of D-brane inflation and properties of scalar perturbations on generic homogeneous inflating backgrounds. In the first part we study the production, nature and decay processes of cosmic superstrings in two widely used effective models of D-brane inflation, namely the $D3/D7$ and $D3/\\bar{D}3$ models. Specifically, we show that the strings produced in $D3/D7$ are of local axionic type and we place constraints on the tension while arguing that the supersymmetry breaking mechanism of the model needs to be altered according to supergravity constraints on constant Fayet-Iliopoulos terms. Moreover, we study radiative processes of cosmic superstrings on warped backgrounds. We argue that placing the string formation in a natural context such as $D3/\\bar{D}3$ inflation, restricts the forms of possible radiation from these objects. Motivated by these string models, which inevitably result in the prese...

  1. Quasinormal ringing on the brane

    Science.gov (United States)

    Chung, Hyeyoun; Randall, Lisa; Rodriguez, Maria J.; Varela, Oscar

    2016-12-01

    While the linear behavior of gravity in braneworld models is well understood, much less is known about full nonlinear gravitational effects. Even when they agree at the linear level, these could be expected to distinguish braneworlds from a lower-dimensional theory with no brane. Black holes are a good testing ground for such studies, as they are nonlinear solutions that would be expected to reflect the background geometry. In particular, we assess the role of black hole quasinormal modes (QNMs) in gravitational experiments devised to be sensitive to the existence of the brane, in a lower-dimensional setting where we have analytical control. We compute QNMs of brane-localized black holes and find that they follow the entropy of the corresponding black hole. This observation allows us to conclude that, surprisingly, the scattering problem we consider, at least in some regimes, does not distinguish between nonlinear gravitational effects of black holes in AdS space with a brane and black holes in a spacetime of one lower dimension.

  2. Brain Content of Branes' States

    CERN Document Server

    Mkrtchyan, R L

    2003-01-01

    The problem of decomposition of unitary irreps of (super) tensorial (i.e. extended with tensorial charges) Poincare algebra w.r.t. its different subgroups is considered. This requires calculation of little groups for different configurations of tensor charges. Particularly, for preon states (i.e. states with maximal supersymmetry) in different dimensions the particle content is calculated, i.e. the spectrum of usual Poincare representations in the preon representation of tensorial Poincare. At d=4 results coincide with (and may provide another point of view on) the Vasiliev's results in field theories in generalized space-time. The translational subgroup of little groups of massless particles and branes is shown to be (and coincide with, at d=4) a subgroup of little groups of "pure branes" algebras, i.e. tensorial Poincare algebras without vector generators. Possible existence of corresponding field theories is discussed. At 11d it is shown that, contrary to lower dimensions, spinors are not homogeneous space...

  3. BPS brane cosmology in N=2 supergravity

    CERN Document Server

    Emam, Moataz H

    2015-01-01

    We study the embedding of flat BPS 3-branes in five dimensional N=2 supergravity theory. We derive the branes' dynamical equations as well as general expressions for the hypermultiplet fields then focus on a single brane and study its time evolution. It is shown that the brane's Hubble parameter correlates with the moduli of the underlying manifold's complex structure. For certain particular solutions, the moduli seem to exhibit an instability; being large valued at early times then rapidly decaying to either zero or some convergent constant value. The possibility of extending these results to the cosmology of our universe is implied and briefly discussed. Our results are in line with the production and decay of heavy moduli in the early universe, as is currently believed in the literature.

  4. Brane actions and string dualities

    NARCIS (Netherlands)

    Eyras, E; Lozano, Y; Ceresole, A; Kounnas, C; Lust, D; Theisen, S

    1999-01-01

    An effective action for the M9-brane is proposed. We study its relation with other branes via dualities. Among these, we find actions for branes which are not suggested by the central charges of the Type II superalgebras.

  5. Black branes in flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Torroba, Gonzalo; Wang, Huajia

    2013-10-01

    We construct charged black branes in type IIA flux compactifications that are dual to (2 + 1)-dimensional field theories at finite density. The internal space is a general Calabi-Yau manifold with fluxes, with internal dimensions much smaller than the AdS radius. Gauge fields descend from the 3-form RR potential evaluated on harmonic forms of the Calabi-Yau, and Kaluza-Klein modes decouple. Black branes are described by a four-dimensional effective field theory that includes only a few light fields and is valid over a parametrically large range of scales. This effective theory determines the low energy dynamics, stability and thermodynamic properties. Tools from flux compactifications are also used to construct holographic CFTs with no relevant scalar operators, that can lead to symmetric phases of condensed matter systems stable to very low temperatures. The general formalism is illustrated with simple examples such as toroidal compactifications and manifolds with a single size modulus. We initiate the classification of holographic phases of matter described by flux compactifications, which include generalized Reissner-Nordstrom branes, nonsupersymmetric AdS2×R2 and hyperscaling violating solutions.

  6. Brane World Cosmological Perturbations

    CERN Document Server

    Casali, A G; Wang, B; Casali, Adenauer G.; Abdalla, Elcio; Wang, Bin

    2004-01-01

    We consider a brane world and its gravitational linear perturbations. We present a general solution of the perturbations in the bulk and find the complete perturbed junction conditions for generic brane dynamics. We also prove that (spin 2) gravitational waves in the great majority of cases can only arise in connection with a non-vanishing anisotropic stress. This has far reaching consequences for inflation in the brane world. Moreover, contrary to the case of the radion, perturbations are stable.

  7. Branes and the Kraft-Procesi Transition

    CERN Document Server

    Cabrera, Santiago

    2016-01-01

    The Coulomb and Higgs branches of certain 3d N=4 gauge theories can be understood as closures of nilpotent orbits. Furthermore, a new theorem by Namikawa suggests that this is the simplest possible case, thus giving this class a special role. In this note we use branes to reproduce the mathematical work by Kraft and Procesi. It studies the classification of all nilpotent orbits for classical groups and it characterizes an inclusion relation via minimal singularities. We show how these minimal singularities arise naturally in the Type IIB superstring embedding of the 3d theories. The Higgs mechanism can be used to remove the minimal singularity, corresponding to a transition in the brane configuration that induces a new effective 3d theory. This reproduces the Kraft-Procesi results, endowing the family of gauge theories with a new underlying structure. We provide an efficient procedure for computing such brane transitions.

  8. Hybrid Bloch Brane

    CERN Document Server

    Bazeia, D; Losano, L

    2016-01-01

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.

  9. Spacelike brane actions.

    Science.gov (United States)

    Hashimoto, Koji; Ho, Pei-Ming; Wang, John E

    2003-04-11

    We derive effective actions for "spacelike branes" (S-branes) and find a solution describing the formation of fundamental strings in the rolling tachyon background. The S-brane action is a Dirac-Born-Infeld action for Euclidean world volumes defined in the context of time-dependent tachyon condensation of non-BPS (Bogomol'nyi-Prasad-Sommerfield) branes. It includes gauge fields and, in particular, a scalar field associated with translation along the time direction. We show that the BIon spike solutions constructed in this system correspond to the production of a confined electric flux tube (a fundamental string) at late time of the rolling tachyon.

  10. Actions for Curved Branes

    CERN Document Server

    Abou-Zeid, M

    2000-01-01

    The nondeterminantal forms of the Born-Infeld and related brane actions in which the gauge fields couple to both an induced metric and an intrinsic metric are generalised by letting either or both metrics be dynamical. The resulting actions describe ` brane world' and cosmological scenarios in which the gauge fields are confined to the brane, while gravity propagates in both the world-volume and the bulk. In particular, for actions involving a nonsymmetric ` metric', nonsymmetric gravity propagates on the worldvolume. For 3-branes with a symmetric metric, conformal (Weyl) gravity propagates on the worldvolume and has conformally invariant couplings to the gauge fields.

  11. Reheating a multi-throat universe by brane motion

    CERN Document Server

    Mukohyama, Shinji

    2007-01-01

    We propose a mechanism of reheating after inflation in multi-throat scenarios of warped extra dimensions. Validity of the effective field theory requires that the position of the standard model (SM) brane during inflation be different from the position long after inflation, i.e. the tip of the SM throat. After inflation, when the Hubble expansion rate becomes sufficiently low, the SM brane starts moving towards the tip and eventually oscillates. The SM fields are excited by the brane motion and the universe is reheated. We consider a U(1) gauge field on a wrapped D5-brane as a toy model to illustrate that fields confined on a brane are indeed excited by brane motion.

  12. Gravitational instability on the brane: the role of boundary conditions

    CERN Document Server

    Shtanov, Y; Sahni, V; Shtanov, Yuri; Viznyuk, Alexander; Sahni, Varun

    2007-01-01

    An outstanding issue in braneworld theory concerns the setting up of proper boundary conditions for the brane-bulk system. Boundary conditions (BC's) employing regulatory branes or demanding that the bulk metric be nonsingular have yet to be implemented in full generality. In this paper, we take a different route and specify boundary conditions directly on the brane thereby arriving at a local and closed system of equations (on the brane). We consider a one-parameter family of boundary conditions involving the anisotropic stress of the projection of the bulk Weyl tensor on the brane and derive an exact system of equations describing scalar cosmological perturbations on a generic braneworld with induced gravity. Depending upon our choice of boundary conditions, perturbations on the brane either grow moderately (region of stability) or rapidly (instability). In the instability region, the evolution of perturbations usually depends upon the scale: small scale perturbations grow much more rapidly than those on la...

  13. (S)fermion Masses in Fat Brane Scenario

    CERN Document Server

    Haba, N; Haba, Naoyuki; Maru, Nobuhito

    2002-01-01

    We discuss the fermion mass hierarchy and the flavor mixings in the fat brane scenario of a five dimensional SUSY theory. Assuming that the matter fields lives in the bulk, their zero mode wave functions are Gaussians, and Higgs fields are localized on the brane, we find simple various types of the matter configurations generating the mass matrices consistent with experimental data. Sfermion mass spectrum is also discussed using the matter configurations found above. Which type of squark mass spectra (the degeneracy, the decoupling and the alignment) is realized depends on the relative locations of SUSY breaking brane and the brane where Higgs fields are localized.

  14. Topological aspect of Chern-Simons p-branes

    Institute of Scientific and Technical Information of China (English)

    Duan Yi-Shi; Zhao Li; Liu Yu-Xiao; Ren Ji-Rong

    2007-01-01

    By generalizing the topological current of Abelian Chern Simons (CS) vortices, we present a topological tensor current of CS p-branes based on the φ-mapping topological current theory. It is revealed that CS p-branes are located at the isolated zeros of the vector field φ(x), and the topological structure of CS p-branes is characterized by the winding number of the φ-mappings. Furthermore, the Nambu-Goto action and the equation of motion for multi CS p-branes are obtained.

  15. Cosmology from quantum potential in brane-anti-brane system

    CERN Document Server

    Sepehri, Alireza

    2015-01-01

    Recently, some authors removed the big-bang singularity and predicted an infinite age of our universe. In this paper, we show that the same result can be obtained in string theory and M-theory; however, the shape of universe changes in different epochs. In our mechanism, first, N fundamental string decay to N D0-anti-D0-brane. Then, D0-branes join to each other, grow and and form a six-dimensional brane-antibrane system. This system is unstable, broken and present form of four dimensional universes , one anti-universe in additional to one wormhole are produced. Thus, there isn't any big-bang in cosmology and universe is a fundamental string at the beginning. Also, total age of universe contains two parts, one in related to initial age and second which is corresponded to present age of universe ($t_{tot}=t_{initial}+t_{present}$). On the other hand, initial age of universe includes two parts, the age of fundamental string and time of transition ($t_{initial}=t_{transition}+t_{f-string}$). We observe that only ...

  16. DGP cosmology from rigid geodetic brane gravity

    CERN Document Server

    Cordero, Rubén; Molgado, Alberto; Rojas, Efrain

    2011-01-01

    We explore the cosmological implications provided by an effective geometrical action describing a codimension-one rigid brane embedded in a 5D fixed Minkowski spacetime, i.e., allowing for a term added to the geodetic brane action which depends on the extrinsic curvature of the worldvolume. In the geodetic brane gravity action we accommodate the rigidity of the brane through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic type equation of motion. Within a Friedmann-Robertson-Walker framework, we obtain a generalized Friedmann equation describing the associated cosmological evolution which in turn allowed us to illustrate explicitly the linkage between the geodetic brane theory and the rigidity content of this sort of branelike universes. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the universe in dependence on the nature of the rigidi...

  17. D-branes in N=2 Liouville and its mirror

    CERN Document Server

    Israel, D; Troost, J; Israel, Dan; Pakman, Ari; Troost, Jan

    2004-01-01

    We study D-branes in the mirror pair N=2 Liouville / supersymmetric SL(2,R)/U(1) coset superconformal field theories. We build D0, D1 and D2 branes, on the basis of the boundary state construction for the Euclidean AdS(3) conformal field theory. We also construct D0-branes in an orbifold that rotates the angular direction of the cigar. We show how the poles of correlators associated to localized states and bulk interactions naturally decouple in the one-point functions of localized and extended branes. We stress the role played in the analysis of D-brane spectra by primaries in SL(2,R)/U(1) which are descendents of the parent theory.

  18. D-Branes in Curved Space

    Energy Technology Data Exchange (ETDEWEB)

    McGreevy, John Austen; /Stanford U., Phys. Dept.

    2005-07-06

    This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry, both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe

  19. Kaluza-Klein monopole and 5-brane effective actions

    NARCIS (Netherlands)

    Eyras, E; Lozano, Y

    2000-01-01

    We review the construction of the Kaluza-Klein monopole of the Type IIA theory in the most general case of a massive background, as well as its relation via T-duality with the Type IIB NS-5-brane. This last effective action is shown to be related by S-duality to the D5-brane effective action. [GRAPH

  20. Periodic Arrays of M2-Branes

    CERN Document Server

    Jeon, Imtak; Richmond, Paul

    2012-01-01

    We consider periodic arrays of M2-branes in the ABJM model in the spirit of a circle compactification to D2-branes in type IIA string theory. The result is a curious formulation of three-dimensional maximally supersymmetric Yang-Mills theory in terms of fermions, seven transverse scalars, a non-dynamical gauge field and an additional scalar `dual gluon'. Upon further T-duality on a transverse torus we obtain a non-manifest-Lorentz-invariant description of five-dimensional maximally supersymmetric Yang-Mills. Here the additional scalar field can be thought of as the components of a two-form along the torus. This action can be viewed as an M-theory description of M5-branes on ${\\mathbb T}^3$.

  1. Coupled bulk and brane fields about a de Sitter brane

    CERN Document Server

    Cardoso, A; Mennim, A; Seahra, S S; Wands, D; Cardoso, Antonio; Koyama, Kazuya; Mennim, Andrew; Seahra, Sanjeev S.; Wands, David

    2006-01-01

    We consider the evolution of a bulk scalar field in anti-de Sitter (AdS) spacetime linearly coupled to a scalar field on a de Sitter boundary brane. We present results of a spectral analysis of the system, and find that the model can exhibit both bound and continuum resonant modes. We find that zero, one, or two bound states may exist, depending upon the masses of the brane and bulk fields relative to the Hubble length and the AdS curvature scale and the coupling strength. In all cases, we find a critical coupling above which there exists a tachyonic bound state. We show how the 5-dimensional spectral results can be interpreted in terms of a 4-dimensional effective theory for the bound states. We find excellent agreement between our analytic results and the results of a new numerical code developed to model the evolution of bulk fields coupled to degrees of freedom on a moving brane. This code can be used to model the behaviour of braneworld cosmological perturbations in scenarios for which no analytic result...

  2. Quintessence and effective RN de Sitter brane geometries

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K.P.; Singh, Abhishek K.; Singh, Sunita; Kapoor, Richa; Kar, Supriya [University of Delhi, Department of Physics and Astrophysics, New Delhi (India)

    2014-11-15

    We revisit the effective space-time torsion curvature in a second order formalism, underlying the non-linear U(1) gauge dynamics, of a two form on a D4-brane. The formalism incorporates a significant global NS two form into the theory via its perturbative coupling to a dynamical two form. In particular we explore the non-linear gauge dynamics on a D{sub 4}-brane in the presence of a non-trivial background metric. An effective de Sitter universe is shown to emerge on a vacuum created pair of (D anti D){sub 3}-branes by a local two form at the past horizon with the Big Bang. We obtain a number of 4D de Sitter quantum black holes with and without a propagating torsion. In a low energy limit the non-perturbative correction may be seen to be insignificant. The quantum black hole undergoes an expansion in the limit and identifies with the Einstein vacuum. Interestingly our analysis reveals a plausible quintessence (axion) on an anti-D{sub 3}-brane which may source the dark energy in a D{sub 3}-brane universe. Arguably a brane universe moves away from its anti-brane due to the conjectured repulsive gravity underlying the quintessence. It leads to a growth in the extra fifth dimension between a brane and an anti-brane, which may provide a clue to an accelerating universe as observed in cosmology. (orig.)

  3. Quintessence and effective RN de Sitter brane geometries

    Science.gov (United States)

    Pandey, K. Priyabrat; Singh, Abhishek K.; Singh, Sunita; Kapoor, Richa; Kar, Supriya

    2014-11-01

    We revisit the effective space-time torsion curvature in a second order formalism, underlying the non-linear gauge dynamics, of a two form on a -brane. The formalism incorporates a significant global NS two form into the theory via its perturbative coupling to a dynamical two form. In particular we explore the non-linear gauge dynamics on a -brane in the presence of a non-trivial background metric. An effective de Sitter universe is shown to emerge on a vacuum created pair of -branes by a local two form at the past horizon with the Big Bang. We obtain a number of de Sitter quantum black holes with and without a propagating torsion. In a low energy limit the non-perturbative correction may be seen to be insignificant. The quantum black hole undergoes an expansion in the limit and identifies with the Einstein vacuum. Interestingly our analysis reveals a plausible quintessence (axion) on an anti--brane which may source the dark energy in a -brane universe. Arguably a brane universe moves away from its anti-brane due to the conjectured repulsive gravity underlying the quintessence. It leads to a growth in the extra fifth dimension between a brane and an anti-brane, which may provide a clue to an accelerating universe as observed in cosmology.

  4. Constraining brane tension using rotation curves of galaxies

    CERN Document Server

    Garcia-Aspeitia, Miguel A

    2015-01-01

    We present in this work a study of brane theory phenomenology focusing on the brane tension parameter, which is the main observable of the theory. We show the modifications steaming from the presence of branes in the rotation curves of spiral galaxies for three well known DM density profiles: the pseudo isothermal (PISO), Navarro-Frenk-White (NFW) and Burkert dark matter density profiles. We estimate the brane tension parameter using a sample of high resolution observed rotation curves of low surface brightness spiral galaxies for the three density profiles. Also, the fittings using the brane theory model of the rotation curves are compared with standard Newtonian models. We found that NFW model prefers lower values of the brane tension parameter, on the average $\\lambda \\sim 0.73\\times 10^{-3}$ eV$^4$, therefore showing clear brane effects. Burkert case does prefer higher values of the tension parameter, on the average $\\lambda \\sim 0.93$ eV$^4$, i.e., negligible brane effects. Whereas PISO is an intermediat...

  5. Thermodynamics of black M-branes from SCFTs

    Science.gov (United States)

    Morita, Takeshi; Shiba, Shotaro

    2013-07-01

    We discuss thermodynamics of N M2-branes at strong coupling from the ABJM theory by employing the Smilga-Wiseman method, which explains the black D p-brane thermodynamics from the maximally supersymmetric U( N) Yang-Mills theories through a field theory analysis. As a result we obtain the free energy of the ABJM theory N 3/2 √{k}{T^3} , which is consistent with the prediction from the eleven-dimensional supergravity. We also estimate the free energy of N M5-branes by assuming some natural properties of the 6d superconformal field theory. Remarkably we obtain the free energy N 3 T 6, which is consistent again with the supergravity prediction. This result might illuminate the low energy field theory description of the multiple M5-branes.

  6. Thermodynamics of black M-branes from SCFTs

    CERN Document Server

    Morita, Takeshi

    2013-01-01

    We discuss thermodynamics of N M2-branes at low temperature from the ABJM theory by employing the Smilga-Wiseman method, which explains the black Dp-brane thermodynamics from the maximally supersymmetric U(N) Yang-Mills theories through a field theory analysis. As a result we obtain the free energy of the ABJM theory ~N^{3/2}k^{1/2}T^3, which is consistent with the prediction from eleven-dimensional supergravity. We also estimate the free energy of N M5-branes at low temperature by assuming some natural properties of the 6d superconformal field theory. Remarkably we obtain the free energy ~N^3T^6, which is consistent again with the supergravity prediction. This result might illuminate the low energy field theory description of the multiple M5-branes.

  7. Left-Right Entanglement Entropy of Dp-branes

    CERN Document Server

    Zayas, Leopoldo A Pando

    2016-01-01

    We compute the left-right entanglement entropy for Dp-branes in string theory. We employ the CFT approach to string theory Dp-branes, in particular, its presentation as coherent states of the closed string sector. The entanglement entropy is computed as the von Neumann entropy for a density matrix resulting from integration over the left-moving degrees of freedom. We discuss various crucial ambiguities related to sums over spin structures and argue that different choices capture different physics. We also consider Dp branes on compact dimensions and verify that the effects of T-duality act covariantly on the Dp brane entanglement entropy. We find that generically the left-right entanglement entropy provides a suitable generalization of boundary entropy and of the D-brane tension.

  8. Global embeddings for branes at toric singularities

    CERN Document Server

    Balasubramanian, Vijay; Braun, Volker; García-Etxebarria, Iñaki

    2012-01-01

    We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) (dP0)^3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.

  9. T-branes and $\\alpha'$-corrections

    CERN Document Server

    Marchesano, Fernando

    2016-01-01

    We study $\\alpha'$-corrections in multiple D7-brane configurations with non-commuting profiles for their transverse position fields. We focus on T-brane systems, crucial in F-theory GUT model building. There $\\alpha'$-corrections modify the D-term piece of the BPS equations which, already at leading order, require a non-primitive Abelian worldvolume flux background. We find that $\\alpha'$-corrections may either i) leave this flux background invariant, ii) modify the Abelian non-primitive flux profile, or iii) deform it to a non-Abelian profile. The last case typically occurs when primitive fluxes, a necessary ingredient to build 4d chiral models, are added to the system. We illustrate these three cases by solving the $\\alpha'$-corrected D-term equations in explicit examples, and describe their appearance in more general T-brane backgrounds. Finally, we discuss implications of our findings for F-theory GUT local models.

  10. On the structure of quadrilateral brane tilings

    CERN Document Server

    de Medeiros, Paul

    2011-01-01

    Brane tilings provide the most general framework in string and M-theory for matching toric Calabi-Yau singularities probed by branes with superconformal fixed points of quiver gauge theories. The brane tiling data consists of a bipartite tiling of the torus which encodes both the classical superpotential and gauge-matter couplings for the quiver gauge theory. We consider the class of tilings which contain only tiles bounded by exactly four edges and present a method for generating any tiling within this class by iterating combinations of certain graph-theoretic moves. In the context of D3-branes in IIB string theory, we consider the effect of these generating moves within the corresponding class of supersymmetric quiver gauge theories in four dimensions. Of particular interest are their effect on the superpotential, the vacuum moduli space and the conditions necessary for the theory to reach a superconformal fixed point in the infrared. We discuss the general structure of physically admissible quadrilateral b...

  11. D-branes, Supersymmetry Breaking, and Neutrinos

    CERN Document Server

    Seo, Jihye

    2010-01-01

    This thesis studies meta- and exactly stable supersymmetry breaking mechanisms in heterotic and type IIB string theories and constructs an F-theory Grand Unified Theory model for neutrino physics in which neutrino mass is determined by the supersymmetry breaking mechanism. Focussing attention on heterotic string theory compactified on a 4-torus, stability of non-supersymmetric states is studied. A non-supersymmetric state with robust stability is constructed, and its exact stability is proven in a large region of moduli space of T^4 against all the possible decay mechanisms allowed by charge conservation. Using string-string duality, the results are interpreted in terms of Dirichlet-branes in type IIA string theory compactified on an orbifold limit of a K3 surface. In type IIB string theory, metastable and exactly stable non-supersymmetric systems are constructed using D-branes and Calabi-Yau geometry. Branes and anti-branes wrap rigid and separate 2-spheres inside a non-compact Calabi-Yau three-fold: supersy...

  12. Black Holes and Biophysical (Mem)-branes

    CERN Document Server

    Armas, Jay

    2014-01-01

    We argue that the effective theory describing the long-wavelength dynamics of black branes is the same effective theory that describes the dynamics of biophysical membranes. We improve the phase structure of higher-dimensional black rings by considering finite thickness corrections in this effective theory, showing a striking agreement between our analytical results and recent numerical constructions while simultaneously drawing a parallel between gravity and the effective theory of biophysical membranes.

  13. The Phantom brane revisited

    Science.gov (United States)

    Sahni, Varun

    2016-07-01

    The Phantom brane is based on the normal branch of the DGP braneworld. It possesses a phantom-like equation of state at late times, but no big-rip future singularity. In this braneworld, the cosmological constant is dynamically screened at late times. Consequently it provides a good fit to SDSS DR11 measurements of H(z) at high redshifts. We obtain a closed system of equations for scalar perturbations on the brane. Perturbations of radiation, matter and the Weyl fluid are self-consistently evolved until the present epoch. We find that the late time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials φ, Ψ evolve differently on the brane than in ΛCDM, for which φ = Ψ. On the Brane, by contrast, the ratio φ/Ψ exceeds unity during the late matter dominated epoch (z ≤ 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large scale structure. The phantom brane also displays a pole in its equation of state, which provides a key test of this dark energy model.

  14. 弦/M-理论中黑膜热力学及相变%The Thermodynamical Phase Structure of black branes in String/M Theory

    Institute of Scientific and Technical Information of China (English)

    卢建新

    2012-01-01

    宏观引力系统,比如黑洞,与非引力系统在热力学方面很不一样,其态函数熵与温度本质上是量子的,没有经典对应,因此对应的热力学在一定意义上来说本质上也是量子的,这为探讨量子引力提供了一个重要窗口.本文综述讨论作者及其合作者近期一系列有关黑洞的高维推广黑膜(超弦/M-理论中的基本动力学客体)的热力学相、相变及相关的临界现象的工作,希望为建立M-理论的完整理论框架提供重要的非微扰信息.%A macroscopic gravitational system such as a black hole differs significantly from a non-gravitational system in thermodynamics in that its state functions entropy and temperature are quantum mechanical in nature without a classical limit. As such its corresponding thermodynamics, to certain extent, is also quantum mecanical in nature and this provides a window for the study of quantum gravity. This article reviews the recent work of the author and his collaborators on the thermo-dynamical phases, phase transitions and the related critical phenomena of the black branes in string/M-theory (the basic dynamical building blocks of this theory), the higher dimensional generalization of the black hole, in hope of obtaining important non-perturbative information for the complete formulation of M-theory.

  15. Ring Relations and Mirror Map from Branes arXiv

    CERN Document Server

    Assel, Benjamin

    We study the space of vacua of three-dimensional $\\mathcal{N}=4$ theories from a novel approach building on the type IIB brane realization of the theory and in which the insertion of local chiral operators in the path integral is obtained from integrating out light modes in appropriate brane setups. Most of our analysis focuses on abelian quiver theories which can be realized as the low-energy theory of D3-D5-NS5 brane arrays. Their space of vacua contains a Higgs branch, parametrized by the vevs of half-BPS meson operators, and a Coulomb branch, parametrized by the vevs of half-BPS monopole operators. We show that the Higgs operators are inserted by adding F1 strings and D3 branes, while the Coulomb operators are inserted by adding D1 strings and D3 branes, with specific orientations, to the initial brane setup of the theory. This approach has two main advantages. First the ring relations describing the Higgs and Coulomb branches can be derived by looking at specific brane setups with multiple interpretation...

  16. Thermodynamics of Intersecting Black Branes from Interacting Elementary Branes

    CERN Document Server

    Morita, Takeshi

    2015-01-01

    If an Einstein-Maxwell-Dilaton system admits the extreme brane solution in which no force works between the parallel branes, the collective motion of nearly parallel branes exhibits the thermodynamical properties which are coincident with those of the corresponding black branes at low energy regime (up to unfixed numerical factors). Hence it may provide the microscopic description of the black branes ($p$-soup proposal). This fact motivates us to test this proposal in the intersecting black branes which have multiple brane charges and/or momentum along the brane direction. We consider the case that the multiple branes satisfy the intersection rule and feel no force when they are static, and find the agreement to the black hole thermodynamics.

  17. M5-brane in three-form flux and multiple M2-branes

    CERN Document Server

    Ho, Pei-Ming; Matsuo, Yutaka; Shiba, Shotaro

    2008-01-01

    We investigate the Bagger-Lambert-Gustavsson model associated with the Nambu-Poisson algebra as a theory describing a single M5-brane. We argue that the model is a gauge theory associated with the volume-preserving diffeomorphism in the three-dimenisonal internal space. We derive gauge transformations, actions, supersymmetry transformations, and equations of motions in terms of six-dimensional fields. The equations of motions are written in gauge-covariant form, and the equations for tensor fields have manifest self-dual structure. We demonstrate that the double dimensional reduction of the model reproduces the non-commutative U(1) gauge theory on a D4-brane with a small non-commutativity parameter. We establish relations between parameters in the BLG model and those in M-theory. This shows that the model describes an M5-brane in a large C-field background.

  18. D-brane Bremsstrahlung

    CERN Document Server

    Bachlechner, Thomas C

    2013-01-01

    We study the dynamics of ultrarelativistic D-branes. The dominant phenomenon is bremsstrahlung: mild acceleration induced by closed string interactions triggers extremely rapid energy loss through radiation of massless closed strings. After characterizing bremsstrahlung from a general k-dimensional extended object in a D-dimensional spacetime, we incorporate effects specific to D-branes, including velocity-dependent forces and open string pair creation. We then show that dissipation due to bremsstrahlung can substantially alter the dynamics in DBI inflation.

  19. D-brane bremsstrahlung

    Science.gov (United States)

    Bachlechner, Thomas C.; McAllister, Liam

    2013-10-01

    We study the dynamics of ultrarelativistic D-branes. The dominant phenomenon is bremsstrahlung: mild acceleration induced by closed string interactions triggers extremely rapid energy loss through radiation of massless closed strings. After characterizing bremsstrahlung from a general k-dimensional extended object in a D-dimensional spacetime, we incorporate effects specific to D-branes, including velocity-dependent forces and open string pair creation. We then show that dissipation due to bremsstrahlung can substantially alter the dynamics in DBI inflation.

  20. The Singularity Problem in Brane Cosmology

    Directory of Open Access Journals (Sweden)

    Ignatios Antoniadis

    2017-02-01

    Full Text Available We review results about the development and asymptotic nature of singularities in “brane–bulk” systems. These arise for warped metrics obeying the five-dimensional Einstein equations with fluid-like sources, and including a brane four-metric that is either Minkowski, de Sitter, or Anti-de Sitter. We characterize all singular Minkowski brane solutions, and look for regular solutions with nonzero curvature. We briefly comment on matching solutions, energy conditions, and finite Planck mass criteria for admissibility, and we briefly discuss the connection of these results to ambient theory.

  1. More on divergences in brane world models

    CERN Document Server

    Smolyakov, Mikhail N

    2013-01-01

    In this note a model in a space-time with compact extra dimension, describing five-dimensional fermion fields interacting with electromagnetic field localized on a brane, is presented. This model can be considered as a toy model for examining possible consequences of localization of gauge fields on a brane. It is shown that in the limit of infinite extra dimension the lowest order amplitudes of some processes in the resulting four-dimensional effective theory are divergent. Such a "localization catastrophe" can be inherent to more realistic bane world models with infinite extra dimension.

  2. String Thermodynamics in D-Brane Backgrounds

    CERN Document Server

    Abel, S A; Kogan, I I; Rabinovici, Eliezer

    1999-01-01

    We discuss the thermal properties of string gases propagating in various D-brane backgrounds in the weak-coupling limit, and at temperatures close to the Hagedorn temperature. We determine, in the canonical ensemble, whether the Hagedorn temperature is limiting or non-limiting. This depends on the dimensionality of the D-brane, and the size of the compact dimensions. We find that in many cases the non-limiting behaviour manifest in the canonical ensemble is modified to a limiting behaviour in the microcanonical ensemble and show that, when there are different systems in thermal contact, the energy flows into open strings on the `limiting' D-branes of largest dimensionality. Such energy densities may eventually exceed the D-brane intrinsic tension. We discuss possible implications of this for the survival of Dp-branes with large values of p in an early cosmological Hagedorn regime. We also discuss the general phase diagram of the interacting theory, as implied by the holographic and black-hole/string correspon...

  3. Thick Brane Worlds Arising From Pure Geometry

    CERN Document Server

    Cardenas, R; Cardenas, Rolando; Quiros, Israel

    2002-01-01

    We study a non-Riemannian modification of 5-dimensional Kaluza-Klein theory. In our proposal the Riemannian structure of the five-dimensional manifold is replaced by a Weyl-integrable one. In this context a 4-dimensional Poincar$\\grave{e}$ invariant solution is studied. A spacetime structure with two thick (smooth) branes separated in the extra dimension arises. The massless graviton is located in one of the thick branes at the origin, meanwhile the matter degrees of freedom are confined to the other brane. Due to the small overlap of the graviton's wave-function with the second thick brane, the model accounts for a resolution of the mass hierarchy problem a la Randall-Sundrum. Although, initially, no assumptions are made about the topology of the extra dimension, the solution found yields an extra space that is effectivelly compact and respects $Z_2$ symmetry. Unlike other models with branes, the spectrum of massive Kaluza-Klein states is quantized and free of tachyonic modes.

  4. Brane-World Multigravity

    CERN Document Server

    Papazoglou, A

    2001-01-01

    In this thesis, we discuss the idea of multigravity, namely the possibility that a significant component of gravity that we feel at intermediate distances (1 mm < r < 10^26 cm) is due to massive but ultralight gravitons. We demonstrate how this phenomenon can be realized in brane-world models in a spacetime with more than four dimensions and discuss how modifications of gravity at cosmological scales emerge as a consequence. Firstly, we consider five dimensional multigravity models with flat branes. We see how the existence of freely moving negative tension branes gives rise to ultralight graviton Kaluza-Klein states. Secondly, we study the moduli corresponding to the position of the branes and the size of the extra dimension, the radions and the dilaton respectively. We show that the radions corresponding to negative tension branes have wrong sign kinetic term. We also derive a stabilization condition for the dilaton in a brane model with general bulk scalar field dynamics. Thirdly, we show how we can ...

  5. World-volume Effective Actions of Exotic Five-branes

    CERN Document Server

    Kimura, Tetsuji; Yata, Masaya

    2014-01-01

    We construct world-volume effective actions of exotic $5^2_2$-branes in type IIA and IIB string theories. The effective actions are given in fully space-time covariant forms with two Killing vectors associated with background isometries. The effective theories are governed by the six-dimensional $\\mathcal{N}=(2,0)$ tensor multiplet and $\\mathcal{N}=(1,1)$ vector multiplet, respectively. Performing the S-duality transformation to the $5^2_2$-brane effective action in type IIB string theory, we also work out the world-volume action of the $5^2_3$-brane. We discuss some additional issues relevant to the exotic five-branes in type I and heterotic string theories.

  6. The Two-Parameter Brane Sigma-Model: M*, M' solutions and M-theory solutions dependent on exotic coordinates

    CERN Document Server

    Cook, Paul P

    2016-01-01

    We investigate two-parameter solutions of sigma-models on two dimensional symmetric spaces contained in E11. Embedding such sigma-model solutions in space-time gives solutions of M* and M'-theory where the metric depends on general travelling wave functions, as opposed to harmonic functions typical in general relativity, supergravity and M-theory. Weyl reflection allows such solutions to be mapped to M-theory solutions where the wave functions depend explicitly on extra coordinates contained in the fundamental representation of E11.

  7. Tilting the Brane, or Some Cosmological Consequences of the Brane Universe

    CERN Document Server

    Dvali, Gia

    1999-01-01

    We discuss theories in which the standard-model particles are localized on a brane embedded in space-time with large compact extra dimensions, whereas gravity propagates in the bulk. In addition to the ground state corresponding to a straight infinite brane, such theories admit a (one parameter) family of stable configurations corresponding to branes wrapping with certain periodicity around the extra dimension(s) when one moves along a noncompact coordinate (tilted walls). In the effective four-dimensional field-theory picture, such walls are interpreted as one of the (stable) solutions with the constant gradient energy, discussed earlier. In the cosmological context their energy "redshifts" by the Hubble expansion and dissipates slower then the one in matter or radiation. The tilted wall eventually starts to dominate the Universe. The upper bound on the energy density coincides with the present critical energy density. Thus, this mechanism can become significant any time in the future. The solutions we discu...

  8. Generalised supersymmetry and p-brane actions

    CERN Document Server

    Hewson, S F

    1997-01-01

    We investigate the most general N=1 graded extension of the Poincare algebra, and find the corresponding supersymmetry transformations and the associated superspaces. We find that the supersymmetry for which {Q,Q}=P is not special, and in fact must be treated democratically with a whole class of supersymmetries. We show that there are two distinct types of grading, and a new class of general spinors is defined. The associated superspaces are shown to be either of the usual type, or flat with no torsion. p-branes are discussed in these general superspaces and twelve dimensions emerges as maximal. New types of brane are discovered which could explain many features of the standard p-brane theories.

  9. Domain wall brane in squared curvature gravity

    CERN Document Server

    Liu, Yu-Xiao; Zhao, Zhen-Hua; Li, Hai-Tao

    2011-01-01

    We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schr\\"odinger equation with a volcano potential, and the other a P\\"oschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.

  10. Emergence and expansion of cosmic space as due to M0-branes

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Setare, Mohammad Reza, E-mail: rezakord@ipm.ir [Department of Science, University of Kurdistan, Campus of Bijar, Bijar (Iran, Islamic Republic of); Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Universita di Napoli Federico II, 80126, Naples (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, 80126, Naples (Italy); Gran Sasso Science Institute (INFN), Viale F. Crispi, 7, 67100, L’Aquila (Italy)

    2015-12-29

    Recently, Padmanabhan discussed that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region causes the accelerated expansion of the universe. The main question arising is: what is the origin of this inequality between the surface degrees of freedom and the bulk degrees of freedom? We answer this question in M-theory. In our model, first M0-branes are compactified on one circle and ND0-branes are created. Then ND0-branes join each other, grow, and form one D5-branes. Next, the D5-brane is compactified on two circles and our universe’s D3-brane, two D1-branes and some extra energies are produced. After that, one of the D1-branes, which is closer to the universe’s brane, gives its energy into it, and this leads to an increase in the difference between the numbers of degrees of freedom and the occurring inflation era. With the disappearance of this D1-brane, the number of degrees of freedom of boundary surface and bulk region become equal and inflation ends. At this stage, extra energies that are produced due to the compactification cause an expansion of the universe and deceleration epoch. Finally, another D1-brane dissolves in our universe’s brane, leads to an inequality between degrees of freedom, and there occurs a new phase of acceleration.

  11. Negative Branes, Supergroups and the Signature of Spacetime

    CERN Document Server

    Dijkgraaf, Robbert; Jefferson, Patrick; Vafa, Cumrun

    2016-01-01

    We study the realization of supergroup gauge theories using negative branes in string theory. We show that negative branes are intimately connected with the possibility of timelike compactification and exotic spacetime signatures previously studied by Hull. Isolated negative branes dynamically generate a change in spacetime signature near their worldvolumes, and are related by string dualities to a smooth M-theory geometry with closed timelike curves. Using negative D3 branes, we show that $SU(0|N)$ supergroup theories are holographically dual to an exotic variant of type IIB string theory on $dS_{3,2} \\times \\bar S^5$, for which the emergent dimensions are timelike. Using branes, mirror symmetry and Nekrasov's instanton calculus, all of which agree, we derive the Seiberg-Witten curve for $\\mathcal N=2 ~SU(N|M)$ gauge theories. Together with our exploration of holography and string dualities for negative branes, this suggests that supergroup gauge theories may be non-perturbatively well-defined objects, thoug...

  12. Hydro-elastic Complementarity in Black Branes at large D

    CERN Document Server

    Emparan, Roberto; Luna, Raimon; Suzuki, Ryotaku; Tanabe, Kentaro

    2016-01-01

    We obtain the effective theory for the non-linear dynamics of black branes---both neutral and charged, in asymptotically flat or Anti-deSitter spacetimes---to leading order in the inverse-dimensional expansion. We find that black branes evolve as viscous fluids, but when they settle down they are more naturally viewed as solutions of an elastic soap-bubble theory. The two views are complementary: the same variable is regarded in one case as the energy density of the fluid, in the other as the deformation of the elastic membrane. The large-D theory captures finite-wavelength phenomena beyond the conventional reach of hydrodynamics. For asymptotically flat charged black branes (either Reissner-Nordstrom or p-brane-charged black branes) it yields the non-linear evolution of the Gregory-Laflamme instability at large D and its endpoint at stable non-uniform black branes. For Reissner-Nordstrom AdS black branes we find that sound perturbations do not propagate (have purely imaginary frequency) when their wavelength...

  13. Mirror symmetry in the presence of branes

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Adrian

    2011-10-11

    This work deals with mirror symmetry for N=1 compactifications on compact Calabi-Yau threefolds with branes. The mayor tool is a combined deformation space for the Calabi-Yau and a hypersurface within it. Periods of this deformation space contain information about B-type branes within the hypersurface in addition to the usual closed string data. To study these periods we generalize techniques used in closed string mirror symmetry. We derive the Picard-Fuchs system and encode the information in extended toric polytopes. Solutions of the Picard-Fuchs equations give superpotentials for certain brane configurations. This is an efficient way to calculate superpotentials. The deformations we consider are massive for all branes with non trivial superpotential. Depending on a choice of a family of hypersurfaces, the superpotential of the effective low energy theory depends on different massive fields. A priori there is no reason for these fields to be lighter then other fields that are not included. We find however examples where the superpotential is nearly at. In these examples we use the Gauss-Manin connection on the combined deformation space to define an open string mirror map. We find instanton generated superpotentials of A-type branes. This gives predictions for Ooguri-Vafa invariants counting holomorphic disks that end on a Lagrangian brane on the Quintic. A second class of examples does not have preferred nearly massless deformations and different families of hypersurfaces can be used to calculate the same on-shell superpotential. We calculate examples of superpotentials for branes in Calabi-Yau manifolds with several moduli. The on-shell superpotentials are mapped to the mirror A-model to study the instanton expansion and to obtain predictions for disk invariants. The combined deformation spaces are equivalent to the quantum corrected Kaehler deformation spaces of certain non compact Calabi-Yau fourfolds. These fourfolds are fibrations of Calabi-Yau threefolds

  14. Brane-like singularities with no brane

    Energy Technology Data Exchange (ETDEWEB)

    Yurov, A.V., E-mail: artyom_yurov@mail.r [I. Kant Russian State University, Theoretical Physics Department, Al. Nevsky St. 14, Kaliningrad 236041 (Russian Federation)

    2010-05-17

    We use a method of linearization to study the emergence of the future cosmological singularity characterized by finite value of the cosmological radius. We uncover such singularities that keep Hubble parameter finite while making all higher derivatives of the scale factor (starting out from the a) diverge as the cosmological singularity is approached. Since such singularities has been obtained before in the brane world model we name them the 'brane-like' singularities. These singularities can occur during the expanding phase in usual Friedmann universe filled with both a self-acting, minimally coupled scalar field and a homogeneous tachyon field. We discover a new type of finite-time, future singularity which is different from type I-IV cosmological singularities in that it has the scale factor, pressure and density finite and nonzero. The generalization of w-singularity is obtained as well.

  15. BPS quantization of the five-brane

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Mathematics Inst.; Verlinde, E. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.]|[Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica; Verlinde, H. [Amsterdam Univ. (Netherlands). Inst. voor Theoretische Fysica]|[Princeton Univ., NJ (United States). Joseph Henry Labs.

    1997-02-17

    We give a unified description of all BPS states of M-theory compactified on T{sup 5} in terms of the five-brane. We compute the mass spectrum and degeneracies and find that the SO(5,5,Z) U-duality symmetry naturally arises as a T-duality by assuming that the world-volume theory of the five-brane itself is described by a string theory. We also consider the compactification on S{sup 1}/Z{sub 2} x T{sup 4}, and give a new explanation for its correspondence with heterotic string theory by exhibiting its dual equivalence to M-theory on K3 x S{sup 1}. (orig.).

  16. Gravitational backreaction of anti-D branes in the warped compactification

    CERN Document Server

    Koyama, K; Koyama, Kayoko; Koyama, Kazuya

    2005-01-01

    We derive a low-energy effective theory for gravity with anti-D branes, which are essential to get de Sitter solutions in the type IIB string warped compactification, by taking account of gravitational backreactions of anti-D branes. In order to see the effects of the self-gravity of anti-D branes, a simplified model is studied where a 5-dimensional anti-de Sitter ({\\it AdS}) spacetime is realized by the bulk cosmological constant and the 5-form flux, and anti-D branes are coupled to the 5-form field by Chern-Simon terms. The {\\it AdS} spacetime is truncated by introducing UV and IR cut-off branes like the Randall-Sundrum model. We derive an effective theory for gravity on the UV brane and reproduce the familiar result that the tensions of the anti-D branes give potentials suppressed by the forth-power of the warp factor at the location of the anti-D branes. However, in this simplified model, the potential energy never inflates the UV brane, although the anti-D-branes are inflating. The UV brane is dominated ...

  17. D-brane Deconstructions in IIB Orientifolds

    CERN Document Server

    Collinucci, Andres; Esole, Mboyo

    2009-01-01

    With model building applications in mind, we collect and develop basic techniques to analyze the landscape of D7-branes in type IIB compact Calabi-Yau orientifolds, in three different pictures: F-theory, the D7 worldvolume theory and D9-anti-D9 tachyon condensation. A significant complication is that consistent D7-branes in the presence of O7^- planes are generically singular, with singularities locally modeled by the Whitney Umbrella. This invalidates the standard formulae for charges, moduli space and flux lattice dimensions. We infer the correct formulae by comparison to F-theory and derive them independently and more generally from the tachyon picture, and relate these numbers to the closed string massless spectrum of the orientifold compactification in an interesting way. We furthermore give concrete recipes to explicitly and systematically construct nontrivial D-brane worldvolume flux vacua in arbitrary Calabi-Yau orientifolds, illustrate how to read off D-brane flux content, enhanced gauge groups and c...

  18. Supersymmetric and non-supersymmetric Seiberg-like dualities for gauged Wess–Zumino–Witten theories, realised on branes

    Directory of Open Access Journals (Sweden)

    E. Ireson

    2016-01-01

    Full Text Available In this work we extend the results of previous derivations of Seiberg-like dualities (level-rank duality between gauged Wess–Zumino–Witten theories. The arguments in use to identify a potential dual for the supersymmetric WZW theory based on the coset U(N+MkU(Nk can be extended to be applied to a wider variety of gauge groups, notably USp(2N+2M2kUSp(2N2k and SO(2N+2M2kSO(2N2k, which will be dealt with briefly. Most interestingly, non-supersymmetric versions of the latter theories can also be shown to have duals in a similar fashion. These results are supported by several pieces of evidence, string phenomenological interpretations of Seiberg duality, even in non-supersymmetric backgrounds, are helpful to justify the formulation, then, from field theory, quantities such as central charges or Witten indices are shown to match exactly. The stability of these non-supersymmetric models is also discussed and shown to be consistent.

  19. Random Matrices, Boundaries and Branes

    CERN Document Server

    Niedner, Benjamin

    2016-01-01

    This thesis is devoted to the application of random matrix theory to the study of random surfaces, both discrete and continuous; special emphasis is placed on surface boundaries and the associated boundary conditions in this formalism. In particular, using a multi-matrix integral with permutation symmetry, we are able to calculate the partition function of the Potts model on a random planar lattice with various boundary conditions imposed. We proceed to investigate the correspondence between the critical points in the phase diagram of this model and two-dimensional Liouville theory coupled to conformal field theories with global $\\mathcal{W}$-symmetry. In this context, each boundary condition can be interpreted as the description of a brane in a family of bosonic string backgrounds. This investigation suggests that a spectrum of initially distinct boundary conditions of a given system may become degenerate when the latter is placed on a random surface of bounded genus, effectively leaving a smaller set of ind...

  20. Brane cosmology in teleparallel gravity

    CERN Document Server

    Atazadeh, K

    2014-01-01

    We consider cosmology of brane-world scenario in the frame work of teleparallel gravity in that way matter is localized on the brane. We show that the cosmology of such branes is different from the standard cosmology in teleparallelism. In particular, we obtain a class of new solutions with a constant five-dimensional radius and cosmologically evolving brane in the context of constant torsion $f(T)$ gravity.

  1. P fluxes and exotic branes

    Science.gov (United States)

    Lombardo, Davide M.; Riccioni, Fabio; Risoli, Stefano

    2016-12-01

    We consider the N = 1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a {T}^6/[{Z}_2× {Z}_2] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  2. Recombination of Intersecting D-Branes and Cosmological Inflation

    CERN Document Server

    Gómez-Reino, Marta

    2002-01-01

    We consider the interactions between Dp-branes intersecting at an arbitrary number of angles in the context of type II string theory. For cosmology purposes we concentrate in the theory on R^{3,1} x T^6. Interpreting the distance between the branes as the inflaton field, the branes can intersect at most at two angles in the compact space. If the configuration is non-supersymmetric we will have an interbrane potential that provides an effective cosmological inflationary epoch at the four dimensional intersection between the branes. The end of inflation occurs when the interbrane distance becomes small compared with the string scale, where a tachyon develops triggering the recombination of the branes. We study this recombination due to tachyon instabilities and we find the possibility for the final configuration to be again branes intersecting at two angles. This preserves the interesting features that are present in the intersecting brane models from the string model building point of view also after the end o...

  3. Accelerated D-Dimensional Compactified Universe in Gauss-Bonnet-Dilatonic Scalar Gravity from D-Brane/M-Theory

    Institute of Scientific and Technical Information of China (English)

    EL-NABULSI Ahmad Rami

    2008-01-01

    @@ We discuss a particular d-dimensional Gauss Bonnet-dilatonic universe compactified on S1 motivated from M-theory. We examine the time-evolution of the dynamical equations where many interesting consequences are revealed and discussed in some details. Under reasonable conditions, the discussed model can provide a mechanism to realize, in higher-dimensions (d>4), the accelerated expansion of the universe in the presence of dark energy, without the presence of phantom energy and without the contraction of some internal dimension.

  4. Collective excitations of massive flavor branes

    CERN Document Server

    Itsios, Georgios; Ramallo, Alfonso V

    2016-01-01

    We study the intersections of two sets of D-branes of different dimensionalities. This configuration is dual to a supersymmetric gauge theory with flavor hypermultiplets in the fundamental representation of the gauge group which live on the defect of the unflavored theory determined by the directions common to the two types of branes. One set of branes is dual to the color degrees of freedom, while the other set adds flavor to the system. We work in the quenched approximation, i.e., where the flavor branes are considered as probes, and focus specifically on the case in which the quarks are massive. We study the thermodynamics and the speeds of first and zero sound at zero temperature and non-vanishing chemical potential. We show that the system undergoes a quantum phase transition when the chemical potential approaches its minimal value and we obtain the corresponding non-relativistic critical exponents that characterize its critical behavior. In the case of (2+1)-dimensional intersections, we further study a...

  5. Collective excitations of massive flavor branes

    Science.gov (United States)

    Itsios, Georgios; Jokela, Niko; Ramallo, Alfonso V.

    2016-08-01

    We study the intersections of two sets of D-branes of different dimensionalities. This configuration is dual to a supersymmetric gauge theory with flavor hypermultiplets in the fundamental representation of the gauge group which live on the defect of the unflavored theory determined by the directions common to the two types of branes. One set of branes is dual to the color degrees of freedom, while the other set adds flavor to the system. We work in the quenched approximation, i.e., where the flavor branes are considered as probes, and focus specifically on the case in which the quarks are massive. We study the thermodynamics and the speeds of first and zero sound at zero temperature and non-vanishing chemical potential. We show that the system undergoes a quantum phase transition when the chemical potential approaches its minimal value and we obtain the corresponding non-relativistic critical exponents that characterize its critical behavior. In the case of (2 + 1)-dimensional intersections, we further study alternative quantization and the zero sound of the resulting anyonic fluid. We finally extend these results to non-zero temperature and magnetic field and compute the diffusion constant in the hydrodynamic regime. The numerical results we find match the predictions by the Einstein relation.

  6. Superconformal indices and M2-branes

    Science.gov (United States)

    Eager, Richard; Schmude, Johannes

    2015-12-01

    We derive the superconformal index of the world-volume theory on M2-branes probing the cone over an arbitrary Sasaki-Einstein seven-manifold. The index is expressed in terms of the cohomology groups of the cone. We match our supergravity results with known results from gauge theory. Along the way we derive the spectrum of short Kaluza-Klein multiplets on generic Sasaki-Einstein seven-manifolds.

  7. Violation of cosmic censorship in dynamical p -brane systems

    Science.gov (United States)

    Maeda, Kengo; Uzawa, Kunihito

    2016-02-01

    We study the cosmic censorship of dynamical p -brane systems in a D -dimensional background. This is the generalization of the analysis in the Einstein-Maxwell-dilaton theory, which was discussed by Horne and Horowitz [Phys. Rev. D 48, R5457 (1993)]. We show that a timelike curvature singularity generically appears from an asymptotic region in the time evolution of the p -brane solution. Since we can set regular and smooth initial data in a dynamical M5-brane system in 11-dimensional supergravity, this implies a violation of cosmic censorship.

  8. Lorentz violation in brane cosmology, accelerated expansion and fundamental constants

    CERN Document Server

    Ahmadi, F; Sepangi, H R

    2006-01-01

    The notion of Lorentz violation in four dimensions is extended to a 5-dimensional brane-world scenario by utilizing a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane. The cosmological consequences of this theory consisting of the time variation in the gravitational coupling $G$ and cosmological term $\\Lambda_4$ are explored. The brane evolution is addressed by studying the generalized Friedmann and Raychaudhuri equations. The behavior of the expansion scale factor is then considered for different possible scenarios where the bulk cosmological constant is zero, positive or negative.

  9. A new approach to the classical and quantum dynamics of branes

    Science.gov (United States)

    Pavšič, Matej

    2016-07-01

    It is shown that the Dirac-Nambu-Goto brane can be described as a point particle in an infinite-dimensional brane space with a particular metric. This suggests a generalization to brane spaces with arbitrary metric, including the “flat” metric. Then quantization of such a system is straightforward: it is just like quantization of a bunch of noninteracting particles. This leads us to a system of a continuous set of scalar fields. For a particular choice of the metric in the space of fields we find that the classical Dirac-Nambu-Goto brane theory arises as an effective theory of such an underlying quantum field theory. Quantization of branes is important for the brane world scenarios, and thus for “quantum gravity.”

  10. Born–Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-07-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born–Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge

  11. Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields

    CERN Document Server

    Fiorenza, Domenico; Schreiber, Urs

    2013-01-01

    We formalize higher dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type sigma-model branes (open brane ending on background brane) are encoded precisely in (super-) L-infinity-extension theory and how the resulting "extended (super-)spacetimes" formalize spacetimes containing sigma model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super p-brane spectrum of superstring/M-theory is realized this way, including the pure sigma-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional spacetime with an M2-brane condensate turns out to be the ...

  12. Holographic thermalization from nonrelativistic branes

    Science.gov (United States)

    Roychowdhury, Dibakar

    2016-05-01

    In this paper, based on the fundamental principles of gauge/gravity duality and considering a global quench, we probe the physics of thermalization for certain special classes of strongly coupled nonrelativistic quantum field theories that are dual to an asymptotically Schrödinger D p brane space time. In our analysis, we note that during the prelocal stages of the thermal equilibrium the entanglement entropy has a faster growth in time compared to its relativistic cousin. However, it shows a linear growth during the postlocal stages of thermal equilibrium where the so-called tsunami velocity associated with the linear growth of the entanglement entropy saturates to that of its value corresponding to the relativistic scenario. Finally, we explore the saturation region and it turns out that one must constraint certain parameters of the theory in a specific way in order to have discontinuous transitions at the point of saturation.

  13. D5-brane boundary reflection factors

    CERN Document Server

    Correa, Diego H

    2013-01-01

    We compute the strong coupling limit of the boundary reflection factor for excitations on open strings attached to various kinds of D5-branes that probe AdS5 x S5. We study the crossing equation, which constrains the boundary reflection factor, and propose that some solutions will give the boundary reflection factors for all values of the coupling. Our proposal passes various checks in the strong coupling limit by comparison with diverse explicit string theory computations. In some of the cases we consider, the D5-branes correspond to 1/2 BPS Wilson loops in the k-th rank antisymmetric representation of the dual field theory. In the other cases they correspond in the dual field theory to the addition of a fundamental hypermultiplet in a defect.

  14. de Sitter Thin Brane Model

    CERN Document Server

    Nishi, Masato

    2015-01-01

    We discuss the large mass hierarchy problem in a braneworld model which represents our acceleratively expanding universe. The RS model with warped one extra dimension added to flat 4-dimensional space-time cannot describe our expanding universe. Here, we study instead the de Sitter thin brane model. This is described by the same action as that for the RS model, but the 4-dimensional space-time on the branes is $\\rm dS_4$. We study the model for both the cases of positive 5-dimensional cosmological constant $\\Lambda_5$ and negative one. In the positive $\\Lambda_5$ case, the 4-dimensional large hierarchy necessitates a 5-dimensional large hierarchy, and we cannot get a natural explanation. On the other hand, in the negative $\\Lambda_5$ case, the large hierarchy is naturally realized in the 5-dimensional theory in the same manner as in the RS model. Moreover, another large hierarchy between the Hubble parameter and the Planck scale is realized by the $\\cal{O}\\rm (10^2)$ hierarchy of the 5-dimensional quantities....

  15. De Sitter thin brane model

    Science.gov (United States)

    Nishi, Masato

    2016-07-01

    We discuss the large mass hierarchy problem in a braneworld model which represents our acceleratively expanding universe. The Randall-Sundrum (RS) model with one extra warped dimension added to a flat four-dimensional space-time cannot describe our expanding universe. Here, we study instead the de Sitter thin brane model. This is described by the same action as that for the RS model, but the four-dimensional space-time on the branes is dS_4. We study the model for both the cases of positive five-dimensional cosmological constant Λ_5 and a negative one. In the positive Λ_5 case, the four-dimensional large hierarchy necessitates a five-dimensional large hierarchy, and we cannot get a natural explanation. On the other hand, in the negative Λ_5 case, the large hierarchy is naturally realized in the five-dimensional theory in the same manner as in the RS model. Moreover, another large hierarchy between the Hubble parameter and the Planck scale is realized by the O(10^2) hierarchy of the five-dimensional quantities. Finally, we find that the lightest mass of the massive Kaluza-Klein modes and the intervals of the mass spectrum are of order 10^2 GeV, which are the same as in the RS case and do not depend on the value of the Hubble parameter.

  16. $P$ fluxes and exotic branes

    CERN Document Server

    Lombardo, Davide M; Risoli, Stefano

    2016-01-01

    We consider the ${\\cal N}=1$ superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of $P$ fluxes, that are related by T-duality transformations to the S-dual of the $Q$ flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a $T^6/[\\mathbb{Z}_2 \\times \\mathbb{Z}_2 ]$ orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the $P$ flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string t...

  17. Differential K-characters and D-branes

    CERN Document Server

    Ruffino, Fabio Ferrari

    2016-01-01

    Starting from the definition of Cheeger-Simons K-character, we show how to describe D-brane world-volumes, the Wess-Zumino action and topological D-brane charges within the K-theoretical framework in type II superstring theory. We stress in particular how each feature of the old cohomological classification can be reproduced using the K-theoretical language.

  18. D0-brane description of the charged black hole

    CERN Document Server

    Kato, Y; Sugamoto, A; Kato, Yuriko; Nojiri, Shin'ichi; Sugamoto, Akio

    1998-01-01

    The charged black hole is considered from the viewpoint of D0-brane in the Matrix theory. It can be obtained from the Kaluza-Klein mechanism by boosting the Schwarzschild black hole in a circle, which is the compactified one dimensional space. Especially, how the extremal limit is realized by the Boltzmann gas of D0-brane, has been shown. In the course of our discussion, the Virial theorem for the statistical average plays an important role.

  19. Topological Insulators and Superconductors from D-branes

    CERN Document Server

    Ryu, Shinsei

    2010-01-01

    Realization of topological insulators (TIs) and superconductors (TSCs), such as the quantum spin Hall effect and the Z_2 topological insulator, in terms of D-branes in string theory is proposed. We establish a one-to-one correspondence between the K-theory classification of TIs/TSCs and D-brane charges. The string theory realization of TIs and TSCs comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature. This sheds light on TIs and TSCs beyond non-interacting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions.

  20. Dynamics of warped flux compactifications with backreacting anti-branes

    CERN Document Server

    Junghans, Daniel

    2014-01-01

    We revisit the effective low-energy dynamics of the volume modulus in warped flux compactifications with anti-D3-branes in order to analyze the prospects for meta-stable de Sitter vacua and brane inflation along the lines of KKLT/KKLMMT. At the level of the 10d supergravity solution, anti-branes in flux backgrounds with opposite charge are known to source singular terms in the energy densities of the bulk fluxes, which led to a debate on the consistency of such constructions in string theory. A straightforward yet non-trivial check of the singular solution is to verify that its dimensional reduction in the large-volume limit reproduces the 4d low-energy dynamics expected from known results where the anti-branes are treated as a probe. Taking into account the anti-brane backreaction in the effective scalar potential, we find that both the volume scaling and the coefficient of the anti-brane uplift term are in exact agreement with the probe potential if the singular fluxes satisfy a certain near-brane boundary ...

  1. Unstoppable brane-flux decay of $\\overline{\\text{D6}}$ branes

    CERN Document Server

    Danielsson, U H; Van Riet, T

    2016-01-01

    We investigate $p$ $\\overline{\\text{D6}}$ branes inside a flux throat that carries $K \\times M$ D6 charges with $K$ the 3-form flux quantum and $M$ the Romans mass. We find that within the calculable supergravity regime where $g_s p$ is large, the $\\overline{\\text{D6}}$ branes annihilate immediately against the fluxes despite the existence of a metastable state at small $p/M$ in the probe approximation. The crucial property that causes this naive conflict with effective field theory is a singularity in the 3-form flux, which we cut off at string scale. Our result explains the absence of regular solutions at finite temperature and suggests there should be a smooth time-dependent solution. We also discuss the qualitative differences between $\\overline{\\text{D6}}$ branes and $\\overline{\\text{D3}}$ branes, which makes it a priori not obvious to conclude the same instability for $\\overline{\\text{D3}}$ branes.

  2. Brane polarization is no cure for tachyons

    CERN Document Server

    Bena, Iosif

    2015-01-01

    Anti-M2 and anti-D3 branes placed in regions with charges dissolved in fluxes have a tachyon in their near-horizon region, which causes these branes to repel each other. If the branes are on the Coulomb branch this tachyon gives rise to a runaway behavior, but when the branes are polarized into five-branes this tachyon only appears to lower the energy of the polarized branes, without affecting its stability. We analyze brane polarization in the presence of a brane-brane-repelling tachyon and show that when the branes are polarized along the direction of the tachyon the polarized shell is unstable. This implies that tachyons cannot be cured by brane polarization and indicates that, at least in a certain regime of parameters, anti-D3 branes polarized into NS5 branes at the bottom of the Klebanov-Strassler solution have an instability.

  3. Intersecting Brane Worlds

    CERN Document Server

    Aldazabal, G; Ibáñez, L E; Rabadan, Raul; Uranga, Angel M

    2001-01-01

    It is known that chiral fermions naturally appear at certain intersections of branes at angles. Motivated by this fact, we propose a string scenario in which different standard model gauge interactions propagate on different (intersecting) brane worlds, partially wrapped in the extra dimensions. Quarks and leptons live at brane intersections, and are thus located at different positions in the extra dimensions. Replication of families follows naturally from the fact that the branes generically intersect at several points. Gauge and Yukawa couplings can be computed in terms of the compactification radii. Hierarchical Yukawa couplings appear naturally, since amplitudes involving three different intersections are proportional to exp(-A_{ijk}), where A_{ijk} is the area of a string world-sheet extending among the intersections. The models are non-supersymmetric but the string scale may be lowered down to 1-10 TeV. The proton is however stable due to a set of discrete symmetries arising from world-sheet selection r...

  4. Microstates of D1–D5(-P black holes, as interacting D-branes

    Directory of Open Access Journals (Sweden)

    Takeshi Morita

    2015-07-01

    Full Text Available In our previous study (Morita et al., 2014 [1], we figured out that the thermodynamics of the near extremal black p-branes can be explained as the collective motions of gravitationally interacting elementary p-branes (the p-soup proposal. We test this proposal in the near-extremal D1–D5 and D1–D5-P black holes and show that their thermodynamics also can be explained in a similar fashion, i.e. via the collective motions of the interacting elementary D1-branes and D5-branes (and waves. It may imply that the microscopic origins of these intersecting black branes and the black p-brane are explained in the unified picture. We also argue the relation between the p-soup proposal and the conformal field theory calculations of the D1–D5(-P black holes in superstring theory.

  5. Microstates of D1-D5(-P) black holes as interacting D-branes

    CERN Document Server

    Morita, Takeshi

    2014-01-01

    In our previous study [1] (1311.6540), we figured out that the thermodynamics of the near extremal black $p$-branes can be explained as the collective motions of gravitationally interacting elementary $p$-branes (the $p$-soup proposal). We test this proposal in the near-extremal D1-D5 and D1-D5-P black holes and show that their thermodynamics also can be explained in a similar fashion, i.e. via the collective motions of the interacting elementary D1-branes and D5-branes (and waves). It may imply that the microscopic origins of these intersecting black branes and the black $p$-brane are explained in the unified picture. We also argue the relation between the $p$-soup proposal and the conformal field theory calculations of the D1-D5(-P) black holes in superstring theory.

  6. Microstates of D1-D5(-P) black holes, as interacting D-branes

    Science.gov (United States)

    Morita, Takeshi; Shiba, Shotaro

    2015-07-01

    In our previous study (Morita et al., 2014 [1]), we figured out that the thermodynamics of the near extremal black p-branes can be explained as the collective motions of gravitationally interacting elementary p-branes (the p-soup proposal). We test this proposal in the near-extremal D1-D5 and D1-D5-P black holes and show that their thermodynamics also can be explained in a similar fashion, i.e. via the collective motions of the interacting elementary D1-branes and D5-branes (and waves). It may imply that the microscopic origins of these intersecting black branes and the black p-brane are explained in the unified picture. We also argue the relation between the p-soup proposal and the conformal field theory calculations of the D1-D5(-P) black holes in superstring theory.

  7. Microstates of D1–D5(-P) black holes, as interacting D-branes

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Takeshi, E-mail: morita.takeshi@shizuoka.ac.jp [Department of Physics, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Shiba, Shotaro, E-mail: sshiba@cc.kyoto-su.ac.jp [Maskawa Institute for Science and Culture, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555 (Japan)

    2015-07-30

    In our previous study (Morita et al., 2014 [1]), we figured out that the thermodynamics of the near extremal black p-branes can be explained as the collective motions of gravitationally interacting elementary p-branes (the p-soup proposal). We test this proposal in the near-extremal D1–D5 and D1–D5-P black holes and show that their thermodynamics also can be explained in a similar fashion, i.e. via the collective motions of the interacting elementary D1-branes and D5-branes (and waves). It may imply that the microscopic origins of these intersecting black branes and the black p-brane are explained in the unified picture. We also argue the relation between the p-soup proposal and the conformal field theory calculations of the D1–D5(-P) black holes in superstring theory.

  8. Holography of D-Brane Reconnection

    CERN Document Server

    Berg, M; Samtleben, H; Berg, Marcus; Hohm, Olaf; Samtleben, Henning

    2007-01-01

    Gukov, Martinec, Moore and Strominger found that the D1-D5-D5' system with the D5-D5' angle at 45 degrees admits a deformation "rho" preserving supersymmetry. Under this deformation, the D5-branes and D5'-branes reconnect along a single special Lagrangian manifold. We construct the near-horizon limit of this brane setup (for which no supergravity solution is currently known), imposing the requisite symmetries perturbatively in the deformation rho. Reducing to the three-dimensional effective gauged supergravity, we compute the scalar potential and verify the presence of a deformation with the expected properties. We compute the conformal dimensions as functions of rho. This spectrum naturally organizes into N=3 supermultiplets, corresponding to the 3/16 preserved by the brane system. We give some remarks on the symmetric orbifold CFT for Q_D5=Q_D5', outline the computation of rho-deformed correlators in this theory, and probe computations in our rho-deformed background.

  9. Chaotic Cascades for D-branes on Singularities

    CERN Document Server

    Franco, S; Herzog, C; Walcher, J; Franco, Sebastian; He, Yang-Hui; Herzog, Christopher; Walcher, Johannes

    2004-01-01

    We briefly review our work on the cascading renormalization group flows for gauge theories on D-branes probing Calabi-Yau singularities. Such RG flows are sometimes chaotic and exhibit duality walls. We construct supergravity solutions dual to logarithmic flows for these theories. We make new observations about a surface of conformal theories and more complicated supergravity solutions.

  10. Freezing E3-brane instantons with fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M.; Martucci, L. [Dipartimento di Fisica, Universita di Roma Tor Vergata (Italy); I.N.F.N., Sezione di Roma Tor Vergata (Italy); Collinucci, A. [Theory Group, Physics Department, CERN, Geneva (Switzerland); Physique Theorique et Mathematique Universite Libre de Bruxelles (Belgium)

    2012-07-15

    E3-instantons that generate non-perturbative superpotentials in IIB N = 1 compactifications have a much more frequent occurrence than currently believed. Worldvolume fluxes will typically lift the E3-brane geometric moduli and their fermionic superpartners, leaving only the two required universal fermionic zero-modes. We consistently incorporate SL(2,Z) monodromies and world-volume fluxes in the effective theory of the E3-brane fermions and study the resulting zero modes spectrum, highlighting the relation between F-theory and perturbative IIB results. This leads us to a IIB derivation of the index for generation of superpotential terms, which reproduces and generalizes available results. Furthermore, we show how E3 worldvolume fluxes can be explicitly constructed in a one-modulus compactification, such that the instanton has exactly two fermonic zero-modes. This construction is readily applicable to numerous scenarios. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Born-Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    Science.gov (United States)

    Sepehri, Alireza

    2016-07-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born-Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between

  12. Covariant approach of perturbations in Lovelock type brane gravity

    CERN Document Server

    Norma, Bagatella-Flores; Miguel, Cruz; Efrain, Rojas

    2016-01-01

    We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type branes probing a Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field $\\Phi$. Whithin this framework, we analyse the stability of spherically symmetric branes with a de Sitter geometry floating in a flat Minkowski spacetime where we find that the Jacobi equation specializes to a Klein-Gordon equation for a scalar field possessing a tachyonic mass. This fact shows that, to some extent, these type of branes share the symmetries of the usual Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in the Lovelock type brane gravity.

  13. Black Branes in a Box: Hydrodynamics, Stability, and Criticality

    CERN Document Server

    Emparan, Roberto

    2012-01-01

    We study the effective hydrodynamics of neutral black branes enclosed in a finite cylindrical cavity with Dirichlet boundary conditions. We focus on how the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing the metric at the cavity wall increases the rigidity of the black brane by hindering gradients of the redshift on the wall. In the effective fluid, this is reflected in the growth of the squared speed of sound. As a consequence, when the cavity is smaller than a critical radius the black brane becomes dynamically stable. The correlation with the change in thermodynamic stability is transparent in our approach. We compute the bulk and shear viscosities of the black brane and find that they do not run with R. We find mean-field theory critical exponents near the critical point.

  14. Generalized complex geometry, generalized branes and the Hitchin sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Zucchini, Roberto E-mail: zucchinir@bo.infn.it

    2005-03-01

    Hitchin's generalized complex geometry has been shown to be relevant in compactifications of superstring theory with fluxes and is expected to lead to a deeper understanding of mirror symmetry. Gualtieri's notion of generalized complex submanifold seems to be a natural candidate for the description of branes in this context. Recently, we introduced a Batalin-Vilkovisky field theoretic realization of generalized complex geometry, the Hitchin sigma model, extending the well known Poisson sigma model. In this paper, exploiting Gualtieri's formalism, we incorporate branes into the model. A detailed study of the boundary conditions obeyed by the world sheet fields is provided. Finally, it is found that, when branes are present, the classical Batalin-Vilkovisky cohomology contains an extra sector that is related non trivially to a novel cohomology associated with the branes as generalized complex submanifolds. (author)

  15. Non-Singular Solutions for S-Branes

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.

    2004-03-03

    Exact, non-singular, time-dependent solutions of Maxwell-Einstein gravity with and without dilatons are constructed by double Wick rotating a variety of static, axisymmetric solutions. This procedure transforms arrays of charged or neutral black holes into s-brane (spacelike brane) solutions, i.e. extended, short-lived spacelike defects. Along the way, new static solutions corresponding to arrays of alternating-charge Reissner-Nordstrom black holes, as well as their dilatomic generalizations, are found. their double Wick rotation yields s-brane solutions which are periodic in imaginary time and potential large-N duals for the creation/decay of unstable D-branes in string theory.

  16. Brane Effective Actions, Kappa-Symmetry and Applications

    Directory of Open Access Journals (Sweden)

    Joan Simón

    2012-02-01

    Full Text Available This is a review on brane effective actions, their symmetries and some of their applications. Its first part covers the Green–Schwarz formulation of single M- and D-brane effective actions focusing on kinematical aspects: the identification of their degrees of freedom, the importance of world volume diffeomorphisms and kappa symmetry to achieve manifest spacetime covariance and supersymmetry, and the explicit construction of such actions in arbitrary on-shell supergravity backgrounds. Its second part deals with applications. First, the use of kappa symmetry to determine supersymmetric world volume solitons. This includes their explicit construction in flat and curved backgrounds, their interpretation as Bogomol’nyi–Prasad–Sommerfield (BPS states carrying (topological charges in the supersymmetry algebra and the connection between supersymmetry and Hamiltonian BPS bounds. When available, I emphasise the use of these solitons as constituents in microscopic models of black holes. Second, the use of probe approximations to infer about the non-trivial dynamics of strongly-coupled gauge theories using the anti de Sitter/conformal field theory (AdS/CFT correspondence. This includes expectation values of Wilson loop operators, spectrum information and the general use of D-brane probes to approximate the dynamics of systems with small number of degrees of freedom interacting with larger systems allowing a dual gravitational description. Its final part briefly discusses effective actions for N D-branes and M2-branes. This includes both Super-Yang-Mills theories, their higher-order corrections and partial results in covariantising these couplings to curved backgrounds, and the more recent supersymmetric Chern–Simons matter theories describing M2-branes using field theory, brane constructions and 3-algebra considerations.

  17. Gravitational Forces on the Branes

    CERN Document Server

    Arnowitt, R L

    2005-01-01

    We examine the gravitational forces in a brane-world scenario felt by point particles on two 3-branes bounding a 5-dimensional AdS space with $S^{1}/Z_2$ symmetry. The particles are treated as perturbations on the vacuum metric and coordinate conditions are chosen so that no brane bending effects occur. We make an ADM type decomposition of the metric tensor and solve Einstein's equations to linear order in the static limit. While no stabilization mechanism is assumed, all the 5D Einstein equations are solved and are seen to have a consistent solution. We find that Newton's law is reproduced on the Planck brane at the origin while particles on the TeV brane a distance $y_2$ from the origin experience an attractive force that has a growing exponential dependence on the brane position.

  18. Seiberg duality for Chern-Simons quivers and D-brane mutations

    Science.gov (United States)

    Closset, Cyril

    2012-03-01

    Chern-Simons quivers for M2-branes at Calabi-Yau singularities are best understood as the low energy theory of D2-branes on a dual type IIA background. We show how the D2-brane point of view naturally leads to three dimensional Seiberg dualities for Chern-Simons quivers with chiral matter content: They arise from a change of brane basis (or mutation), in complete analogy with the better known Seiberg dualities for D3-brane quivers. This perspective reproduces the known rules for Seiberg dualities in Chern-Simons-Yang-Mills theories with unitary gauge groups. We provide explicit examples of dual theories for the quiver dual to the {Y^{{p,q}}}left( {mathbb{C}{mathbb{P}^{{2}}}} right) geometries. We also comment on the string theory derivation of CS quivers dual to massive type IIA geometries.

  19. Seiberg duality for Chern-Simons quivers and D-brane mutations

    CERN Document Server

    Closset, Cyril

    2012-01-01

    Chern-Simons quivers for M2-branes at Calabi-Yau singularities are best understood as the low energy theory of D2-branes on a dual type IIA background. We show how the D2-brane point of view naturally leads to three dimensional Seiberg dualities for Chern-Simons quivers with chiral matter content: They arise from a change of brane basis (or mutation), in complete analogy with the better known Seiberg dualities for D3-brane quivers. This perspective reproduces the known rules for Seiberg dualities in Chern-Simons-Yang-Mills theories with unitary gauge groups. We provide explicit examples of dual theories for the quiver dual to the Y^{p,q}(CP^2) geometries. We also comment on the string theory derivation of CS quivers dual to massive type IIA geometries.

  20. Shortcuts in cosmological branes

    Science.gov (United States)

    Abdalla, Elcio; Casali, Adenauer G.; Cuadros-Melgar, Bertha

    2004-02-01

    We consider a dynamical membrane world in a space-time with scalar bulk matter described by domain walls, as well as a dynamical membrane world in empty Anti de Sitter space-time. Using the solutions to Einstein equations and boundary conditions we investigate the possibility of having shortcuts for gravitons leaving the membrane and returning subsequently. In comparison with photons following a geodesic inside the brane we verify that shortcuts exist. For some Universes they are small, but sometimes are quite effective. In the case of matter branes, we argue that at times just before nucleosynthesis the effect is sufficiently large to provide corrections to the inflationary scenario, especially as concerning the horizon problem. This work has been supported by Fundca~o de Amparo à Pesquisa do Estado de Sa~o Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

  1. More Ricci-flat branes

    CERN Document Server

    Figueroa-O'Farrill, J M

    1999-01-01

    Certain supergravity solutions (including domain walls and the magnetic fivebrane) have recently been generalised by Brecher and Perry by relaxing the condition that the brane worldvolume be flat. In this way they obtain examples in which the brane worldvolume is a static spacetime admitting parallel spinors. In this note we simply point out that the restriction to static spacetimes is unnecessary, and in this way exhibit solutions where the brane worldvolume is an indecomposable Ricci-flat lorentzian manifold admitting parallel spinors. We discuss more Ricci-flat fivebranes and domain walls, as well as new Ricci-flat D3-branes.

  2. Brans-Dicke brane cosmology

    CERN Document Server

    Mendes, L E; Mendes, Luis E.; Mazumdar, Anupam

    2001-01-01

    A five dimensional brane cosmology with non-minimally coupled scalar field to gravity has been considered in a Jordan-Brans-Dicke frame. We derive an effective four dimensional field equations on a 3+1 dimensional brane where the fifth dimension has been assumed to have an orbifold symmetry. We have noticed that the evolution equation for the matter component stuck to the brane is non-trivially coupled to the scalar field living on the brane and the bulk. Finally we discuss some cosmological consequences of this set-up.

  3. Curved branes with regular support

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universites, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, ITP, Bern (Switzerland); Cotsakis, Spiros; Klaoudatou, Ifigeneia [American University of the Middle East, Department of Mathematics, P. O. Box 220, Dasman (Kuwait)

    2016-09-15

    We study spacetime singularities in a general five-dimensional braneworld with curved branes satisfying four-dimensional maximal symmetry. The bulk is supported by an analog of perfect fluid with the time replaced by the extra coordinate. We show that contrary to the existence of finite-distance singularities from the brane location in any solution with flat (Minkowski) branes, in the case of curved branes there are singularity-free solutions for a range of equations of state compatible with the null energy condition. (orig.)

  4. F-brane Dynamics

    CERN Document Server

    Linch, William D

    2016-01-01

    We generalize the current algebra of constraints of U-duality-covariant critical superstrings to include the generator responsible for the dynamics of the fundamental brane. This allows us to define $\\kappa$ symmetry and to write a worldvolume action in Hamiltonian form that is manifestly supersymmetric in the target space. The Lagrangian form of this action is generally covariant, but the worldvolume metric has fewer components than expected.

  5. 'Insightful D-branes'

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Gary; /UC, Santa Barbara; Lawrence, Albion; /Brandeis U. /Santa Barbara, KITP; Silverstein, Eva; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP

    2010-08-26

    We study a simple model of a black hole in AdS and obtain a holographic description of the region inside the horizon. A key role is played by the dynamics of the scalar fields in the dual gauge theory. This leads to a proposal for a dual description of D-branes falling through the horizon of any AdS black hole. The proposal uses a field-dependent time reparameterization in the field theory. We relate this reparametrization to various gauge invariances of the theory. Finally, we speculate on information loss and the black hole singularity in this context.

  6. Gravitational resonances on f(R)-brane

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hao; Gu, Bao-Min [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China); Zhong, Yuan [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China); Universitat Autonoma de Barcelona, IFAE, Bellaterra, Barcelona (Spain); Liu, Yu-Xiao [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China); Lanzhou University, Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou (China)

    2016-04-15

    In this paper, we investigate various f(R)-brane models and compare their gravitational resonance structures with the corresponding general relativity (GR)-branes. Starting from some known GR-brane solutions, we derive thick f(R)-brane solutions such that the metric, scalar field, and scalar potential coincide with those of the corresponding GR-branes.We find that for the branes generated by a single or several canonical scalar fields, there is no obvious distinction between the GR-branes and the corresponding f(R)-branes in terms of gravitational resonance structure. Then we discuss the branes generated by a K-field. In this case, there could exist huge differences between GR-branes and f(R)-branes. (orig.)

  7. F0 fluxbranes, F-walls and new brane worlds

    CERN Document Server

    Clément, G; Clement, Gerard; Gal'tsov, Dmitri

    2002-01-01

    We complete the list of fluxbrane solutions in classical supergravities introducing Melvin type space-times supported by antisymmetric forms of rank $D-1$ and their pseudoscalar duals. In IIB theory these solutions belong to the same family as the seven-brane and D-instanton. In current notation, a fluxbrane supported by the D-1 form is an F0 brane, its euclidean continuation is a cylindrical background which ``interacts'' with the pointlike instanton. The general F0 brane can have a transverse space S_k times R^{(D-k-2)} with 1 <= k <= D-2. For k=1 we find the complete solution containing four parameters, three of them associated with pointlike singularities on the Melvin-type background. The S-dual to the F0 brane in ten dimensions is the F8 fluxbrane of codimension one, or F-wall, similar fluxbranes exist in any dimensions if an appropriate form field is present. F-walls contain naked singularities unless one introduces source branes. In such a way one obtains new brane-world type solutions with two ...

  8. Are there ghosts in the self-accelerating brane universe?

    CERN Document Server

    Koyama, K

    2005-01-01

    We study gravitational perturbations about a de Sitter brane with the induced 4D Einstein-Hilbert term, in a 5D Minkowski spacetime. We consider solutions that include a self-accelerating univese, where the accelerating expansion of the universe is realized without introducing a cosmological constant on the brane. We show that in the self-accelerating brane universe without matter fields, the spin-2 graviton has mass $m^2=2H^2$ and there are no helicity-0 excitations, due to the existence of a symmetry for perturbations, which is the same gauge symmetry as in the 4D Pauli-Fierz massive gravity theory with mass $M^2=2H^2$. If we introduce a cosmological constant on the brane, the symmetry breaks down. Then there arises a spin-0 perturbation sourced by the fluctuation of the brane and the spin-2 graviton has mass in the range $0 < m^2 < 2H^2$. Although the spin-0 perturbation is healthy, the spin-2 graviton acquires a helicity-0 excitation that is a ghost. This implies that the de Sitter brane with a true...

  9. Five-dimensional Nernst branes from special geometry

    Science.gov (United States)

    Dempster, P.; Errington, D.; Gutowski, J.; Mohaupt, T.

    2016-11-01

    We construct Nernst brane solutions, that is black branes with zero entropy density in the extremal limit, of FI-gauged minimal five-dimensional supergravity coupled to an arbitrary number of vector multiplets. While the scalars take specific constant values and dynamically determine the value of the cosmological constant in terms of the FI-parameters, the metric takes the form of a boosted AdS Schwarzschild black brane. This metric can be brought to the Carter-Novotný-Horský form that has previously been observed to occur in certain limits of boosted D3-branes. By dimensional reduction to four dimensions we recover the four-dimensional Nernst branes of arXiv:1501.07863 and show how the five-dimensional lift resolves all their UV singularities. The dynamics of the compactification circle, which expands both in the UV and in the IR, plays a crucial role. At asymptotic infinity, the curvature singularity of the four-dimensional metric and the run-away behaviour of the four-dimensional scalar combine in such a way that the lifted solution becomes asymptotic to AdS5. Moreover, the existence of a finite chemical potential in four dimensions is related to fact that the compactification circle has a finite minimal value. While it is not clear immediately how to embed our solutions into string theory, we argue that the same type of dictionary as proposed for boosted D3-branes should apply, although with a lower amount of supersymmetry.

  10. Six-dimensional origin of gravity mediated brane to brane supersymmetry breaking

    CERN Document Server

    Diamandis, G A; Kouroumalou, P; Lahanas, A B

    2013-01-01

    Four dimensional supergravities may be the right framework to describe particle physics at low energies. Its connection to the underlying string theory can be implemented through higher dimensional supergravities which bear special characteristics. Their reduction to four dimensions breaks supersymmetry whose magnitude depends both on the compactifying manifold and the mechanism that generates the breaking. In particular compactifications, notably on a $S_1/Z_2$ orbifold, the breaking of supersymmetry occuring on a hidden brane, residing at one end of $S_1/Z_2$, is communicated to the visible brane which lies at the other end, via gravitational interactions propagating in the bulk. This scenario has been exemplified in the framework of the $N=2$, $D=5$ supergravity. In this note, motivated by the recent developments in the field, related to the six-dimensional description of the supergravity theory, we study the $N=2$, $D=5$ supergravity theory as originating from a $D=6$ supergravity which, in addition to th...

  11. Hamiltonian Approach To Dp-Brane Noncommutativity

    Science.gov (United States)

    Nikolic, B.; Sazdovic, B.

    2010-07-01

    In this article we investigate Dp-brane noncommutativity using Hamiltonian approach. We consider separately open bosonic string and type IIB superstring which endpoints are attached to the Dp-brane. From requirement that Hamiltonian, as the time translation generator, has well defined derivatives in the coordinates and momenta, we obtain boundary conditions directly in the canonical form. Boundary conditions are treated as canonical constraints. Solving them we obtain initial coordinates in terms of the effective ones as well as effective momenta. Presence of momenta implies noncommutativity of the initial coordinates. Effective theory, defined as initial one on the solution of boundary conditions, is its Ω even projection, where Ω is world-sheet parity transformation Ω:σ→-σ. The effective background fields are expressed in terms of Ω even and squares of the Ω odd initial background fields.

  12. Remarks on brane and antibrane dynamics

    CERN Document Server

    Michel, Ben; Polchinski, Joseph; Puhm, Andrea; Saad, Philip

    2014-01-01

    We develop the point of view that brane actions should be understood in the context of effective field theory, and that this is the correct way to treat classical as well as loop divergences. We illustrate this idea in a simple model. We then consider the implications for the dynamics of antibranes in flux backgrounds, focusing on the simplest case of a single antibrane. We argue that there is no tachyonic instability at zero temperature, but there is a nonperturbative process in which an antibrane annihilates with its screening cloud. This is distinct from the NS5-brane instanton decay. Constraints on models of metastable supersymmetry breaking by antibranes may be tightened, but there is no problem of principle with this mechanism.

  13. U-dual branes and mixed symmetry tensor fields

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrakidis, A. [Institut fuer Theoretische Physik, Appelstrasse 2, 30167 Hannover (Germany); Gautason, F.F. [Institut fuer Theoretische Physik, Appelstrasse 2, 30167 Hannover (Germany); Center for Quantum Engineering and Spacetime Research, Appelstrasse 2, 30167 Hannover (Germany)

    2014-09-11

    We review and explain the relation between U-dual branes in string theory and mixed symmetry tensors of various degrees. In certain cases these mixed symmetry tensors can be related to diverse types of fluxes that play an important role in compactifications of string theory. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Black holes in brane worlds

    Indian Academy of Sciences (India)

    M S Modgil; S Panda; S Sengupta

    2004-03-01

    A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.

  15. Brane Inflation and Defect Formation

    CERN Document Server

    Davis, A C; Van de Bruck, C

    2008-01-01

    Brane inflation and the production of topological defects at the end of the inflationary phase are discussed. After a description of the inflationary setup we discuss the properties of the cosmic strings produced at the end of inflation. Specific examples of brane inflation are described: $D-\\bar D$ inflation, $D3/D7$ inflation and modular inflation

  16. Soliton models for thick branes

    Energy Technology Data Exchange (ETDEWEB)

    Peyravi, Marzieh [Ferdowsi University of Mashhad, Department of Physics, School of Sciences, Mashhad (Iran, Islamic Republic of); Riazi, Nematollah [Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)

    2016-05-15

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ{sup 4} and φ{sup 6} scalar fields, which have broken Z{sub 2} symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w{sup 2} term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ{sup 4} brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ{sup 6} branes. (orig.)

  17. D-brane physics. From weak to strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Lopes, Daniel Ordine

    2013-01-10

    In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.

  18. Quintessence and effective RN de Sitter brane geometries

    CERN Document Server

    Pandey, K Priyabrat; Singh, Sunita; Kapoor, Richa; Kar, Supriya

    2014-01-01

    We revisit an effective space-time torsion curvature in a second order formalism, underlying the non-linear $U(1)$ gauge dynamics, of a two form on a $D_4$-brane in type IIA superstring theory. The formalism incorporates the significance of a global NS two form into the theory via its perturbative coupling to a dynamical two form. In particular, we explore the non-linear gauge dynamics on a $D_4$-brane in presence of a non-trivial background metric. The fact that the global modes of a NS two form in an open string theory sources the background metric on a $D_4$-brane may hint at the existence of an anti $D_4$-brane in the formalism. An effective de Sitter universe is shown to emerge on a vacuum created pair of $(D{\\bar D})_3$-brane by a local two form at the past horizon with a Big Bang. We obtain a number of 4D de Sitter quantum black holes, including a Reissner-Nordstrom vacuum, with and without a propagating torsion. The quantum black holes are shown to be free from curvature singularity at $r\\rightarrow 0...

  19. Gravity and antigravity in a brane world with metastable gravitons

    Science.gov (United States)

    Gregory, R.; Rubakov, V. A.; Sibiryakov, S. M.

    2000-09-01

    In the framework of a five-dimensional three-brane model with quasi-localized gravitons we evaluate metric perturbations induced on the positive tension brane by matter residing thereon. We find that at intermediate distances, the effective four-dimensional theory coincides, up to small corrections, with General Relativity. This is in accord with Csaki, Erlich and Hollowood and in contrast to Dvali, Gabadadze and Porrati. We show, however, that at ultra-large distances this effective four-dimensional theory becomes dramatically different: conventional tensor gravity changes into scalar anti-gravity.

  20. D-branes in Lorentzian AdS(3)

    CERN Document Server

    Israel, D

    2005-01-01

    We study the exact construction of D-branes in Lorentzian AdS(3). We start by defining a family of conformal field theories that gives a natural Euclidean version of the SL(2,R) CFT and does not correspond to H(3)+, the analytic continuation of AdS(3). We argue that one can recuperate the exact CFT results of Lorentzian AdS(3), upon an analytic continuation in the moduli space of these conformal field theories. Then we construct exact boundary states for various symmetric and symmetry-breaking D-branes in AdS(3).

  1. Four-Derivative Brane Couplings from String Amplitudes

    CERN Document Server

    Becker, Katrin; Robbins, Daniel

    2011-01-01

    We evaluate the string theory disc amplitude of one Ramond-Ramond field C^(p-3) and two Neveu-Schwarz B-fields in the presence of a single Dp-brane in type II string theory. From this amplitude we extract the four-derivative (or equivalently order (alpha')^2) part of the Dp-brane action involving these fields. We show that the new couplings are invariant under R-R and NS-NS gauge transformations and compatible with linear T-duality.

  2. D-Branes and D-Modules

    Science.gov (United States)

    Dijkgraaf, R.

    We study of chiral fermions on a quantum curve by embedding them instring theory as an intersecting D-brane configuration together with a B-field. Mathematically, this system is described by a holonomic D-module. Here we focus on spectral curves, which play a prominant role in the theory of (quantum) integrable hierarchies. We show how to associate a quantum state to the system, and subsequently how to compute quantum invariants. The material of this paper is treated at greater length in the paper [R.~Dijkgraaf, L.~Hollands and P.~Sulkowski, arXiv:0810.4157] that also contains many examples.

  3. Conductivity bounds in probe brane models

    CERN Document Server

    Ikeda, Tatsuhiko N; Nakai, Yuichiro

    2016-01-01

    We discuss upper and lower bounds on the electrical conductivity of finite temperature strongly coupled quantum field theories, holographically dual to probe brane models, within linear response. In a probe limit where disorder is introduced entirely through an inhomogeneous background charge density, we find simple lower and upper bounds on the electrical conductivity in arbitrary dimensions. In field theories in two spatial dimensions, we show that both bounds persist even when disorder is included in the bulk metric. We discuss the challenges with finding sharp lower bounds on conductivity in three or more spatial dimensions when the metric is inhomogeneous.

  4. Emergence and expansion of cosmic space as due to M0-branes

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza [Shahid Bahonar University, Faculty of Physics, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Setare, Mohammad Reza [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of); Capozziello, Salvatore [Universita di Napoli Federico II, Dipartimento di Fisica, Naples (Italy); Complutense Univ. di Monte S. Angelo, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); INFN Sezione di Napoli, Naples (Italy)

    2015-12-15

    Recently, Padmanabhan (arXiv:1206.4916 [hepth]) discussed that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region causes the accelerated expansion of the universe. The main question arising is: what is the origin of this inequality between the surface degrees of freedom and the bulk degrees of freedom? We answer this question in M-theory. In our model, first M0-branes are compactified on one circle and N D0-branes are created. Then N D0-branes join each other, grow, and form one D5-branes. Next, the D5-brane is compactified on two circles and our universe's D3-brane, two D1-branes and some extra energies are produced. After that, one of the D1-branes, which is closer to the universe's brane, gives its energy into it, and this leads to an increase in the difference between the numbers of degrees of freedom and the occurring inflation era. With the disappearance of this D1-brane, the number of degrees of freedom of boundary surface and bulk region become equal and inflation ends. At this stage, extra energies that are produced due to the compactification cause an expansion of the universe and deceleration epoch. Finally, another D1-brane dissolves in our universe's brane, leads to an inequality between degrees of freedom, and there occurs a new phase of acceleration. (orig.)

  5. Supersymmetric Brane-Worlds

    CERN Document Server

    Alonso-Alberca, N; Ortín, Tomas

    2000-01-01

    We present warped metrics which solve Einstein equations with arbitrary cosmological constants in both in upper and lower dimensions. When the lower-dimensional metric is the maximally symmetric one compatible with the chosen value of the cosmological constant, the upper-dimensional metric is also the maximally symmetric one and there is maximal unbroken supersymmetry as well. We then introduce brane sources and find solutions with analogous properties, except for supersymmetry, which is generically broken in the orbifolding procedure (one half is preserved in two special cases), and analyze metric perturbations in these backgrounds

  6. On the spectral properties of multi-branes, M2 and M5 branes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia del Moral, M.P. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo 18, 33007, Oviedo (Spain); Restuccia, A. [Departamento de Fisica, Universidad de Antofagasta, Aptdo 02800 (Chile); Departamento de Fisica, Universidad Simon Bolivar, Apartado 89000, Caracas 1080-A (Venezuela)

    2011-07-01

    In this note we summarize some of the properties found in [1-3]. We characterize spectral properties of the quantum mechanical hamiltonian of theories with fermionic degrees of freedom beyond semiclassical approximation. We obtain a general class of bosonic polynomial potentials for which the Schroeedinger operator has a discrete spectrum. This class includes all the scalar potentials in membrane, 5-brane, p-branes, multiple M2 branes, BLG and ABJM theories. We also give a sufficient condition for discreteness of the spectrum for supersymmmetric and non supersymmetric theories with a fermionic contribution. We characterize then the spectral properties of different theories: the BMN matrix model, the supermembrane with central charges and a bound state of N D2 with m D0. We show that, while the first two models have a purely discrete spectrum with finite multiplicity, the latter has a continuous spectrum starting from a constant given in terms of the monopole charge. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Geodesics and Newton's Law in Brane Backgrounds

    CERN Document Server

    Mück, W; Volovich, I V

    2000-01-01

    In brane world models our universe is considered as a brane imbedded into ahigher dimensional space. We discuss the behaviour of geodesics in theRandall-Sundrum background and point out that free massive particles cannotmove along the brane only. The brane is repulsive, and matter will be expelledfrom the brane into the extra dimension. This is rather undesirable, and hencewe study an alternative model with a non-compact extra dimension, but with anattractive brane embedded into the higher dimensional space. We study thelinearized gravity equations and show that Newton's gravitational law is validon the brane also in the alternative background.

  8. Branes in the GL(1 vertical stroke 1) WZNW-Model

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, T.; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quella, T. [Amsterdam Univ. (Netherlands). KdV Inst. for Mathematics

    2007-08-15

    We initiate a systematic study of boundary conditions in conformal field theories with target space supersymmetry. The WZNW model on GL(1 vertical stroke 1) is used as a prototypical example for which we find the complete set of maximally symmetric branes. This includes a unique brane of maximal super-dimension 2 vertical stroke 2, a 2-parameter family of branes with super-dimension 0 vertical stroke 2 and an infinite set of fully localized branes possessing a single modulus. Members of the latter family can only exist along certain lines on the bosonic base, much like fractional branes at orbifold singularities. Our results establish that all essential algebraic features of Cardy-type boundary theories carry over to the non-rational logarithmic WZNW model on GL(1 vertical stroke 1). (orig.)

  9. D-branes and the Standard Model

    CERN Document Server

    Antoniadis, Ignatios; Rizos, J; Tomaras, T N

    2003-01-01

    We perform a systematic study of the Standard Model embedding in a D-brane configuration of type I string theory at the TeV scale. We end up with an attractive model and we study several phenomenological questions, such as gauge coupling unification, proton stability, fermion masses and neutrino oscillations. At the string scale, the gauge group is U(3)_color x U(2)_weak x U(1)_1 x U(1)_bulk. The corresponding gauge bosons are localized on three collections of branes; two of them describe the strong and weak interactions, while the last abelian factor lives on a brane which is extended in two large extra dimensions with a size of afew microns. The hypercharge is a linear combination of the first three U(1)s. All remaining U(1)s get masses at the TeV scale due to anomalies, leaving the baryon and lepton numbers as (perturbatively) unbroken global symmetries at low energies. The conservation of baryon number assures proton stability, while lepton number symmetry guarantees light neutrino masses that involve a r...

  10. Superradiant instability of the Kerr brane

    CERN Document Server

    Ishibashi, Akihiro; Gualtieri, Leonardo; Cardoso, Vitor

    2015-01-01

    We consider linear gravitational perturbations of the Kerr brane, an exact solution of vacuum Einstein's equations in dimensions higher than four and a low-energy solution of string theory. Decomposing the perturbations in tensor harmonics of the transverse Ricci-flat space, we show that tensor- and vector-type metric perturbations of the Kerr brane satisfy respectively a massive Klein-Gordon equation and a Proca equation on the four-dimensional Kerr space, where the mass term is proportional to the eigenvalue of the harmonics. Massive bosonic fields trigger a well-known superradiant instability on a Kerr black hole. We thus establish that Kerr branes in dimensions $D\\geq6$ are gravitationally unstable due to superradiance. These solutions are also unstable against the Gregory-Laflamme instability and we discuss the conditions for either instability to occur and their rather different nature. When the transverse dimensions are compactified and much smaller than the Kerr horizon, only the superradiant instabil...

  11. Pathologies in Lovelock AdS Black Branes and AdS/CFT

    CERN Document Server

    Takahashi, Tomohiro

    2011-01-01

    We study the pathologies in AdS black branes in Lovelock theory. More precisely, we examine the conditions that AdS black branes have the naked singularity, the ghost instability and the dynamical instability. From the point of view of the AdS/CFT correspondence, the pathologies in AdS black branes indicate the pathologies in the corresponding CFT. Hence, we need to be careful when we apply AdS/CFT in Lovelock theory to various phenomena such as the shear viscosity to entropy ratio in strongly coupled quantum filed theory.

  12. D-Brane Inflation on Conifolds

    CERN Document Server

    Halyo, E

    2004-01-01

    We describe a model of D--brane inflation on fractional D3 branes transverse to a resolved and deformed conifold. The resolution and the deformation are both necessary for inflation. The fractional branes slowly approach each other along the $S^3$ and separate along the $S^2$ in the base of the conifold. We show that on the brane this corresponds to hybrid inflation. We describe the model also in terms of intersecting branes.

  13. Gauge localization on a 3-brane with a transverse resolved conifold

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Francisco Wagner Vasconcelos da; Silva, Jose Euclides Gomes da; Almeida, Carlos Alberto Santos de [UFC, Fortaleza, CE (Brazil)

    2013-07-01

    Full text: The Kaluza-Klein theories, as well as other extra dimension theories, has been boosted after the seminal model of Randall and Sundrum (RS). In six dimensions, some models where the two dimensional manifold has a cylindrical symmetry according to the 3-brane are called string-like branes. A bad features of the string-like models is the conical behavior near the core of the string that prohibits a zero-mode on the brane for both gauge and spinor fields and yields tachyonic massive gravitational modes on the brane. In this work, we investigate the properties of the gauge vector field in a braneworld scenario built as a warped product between a 3-brane and a 2-cycle of the resolved conifold. This scenario allowed to study how the gauge field behaves when the transverse manifold evolves upon a geometric flow that controls the singularity at the origin. Since the transverse manifold has a cylindrical symmetry according to the 3-brane, this geometry can be regarded as a near brane correction of the string-like branes. By means of a new warp function and the parameter-dependent angular metric component of the resolved conifold, the braneworld can exhibit a conical form near the origin as well as a regular behavior in that region. The analysis of the gauge field in this background has been carried out for the s-wave state and a normalizable massless mode was found. For the massive modes, the resolution parameter avoids an infinite well on the brane and controls the depth of the well and the high of the barrier around the brane. The massive modes are slightly changed near the brane but they agreed with the string-like spectrum for large distances. (author)

  14. Null-Wave Giant Gravitons from Thermal Spinning Brane Probes

    CERN Document Server

    Armas, Jay; Pedersen, Andreas Vigand

    2013-01-01

    We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solu...

  15. The Spectrum of FZZT Branes Beyond the Planar Limit

    CERN Document Server

    Atkin, Max R

    2010-01-01

    Minimal string theory has a number of FZZT brane boundary states; one for each Cardy state of the minimal model. It was conjectured by Seiberg and Shih that all branes in a minimal string theory could be expressed as a linear combination of the brane associated to the identity operator of the minimal model with complex shifts in the boundary cosmological constant. Subsequently it was found that this identification of FZZT branes does not hold exactly for some cylinder amplitudes but was spoiled by terms that are associated with vanishing worldsheet area and are therefore non-universal. In this paper we investigate this claim for a number of more complicated amplitudes such as cylinders and discs-with-handle using both Liouville and matrix model methods. We find that the aforementioned identification of FZZT branes is spoiled by terms that do not admit an interpretation as non-universal terms. Furthermore, the spoiling terms as computed using the matrix model are found to be in agreement with those coming from...

  16. Static configurations and evolution of higher dimensional brane-dilaton black hole system

    Science.gov (United States)

    Nakonieczna, Anna; Nakonieczny, Łukasz; Moderski, Rafaƚ; Rogatko, Marek

    2016-12-01

    Static configurations and a dynamical evolution of the system composed of a higher-dimensional spherically symmetric dilaton black hole and the Dirac-Goto-Nambu brane were investigated. The studies were conducted for three values of the dilaton coupling constant, describing the uncoupled case, the low-energy limit of the string theory and dimensionally reduced Klein-Kaluza theories. When the black hole is nonextremal, two types of static configurations are observed, a brane which intersects the black hole horizon and a brane not having any common points with the accompanying black hole. As the number of spacetime dimensions increases, the brane bend in the vicinity of the black hole disappears closer to its horizon. Dynamical evolution of the system results in an expulsion of the black hole from the brane. It proceeds faster for bigger values of the bulk spacetime dimension and thicker branes. The value of the dilatonic coupling constant does not influence neither the static configurations nor the dynamical behavior of the examined nonextremal system. In the extremal dilaton black hole case one obtains expulsion of the brane which is independent on the spacetime dimensionality and the value of the coupling constant. Dynamical studies of the configurations in the extremal case reveal that the course of evolution of the system is similar to the nonextremal one, except for a slightly earlier expulsion of the black hole from the brane.

  17. On D-brane -anti D-brane effective actions and their all order bulk singularity structures

    Science.gov (United States)

    Hatefi, Ehsan

    2016-04-01

    All four point functions of brane anti brane system including their correct all order α' corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR, gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of u-channel gauge field and (u+s'+t')-channel scalar bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effective field theory that involve the mixing term of Chern-Simons coupling (with C-potential field) and a covariant derivative of the scalar field that comes from the pull-back of brane. Eventually we explore their all order α' corrections in the presence of brane anti brane system where various remarks will be also pointed out.

  18. Non-Abelian brane cosmology

    CERN Document Server

    Galtsov, D V

    2003-01-01

    We discuss isotropic and homogeneous D-brane-world cosmology with non-Abelian Born-Infeld (NBI) matter on the brane. In the usual Friedmann-Robertson-Walker (FRW) model the scale non-invariant NBI matter gives rise to an equation of state which asymptotes to the string gas equation $p=-\\epsilon/3$ and ensures a start-up of the cosmological expansion with zero acceleration. We show that the same state equation in the brane-world setup leads to the Tolman type evolution as if the conformal symmetry was effectively restored. This is not precisely so in the NBI model with symmetrized trace, but the leading term in the expansion law is still the same. A cosmological sphaleron solution on the D-brane is presented.

  19. Anomalous Dimensions from a Spinning D5-Brane

    CERN Document Server

    Armoni, A

    2006-01-01

    We consider the anomalous dimension of a certain twist two operator in N=4 super Yang-Mills theory. At strong coupling and large-N it is captured by the classical dynamics of a spinning D5-brane. The present calculation generalizes the result of Gubser, Klebanov and Polyakov (hep-th/0204051): in order to calculate the anomalous dimension of a bound state of k coincident strings, the spinning closed string is replaced by a spinning D5 brane that wraps an S4 inside the S5 part of the AdS5 times S5 metric.

  20. Cosmological evolution in a two-brane warped geometry model

    CERN Document Server

    Kumar, Sumit; SenGupta, Soumitra

    2014-01-01

    We study an effective 4-dimensional scalar-tensor field theory, originated from an underlying brane-bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy-momentum tensor which in turn results into an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.

  1. Higher Derivative Brane Couplings from T-Duality

    CERN Document Server

    Becker, Katrin; Robbins, Daniel

    2010-01-01

    The Wess-Zumino coupling on D-branes in string theory is known to receive higher derivative corrections which couple the Ramond-Ramond potential to terms involving the square of the spacetime curvature tensor. Consistency with T-duality implies that the branes should also have four-derivative couplings that involve the NS-NS B-field. We use T-duality to predict some of these couplings. We then confirm these results with string worldsheet computations by evaluating disc amplitudes with insertions of one R-R and two NS-NS vertex operators.

  2. Supersymmetry of RS bulk and brane

    CERN Document Server

    Bergshoeff, E A; Van Proeyen, A; Bergshoeff, Eric; Kallosh, Renata; Proeyen, Antoine Van

    2001-01-01

    We review the construction of actions with supersymmetry on spaces with a domain wall. The latter objects act as sources inducing a jump in the gauge coupling constant. Despite these singularities, supersymmetry can be formulated, maintaining its role as a square root of translations in this singular space. The setup is designed for the application in five dimensions related to the Randall-Sundrum (RS) scenario. The space has two domain walls. We discuss the solutions of the theory with fixed scalars and full preserved supersymmetry, in which case one of the branes can be pushed to infinity, and solutions where half of the supersymmetries are preserved.

  3. Emergent Super-Virasoro on Magnetic Branes

    CERN Document Server

    D'Hoker, Eric

    2016-01-01

    The low energy limit of the stress tensor, gauge current, and supercurrent two-point correlators are calculated in the background of the supersymmetric magnetic brane solution to gauged five-dimensional supergravity constructed by Almuhairi and Polchinski. The resulting correlators provide evidence for the emergence of an N=2 super-Virasoro algebra of right-movers, in addition to a bosonic Virasoro algebra and a $U(1) \\oplus U(1)$-current algebra of left-movers (or the parity transform of left- and right-movers depending on the sign of the magnetic field), in the holographically dual strongly interacting two-dimensional effective field theory of the lowest Landau level.

  4. String Fluid from Unstable D-branes

    CERN Document Server

    Gibbons, G W; Yi, P; Gibbons, Gary; Hori, Kentaro; Yi, Piljin

    2001-01-01

    We consider Sen's effective action for unstable D-branes, and study its classical dynamics exactly. In the true vacuum, the Hamiltonian dynamics remains well-defined despite a vanishing action, and is that of massive relativistic string fluid of freely moving electric flux lines. The energy(tension) density equals the flux density in the local co-moving frame. Furthermore, a finite dual Lagrangian exists and is related to the Nielsen-Olesen field theory of ``dual'' strings, supplemented by a crucial constraint. We conclude with discussion on the endpoint of tachyon condensation.

  5. Born-Infeld extension of Lovelock brane gravity

    CERN Document Server

    Cruz, Miguel

    2012-01-01

    We present a Born-Infeld type model to describe the evolution of p-dimensional branes propagating in a flat Minkowski spacetime which, when expanded explicitly, it gives rise to a finite series involving (p+1) geometrical terms that are related to the Lovelock brane invariants. This model is a second-order volume element that depends on the intrinsic and the extrinsic geometry of the worldvolume swept out by the brane, and it can be regarded as a deformation of the minimal volume element. The field equations are of second-order and we express these in terms of conserved brane tensors. Contrary to the Lovelock theory in gravity, the number of Lovelock brane Lagrangians differs in this case, and it only depends on the dimension of the worldvolume, reflecting the fact that the embedding functions are the field variables instead of the metric. Moreover, we also provide a number of classically equivalent actions for this BI type action and discuss their Weyl invariance in any dimension which naturally requires the...

  6. Jacobi stability of the vacuum in the static spherically symmetric brane world models

    CERN Document Server

    Harko, T

    2008-01-01

    We analyze the stability of the structure equations of the vacuum in the brane world models, by using both the linear (Lyapunov) stability analysis, and the Jacobi stability analysis, the Kosambi-Cartan-Chern (KCC) theory. In the brane world models the four dimensional effective Einstein equations acquire extra terms, called dark radiation and dark pressure, respectively, which arise from the embedding of the 3-brane in the bulk. Generally, the spherically symmetric vacuum solutions of the brane gravitational field equations, have properties quite distinct as compared to the standard black hole solutions of general relativity. We close the structure equations by assuming a simple linear equation of state for the dark pressure. In this case the vacuum is Jacobi stable only for a small range of values of the proportionality constant relating the dark pressure and the dark radiation. The unstable trajectories on the brane behave chaotically, in the sense that after a finite radial distance it would be impossible...

  7. Comments on Brane-World Black Holes and Energy-Momentum Vector

    CERN Document Server

    Nashed, Gamal Gergess Lamee

    2007-01-01

    We show that the energy distribution of the brane-world black holes given by Salti et al. in the context of teleparallel theory is not right. We give the correct formula of energy of those black hole.

  8. BPS preons and tensionless super-p-brane in generalized superspace

    CERN Document Server

    Bandos, I A

    2003-01-01

    Tensionless super-p-branes in a generalized superspace with additional tensorial central charge coordinates might provide an extended object model for BPS preons, i.e. for hypothetical constituents of M-theory preserving 31 of 32 supersymmeties.

  9. Nernst branes with Lifshitz asymptotics in N=2 gauged supergravity

    CERN Document Server

    Cardoso, G L; Nampuri, S

    2015-01-01

    We discuss two classes of non-supersymmetric interpolating solutions in N=2, D=4 gauged supergravity, that flow from either a z=2 Lifshitz geometry or a conformal AdS background to the near-horizon geometry of a Nernst brane. We obtain these solutions by constructing a z=2 supersymmetric Lifshitz solution in the STU model from a first-order rewriting of the action, then lifting it up to a five-dimensional background and subsequently modifying this five-dimensional solution by a two-parameter family of deformations. Under reduction, these give four-dimensional non-supersymmetric Nernst brane solutions. This is a step towards resolving the Lifshitz tidal force singularity in the context of N=2 gauged supergravity and suggests an approach to encoding the Nernst brane in terms of the Schroedinger symmetry group of the holographically dual field theory.

  10. Dynamic SU(2) structure from seven-branes

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Ben; McAllister, Liam; /Cornell U., Phys. Dept.; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2010-12-16

    We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.

  11. Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS4/CFT3

    CERN Document Server

    Benini, Francesco; Cremonesi, Stefano

    2011-01-01

    We study the quantum moduli space of N=2 Chern-Simons quivers with generic ranks and CS levels, proving along the way exact formulas for the charges of bare monopole operators. We then derive N=2 Chern-Simons quiver theories dual to AdS_4 x Y^{p,q}(CP2) M-theory backgrounds, for the whole family of Sasaki-Einstein seven-manifolds and for any value of the torsion G_4 flux. The derivation of the gauge theories relies on the reduction to type IIA string theory, in which M2-branes become D2-branes while the conical geometry maps to RR flux and D6-branes wrapped on compact four-cycles. M5-branes on torsion cycles map to flux and wrapped D4-branes. The moduli space of the quiver is shown to contain the corresponding CY_4 cone and all its crepant resolutions.

  12. A unified description of particles, strings and branes in Clifford spaces and p-brane/polyparticle duality

    Science.gov (United States)

    Castro, Carlos

    2016-10-01

    It is described how the Extended Relativity Theory in C-spaces (Clifford spaces) allows a unified formulation of point particles, strings, membranes and p-branes, moving in ordinary target spacetime backgrounds, within the description of a single polyparticle moving in C-spaces. The degrees of freedom of the latter are provided by Clifford polyvector-valued coordinates (antisymmetric tensorial coordinates). A correspondence between the p-brane (p-loop) “Schrödinger-like” equations of Ansoldi-Aurilia-Spallucci and the polyparticle wave equation in C-spaces is found via the polyparticle/p-brane correspondence. This correspondence might provide another unexplored avenue to quantize p-branes (a notoriously difficult and unsolved problem) from the more straightforward quantization of the polyparticle in C-spaces, even in the presence of external interactions. We conclude with comments about the compositeness nature of the polyvector-valued coordinate operators in terms of ordinary p-brane coordinates via the evaluation of n-ary commutators.

  13. Sound waves in the compactified D0-D4 brane system

    CERN Document Server

    Cai, Wenhe

    2016-01-01

    As an extension to our previous work, we study the transport properties of the Witten-Sakai-Sugimoto model in the black D4-brane background with smeared D0-branes (D0-D4/D8 system). Because of the presence of the D0-branes, this model is holographically dual to 4d QCD or Yang-Mills theory with a Chern-Simons term in the bubble configuration. And the number density of the D0-branes corresponds to the coupling constant ($\\theta$ angle) of the Chern-Simons term in the dual field theory. In this paper, we accordingly focus on small number density of the D0-branes to study the sound mode in the black D0-D4 brane system since the coupling of the Chern-Simons term should be quite weak in QCD. Then we derive its 5d effective theory and analytically compute the speed of sound and the sound wave attenuation in the approach of Gauge/Gravity duality. Our result shows the speed of sound and the sound wave attenuation is modified by the presence of the D0-branes. Thus they depend on the $\\theta$ angle or chiral potential i...

  14. Decoupling limit and throat geometry of non-susy D3 brane

    Science.gov (United States)

    Nayek, Kuntal; Roy, Shibaji

    2017-03-01

    Recently it has been shown by us that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable-Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki and Reece, again confirming its gauge theory interpretation.

  15. D-branes in a Big Bang/Big Crunch Universe: Nappi-Witten Gauged WZW Model

    CERN Document Server

    Hikida, Y; Panigrahi, K L; Hikida, Yasuaki; Nayak, Rashmi R.; Panigrahi, Kamal L.

    2005-01-01

    We study D-branes in the Nappi-Witten model, which is a gauged WZW model based on (SL(2,R) x SU(2)) / (U(1) x U(1)). The model describes a four dimensional space-time consisting of cosmological regions with big bang/big crunch singularities and static regions with closed time-like curves. The aim of this paper is to investigate by D-brane probes whether there are pathologies associated with the cosmological singularities and the closed time-like curves. We first classify D-branes in a group theoretical way, and then examine DBI actions for effective theories on the D-branes. In particular, we show that D-brane metric from the DBI action does not include singularities, and wave functions on the D-branes are well behaved even in the presence of closed time-like curves.

  16. A note on "Galactic rotation curves and brane world models" by Rahaman et al. [arXiv:0802.3453

    CERN Document Server

    Nandi, K K

    2008-01-01

    We show that circular orbits are stable in a recently proposed solution in brane world theory. However, the solution does not produce attractive gravity in the halo. These features are contrasted with another solution in a different theory.

  17. Localized gravity in string theory.

    Science.gov (United States)

    Karch, A; Randall, L

    2001-08-06

    We propose a string realization of the AdS4 brane in AdS5 that is known to localize gravity. Our theory is M D5 branes in the near horizon geometry of N D3 branes, where M and N are appropriately tuned.

  18. Brane Partons and Singleton Strings

    CERN Document Server

    Engquist, J

    2005-01-01

    We examine p-branes in AdS_D in two limits where they exhibit partonic behavior: rotating branes with energy concentrated to cusp-like solitons; tensionless branes with energy distributed over singletonic bits on the Dirac hypercone. Evidence for a smooth transition from cusps to bits are found. First, each cusp yields D-2 normal-coordinate bound states with protected frequencies; and is dual to a short open p-brane becoming massless on the giant-vacuum brane at the end-of-the-universe. Second, the N_{bit}-sector is an sp(2N_{bit})-gauged phase-space sigma model giving rise to symmetrized N_{bit}-pletons of the minimal higher-spin algebra ho_0(D-1,2)\\supset so(D-1,2). The continuum limit leads to a 2d chiral sp(2)-gauged sigma model which is critical in D=7; equivalent 'a la Bars-Vasiliev to an su(2)-gauged spinor string; and furthermore dual to WZW model in turn containing a topological \\hat{so}(6,2)_{-2}/(\\hat{so}(6)\\oplus\\hat{so}(2))_{-2} coset model giving rise to a chiral ring generated by singleton-valu...

  19. Decoupling limit and throat geometry of non-susy D3 brane

    CERN Document Server

    Nayek, Kuntal

    2016-01-01

    In a previous work, we have shown that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable-Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki a...

  20. Stability Of D-brane Geometries And A Quantum Check Of Ads/cft

    CERN Document Server

    Mitra, I

    2003-01-01

    The first part of this thesis explores the stability of non-supersymmetric constructions using D-branes and M- branes. Guided mainly by intuition developed using the correspondence between gauge theory and gravity, known as AdS/CFT, we propose a precise relationship between thermodynamic and dynamical stability of non-extremal branes. We verify the conjecture explicitly for non- extremal M2-branes with angular momentum in planes perpendicular to the world-volume, in the limit of many M2-branes where the supergravity approximation is reliable. Next, we explore the stability of near-horizon geometries of extremal branes which are product geometries of anti-de Sitter space and positively curved Einstein spaces. Our main motivation is to answer the question: Do non-supersymmetric stable vacua exist? We find that the answer is yes. But for Type IIA strings in the presence of D8-branes and for a non-supersymmetric open string theory with gauge group USp(32) we find that spherical compactifications are unstable. The...

  1. D-Brane superstrings and new perspective of our world

    CERN Document Server

    Hashimoto, Koji

    2012-01-01

    Superstring theory is a promising theory which can potentially unify all the forces and the matters in particle physics. A new multi-dimensional object which is called "D-brane" was found. It drastically changed our perspective of a unified world. We may live on membrane-like hypersurfaces in higher dimensions ("braneworld scenario"), or we can create blackholes at particle accelarators, or the dynamics of quarks is shown to be equivalent to the higher dimensional gravity theory. All these scenarios are explained in this book with plain words but with little use of equations and with many figures. The book starts with a summary of long-standing problems in elementary particle physics and explains the D-branes and many applications of them. It ends with future roads for a unified ultimate theory of our world.  

  2. Fluctuating brane in a dilatonic bulk

    CERN Document Server

    Brax, P; Rodríguez-Martinez, M; Brax, Philippe; Langlois, David; Rodriguez-Martinez, Maria

    2003-01-01

    We consider a cosmological brane moving in a static five-dimensional bulk spacetime endowed with a scalar field whose potential is exponential. After studying various cosmological behaviours for the homogeneous background, we investigate the fluctuations of the brane that leave spacetime unaffected. A single mode embodies these fluctuations and obeys a wave equation which we study for bouncing and ever-expanding branes.

  3. Mirror symmetry, toric branes and topological string amplitudes as polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Alim, Murad

    2009-07-13

    The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

  4. Emergent D5-brane Background from D-strings

    CERN Document Server

    Ferrari, Frank

    2013-01-01

    We solve the worldsheet theory describing the near-horizon dynamics of a D-string in the presence of a very large number N of D5-branes. The model is pre-geometric in the sense that the near-horizon worldsheet Lagrangian does not have dynamical fields associated with the dimensions transverse to the D5-branes. The solution at large N is shown to be given by a classical action for the D-string moving in a curved ten-dimensional spacetime. The four dimensions transverse to the D5-branes emerge from the quantum loops of the original strongly coupled quantum worldsheet field theory. By comparing with the Dirac-Born-Infeld plus Chern-Simons action for a D-string in a general type IIB background, we identify the string-frame metric, dilaton and Ramond-Ramond three-form field-strength and find a match with the near-horizon geometry of a stack of D5-branes.

  5. 750 GeV Diphotons from a D3-brane

    CERN Document Server

    Heckman, Jonathan J

    2015-01-01

    Motivated by the recently reported diphoton excess at 750 GeV observed by both CMS and ATLAS, we study string-based particle physics models which can accommodate this signal. Quite remarkably, although Grand Unified Theories in F-theory tend to impose tight restrictions on candidate extra sectors, the case of a probe D3-brane near an E-type Yukawa point naturally leads to a class of strongly coupled models capable of accommodating the observed signature. In these models, the visible sector is realized by intersecting 7-branes, and the 750 GeV resonance is a scalar modulus associated with motion of the D3-brane in the direction transverse to the Standard Model 7-branes. Integrating out heavy 3-7 string messenger states leads to dimension five operators for gluon fusion production and diphoton decays. Due to the unified structure of interactions, these models also predict that there should be additional decay channels to ZZ and Z gamma. We also comment on models with distorted unification, where both the produc...

  6. The violation of cosmic censorship in dynamical $p$-brane systems

    CERN Document Server

    Maeda, Kengo

    2015-01-01

    We study the cosmic censorship of dynamical $p$-brane in $D$-dimensional background. This is the generalization of the analysis in Einstein-Maxwell-dilaton theory, which was discussed by Horne & Horowitz [1]. We show that a timelike curvature singularity generically appears from an asymptotic region in the time evolution of the $p$-brane solution. Since we can set a regular and smooth initial data in a dynamical M5-brane system in eleven-dimensional supergravity, this implies a violation of cosmic censorship.

  7. Isometric Embedding of BPS Branes in Flat Spaces with Two Times

    CERN Document Server

    Andrianopoli, Laura; Gibbons, G W; Herdeiro, C; Santambrogio, A; Van Proeyen, A; Andrianopoli, Laura; Derix, Martijn; Gibbons, Gary W.; Herdeiro, Carlos; Santambrogio, Alberto; Proeyen, Antoine Van

    2000-01-01

    We show how non-near horizon p-brane theories can be obtained from two embedding constraints in a flat higher dimensional space with 2 time directions. In particular this includes the construction of D3 branes from a flat 12-dimensional action, and M2 and M5 branes from 13 dimensions. The worldvolume actions are determined by constant forms in the higher dimension, reduced to the usual expressions by Lagrange multipliers. The formulation affords insight in the global aspects of the spacetime geometries and makes contact with recent work on two-time physics.

  8. On D-brane anti D-brane effective actions and their corrections to all orders in alpha-prime

    Energy Technology Data Exchange (ETDEWEB)

    Hatefi, Ehsan, E-mail: ehatefi@ictp.it [International Centre for Theoretical Physics, Strada Costiera 11, Trieste (Italy)

    2013-09-01

    Based on a four point function, the S-matrix elements at disk level of the scattering amplitude of one closed string Ramond-Ramond field (C) and two tachyons and one scalar field, we find out new couplings in brane anti brane effective actions for p = n, p+2 = n cases. Using the infinite corrections of the vertex of one RR, one gauge and one scalar field and applying the correct expansion, it is investigated in detail how we produce the infinite gauge poles of the amplitude for p = n case. By discovering new higher derivative corrections of two tachyon-two scalar couplings in brane anti brane systems to all orders in α', we also obtain the infinite scalar poles in (t'+s'+u)-channel in field theory. Working with the complete form of the amplitude with the closed form of the expansion and comparing all the infinite contact terms of this amplitude, we derive several new Wess-Zumino couplings with all their infinite higher derivative corrections in the world volume of brane anti brane systems. In particular, in producing all the infinite scalar poles of < V{sub C}V{sub φ}V{sub T}V{sub T} > , one has to consider the fact that scalar's vertex operator in (-1)-picture must carry the internal σ{sub 3} Chan-Paton matrix. The symmetric trace effective action has a non-zero coupling between Dφ{sup (1)i} and Dφ{sup (2)}{sub i} while this coupling does not exist in ordinary trace effective action.

  9. Regular collision of dilatonic inflating branes

    CERN Document Server

    Leeper, E; Maartens, R

    2005-01-01

    We demonstrate that a two brane system with a bulk scalar field driving power-law inflation on the branes has an instability in the radion. We solve for the resulting trajectory of the brane, and find that the instability can lead to collision. Brane quantities such as the scale factor are shown to be regular at this collision. In addition we describe the system using a low energy expansion. The low energy expansion accurately reproduces the known exact solution, but also identifies an alternative solution for the bulk metric and brane trajectory.

  10. Spectrum in the presence of brane-localized mass on torus extra dimensions

    CERN Document Server

    Sakamura, Yutaka

    2016-01-01

    The lightest mass eigenvalue of a six-dimensional theory compactified on a torus is numerically evaluated in the presence of the brane-localized mass term. The dependence on the cutoff scale $\\Lambda$ is non-negligible even when $\\Lambda$ is two orders of magnitude above the compactification scale, which indicates that the mass eigenvalue is sensitive to the size of the brane, in contrast to five-dimensional theories. We obtain an approximate expression of the lightest mass in the thin brane limit, which well fits the numerical calculations, and clarifies its dependence on the torus moduli parameter $\\tau$. We found that the lightest mass is typically much lighter than the compactification scale by an order of magnitude even in the limit of a large brane mass.

  11. A note on (meta)stable brane configurations in MQCD

    Energy Technology Data Exchange (ETDEWEB)

    Bena, Iosif [School of Natural Sciences, Institute for Advanced Study, Einstein Dr., Princeton, NJ 08540 (United States); Hellerman, Simeon [School of Natural Sciences, Institute for Advanced Study, Einstein Dr., Princeton, NJ 08540 (United States); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study, Einstein Dr., Princeton, NJ 08540 (United States); Gorbatov, Elie [Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Shih, David [Department of Physics, Princeton University, Princeton, NJ 08540 (United States)

    2006-11-15

    We examine the M-theory version of SQCD which is known as MQCD. In the IIA limit, this theory appears to have a supersymmetry-breaking brane configuration which corresponds to the meta-stable state of N = 1 SU(N{sub c}) SQCD. However, the behavior at infinity of this non-supersymmetric brane construction differs from that of the supersymmetric ground state of MQCD. We interpret this to mean that it is not a meta-stable state in MQCD, but rather a state in another theory. This provides a concrete example of the fact that, while MQCD accurately describes the supersymmetric features of SCQD, it fails to reproduce its non-supersymmetric features (such as meta-stable states) not only quantitatively but also qualitatively.

  12. The supergravity fields for a D-brane with a travelling wave from string amplitudes

    CERN Document Server

    Black, William; Turton, David

    2010-01-01

    We calculate the supergravity fields sourced by a D-brane with a null travelling wave from disk amplitudes in type IIB string theory compactified on T^4 x S^1. The amplitudes reproduce the non-trivial features of the previously known two-charge supergravity solutions in the D-brane/momentum frame, providing a direct link between the microscopic bound states and their macroscopic descriptions.

  13. The supergravity fields for a D-brane with a travelling wave from string amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Black, William, E-mail: w.black@qmul.ac.u [Queen Mary University of London, Centre for Research in String Theory, Department of Physics, Mile End Road, London E1 4NS (United Kingdom); Russo, Rodolfo, E-mail: r.russo@qmul.ac.u [Queen Mary University of London, Centre for Research in String Theory, Department of Physics, Mile End Road, London E1 4NS (United Kingdom); Turton, David, E-mail: d.j.turton@qmul.ac.u [Queen Mary University of London, Centre for Research in String Theory, Department of Physics, Mile End Road, London E1 4NS (United Kingdom)

    2010-11-08

    We calculate the supergravity fields sourced by a D-brane with a null travelling wave from disk amplitudes in type IIB string theory compactified on T{sup 4}xS{sup 1}. The amplitudes reproduce all the non-trivial features of the previously known two-charge supergravity solutions in the D-brane/momentum duality frame, providing a direct link between the microscopic bound states and their macroscopic descriptions.

  14. Vibrating Winding Branes, Wrapping Democracy and Stabilization of Extra Dimensions in Dilaton Gravity

    CERN Document Server

    Rador, T

    2005-01-01

    We show that, in the context of dilaton gravity, a recently proposed democratic principle for intersection possibilities of branes winding around extra dimensions yield stabilization, even with the inclusion of momentum modes of the wrapped branes on top of the winding modes. The constraints for stabilization massaged by string theory inputs forces the number of observed dimensions to be three. We also discuss consequences of adding ordinary matter living in the observed dimensions.

  15. AdS-Sliced Flavor Branes and Adding Flavor to the Janus Solution

    CERN Document Server

    Clark, Adam B; Newman, George M; Rommal, Andrea

    2014-01-01

    We implement D7 flavor branes in AdS-sliced coordinates on $AdS_5\\times S^5$ with the ansatz that the brane fluctuates only in the warped ($\\mu$) direction in this slicing, which is particularly appropriate for studying the Janus solution. The natural field theory dual in this slicing is $\\mathcal{N}=4$ super Yang-Mills on two copies of $AdS_4$. Branes extending from $\\mu=\\pm\\pi/2$ can end at different locations, giving rise to quarks with piecewise constant mass on each $AdS_4$ half-space, jumping discontinuously between them. A second class of flavor brane solutions exists in this coordinate system, dubbed "continuous" flavor branes, that extend across the entire range of $\\mu$. We propose that the correct dual interpretation of "disconnected" flavor brane in this ansatz is a quark hypermultiplet with constant mass on one of the AdS$_4$ half-spaces with totally reflecting boundary conditions at the boundary of AdS$_4$; whereas the dual interpretation of a continuous flavor brane has totally transparent boun...

  16. Minimal D = 7 supergravity and the supersymmetry of Arnold-Beltrami flux branes

    Science.gov (United States)

    Fré, P.; Grassi, P. A.; Ravera, L.; Trigiante, M.

    2016-06-01

    In this paper we study some properties of the newly found Arnold-Beltrami flux-brane solutions to the minimal D = 7 supergravity. To this end we first single out the appropriate Free Differential Algebra containing both a gauge 3-form B [3] and a gauge 2-form B [2]: then we present the complete rheonomic parametrization of all the generalized curvatures. This allows us to identify two-brane configurations with Arnold-Beltrami fluxes in the transverse space with exact solutions of supergravity and to analyze the Killing spinor equation in their background. We find that there is no preserved supersymmetry if there are no additional translational Killing vectors. Guided by this principle we explicitly construct Arnold-Beltrami flux two-branes that preserve 0, 1/8 and 1/4 of the original supersymmetry. Two-branes without fluxes are instead BPS states and preserve 1/2 supersymmetry. For each two-brane solution we carefully study its discrete symmetry that is always given by some appropriate crystallographic group Γ. Such symmetry groups Γ are transmitted to the D = 3 gauge theories on the brane world-volume that would occur in the gauge/gravity correspondence. Furthermore we illustrate the intriguing relation between gauge fluxes in two-brane solutions and hyperinstantons in D = 4 topological sigma-models.

  17. Inflation on Fractional Branes: D--Brane Inflation as D--Term Inflation

    CERN Document Server

    Halyo, E

    2004-01-01

    We describe a D--brane inflation model which consists of two fractional D3 branes separated on a transverse $T^2 \\times K3$. Inflation arises due to the resolved orbifold singularity of $K3$ which corresponds to an anomalous D--term on the brane. Therefore D--brane inflation in the bulk corresponds to D--term inflation on the brane. The inflaton and the trigger field parametrize the interbrane distances on $T^2$ an $K3$ respectively. After inflation the branes reach a supersymmetric configuration in which they are at the origin of $T^2$ but separated along the $K3$ directions.

  18. Warped Geometry of Brane Worlds

    CERN Document Server

    Felder, G; Kofman, L A; Felder, Gary; Frolov, Andrei; Kofman, Lev

    2002-01-01

    We study the dynamical equations for a warp factor and a bulk scalar in 5d brane world scenarios. These equations are similar to those for the time dependence of the scale factor and a scalar field in 4d cosmology, but with the sign of the scalar field potential reversed. Based on this analogy, we introduce two novel methods for studying the warped geometry. First, we construct the full phase portraits of the warp factor/scalar system for several examples of the bulk potential. This allows us to view the global properties of the warped geometry. For flat branes, the phase portrait is two dimensional. Moving along typical phase trajectories, the warp factor is initially increasing and finally decreasing. All trajectories have timelike gradient-dominated singularities at one or both of their ends, which are reachable in a finite distance and must be screened by the branes. For curved branes, the phase portrait is three dimensional. However, as the warp factor increases the phase trajectories tend towards the tw...

  19. 6-dimensional brane world model

    Energy Technology Data Exchange (ETDEWEB)

    Kanti, Panagiota; Madden, Richard; Olive, Keith A.

    2001-08-15

    We consider a 6-dimensional spacetime which is periodic in one of the extra dimensions and compact in the other. The periodic direction is defined by two 4-brane boundaries. Both static and nonstatic exact solutions, in which the internal spacetime has a constant radius of curvature, are derived. In the case of static solutions, the brane tensions must be tuned as in the 5-dimensional Randall-Sundrum model; however, no additional fine-tuning is necessary between the brane tensions and the bulk cosmological constant. By further relaxing the sole fine-tuning of the model, we derive nonstatic solutions, describing de Sitter or anti--de Sitter 4-dimensional spacetimes, that allow for the fixing of the interbrane distance and the accommodation of pairs of positive--negative and positive--positive tension branes. Finally, we consider the stability of the radion field in these configurations by employing small, time-dependent perturbations around the background solutions. In analogy with results drawn in five dimensions, the solutions describing a de Sitter 4-dimensional spacetime turn out to be unstable while those describing an anti--de Sitter geometry are shown to be stable.

  20. Metastable Supersymmetry Breaking Vacua on Abelian Brane Models

    CERN Document Server

    Halyo, Edi

    2009-01-01

    We construct Abelian brane models with metastable vacua which are obtained from deformations of ${\\cal N}=2$ supersymmetric brane configurations. One such model lives on a D4 brane stretched between two displaced and rotated NS5 branes. Another one lives on a D5 brane wrapped on a deformed and fibered $A_2$ singularity.

  1. N=(4,4) Gauged Linear Sigma Models for Defect Five-branes

    CERN Document Server

    Kimura, Tetsuji

    2015-01-01

    We study two-dimensional ${\\cal N}=(4,4)$ gauged linear sigma model (GLSM). Its low energy effective theory is a nonlinear sigma model whose target space gives rise to a configuration of five-branes in string theory. In this article we focus on sigma models for NS5-branes, KK5-branes and an exotic $5^2_2$-brane. In particular, we carefully analyze the GLSM for an exotic $5^2_2$-brane whose background configuration is multi-valued. The exotic $5^2_2$-brane is a concrete example of nongeometric configuration in string theory. We find that the exotic feature originates from the string winding coordinate in a very clear way. In order to complete this analysis, we propose a duality transformation formula which converts an ${\\cal N}=(2,2)$ chiral superfield in F-term to a twisted chiral superfield coupled to an unconstrained complex superfield. This article is a short review based on arXiv:1304.4061 in collaboration with Shin Sasaki.

  2. On D-brane -anti D-brane effective actions and their all order bulk singularity structures

    Energy Technology Data Exchange (ETDEWEB)

    Hatefi, Ehsan [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria)

    2016-04-27

    All four point functions of brane anti brane system including their correct all order α{sup ′} corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR, gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of u-channel gauge field and (u+s{sup ′}+t{sup ′})-channel scalar bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effective field theory that involve the mixing term of Chern-Simons coupling (with C-potential field) and a covariant derivative of the scalar field that comes from the pull-back of brane. Eventually we explore their all order α{sup ′} corrections in the presence of brane anti brane system where various remarks will be also pointed out.

  3. Tachyonic Anti-M2 Branes

    CERN Document Server

    Bena, Iosif; Kuperstein, Stanislav; Massai, Stefano

    2014-01-01

    We study the dynamics of anti-M2 branes in a warped Stenzel solution with M2 charges dissolved in fluxes by taking into account their full backreaction on the geometry. The resulting supergravity solution has a singular magnetic four-form flux in the near-brane region. We examine the possible resolution of this singularity via the polarization of anti-M2 branes into M5 branes, and compute the corresponding polarization potential for branes smeared on the finite-size four-sphere at the tip of the Stenzel space. We find that the potential has no minimum. We then use the potential for smeared branes to compute the one corresponding to a stack of localized anti-M2 branes, and use this potential to compute the force between two anti-M2 branes at tip of the Stenzel space. We find that this force, which is zero in the probe approximation, is in fact repulsive. This surprising result points to a tachyonic instability of anti-M2 branes in backgrounds with M2 brane charge dissolved in flux.

  4. D branes in background fluxes and Nielsen-Olesen instabilities

    Science.gov (United States)

    Russo, Jorge G.

    2016-06-01

    In quantum field theory, charged particles with spin ≥ 1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F p+2, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are D p branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic D p brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin D p quantum states which become very light at critical fields.

  5. D branes in background fluxes and Nielsen-Olesen instabilities

    CERN Document Server

    Russo, Jorge G

    2016-01-01

    In quantum field theory, charged particles with spin $\\geq 1$ may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes $F_{p+2}$, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are Dp branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic Dp brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin Dp quantum states which become very light at critical fields.

  6. The twelve dimensional super (2+2)-brane

    CERN Document Server

    Hewson, S F

    1996-01-01

    We discuss supersymmetry in twelve dimensions and present a covariant supersymmetric action for a brane with worldsheet signature (2,2), called a super (2+2)-brane, propagating in the osp(64,12) superspace. This superspace is explicitly constructed, and is trivial in the sense that the spinorial part is a trivial bundle over spacetime, unlike the twisted superspace of usual Poincare supersymmetry. For consistency, it is necessary to take a projection of the superspace. This is the same as the projection required for worldvolume supersymmetry. Upon compactification of this superspace, a torsion is naturally introduced and we produce the membrane and type IIB string actions in 11 and 10 dimensional Minkowski spacetimes. In addition, the compactification of the twelve dimensional supersymmetry algebra produces the correct algebras for these theories, including central charges. These considerations thus give the type IIB string and M-theory a single twelve dimensional origin.

  7. Exceptional collections and D-branes probing toric singularities

    CERN Document Server

    Herzog, C P; Herzog, Christopher P.; Karp, Robert L.

    2006-01-01

    We demonstrate that a strongly exceptional collection on a singular toric surface can be used to derive the gauge theory on a stack of D3-branes probing the Calabi-Yau singularity caused by the surface shrinking to zero size. A strongly exceptional collection, i.e., an ordered set of sheaves satisfying special mapping properties, gives a convenient basis of D-branes. We find such collections and analyze the gauge theories for weighted projective spaces, and many of the Y^{p,q} and L^{p,q,r} spaces. In particular, we prove the strong exceptionality for all p in the Y^{p,p-1} case, and similarly for the Y^{p,p-2r} case.

  8. Multidimensional Cosmological and Spherically Symmetric Solutions with Intersecting p-branes

    CERN Document Server

    Ivashchuk, V D

    1999-01-01

    Multidimensional model describing the cosmological evolution and/or spherically symmetric configuration with n+1 Einstein spaces in the theory with several scalar fields and forms is considered. When electro-magnetic composite p-brane ansatz is adopted, n "internal" spaces are Ricci-flat, one space M_0 has a non-zero curvature, and all p-branes do not "live" in M_0, a class of exact solutions is obtained if certain block-orthogonality relations on p-brane vectors are imposed. A subclass of spherically-symmetric solutions containing non-extremal p-brane black holes is considered. Post-Newtonian parameters are calculated and some examples are considered.

  9. The Goldstino Brane, the Constrained Superfields and Matter in N=1 Supergravity

    CERN Document Server

    Bandos, Igor; Kuzenko, Sergei M; Martucci, Luca; Sorokin, Dmitri

    2016-01-01

    We show that different (brane and constrained superfield) descriptions for the Volkov-Akulov goldstino coupled to N=1, D=4 supergravity with matter produce similar wide classes of models with spontaneously broken local supersymmetry and discuss the relation between the different formulations. As with the formulations with irreducible constrained superfields, the geometric goldstino brane approach has the advantage of being manifestly off-shell supersymmetric without the need to introduce auxiliary fields. It provides an explicit solution of the nilpotent superfield constraints and avoids issues with non-Gaussian integration of auxiliary fields. We describe general couplings of the supersymmetry breaking sector, including the goldstino and other non-supersymmetric matter, to supergravity and matter supermultiplets. Among various examples, we discuss a goldstino brane contribution to the gravitino mass term and the supersymmetrization of the anti-D3-brane contribution to the effective theory of type IIB warped ...

  10. Dynamical Electroweak Symmetry Breaking in String Models with D-branes

    CERN Document Server

    Kitazawa, Noriaki

    2009-01-01

    The possibility of dynamical electroweak symmetry breaking by strong coupling gauge interaction in models with D-branes in String Theory is examined. Instead of elementary scalar Higgs doublet fields, the gauge symmetry with strong coupling (technicolor) is introduced. As the first step of this direction, a toy model, which is not fully realistic, is concretely analyzed in some detail. The model consists of D-branes and anti-D-branes at orbifold singularities in (T^2 x T^2 x T^2)/Z_3 which preserves supersymmetry. Supersymmetry is broken through the brane supersymmetry breaking. It is pointed out that the problem of large S parameter in dynamical electroweak symmetry breaking scenario may be solved by natural existence of kinetic term mixings between hypercharge U(1) gauge boson and massive anomalous U(1) gauge bosons. The problems to be solved toward constructing more realistic models are clarified in the analysis.

  11. D-brane networks in flux vacua, generalized cycles and calibrations

    Science.gov (United States)

    Evslin, Jarah; Martucci, Luca

    2007-07-01

    We consider chains of generalized submanifolds, as defined by Gualtieri in the context of generalized complex geometry, and define a boundary operator that acts on them. This allows us to define generalized cycles and the corresponding homology theory. Gauge invariance demands that D-brane networks on flux vacua must wrap these generalized cycles, while deformations of generalized cycles inside of a certain homology class describe physical processes such as the dissolution of D-branes in higher-dimensional D-branes and MMS-like instantonic transitions. We introduce calibrations that identify the supersymmetric D-brane networks, which minimize their energy inside of the corresponding homology class of generalized cycles. Such a calibration is explicitly presented for type II Script N = 1 flux compactifications to four dimensions. In particular networks of walls and strings in compactifications on warped Calabi-Yau's are treated, with explicit examples on a toroidal orientifold vacuum and on the Klebanov-Strassler geometry.

  12. D-brane networks in flux vacua, generalized cycles and calibrations

    CERN Document Server

    Evslin, J; Evslin, Jarah; Martucci, Luca

    2007-01-01

    We consider chains of generalized submanifolds, as defined by Gualtieri in the context of generalized complex geometry, and define a boundary operator that acts on them. This allows us to define generalized cycles and the corresponding homology theory. Gauge invariance demands that D-brane networks on flux vacua must wrap these generalized cycles, while deformations of generalized cycles inside of a certain homology class describe physical processes such as the dissolution of D-branes in higher-dimensional D-branes and MMS-like instantonic transitions. We introduce calibrations that identify the supersymmetric D-brane networks, which minimize their energy inside of the corresponding homology class of generalized cycles. Such a calibration is explicitly presented for type II N=1 flux compactifications to four dimensions. In particular networks of walls and strings in compactifications on warped Calabi-Yau's are treated, with explicit examples on a toroidal orientifold vacuum and on the Klebanov-Strassler geome...

  13. Natural Quintessence and the Brane World

    CERN Document Server

    Burgess, C P

    2002-01-01

    Although quintessence models have attractive cosmological features, they face two major difficulties. First, it has not yet been possible to find one which convincingly realizes the goal of explaining present-day cosmic acceleration generically using only attractor solutions. Second, quintessence has proven difficult to obtain within realistic microscopic theories, largely due to two major obstructions. Both of these difficulties are summarized in this article, together with a recent proposal for circumventing the second of them within a brane-world context. It is shown that this proposal leads to a broader class of dynamics for the quintessence field, in which its couplings slowly run (or: walk) over cosmological time scales. The walking of the quintessence couplings opens up new possibilities for solving the first problem: that of obtaining acceptable transitions between attractor solutions.

  14. Static configurations and evolution of higher dimensional brane-dilaton black hole system

    CERN Document Server

    Nakonieczna, Anna; Moderski, Rafał; Rogatko, Marek

    2016-01-01

    Static configurations and a dynamical evolution of the system composed of a higher-dimensional spherically symmetric dilaton black hole and the Dirac-Goto-Nambu brane were investigated. The studies were conducted for three values of the dilaton coupling constant, describing the uncoupled case, the low-energy limit of the string theory and dimensionally reduced Klein-Kaluza theories. When the black hole is nonextremal, two types of static configurations are observed, a brane which intersects the black hole horizon and a brane not having any common points with the accompanying black hole. As the number of spacetime dimensions increases, the brane bend in the vicinity of the black hole disappears closer to its horizon. Dynamical evolution of the system results in an expulsion of the black hole from the brane. It proceeds faster for bigger values of the bulk spacetime dimension and thicker branes. The value of the dilatonic coupling constant does not influence neither the static configurations nor the dynamical b...

  15. Can a stationary Bianchi black brane have momentum along the direction with no translational symmetry?

    CERN Document Server

    Iizuka, Norihiro; Maeda, Kengo

    2014-01-01

    Bianchi black branes (black brane solutions with homogeneous but anisotropic horizons classified by the Bianchi type) provide a simple holographic setting with lattice structures taken into account. In the case of holographic superconductor, we have a persistent current with lattices. Accordingly, we expect that in the dual gravity side, a black brane should carry some momentum along a direction of lattice structure, where translational invariance is broken. Motivated by this expectation, we consider whether---and if possible, in what circumstances---a Bianchi black brane can have momentum along a direction of no-translational invariance. First, we show that this {\\it cannot} be the case for a certain class of stationary Bianchi black brane solutions in the Einstein-Maxwell-dilation theory. Then we also show that this {\\it can} be the case for some Bianchi VII$_0$ black branes by numerically constructing such a solution in the Einstein-Maxwell theory with an additional vector field having a source term. The h...

  16. Nonassociative Star Product Deformations for D-Brane World-Volumes in Curved Backgrounds

    Science.gov (United States)

    Cornalba, Lorenzo; Schiappa, Ricardo

    We investigate the deformation of D-brane world-volumes in curved backgrounds. We calculate the leading corrections to the boundary conformal field theory involving the background fields, and in particular we study the correlation functions of the resulting system. This allows us to obtain the world-volume deformation, identifying the open string metric and the noncommutative deformation parameter. The picture that unfolds is the following: when the gauge invariant combination ω=B+F is constant one obtains the standard Moyal deformation of the brane world-volume. Similarly, when dω= 0 one obtains the noncommutative Kontsevich deformation, physically corresponding to a curved brane in a flat background. When the background is curved, H=dω≠ 0, we find that the relevant algebraic structure is still based on the Kontsevich expansion, which now defines a nonassociative star product with an A∞ homotopy associative algebraic structure. We then recover, within this formalism, some known results of Matrix theory in curved backgrounds. In particular, we show how the effective action obtained in this framework describes, as expected, the dielectric effect of D-branes. The polarized branes are interpreted as a soliton, associated to the condensation of the brane gauge field.

  17. Nonassociative star product deformations for D-Brane world-volumes in curved backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cornalba, L. [Lab. de Physique Theorique, Ecole Normale Superieure, Paris (France); Schiappa, R. [Harvard Univ., Cambridge, MA (United States). Dept. of Physics

    2002-01-01

    We investigate the deformation of D-brane world-volumes in curved backgrounds. We calculate the leading corrections to the boundary conformal field theory involving the background fields, and in particular we study the correlation functions of the resulting system. This allows us to obtain the world-volume deformation, identifying the open string metric and the noncommutative deformation parameter. The picture that unfolds is the following: when the gauge invariant combination {omega}=B+F is constant one obtains the standard Moyal deformation of the brane world-volume. Similarly, when d{omega}=0 one obtains the noncommutative Kontsevich deformation, physically corresponding to a curved brane in a flat background. When the background is curved, H=d{omega}{ne}0, we find that the relevant algebraic structure is still based on the Kontsevich expansion, which now defines a nonassociative star product with an A{sub {infinity}} homotopy associative algebraic structure. We then recover, within this formalism, some known results of Matrix theory in curved backgrounds. In particular, we show how the effective action obtained in this framework describes, as expected, the dielectric effect of D-branes. The polarized branes are interpreted as a soliton, associated to the condensation of the brane gauge field. (orig.)

  18. Gauge field localization on brane worlds

    CERN Document Server

    Guerrero, Rommel; Pantoja, Nelson; Rodriguez, R Omar

    2009-01-01

    We consider the effects of spacetime curvature and brane thickness on the localization of gauge fields on a brane via kinetic terms induced by localized fermions. We find that in a warped geometry with and infinitely thin brane, both the infrared and the ultraviolet behavior of the electromagnetic propagator are affected, providing a more stringent bound on the brane's tension than that coming from the requirement of four-dimensional gravity on the brane. On the other hand, for a thick wall in a flat spacetime, where the fermions are localized by means of a Yukawa coupling, we find that 4-dimensional electromagnetism is recovered in a region bounded from above by the same critical distance appearing in the thin case, but also from below by a new scale related to the brane's thickness and the electromagnetic couplings.

  19. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  20. Nucleation of {sup (4)}R brane universes

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de FIsica, Escuela Superior de FIsica y Matematicas del IPN, Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, DF (Mexico); Rojas, EfraIn [Facultad de FIsica e Inteligencia Artificial, Universidad Veracruzana, Sebastian Camacho 5, Xalapa, Veracruz, 91000 (Mexico)

    2004-09-07

    The creation of brane universes induced by a totally antisymmetric tensor living in a fixed background spacetime is presented, where a term involving the intrinsic curvature of the brane is considered. A canonical quantum mechanical approach employing the Wheeler-DeWitt equation is used. The probability nucleation for the brane is calculated by means of the corresponding instanton and the WKB approximation. Some cosmological implications from the model are presented.

  1. Consistent Linearized Gravity in Brane Backgrounds

    CERN Document Server

    Aref'eva, I Ya; Mück, W; Viswanathan, K S; Volovich, I V

    2000-01-01

    A globally consistent treatment of linearized gravity in the Randall-Sundrum background with matter on the brane is formulated. Using a novel gauge, in which the transverse components of the metric are non-vanishing, the brane is kept straight. We analyze the gauge symmetries and identify the physical degrees of freedom of gravity. Our results underline the necessity for non-gravitational confinement of matter to the brane.

  2. Hyper-K\\"{a}hler with Torsion, T-duality, and Defect (p,q) Five-branes

    CERN Document Server

    Kimura, Tetsuji; Yata, Masaya

    2014-01-01

    We investigate the five-branes interpretation of a hyper-K\\"{a}hler geometry with torsion (HKT). This geometry is obtained by a conformal transformation of the Taub-NUT space which represents a single Kaluza-Klein five-brane. This HKT would represent an NS5-brane on the Taub-NUT space. In order to explore the HKT further, we compactify one transverse direction, and study the $O(2,2;{\\mathbb Z}) = SL(2,{\\mathbb Z}) \\times SL(2,{\\mathbb Z})$ monodromy structure associated with two-torus. Performing the conjugate transformation, we obtain a new solution whose physical interpretation is the defect $(p,q)$ five-branes on the ALG space. Throughout this analysis, we understand that the HKT represents the coexistent state of two kinds of five-branes. This situation is different from composite states such as $(p,q)$ five-branes or $(p,q)$ seven-branes in type IIB theory. We also study the T-dualized system of the HKT. We again find a new solution which also indicates the defect $(p,q)$ five-branes on another ALG space...

  3. Stringy Instantons and Quiver Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Florea, Bogdan; Kachru, Shamit; McGreevy, John; Saulina, Natalia

    2006-10-24

    We explore contributions to the 4D effective superpotential which arise from Euclidean D3 branes (''instantons'') that intersect space-filling D-branes. These effects can perturb the effective field theory on the space-filling branes by nontrivial operators composed of charged matter fields, changing the vacuum structure in a qualitative way in some examples. Our considerations are exemplified throughout by a careful study of a fractional brane configuration on a del Pezzo surface.

  4. Brick walls on the brane

    Energy Technology Data Exchange (ETDEWEB)

    Medved, A J M [Department of Physics and Theoretical Physics Institute, University of Alberta, Edmonton (Canada)

    2002-01-21

    The so-called 'brick-wall model' is a semiclassical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior study invoked a simplifying assumption (which we avoid) that cannot be adequately justified.

  5. Brick Walls on the Brane

    CERN Document Server

    Medved, A J M

    2002-01-01

    The so-called ``brick-wall model'' is a semi-classical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior work invoked a simplifying assumption (which we avoid) that can not be adequately justified.

  6. Branes constrictions with White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    García-Aspeitia, Miguel A., E-mail: aspeitia@fisica.uaz.edu.mx [Consejo Nacional de Ciencia y Tecnología, Av, Insurgentes Sur 1582, Colonia Crédito Constructor, Del. Benito Juárez, C.P. 03940, Mexico, D.F. (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo a la Bufa S/N, C.P. 98060, Zacatecas (Mexico)

    2015-11-06

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane–Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of <λ>≳84.818 MeV{sup 4}, with a standard deviation σ≃82.021 MeV{sup 4}, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others.

  7. Branes constrictions with White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Aspeitia, Miguel A. [Consejo Nacional de Ciencia y Tecnologia, Mexico (Mexico); Unidad Academica de Fisica, Universidad Autonoma de Zacatecas (Mexico)

    2015-11-15

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of left angle λ right angle >or similar 84.818 MeV{sup 4}, with a standard deviation σ ≅ 82.021 MeV{sup 4}, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others. (orig.)

  8. Baldness/delocalization in intersecting brane systems

    CERN Document Server

    Peet, A W

    2000-01-01

    Marginally bound systems of two types of branes are considered, such as the prototypical case of Dp+4 branes and Dp branes. As the transverse separation between the two types of branes goes to zero, different behaviour occurs in the supergravity solutions depending on p; no-hair theorems result for p<=1 only. Within the framework of the AdS/CFT correspondence, these supergravity no-hair results are understood as dual manifestations of the Coleman-Mermin-Wagner theorem. Furthermore, the rates of delocalization for p<=1 are matched in a scaling analysis. Talk given at ``Strings '99''; based on hep-th/9903213 with D. Marolf.

  9. Rotating black holes in brane worlds

    CERN Document Server

    Frolov, V P; Stojkovic, D B; Frolov, Valeri P.; Fursaev, Dmitri V.; Stojkovic, Dejan

    2004-01-01

    We study interaction of rotating higher dimensional black holes with a brane in space-times with large extra dimensions. We demonstrate that a rotating black hole attached to a brane can be stationary only if the null Killing vector generating the black hole horizon is tangent to the brane world-sheet. The characteristic time when a rotating black hole with the gravitational radius $r_0$ reaches this final stationary state is $T\\sim r_0^{p-1}/(G\\sigma)$, where $G$ is the higher dimensional gravitational coupling constant, $\\sigma$ is the brane tension, and $p$ is the number of extra dimensions.

  10. An Index for the Dirac Operator on D3 Brane withBackground Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric; /Groningen U.; Kallosh, Renata; /Stanford U., Phys. Dept. /Kyoto U., Yukawa Inst., Kyoto; Kashani-Poor, Amir-Kian; /Stanford U., Phys. Dept. /SLAC; Sorokin, Dmitri; /INFN, Padua /Padua U.; Tomasiello, Alessandro; /Stanford U., Phys. Dept.

    2005-08-03

    We study the problem of instanton generated superpotentials in Calabi-Yau orientifold compactifications directly in type IIB string theory. To this end, we derive the Dirac equation on a Euclidean D3 brane in the presence of background fluxes. We propose an index which governs whether the generation of a superpotential in the effective 4d theory by D3 brane instantons is possible. Applying the formalism to various classes of examples, including the K3 x T{sup 2}/Z{sub 2} orientifold, in the absence and presence of fluxes, we show that our results are consistent with conclusions attainable via duality from an M-theory analysis.

  11. M2-branes and AdS/CFT

    CERN Document Server

    Klebanov, Igor R

    2009-01-01

    These notes provide a brief introduction to the ABJM theory, the level k U(N) x U(N) superconformal Chern-Simons matter theory which has been conjectured to describe N coincident M2-branes. We discuss its dual formulation in terms of M-theory on AdS_4 x S^7/Z_k and review some of the evidence in favor of the conjecture. We end with a brief discussion of the important role played by the monopole operators.

  12. D7-Brane Chaotic Inflation

    CERN Document Server

    Hebecker, Arthur; Witkowski, Lukas T

    2014-01-01

    We analyze string-theoretic large-field inflation in the regime of spontaneously-broken supergravity with conventional moduli stabilization by fluxes and non-perturbative effects. The main ingredient is a shift-symmetric Kahler potential, supplemented by flux-induced shift symmetry breaking in the superpotential. The central technical observation is that all these features are present for D7-brane position moduli in Type IIB orientifolds. On the one hand, in the large complex structure regime they inherit a shift symmetry from their mirror-dual Type IIA Wilson lines. On the other hand, the Type IIB flux superpotential generically breaks this shift symmetry and allows, by appealing to the large flux discretuum, to tune the relevant coefficients to be small. The shift-symmetric direction in D7-brane moduli space can then play the role of the inflaton: While the D7-brane circles a certain trajectory on the Calabi-Yau many times, the corresponding F-term energy density grows only very slowly, thanks to the above-...

  13. Marginal fluctuations as instantons on M2/D2-branes

    Energy Technology Data Exchange (ETDEWEB)

    Naghdi, M. [University of Ilam, Department of Physics, Faculty of Basic Sciences, Ilam (Iran, Islamic Republic of)

    2014-03-15

    We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over AdS{sub 4} x M{sup 7} {sup vertical} {sup stroke} {sup 6} spaces, where we use S{sup 7}/Z{sub k} and CP{sup 3} for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis- Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of SO(8) and SU(4) x U(1), and it agrees with a marginal boundary operator of the conformal dimension of Δ{sub +} = 3. However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized AdS{sub 4} space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all N = 8, 6 supersymmetries to N = 0, while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations 8s and 8v for the supercharges and scalars, respectively, while the fermions remain fixed in 8c of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full U(N){sub k} x U(N){sub -k} gauge group along the same lines with a similar situation to the one faced in the AdS{sub 5}/CFT{sub 4} correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for k = 1, 2 as well. (orig.)

  14. IR properties of one loop corrections to brane-to-brane propagators in models with localized vector bosons

    OpenAIRE

    Kirpichnikov, D. V.

    2013-01-01

    We discuss the one loop effects of massless fermion fields on the low energy vector brane-to-brane propagators in the framework of two QED brane-world scenarios. We show that one loop photon brane-to-brane propagator has a power law pathologic IR divergences in the 5D QED brane-world model with gap between the vector zero mode and continuous states. We also find that bulk fermions do not give rise to IR divergences in a photon brane-to-brane Green's function at least at the one loop level in ...

  15. Penrose limits of Lie Branes and a Nappi--Witten braneworld

    CERN Document Server

    Stanciu, S; Stanciu, Sonia; Farrill, Jose Figueroa-O'

    2003-01-01

    Departing from the observation that the Penrose limit of AdS_3 x S^3 is a group contraction in the sense of Inonu and Wigner, we explore the relation between the symmetric D-branes of AdS_3 x S^3 and those of its Penrose limit, a six-dimensional symmetric plane wave analogous to the four-dimensional Nappi--Witten spacetime. Both backgrounds are Lie groups admitting bi-invariant lorentzian metrics and symmetric D-branes wrap their (twisted) conjugacy classes. We determine the (twisted and untwisted) symmetric D-branes in the plane wave background and we prove the existence of a space-filling D5-brane and, separately, of a foliation by D3-branes with the geometry of the Nappi--Witten spacetime which can be understood as the Penrose limit of the AdS_2 x S^2 D3-brane in AdS_3 x S^3. Parenthetically we also derive a simple criterion for a symmetric plane wave to be isometric to a lorentzian Lie group. In particular we observe that the maximally supersymmetric plane wave in IIB string theory is isometric to a loren...

  16. Radiative symmetry breaking on D-branes at non-supersymmetric singularities

    Science.gov (United States)

    Kitazawa, Noriaki

    2006-10-01

    The possibility of radiative gauge symmetry breaking on D3-branes at non-supersymmetric orbifold singularities is examined. As an example, a simple model of D3-branes at non-supersymmetric C/Z singularity with some D7-branes for the cancellations of RR tadpoles in twisted sectors is analyzed in detail. We find that there are no tachyon modes in twisted sectors, and NS-NS tadpoles in twisted sectors are canceled out, though uncanceled tadpoles and tachyon modes exist in untwisted sectors. This means that this singularity background is a stable solution of string theory at tree level, though some specific compactification of six-dimensional space should be considered for a consistent untwisted sector. On D3-brane three massless "Higgs doublet fields" and three family "up-type quarks" are realized at tree level. Other fermion fields, "down-type quarks" and "leptons", can be realized as massless modes of the open strings stretching between D3-branes and D7-branes. The Higgs doublet fields have Yukawa couplings with up-type quarks, and they also have self-couplings which give a scalar potential without flat directions. Since there is no supersymmetry, the radiative corrections may naturally develop negative Higgs mass squared and "electroweak symmetry breaking". We explicitly calculate the open string one-loop correction to the Higgs mass squared from twisted sectors, and find that the negative value is indeed realized in this specific model.

  17. Radiative Symmetry Breaking on D-branes at Non-supersymmetric Singularities

    CERN Document Server

    Kitazawa, N

    2006-01-01

    The possibility of radiative gauge symmetry breaking on D3-branes at non-supersymmetric orbifold singularities is examined. As an example, a simple model of D3-branes at non-supersymmetric C^3/Z_6 singularity with some D7-branes for the cancellations of R-R tadpoles in twisted sectors is analyzed in detail. We find that there are no tachyon modes in twisted sectors, and NS-NS tadpoles in twisted sectors are canceled out, though uncanceled tadpoles and tachyon modes exist in untwisted sectors. This means that this singularity background is a stable solution of string theory at tree level, though some specific compactification of six-dimensional space should be considered for a consistent untwisted sector. On D3-brane three massless "Higgs doublet fields" and three family "up-type quarks" are realized at tree level. Other fermion fields, "down-type quarks" and "leptons", can be realized as massless modes of the open strings stretching between D3-branes and D7-branes. The Higgs doublet fields have Yukawa couplin...

  18. D0-brane realizations of the resolution of a reduced singular curve

    CERN Document Server

    Liu, Chien-Hao

    2011-01-01

    Based on examples from superstring/D-brane theory since the work of Douglas and Moore on resolution of singularities of a superstring target-space $Y$ via a D-brane probe, the richness and the complexity of the stack of punctual D0-branes on a variety, and as a guiding question, we lay down a conjecture that any resolution $Y^{\\prime}\\rightarrow Y$ of a variety $Y$ over ${\\Bbb C}$ can be factored through an embedding of $Y^{\\prime}$ into the stack ${\\frak M}^{0^{A z^f}_{\\;p}}_r (Y)$ of punctual D0-branes of rank $r$ on $Y$ for $r\\ge r_0$ in ${\\Bbb N}$, where $r_0$ depends on the germ of singularities of $Y$. We prove that this conjecture holds for the resolution $\\rho: C^{\\prime}\\rightarrow C$ of a reduced singular curve $C$ over ${\\Bbb C}$. In string-theoretical language, this says that the resolution $C^{\\prime}$ of a singular curve $C$ always arises from an appropriate D0-brane aggregation on $C$ and that the rank of the Chan-Paton module of the D0-branes involved can be chosen to be arbitrarily large.

  19. Charged isotropic non-Abelian dyonic black branes

    Directory of Open Access Journals (Sweden)

    Yves Brihaye

    2015-05-01

    Full Text Available We construct black holes with a Ricci-flat horizon in Einstein–Yang–Mills theory with a negative cosmological constant, which approach asymptotically an AdSd spacetime background (with d≥4. These solutions are isotropic, i.e. all space directions in a hypersurface of constant radial and time coordinates are equivalent, and possess both electric and magnetic fields. We find that the basic properties of the non-Abelian solutions are similar to those of the dyonic isotropic branes in Einstein–Maxwell theory (which, however, exist in even spacetime dimensions only. These black branes possess a nonzero magnetic field strength on the flat boundary metric, which leads to a divergent mass of these solutions, as defined in the usual way. However, a different picture is found for odd spacetime dimensions, where a non-Abelian Chern–Simons term can be incorporated in the action. This allows for black brane solutions with a magnetic field which vanishes asymptotically.

  20. Cosmology from quantum potential in a system of oscillating branes

    CERN Document Server

    Sepehri, Alireza

    2015-01-01

    Recently, some authors proposed a new mechanism which gets rid of the big-bang singularity and shows that the age of the universe is infinite. In this paper, we will confirm their results and predict that the universe may expand and contract many times in a system of oscillating branes. In this model, first, N fundamental strings transit to N M0-anti-M0-branes. Then, M0-branes join to each other and build an M8-anti-M8 system. This system is unstable, broken and two anti-M4-branes, a compactified M4-brane, an M3-brane in additional to one M0-brane are produced. The M3-brane wraps around the compactified M4-brane and both of them oscillate between two anti-M4-branes. Our universe is located on the M3-brane and interacts with other branes by exchanging the M0-brane and some scalars in transverse directions. By wrapping of M3-brane, universe contracts and generalized uncertainty principle or GUP emerges. By oscillating the compactified M4-M3-brane and approaching to one of anti-M4-branes, one end of M3-brane glu...

  1. P-brane black holes for general intersections

    CERN Document Server

    Ivashchuk, V D

    1999-01-01

    Black hole generalized p-brane solutions for a wide class of intersectionrules are presented. The solutions are defined on a manifold that contains aproduct of n - 1 Ricci-flat ``internal'' spaces. They are defined up to modulifunctions H_s = H_s(R) obeying a non-linear differential equations (equivalentto Toda-type equations) with certain boundary conditions imposed. Usingconjecture on polynomial structure of H_s for intersections related to Liealgebras, new A_2-dyon solutions are obtained. Two examples of these A_2-dyonsolutions, i.e. dyon in D = 11 supergravity with M2 and M5 branes intersectingat a point and dyon in Kaluza-Klein theory, are considered.

  2. The Standard Model from Stable Intersecting Brane World Orbifolds

    CERN Document Server

    Blumenhagen, R; Lüst, Dieter; Ott, T; Blumenhagen, Ralph; Kors, Boris; Lust, Dieter; Ott, Tassilo

    2001-01-01

    We analyze the perturbative stability of non-supersymmetric intersecting brane world models on tori. Besides the dilaton tadpole, a dynamical instability in the complex structure moduli space occurs at string disc level, which drives the background geometry to a degenerate limit. We show that in certain orbifold models this latter instability is absent as the relevant moduli are frozen. We construct explicit examples of such orbifold intersecting brane world models and discuss the phenomenological implications of a three generation Standard Model which descends naturally from an SU(5) GUT theory. It turns out that various phenomenological issues require the string scale to be at least of the order of the GUT scale. As a major difference compared to the Standard Model, some of the Yukawa couplings are excluded so that the standard electroweak Higgs mechanism with a fundamental Higgs scalar is not realized in this set-up.

  3. Scales and hierarchies in warped compactifications and brane worlds

    CERN Document Server

    De Wolfe, O; Wolfe, Oliver De; Giddings, Steven B.

    2003-01-01

    Warped compactifications with branes provide a new approach to the hierarchy problem and generate a diversity of four-dimensional thresholds. We investigate the relationships between these scales, which fall into two classes. Geometrical scales, such as thresholds for Kaluza-Klein, excited string, and black hole production, are generically determined soley by the spacetime geometry. Dynamical scales, notably the scale of supersymmetry breaking and moduli masses, depend on other details of the model. We illustrate these relationships in a class of solutions of type IIB string theory with imaginary self-dual fluxes. After identifying the geometrical scales and the resulting hierarchy, we determine the gravitino and moduli masses through explicit dimensional reduction, and estimate their value to be near the four-dimensional Planck scale. In the process we obtain expressions for the superpotential and Kahler potential, including the effects of warping. We identify matter living on certain branes to be effectivel...

  4. Self-gravitating non-abelian kinks as brane worlds

    CERN Document Server

    Melfo, Alejandra; Pantoja, Nelson; Skirzewski, Aureliano; Vasquez, Juan Carlos

    2011-01-01

    We address the properties of self-gravitating domain walls arising from the breaking of an SU(N) x Z_2- symmetric theory. In the particular case of N=5, we find that the two classes of stable non-abelian kinks possible in flat space have an analogue in the gravitational case, and construct the analytical solutions. Localization of fermion fields in different representations of the gauge group in these branes is investigated. It is also shown that non-abelian gauge fields localization cannot be achieved through interactions with the brane, but that in one of the two classes of kinks this localization can be implemented via the Dvali-Shifman mechanism.

  5. Romans-mass-driven flows on the D2-brane

    CERN Document Server

    Guarino, Adolfo; Varela, Oscar

    2016-01-01

    The addition of supersymmetric Chern-Simons terms to ${\\cal N}=8$ super-Yang-Mills theory in three-dimensions is expected to make the latter flow into infrared superconformal phases. We address this problem holographically by studying the effect of the Romans mass on the D2-brane near-horizon geometry. Working in a consistent, effective four-dimensional setting provided by $D=4$ ${\\cal N}=8$ supergravity with a dyonic $\\textrm{ISO(7)}$ gauging, we verify the existence of a rich web of supersymmetric domain walls triggered by the Romans mass that interpolate between the (four-dimensional description of the) D2-brane and various superconformal phases. We also construct domain walls for which both endpoints are superconformal. While most of our results are numerical, we provide analytic results for the $\\textrm{SU}(3)\\times \\textrm{U}(1)$-invariant flow into an ${\\cal N}=2$ conformal phase recently discovered.

  6. The Standard Model from stable intersecting brane world orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph E-mail: blumenha@physik.hu-berlin.de; Koers, Boris E-mail: koers@physik.hu-berlin.de; Luest, Dieter E-mail: luest@physik.hu-berlin.de; Ott, Tassilo E-mail: ott@physik.hu-berlin.de

    2001-11-19

    We analyze the perturbative stability of non-supersymmetric intersecting brane world models on tori. Besides the dilaton tadpole, a dynamical instability in the complex structure moduli space occurs at string disc level, which drives the background geometry to a degenerate limit. We show that in certain orbifold models this latter instability is absent as the relevant moduli are frozen. We construct explicit examples of such orbifold intersecting brane world models and discuss the phenomenological implications of a three generation Standard Model which descends naturally from an SU(5) GUT theory. It turns out that various phenomenological issues require the string scale to be at least of the order of the GUT scale. As a major difference compared to the Standard Model, some of the Yukawa couplings are excluded so that the standard electroweak Higgs mechanism with a fundamental Higgs scalar is not realized in this set-up.

  7. Integrability of D1-brane on Group Manifold with Mixed Three Form Flux

    CERN Document Server

    Kluson, J

    2015-01-01

    We consider D1-brane as a natural probe of the group manifold with mixed three form fluxes. We determine Lax connection for given theory. Then we switch to the canonical analysis and calculate the Poisson brackets between spatial components of Lax connections and we argue for integrability of given theory.

  8. Braneworld dynamics with the BraneCode

    CERN Document Server

    Martín, J; Frolov, A V; Peloso, M; Kofman, L A; Martin, Johannes; Felder, Gary N.; Frolov, Andrei V.; Peloso, Marco; Kofman, Lev

    2003-01-01

    We give a full nonlinear numerical treatment of time-dependent 5d braneworld geometry, which is determined self-consistently by potentials for the scalar field in the bulk and at two orbifold branes, supplemented by boundary conditions at the branes. We describe the BraneCode, an algorithm which we designed to solve the dynamical equations numerically. We applied the BraneCode to braneworld models and found several novel phenomena of the brane dynamics. Starting with static warped geometry with de Sitter branes, we found numerically that this configuration is often unstable due to a tachyonic mass of the radion during inflation. If the model admits other static configurations with lower values of de Sitter curvature, this effect causes a violent re-structuring towards them, flattening the branes, which appears as a lowering of the 4d effective cosmological constant. Braneworld dynamics can often lead to brane collisions. We found that in the presence of the bulk scalar field, the 5d geometry between colliding...

  9. Brane Stabilization and Regionality of Extra Dimensions

    CERN Document Server

    Jacobs, David M; Tolley, Andrew J

    2012-01-01

    Extra dimensions are a common feature of beyond the Standard Model physics. In a braneworld scenario, local physics on the brane can depend strongly on the brane's location within the bulk. Generically, the relevant properties of the bulk manifold for the physics on/of the brane are neither local nor global, but depend on the structure of finite regions of the bulk, even for locally homogeneous and isotropic bulk geometries. In a recent work, various mechanisms (in a braneworld context) were considered to stabilize the location of a brane within bulk spaces of non-trivial topology. In this work we elaborate on and generalize that work by considering additional bulk and brane dimensionalities as well as different boundary conditions on the bulk scalar field that provides a Casimir force on the brane, providing further insight on this effect. In D=2+1 (D=5+1) we consider both local and global contributions to the effective potential of a 1-brane (4-brane) wrapped around both the 2-dimensional hyperbolic horn an...

  10. On-brane data for braneworld stars

    CERN Document Server

    Visser, M; Visser, Matt; Wiltshire, David L.

    2003-01-01

    Stellar structure in braneworlds is rather different from that in ordinary general relativity. We completely solve the ``on brane'' 4-dimensional Gauss--Codazzi equations for an arbitrary static spherically symmetric star in a Randall-Sundrum type II braneworld. We then indicate how this on-brane boundary data can be propagated into the bulk to determine the 5-dimensional spacetime geometry.

  11. Defect (p,q) Five-branes

    CERN Document Server

    Kimura, Tetsuji

    2015-01-01

    We study the local description of composite five-branes of codimension two. The formulation is constructed by virtue of the $SL(2,{\\mathbb Z}) \\times SL(2,{\\mathbb Z)}$ monodromy associated with two-torus. Applying the conjugate monodromy transformations to the complex structures of the two-torus, we obtain the field configuration of the defect $(p,q)$ five-branes. This is the composite state of $p$ defect NS5-branes and $q$ exotic $5^2_2$-branes. We also obtain a new hyper-K\\"{a}hler geometry. This is an ALG space, a generalization of an ALF space which asymptotically has a tri-holomorphic two-torus action. This geometry appears in the conjugate configuration of the single defect KK5-brane.

  12. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. A. C., E-mail: fis04132@gmail.com [CCNH, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste (Italy)

    2015-11-02

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy.

  13. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R.A.C. [CCNH, Universidade Federal do ABC, Santo Andre, SP (Brazil); Rocha, Roldao da [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil); International School for Advanced Studies (SISSA), Trieste (Italy)

    2015-11-15

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy. (orig.)

  14. No Swiss-cheese on the brane

    CERN Document Server

    Gergely, L A

    2004-01-01

    We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can exist on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.

  15. More on general $p$-brane solutions

    CERN Document Server

    Galtsov, D V; Klevtsov, S; Orlov, D

    2005-01-01

    Recently it was found that the complete integration of the Einstein-dilaton-antisymmetric form equations depending on one variable and describing static singly charged $p$-branes leads to two and only two classes of solutions: the standard asymptotically flat black $p$-brane and the asymptotically non-flat $p$-brane approaching the linear dilaton background at spatial infinity. Here we analyze this issue in more details and generalize the corresponding uniqueness argument to the case of partially delocalized branes. We also consider the special case of codimension one and find, in addition to the standard domain wall, the black wall solution. Explicit relations between our solutions and some recently found $p$-brane solutions ``with extra parameters'' are presented.

  16. Dyonic branes and linear dilaton background

    CERN Document Server

    Clément, G; Leygnac, C; Orlov, D; Clement, Gerard; Gal'tsov, Dmitri; Leygnac, Cedric; Orlov, Dmitri

    2006-01-01

    We study dyonic solutions to the gravity-dilaton-antisymmetric form equations with the goal of identifying new $p$-brane solutions on the fluxed linear dilaton background. Starting with the generic solutions constructed by reducing the system to decoupled Liouville equations for certain values of parameters, we identify the most general solution whose singularities are hidden behind a regular event horizon, and then explore the admissible asymptotic behaviors. In addition to known asymptotically flat dyonic branes, we find two classes of asymptotically non-flat solutions which can be interpreted as describing magnetically charged branes on the electrically charged linear dilaton background (and the $S$-dual configuration of electrically charged branes on the magnetically charged background), and uncharged black branes on the dyonically charged linear dilaton background. This interpretation is shown to be consistent with the first law of thermodynamics for the new solutions.

  17. Brane modeling in warped extra-dimension

    CERN Document Server

    Ahmed, Aqeel

    2012-01-01

    Five-dimensional scenarios with infinitesimally thin branes replaced by appropriate configurations of a scalar field were considered. A possibility of periodic extra dimension was discussed in the presence on non-minimal scalar-gravity coupling and a generalized Gibbons-Kallosh-Linde sum rule was found. In order to avoid constraints imposed by periodicity, a non-compact spacial extra dimension was introduced. A five dimensional model with warped geometry and two thin branes mimicked by a scalar profile was constructed and discussed. In the thin brane limit the model corresponds to a set-up with two positive-tension branes. The presence of two branes allows to address the issue of the hierarchy problem which could be solved by the standard warping of the four dimensional metric. Stability of the background solution was discussed and verified in the presence of the most general perturbations of the metric and the scalar field.

  18. Unexorcized ghost in DGP brane world

    CERN Document Server

    Izumi, K; Tanaka, T; Izumi, Keisuke; Koyama, Kazuya; Tanaka, Takahiro

    2007-01-01

    The braneworld model of Dvali-Gabadadze-Porrati realizes the self-accelerating universe. However, it is known that this cosmological solution contains a spin-2 ghost. We study the possibility of avoiding the appearance of the ghost by slightly modifying the model, introducing the second brane. First we consider a simple model without stabilization of the separation of the brane. By changing the separation between the branes, we find we can erase the spin-2 ghost. However, this can be done only at the expense of the appearance of a spin-0 ghost instead. We discuss why these two different types of ghosts are correlated. Then, we examine a model with stabilization of the brane separation. Even in this case, we find that the correlation between spin-0 and spin-2 ghosts remains. As a result we find we cannot avoid the appearance of ghost by two-branes model.

  19. Observations on fluxes near anti-branes

    CERN Document Server

    Cohen-Maldonado, Diego; Van Riet, Thomas; Vercnocke, Bert

    2015-01-01

    We revisit necessary conditions for gluing local (anti)-D3 throats into flux throats with opposite charge. These consistency conditions typically reveal singularities in the 3-form fluxes whose meaning is being debated. In this note we prove, under well-motivated assumptions, that singularities remain even when the anti-D3 branes are puffed up into spherical NS5 branes. It does not seem possible to ascribe the singular flux to the self-energy of the 5-branes but rather to the singular clumping of the background fluxes. We furthermore comment on the gluing conditions at finite temperature and point out that one specific assumption of a recent no-go theorem can be broken if anti-branes are to polarise into spherical NS5 branes at zero temperature. Our first result, however, casts some doubt on whether this gap in the no-go theorem can be successfully employed to construct finite temperature solutions.

  20. Wavefunctions on magnetized branes in the conifold

    CERN Document Server

    Abe, Hiroyuki; Otsuka, Hajime

    2015-01-01

    We study wavefunctions on D$7$-branes with magnetic fluxes in the conifold. Since some supersymmetric embeddings of D-branes on the $AdS_5\\times T^{1,1}$ geometry are known, we consider one of the embeddings, especially the spacetime filling D$7$-branes in which (a part of) the standard model is expected to be realized. The explicit form of induced metric on the D$7$-branes allows us to solve the Laplace and Dirac equations to evaluate matter wavefunctions in extra dimensions analytically. We find that the zero-mode wavefunctions can be localized depending on the configuration of magnetic fluxes on D$7$-branes, and show some phenomenological aspects.

  1. Configurational entropy in brane-world models

    Science.gov (United States)

    Correa, R. A. C.; da Rocha, Roldão

    2015-11-01

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy.

  2. Curved dilatonic brane-worlds and the cosmological constant problem

    CERN Document Server

    Alonso-Alberca, N; Silva, P J; Alonso-Alberca, Natxo; Janssen, Bert; Silva, Pedro J.

    2000-01-01

    We construct a model for dilatonic brane worlds with constant curvature on the brane, i.e. a non-zero four-dimensional cosmological constant, given in function of the dilaton coupling and the cosmological constant of the bulk. It is shown that the brane cosmological constant does not change under quantum fluctuations in the brane tension.

  3. NS5 Brane and Little String Duality in the pp-wave Limit

    CERN Document Server

    Matlock, P; Viswanathan, K S; Yang, Y

    2003-01-01

    We study NSR strings in the Nappi-Witten background, which is the Penrose limit of a certain NS5-brane supergravity solution. We solve the theory in the light-cone gauge, obtaining the spectrum, which is space-time supersymmetric. In light of the LST/NS5-brane duality, this spectrum should be in correspondence with the states of little string theory in the appropriate limit. A semiclassical analysis verifies that the relationship between energy and angular momentum, after a field redefinition, matches that found for a flat background.

  4. Configurational entropy in f(R,T) brane models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R.A.C. [Universidade Federal do ABC, CCNH, Santo Andre, Sao Paulo (Brazil); Moraes, P.H.R.S. [ITA, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo (Brazil)

    2016-02-15

    In this work we investigate generalized theories of gravity in the so-called configurational entropy (CE) context. We show, by means of this information-theoretical measure, that a stricter bound on the parameter of f(R, T) brane models arises from the CE. We find that these bounds are characterized by a valley region in the CE profile, where the entropy is minimal. We argue that the CE measure can play a new role and might be an important additional approach to selecting parameters in modified theories of gravitation. (orig.)

  5. Supersymmetric attractors, topological strings, and the M5-brane CFT

    Science.gov (United States)

    Guica, Monica M.

    One of the purposes of this thesis is to present the consistent and unifying picture that emerges in string and M-theory with eight supercharges. On one hand, this involves classifying and relating supersymmetric objects that occur in N = 2 compactifications of string and M-theory on a Calabi-Yau manifold. These come in a surprisingly wide variety of four and five-dimensional black holes, black rings and their sometimes very complicated bound states. On the other hand, the topological string also makes its appearance in theories with eight supercharges, and turns out to compute certain black hole degeneracies. We dedicate the introduction and the first chapter to summarizing and reviewing the beautiful relationships between black holes, black rings, their dual conformal field theory and the topological string, and we also outline the remaining puzzles and issues. Some of the black holes in question can be obtained by multiply-wrapping an M-theory M5-brane on a self-intersecting four-cycle in the Calabi-Yau manifold. Their dual microscopic description is known, and consists of a two-dimensional conformal field theory (CFT) which is the low-energy limit of the gauge theory that resides on the worldvolume of the M5 brane. We show that in a certain limit the M5-brane CFT is - perhaps surprisingly - able to reproduce the entropy of a completely different type of black holes, those obtained from wrapped M2-branes, whose microscopic description has not yet been understood. We also argue that certain black hole bound states should also be described by the same CFT, which suggests a unifying description of the various black objects in eight-supercharge supergravity theories. Finally, we describe and present a proof of the so-called OSV conjecture, which states that the mixed partition function of N = 2 four-dimensional BPS black holes equals the modulus square of the type A topological string partition function. We also attempt to use this relationship to better understand

  6. Superconformal M2-branes and generalized Jordan triple systems

    CERN Document Server

    Nilsson, Bengt E W

    2008-01-01

    Three-dimensional conformal theories with six supersymmetries and SU(4) R-symmetry describing stacks of M2-branes are here proposed to be related to generalized Jordan triple systems. Writing the four-index structure constants in an appropriate form, the Chern-Simons part of the action immediately suggests a connection to such triple systems. In this note we show that the whole theory with six manifest supersymmetries can be naturally expressed in terms of structure constants of generalized Jordan triple systems. We comment on the associated graded Lie algebra, which corresponds to an extension of the gauge group.

  7. Brane-World Black Holes and Energy-Momentum Vector

    CERN Document Server

    Salti, M; Korunur, M; Aydogdu, Oktay; Korunur, Murat; Salti, Mustafa

    2006-01-01

    The Brane-World black hole models are investigated to evaluate their relative energy and momentum components. We consider Einstein and M{\\o}ller's energy-momentum prescriptions in general relativity, and also perform the calculation of energy-momentum density in M{\\o}ller's tetrad theory of gravity. For the Brane-World black holes we show that although Einstein and M{\\o}ller complexes, in general relativity give different energy relations, they yield the same results for the momentum components. In addition, we also make the calculation of the energy-momentum distribution in teleparallel gravity, and calculate exactly the same energy as that obtained by using M{\\o}ller's energy-momentum prescription in general relativity. This interesting result supports the viewpoint of Lessner that the M{\\o}ller energy-momentum complex is a powerful concept for the energy and momentum. We also give five different examples of Brane-World black holes and find the energy distributions associated with them. The result calculate...

  8. Warped Higgsless Models with IR-Brane Kinetic Terms

    CERN Document Server

    Davoudiasl, H; Lillie, Benjamin Huntington; Rizzo, T G

    2004-01-01

    We examine a warped Higgsless $SU(2)_L\\times SU(2)_R\\times U(1)_{B-L}$ model in 5--$d$ with IR(TeV)--brane kinetic terms. It is shown that adding a brane term for the $U(1)_{B-L}$ gauge field does not affect the scale ($\\sim 2-3$ TeV) where perturbative unitarity in $W_L^+ W_L^- \\to W_L^+ W_L^-$ is violated. This term could, however, enhance the agreement of the model with the precision electroweak data. In contrast, the inclusion of a kinetic term corresponding to the $SU(2)_D$ custodial symmetry of the theory delays the unitarity violation in $W_L^\\pm$ scattering to energy scales of $\\sim 6-7$ TeV for a significant fraction of the parameter space. This is about a factor of 4 improvement compared to the corresponding scale of unitarity violation in the Standard Model without a Higgs. We also show that null searches for extra gauge bosons at the Tevatron and for contact interactions at LEP II place non-trivial bounds on the size of the IR-brane terms.

  9. On the partition sum of the NS five-brane

    CERN Document Server

    Dijkgraaf, R; Vonk, M

    2002-01-01

    We study the Type IIA NS five-brane wrapped on a Calabi-Yau manifold X in a double-scaled decoupling limit. We calculate the euclidean partition function in the presence of a flat RR 3-form field. The classical contribution is given by a sum over fluxes of the self-dual tensor field which reduces to a theta-function. The quantum contributions are computed using a T-dual IIB background where the five-branes are replaced by an ALE singularity. Using the supergravity effective action we find that the loop corrections to the free energy are given by B-model topological string amplitudes. This seems to provide a direct link between the double-scaled little strings on the five-brane worldvolume and topological strings. Both the classical and quantum contributions to the partition function satisfy (conjugate) holomorphic anomaly equations, which explains an observation of Witten relating topological string theory to the quantization of three-form fields.

  10. Semi-doubled Sigma Models for Five-branes

    CERN Document Server

    Kimura, Tetsuji

    2015-01-01

    We study two-dimensional ${\\cal N}=(2,2)$ gauge theory and its dualized system in terms of complex (linear) superfields and their alternatives. Although this technique itself is not new, we can obtain a new model, the so-called "semi-doubled" GLSM. Similar to doubled sigma model, this involves both the original and dual degrees of freedom simultaneously, whilst the latter only contribute to the system via topological interactions. Applying this to the ${\\cal N}=(4,4)$ GLSM for H-monopoles, i.e., smeared NS5-branes, we obtain its T-dualized systems in quite an easy way. As a bonus, we also obtain the semi-doubled GLSM for an exotic $5^3_2$-brane whose background is locally nongeometric. In the low energy limit, we construct the semi-doubled NLSM which also generates the conventional string worldsheet sigma models. In the case of the NLSM for $5^3_2$-brane, however, we find that the Dirac monopole equation does not make sense any more because the physical information is absorbed into the divergent part via the ...

  11. Where does curvaton live? -- Distinguishing bulk/brane frames

    CERN Document Server

    Larrouturou, François; Namba, Ryo; Watanabe, Yota

    2016-01-01

    D-brane inflationary models propose candidates for an inflaton embedded in the string theory. In these models, two distinct metrics/frames are naturally introduced, brane and bulk metrics/frames, which are connected by a conformal$+$disformal transformation that depends on the inflaton and its derivatives. It has been shown that physical observables, such as curvature perturbations, that are generated by the inflaton are identical in both frames. However, in the case of curvaton scenarios, the results differ depending on the frames to which the curvaton minimally couples. We examine two models, a slow-roll inflation with an inflection point potential and a model of a rapidly rolling inflaton that conformally couples to gravity. In the first model, the difference between the frames in which the curvaton resides is encoded in the spectral index of the curvature perturbations, depicting the nature of the frame transformation. In the second model, the curvaton on the brane induces a spectral index significantly d...

  12. Localized four-dimensional gravity in the D-brane background with NS $B$ field

    CERN Document Server

    Fonseca, R C; Losano, L

    2016-01-01

    We calculate small correction terms to gravitational potential near $p$-branes embedded in a constant NS $B$ field background in the context of M-theory or string theory. The normalizable wave functions of gravity fluctuations around the brane describe only massive modes. We compute such wave functions analytically. We estimate the correction to gravitational potential for small and long distances, and show that there is an intermediate range of distances in which we can identify $4D$ gravity on the brane below a crossover scale given in terms of components of the $B$ field. The $4D$ gravity is metastable and for distances much larger than the crossover scale the $5D$ gravity is recovered.

  13. Where does curvaton reside? Differences between bulk and brane frames

    Science.gov (United States)

    Larrouturou, François; Mukohyama, Shinji; Namba, Ryo; Watanabe, Yota

    2017-03-01

    Some classes of inflationary models naturally introduce two distinct metrics/frames, and their equivalence in terms of observables has often been put in question. D-brane inflation proposes candidates for an inflaton embedded in the string theory and possesses descriptions on the brane and bulk metrics/frames, which are connected by a conformal/disformal transformation that depends on the inflaton and its derivatives. It has been shown that curvature perturbations generated by the inflaton are identical in both frames, meaning that observables such as the spectrum of cosmic microwave background (CMB) anisotropies are independent of whether matter fields—including those in the standard model of particle physics—minimally couple to the brane or the bulk metric/frame. This is true despite the fact that the observables are eventually measured by the matter fields and that the total action including the matter fields is different in the two cases. In contrast, in curvaton scenarios, the observables depend on the frame to which the curvaton minimally couples. Among all inflationary scenarios, we focus on two models motivated by the KKLMMT fine-tuning problem: a slow-roll inflation with an inflection-point potential and a model of a rapidly rolling inflaton that conformally couples to gravity. In the first model, the difference between the frames in which the curvaton resides is encoded in the spectral index of the curvature perturbations, depicting the nature of the frame transformation. In the second model, the curvaton on the brane induces a spectral index significantly different from that in the bulk and is even falsified by the observations. This work thus demonstrates that two frames connected by a conformal/disformal transformation lead to different physical observables such as CMB anisotropies in curvaton models.

  14. (p,q)-Five Brane and (p,q)-String Solutions, their Bound State and its Near Horizon Limit

    CERN Document Server

    Kluson, J

    2016-01-01

    We determine (p,q)-string and (p,q)-five brane solutions of type IIB supergravity using SL(2,Z)-symmetry of the full type IIB superstring theory. We also determine SL(2,Z)-transformed solution corresponding to the bound state of NS5-branes and fundamental strings. Then we analyze its near horizon limit and we show that it leads to the AdS(3)xS(3) with mixed fluxes.

  15. Hierarchy problem and the cosmological constant in a five-dimensional Brans-Dicke brane world model

    CERN Document Server

    Smolyakov, Mikhail N

    2010-01-01

    We discuss a new solution, admitting the existence of dS_{4} branes, in five-dimensional Brans-Dicke theory. It is shown that, due to a special form of a bulk scalar field potential, for certain values of the model parameters the effective cosmological constant can be made small on the brane, where the hierarchy problem of gravitational interaction is solved. We also discuss new stabilization mechanism which is based on the use of auxiliary fields.

  16. Dualities of Deformed $\\mathcal{N=2}$ SCFTs from Link Monodromy on D3-brane States

    CERN Document Server

    Grassi, Antonella; Ruehle, Fabian; Shaneson, Julius L

    2016-01-01

    We study D3-brane theories that are dually described as deformations of two different $\\mathcal{N}=2$ superconformal theories with massless monopoles and dyons. These arise at the self-intersection of a seven-brane in F-theory, which cuts out a link on a small three-sphere surrounding the self-intersection. The spectrum is studied by taking small loops in the three-sphere, yielding a link-induced monodromy action on string junction D3-brane states, and subsequently quotienting by the monodromy. This reduces the differing flavor algebras of the $\\mathcal{N}=2$ theories to the same flavor algebra, as required by duality, and projects out charged states, yielding an $\\mathcal{N}=1$ superconformal theory on the D3-brane. In one, a deformation of a rank one Argyres-Douglas theory retains its $SU(2)$ flavor symmetry and exhibits a charge neutral flavor triplet that is comprised of electron, dyon, and monopole string junctions. From duality we argue that the monodromy projection should also be imposed away from the ...

  17. Constrained superfields from an anti-D3-brane in KKLT

    Science.gov (United States)

    Vercnocke, Bert; Wrase, Timm

    2016-08-01

    The KKLT construction of dS vacua [1] relies on an uplift term that arises from an anti-D3-brane. It was argued by Kachru, Pearson and Verlinde [2] that this anti-D3-brane is an excited state in a supersymmetric theory since it can decay to a supersymmetric ground state. Hence the anti-D3-brane breaks supersymmetry spontaneously and one should be able to package all the world-volume fields on the anti-D3-brane into a four dimensional {N} = 1 supersymmetric action. Here we extend previous results and identify the constrained superfields that correspond to all the degrees of freedom on the anti-D3-brane. In particular, we show explicitly that the four 4D worldvolume spinors give rise to constrained chiral multiplets S and Y i , i = 1 , 2 , 3 that satisfy S 2 = SY i = 0. We also conjecture (and provide evidence in a forthcoming publication) that the vector field A μ and the three scalars ϕ i give rise to a field strength multiplet W α and three chiral multiplets H i that satisfy the constraints S{W}_{α }={overline{D}}_{overset{\\cdot }{α }}(S{overline{H}}^i)=0 . This is the first time that such constrained multiplets appear in string theory constructions.

  18. Brane-world cosmology with black strings

    Science.gov (United States)

    Gergely, László Á.

    2006-07-01

    We consider the simplest scenario when black strings/cigars penetrate the cosmological brane. As a result, the brane has a Swiss-cheese structure, with Schwarzschild black holes immersed in a Friedmann-Lemaître-Robertson-Walker brane. There is no dark radiation in the model, the cosmological regions of the brane are characterized by a cosmological constant Λ and flat spatial sections. Regardless of the value of Λ, these brane-world universes forever expand and forever decelerate. The totality of source terms in the modified Einstein equation sum up to a dust, establishing a formal equivalence with the general relativistic Einstein-Straus model. However in this brane-world scenario with black strings the evolution of the cosmological fluid strongly depends on Λ. For Λ≤0 it has positive energy density ρ and negative pressure p and at late times it behaves as in the Einstein-Straus model. For (not too high) positive values of Λ the cosmological evolution begins with positive ρ and negative p, but this is followed by an epoch with both ρ and p positive. Eventually, ρ becomes negative, while p stays positive. A similar evolution is present for high positive values of Λ, however in this case the evolution ends in a pressure singularity, accompanied by a regular behavior of the cosmic acceleration. This is a novel type of singularity appearing in brane-worlds.

  19. Localization of Gravitino Field on Thin Branes

    CERN Document Server

    Du, Yun-Zhi; Zhou, Xiang-Nan; Zhong, Yi; Liu, Yu-Xiao

    2015-01-01

    In this paper, we investigate the localization of a gravitino field on two kinds of thin branes, the Randall-Sundrum-1 (RS1) branes and the scalar-tensor branes. The coupled chiral equations for the Kaluza-Klein (KK) modes of a gravitino field are obtained by the gravitino chiral KK decompositions with the supersymmetry transformations.It is shown that, in the RS1 model for the left- and right-handed zero modes of the gravitino field, only one of them can be localized near one brane. For the massive modes, both chiral modes survive and the lower KK modes are localized near the IR brane from the four-dimensional physical coordinate point of view. For the scalar-tensor brane model, the localization of the gravitino chiral zero modes depends on the coupling parameter $\\lambda$, and they will be not localized around anyone brane within a certain range of the parameter $\\lambda$, which is quite different from the RS1 model. Furthermore, we also give the corresponding mass spectra of the massive KK gravitinos in th...

  20. Scalar perturbations from brane-world inflation

    CERN Document Server

    Koyama, K; Maartens, R; Wands, D

    2004-01-01

    We investigate the scalar metric perturbations about a de Sitter brane universe in a 5-dimensional anti de Sitter bulk. We compare the master-variable formalism, describing metric perturbations in a 5-dimensional longitudinal gauge, with results in a Gaussian normal gauge. For a vacuum brane (with constant brane tension) there is a continuum of normalizable Kaluza-Klein modes, with m>3H/2, which remain in the vacuum state. A light radion mode, with m=\\sqrt{2}H, satisfies the boundary conditions for two branes but is not normalizable in the single-brane case. When matter is introduced (as a test field) on the brane, this mode, together with the zero-mode and an infinite ladder of discrete tachyonic modes, become normalizable. However, the boundary condition requires the self-consistent 4-dimensional evolution of scalar field perturbations on the brane and the dangerous growing modes are not excited. These normalizable discrete modes introduce corrections at first-order to the scalar field perturbations compute...

  1. Brane in the Relativistic Theory of Gravitation

    CERN Document Server

    Naboulsi, R

    2003-01-01

    It was proven that Logunov RTG predicts a cyclic Universe with no singularities. It is shown in this paper that an additional exotic density term will not affect this important characteristic of the Universe evolution. We assume that this later varies with time according to the law m^2 propto frac{dot{R}^2}{R}. The graviton mass and the density term are of order of Hubble's constant. The classical Einstein's cosmological parameter is excluded to converse the logical structure of the RTG. The age of the Universe and the deceleration parameter agree with recent observational data from BOOMERANG, MAXIMA and COBE.

  2. Bulk gravitational field and dark radiation on the brane in dilatonic brane world

    CERN Document Server

    Yoshiguchi, H; Yoshiguchi, Hiroyuki; Koyama, Kazuya

    2004-01-01

    We discuss the connection between the dark radiation on the brane and the bulk gravitational field in a dilatonic brane world model proposed by Koyama and Takahashi where the exact solutions for the five dimensional cosmological perturbations can be obtained analytically. It is shown that the dark radiation perturbation is related to the non-normalizable Kaluza-Klein (KK) mode of the bulk perturbations. For the de Sitter brane in the anti-de Sitter bulk, the squared mass of this KK mode is $2 H^2$ where $H$ is the Hubble parameter on the brane. This mode is shown to be connected to the excitation of small black hole in the bulk in the long wavelength limit. The exact solution for an anisotropic stress on the brane induced by this KK mode is found, which plays an important role in the calculation of cosmic microwave background radiation anisotropies in the brane world.

  3. Models of Inflation on D-Branes

    CERN Document Server

    Halyo, E

    2003-01-01

    We obtain models of chaotic, slow--roll, hybrid and D--term inflation from the Hanany--Witten brane configuration and its deformations. The deformations are given by the different orientations of the branes and control the parameters of the scalar potential such as the inflaton mass, Yukawa couplings and the anomalous D--term. The different inflationary models are continuously connected and arise in different limits of the parameter space. We describe a compactified version of the brane construction that also leads to models of inflation.

  4. A Holographic Bound for D3-Brane

    CERN Document Server

    Momeni, Davood; Bahamonde, Sebastian; Myrzakul, Aizhan; Myrzakulov, Ratbay

    2016-01-01

    In this paper, we will calculate the holographic entanglement entropy, holographic complexity, and fidelity susceptibility for a D3-brane. It will be demonstrated that for a D3-brane the holographic complexity is always greater than or equal to than the fidelity susceptibility. Furthermore, we will also demonstrate that the holographic complexity is related to the holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving holographic complexity, holographic entanglement entropy and fidelity susceptibility of a D3-brane.

  5. Focusing of branes in warped backgrounds

    CERN Document Server

    Kar, S

    2006-01-01

    Branes are embedded surfaces in a given background (bulk) spacetime. Assuming a warped bulk, we investigate, in analogy with the case for geodesics, the notion of {\\em focusing} of families of such embedded, extremal 3--branes in a five dimensional background . The essential tool behind our analysis, is the well-known generalised Raychaudhuri equations for surface congruences. In particular, we find explicit solutions of these equations, which seem to show that families of 3--branes can focus along lower dimensional submanifolds depending on where the initial expansions are specified. We conclude with comments on the results obtained and possibilities about future work along similar lines.

  6. Universal turbulence on branes in holography

    CERN Document Server

    Hashimoto, Koji; Sonoda, Akihiko

    2015-01-01

    At a meson melting transition in holographic QCD, a weak turbulence of mesons was found with critical embeddings of probe D-branes in gravity duals. The turbulent mesons have a power-law energy distribution $\\varepsilon_n \\propto (\\omega_n)^\\alpha$ where $\\omega_n$ is the mass of the $n$-th excited resonance of the meson tower. In this paper, we find that the turbulence power $\\alpha$ is universal, irrespective of how the transition is driven, by numerically calculating the power in various static brane setups at criticality. We also find that the power $\\alpha$ depends only on the cone dimensions of the probe D-branes.

  7. Electromagnetic perturbations in new brane world scenarios

    CERN Document Server

    Molina, C; Torrejon, T E M

    2016-01-01

    In this work we consider electromagnetic dynamics in Randall-Sundrum branes. It is derived a family of four-dimensional spacetimes compatible with Randall-Sundrum brane worlds, focusing on asymptotic flat backgrounds. Maximal extensions of the solutions are constructed and their causal structures are discussed. These spacetimes include singular, non-singular and extreme black holes. Maxwell's electromagnetic field is introduced and its evolution is studied in an extensive numerical survey. Electromagnetic quasinormal mode spectra are derived and analyzed with time-dependent and high order WKB methods. Our results indicate that the black holes in the brane are electromagnetically stable.

  8. Null fluid collapse in brane world models

    CERN Document Server

    Harko, Tiberiu

    2013-01-01

    The brane world description of our universe entails a large extra dimension and a fundamental scale of gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence of this scenario occurs in the nature of spherically-symmetric vacuum solutions to the brane gravitational field equations, which often have properties quite distinct from the standard black hole solutions of general relativity. In this paper, the spherically-symmetric collapse on the brane world of four types of null fluid, governed by the barotropic, polytropic, strange quark "bag" model and Hagedorn equations of state, is investigated. In each case, we solve the approximate gravitational field equations, obtained in the high density limit, determine the equation which governs the formation of apparent horizons and investigate the conditions for the formation of naked singularities. Though, naively, one would expect the increased effective energy density on the brane to favor the formation of black ho...

  9. D-Brane Recoil Mislays Information

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1998-01-01

    We discuss the scattering of a light closed-string state off a $D$ brane, taking into account quantum recoil effects on the latter, which are described by a pair of logarithmic operators. The light-particle and $D$-brane subsystems may each be described by a world-sheet with an external source due to the interaction between them. This perturbs each subsystem away from criticality, which is compensated by dressing with a Liouville field whose zero mode we interpret as time. The resulting evolution equations for the $D$ brane and the closed string are of Fokker-Planck and modified quantum Liouville type, respectively. The apparent entropy of each subsystem increases as a result of the interaction between them, which we interpret as the loss of information resulting from non-observation of the other entangled subsystem. We speculate on the possible implications of these results for the propagation of closed strings through a dilute gas of virtual $D$ branes.

  10. Cosmological perturbations on the phantom brane

    Science.gov (United States)

    Bag, Satadru; Viznyuk, Alexander; Shtanov, Yuri; Sahni, Varun

    2016-07-01

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.

  11. Stellar models in Brane Worlds

    CERN Document Server

    Linares, Francisco X; Ureña-Lopez, L Arturo

    2015-01-01

    We consider here a full study of stellar dynamics from the brane-world point of view in the case of constant density and of a polytropic fluid. We start our study cataloguing the minimal requirements to obtain a compact object with a Schwarszchild exterior, highlighting the low and high energy limit, the boundary conditions, and the appropriate behavior of Weyl contributions inside and outside of the star. Under the previous requirements we show an extensive study of stellar behavior, starting with stars of constant density and its extended cases with the presence of nonlocal contributions. Finally, we focus our attention to more realistic stars with a polytropic equation of state, specially in the case of white dwarfs, and study their static configurations numerically. One of the main results is that the inclusion of the Weyl functions from braneworld models allow the existence of more compact configurations than within General Relativity.

  12. Branes from Light: Embeddings and Energetics for Symmetric $k$-Quarks in $\\mathcal{N}=4$ SYM

    CERN Document Server

    Fiol, Bartomeu; Pedraza, Juan F

    2014-01-01

    We construct the D3-brane dual to a $k$-quark of $\\mathcal{N}=4$ super-Yang-Mills theory in the totally symmetric representation of $SU(N)$, undergoing arbitrary motion. Our method of construction generalizes previous work by Mikhailov, and proceeds by shooting light rays inward from the anti-de Sitter boundary, to trace out the brane embedding. We expect this method to have wider relevance, and provide evidence for this by showing that it correctly reproduces the known D5-brane embeddings dual to totally antisymmetric $k$-quarks. As an application of our solutions, we compute the energy of the D3-brane and extract from it the $k$-quark's intrinsic energy and rate of radiation. The result matches expectations based on previous calculations, and makes contact with the exact Bremsstrahlung function for the fundamental representation.

  13. On the Cn/Zm fractional branes

    Science.gov (United States)

    Karp, Robert L.

    2009-02-01

    We construct several geometric representatives for the Cn/Zm fractional branes on either a partially or the completely resolved orbifold. In the process we use large radius and conifold-type monodromies and provide a strong consistency check. In particular, for C3/Z5 we give three different sets of geometric representatives. We also find the explicit Seiberg duality which connects our fractional branes to the ones given by the McKay correspondence.

  14. Universe acceleration in brane world models

    Science.gov (United States)

    Chiou-Lahanas, C.; Diamandis, G. A.; Georgalas, B. C.

    2014-05-01

    We examine the cosmology induced on a brane moving in the background of a five-dimensional black hole, solution of the string effective action. The evolution, determined by the Israel junction conditions is found to be compatible with an accelerating universe with the present day acceleration coming after a decelerating phase. The possible species of the energy-momentum tensor, localized on the brane, for these solutions to be valid are discussed.

  15. Universe Acceleration in Brane World Models

    CERN Document Server

    Chiou-Lahanas, C; Georgalas, B C

    2013-01-01

    We examine the cosmology induced on a brane moving in the background of a five-dimensional black hole, solution of the string effective action. The evolution determined by the Israel junction conditions is found to be compatible with an accelerating universe with the present day acceleration coming after a decelerating phase. The conditions imposed on the energy-momentum tensor, localized on the brane, for these solutions to be valid are discussed.

  16. Brane Space-Time and Cosmology

    CERN Document Server

    Naboulsi, R

    2003-01-01

    I reconsider the cosmology of a 3-brane universe imbedded in a five-dimensional anti-de Sitter space AdS5 with a cosmological constant and show that the resulting Friedmann equations for this system are identical to those standard obtained in 4D FRW space-time in the presence of an additional density, playing two roles: the tension of the brane and the gravitino density We discuss some important concequences on hot big bang cosmology.

  17. Grand unification in the heterotic brane world

    Energy Technology Data Exchange (ETDEWEB)

    Vaudrevange, Patrick Karl Simon

    2008-08-15

    String theory is known to be one of the most promising candidates for a uni ed description of all elementary particles and their interactions. Starting from the ten-dimensional heterotic string, we study its compactification on six-dimensional orbifolds. We clarify some important technical aspects of their construction and introduce new parameters, called generalized discrete torsion. We identify intrinsic new relations between orbifolds with and without (generalized) discrete torsion. Furthermore, we perform a systematic search for MSSM-like models in the context of Z{sub 6}-II orbifolds. Using local GUTs, which naturally appear in the heterotic brane world, we construct about 200 MSSM candidates. We find that intermediate SUSY breaking through hidden sector gaugino condensation is preferred in this set of models. A specific model, the so-called benchmark model, is analyzed in detail addressing questions like the identification of a supersymmetric vacuum with a naturally small {mu}-term and proton decay. Furthermore, as vevs of twisted fields correspond to a resolution of orbifold singularities, we analyze the resolution of Z{sub 3} singularities in the local and in the compact case. Finally, we exemplify this procedure with the resolution of a Z{sub 3} MSSM candidate. (orig.)

  18. Full linear perturbations and localization of gravity on $f(R,T)$ brane

    CERN Document Server

    Gu, Bao-Min; Yu, Hao; Liu, Yu-Xiao

    2016-01-01

    We study the thick brane world system constructed in the recently proposed $f(R,T)$ theories of gravity, with $R$ the Ricci scalar and $T$ the trace of the energy-momentum tensor. The analytic solution with a kink scalar field is obtained in a specific model, thus a domain wall configuration is constructed. We also discuss the full linear perturbations, especially the scalar perturbations. It is found that no tachyon state exists in this model and only the massless tensor mode can be localized on the brane, which recovers the effective four-dimensional gravity. These conclusions hold provided that two constraints on the original formalism of the action are satisfied.

  19. Topological structure of Gauss-Bonnet-Chern theorem and (~p)-branes

    Institute of Scientific and Technical Information of China (English)

    Tian Miao; Zhang Xin-Hui; Duan Yi-shi

    2009-01-01

    By making use of the φ-mapping topological current theory,this paper shows that the Gauss-Bonnet-Chern densityof δ(φ),which means that only the zeros of φ contribute to X(M).This is the elementary fact of the Hopf theorem.Furthermore,it presents that a new topological tensor current of (~p)-branes can be derived from the Gauss-Bonnet-Chem density.Using this topological current,it obtains the generalized Nambu action for multi (~p)-branes.

  20. Exciting gauge field and gravitons in brane-antibrane annihilation.

    Science.gov (United States)

    Mazumdar, Anupam; Stoica, Horace

    2009-03-06

    In this Letter we point out the inevitability of an explosive production of gauge field and gravity wave during an open string tachyon condensation in a cosmological setting, in an effective field theory model. We will be particularly studying a toy model of brane-antibrane inflation in a warped throat where inflation ends via tachyon condensation. We point out that a tachyonic instability helps fragmenting the homogeneous tachyon and excites gauge field and contributes to the stress-energy tensor which also feeds into the gravity waves.

  1. Cosmological evolution in a two-brane warped geometry model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumit, E-mail: sumit@ctp-jamia.res.in [Center For Theoretical Physics, Jamia Millia Islamia, New Delhi 110025 (India); Sen, Anjan A., E-mail: aasen@jmi.ac.in [Center For Theoretical Physics, Jamia Millia Islamia, New Delhi 110025 (India); SenGupta, Soumitra, E-mail: tpssg@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata 700032 (India)

    2015-07-30

    We study an effective 4-dimensional scalar–tensor field theory, originated from an underlying brane–bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy–momentum tensor which in turn results in an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.

  2. Cosmological evolution in a two-brane warped geometry model

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2015-07-01

    Full Text Available We study an effective 4-dimensional scalar–tensor field theory, originated from an underlying brane–bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy–momentum tensor which in turn results in an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.

  3. Generalized virial theorem in warped DGP brane-world

    CERN Document Server

    Heydari-Fard, Malihe

    2012-01-01

    We generalize the virial theorem to the warped DGP brane world scenario and consider its implications on the virail mass. In this theory the four dimensional scalar curvature term is included in the bulk action and the resulting four dimensional effective Einstein equation is augmented with extra terms which can be interpreted as geometrical mass, contributing to the gravitational energy. Estimating the geometrical mass using the observational data, we show that these geometric terms may account for the virial mass discrepancy in clusters of galaxies. Finally, we obtain the radial velocity dispersion of galaxy clusters and show that it is compatible with the radial velocity dispersion profle of such clusters.

  4. E11 must be a symmetry of strings and branes

    CERN Document Server

    Tumanov, Alexander G

    2015-01-01

    We construct the non-linear realisation of the semi-direct product of E11 and its vector representation in five dimensions and find the dynamical equations it predicts at low levels. Restricting this result to contain only the usual fields of supergravity and the generalised space-time to be the usual space-time we find the equations of five dimensional maximal supergravity. Since this non-linear realisation contains effects that are beyond the supergravity approximation and are thought to be present in an underlying theory we conclude that the low energy effective action of string and branes must possess an E11 symmetry.

  5. M2-Branes in N = 3 Harmonic Superspace

    Directory of Open Access Journals (Sweden)

    E. Ivanov

    2010-01-01

    Full Text Available We give a brief account of the recently proposed N = 3 superfield formulation of the N = 6, 3D superconformal theory of Aharony et al (ABJM describing a low-energy limit of the system of multiple M2-branes on the AdS4×S7/Zk background. This formulation is given in harmonic N = 3 superspace and reveals a number of surprising new features. In particular, the sextic scalar potential of ABJM arises at the on-shell component level as the result of eliminating appropriate auxiliary fields, while there is no explicit superpotential at the off-shell superfield level.

  6. Generalized gravitational entropy of probe branes: flavor entanglement holographically

    Science.gov (United States)

    Karch, Andreas; Uhlemann, Christoph F.

    2014-05-01

    The notion of generalized gravitational entropy introduced by Lewkowycz and Maldacena allows, via the AdS/CFT correspondence, to calculate CFT entanglement entropies. We adapt the method to the case where flavor branes are present and treated in the probe approximation. This allows to calculate the leading flavor correction to the CFT entanglement entropy from the on-shell action of the probe, while dealing with the backreaction is avoided entirely and from the outset. As an application we give concise derivations for the contribution of massless and massive flavor degrees of freedom to the entanglement entropy in = 4 SYM theory.

  7. Generalized gravitational entropy of probe branes: flavor entanglement holographically

    Energy Technology Data Exchange (ETDEWEB)

    Karch, Andreas; Uhlemann, Christoph F. [Department of Physics, University of Washington,Seattle, WA 98195-1560 (United States)

    2014-05-06

    The notion of generalized gravitational entropy introduced by Lewkowycz and Maldacena allows, via the AdS/CFT correspondence, to calculate CFT entanglement entropies. We adapt the method to the case where flavor branes are present and treated in the probe approximation. This allows to calculate the leading flavor correction to the CFT entanglement entropy from the on-shell action of the probe, while dealing with the backreaction is avoided entirely and from the outset. As an application we give concise derivations for the contribution of massless and massive flavor degrees of freedom to the entanglement entropy in N=4 SYM theory.

  8. Generalized gravitational entropy of probe branes: flavor entanglement holographically

    CERN Document Server

    Karch, Andreas

    2014-01-01

    The notion of generalized gravitational entropy introduced by Lewkowycz and Maldacena allows, via the AdS/CFT correspondence, to calculate CFT entanglement entropies. We adapt the method to the case where flavor branes are present and treated in the probe approximation. This allows to calculate the leading flavor correction to the CFT entanglement entropy from the on-shell action of the probe, while dealing with the backreaction is avoided entirely and from the outset. As an application we give concise derivations for the contribution of massless and massive flavor degrees of freedom to the entanglement entropy in N=4 SYM theory.

  9. Constrained superfields from an anti-D3-brane in KKLT

    CERN Document Server

    Vercnocke, Bert

    2016-01-01

    The KKLT construction of dS vacua relies on an uplift term that arises from an anti-D3-brane. It was argued by Kachru, Pearson and Verlinde that this anti-D3-brane is an excited state in a supersymmetric theory since it can decay to a supersymmetric ground state. Hence the anti-D3-brane breaks supersymmetry spontaneously and one should be able to package all the world-volume fields on the anti-D3-brane into a four dimensional $\\cal{N}=1$ supersymmetric action. Here we extend previous results and identify the constrained superfields that correspond to all the degrees of freedom on the anti-D3-brane. In particular, we show explicitly that the four 4D worldvolume spinors give rise to constrained chiral multiplets $S$ and $Y^i$, $i=1,2,3$ that satisfy $S^2=SY^i=0$. We also conjecture (and provide evidence in a forthcoming publication) that the vector field $A_\\mu$ and the three scalars $\\phi^i$ give rise to a field strength multiplet $W_\\alpha$ and three chiral multiplets $H^i$ that satisfy the constraints $S W_\\...

  10. On the physical realization of Seiberg duality for branes at the F{sub 0} singularity

    Energy Technology Data Exchange (ETDEWEB)

    Berasaluce-Gonzalez, Mikel [Institute for Physics (WA THEP) and Cluster of Excellence PRISMA, Johannes Gutenberg University, Mainz (Germany)

    2016-04-15

    Branes at a F{sub 0} singularity give rise to two different toric quiver gauge theories, which are related by Seiberg duality. We study where in the Kaehler moduli space each of them is physically realized. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Discussing string extensions of the Standard Model in D brane world

    CERN Document Server

    Di Vecchia, P

    2009-01-01

    In this talk we will describe the problems that one encounters when one tries to connect string theory with particle phenomenology. Then, in order to have chiral matter describing quarks and leptons, we introduce the magnetized D branes. Finally, as an explicit example of a string extension of the Standard Model, we will describe the one constructed by Ibanez, Marchesano and Rabadan.

  12. Discussing string extensions of the Standard Model in D brane world

    Energy Technology Data Exchange (ETDEWEB)

    Di Vecchia, Paolo [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark); NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2009-01-15

    In this talk we will describe the problems that one encounters when one tries to connect string theory with particle phenomenology. Then, in order to have chiral matter describing quarks and leptons, we introduce the magnetized D branes. Finally, as an explicit example of a string extension of the Standard Model, we will describe the one constructed by Ibanez, Marchesano and Rabadan.

  13. Brane-world cosmology and inflation

    Indian Academy of Sciences (India)

    Misao Sasaki

    2004-10-01

    There has been substantial progress in brane-world cosmology in recent years. Much attention has been particularly paid to the second Randall–Sundrum (RS2) scenario in which a single positive-tension brane is embedded in a five-dimensional space-time, called the bulk, with a negative cosmological constant. This brane-world scenario is quite attractive because of the non-trivial geometry in the bulk and because it successfully gives four-dimensional general relativity in the low energy limit. After reviewing basic features of the RS2 scenario, we consider a brane-world inflation model driven by the dynamics of a scalar field living in the five-dimensional bulk, the so-called bulk inflaton model. An intriguing feature of this model is that the projection of the bulk inflaton on the brane behaves just like an ordinary inflaton in four dimensions in the low energy regime, 2 ℓ2 ≪ 1, where is the Hubble expansion rate of the brane and ℓ is the curvature radius of the bulk. We then discuss the cosmological perturbation on superhorizon scales in this model. We find that, even under the presence of spatial inhomogeneities, the model is indistinguishable from the standard four-dimensional inflation to (2 ℓ2). That is, the difference may appear only at O(4 ℓ4).

  14. Brane-world cosmology with black strings

    CERN Document Server

    Gergely, L A

    2006-01-01

    We consider the simplest scenario when black strings (cigars) penetrate the cosmological brane. As a result, the brane has a Swiss-cheese structure, with Schwarzschild black holes immersed in a Friedmann-Lema\\^{\\i}tre-Robertson-Walker brane. There is no dark radiation in the model, the cosmological regions of the brane are characterized by a cosmological constant $\\Lambda$ and flat spatial sections. Regardless of the value of $\\Lambda$, these brane-world universes forever expand and forever decelerate. The totality of source terms in the modified Einstein equation sum up to a dust, establishing a formal equivalence with the general relativistic Einstein-Straus model. However in this brane-world scenario with black strings the evolution of the cosmological fluid strongly depends on $\\Lambda$. For $\\Lambda$ less or equal to zero it has positive energy density $\\rho$ and negative pressure $p$ and at late times it behaves as in the Einstein-Straus model. For (not too high) positive values of $\\Lambda$ the cosmolo...

  15. Null fluid collapse in brane world models

    Science.gov (United States)

    Harko, Tiberiu; Lake, Matthew J.

    2014-03-01

    The brane world description of our Universe entails a large extra dimension and a fundamental scale of gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence of this scenario occurs in the nature of spherically symmetric vacuum solutions to the brane gravitational field equations, which often have properties quite distinct from the standard black hole solutions of general relativity. In this paper, the spherically symmetric collapse on the brane world of four types of null fluid, governed by the barotropic, polytropic, strange quark "bag" model and Hagedorn equations of state, is investigated. In each case, we solve the approximate gravitational field equations, obtained in the high-density limit, determine the equation which governs the formation of apparent horizons and investigate the conditions for the formation of naked singularities. Though, naively, one would expect the increased effective energy density on the brane to favor the formation of black holes over naked singularities, we find that, for the types of fluid considered, this is not the case. However, the black hole solutions differ substantially from their general-relativistic counterparts and brane world corrections often play a role analogous to charge in general relativity. As an astrophysical application of this work, the possibility that energy emission from a Hagedorn fluid collapsing to form a naked singularity may be a source of GRBs in the brane world is also considered.

  16. Infrared properties of one-loop corrections to brane-to-brane propagators in models with localized vector bosons

    Science.gov (United States)

    Kirpichnikov, D. V.

    2013-12-01

    We discuss the one-loop effects of massless fermion fields on the low energy vector brane-to-brane propagators in the framework of two QED brane-world scenarios. We show that the one-loop photon brane-to-brane propagator has a power-law pathologic IR divergence in the five-dimensional QED brane-world model with a mass gap between the vector zero mode and continuous states. We also find that bulk fermions do not give rise to IR divergences in a photon brane-to-brane Green’s function, at least at the one-loop level in the framework of a six-dimensional QED brane model with a gapless mass spectrum between vector zero mode and higher states.

  17. IR properties of one loop corrections to brane-to-brane propagators in models with localized vector bosons

    CERN Document Server

    Kirpichnikov, D V

    2013-01-01

    We discuss the one loop effects of massless fermion fields on the low energy vector brane-to-brane propagators in the framework of two QED brane-world scenarios. We show that one loop photon brane-to-brane propagator has a power law pathologic IR divergences in the 5D QED brane-world model with gap between the vector zero mode and continuous states. We also find that bulk fermions do not give rise to IR divergences in a photon brane-to-brane Green's function at least at the one loop level in the framework of 6D QED brane model with gapless mass spectrum between vector zero mode and higher states.

  18. Regarding the Radion in Randall-Sundrum Models with Brane Curvature

    CERN Document Server

    Dillon, Barry M; McDonald, Kristian L

    2016-01-01

    In Randall-Sundrum models, one typically expects the radion to be the lightest new "gravity" state, as it is dual to a composite pseudo-Goldstone boson associated with conformal symmetry breaking in the IR. Here, we investigate the effects of localized brane curvature on the properties of the radion in Goldberger-Wise stabilized Randall-Sundrum models. We point out that both the radion mass and coupling to brane matter are sensitive to the brane curvature. Radion/Higgs kinetic mixing, via an IR-localized non-minimal coupling to the Higgs, is also investigated, in relation to the ghost-like radion that can occur for $\\mathcal{O}(10)$ values of the IR curvature (as required to significantly suppress the first Kaluza-Klein graviton mass). We also discuss a class of speculative IR localized terms involving the radion. Basic comments regarding the dual 4D theory are offered.

  19. Nernst branes with Lifshitz asymptotics in mathcal{N} = 2 gauged supergravity

    Science.gov (United States)

    Cardoso, G. L.; Haack, M.; Nampuri, S.

    2016-06-01

    We discuss two classes of non-supersymmetric interpolating solutions in mathcal{N} = 2, D = 4 gauged supergravity, that flow from either a z = 2 Lifshitz geometry or a conformal AdS background to the near-horizon geometry of a Nernst brane. We obtain these solutions by constructing a z = 2 supersymmetric Lifshitz solution in the STU model from a first-order rewriting of the action, then lifting it up to a five-dimensional background and subsequently modifying this five-dimensional solution by a two-parameter family of deformations. Under reduction, these give four-dimensional non-supersymmetric Nernst brane solutions. This is a step towards resolving the Lifshitz tidal force singularity in the context of mathcal{N} = 2 gauged supergravity and suggests an approach to encoding the Nernst brane in terms of the Schrödinger symmetry group of the holographically dual field theory.

  20. Regarding the radion in Randall-Sundrum models with brane curvature

    Science.gov (United States)

    Dillon, Barry M.; George, Damien P.; McDonald, Kristian L.

    2016-09-01

    In Randall-Sundrum models, one typically expects the radion to be the lightest new "gravity" state, as it is dual to a composite pseudo-Goldstone boson associated with conformal symmetry breaking in the IR. Here, we investigate the effects of localized brane curvature on the properties of the radion in Goldberger-Wise stabilized Randall-Sundrum models. We point out that both the radion mass and coupling to brane matter are sensitive to the brane curvature. Radion/Higgs kinetic mixing, via an IR-localized nonminimal coupling to the Higgs, is also investigated, in relation to the ghostlike radion that can occur for O (10 ) values of the IR curvature (as required to significantly suppress the first Kaluza-Klein graviton mass). We also discuss a class of IR-localized terms involving the radion. Basic comments regarding the dual four-dimensional theory are offered.

  1. D-brane stability, geometric engineering, and monodromy in the Derived Category

    CERN Document Server

    Karp, R L

    2005-01-01

    We discuss aspects of topological B-type D-branes in the framework of the derived category of coherent sheaves on a Calabi-Yau 3-fold X. We analyze the link between massless D-branes and monodromies in the CFT moduli space. A classification of all massless D-branes at any point in the moduli space is conjectured, together with an associated monodromy. We test the conjectures in two independent ways. First we establish a composition formula for certain Fourier-Mukai functors, which is a consequence of the triangulated structure of D(X). Secondly, using pi-stability we rederive the stable soliton spectrum of the pure N=2 supersymmetric SU(2) Seiberg-Witten theory. In this approach, the simplicity of the spectrum rests on Grothendieck's theorem concerning vector bundles over P^1.

  2. D-branes as coherent states in the open string channel

    CERN Document Server

    Cantcheff, Marcelo Botta

    2007-01-01

    We show that bosonic D-brane states may be represented as coherent states in an open string representation. By using the Thermo Field Dynamics (TFD) formalism, we may construct a condensed state of open string modes which encodes the information on the D-brane configuration. We also introduce a construction alternative to TFD, which does not require to assume thermal equilibrium. It is shown that the dynamics of the system, combined with geometric properties of the duplication rules of TFD, is sufficient to obtain the thermal states and their analytic continuations in a geometric fashion. We adopt this approach to show that bosonic D-brane states in the open string sector may also be built as boundary states in a special sense. Some implications of this study on the interpretation of the open/closed duality and on the kinematical/algebraic structure of an open string field theory are also commented.

  3. Full linear perturbations and localization of gravity on f( R, T) brane

    Science.gov (United States)

    Gu, Bao-Min; Zhang, Yu-Peng; Yu, Hao; Liu, Yu-Xiao

    2017-02-01

    We study the thick brane world system constructed in the recently proposed f( R, T) theories of gravity, with R the Ricci scalar and T the trace of the energy-momentum tensor. We try to get the analytic background solutions and discuss the full linear perturbations, especially the scalar perturbations. We compare how the brane world model is modified with that of general relativity coupled to a canonical scalar field. It is found that some more interesting background solutions are allowed, and only the scalar perturbation mode is modified. There is no tachyon state existing in this model and only the massless tensor mode can be localized on the brane, which recovers the effective four-dimensional gravity. These conclusions hold provided that two constraints on the original formalism of the action are satisfied.

  4. There and back again: A T-brane's tale

    CERN Document Server

    Bena, Iosif; Minasian, Ruben; Savelli, Raffaele

    2016-01-01

    T-branes are supersymmetric configurations described by multiple Dp-branes with worldvolume flux and non-commuting vacuum expectation values for two of the worldvolume scalars. When these values are much larger than the string scale this description breaks down. We show that in this regime the correct description of T-branes is in terms of a single Dp-brane, whose worldvolume curvature encodes the T-brane data. We present the tale of the journey to reach this picture, which takes us through T-dualities and rugby-ball-shaped brane configurations that no eye has gazed upon before.

  5. Charged Magnetic Brane Correlators and Twisted Virasoro Algebras

    CERN Document Server

    D'Hoker, Eric

    2011-01-01

    Prior work using gauge/gravity duality has established the existence of a quantum critical point in the phase diagram of 3+1-dimensional gauge theories at finite charge density and background magnetic field. The critical theory, obtained by tuning the dimensionless charge density to magnetic field ratio, exhibits nontrivial scaling in its thermodynamic properties, and an associated nontrivial dynamical critical exponent. In the present work, we analytically compute low energy correlation functions in the background of the charged magnetic brane solution to 4+1-dimensional Einstein-Maxwell-Chern-Simons theory, which represents the bulk description of the critical point. Results are obtained for neutral scalar operators, the stress tensor, and the U(1)-current. The theory is found to exhibit a twisted Virasoro algebra, constructed from a linear combination of the original stress tensor and chiral U(1)-current. The effective speed of light in the IR is renormalized downward for one chirality, but not the other, ...

  6. Metastable vacua and D-branes at the conifold

    CERN Document Server

    Argurio, R; Franco, S; Kachru, S; Argurio, Riccardo; Bertolini, Matteo; Franco, Sebastian; Kachru, Shamit

    2007-01-01

    We consider quiver gauge theories arising on D-branes at simple Calabi-Yau singularities (quotients of the conifold). These theories have metastable supersymmetry breaking vacua. The field theoretic mechanism is basically the one exhibited by the examples of Intriligator, Seiberg and Shih in SUSY QCD. In a dual description, the SUSY breaking is captured by the presence of anti-branes. In comparison to our earlier related work, the main improvements of the present construction are that we can reach the free magnetic range of the SUSY QCD theory where the existence of the metastable vacua is on firm footing, and we can see explicitly how the small masses for the quark flavors (necessary to the existence of the SUSY breaking vacua) are dynamically stabilized. One crucial mass term is generated by a stringy instanton. Finally, our models naturally incorporate R-symmetry breaking in the non-supersymmetric vacuum, in a way similar to the examples of Kitano, Ooguri and Ookouchi.

  7. Randall-Sundrum brane Universe as a ground state for Chern-Simons gravity

    Science.gov (United States)

    Cordonier-Tello, Fabrizio; Izaurieta, Fernando; Mella, Patricio; Rodríguez, Eduardo

    2016-12-01

    In stark contrast with the three-dimensional case, higher-dimensional Chern-Simons (CS) theories can have non-topological, propagating degrees of freedom. Finding those vacua that allow for the propagation of linear perturbations, however, proves to be surprisingly challenging. The simplest solutions are somehow ‘hyper-stable’, preventing the construction of realistic, four-dimensional physical models. Here, we show that a Randall-Sundrum (RS) brane Universe can be regarded as a vacuum solution of CS gravity in five-dimensional spacetime, with non vanishing torsion along the dimension perpendicular to the brane. Linearized perturbations around this solution not only exist, but behave as standard gravitational waves on a four-dimensional Minkowski background. In the non-perturbative regime, the solution leads to a four-dimensional ‘cosmological function’ {{Λ }}(x) which depends on the Euler density of the brane. Interestingly, the fact that the solution admits nontrivial linear perturbations seems to be related to an often neglected property of the RS spacetime: that it is a group manifold, or, more precisely, two identical group manifolds glued together along the brane. The gravitational theory is then built around this fact, adding the Lorentz generators and one scalar generator needed to close the algebra. In this way, a conjecture emerges: a spacetime that is also a group manifold can be regarded as the ground state of a CS theory for an appropriate Lie algebra.

  8. Brane to brane gravity mediation of supersymmetry breaking

    CERN Document Server

    Rattazzi, Riccardo; Strumia, A; Rattazzi, Riccardo; Scrucca, Claudio A.; Strumia, Alessandro

    2003-01-01

    We extend the results of Mirabelli and Peskin to supergravity. We study the compactification on S_1/Z_2 of Zucker's off-shell formulation of 5D supergravity and its coupling to matter at the fixed points. We clarify some issues related to the off-shell description of supersymmetry breaking a la Scherk-Schwarz (here employed only as a technical tool) discussing how to deal with singular gravitino wave functions. We then consider `visible' and `hidden' chiral superfields localized at the two different fixed points and communicating only through 5D supergravity. We compute the one-loop corrections that mix the two sectors and the radion superfield. Locality in 5D ensures the calculability of these effects, which transmit supersymmetry breaking from the hidden to the visible sector. In the minimal set-up visible-sector scalars get a universal squared mass m_0^2 < 0. In general (e.g. in presence of a sizable gravitational kinetic term localized on the hidden brane) the radion-mediated contribution to m_0^2 can ...

  9. Brane probes, toric geometry, and closed string tachyons

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Tapobrata. E-mail: tapo@ictp.trieste.it

    2003-01-13

    We study non-supersymmetric orbifold singularities from the point of view of D-brane probes. We present a description of the decay of such singularities from considerations of the toric geometry of the probe branes.

  10. Brane Probes, Toric Geometry, and Closed String Tachyons

    OpenAIRE

    Sarkar, Tapobrata

    2002-01-01

    We study non-supersymmetric orbifold singularities from the point of view of D-brane probes. We present a description of the decay of such singularities from considerations of the toric geometry of the probe branes.

  11. Liouville and Toda dyonic branes: regularity and BPS limit

    OpenAIRE

    Gal'tsov, Dmitri V.; Orlov, Dmitri G.

    2005-01-01

    We reconsider dyonic p-brane solutions derivable from Liouville and Toda integrable systems and investigate their geometric structure. It is shown that the non-BPS non-black dyonic branes are not regular on the horizon.

  12. The geometry of the M5-branes and TQFTs

    CERN Document Server

    Bonelli, G

    2001-01-01

    The calculation of the partition function for N M5-branes is addressed for the case in which the worldvolume wraps a manifold $T^2\\times M_4$, where $M_4$ is simply connected and Kaehler. This is done in a compactification of M-theory which induces the Vafa-Witten theory on $M_4$ in the limit of vanishing torus volume. The results follow from the equivalence of the BPS spectrum counting in the complementary limit of vanishing $M_4$ volumes and from a classification of the the moduli space of quantum vacua of the supersymmetric twisted theory in terms of associated spectral covers. This reduces the problem of the moduli counting to algebraic equations.

  13. Magnetically-charged black branes and viscosity/entropy ratios

    Science.gov (United States)

    Liu, Hai-Shan; Lü, H.; Pope, C. N.

    2016-12-01

    We consider asymptotically-AdS n-dimensional black brane solutions in a theory of gravity coupled to a set of N p-form field strengths, in which the field strengths carry magnetic charges. For appropriately chosen charges, the metrics are isotropic in the ( n - 2) transverse directions. However, in general the field strength configurations break the full Euclidean symmetry of the ( n - 2)-dimensional transverse space, and the shear viscosity tensor in the dual theory is no longer isotropic. We study the linearised equations for transverse traceless metric perturbations in these backgrounds, and by employing the Kubo formula we obtain expressions for the ratios η/S of the shear viscosity components divided by the entropy density. We find that the KSS bound on the ratios η/S is generally violated in these solutions. We also extend the discussion by including a dilatonic scalar field in the theory, leading to solutions that are asymptotically Lifshitz with hyperscaling violation.

  14. Cosmology from quantum potential in brane–anti-brane system

    Directory of Open Access Journals (Sweden)

    Alireza Sepehri

    2015-09-01

    Full Text Available Recently, some authors removed the big-bang singularity and predicted an infinite age of our universe. In this paper, we show that the same result can be obtained in string theory and M-theory; however, the shape of universe changes in different epochs. In our mechanism, first, N fundamental string decay to N D0–anti-D0-brane. Then, D0-branes join each other, grow and form a six-dimensional brane–antibrane system. This system is unstable, broken and at present the form of four-dimensional universes, one anti-universe in addition to one wormhole are produced. Thus, there isn't any big-bang in cosmology and the universe is a fundamental string at the beginning. Also, the total age of universe contains two parts, one is related to initial age and the other corresponds to the present age of universe (ttot=tinitial+tpresent. On the other hand, the initial age of universe includes two parts, the age of fundamental string and the time of transition (tinitial=ttransition+tf-string. We observe that only in the case of (tf-string→∞, the scale factor of universe is zero and as a result, the total age of universe is infinity.

  15. D-Brane Probes in the Matrix Model

    CERN Document Server

    Ferrari, Frank

    2013-01-01

    Recently, a new approach to large N gauge theories, based on a generalization of the concept of D-brane probes to any gauge field theory, was proposed. In the present note, we compute the probe action in the one matrix model with a quartic potential. This allows to illustrate several non-trivial aspects of the construction in an exactly solvable set-up. One of our main goal is to test the bare bubble approximation. The approximate free energy found in this approximation, which can be derived from a back-of-an-envelope calculation, matches the exact result for all values of the 't Hooft coupling with a surprising accuracy. Another goal is to illustrate the remarkable properties of the equivariant partial gauge-fixing procedure, which is at the heart of the formalism. For this we use a general xi-gauge to compute the brane action. The action depends on xi in a very non-trivial way, yet we show explicitly that its critical value does not and coincide with twice the free energy, as required by general consistency...

  16. Strings, boundary fermions and coincident D-branes

    CERN Document Server

    Wulff, L

    2007-01-01

    This thesis describes an attempt to write down covariant actions for coincident D-branes using so-called boundary fermions instead of matrices to describe the non-abelian fields. These fermions can be thought of as Chan-Paton degrees of freedom for the open string. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry when formulated on superspace. Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, a Penrose limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.

  17. Nonlocal Effects on D-branes in Plane-Wave Backgrounds

    CERN Document Server

    Ganor, O J; Ganor, Ori J.; Varadarajan, Uday

    2002-01-01

    We argue that the effective field theory on D3-branes in a plane-wave background with 3-form flux is a nonlocal deformation of Yang-Mills theory. In the case of NSNS flux, it is a dipole field theory with lightlike dipole vectors. For an RR 3-form flux the dipole theory is strongly coupled. We propose a weakly coupled S-dual description for it. The S-dual description is local at any finite order in string perturbation theory but becomes nonlocal when all perturbation theory orders are summed together.

  18. Asymmetric Swiss-cheese brane-worlds

    Science.gov (United States)

    Gergely, László Á.; Képíró, Ibolya

    2007-07-01

    We study a brane-world cosmological scenario with local inhomogeneities represented by black holes. The brane is asymmetrically embedded into the bulk. The black strings/cigars penetrating the Friedmann brane generate a Swiss-cheese-type structure. This universe forever expands and decelerates, as its general relativistic analogue. The evolution of the cosmological fluid, however, can proceed along four branches, two allowed to have positive energy density, and one of them having the symmetric embedding limit. On this branch a future pressure singularity can arise for either (a) a difference in the cosmological constants of the cosmological and black hole brane regions or (b) a difference in the left and right bulk cosmological constants. While behaviour (a) can be avoided by a redefinition of the fluid variables, (b) establishes a critical value of the asymmetry over which the pressure singularity occurs. We introduce the pressure singularity censorship which bounds the degree of asymmetry in the bulk cosmological constant. We also show as a model-independent generic feature that the asymmetry source term due to the bulk cosmological constant increases in the early universe. In order to obey the nucleosynthesis constraints, the brane tension should be constrained therefore both from below and from above. With the maximal degree of asymmetry obeying the pressure singularity censorship, the higher limit is ten times the lower limit. The degree of asymmetry allowed by present cosmological observations is, however, much less, pushing the upper limit to infinity.

  19. Generating branes via sigma-models

    CERN Document Server

    Galtsov, D V

    1998-01-01

    Starting with the D-dimensional Einstein-dilaton-antisymmetric form equations and assuming a block-diagonal form of a metric we derive a $(D-d)$-dimensional R$ or its non-compact form. Various solution-generating techniques are developed and applied to construct some known and some new $p$-brane solutions. It is shown that the Harrison transformation belonging to the $SL(2,R)$ subgroup generates black $p$-branes from the seed Schwarzschild solution. A fluxbrane generalizing the Bonnor-Melvin-Gibbons-Maeda solution is constructed as well as a non-linear superposition of the fluxbrane and a spherical black hole. A new simple way to endow branes with additional internal structure such as plane waves is suggested. Applying the harmonic maps technique we generate new solutions with a non-trivial shell structure in the transverse space (`matrioshka' $p$-branes). It is shown that the $p$-brane intersection rules have a simple geometric interpretation as conditions ensuring the symmetric space property of the target ...

  20. Baby universes and string theory

    NARCIS (Netherlands)

    Dijkgraaf, R.H.; Gopakumar, R.; Ooguri, H.; Vafa, C.

    2006-01-01

    The description of 4D BPS black holes in terms of branes wrapped on various cycles in a Calabi-Yau space gives us the opportunity to study various issues in quantum gravity in a definite way by means of the worldvolume theory of the branes. In the particular example discussed here, there is a simple