WorldWideScience

Sample records for branched chain alpha-oxo

  1. Long chain branching of PLA

    Science.gov (United States)

    Gu, Liangliang; Xu, Yuewen; Fahnhorst, Grant; Macosko, Christopher W.

    2017-05-01

    A trifunctional aziridine linker, trimethylolpropane tris(2-methyl-1-aziridinepropionate) (TTMAP), was melt blended with linear polylactic acid (PLA) to make star branched PLA. Adding pyromellitic dianhydride (PMDA) led to long chain branched (LCB) PLA. Mixing torque evolution during melt processing revealed high reactivity of aziridine with the carboxyl end group on PLA and an incomplete reaction of PMDA with the hydroxyl end group. Star-shaped PLA exhibited higher viscosity but no strain hardening in extensional flow while LCB PLA showed significant extensional hardening. Excess TTMAP in the branching reaction resulted in gel formation, which led to failure at low strain in extension. PMDA conversion was estimated based on gelation theory. The strain rate dependence of extensional hardening indicated that the LCB PLA had a low concentration of long chain branched molecules with an H-shaped topology. Unlike current methods used to branch PLA, free radical chemistry or use of an epoxy functional oligomers, our branching strategy produced strain hardening with less increase in shear viscosity. This study provides guidelines for design of polymers with low shear viscosity, which reduces pressure drop in extrusion, combined with strong extensional hardening, which enhances performance in processes that involve melt stretching.

  2. Branched-Chain Amino Acids.

    Science.gov (United States)

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  3. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli

    2015-07-01

    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients. During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  4. Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2005-01-01

    Fatty acid biosynthesis by a mutant strain of Staphylococcus carnosus deficient in branched-chain amino acid aminotransferase (IlvE) activity was analysed. This mutant was unable to produce the appropriate branched-chain alpha-ketoacid precursors for branched-chain fatty acid biosynthesis from th...

  5. Disorders of branched chain amino acid metabolism.

    Science.gov (United States)

    Manoli, I; Venditti, C P

    2016-11-07

    The three essential branched-chain amino acids (BCAAs), leucine, isoleucine and valine, share the first enzymatic steps in their metabolic pathways, including a reversible transamination followed by an irreversible oxidative decarboxylation to coenzyme-A derivatives. The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or propionyl-CoA that enter the Krebs cycle. Many disorders in these pathways are diagnosed through expanded newborn screening by tandem mass spectrometry. Maple syrup urine disease (MSUD) is the only disorder of the group that is associated with elevated body fluid levels of the BCAAs. Due to the irreversible oxidative decarboxylation step distal enzymatic blocks in the pathways do not result in the accumulation of amino acids, but rather to CoA-activated small carboxylic acids identified by gas chromatography mass spectrometry analysis of urine and are therefore classified as organic acidurias. Disorders in these pathways can present with a neonatal onset severe-, or chronic intermittent- or progressive forms. Metabolic instability and increased morbidity and mortality are shared between inborn errors in the BCAA pathways, while treatment options remain limited, comprised mainly of dietary management and in some cases solid organ transplantation.

  6. Branched-chain amino acids for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Koretz, R L; Kjaergard, L L

    2003-01-01

    Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy....

  7. Photoinduced Acrylate Polymerization: Unexpected Reduction in Chain Branching.

    Science.gov (United States)

    Wenn, Benjamin; Reekmans, Gunter; Adriaensens, Peter; Junkers, Thomas

    2015-08-01

    The branching stemming from midchain radical formation in n-butyl acrylate polymerization is investigated via melt-state (13) C NMR measurements. The dependence of the degree of branching (DB) on the monomer conversion of the system is examined for photoinduced polymerizations, revealing a steady increase in branching with conversion. For polymerization at moderate light intensities, an increase in branching from 0.03% to 0.37% is observed for polymerizations at 60 °C, which is fivefold below the level of branching observed in thermally initiated polymerizations under otherwise identical reaction conditions. The reason for this overall reduction in branching remains momentarily unclear; yet, a strong dependence of branching on light intensity is observed. While polymerization under a 1 W LED lamp results at almost full monomer conversion in branching degrees of 0.22%, polymerization under a 400 W lamp yields 1.81% of chain branches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Clipboard: A branched chain fatty acid promotes cold adaptation in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 28; Issue 4. Clipboard: A branched chain fatty acid promotes cold adaptation in bacteria. M K Chattopadhyay M V Jagannadham. Volume 28 Issue 4 June 2003 pp 363-364. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Lipase-mediated resolution of branched chain fatty acids

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.; Franssen, M.C.R.; Padt, A. van der; Boom, R.M.; Riet, K. van 't; Groot, A.E. de

    2002-01-01

    Branched chain fatty acids (BCFAs) are fatty acids substituted with alkyl groups. Many of them are chiral and therefore occur in two enantiomeric forms. This review describes their occurrence in Nature, their biosynthesis, their properties as flavours, and their enzymatic kinetic resolution. Many

  10. On the contraction factors of long-chain branched macromolecules

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Pavel; Netopilík, Miloš

    2014-01-01

    Roč. 51, February (2014), s. 177-181 ISSN 0014-3057 R&D Projects: GA ČR GCP205/11/J043 Institutional support: RVO:61389013 Keywords : long-chain branching * contraction factor * radius of gyration Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.005, year: 2014

  11. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    KAUST Repository

    Wang, Zhandong

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth\\'s troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. The results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances. © 2015 The Combustion Institute.

  12. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  13. Enzymes involved in branched-chain amino acid metabolism in humans.

    Science.gov (United States)

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  14. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, A M; Lauritsen, F R

    2004-01-01

    Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from the correspo......Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from...

  15. Three new branched chain equations of state based on Wertheim's perturbation theory

    Science.gov (United States)

    Marshall, Bennett D.; Chapman, Walter G.

    2013-05-01

    In this work, we present three new branched chain equations of state (EOS) based on Wertheim's perturbation theory. The first represents a slightly approximate general branched chain solution of Wertheim's second order perturbation theory (TPT2) for athermal hard chains, and the second represents the extension of first order perturbation theory with a dimer reference fluid (TPT1-D) to branched athermal hard chain molecules. Each athermal branched chain EOS was shown to give improved results over their linear counterparts when compared to simulation data for branched chain molecules with the branched TPT1-D EOS being the most accurate. Further, it is shown that the branched TPT1-D EOS can be extended to a Lennard-Jones dimer reference system to obtain an equation of state for branched Lennard-Jones chains. The theory is shown to accurately predict the change in phase diagram and vapor pressure which results from branching as compared to experimental data for n-octane and corresponding branched isomers.

  16. Strain hardening in startup shear of long-chain branched polymer solutions.

    Science.gov (United States)

    Liu, Gengxin; Cheng, Shiwang; Lee, Hyojoon; Ma, Hongwei; Xu, Hongde; Chang, Taihyun; Quirk, Roderic P; Wang, Shi-Qing

    2013-08-09

    We show for the first time that entangled polymeric liquids containing long-chain branching can exhibit strain hardening upon startup shear. As the significant long-chain branching impedes chain disentanglement, Gaussian coils between entanglements can deform to reach the finite extensibility limit where the intrachain retraction force exceeds the value expected from the usual conformational entropy loss evaluated based on Gaussian chain statistics. The phenomenon is expected to lead to further theoretical understanding.

  17. Branched-chain amino acids as biomarkers in diabetes.

    Science.gov (United States)

    Giesbertz, Pieter; Daniel, Hannelore

    2016-01-01

    Numerous human studies have consistently demonstrated that concentrations of branched-chain amino acids (BCAAs) in plasma and urine are associated with insulin resistance and have the quality to predict diabetes development. However, it is not known how altered BCAA levels link to insulin action and diabetes. This review addresses some recent findings in BCAA metabolism and discusses their role as reporter molecules of insulin sensitivity and diabetes and their possible contribution to disease progression. Changes in plasma and urine levels result mainly from altered metabolism in tissues and recent studies have thus focused on organ-specific changes in BCAA handling using animal models and human tissue samples. A decreased mitochondrial oxidation has been demonstrated in peripheral tissues and that was shown to be associated with an increased inflammatory tone and changes in adipokine levels (adiponectin and leptin). These changes appear already before insulin resistance is established. Key findings demonstrating the discordance between changes in BCAA and insulin resistance are derived from studies using insulin sensitizers and from data collected in patients undergoing Roux-en-Y bypass bariatric surgery. Intermediates derived from BCAA breakdown rather than BCAA itself were recently proposed to contribute to the development of insulin resistance and studies now explore the biomarker qualities of these metabolites. Understanding the mechanisms and putative causalities in the alterations in BCAA levels as found in obesity, metabolic syndrome and diabetes is crucial for any intervention options but also for the use of BCAA and derivatives as biomarkers in clinical routine.

  18. Branched-chain amino acids alter neurobehavioral function in rats

    Science.gov (United States)

    Coppola, Anna; Wenner, Brett R.; Ilkayeva, Olga; Stevens, Robert D.; Maggioni, Mauro; Slotkin, Theodore A.; Levin, Edward D.

    2013-01-01

    Recently, we have described a strong association of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) with obesity and insulin resistance. In the current study, we have investigated the potential impact of BCAA on behavioral functions. We demonstrate that supplementation of either a high-sucrose or a high-fat diet with BCAA induces anxiety-like behavior in rats compared with control groups fed on unsupplemented diets. These behavioral changes are associated with a significant decrease in the concentration of tryptophan (Trp) in brain tissues and a consequent decrease in serotonin but no difference in indices of serotonin synaptic function. The anxiety-like behaviors and decreased levels of Trp in the brain of BCAA-fed rats were reversed by supplementation of Trp in the drinking water but not by administration of fluoxetine, a selective serotonin reuptake inhibitor, suggesting that the behavioral changes are independent of the serotonergic pathway of Trp metabolism. Instead, BCAA supplementation lowers the brain levels of another Trp-derived metabolite, kynurenic acid, and these levels are normalized by Trp supplementation. We conclude that supplementation of high-energy diets with BCAA causes neurobehavioral impairment. Since BCAA are elevated spontaneously in human obesity, our studies suggest a potential mechanism for explaining the strong association of obesity and mood disorders. PMID:23249694

  19. Branched chain amino acid profile in early chronic kidney disease

    Directory of Open Access Journals (Sweden)

    M Anil Kumar

    2012-01-01

    Full Text Available The nutritional status in chronic kidney disease (CKD patients is a predictor of prognosis during the first period of dialysis. Serum albumin is the most commonly used nutritional marker. Another index is plasma amino acid profile. Of these, the plasma levels of branched chain amino acids (BCAA, especially valine and leucine, correlate well with nutritional status. Plasma BCAAs were evaluated along with albumin and C-reactive protein in 15 patients of early stages of CKD and 15 age- and sex-matched healthy controls. A significant decrease in plasma valine, leucine and albumin levels was observed in CKD patients when compared with the controls (P <0.05. No significant difference in C-reactive protein (CRP levels was observed between the two groups. Malnutrition seen in our CKD patients in the form of hypoalbuminemia and decreased concentrations of BCAA points to the need to evaluate the nutritional status in the early stages itself. Simple measures in the form of amino acid supplementation should be instituted early to decrease the morbidity and mortality before start of dialysis in these patients.

  20. Naturally occurring branched-chain polyamines induce a crosslinked meshwork structure in a giant DNA.

    Science.gov (United States)

    Muramatsu, Akira; Shimizu, Yuta; Yoshikawa, Yuko; Fukuda, Wakao; Umezawa, Naoki; Horai, Yuhei; Higuchi, Tsunehiko; Fujiwara, Shinsuke; Imanaka, Tadayuki; Yoshikawa, Kenichi

    2016-12-21

    We studied the effect of branched-chain polyamines on the folding transition of genome-sized DNA molecules in aqueous solution by the use of single-molecule observation with fluorescence microcopy. Detailed morphological features of polyamine/DNA complexes were characterized by atomic force microscopy (AFM). The AFM observations indicated that branched-chain polyamines tend to induce a characteristic change in the higher-order structure of DNA by forming bridges or crosslinks between the segments of a DNA molecule. In contrast, natural linear-chain polyamines cause a parallel alignment between DNA segments. Circular dichroism measurements revealed that branched-chain polyamines induce the A-form in the secondary structure of DNA, while linear-chain polyamines have only a minimum effect. This large difference in the effects of branched- and linear-chain polyamines is discussed in relation to the difference in the manner of binding of these polyamines to negatively charged double-stranded DNA.

  1. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Science.gov (United States)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  2. Marine Chloroflexus-like Organisms Synthesize Mid-Chain Branched Monomethylalkanes

    Science.gov (United States)

    Parenteau, M. N.; Jahnke, L. L.; Green, S. J.; Boomer, S. M.; Pierson, B. K.

    2010-04-01

    Mid-chain branched mono- and dimethylalkanes (MMA and DMA, respectively) are considered biomarkers for cyanobacteria. In this study, we report the synthesis of a series of MMAs by anoxygenic phototrophic marine Chloroflexus-like organisms (MCLOs).

  3. Odd- and branched-chain fatty acids in milk fat – characteristic and health properties

    Directory of Open Access Journals (Sweden)

    Agata Adamska

    2014-08-01

    Full Text Available This review analyzes the current state of knowledge on odd- and branched-chain fatty acids present in milk fat. Special attention is devoted to the characteristic, synthesis in ruminants, factors affecting their content in milk fat and pro-health properties of these compounds. The group of odd- and branched-chain fatty acids includes mainly saturated fatty acids with one or more methyl branches in the iso or anteiso position. These fatty acids are largely derived from ruminal bacteria and they have been transferred to ruminant tissue (milk and meat. For that reason they have been used as biomarkers of rumen fermentation. Odd- and branched-chain fatty acids are exogenous products for humans, and therefore have specific properties. The results of research from recent decades show that odd- and branched-chain fatty acids have anti-cancer activity. Branched-chain fatty acids may reduce the incidence of necrotizing enterocolitis. Additionally, these compounds have a beneficial effect on proper tissue function and on functioning and development of the infant gut, whereas odd-chain fatty acids are considered as biomarkers of milk fat intake by humans. So far, not all the mechanisms of activity of these compounds are known thoroughly. They should be more carefully studied for application of their biological effects in prevention and treatment.

  4. Branched-chain amino acids for people with hepatic encephalopathy.

    Science.gov (United States)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo; Marchesini, Giulio; Borre, Mette; Aagaard, Niels Kristian; Vilstrup, Hendrik

    2017-05-18

    Hepatic encephalopathy is a brain dysfunction with neurological and psychiatric changes associated with liver insufficiency or portal-systemic shunting. The severity ranges from minor symptoms to coma. A Cochrane systematic review including 11 randomised clinical trials on branched-chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. We identified trials through manual and electronic searches in The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded and Conference Proceedings Citation Index - Science, and LILACS (May 2017). We included randomised clinical trials, irrespective of the bias control, language, or publication status. The authors independently extracted data based on published reports and collected data from the primary investigators. We changed our primary outcomes in this update of the review to include mortality (all cause), hepatic encephalopathy (number of people without improved manifestations of hepatic encephalopathy), and adverse events. The analyses included random-effects and fixed-effect meta-analyses. We performed subgroup, sensitivity, regression, and trial sequential analyses to evaluate sources of heterogeneity (including intervention, and participant and trial characteristics), bias (using The Cochrane Hepato-Biliary Group method), small-study effects, and the robustness of the results after adjusting for sparse data and multiplicity. We graded the quality of the evidence using the GRADE approach. We found 16 randomised clinical trials including 827 participants with hepatic encephalopathy classed as overt (12 trials) or minimal (four trials). Eight trials assessed oral BCAA supplements and seven trials assessed intravenous

  5. Measuring chain digitisation maturity: an assessment of Dutch retail branches.

    NARCIS (Netherlands)

    Plomp, M.G.A.; Batenburg, R.S.

    2010-01-01

    The purpose of this article is to develop a validated measurement model and typology for chain digitisation maturity, defined as the degree of interorganisational collaboration through ICT. The advantages of interorganisational information systems (IOIS) seem to meet the challenges currently facing

  6. Converging from Branching to Linear Metrics on Markov Chains

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2015-01-01

    We study the strong and strutter trace distances on Markov chains (MCs). Our interest in these metrics is motivated by their relation to the probabilistic LTL-model checking problem: we prove that they correspond to the maximal differences in the probability of satisfying the same LTL and LTL...

  7. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo

    2017-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. Objectives: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. Search methods: We identified trials through...... included randomised clinical trials, irrespective of the bias control, language, or publication status. Data collection and analysis: The authors independently extracted data based on published reports and collected data from the primary investigators. We changed our primary outcomes in this update...

  8. Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes.

    Science.gov (United States)

    Hutson, Susan M; Sweatt, Andrew J; Lanoue, Kathryn F

    2005-06-01

    There are several features of the metabolism of the indispensable BCAAs that set them apart from other indispensable amino acids. BCAA catabolism involves 2 initial enzymatic steps that are common to all 3 BCAAs; therefore, the dietary intake of an individual BCAA impacts on the catabolism of all 3. The first step is reversible transamination followed by irreversible oxidative decarboxylation of the branched-chain alpha-keto acid transamination products, the branched chain alpha-keto acids (BCKAs). The BCAA catabolic enzymes are distributed widely in body tissues and, with the exception of the nervous system, all reactions occur in the mitochondria of the cell. Transamination provides a mechanism for dispersing BCAA nitrogen according to the tissue's requirements for glutamate and other dispensable amino acids. The intracellular compartmentalization of the branched-chain aminotransferase isozymes (mitochondrial branched-chain aminotransferase, cytosolic branched-chain aminotransferase) impacts on intra- and interorgan exchange of BCAA metabolites, nitrogen cycling, and net nitrogen transfer. BCAAs play an important role in brain neurotransmitter synthesis. Moreover, a dysregulation of the BCAA catabolic pathways that leads to excess BCAAs and their derivatives (e.g., BCKAs) results in neural dysfunction. The relatively low activity of catabolic enzymes in primates relative to the rat may make the human more susceptible to excess BCAA intake. It is hypothesized that the symptoms of excess intake would mimic the neurological symptoms of hereditary diseases of BCAA metabolism.

  9. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo

    2015-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. SEARCH METHODS: We identified trials through...... control, language, or publication status. DATA COLLECTION AND ANALYSIS: The authors independently extracted data based on published reports and collected data from the primary investigators. We changed our primary outcomes in this update of the review to include mortality (all cause), hepatic...

  10. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    Science.gov (United States)

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-05

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Metabolism of branched-chain amino acids in fibroblasts from patients with maple syrup urine disease and other abnormalities of branched-chain ketoacid dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, I.; Sweetman, L.; Nyhan, W.L.

    1986-02-01

    The metabolism of branched-chain amino acids was studied in cultured fibroblasts from patients with branched-chain ketoacid dehydrogenase deficiency using 1-/sup 14/C- and UL-/sup 14/C-leucine and valine. The formation of /sup 14/CO/sub 2/ from 1-/sup 14/C-valine or 1-/sup 14/C-leucine was 1-3% of normal. In fibroblasts of patients with associated lactic acidemia the values were 4-29% of control. Analysis of organic acid products revealed that in both patients and controls the amount of labeled alpha-ketoisovalerate recovered after incubation with 1-/sup 14/C-valine was one-third of the amount of alpha-ketoisocaproate recovered after incubation with 1-/sup 14/C-leucine. Very little alpha-hydroxyisocaproate was produced, while the amount of alpha-hydroxyisovalerate was about 10% of the alpha-ketoisovalerate. Unexpectedly beta-hydroxyisobutyrate was found to be the major metabolic product of UL-/sup 14/C-valine in normal fibroblasts. Large accumulations of beta-hydroxyisovalerate were found in normal fibroblasts using UL-/sup 14/C-leucine. There were little or no conversions to these compounds in fibroblasts of patients with branched-chain ketoacid dehydrogenase deficiency. There were substantial conversions in the patients in whom dehydrogenase deficiency was associated with lactic acidemia.

  12. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes

    OpenAIRE

    Heimann, Emilia; Nyman, Margareta; P?lbrink, Ann-Ki; Lindkvist-Petersson, Karin; Degerman, Eva

    2016-01-01

    ABSTRACT Short-chain fatty acids (SCFAs), e.g. acetic acid, propionic acid and butyric acid, generated through colonic fermentation of dietary fibers, have been shown to reach the systemic circulation at micromolar concentrations. Moreover, SCFAs have been conferred anti-obesity properties in both animal models and human subjects. Branched SCFAs (BSCFAs), e.g., isobutyric and isovaleric acid, are generated by fermentation of branched amino acids, generated from undigested protein reaching col...

  13. Mathematical Modeling of the Process for Microbial Production of Branched Chained Amino Acids

    Directory of Open Access Journals (Sweden)

    Todorov K.

    2009-12-01

    Full Text Available This article deals with modelling of branched chained amino acids production. One of important branched chained amino acid is L-valine. The aim of the article is synthesis of dynamic unstructured model of fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  14. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.

    Science.gov (United States)

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2018-01-15

    This study confirmed the possibility of biopolymer-type stabilizers to increase the saturation concentration of branched-chain amino acids by preventing their crystallization/precipitation. Although microfluidization increased the initial solubility, it failed to increase the saturation concentration of the branched-chain amino acids. The saturation concentration of the branched-chain amino acids increased from 3.81% to 4.42% and 4.85% after the incorporation of food hydrocolloids and proteins, respectively. However, the branched-chain amino acids:stabilizer ratio did not affect the solubility. In the case of food hydrocolloid-based solutions, crystal formation and growth of branched-chain amino acids occurred during storage, resulting in the precipitation of branched-chain amino acid crystals. However, food proteins effectively increased the stability of the solubilized branched-chain amino acids. The improved solubility and stability of the solubilized branched-chain amino acids could be attributed to interactions between the functional groups (carboxyl, amine, sulfate, aliphatic, aromatic, etc.) of the stabilizer and the branched-chain amino acid molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    Science.gov (United States)

    Dorenbos, G.

    2015-06-01

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead, respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ˜0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.

  16. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions.

    Science.gov (United States)

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S; Malde, Alpeshkumar K; Mark, Alan E; Gilbert, Robert G

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality.

  17. The Characterization of Modified Starch Branching Enzymes: Toward the Control of Starch Chain-Length Distributions

    Science.gov (United States)

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S.; Malde, Alpeshkumar K.; Mark, Alan E.; Gilbert, Robert G.

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality. PMID:25874689

  18. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions.

    Directory of Open Access Journals (Sweden)

    Cheng Li

    Full Text Available Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE. Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality.

  19. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease

    Czech Academy of Sciences Publication Activity Database

    Lake, A.D.; Novák, Petr; Shipkova, P.; Aranibar, N.; Robertson, D.G.; Reily, M.D.; Lehman-McKeeman, L.D.; Vaillancourt, R.R.; Cherrington, N.J.

    2015-01-01

    Roč. 47, č. 3 (2015), s. 603-615 ISSN 0939-4451 Institutional support: RVO:60077344 Keywords : Branched chain amino acid * nonalcoholic fatty liver disease * nonalcoholic steatohepatitis * metabolomics and transcriptomics Subject RIV: CE - Biochemistry Impact factor: 3.196, year: 2015

  20. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    Science.gov (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  1. Branched-Chain Amino Acid Transport in Cytoplasmic Membranes of Leuconostoc mesenteroides subsp. dextranicum CNRZ 1273

    NARCIS (Netherlands)

    WINTERS, DA; POOLMAN, B; HEMME, D; KONINGS, WN

    1991-01-01

    Membrane vesicles of Leuconostoc mesenteroides subsp. dextranicum fused with proteoliposomes prepared from Escherichia coli phospholipids containing beef heart cytochrome c oxidase were used to study the transport of branched-chain amino acids in a strain isolated from a raw milk cheese. At a medium

  2. Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation.

    Science.gov (United States)

    Meager, Iain; Ashraf, Raja Shahid; Mollinger, Sonya; Schroeder, Bob C; Bronstein, Hugo; Beatrup, Daniel; Vezie, Michelle S; Kirchartz, Thomas; Salleo, Alberto; Nelson, Jenny; McCulloch, Iain

    2013-08-07

    Systematically moving the alkyl-chain branching position away from the polymer backbone afforded two new thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTT-T) polymers. When used as donor materials in polymer:fullerene solar cells, efficiencies exceeding 7% were achieved without the use of processing additives. The effect of the position of the alkyl-chain branching point on the thin-film morphology was investigated using X-ray scattering techniques and the effects on the photovoltaic and charge-transport properties were also studied. For both solar cell and transistor devices, moving the branching point further from the backbone was beneficial. This is the first time that this effect has been shown to improve solar cell performance. Strong evidence is presented for changes in microstructure across the series, which is most likely the cause for the photocurrent enhancement.

  3. The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities.

    Science.gov (United States)

    Kurnia, Kiki A; Sintra, Tânia E; Neves, Catarina M S S; Shimizu, Karina; Canongia Lopes, José N; Gonçalves, Fernando; Ventura, Sónia P M; Freire, Mara G; Santos, Luís M N B F; Coutinho, João A P

    2014-10-07

    The design of ionic liquids has been focused on the cation-anion combinations but other more subtle approaches can be used. In this work the effect of the branching of the cation alkyl chain on the design of ionic liquids (ILs) is evaluated. The mutual solubilities with water and toxicities of a series of bis(trifluoromethylsulfonyl)-based ILs, combined with imidazolium, pyridinium, pyrrolidinium, and piperidinium cations with linear or branched alkyl chains, are reported. The mutual solubility measurements were carried out in the temperature range from (288.15 to 323.15) K. From the obtained experimental data, the thermodynamic properties of the solution (in the water-rich phase) were determined and discussed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used to predict the liquid-liquid equilibrium. Furthermore, molecular dynamic simulations were also carried out aiming to get a deeper understanding of these fluids at the molecular level. The results show that the increase in the number of atoms at the cation ring (from five to six) leads to a decrease in the mutual solubilities with water while increasing their toxicity, and as expected from the well-established relationship between toxicities and hydrophobicities of ILs. The branching of the alkyl chain was observed to decrease the water solubility in ILs, while increasing the ILs solubility in water. The inability of COSMO-RS to correctly predict the effect of branching alkyl chains toward water solubility on them was confirmed using molecular dynamic simulations to be due to the formation of nano-segregated structures of the ILs that are not taken into account by the COSMO-RS model. In addition, the impact of branched alkyl chains on the toxicity is shown to be not trivial and to depend on the aromatic nature of the ILs.

  4. Self-assembly of long chain fatty acids: Effect of a methyl branch

    DEFF Research Database (Denmark)

    Liljeblad, Jonathan F. D.; Tyrode, Eric; Thormann, Esben

    2014-01-01

    chains of the straight chain fatty acids appear to be oriented perpendicular to the sample surface, based on an orientational analysis of VSFS data and the odd/even effect. In addition, the selection of the subphase (neat water or CdCl2 containing water buffered to pH 6.0) used for the LB-deposition has......The morphology and molecular conformation of Langmuir-Blodgett deposited and floating monolayers of a selection of straight chain (eicosanoic acid, EA), iso (19-methyl eicosanoic acid, 19-MEA), and anteiso (18-methyl eicosanoic acid, 18-MEA) fatty acids have been investigated by Vibrational Sum...... Frequency Spectroscopy (VSFS), AFM imaging, and the Langmuir trough. While the straight chain fatty acid forms smooth, featureless monolayers, all the branched chain fatty acids display 10-50 nm sized domains (larger for 19-MEA than the 18-MEA) with a homogeneous size distribution. A model is suggested...

  5. Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; MacLean, D A; Saltin, B

    1996-01-01

    1. Exercise leads to activation (dephosphorylation) of the branched-chain alpha-keto acid dehydrogenase (BCKADH). Here we investigate the effect of low pre-exercise muscle glycogen content and of branched-chain amino acid (BCAA) ingestion on the activity of BCKADH at rest and after 90 min of one...

  6. Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees

    Science.gov (United States)

    Wang, Junyang; Bai, Jing; Zhang, Yaqiong; Fang, Huagao; Wang, Zhigang

    2016-01-01

    The effects of long chain branching (LCB) degree on the shear-induced isothermal crystallization kinetics of a series of LCB polylactides (LCB PLAs) have been investigated by using rotational rheometer, polarized optical microscopy (POM) and scanning electron microscopy (SEM). Dynamic viscoelastic properties obtained by small-amplitude oscillatory shear (SAOS) tests indicate that LCB PLAs show more broadened relaxation time spectra with increasing LCB degree. Upon a pre-shear at the shear rate of 1 s−1 LCB PLAs show much faster crystallization kinetics than linear PLA and the crystallization kinetics is enhanced with increasing LCB degree. By modeling the system as a suspension the quantitative evaluation of nucleation density can be derived from rheological experiments. The nucleation density is greatly enhanced with increasing LCB degree and a saturation in shear time is observed. Crystalline morphologies for LCB PLAs observed by POM and SEM demonstrate the enhancement of nucleation density with increasing LCB degree and a transformation from spherulitic to orientated crystalline morphologies. The observation can be ascribed to longer relaxation time of the longest macromolecular chains and broadened, complex relaxation behaviors due to the introduction of LCB into PLA, which is essential in stabilizing the orientated crystal nuclei after pre-shear. PMID:27246803

  7. Steroid Carbon Skeletons with Unusually Branched C-3 Alkyl Side Chains in Sulphur-Rich Sediments

    Science.gov (United States)

    Schouten, Stefan; Sephton, Sarah; Baas, Marianne; Sinninghe Damsté, Jaap S.

    1998-04-01

    A novel series of thiophenes with C-3 alkylated steroid carbon skeletons has been identified in sediments of the Miocene Monterey Formation (California, USA) and in the Turonian Tarfaya basin (Morocco). Their carbon skeletons are unusual in the sense that the alkyl side-chains at C-3 are almost exclusively isopentyl, 3-methylpentyl, and 2,3-dimethylbutyl moieties whilst n-alkyl (pentyl or hexyl) moieties are almost absent. Although they occur as thiophenes, the number of carbon atoms in the C-3 alkyl side chain and their carbon isotopic compositions point towards an origin from carbohydrates for the C-3 alkyl side chain. However, the branched structures of the C-3 alkyl side chains points to a different biosynthetic pathway, possibly starting from the addition of isopentylpyrophosphate to sterols.

  8. Potential diagnostic of Branched-Chain Ketoaciduria by HPLC-DAD

    OpenAIRE

    Trintinalia, Maíra Magalhães; Alves, Atecla Nunciata Lopes; Fernandes, Liliam; Bechara, Etelvino Jose Henriques; Assunção, Nilson Antonio

    2014-01-01

    A system of high performance liquid chromatography (HPLC) was used for the development and validation of efficient method for quantitative determination of three aminoacids involved in the inherited metabolic disease Branched-Chain Ketoaciduria (BCK), also called maple syrup urine disease. The analytical conditions were selected in order to obtain baseline separation profiles of the amino acids known to be altered in blood plasma of BCK patients, namely L-valine, L-isoleucine, and L-leucine. ...

  9. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  10. Novel metabolic and physiological functions of branched chain amino acids: a review

    OpenAIRE

    Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining ...

  11. Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Joanne M Kingsbury

    2015-12-01

    Full Text Available The conserved target of rapamycin complex 1 (TORC1 integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT, which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals.

  12. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  13. Interactions between the branched-chain amino acids in the growth of Spirodela polyrhiza.

    Science.gov (United States)

    Borstlap, A C

    1981-04-01

    The joint action of L-valine and L-isoleucine, L-leucine and L-isoleucine, and L-valine and L-leucine on the growth of Spirodela polyrhiza was established. The effect of one branched-chain amino acid on growth inhibition by another one was compared with the non-specific antagonisms which glycine and L-alanine exert on growth inhibition by singly supplied branched-chain amino acids. In this way specific and non-specific interactions could be distinguished. It appeared that: (1) L-isoleucine was a specific antagonist of L-valine; (2) L-leucine was a specific antagonist of L-isoleucine; (3) L-valine and L-leucine were synergistic growth inhibitors. Further, it was found that: (4) growth inhibition by L-leucine was specifically antagonized by simultaneously supplied L-valine and L-isoleucine; (5) an excess of L-isoleucine strongly inhibited the conversion of exogenous valine into leucine; (6) accumulation of valine was typical of isoleucine-induced growth inhibition. The results are consistent with the view that growth inhibition by L-valine and L-leucine is due to the blocking of acetohydroxy acid synthetase, the first common enzyme in the valine-isoleucine biosynthetic pathway. Growth inhibition by L-isoleucine, however, seems to result from inhibition of leucine synthesis at a step after 2-oxoisovaleric acid. Some aspects of the regulation of branched-chain amino acid biosynthesis in higher plants are discussed.

  14. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    Science.gov (United States)

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enzymatic polyketide chain branching to give substituted lactone, lactam, and glutarimide heterocycles.

    Science.gov (United States)

    Heine, Daniel; Bretschneider, Tom; Sundaram, Srividhya; Hertweck, Christian

    2014-10-20

    Polyketides typically result from head-to-tail condensation of acyl thioesters to produce highly functionalized linear chains. The biosynthesis of the phytotoxin rhizoxin, however, involves a polyketide synthase (PKS) module that introduces a δ-lactone chain branch through Michael addition of a malonyl extender to an α,β-unsaturated intermediate unit. To evaluate the scope of the branching module, polyketide mimics were synthesized and their biotransformation by the reconstituted PKS module from the Rhizopus symbiont Burkholderia rhizoxinica was monitored in vitro. The impact of the type and configuration of the δ-substituents was probed and it was found that amino-substituted surrogates yield the corresponding lactams. A carboxamide analogue was transformed into a glutarimide unit, which can be found in many natural products. Our findings illuminate the biosynthesis of glutarimide-bearing polyketides and also demonstrate the utility of this branching module for synthetic biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Improving proton conduction pathways in di- and triblock copolymer membranes: Branched versus linear side chains

    Science.gov (United States)

    Dorenbos, G.

    2017-06-01

    Phase separation within a series of polymer membranes in the presence of water is studied by dissipative particle dynamics. Each polymer contains hydrophobic A beads and hydrophilic C beads. Three parent architectures are constructed from a backbone composed of connected hydrophobic A beads to which short ([C]), long ([A3C]), or symmetrically branched A5[AC][AC] side chains spring off. Three di-block copolymer derivatives are constructed by covalently bonding an A30 block to each parent architecture. Also three tri-blocks with A15 blocks attached to both ends of each parent architecture are modeled. Monte Carlo tracer diffusion calculations through the water containing pores for 1226 morphologies reveal that water diffusion for parent architectures is slowest and diffusion through the di-blocks is fastest. Furthermore, diffusion increases with side chain length and is highest for branched side chains. This is explained by the increase of water pore size with , which is the average number of bonds that A beads are separated from a nearest C bead. Optimization of within the amphiphilic parent architecture is expected to be essential in improving proton conduction in polymer electrolyte membranes.

  17. Influence of the Molar Mass on Long-Chain Branching of Polypropylene

    Directory of Open Access Journals (Sweden)

    Florian Kamleitner

    2017-09-01

    Full Text Available Long-chain branching (LCB with peroxydicarbonates (PODIC is known as a suitable post-reactor process to introduce strain-hardening behaviour and an increase of melt strength to a linear polypropylene (PP. This opens up new possibilities for processing and therefore application. Especially in the case of adding value to PP post-consumer waste, LCB is a promising approach. LCB takes place by a combination of chain scission and recombination after radical activation of the PP macromolecule. However, chemical modification of post-consumer waste is challenging because of the inhomogeneous composition and the manifold number of PP grades. The influence of the molar mass of the linear PP precursor on this reaction was studied with different PP grades ranging from extrusion grade to injection moulding grade. To exclude side effects, all PP grades had similar polydispersity indices. A PP with higher molar mass undergoes significant chain scission during the LCB process compared to a PP with low molar mass for injection moulding. Therefore, the two grades differ significantly in their branching number, which influences their behaviour in elongational flow.

  18. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    Staphylococcus carnosus and Staphylococcus xylosus are widely used as aroma producers in the manufacture of dried fermented sausages. Catabolism of branched-chain amino acids (BCAAs) by these strains contributes to aroma formation by production of methyl-branched aldehydes and carboxy acids. The ...

  19. Ether- versus ester-linked phospholipid bilayers containing either linear or branched apolar chains.

    Science.gov (United States)

    Balleza, Daniel; Garcia-Arribas, Aritz B; Sot, Jesús; Ruiz-Mirazo, Kepa; Goñi, Félix M

    2014-09-16

    We studied the properties of bilayers formed by ether-and ester-containing phospholipids, whose hydrocarbon chains can be either linear or branched, using sn-1,2 dipalmitoyl, dihexadecyl, diphytanoyl, and diphytanyl phosphatidylcholines (DPPC, DHPC, DPhoPC, and DPhPC, respectively) either pure or in binary mixtures. Differential scanning calorimetry and confocal fluorescence microscopy of giant unilamellar vesicles concurred in showing that equimolar mixtures of linear and branched lipids gave rise to gel/fluid phase coexistence at room temperature. Mixtures containing DHPC evolved in time (0.5 h) from initial reticulated domains to extended solid ones when an equilibrium was achieved. The nanomechanical properties of supported planar bilayers formed by each of the four lipids studied by atomic force microscopy revealed average breakdown forces Fb decreasing in the order DHPC ≥ DPPC > DPhoPC > DPhPC. Moreover, except for DPPC, two different Fb values were found for each lipid. Atomic force microscopy imaging of DHPC was peculiar in showing two coexisting phases of different heights, probably corresponding to an interdigitated gel phase that gradually transformed, over a period of 0.5 h, into a regular tilted gel phase. Permeability to nonelectrolytes showed that linear-chain phospholipids allowed a higher rate of solute + water diffusion than branched-chain phospholipids, yet the former supported a smaller extent of swelling of the corresponding vesicles. Ether or ester bonds appeared to have only a minor effect on permeability. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Science.gov (United States)

    Hatazawa, Yukino; Tadaishi, Miki; Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  1. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  2. A safety assessment of branched chain saturated alcohols when used as fragrance ingredients

    DEFF Research Database (Denmark)

    Belsito, D.; Bickers, D.; Bruze, M.

    2010-01-01

    The Branched Chain Saturated Alcohol (BCSA) group of fragrance ingredients was evaluated for safety. In humans, no evidence of skin irritation was found at concentrations of 2-10%. Undiluted, 11 materials evaluated caused moderate to severe eye irritation. As current end product use levels...... carcinogenicity study showed that 2-ethyl-1-hexanol is a weak inducer of liver tumors in female mice, however, the relevance of this effect and mode of action to humans is still a matter of debate. The Panel is of the opinion that there are no safety concerns regarding BCSA under the present levels of use...

  3. Interplay between lipids and branched-chain amino acids in development of insulin resistance

    Science.gov (United States)

    Newgard, Christopher B.

    2013-01-01

    Summary Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventions. Nevertheless, in animal feeding studies, BCAA supplementation requires the background of a high-fat diet to promote insulin resistance. This article develops a model to explain how lipids and BCAA may synergize to promote metabolic diseases. PMID:22560213

  4. Branched-chain amino acids in metabolic signalling and insulin resistance

    Science.gov (United States)

    Lynch, Christopher J.; Adams, Sean H.

    2015-01-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM. PMID:25287287

  5. Planarian myosin essential light chain is involved in the formation of brain lateral branches during regeneration.

    Science.gov (United States)

    Yu, Shuying; Chen, Xuhui; Yuan, Zuoqing; Zhou, Luming; Pang, Qiuxiang; Mao, Bingyu; Zhao, Bosheng

    2015-08-01

    The myosin essential light chain (ELC) is a structure component of the actomyosin cross-bridge, however, the functions in the central nervous system (CNS) development and regeneration remain poorly understood. Planarian Dugesia japonica has revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. In this study, the cDNA DjElc, encoding a planarian essential light chain of myosin, was identified from the planarian Dugesia japonica cDNA library. It encodes a deduced protein with highly conserved functionally domains EF-Hand and Ca(2+) binding sites that shares significant similarity with other members of ELC. Whole mount in situ hybridization studies show that DjElc expressed in CNS during embryonic development and regeneration of adult planarians. Loss of function of DjElc by RNA interference during planarian regeneration inhibits brain lateral branches regeneration completely. In conclusion, these results demonstrated that DjElc is required for maintenance of neurons and neurite outgrowth, particularly for involving the brain later branch regeneration.

  6. The Complex Role of Branched Chain Amino Acids in Diabetes and Cancer

    Directory of Open Access Journals (Sweden)

    Thomas M. O'Connell

    2013-10-01

    Full Text Available The obesity and diabetes epidemics are continuing to spread across the globe. There is increasing evidence that diabetes leads to a significantly higher risk for certain types of cancer. Both diabetes and cancer are characterized by severe metabolic perturbations and the branched chain amino acids (BCAAs appear to play a significant role in both of these diseases. These essential amino acids participate in a wide variety of metabolic pathways, but it is now recognized that they are also critical regulators of a number of cell signaling pathways. An elevation in branched chain amino acids has recently been shown to be significantly correlated with insulin resistance and the future development of diabetes. In cancer, the normal demands for BCAAs are complicated by the conflicting needs of the tumor and the host. The severe muscle wasting syndrome experience by many cancer patients, known as cachexia, has motivated the use of BCAA supplementation. The desired improvement in muscle mass must be balanced by the need to avoid providing materials for tumor proliferation. A better understanding of the complex functions of BCAAs could lead to their use as biomarkers of the progression of certain cancers in diabetic patients.

  7. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids.

    Science.gov (United States)

    Cavallaro, Nicole Landa; Garry, Jamie; Shi, Xu; Gerszten, Robert E; Anderson, Ellen J; Walford, Geoffrey A

    2016-01-01

    Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine) in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D). Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. To test whether a specific dietary intervention, using differences in BCAA intake, alters fasting BCAA levels independent of other factors. Five healthy male volunteers underwent 4 days of a low and 4 days of a high BCAA content dietary intervention (ClinicalTrials.gov [NCT02110602]). All food and supplements were provided. Fasting BCAAs were measured from venous blood samples by mass spectrometry at baseline and after each intervention. Diets were isocaloric; contained equal percentages of calories from carbohydrate, fats, and protein; and differed from each other in BCAA content (1.5±0.1 vs. 14.0±0.6 g for valine; 4.5±0.9 g vs. 13.8±0.5 g for isoleucine; 2.1±0.2 g vs. 27.1±1.0 g for leucine; pBCAA content vs. the high BCAA content diet levels. The inter-individual response to the dietary interventions was variable and not explained by adherence. Short-term dietary manipulation of BCAA intake led to modest changes in fasting levels of BCAAs. The approach from our pilot study can be expanded to test the metabolic implications of dietary BCAA manipulation.

  8. Impact of the branched-chain amino acid to tyrosine ratio and branched-chain amino acid granule therapy in patients with hepatocellular carcinoma: A propensity score analysis.

    Science.gov (United States)

    Tada, Toshifumi; Kumada, Takashi; Toyoda, Hidenori; Kiriyama, Seiki; Tanikawa, Makoto; Hisanaga, Yasuhiro; Kanamori, Akira; Kitabatake, Shusuke; Yama, Tsuyoki

    2015-09-01

    It has been reported that the branched-chain amino acid (BCAA) to tyrosine ratio (BTR) is a useful indicator of liver function and BCAA therapy is associated with a decreased incidence of hepatocellular carcinoma (HCC). However, there has not been sufficient research on the relationship between BTR and the effects of BCAA therapy after initial treatment of HCC. We investigated the impact of BTR and BCAA therapy on survival in patients with HCC. A total of 315 patients with HCC who were treated (n = 66) or not treated (n = 249) with BCAA were enrolled; of these, 66 were selected from each group using propensity score matching. Survival from liver-related mortality was analyzed. In patients who did not receive BCAA therapy (n = 249), multivariate analysis for factors associated with survival indicated that low BTR (≤ 4.4) was independently associated with poor prognosis in patients with HCC (hazard ratio, 1.880; 95% confidence interval, 1.125-3.143; P = 0.016). In addition, among patients selected by propensity score matching (n = 132), multivariate analysis indicated that BCAA therapy was independently associated with good prognosis in patients with HCC (hazard ratio, 0.524; 95% confidence interval, 0.282-0.973; P = 0.041). BTR was not significantly associated with survival. Intervention involving BCAA therapy improved survival in patients with HCC versus untreated controls, regardless of BTR. In addition, low BTR was associated with poor prognosis in patients who did not receive BCAA therapy. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  9. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids

    Directory of Open Access Journals (Sweden)

    Nicole Landa Cavallaro

    2016-01-01

    Full Text Available Background: Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D. Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. Objective: To test whether a specific dietary intervention, using differences in BCAA intake, alters fasting BCAA levels independent of other factors. Design: Five healthy male volunteers underwent 4 days of a low and 4 days of a high BCAA content dietary intervention (ClinicalTrials.gov [NCT02110602]. All food and supplements were provided. Fasting BCAAs were measured from venous blood samples by mass spectrometry at baseline and after each intervention. Results: Diets were isocaloric; contained equal percentages of calories from carbohydrate, fats, and protein; and differed from each other in BCAA content (1.5±0.1 vs. 14.0±0.6 g for valine; 4.5±0.9 g vs. 13.8±0.5 g for isoleucine; 2.1±0.2 g vs. 27.1±1.0 g for leucine; p<0.0001 for all. Fasting valine was significantly lower (p=0.02 and fasting isoleucine and leucine were numerically lower following the low BCAA content vs. the high BCAA content diet levels. The inter-individual response to the dietary interventions was variable and not explained by adherence. Conclusion: Short-term dietary manipulation of BCAA intake led to modest changes in fasting levels of BCAAs. The approach from our pilot study can be expanded to test the metabolic implications of dietary BCAA manipulation.

  10. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  11. A Chiral, Photoluminescent, and Spin-Canted {Cu(I)Re(IV)2}n Branched Chain.

    Science.gov (United States)

    Martínez-Lillo, José; Armentano, Donatella; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; De Munno, Giovanni; Lloret, Francesc; Julve, Miguel; Faus, Juan

    2015-05-18

    A new heteroleptic 1D Cu(I)-Re(IV) coordination polymer of the formula {Cu(I)Re(IV)Cl4(μ-Cl)(μ-pyz)[Re(IV)Cl4(μ-bpym)]}n·nMeNO2 (1; pyz = pyrazine, bpym = 2,2'-bipyrimidine) has been prepared through the Cu(I)-mediated self-assembly of two different Re(IV) metalloligands, namely, [ReCl5(pyz)](-) and [ReCl4(bpym)]. 1 consists of chiral branched chains with an overall rack-type architecture displaying photoemission and magnetic ordering. These results constitute a first step toward making new multifunctional magnetic materials based on mixed 3d-5d molecular systems.

  12. Progress in application of branched-chain amino acids in patients with liver cirrhosis

    Directory of Open Access Journals (Sweden)

    LYU Zheng

    2015-03-01

    Full Text Available The metabolism of amino acids mainly takes place in the liver, and patients with liver cirrhosis may develop metabolic disorders of proteins, carbohydrates, fats, and amino acids, which in turn causes dysfunction of multiple organs and systems, as well as complications like hepatic encephalopathy, esophageal variceal bleeding, and ascites, resulting in high mortality. This paper summarizes the metabolic characteristics of amino acids and the application of branched-chain amino acids (BCAAs in the treatment of liver cirrhosis, and it points out the significance of BCAAs in regulating serum aminogram, increasing the ratio of BCAAs to aromatic amino acids, preventing complications of liver cirrhosis, and improving the quality of life for patients with the disease.

  13. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  14. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels

    DEFF Research Database (Denmark)

    Mahendran, Yuvaraj; Jonsson, Anna; Have, Christian T

    2017-01-01

    AIMS/HYPOTHESIS: Fasting plasma levels of branched-chain amino acids (BCAAs) are associated with insulin resistance, but it remains unclear whether there is a causal relation between the two. We aimed to disentangle the causal relations by performing a Mendelian randomisation study using genetic...... variants associated with circulating BCAA levels and insulin resistance as instrumental variables. METHODS: We measured circulating BCAA levels in blood plasma by NMR spectroscopy in 1,321 individuals from the ADDITION-PRO cohort. We complemented our analyses by using previously published genome......-wide association study (GWAS) results from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) (n = 46,186) and from a GWAS of serum BCAA levels (n = 24,925). We used a genetic risk score (GRS), calculated using ten established fasting serum insulin associated variants, as an instrumental...

  15. Inactivation of Gram-Positive Bacteria by Novel Phenolic Branched-Chain Fatty Acids.

    Science.gov (United States)

    Fan, Xuetong; Wagner, Karen; Sokorai, Kimberly J B; Ngo, Helen

    2017-01-01

    Novel phenolic branched-chain fatty acids (PBC-FAs) were evaluated for their antimicrobial properties against both gram-positive ( Listeria innocua , Bacillus subtilis , Enterococcus faecium ) and gram-negative ( Escherichia coli , Salmonella Typhimurium, and Pseudomonas tolaasii ) bacteria. In addition, PBC-FA derivatives, such as PBC-FA methyl ester mixture, methyl-branched fatty acid mixtures, and trimethylsilyl-PBC-FA methyl esters, were synthesized to study the structure activity relationship. Results showed that PBC-FAs were a potent antimicrobial against gram-positive bacteria with MICs of 1.8 to 3.6 μg/ml. The compounds were less effective against gram-negative bacteria. Derivatives of PBC-FAs and an equimolar mixture of oleic acid and phenol all had MICs above 233 μg/ml against both gram-positive and gram-negative bacteria. Comparison of antimicrobial activities of the PBC-FAs with those of the derivatives suggests that the carboxylic group in the fatty acid moiety and the hydroxyl group on the phenol moiety were responsible for the antimicrobial efficacy. Growth curves of L. innocua revealed that PBC-FAs prevented bacterial growth, while MBC-FAs only delayed the onset of rapid growth of L. innocua . Our results demonstrated that the novel PBC-FAs have potential for use as antimicrobials against gram-positive bacteria.

  16. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes.

    Science.gov (United States)

    Heimann, Emilia; Nyman, Margareta; Pålbrink, Ann-Ki; Lindkvist-Petersson, Karin; Degerman, Eva

    2016-01-01

    Short-chain fatty acids (SCFAs), e.g. acetic acid, propionic acid and butyric acid, generated through colonic fermentation of dietary fibers, have been shown to reach the systemic circulation at micromolar concentrations. Moreover, SCFAs have been conferred anti-obesity properties in both animal models and human subjects. Branched SCFAs (BSCFAs), e.g., isobutyric and isovaleric acid, are generated by fermentation of branched amino acids, generated from undigested protein reaching colon. However, BSCFAs have been sparsely investigated when referring to effects on energy metabolism. Here we primarily investigate the effects of isobutyric acid and isovaleric acid on glucose and lipid metabolism in primary rat and human adipocytes. BSCFAs inhibited both cAMP-mediated lipolysis and insulin-stimulated de novo lipogenesis at 10 mM, whereas isobutyric acid potentiated insulin-stimulated glucose uptake by all concentrations (1, 3 and 10 mM) in rat adipocytes. For human adipocytes, only SCFAs inhibited lipolysis at 10 mM. In both in vitro models, BSCFAs and SCFAs reduced phosphorylation of hormone sensitive lipase, a rate limiting enzyme in lipolysis. In addition, BSCFAs and SCFAs, in contrast to insulin, inhibited lipolysis in the presence of wortmannin, a phosphatidylinositide 3-kinase inhibitor and OPC3911, a phosphodiesterase 3 inhibitor in rat adipocytes. Furthermore, BSCFAs and SCFAs reduced insulin-mediated phosphorylation of protein kinase B. To conclude, BSCFAs have effects on adipocyte lipid and glucose metabolism that can contribute to improved insulin sensitivity in individuals with disturbed metabolism.

  17. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    Science.gov (United States)

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.

  18. Effects of Branched-chain Amino Acids on Ruminal Fermentation of Wheat Straw

    Directory of Open Access Journals (Sweden)

    Hui Ling Zhang

    2013-04-01

    Full Text Available This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA, and ammonia nitrogen (NH3-N in the ruminal fluid were determined. Dry matter (DM and neutral detergent fiber (NDF degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001. However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001. The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05. Moreover, the proportions of propionate and butyrate decreased (p<0.01 with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001 by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001 increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L.

  19. Relationship between aggregation properties and antimicrobial activities of alkylphosphocholines with branched alkyl chains.

    Science.gov (United States)

    Lukáč, Miloš; Garajová, Mária; Mrva, Martin; Bukovský, Marián; Ondriska, František; Máriássy, Eszter; Devínsky, Ferdinand; Lacko, Ivan

    2012-02-28

    Synthesis of five alkylphosphocholines with branched alkyl chains (Isophol-PCs) with different length of alkyl chains was described. Isophol(8)-PC and Isophol(12)-PC represent new compounds. The physico-chemical properties of Isophol-PCs were determined, critical micelle concentration and types of formed aggregates in aqueous solutions were investigated. The biological activities of Isophol-PCs have been studied for the first time in the present study. Antimicrobial activities of alkylphosphocholines were studied against bacteria (Staphylococcus aureus, Escherichia coli), yeast (Candida albicans) and pathogenic free-living amoebae (Acanthamoeba lugdunensis and Acanthamoeba quina). A. lugdunensis and A. quina are relatively insusceptible to action of miltefosine (standard compound of alkylphosphocholines) and therefore they are good models for studies of amoebicidal action of the investigated compounds. Relationship between structure, physico-chemical and biological activities of Isophol-PCs was discussed. S. aureus and C. albicans were sensitive to action of Isophol(16)-PC, Isophol(20)-PC. E. coli was not sensitive to action of all studied alkylphosphocholines in the concentrations equal to, or less than 10mM. Among all the synthesized compounds, Isophol(16)-PC had the highest level of activity against both strains of Acanthamoeba. The minimum trophocidal concentrations of Isophol(16)-PC against A. lugdunensis and A. quina are about four times lower than the minimum trophocidal concentrations of miltefosine against both strains. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway

    NARCIS (Netherlands)

    Luís, Paula B. M.; Ruiter, Jos P. N.; Ijlst, Lodewijk; Tavares de Almeida, Isabel; Duran, Marinus; Mohsen, Al-Walid; Vockley, Jerry; Wanders, Ronald J. A.; Silva, Margarida F. B.

    2011-01-01

    Many biological systems including the oxidative catabolic pathway for branched-chain amino acids (BCAAs) are affected in vivo by valproate therapy. In this study, we investigated the potential effect of valproic acid (VPA) and some of its metabolites on the metabolism of BCAAs. In vitro studies were

  1. Branched-chain amino acid requirements for enterally fed term neonates in the first month of life

    NARCIS (Netherlands)

    de Groof, Femke; Huang, Lisha; van Vliet, Ineke; Voortman, Gardi J.; Schierbeek, Henk; Roksnoer, Lodi C. W.; Vermes, Andras; Chen, Chao; Huang, Ying; van Goudoever, Johannes B.

    2014-01-01

    Knowledge of essential amino acid requirements in infants is important because excessive intake of protein can lead to increased long-term morbidity such as obesity. A deficient intake may lead to suboptimal growth and impaired neurodevelopment. The current recommended branched-chain amino acid

  2. Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease

    Directory of Open Access Journals (Sweden)

    Timo Friedrich

    2012-03-01

    Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt, a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD, a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD.

  3. The influence of precultivation parameters on the catabolism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Olesen, Pelle Thonning; Stahnke, Louise Heller

    2003-01-01

    The influence of precultivation. parameters on the ability of Staphylococcus xylosus and Staphylococcus carnosus to convert branched-chain amino acids-leucine, isoleucine and valine-into volatile flavour compounds was investigated using resting cells in a defined reaction medium. The studied...

  4. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  5. Supplemental branched-chain amino acids improve performance and immune response of newly-received feedlot calves

    Science.gov (United States)

    Supplemental branched-chain AA (BCAA) improved N balance of steers during a simulated pathogen challenge. The objective of this study was to determine the effect of supplemental BCAA on growth and health of newly-received feedlot steers. Steers (n = 120; initial BW = 376 ± 5 kg) were blocked by BW a...

  6. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km

    DEFF Research Database (Denmark)

    Madsen, Klavs; MacLean, David A; Kiens, Bente

    1996-01-01

    This study was undertaken to determine the effects of ingesting either glucose (trial G) or glucose plus branched-chain amino acids (BCAA: trial B), compared with placebo (trial P), during prolonged exercise. Nine well-trained cyclists with a maximal oxygen uptake of 63.1 +/- 1.5 ml O2. min-1.kg-1...

  7. Restoration of metabolic health by decreased consumption of branched-chain amino acids.

    Science.gov (United States)

    Cummings, Nicole E; Williams, Elizabeth M; Kasza, Ildiko; Konon, Elizabeth N; Schaid, Michael D; Schmidt, Brian A; Poudel, Chetan; Sherman, Dawn S; Yu, Deyang; Arriola Apelo, Sebastian I; Cottrell, Sara E; Geiger, Gabriella; Barnes, Macy E; Wisinski, Jaclyn A; Fenske, Rachel J; Matkowskyj, Kristina A; Kimple, Michelle E; Alexander, Caroline M; Merrins, Matthew J; Lamming, Dudley W

    2018-02-15

    We recently found that feeding healthy mice a diet with reduced levels of branched-chain amino acids (BCAAs), which are associated with insulin resistance in both humans and rodents, modestly improves glucose tolerance and slows fat mass gain. In the present study, we show that a reduced BCAA diet promotes rapid fat mass loss without calorie restriction in obese mice. Selective reduction of dietary BCAAs also restores glucose tolerance and insulin sensitivity to obese mice, even as they continue to consume a high-fat, high-sugar diet. A low BCAA diet transiently induces FGF21 (fibroblast growth factor 21) and increases energy expenditure. We suggest that dietary protein quality (i.e. the precise macronutrient composition of dietary protein) may impact the effectiveness of weight loss diets. Obesity and diabetes are increasing problems around the world, and although even moderate weight loss can improve metabolic health, reduced calorie diets are notoriously difficult to sustain. Branched-chain amino acids (BCAAs; leucine, isoleucine and valine) are elevated in the blood of obese, insulin-resistant humans and rodents. We recently demonstrated that specifically reducing dietary levels of BCAAs has beneficial effects on the metabolic health of young, growing mice, improving glucose tolerance and modestly slowing fat mass gain. In the present study, we examine the hypothesis that reducing dietary BCAAs will promote weight loss, reduce adiposity, and improve blood glucose control in diet-induced obese mice with pre-existing metabolic syndrome. We find that specifically reducing dietary BCAAs rapidly reverses diet-induced obesity and improves glucoregulatory control in diet-induced obese mice. Most dramatically, mice eating an otherwise unhealthy high-calorie, high-sugar Western diet with reduced levels of BCAAs lost weight and fat mass rapidly until regaining a normal weight. Importantly, this normalization of weight was mediated not by caloric restriction or increased

  8. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Scott B Crown

    Full Text Available The branched chain amino acids (BCAA valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0 and odd chain length (C15:0 and C17:0 fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  9. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.

    Science.gov (United States)

    Chen, Xiaoyan; Xu, Jingliang; Yang, Liu; Yuan, Zhenhong; Xiao, Shiyuan; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2015-11-01

    Higher alcohols, longer chain alcohols, contain more than 3 carbon atoms, showed close energy advantages as gasoline, and were considered as the next generation substitution for chemical fuels. Higher alcohol biosynthesis by native microorganisms mainly needs gene expression of heterologous keto acid decarboxylase and alcohol dehydrogenases. In the present study, branched-chain α-keto acid decarboxylase gene from Lactococcus lactis subsp. lactis CICC 6246 (Kivd) and alcohol dehydrogenases gene from Zymomonas mobilis CICC 41465 (AdhB) were transformed into Escherichia coli for higher alcohol production. SDS-PAGE results showed these two proteins were expressed in the recombinant strains. The resulting strain was incubated in LB medium at 37 °C in Erlenmeyer flasks and much more 3-methyl-1-butanol (104 mg/L) than isobutanol (24 mg/L) was produced. However, in 5 g/L glucose-containing medium, the production of two alcohols was similar, 156 and 161 mg/L for C4 (isobutanol) and C5 (3-methyl-1-butanol) alcohol, respectively. Effects of fermentation factors including temperature, glucose content, and α-keto acid on alcohol production were also investigated. The increase of glucose content and the adding of α-keto acids facilitated the production of C4 and C5 alcohols. The enzyme activities of pure Kivd on α-ketoisovalerate and α-ketoisocaproate were 26.77 and 21.24 μmol min(-1) mg(-1), respectively. Due to its ability on decarboxylation of α-ketoisovalerate and α-ketoisocaproate, the recombinant E. coli strain showed potential application on isoamyl alcohol and isobutanol production.

  10. Measuring hydroperoxide chain-branching agents during n-pentane low-temperature oxidation

    KAUST Repository

    Rodriguez, Anne

    2016-06-23

    The reactions of chain-branching agents, such as HO and hydroperoxides, have a decisive role in the occurrence of autoignition. The formation of these agents has been investigated in an atmospheric-pressure jet-stirred reactor during the low-temperature oxidation of n-pentane (initial fuel mole fraction of 0.01, residence time of 2s) using three different diagnostics: time-of-flight mass spectrometry combined with tunable synchrotron photoionization, time-of-flight mass spectrometry combined with laser photoionization, and cw-cavity ring-down spectroscopy. These three diagnostics enable a combined analysis of HO, C-C, and C alkylhydroperoxides, C-C alkenylhydroperoxides, and C alkylhydroperoxides including a carbonyl function (ketohydroperoxides). Results using both types of mass spectrometry are compared for the stoichiometric mixture. Formation data are presented at equivalence ratios from 0.5 to 2 for these peroxides and of two oxygenated products, ketene and pentanediones, which are not usually analyzed during jet-stirred reactor oxidation. The formation of alkenylhydroperoxides during alkane oxidation is followed for the first time. A recently developed model of n-pentane oxidation aids discussion of the kinetics of these products and of proposed pathways for C-C alkenylhydroperoxides and the pentanediones.

  11. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  12. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism.

    Science.gov (United States)

    Yoon, Mee-Sup

    2016-07-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  13. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality?

    Science.gov (United States)

    Wolfe, Robert R

    2017-01-01

    The branched chain amino acids (BCAAs) are leucine, valine and isoleucine. A multi-million dollar industry of nutritional supplements has grown around the concept that dietary supplements of BCAAs alone produce an anabolic response in humans driven by a stimulation of muscle protein synthesis. In this brief review the theoretical and empirical bases for that claim are discussed. Theoretically, the maximal stimulation of muscle protein synthesis in the post-absorptive state in response to BCAAs alone is the difference between muscle protein breakdown and muscle protein synthesis (about 30% greater than synthesis), because the other EAAs required for synthesis of new protein can only be derived from muscle protein breakdown. Realistically, a maximal increase in muscle protein synthesis of 30% is an over-estimate because the obligatory oxidation of EAAs can never be completely suppressed. An extensive search of the literature has revealed no studies in human subjects in which the response of muscle protein synthesis to orally-ingested BCAAs alone was quantified, and only two studies in which the effect of intravenously infused BCAAs alone was assessed. Both of these intravenous infusion studies found that BCAAs decreased muscle protein synthesis as well as protein breakdown, meaning a decrease in muscle protein turnover. The catabolic state in which the rate of muscle protein breakdown exceeded the rate of muscle protein synthesis persisted during BCAA infusion. We conclude that the claim that consumption of dietary BCAAs stimulates muscle protein synthesis or produces an anabolic response in human subjects is unwarranted.

  14. Branched Chain Amino Acids (BCAAs) and Traumatic Brain Injury: A Systematic Review.

    Science.gov (United States)

    Sharma, Bhanu; Lawrence, David W; Hutchison, Michael G

    2017-01-05

    Despite the prevalence of traumatic brain injury (TBI), pharmaceutical treatment options for brain injury remain limited. However, nutritional intervention (such as with branched chain amino acids [BCAAs]) has emerged as a promising treatment option for TBI. (1) To determine whether TBI patients have lower levels of endogenous BCAAs postinjury; and (2) to evaluate whether post-TBI BCAA supplementation improves clinical outcome. A systematic review of primary research articles examining the relationship between BCAAs and TBI recovery indexed in Ovid/MEDLINE, EMBASE, and PsycINFO. Of the 11 studies identified, 3 examined the effects of TBI on endogenous BCAA levels and consistently reported that BCAA concentrations were depressed postinjury. The remaining 8 studies examined the effects of BCAA supplementation on TBI outcome in animals (n = 3) and humans (n = 5). The animal studies (in mild-to-moderate TBI) showed that BCAAs improved post-TBI outcome. Similar results were found in human trials (conducted primarily in patients with severe TBI), with 4 of the 5 studies reporting improved outcome with BCAA supplementation. Although our review demonstrates an overall positive association between BCAAs and TBI outcome, the evidence of the efficacy of supplementation has been limited to severe TBI. To date, there is insufficient evidence to determine the benefits of BCAAs in mild TBI. Given the high frequency of mild TBI and the promise of BCAAs as an intervention in severe TBI, future research should examine the effects of BCAAs in milder brain injury.

  15. Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective

    Science.gov (United States)

    Valerio, Alessandra; D'Antona, Giuseppe; Nisoli, Enzo

    2011-01-01

    Malnutrition is common among older persons, with important consequences increasing frailty and morbidity and reducing health expectancy. On the contrary, calorie restriction (CR, a low-calorie dietary regimen with adequate nutrition) slows the progression of age-related diseases and extends the lifespan of many species. Identification of strategies mimicking key CR mechanisms – increased mitochondrial respiration and reduced production of oxygen radicals – is a hot topic in gerontology. Dietary supplementation with essential and/or branched chain amino acids (BCAAs) exerts a variety of beneficial effects in experimental animals and humans and has been recently demonstrated to support cardiac and skeletal muscle mitochondrial biogenesis, prevent oxidative damage, and enhance physical endurance in middle-aged mice, resulting in prolonged survival. Here we review recent studies addressing the possible role of BCAAs in energy metabolism and in the longevity of species ranging from unicellular organisms to mammals. We also summarize observations from human studies supporting the exciting hypothesis that dietary BCAA enriched mixture supplementation might be a health-promoting strategy in aged patients at risk. PMID:21566257

  16. Branched Hybridization Chain Reaction Circuit for Ultrasensitive Localizable Imaging of mRNA in Living Cells.

    Science.gov (United States)

    Liu, Lan; Liu, Jin-Wen; Wu, Han; Wang, Xiang-Nan; Yu, Ru-Qin; Jiang, Jian-Hui

    2018-02-06

    Hybridization chain reaction (HCR) circuits are valuable approaches to monitor low-abundance mRNA, and current HCR is still subjected to issues such as limited amplification efficiency, compromised localization resolution, or complicated designs. We report a novel branched HCR (bHCR) circuit for efficient signal-amplified imaging of mRNA in living cells. The bHCR can be realized using a simplified design by hierarchically coupling two HCR circuits with two split initiator fragments of the secondary HCR circuit incorporated in the probes for the primary HCR circuit. The bHCR circuit enables one to generate a hyperbranched assembly seeded from a single target initiator, affording the potential for localizing single target molecules in live cells. In vitro assays show that bHCR offers very high amplification efficiency and specificity in single mismatch discrimination with a detection limit of 500 fM. Live cell studies reveal that bHCR displays intense fluorescence spots indicating mRNA localization in living cells with improved contrast. The bHCR method can provide a useful platform for low-abundance biomarker detection and imaging for cell biology and diagnostics.

  17. Characteristics analysis of the one-dimensional pulsating dynamics of chain-branching detonations

    Science.gov (United States)

    Leung, C.; Radulescu, M. I.; Sharpe, G. J.

    2010-12-01

    The nonlinear pulsating mechanism of one-dimensional detonations was studied numerically using a simple two-step chain-branching model with separate induction and reaction zones. Numerical simulations were performed for a wide range of parameters, which revealed four distinct pulsating regimes classified according to the mechanism controlling the frequency of the pulsations. The dynamics of these regimes were clarified by reconstructing the characteristics, representing the trajectory of pressure waves and particle paths. The high and low frequency regimes of oscillation previously observed in one-step and realistic chemistry simulations were clarified. Under some parameter range, simultaneous low and high frequency pulsations were observed. A novel regime was also found with a pulsation period smaller than the induction time. It involves coupling between the acoustic and the reactivity disturbances propagating, respectively, along the C- and C0 characteristics. These are generated at successive lead shock pulsations and arrive at the reaction zone simultaneously. For all regimes, the dominating mechanism of the pulsating instability was found to be in good qualitative agreement with Toong's phenomenological model based on the wave dynamics in a square wave reaction zone structure.

  18. Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions.

    Science.gov (United States)

    Park, Yoon Mee; Lee, Hwa Jeong; Jeong, Jae-Ho; Kook, Joong-Ki; Choy, Hyon E; Hahn, Tae-Wook; Bang, Iel Soo

    2015-12-01

    Nitric oxide (NO) inactivates iron-sulfur enzymes in bacterial amino acid biosynthetic pathways, causing amino acid auxotrophy. We demonstrate that exogenous supplementation with branched-chain amino acids (BCAA) can restore the NO resistance of hmp mutant Salmonella Typhimurium lacking principal NO-metabolizing enzyme flavohemoglobin, and of mutants further lacking iron-sulfur enzymes dihydroxy-acid dehydratase (IlvD) and isopropylmalate isomerase (LeuCD) that are essential for BCAA biosynthesis, in an oxygen-dependent manner. BCAA supplementation did not affect the NO consumption rate of S. Typhimurium, suggesting the BCAA-promoted NO resistance independent of NO metabolism. BCAA supplementation also induced intracellular survival of ilvD and leuCD mutants at wild-type levels inside RAW 264.7 macrophages that produce constant amounts of NO regardless of varied supplemental BCAA concentrations. Our results suggest that the NO-induced BCAA auxotrophy of Salmonella, due to inactivation of iron-sulfur enzymes for BCAA biosynthesis, could be rescued by bacterial taking up exogenous BCAA available in oxic environments.

  19. Increased Incretin But Not Insulin Response after Oral versus Intravenous Branched Chain Amino Acids.

    Science.gov (United States)

    Gojda, Jan; Straková, Radka; Plíhalová, Andrea; Tůma, Petr; Potočková, Jana; Polák, Jan; Anděl, Michal

    2017-01-01

    Branched chain amino acids (BCAAs) are known to exert an insulinotropic effect. Whether this effect is mediated by incretins (glucagon like peptide 1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) is not known. The aim of this study was to show whether an equivalent dose of BCAA elicits a greater insulin and incretin response when administered orally than intravenously (IV). Eighteen healthy, male subjects participated in 3 tests: IV application of BCAA solution, oral ingestion of BCAA and placebo in an equivalent dose (30.7 ± 1.1 g). Glucose, insulin, C-peptide, glucagon, GLP-1, GIP, valine, leucine and isoleucine concentrations were measured. Rise in serum BCAA was achieved in both BCAA tests, with incremental areas under the curve (iAUC) being 2.1 times greater for IV BCAA compared with those of the oral BCAA test (p BCAA induced comparable insulin response greater than placebo (240 min insulin iAUC: oral 3,411 ± 577 vs. IV 2,361 ± 384 vs. placebo 961.2 ± 175 pmol/L, p = 0.0006). Oral BCAA induced higher GLP-1 (p BCAA tests with no change in the placebo group. An equivalent dose of BCAA elicited a comparable insulin and greater incretin response when administered orally and not when administered through IV. We conclude that insulinotropic effects of BCAA are partially incretin dependent. © 2017 S. Karger AG, Basel.

  20. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Frick, G.P.; Goodman, H.M.

    1986-03-05

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain ..cap alpha..-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which (1-/sup 14/C)leucine (L) and (1-/sup 14/C)valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to /sup 14/CO/sub 2/ 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min/sup -1/ g tis/sup -1/). In contrast, the ..cap alpha..-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L.

  1. Prognostic Impact of Visceral Fat Amount and Branched-Chain Amino Acids (BCAA) in Hepatocellular Carcinoma.

    Science.gov (United States)

    Higashi, Takaaki; Hayashi, Hiromitsu; Kaida, Takayoshi; Arima, Kota; Takeyama, Hideaki; Taki, Katsunobu; Izumi, Daisuke; Tokunaga, Ryuma; Kosumi, Keisuke; Nakagawa, Shigeki; Okabe, Hirohisa; Imai, Katsunobu; Nitta, Hidetoshi; Hashimoto, Daisuke; Chikamoto, Akira; Beppu, Toru; Baba, Hideo

    2015-12-01

    Dysregulation of lipid and amino acid metabolism in patients with liver diseases results in obesity-related carcinogenesis and decreased levels of branched-chain amino acids (BCAA), respectively. This study assessed the clinical and prognostic impact of visceral fat amount (VFA) and its association with amino acid metabolism in patients with hepatocellular carcinoma (HCC). In this study, 215 patients who underwent hepatic resection for HCC were divided into two groups based on VFA criteria for metabolic abnormalities in Japan. Computed tomography was used to measure VFA at the third lumbar vertebra in the inferior direction. Of the 215 patients, 132 had high and 83 had low VFA. High VFA was significantly associated with older age and higher body mass index (BMI), subcutaneous fat amount, and BCAA, but not with liver function, nutrient status, or tumoral factors. VFA was positively correlated with BMI (P BCAA levels (P BCAA, serum albumin, and prognostic nutritional index were not. High VFA was associated with a high BCAA level, with high VFA prognostic of improved overall survival in Japanese patients with HCC.

  2. Impairment of innate immune responses in cirrhotic patients and treatment by branched-chain amino acids

    Science.gov (United States)

    Nakamura, Ikuo

    2014-01-01

    It has been reported that host defense responses, such as phagocytic function of neutrophils and natural killer (NK) cell activity of lymphocytes, are impaired in cirrhotic patients. This review will concentrate on the impairment of innate immune responses in decompensated cirrhotic patients and the effect of the treatment by branched-chain amino acids (BCAA) on innate immune responses. We already reported that phagocytic function of neutrophils was significantly improved by 3-mo BCAA supplementation. In addition, the changes of NK activity were also significant at 3 mo of supplementation compared with before supplementation. Also, Fisher’s ratios were reported to be significantly increased at 3 mo of BCAA supplementation compared with those before oral supplementation. Therefore, administration of BCAA could reduce the risk of bacterial and viral infection in patients with decompensated cirrhosis by restoring impaired innate immune responses of the host. In addition, it was also revealed that BCAA oral supplementation could reduce the risk of development of hepatocellular carcinoma in cirrhotic patients. The mechanisms of the effects will also be discussed in this review article. PMID:24966600

  3. Novel metabolic and physiological functions of branched chain amino acids: a review.

    Science.gov (United States)

    Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.

  4. Efficacy, Dosage, and Duration of Action of Branched Chain Amino Acid Therapy for Traumatic Brain Injury

    Science.gov (United States)

    Elkind, Jaclynn A.; Lim, Miranda M.; Johnson, Brian N.; Palmer, Chris P.; Putnam, Brendan J.; Kirschen, Matthew P.; Cohen, Akiva S.

    2015-01-01

    Traumatic brain injury (TBI) results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI), shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs), which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study, mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5, and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM nor BCAAs when dosed 5 days on then 5 days off was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function, which underlie and contribute to hippocampal cognitive impairment, which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy. PMID:25870584

  5. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.

    Science.gov (United States)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J; Beebe, Kirk; Gall, Walt; Venditti, Charles P; Patti, Mary-Elizabeth

    2016-10-01

    Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  6. Branched chain fatty acid content of United States retail cow's milk and implications for dietary intake.

    Science.gov (United States)

    Ran-Ressler, R R; Sim, D; O'Donnell-Megaro, A M; Bauman, D E; Barbano, D M; Brenna, J T

    2011-07-01

    Branched chain fatty acids (BCFA) have recently been shown to be a major component of the normal human newborn gastrointestinal tract and have long been known to be a component of human milk. Ruminant food products are major sources of fat in the American diet, but there are no studies of milkfat BCFA content in retail milk. We report here the profile and concentrations of BCFA in a representative sampling of retail milk in the 48 contiguous United States (US), and their estimated intake in the American diet. Conventionally produced whole fluid milk samples were obtained from 56 processing plants across the contiguous 48 states. Retail milk samples contain exclusively iso- and anteiso-BCFA with 14-18 carbons. BCFA were 2.05 ± 0.14%, w/w of milkfat fatty acids (mean ± SD), and anteiso-BCFA comprised more than half this total. Based on these data and USDA food availability data, the average per capita BCFA intake of Americans is estimated to be about 220 mg/d from dairy; if current dietary recommendations were followed, BCFA intake would be about 400 mg/d. Adding intake from beef consumption, these estimates rise to approximately 400 and 575 mg/d, respectively. These results indicate that BCFA intake is a substantial fraction of daily fat intake, in amounts exceeding those of many bioactive fatty acids.

  7. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2016-07-01

    Full Text Available Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM. The activation of mammalian target of rapamycin complex 1 (mTORC1 by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  8. Branched-chain Amino Acid Biosensing Using Fluorescent Modified Engineered Leucine/Isoleucine/Valine Binding Protein

    Science.gov (United States)

    Chino, Sakura; Sakaguchi, Akane; Yamoto, Rie; Ferri, Stefano; Sode, Koji

    2007-01-01

    A novel fluorescence sensing system for branched-chain amino acids (BCAAs) was developed based on engineered leucine/isoleucine/valine-binding proteins (LIVBPs) conjugated with environmentally sensitive fluorescence probes. LIVBP was cloned from Escherichia coli and Gln149Cys, Gly227Cys, and Gln254Cys mutants were generated by genetic engineering. The mutant LIVBPs were then modified with environmentally sensitive fluorophores. Based on the fluorescence intensity change observed upon the binding of the ligands, the MIANS-conjugated Gln149Cys mutant (Gln149Cys-M) showed the highest and most sensitive response. The BCAAs Leu, Ile, and Val can each be monitored at the sub-micromolar level using Gln149Cys-M. Measurements were also carried out on a mixture of BCAFAs and revealed that Gln149Cys-M-based measurement is not significantly affected by the change in the molar ratio of Leu, Ile and Val in the sample. Its high sensitivity and group-specific molecular recognition ability make the new sensing system ideally suited for the measurement of BCAAs and the determination of the Fischer ratio, an indicator of hepatic disease involving metabolic dysfunction.

  9. Efficacy, dosage and duration of action of branched chain amino acid therapy for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jaclynn eElkind

    2015-03-01

    Full Text Available Traumatic brain injury (TBI results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI, shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5 and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM, nor BCAAs when dosed 5 days on then 5 days off, was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function which underlie and contribute to hippocampal cognitive impairment which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy.

  10. Branched-chain Amino Acid Biosensing Using Fluorescent Modified Engineered Leucine/Isoleucine/Valine Binding Protein

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2007-06-01

    Full Text Available A novel fluorescence sensing system for branched-chain amino acids (BCAAswas developed based on engineered leucine/isoleucine/valine-binding proteins (LIVBPsconjugated with environmentally sensitive fluorescence probes. LIVBP was cloned fromEscherichia coli and Gln149Cys, Gly227Cys, and Gln254Cys mutants were generated bygenetic engineering. The mutant LIVBPs were then modified with environmentallysensitive fluorophores. Based on the fluorescence intensity change observed upon thebinding of the ligands, the MIANS-conjugated Gln149Cys mutant (Gln149Cys-M showedthe highest and most sensitive response. The BCAAs Leu, Ile, and Val can each bemonitored at the sub-micromolar level using Gln149Cys-M. Measurements were alsocarried out on a mixture of BCAFAs and revealed that Gln149Cys-M-based measurementis not significantly affected by the change in the molar ratio of Leu, Ile and Val in thesample. Its high sensitivity and group-specific molecular recognition ability make the newsensing system ideally suited for the measurement of BCAAs and the determination of theFischer ratio, an indicator of hepatic disease involving metabolic dysfunction.

  11. Identification cloning and characterization of a branched-chain alpha-keto acid decarboxylase from Lactococcus lactis, involved in flavour formation

    NARCIS (Netherlands)

    Smit, B.A.; Meijer, L.; Engels, W.J.M.; Wouters, J.T.M.; Smit, G.

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain ¿-keto acid decarboxylase (KdcA). The activity of the latter enzyme has

  12. The influence of environmental parameters on the catabolism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Olesen, Pelle Thonning; Stahnke, Louise Heller

    2004-01-01

    . carnosus. The acidity of the medium was also important for both Staphylococcus spp., but with opposite effects. Lowering pH decreased the generation of branched-chain acids by S. carnosus but increased the generation by S. xylosus. In addition, several two-factor interactions between temperature, Na......Degradation of the amino acids leucine, isoleucine and valine into branched flavour compounds by Staphylococcus xylosus and Staphylococcus carnosus was studied using resting cell cultures added to a defined reaction medium under different environmental conditions relevant to sausage fermentation...

  13. Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems.

    Science.gov (United States)

    Ahmad, Noraini; Ramsch, Roland; Llinàs, Meritxell; Solans, Conxita; Hashim, Rauzah; Tajuddin, Hairul Anuar

    2014-03-01

    The effect of incorporating new nonionic glycolipid surfactants on the properties of a model water/nonionic surfactant/oil nano-emulsion system was investigated using branched-chain alkyl glycosides: 2-hexyldecyl-β(/α)-D-glucoside (2-HDG) and 2-hexyldecyl-β(/α)-D-maltoside (2-HDM), whose structures are closely related to glycero-glycolipids. Both 2-HDG and 2-HDM have an identical hydrophobic chain (C16), but the former consists a monosaccharide glucose head group, in contrast to the latter which has a disaccharide maltose unit. Consequently, their hydrophilic-lipophilic balance (HLB) is different. The results obtained have shown that these branched-chain alkyl glycosides affect differently the stability of the nano-emulsions. Compared to the model nano-emulsion, the presence of 2-HDG reduces the oil droplet size, whereas 2-HDM modify the properties of the model nano-emulsion system in terms of its droplet size and storage time stability at high temperature. These nano-emulsions have been proven capable of encapsulating ketoprofen, showing a fast release of almost 100% in 24h. Thus, both synthetically prepared branched-chain alkyl glycosides with mono- and disaccharide sugar head groups are suitable as nano-emulsion stabilizing agents and as drug delivery systems in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effect of Supplementation of Branched Chain Fatty Acid on Colony of Ruminal Bacteria and Cell of Protozoa

    Directory of Open Access Journals (Sweden)

    W Suryapratama

    2009-05-01

    Full Text Available A study was conducted to evaluate the potential of branched-chain volatile fatty acids (isobutyric, α-methylbutyric and β-methylbutiric that supplemented into the diet on the colony of ruminal bacteria and the cell of protozoa population. Five progeny Friesian Holstein males with initial weight 348±29 kg were used in a 5x5 Latin square design (30-d periods. The basal diet composed of 55% forage and 45% concentrate containing 10.5 MJ ME/kg and 15% crude protein (CP. There were five dietary treatments where A: basal diet, B: A+139 mg urea/kg W0.75, C: B+28 mg CaSO4/kg W0.75, D: C+0.05 mM isobutyric acid+0.05 mM β-methylbutyric acid, and E: D+0.05 mM α-methylbutyric acid. Rearing period was 30 days, consists of feed adaptation period 20 days, then growth observation was done within the last 10 days. Collection of ruminal fluid was done within the last day of observation period, and took 3-4 h after the feeding. The results showed that supplementation branched chain volatile fatty acids did not significant affect on the number of colonies of bacteria and protozoa population, but the significant effect (P<0.05 on the concentration of branched chain volatile fatty acids in the rumen fluid. The supplementation of α-methylbutyric (P <0.05 decreased of concentration of isobutyric and isovaleric in rumen fluid than the other treatments. It is concluded that supplementation of branched chain volatile fatty acids not used by rumen bacteria for their growth but for the elongation of fatty acid synthesis. The supplementation of branched chain volatile fatty acids was 0.05 mM not enough strong influence on the growth of colony of rumen bacteria. (Animal Production 11(2: 129-134 (2009 Key Words: rumen fermentation, branched-chain fatty acid, ruminal bacteria, protozoa

  15. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul; Dubchak, Inna; Gelfand, Mikhail S.; Alm, Eric

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding to eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.

  16. Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction.

    Science.gov (United States)

    Wang, Jian; Yang, Yaping; Zhang, Ruihua; Shen, Xiaolin; Chen, Zhenya; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2018-01-01

    2-Methylsuccinic acid (2-MSA) is a C5 branched-chain dicarboxylate that serves as an attractive synthon for the synthesis of polymers with extensive applications in coatings, cosmetic solvents and bioplastics. However, the lack of natural pathways for 2-MSA biosynthesis has limited its application as a promising bio-replacement. Herein, we conceived a non-natural three-step biosynthetic route for 2-MSA, via employing the citramalate pathway in combination with enoate reductase-mediated bioreduction of the pathway intermediate citraconate. First, over-expression of codon-optimized citramalate synthase variant CimA* from Methanococcus jannaschii, endogenous isopropylmalate isomerase EcLeuCD and enoate reductase YqjM from Bacillus subtilis allowed the production of 2-MSA in Escherichia coli for the first time, with a titer of 0.35g/L in shake flask experiments. Subsequent screening of YqjM-like enoate reductases of different bacterial origins enabled identification and characterization of a new NAD(P)H-dependent enoate reductase KpnER from Klebsiella pneumoniae, which exhibited higher activity towards citraconate than YqjM. Incorporation of KpnER into the 2-MSA biosynthetic pathway led to 2-MSA production improvement to a titer of 0.96g/L in aerobic condition. Subsequent optimizations including cofactor regeneration, microaerobic cultivation and host strain engineering, boosted 2-MSA titer to 3.61g/L with a molar yield of 0.36 in shake flask experiments. This work established a promising platform for 2-MSA bioproduction, which enabled the highest titer of 2-MSA production in microbial hosts so far. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Yamamoto, Junya; Nishio, Saori; Hattanda, Fumihiko; Nakazawa, Daigo; Kimura, Toru; Sata, Michio; Makita, Minoru; Ishikawa, Yasunobu; Atsumi, Tatsuya

    2017-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1flox/flox:Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    Science.gov (United States)

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels. PMID:20093359

  19. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    Science.gov (United States)

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Inflammation and ER Stress Regulate Branched-Chain Amino Acid Uptake and Metabolism in Adipocytes

    Science.gov (United States)

    Burrill, Joel S.; Long, Eric K.; Reilly, Brian; Deng, Yingfeng; Armitage, Ian M.; Scherer, Philipp E.

    2015-01-01

    Inflammation plays a critical role in the pathology of obesity-linked insulin resistance and is mechanistically linked to the effects of macrophage-derived cytokines on adipocyte energy metabolism, particularly that of the mitochondrial branched-chain amino acid (BCAA) and tricarboxylic acid (TCA) pathways. To address the role of inflammation on energy metabolism in adipocytes, we used high fat-fed C57BL/6J mice and lean controls and measured the down-regulation of genes linked to BCAA and TCA cycle metabolism selectively in visceral but not in subcutaneous adipose tissue, brown fat, liver, or muscle. Using 3T3-L1 cells, TNFα, and other proinflammatory cytokine treatments reduced the expression of the genes linked to BCAA transport and oxidation. Consistent with this, [14C]-leucine uptake and conversion to triglycerides was markedly attenuated in TNFα-treated adipocytes, whereas the conversion to protein was relatively unaffected. Because inflammatory cytokines lead to the induction of endoplasmic reticulum stress, we evaluated the effects of tunicamycin or thapsigargin treatment of 3T3-L1 cells and measured a similar down-regulation in the BCAA/TCA cycle pathway. Moreover, transgenic mice overexpressing X-box binding protein 1 in adipocytes similarly down-regulated genes of BCAA and TCA metabolism in vivo. These results indicate that inflammation and endoplasmic reticulum stress attenuate lipogenesis in visceral adipose depots by down-regulating the BCAA/TCA metabolism pathway and are consistent with a model whereby the accumulation of serum BCAA in the obese insulin-resistant state is linked to adipose inflammation. PMID:25635940

  1. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  2. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial

    Science.gov (United States)

    Ruiz-Canela, Miguel; Toledo, Estefania; Clish, Clary B.; Hruby, Adela; Liang, Liming; Salas-Salvadó, Jordi; Razquin, Cristina; Corella, Dolores; Estruch, Ramón; Ros, Emilio; Fitó, Montserrat; Gómez-Gracia, Enrique; Arós, Fernando; Fiol, Miquel; Lapetra, José; Serra-Majem, Lluis; Martínez-González, Miguel A.; Hu, Frank B.

    2016-01-01

    Background The role of branched-chain amino acids (BCAAs) in cardiovascular disease (CVD) remains poorly understood. We hypothesized that baseline BCAA concentrations predict future risk of CVD and that a Mediterranean Diet (MedDiet) intervention may counteract this effect. Methods We developed a case-cohort study within the “PREvención con DIeta MEDiterránea” (PREDIMED), with 226 incident CVD cases and 781 non-cases. We used LC-MS/MS to measure plasma BCAAs (leucine, isoleucine and valine), both at baseline and after 1-year follow-up. The primary outcome was a composite of incident stroke, myocardial infarction, or cardiovascular death. Results After adjustment for potential confounders, baseline leucine and isoleucine concentrations were associated with higher CVD risk: the hazard ratios (HRs) for the highest vs. lowest quartile were 1.70 (95% confidence interval, 1.05–2.76) and 2.09 (1.27–3.44), respectively. Stronger associations were found for stroke. For both CVD and stroke, we found higher HRs across successive quartiles of BCAAs in the control group than in the MedDiet groups. Using stroke as the outcome, a significant interaction (P=0.009) between the baseline BCAA score and the intervention with MedDiet was observed. No significant effect of the intervention on 1-yr changes in BCAAs nor any association between 1-year changes in BCAAs and CVD were observed. Conclusions Higher concentrations of baseline BCAAs were associated with increased risk of CVD, especially stroke, in a high cardiovascular risk population. A Mediterranean-style diet had a negligible effect on 1-year changes in BCAAs, but it may counteract the harmful effects of BCAAs on stroke. PMID:26888892

  3. Altered Expression of Human Mitochondrial Branched Chain Aminotransferase in Dementia with Lewy Bodies and Vascular Dementia.

    Science.gov (United States)

    Ashby, Emma L; Kierzkowska, Marta; Hull, Jonathon; Kehoe, Patrick G; Hutson, Susan M; Conway, Myra E

    2017-01-01

    Cytosolic and mitochondrial human branched chain aminotransferase (hBCATc and hBCATm, respectively) play an integral role in brain glutamate metabolism. Regional increased levels of hBCATc in the CA1 and CA4 region of Alzheimer's disease (AD) brain together with increased levels of hBCATm in frontal and temporal cortex of AD brains, suggest a role for these proteins in glutamate excitotoxicity. Glutamate toxicity is a key pathogenic feature of several neurological disorders including epilepsy associated dementia, AD, vascular dementia (VaD) and dementia with Lewy bodies (DLB). To further understand if these increases are specific to AD, the expression profiles of hBCATc and hBCATm were examined in other forms of dementia including DLB and VaD. Similar to AD, levels of hBCATm were significantly increased in the frontal and temporal cortex of VaD cases and in frontal cortex of DLB cases compared to controls, however there were no observed differences in hBCATc between groups in these areas. Moreover, multiple forms of hBCATm were observed that were particular to the disease state relative to matched controls. Real-time PCR revealed similar expression of hBCATm mRNA in frontal and temporal cortex for all cohort comparisons, whereas hBCATc mRNA expression was significantly increased in VaD cases compared to controls. Collectively our results suggest that hBCATm protein expression is significantly increased in the brains of DLB and VaD cases, similar to those reported in AD brain. These findings indicate a more global response to altered glutamate metabolism and suggest common metabolic responses that might reflect shared neurodegenerative mechanisms across several forms of dementia.

  4. Regulation of indole-3-acetic acid biosynthesis by branched-chain amino acids in Enterobacter cloacae UW5.

    Science.gov (United States)

    Parsons, Cassandra V; Harris, Danielle M M; Patten, Cheryl L

    2015-09-01

    The soil bacterium Enterobacter cloacae UW5 produces the rhizosphere signaling molecule indole-3-acetic acid (IAA) via the indolepyruvate pathway. Expression of indolepyruvate decarboxylase, a key pathway enzyme encoded by ipdC, is upregulated by the transcription factor TyrR in response to aromatic amino acids. Some members of the TyrR regulon may also be controlled by branched-chain amino acids and here we show that expression from the ipdC promoter and production of IAA are downregulated by valine, leucine and isoleucine. Regulation of the IAA synthesis pathway by both aromatic and branched-chain amino acids suggests a broader role for this pathway in bacterial physiology, beyond plant interactions. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  6. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway

    OpenAIRE

    Yunxia Liu; Weibing Dong; Jing Shao; Yibin Wang; Meiyi Zhou; Haipeng Sun

    2017-01-01

    Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively cont...

  7. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease

    OpenAIRE

    Sunny, Nishanth E.; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J.; Nautiyal, Manisha; Mathew, Justin T.; Caroline M Williams; Cusi, Kenneth

    2015-01-01

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperin...

  8. Overview of randomized clinical trials of oral branched-chain amino acid treatment in chronic hepatic encephalopathy.

    Science.gov (United States)

    Fabbri, A; Magrini, N; Bianchi, G; Zoli, M; Marchesini, G

    1996-01-01

    The role of oral branched-chain amino acid supplements in the prevention and treatment of chronic hepatic encephalopathy is not yet established, and conflicting opinions are expressed in authoritative textbooks. We aimed to review and pool the published controlled studies by means of meta-analytical techniques. A computerized search of published papers identified nine studies, controlled against placebo, energy, alimentary proteins, or casein. Their quality score was calculated according to the protocol of Chalmers. The value of the portal-systemic encephalopathy index was chosen as main outcome, because of lack of more significant clinical outcomes. To cope with differences in trial design and data presentation, individual data were requested to authors. After 18 months, we received the individual data of only two studies, thus precluding any meta-analysis. Two studies, accounting for over 60% of total enrolled patients, were in favor of branched-chain amino acids. Their quality score was much better than that of the remaining seven negative small studies, carrying a significant risk of type II error. Based on the results of the two largest, long-term studies, the use of oral branched-chain amino acids in the prevention and treatment of chronic encephalopathy may only be proposed for patients with advanced cirrhosis, intolerant to alimentary proteins. Large, multicenter, long-term studies, considering more important clinical outcomes, are needed to provide definite answers to an aged question.

  9. Nutritional modulation of mouse and human liver bud growth through a branched-chain amino acid metabolism.

    Science.gov (United States)

    Koike, Hiroyuki; Zhang, Ran-Ran; Ueno, Yasuharu; Sekine, Keisuke; Zheng, Yun-Wen; Takebe, Takanori; Taniguchi, Hideki

    2017-03-15

    Liver bud progenitors experience a transient amplification during the early organ growth phase, yet the mechanism responsible is not fully understood. Collective evidence highlights the specific requirements in stem cell metabolism for expanding organ progenitors during organogenesis and regeneration. Here, transcriptome analyses show that progenitors of the mouse and human liver bud growth stage specifically express the gene branched chain aminotransferase 1, encoding a known breakdown enzyme of branched-chain amino acids (BCAAs) for energy generation. Global metabolome analysis confirmed the active consumption of BCAAs in the growing liver bud, but not in the later fetal or adult liver. Consistently, maternal dietary restriction of BCAAs during pregnancy significantly abrogated the conceptus liver bud growth capability through a striking defect in hepatic progenitor expansion. Under defined conditions, the supplementation of L-valine specifically among the BCAAs promoted rigorous growth of the human liver bud organoid in culture by selectively amplifying self-renewing bi-potent hepatic progenitor cells. These results highlight a previously underappreciated role of branched-chain amino acid metabolism in regulating mouse and human liver bud growth that can be modulated by maternal nutrition in vivo or cultural supplement in vitro. © 2017. Published by The Company of Biologists Ltd.

  10. The role of cellular structure on increasing the detonability limits of three-step chain-branching detonations

    Energy Technology Data Exchange (ETDEWEB)

    Short, Mark [Los Alamos National Laboratory; Kiyanda, Charles B [Los Alamos National Laboratory; Quirk, James J [Los Alamos National Laboratory; Sharpe, Gary J [UNIV OF LEEDS, UK

    2011-01-27

    In [1], the dynamics of a pulsating three-step chain-branching detonation were studied. The reaction model consists of, sequentially, chain-initiation, chain-branching and chain-termination steps. The chain-initiation and chain-branching steps are taken to be thermally neutral, with chemical energy release occuring in the chain-termination stage. The purpose of the present study is to examine whether cellular detonation structure can increase the value of the chain-branching cross-over temperature T{sub b} at which fully coupled detonation solutions are observed over those in 1 D. The basic concept is straightforward and has been discussed in [1] and [3]; if T{sub s} drops below T{sub b} at the lead shock, the passage of a transverse shock can increase both the lead shock temperature and the temperature behind the transverse wave back above T{sub b}, thus sustaining an unstable cellular detonation for values of T{sub b} for which a one-dimensional pulsating detonation will fail. Experiments potentially supporting this hypothesis with irregular detonations have been shown in [3] in a shock tube with acoustically absorbing walls. Removal of the transverse waves results in detonation failure, giving way to a decoupled shock-flame complex. A number of questions remain to be addressed regarding the possibility of such a mechanism, and, if so, about the precise mechanisms driving the cellular structure for large T{sub b}. For instance, one might ask what sets the cell size in a chain-branching detonation, particularly could the characteristic cell size be set by the chain-branching cross-over temperature T{sub b}: after a transverse wave shock collision, the strength of the transverse wave weakens as it propagates along the front. If the spacing between shock collisions is too large (cell size), then the transverse shocks may weaken to the extent that the lead shock temperature or that behind the transverse waves is not raised above T{sub b}, losing chemical energy to

  11. Model-Based Reactor Design in Free-Radical Polymerization with Simultaneous Long-Chain Branching and Scission

    Directory of Open Access Journals (Sweden)

    Hidetaka Tobita

    2015-11-01

    Full Text Available Polymers are the products of processes and their microstructure can be changed significantly by the reactor systems employed, especially for nonlinear polymers. The Monte Carlo simulation technique, based on the random sampling technique, is used to explore the effect of reactor types on the branched polymer structure, formed through free-radical polymerization with simultaneous long-chain branching and scission, as in the case of low-density polyethylene synthesis. As a simplified model for a tower-type multi-zone reactor, a series of continuous stirred-tank reactors, consisting of one big tank and the same N-1 small tanks is considered theoretically. By simply changing the tank arrangement, various types of branched polymers, from star-like globular structure to a more randomly branched structure, can be obtained, while keeping the following properties of the final products, the monomer conversion to polymer, the average branching and scission densities, and the relationship between the mean-square radius of gyration and molecular weight.

  12. Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans

    Directory of Open Access Journals (Sweden)

    Sarah R. Jackman

    2017-06-01

    Full Text Available The ingestion of intact protein or essential amino acids (EAA stimulates mechanistic target of rapamycin complex-1 (mTORC1 signaling and muscle protein synthesis (MPS following resistance exercise. The purpose of this study was to investigate the response of myofibrillar-MPS to ingestion of branched-chain amino acids (BCAAs only (i.e., without concurrent ingestion of other EAA, intact protein, or other macronutrients following resistance exercise in humans. Ten young (20.1 ± 1.3 years, resistance-trained men completed two trials, ingesting either 5.6 g BCAA or a placebo (PLA drink immediately after resistance exercise. Myofibrillar-MPS was measured during exercise recovery with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre and 4 h-post drink ingestion. Blood samples were collected at time-points before and after drink ingestion. Western blotting was used to measure the phosphorylation status of mTORC1 signaling proteins in biopsies collected pre, 1-, and 4 h-post drink. The percentage increase from baseline in plasma leucine (300 ± 96%, isoleucine (300 ± 88%, and valine (144 ± 59% concentrations peaked 0.5 h-post drink in BCAA. A greater phosphorylation status of S6K1Thr389 (P = 0.017 and PRAS40 (P = 0.037 was observed in BCAA than PLA at 1 h-post drink ingestion. Myofibrillar-MPS was 22% higher (P = 0.012 in BCAA (0.110 ± 0.009%/h than PLA (0.090 ± 0.006%/h. Phenylalanine Ra was ~6% lower in BCAA (18.00 ± 4.31 μmol·kgBM−1 than PLA (21.75 ± 4.89 μmol·kgBM−1; P = 0.028 after drink ingestion. We conclude that ingesting BCAAs alone increases the post-exercise stimulation of myofibrillar-MPS and phosphorylation status mTORC1 signaling.

  13. Influence of branched-chain amino acid supplementation on urinary protein metabolite concentrations after swimming.

    Science.gov (United States)

    Tang, Fu-Chun

    2006-06-01

    The influence of branched-chain amino acid (BCAA) supplementation on urinary urea nitrogen, hydroxyproline (HP), and 3-methylhistidine (3MH) concentrations after 25 min of breast stroke exercise (65-70% maximum heart rate reserved, 65-70% HRRmax) followed by a 600 m crawl stroke competition was investigated in a double-blind, counter-balanced study. Male university students (19-22 years old) majoring in physical education participated in the study. Based on the previous swimming time of a 600 m crawl stroke, the participants were divided into two groups: placebo (n = 9, BMI = 24.2 +/- 2.1 kg/m2; 12 g of glucose/day; in capsules) and BCAA (n = 10, BMI = 22.7 +/- 1.5 kg/m2; 12 g of BCAAs/day; in capsules: leucine 54%, isoleucine 19%, valine 27%) groups. The participants maintained a regular dietary intake (except the prescribed breakfast on day 15) and exercise activity at a moderate/low intensity (60-70% HRRmax, swimming and rowing, approximately 1.5 hour/day) during the 15-day study. A prescribed exercise program was performed on day 15. Urinary and blood samples were collected before, during, and after the prescribed exercise for the measurements of the urinary urea nitrogen, HP, and 3MH concentrations in urine, as well as the glucose, lactate, glutamine, alanine, and BCAA concentrations in plasma. Two weeks of dietary supplementation did not induce any changes in the plasma glucose and total BCAA concentrations of either group, nor in the urinary urea nitrogen, HP, and 3MH concentrations in urine. On day 15, after 25 min of breast stroke exercise and a 600 m crawl stroke competition, plasma glucose concentration decreased significantly (p < 0.05) whereas plasma lactate concentration increased significantly (p < 0.05) in both groups. The exercise program prescribed in the study did not affect urinary urea nitrogen, HP, and 3MH concentrations. Twenty hours after the competition, however, a significant increase in the concentrations of urinary urea nitrogen, HP, and

  14. Asymptotic study of pulsating evolution of overdriven and CJ detonation with a chain-branching kinetics model

    Energy Technology Data Exchange (ETDEWEB)

    Short, Mark [Los Alamos National Laboratory; Chliquete, Carlos [Los Alamos National Laboratory

    2011-01-20

    The pulsating dynamics of gaseous detonations with a model two-step chain-branching kinetic mechanism are studied both numerically and asymptotically. The model studied here was also used in [4], [3] and [2] and mimics the attributes of some chain-branching reaction mechanisms. Specifically, the model comprises a chain-initiationlbranching zone with an Arrhenius temperature-sensitive rate behind the detonation shock where fuel is converted into chain-radical with no heat release. This is followed by a chain-termination zone having a temperature insensitive rate where the exothermic heat of reaction is released. The lengths of these two zones depend on the relative rates of each stage. It was determined in [4] and [3] via asymptotic and numerical analysis that the ratio of the length of the chain-branching zone to that of the chain-initation zone relative to the size of the von Neumann state scaled activation energy in the chain initiation/branching zone has a primary influence of the stability of one-dimensional pulsating instability behavior for this model. In [2], the notion of a specific stability parameter related to this ratio was proposed that determines the boundary between stable and unstable waves. In [4], a slow-time varying asymptotic study was conducted of pulsating instability of Chapman-Jouguet (CJ) detonations with the above two-step rate model, assuming a large activation energy for the chain-initiation zone and a chain-termination zone longer than the chain-initiation zone. Deviations D{sub n}{sup (1)} ({tau}) of the detonation velocity from Chapman-Jouguet were of the order of the non-dimensional activation energy. Solutions were sought for a pulsation timescale of the order of the non-dimensional activation energy times the particle transit time through the induction zone. On this time-scale, the evolution of the chain-initation zone is quasi-steady. In [4], a time-dependent non-linear evolution equation for D{sub n}{sup (1)} ({tau}) was then

  15. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels.

    Science.gov (United States)

    Mahendran, Yuvaraj; Jonsson, Anna; Have, Christian T; Allin, Kristine H; Witte, Daniel R; Jørgensen, Marit E; Grarup, Niels; Pedersen, Oluf; Kilpeläinen, Tuomas O; Hansen, Torben

    2017-05-01

    Fasting plasma levels of branched-chain amino acids (BCAAs) are associated with insulin resistance, but it remains unclear whether there is a causal relation between the two. We aimed to disentangle the causal relations by performing a Mendelian randomisation study using genetic variants associated with circulating BCAA levels and insulin resistance as instrumental variables. We measured circulating BCAA levels in blood plasma by NMR spectroscopy in 1,321 individuals from the ADDITION-PRO cohort. We complemented our analyses by using previously published genome-wide association study (GWAS) results from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) (n = 46,186) and from a GWAS of serum BCAA levels (n = 24,925). We used a genetic risk score (GRS), calculated using ten established fasting serum insulin associated variants, as an instrumental variable for insulin resistance. A GRS of three variants increasing circulating BCAA levels was used as an instrumental variable for circulating BCAA levels. Fasting plasma BCAA levels were associated with higher HOMA-IR in ADDITION-PRO (β 0.137 [95% CI 0.08, 0.19] p = 6 × 10-7). However, the GRS for circulating BCAA levels was not associated with fasting insulin levels or HOMA-IR in ADDITION-PRO (β -0.011 [95% CI -0.053, 0.032] p = 0.6 and β -0.011 [95% CI -0.054, 0.031] p = 0.6, respectively) or in GWAS results for HOMA-IR from MAGIC (β for valine-increasing GRS -0.012 [95% CI -0.069, 0.045] p = 0.7). By contrast, the insulin-resistance-increasing GRS was significantly associated with increased BCAA levels in ADDITION-PRO (β 0.027 [95% CI 0.005, 0.048] p = 0.01) and in GWAS results for serum BCAA levels (β 1.22 [95% CI 0.71, 1.73] p = 4 × 10-6, β 0.96 [95% CI 0.45, 1.47] p = 3 × 10-4, and β 0.67 [95% CI 0.16, 1.18] p = 0.01 for isoleucine, leucine and valine levels, respectively) and instrumental variable analyses in ADDITION

  16. Exploring molecular complexity with ALMA (EMoCA): Simulations of branched carbon-chain chemistry in Sgr B2(N)

    Science.gov (United States)

    Garrod, R. T.; Belloche, A.; Müller, H. S. P.; Menten, K. M.

    2017-05-01

    Context. Using millimeter wavelength data from the Atacama Large Millimeter/submillimeter Array (ALMA), the EMoCA spectral line survey recently revealed the presence of both the straight-chain (normal) and branched (iso) forms of propyl cyanide (C3H7CN) toward the Galactic Center star-forming source Sgr B2(N2). This was the first interstellar detection of a branched aliphatic molecule. Aims: Through computational methods, we seek to explain the observed I:n ratio for propyl cyanide, and to predict the abundances of the four different forms of the homologous nitrile, butyl cyanide (C4H9CN). We also investigate whether other molecules will show a similar degree of branching, by modeling the chemistry of alkanes up to pentane (C5H12). Methods: We use the coupled three-phase chemical kinetics model, MAGICKAL, to simulate the chemistry of the hot-core source Sgr B2(N2), using an updated chemical network that includes grain-surface/ice-mantle formation routes for branched nitriles and alkanes. The network explicitly considers radical species with an unpaired electron on either the primary or secondary carbon in a chain. We also include mechanisms for the addition of the cyanide radical, CN, to hydrocarbons with multiple bonds between carbon atoms, using activation energy barriers from the literature. We use the EMoCA survey data to search for the straight-chain form of butyl cyanide toward Sgr B2(N2). Results: The observed I:n ratio for propyl cyanide is reproduced by the models, with intermediate to fast warm-up timescales providing the most accurate result. Butyl cyanide is predicted to show similar abundances to propyl cyanide, and to exhibit strong branching, with the sec form clearly dominant over all others. Normal and iso-butyl cyanide are expected to have similar abundances to each other, while the tert form is significantly less abundant. The addition of CN to acetylene and ethene is found to be important to the production of vinyl, ethyl, propyl, and butyl

  17. Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism.

    Science.gov (United States)

    Berrocal, A; Navarrete, J; Oviedo, C; Nickerson, K W

    2012-07-01

      For Ophiostoma (Ceratocystis) ulmi, the ability to undergo morphological change is a crucial factor for its virulence. To gain an understanding of quorum-sensing activity in O. ulmi as it relates to yeast-mycelium dimorphism control, this study examines the effects of branched-chain amino acids as well as their fusel alcohols and fusel acids as quorum sensing molecules.   In a defined medium containing glucose, proline and salts, O. ulmi grew as yeasts when the culture was inoculated with a high density of spores (2 × 10(7)  CFU ml(-1) ) and as mycelia when inoculated with a low spore density (4 × 10(5)  CFU ml(-1) ). The cultures displaying yeast morphology secreted a quorum-sensing factor that shifted the morphology from mycelia to yeast. This quorum-sensing molecule was lipophilic and extractable by organic solvents from the spent medium. Using GC/MS analysis, it was determined that the major compound in the extract was 2-methyl-1-butanol. A similar effect was observed when the branched-chain amino acids (fusel alcohol precursors) were used as the nitrogen source. E, E-farnesol had no effect on the morphology of O. ulmi.   Addition of the branched-chain amino acids or one of the compounds detected in the spent medium, 2-methyl-1-butanol or 4-hydroxyphenylacetic acid, or methylvaleric acid, decreased germ tube formation by more than 50%, thus demonstrating a quorum sensing molecule behaviour in O. ulmi cultures.   This study presents advances in the investigation of dimorphism in O. ulmi, complementing the existing scientific basis, for studying, understanding and controlling this phenomenon. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  18. Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods

    NARCIS (Netherlands)

    Smit, B.A.; Engels, W.J.M.; Smit, G.

    2009-01-01

    Branched aldehydes, such as 2-methyl propanal and 2- and 3-methyl butanal, are important flavour compounds in many food products, both fermented and non-fermented (heat-treated) products. The production and degradation of these aldehydes from amino acids is described and reviewed extensively in

  19. Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Pind, Peter Frode; Angelidaki, Irini

    2003-01-01

    is also addressed, extending previous pure-culture and batch studies. A previously published mathematical model was modified to allow competitive uptake of i-valerate, and used to model a thermophilic manure digester operated over 180 days. The digester was periodically pulsed with straight and branched...

  20. Structural determination of ethylene-propylene-diene rubber (EPDM) containing high degree of controlled long-chain branching

    DEFF Research Database (Denmark)

    Mitra, Susanta; Jørgensen, Mikkel; Pedersen, Walther Batsberg

    2009-01-01

    This work highlights an attempt to characterize the degree and nature of long-chain branching (LCB) in an unknown sample of ethylene-propylene-diene rubber (EPDM). Two EPDM rubbers selected for this study were comparable in comonomer compositions but significantly different with respect to molar...... mass and the presence of LCB. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were used for different characterization techniques. 1H-NMR, and 13C-NMR were used for assessing the comonomer ratios and LCB. Size exclusion chromatography (SEC...

  1. Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp paracasei CHCC 2115

    DEFF Research Database (Denmark)

    Thage, B.V.; Rattray, F.P.; Laustsen, M.W.

    2004-01-01

    Purification and characterization of an aminotransferase (AT) specific for the degradation of branched-chain amino acids from Lactobacillus paracasei subsp. paracasei CHCC 2115. Methods and Results: The purification protocol consisted of anion exchange chromatography, affinity chromatography...... and hydrophobic interaction chromatography. The enzyme was found to exist as a monomer with a molecular mass of 40-50 kDa. The AT converted isoleucine, leucine and valine at a similar rate with alpha-ketoglutarate as the amino group acceptor; minor activity was shown for methionine. The enzyme had p...

  2. Repeated sprint ability is not enhanced by caffeine, arginine, and branched-chain amino acids in moderately trained soccer players.

    Science.gov (United States)

    Ermolao, Andrea; Zanotto, Tobia; Carraro, Nicolò; Fornasier, Tommaso; Zaccaria, Marco; Neunhaeuserer, Daniel; Bergamin, Marco

    2017-02-01

    The aim was to investigate the effect of a dietary supplementation on the repeated sprint ability (RSA) performance in recreationally trained team sports athletes. Twelve young men underwent a RSA exercise protocol in five trials, in which participants ingested carbohydrates (CHO) plus caffeine (Caf), CHO plus arginine (Arg), CHO plus branched-chain amino acids (BCAA), CHO plus Caf, Arg, and BCAA (ALL), and CHO only. Heart rate, oxygen saturation, hematic lactate, ratings of perceived exertion, average sprint time, total time, best sprint time, peak power, and average power were taken. Data revealed no significant effects neither on physiological nor performance parameters with any of the supplements.

  3. Neutral Pectin side chains of Amaranth (Amaranthus hypochondriacus) contain long, partially branched Arabinans and short galactans, both with terminal arabinopyranoses.

    Science.gov (United States)

    Wefers, Daniel; Tyl, Catrin E; Bunzel, Mirko

    2015-01-21

    Amaranth is a pseudocereal of high nutritional value, including a high dietary fiber content. Amaranth dietary fiber was suggested to contain large amounts of neutral rhamnogalacturonan I side chains. In this study, endo-arabinanase and endo-galactanase were used to liberate arabinan and galactan oligosaccharides from amaranth fiber. The liberated oligosaccharides were identified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and HPLC-MS(n) using standard compounds, which were isolated from amaranth, sugar beet, potato, and red clover sprouts and characterized by one- and two-dimensional NMR spectroscopy. It was demonstrated that insoluble amaranth arabinans have linear and branched areas, with the O-3 position being the dominant branching point. Minor amounts of branches at position O-2 and double substitution were also found. Amaranth arabinans were also demonstrated to contain terminal α-(1→5)-linked l-arabinopyranose units. In addition, it was evidenced that galactans from amaranth seeds are composed of β-(1→4)-linked d-galactopyranose units, which can also be terminated with l-arabinopyranose units. In direct comparison to structural elucidation of amaranth fiber by using methylation analysis, the advantage of the enzymatic approach over methylation analysis was demonstrated.

  4. Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast.

    Science.gov (United States)

    Eden, A; Van Nedervelde, L; Drukker, M; Benvenisty, N; Debourg, A

    2001-04-01

    Organoleptic compounds produced by yeast during the fermentation of wort have a great impact on beer smell and taste. Among them, fusel alcohols are the major abundant volatile compounds. The availability of Saccharomyces cerevisiae mutants in which the genes coding for the two branched-chain amino acid aminotransferases have been deleted offers the possibility of further defining the role of these enzymes in the formation of higher alcohols. Comparing the production profiles of different strains, it is clear that they are not all influenced in the same way by branched-chain amino acid aminotransferase mutations. First of all, as propanol is synthesised from alpha-ketobutyrate, the first metabolic intermediate in the anabolic pathway of isoleucine, neither the eca39 nor eca40 mutations have any effect on the production of this higher alcohol. On the other hand, it can be concluded that the eca40 mutation has a drastic effect on the production of isobutanol. To a certain extent, the same conclusion can be made for the production of active amyl alcohol and isoamyl alcohol, although the results suggest that another route could lead to the formation of these two higher alcohols.

  5. Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Eden, A.; Drukker, M.; Benvenisty, N. [Hebrew Univ., Jerusalem (Israel). Dept. of Genetics; Nedervelde, L. van; Debourg, A. [Haute Ecole Lucia de Brouckere, Brussels (Belgium). Dept. of Brewing Sciences and Fermentation Technology

    2001-07-01

    Organoleptic compounds produced by yeast during the fermentation of wort have a great impact on beer smell and taste. Among them, fusel alcohols are the major abundant volatile compounds. The availability of Saccharomyces cerevisiae mutants in which the genes coding for the two branched-chain amino acid aminotransferases have been deleted offers the possibility of further defining the role of these enzymes in the formation of higher alcohols. Comparing the production profiles of different strains, it is clear that they are not all influenced in the same way by branched-chain amino acid aminostransferase mutations. First of all, as propanol is synthesised from {alpha}-ketobutyrate, the first metabolic intermediate in the anabolic pathway of isoleucine, neither the eca39 nor eca40 mutations have any effect on the production of this higher alcohol. On the other hand, it can be concluded that the eca40 mutation has a drastic effect on the production of isobutanol. To a certain extent, the same conclusion can be made for the production of active amyl alcohol and isoamyl alcohol, although the results suggest that another route could lead to the formation of these two higher alcohols. (orig.)

  6. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells.

    Science.gov (United States)

    Lu, Gang; Sun, Haipeng; She, Pengxiang; Youn, Ji-Youn; Warburton, Sarah; Ping, Peipei; Vondriska, Thomas M; Cai, Hua; Lynch, Christopher J; Wang, Yibin

    2009-06-01

    The branched-chain amino acids (BCAA) are essential amino acids required for protein homeostasis, energy balance, and nutrient signaling. In individuals with deficiencies in BCAA, these amino acids can be preserved through inhibition of the branched-chain-alpha-ketoacid dehydrogenase (BCKD) complex, the rate-limiting step in their metabolism. BCKD is inhibited by phosphorylation of its E1alpha subunit at Ser293, which is catalyzed by BCKD kinase. During BCAA excess, phosphorylated Ser293 (pSer293) becomes dephosphorylated through the concerted inhibition of BCKD kinase and the activity of an unknown intramitochondrial phosphatase. Using unbiased, proteomic approaches, we have found that a mitochondrial-targeted phosphatase, PP2Cm, specifically binds the BCKD complex and induces dephosphorylation of Ser293 in the presence of BCKD substrates. Loss of PP2Cm completely abolished substrate-induced E1alpha dephosphorylation both in vitro and in vivo. PP2Cm-deficient mice exhibited BCAA catabolic defects and a metabolic phenotype similar to the intermittent or intermediate types of human maple syrup urine disease (MSUD), a hereditary disorder caused by defects in BCKD activity. These results indicate that PP2Cm is the endogenous BCKD phosphatase required for nutrient-mediated regulation of BCKD activity and suggest that defects in PP2Cm may be responsible for a subset of human MSUD.

  7. The Antifungal Eugenol Perturbs Dual Aromatic and Branched-Chain Amino Acid Permeases in the Cytoplasmic Membrane of Yeast

    Science.gov (United States)

    Darvishi, Emad; Omidi, Mansoor; Bushehri, Ali Akbar Shahnejat; Golshani, Ashkan; Smith, Myron L.

    2013-01-01

    Eugenol is an aromatic component of clove oil that has therapeutic potential as an antifungal drug, although its mode of action and precise cellular target(s) remain ambiguous. To address this knowledge gap, a chemical-genetic profile analysis of eugenol was done using ∼4700 haploid Saccharomyces cerevisiae gene deletion mutants to reveal 21 deletion mutants with the greatest degree of susceptibility. Cellular roles of deleted genes in the most susceptible mutants indicate that the main targets for eugenol include pathways involved in biosynthesis and transport of aromatic and branched-chain amino acids. Follow-up analyses showed inhibitory effects of eugenol on amino acid permeases in the yeast cytoplasmic membrane. Furthermore, phenotypic suppression analysis revealed that eugenol interferes with two permeases, Tat1p and Gap1p, which are both involved in dual transport of aromatic and branched-chain amino acids through the yeast cytoplasmic membrane. Perturbation of cytoplasmic permeases represents a novel antifungal target and may explain previous observations that exposure to eugenol results in leakage of cell contents. Eugenol exposure may also contribute to amino acid starvation and thus holds promise as an anticancer therapeutic drug. Finally, this study provides further evidence of the usefulness of the yeast Gene Deletion Array approach in uncovering the mode of action of natural health products. PMID:24204588

  8. Branched-chain amino acid supplementation during a 100-km ultra-marathon--a randomized controlled trial.

    Science.gov (United States)

    Knechtle, Beat; Mrazek, Claudia; Wirth, Andrea; Knechtle, Patrizia; Rüst, Christoph Alexander; Senn, Oliver; Rosemann, Thomas; Imoberdorf, Reinhard; Ballmer, Peter

    2012-01-01

    Ultra-marathon running is supposed to increase the parameters of skeletal muscle damage and impair renal function. The purpose of this study was to investigate the effect of branched-chain amino acid supplementation on skeletal muscle damage and renal function during a 100-km ultra-marathon. Twenty-eight athletes were randomly divided into two groups, one group using branched-chain amino acid supplementation (BCAA) and a control group (CON). The athletes in the BCAA group were supplemented with a total of 50 g of an amino acid concentrate including 20 g of BCAA. The intake of energy, antioxidants and parameters of both skeletal muscle damage and renal function were determined. Race time was not different between BCAA and CON when controlled for the personal best time in a 100-km ultra-marathon. Neither the intake of energy and antioxidants nor the parameters of skeletal muscle damage and renal function were different between BCAA and CON. We concluded that BCAA-supplementation before and during a 100-km ultra-marathon had no effect on performance, skeletal muscle damage or renal function.

  9. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae.

    Science.gov (United States)

    ter Schure, E G; Flikweert, M T; van Dijken, J P; Pronk, J T; Verrips, C T

    1998-04-01

    The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production.

  10. Steroid carbon skeletons with unusually branched C-3 alkyl side chains in sulphur-rich sediments

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Sephton, S.; Baas, M.

    1998-01-01

    A novel series of thiophenes with C-3 alkylated steroid carbon skeletons has been identified in sediments of the Miocene Monterey Formation (California, USA) and in the Turonian Tarfaya basin (Morocco). Their carbon skeletons are unusual in the sense that the alkyl side-chains at C-3 are almost

  11. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Sunny, Nishanth E; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J; Nautiyal, Manisha; Mathew, Justin T; Williams, Caroline M; Cusi, Kenneth

    2015-08-15

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.

  12. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints.

    Science.gov (United States)

    Mack, Isabelle; Cuntz, Ulrich; Grämer, Claudia; Niedermaier, Sabrina; Pohl, Charlotte; Schwiertz, Andreas; Zimmermann, Kurt; Zipfel, Stephan; Enck, Paul; Penders, John

    2016-05-27

    The gut microbiota not only influences host metabolism but can also affect brain function and behaviour through the microbiota-gut-brain axis. To explore the potential role of the intestinal microbiota in anorexia nervosa (AN), we comprehensively investigated the faecal microbiota and short-chain fatty acids in these patients before (n = 55) and after weight gain (n = 44) in comparison to normal-weight participants (NW, n = 55) along with dietary intake and gastrointestinal complaints. We show profound microbial perturbations in AN patients as compared to NW participants, with higher levels of mucin-degraders and members of Clostridium clusters I, XI and XVIII and reduced levels of the butyrate-producing Roseburia spp. Branched-chain fatty acid concentrations, being markers for protein fermentation, were elevated. Distinct perturbations in microbial community compositions were observed for individual restrictive and binge/purging AN-subtypes. Upon weight gain, microbial richness increased, however perturbations in intestinal microbiota and short chain fatty acid profiles in addition to several gastrointestinal symptoms did not recover. These insights provide new leads to modulate the intestinal microbiota in order to improve the outcomes of the standard therapy.

  13. The esg locus of Myxococcus xanthus encodes the E1 alpha and E1 beta subunits of a branched-chain keto acid dehydrogenase.

    Science.gov (United States)

    Toal, D R; Clifton, S W; Roe, B A; Downard, J

    1995-04-01

    The esg locus of Myxococcus xanthus appears to control the production of a signal that must be transmitted between cells for the completion of multicellular development. DNA sequence analysis suggested that the esg locus encodes the E1 decarboxylase (composed of E1 alpha and E1 beta subunits) of a branched-chain keto acid dehydrogenase (BCKAD) that is involved in branched-chain amino acid (BCAA) metabolism. The properties of an esg::Tn5 insertion mutant supported this conclusion. These properties include: (i) the growth yield of the mutant was reduced with increasing concentrations of the BCAAs in the medium while the growth yield of wild-type cells increased, (ii) mutant extracts were deficient in BCKAD activity, and (iii) growth of the mutant in media with short branched-chain fatty acids related to the expected products of the BCKAD helped to correct the mutant defects in growth, pigmentation and development. The esg BCKAD appears to be involved in the synthesis of long branched-chain fatty acids since the mutant contained reduced levels of this class of compounds. Our results are consistent with a model in which the esg-encoded enzyme is involved in the synthesis of branched-chain fatty acids during vegetative growth, and these compounds are used later in cell-cell signalling during development.

  14. Does Branched-Chain Amino Acids Supplementation Modulate Skeletal Muscle Remodeling through Inflammation Modulation? Possible Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Humberto Nicastro

    2012-01-01

    Full Text Available Skeletal muscle protein turnover is modulated by intracellular signaling pathways involved in protein synthesis, degradation, and inflammation. The proinflammatory status of muscle cells, observed in pathological conditions such as cancer, aging, and sepsis, can directly modulate protein translation initiation and muscle proteolysis, contributing to negative protein turnover. In this context, branched-chain amino acids (BCAAs, especially leucine, have been described as a strong nutritional stimulus able to enhance protein translation initiation and attenuate proteolysis. Furthermore, under inflammatory conditions, BCAA can be transaminated to glutamate in order to increase glutamine synthesis, which is a substrate highly consumed by inflammatory cells such as macrophages. The present paper describes the role of inflammation on muscle remodeling and the possible metabolic and cellular effects of BCAA supplementation in the modulation of inflammatory status of skeletal muscle and the consequences on protein synthesis and degradation.

  15. Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia

    Directory of Open Access Journals (Sweden)

    Darren G. Candow

    2012-11-01

    Full Text Available The loss of muscle mass and strength with aging (i.e., sarcopenia has a negative effect on functional independence and overall quality of life. One main contributing factor to sarcopenia is the reduced ability to increase skeletal muscle protein synthesis in response to habitual feeding, possibly due to a reduction in postprandial insulin release and an increase in insulin resistance. Branched-chain amino acids (BCAA, primarily leucine, increases the activation of pathways involved in muscle protein synthesis through insulin-dependent and independent mechanisms, which may help counteract the “anabolic resistance” to feeding in older adults. Leucine exhibits strong insulinotropic characteristics, which may increase amino acid availability for muscle protein synthesis, reduce muscle protein breakdown, and enhance glucose disposal to help maintain blood glucose homeostasis.

  16. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  17. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Raaymakers, J S; Saris, W H

    1995-01-01

    1. An increased uptake of tryptophan in the brain may increase serotoninergic activity and recently has been suggested to be a cause of fatigue during prolonged exercise. The present study, therefore, investigates whether ingestion of tryptophan or the competing branched-chain amino acids (BCAAs......) affect performance. Ten endurance-trained male athletes were studied during cycle exercise at 70-75% maximal power output, while ingesting, ad random and double-blind, drinks that contained 6% sucrose (control) or 6% sucrose supplemented with (1) tryptophan (3 g l-1), (2) a low dose of BCAA (6 g l-1...... or that manipulation of serotoninergic activity functionally does not contribute to mechanisms of fatigue....

  18. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans

    Directory of Open Access Journals (Sweden)

    da Luz Claudia R

    2011-12-01

    Full Text Available Abstract Branched-chain amino acids (BCAA supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE-derived biochemical markers of muscle soreness (creatine kinase (CK, aldolase, myoglobin, soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality.

  19. Weight loss and weight maintenance obtained with or without GLP-1 analogue treatment decrease branched chain amino acid levels

    DEFF Research Database (Denmark)

    Engelbrechtsen, Line; Iepsen, Eva Pers Winning; Galijatovic, Ehm Astrid Andersson

    2016-01-01

    Introduction Increased levels of circulating branched chain amino acids (BCAAs), as well as phenylalanine, and tyrosine have been suggested to be involved in the pathogenesis of insulin resistance and type 2 diabetes. However, it is unknown how these metabolites are affected by weight loss...... spectroscopy was used for quantification of metabolites. Results The weight loss was maintained in both groups and was associated with 9–20 % decreases in plasma concentrations of alanine, phenylalanine, histidine, tyrosine and the BCAAs leucine, isoleucine and valine (p ... is associated with marked changes in plasma concentrations of eight amino acids and glycolysis-related metabolites. Levels of the suggested type 2 diabetes risk markers (BCAAs) remain low during long-term weight maintenance....

  20. Acute effects of phenylbutyrate on glutamine, branched-chain amino acid and protein metabolism in skeletal muscles of rats.

    Science.gov (United States)

    Holecek, Milan; Vodenicarovova, Melita; Siman, Pavel

    2017-06-01

    Phenylbutyrate (PB) acts as chemical chaperone and histone deacetylase inhibitor, which is used to decrease ammonia in urea cycle disorders and has been investigated for use in the treatment of a number of lethal illnesses. We performed in vivo and in vitro experiments to examine the effects of PB on glutamine (GLN), branched-chain amino acid (BCAA; valine, leucine and isoleucine) and protein metabolism in rats. In the first study, animals were sacrificed one hour after three injections of PB (300mg/kg b.w.) or saline. In the second study, soleus (SOL, slow twitch) and extensor digitorum longus (EDL, fast twitch) muscles were incubated in a medium with or without PB (5 mM). L-[1-(14) C] leucine was used to estimate protein synthesis and leucine oxidation, and 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. PB treatment decreased GLN, BCAA and branched-chain keto acids (BCKAs) in blood plasma, decreased BCAA and increased GLN concentrations in muscles, and increased GLN synthetase activities in muscles. Addition of PB to incubation medium increased leucine oxidation (55% in EDL, 29% in SOL), decreased BCKA and increased GLN in medium of both muscles, increased GLN in muscles, decreased protein synthesis in SOL and increased proteolysis in EDL. It is concluded that PB decreases BCAA, BCKA and GLN in blood plasma, activates BCAA catabolism and GLN synthesis in muscle and exerts adverse effects on protein metabolism. The results indicate that BCAA and GLN supplementation is needed when PB is used therapeutically and that PB may be a useful prospective agent which could be effective in management of maple syrup urine disease. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.

  1. The Effects of Herbicides Targeting Aromatic and Branched Chain Amino Acid Biosynthesis Support the Presence of Functional Pathways in Broomrape

    Directory of Open Access Journals (Sweden)

    Evgenia Dor

    2017-05-01

    Full Text Available It is not clear why herbicides targeting aromatic and branched-chain amino acid biosynthesis successfully control broomrapes—obligate parasitic plants that obtain all of their nutritional requirements, including amino acids, from the host. Our objective was to reveal the mode of action of imazapic and glyphosate in controlling the broomrape Phelipanche aegyptiaca and clarify if this obligatory parasite has its own machinery for the amino acids biosynthesis. P. aegyptiaca callus was studied to exclude the indirect influence of the herbicides on the parasite through the host plant. Using HRT – tomato plants resistant to imidazolinone herbicides, it was shown that imazapic is translocated from the foliage of treated plants to broomrape attachments on its roots and controls the parasite. Both herbicides inhibited P. aegyptiaca callus growth and altered the free amino acid content. Blasting of Arabidopsis thaliana 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS and acetolactate synthase (ALS cDNA against the genomic DNA of P. aegyptiaca yielded a single copy of each homolog in the latter, with about 78 and 75% similarity, respectively, to A. thaliana counterparts at the protein level. We also show for the first time that both EPSPS and ALS are active in P. aegyptiaca callus and flowering shoots and are inhibited by glyphosate and imazapic, respectively. Thus leading to deficiency of those amino acids in the parasite tissues and ultimately, death of the parasite, indicating the ability of P. aegyptiaca to synthesize branched-chain and aromatic amino acids through the activity of ALS and EPSPS, respectively.

  2. Branch chain elongation by amylosucrase: production of waxy corn starch with a slow digestion property.

    Science.gov (United States)

    Kim, Bo Kyung; Kim, Hye In; Moon, Tae Wha; Choi, Seung Jun

    2014-01-01

    Starches with high slowly digestible starch (SDS) contents were prepared by treating completely gelatinized waxy corn starch with amylosucrase. The structural properties of the prepared starches were then investigated. The content of SDS increased by up to 38.7% after amylosucrase modification, and the portion of chains with degree of polymerisation (DP) 25-36 increased, while the portion of chains with DP⩽12 decreased. Amylosucrase-modified starches showed a weak B-type crystalline structure. A slight increase in the degree of relative crystallinity was observed with increased reaction time. The thermal properties, including melting temperature and enthalpy, of the amylosucrase-modified starches were higher than for the control starch. Although the amylosucrase-modified starches showed varying structural properties according to reaction time (1-45 h), their digestibilities did not change much after 6 h. By controlling the reaction time of the amylosucrase treatment, a tailored starchy food containing the desired amount of SDS can be produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Identification and quantification of even and odd chained 5-n alkylresorcinols, branched chain-alkylresorcinols and methylalkylresorcinols in Quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Ross, Alastair B; Svelander, Cecilia; Karlsson, Göran; Savolainen, Otto I

    2017-04-01

    Quinoa is a pseudocereal grown in the Andean region of South America that is of increasing interest worldwide as an alternative staple food. We have detected a complex mixture of both odd- and even-alkyl chain alkylresorcinols (AR), branched-chain alkylresorcinols (bcAR) and methylalkylresorcinols (mAR) in ethyl acetate extracts of quinoa. We quantified the content of AR in 17 commercial samples of quinoa, and found that the mean±SD content of AR was 58±16μg/g, bcAR was 182±52μg/g, and mAR was 136±40μg/g. AR from quinoa could also be detected in plasma after eating quinoa, indicating that some of these unique AR could be used as biomarkers of quinoa intake in humans. Further work is required to understand the role of these ARs in the quinoa plant and whether any of the novel ARs may be of particular interest in human nutrition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Branched-chain in situ hybridization for κ and λ light chains: A powerful ancillary technique for determining B-cell clonality in cytology samples.

    Science.gov (United States)

    Arora, Kshitij; Chebib, Ivan; Zukerberg, Lawrence; Gandhi, Manoj; Rivera, Miguel; Ting, David; Deshpande, Vikram

    2016-03-01

    Current immunohistochemical and in situ hybridization (ISH) assays are generally inconclusive for clonality unless plasmacytic differentiation is present. This study examined a series of cytology specimens and explored the ability of a branched-chain RNA (bRNA) ISH assay for immunoglobulin κ constant (IGKC) and immunoglobulin λ constant (IGLC) to detect a clonal population of B lymphocytes. Pathology databases were used to identify fine-needle aspiration biopsies (n = 28) and exfoliative cytology samples (n = 20). Demographic, flow cytometry, and excision biopsy results were recorded. bRNA ISH was performed on the Leica Bond platform with the following probes: IGKC, IGLC, immunoglobulin λ-like polypeptide 5 (IGLL5), and a housekeeping gene (HKG). The bRNA ISH assay was validated with 30 surgical biopsies. On bRNA ISH, a clonal B-cell population (light-chain ratio > 10:1) was detected in 22 of 28 cases with a final diagnosis of lymphoma. In 2 cases, a κ predominance was present, although the ratio was cytology material. © 2015 American Cancer Society.

  5. Role of Chain Microstructure and Branching on Solution and Thin Film Phase Behavior

    Science.gov (United States)

    2015-11-30

    Cryogenic transmission  electron   microscopy  ( cryo ‐TEM)  images of aggregates of  PSnPIn stars in vitrified n‐hexane, using liq. N2 as the cryogen. Top...transmission  electron   microscopy  (TEM) imaging, we proved how the chain repeat unit design, which is a  nanoscale structural element, impacts...worked incredibly hard to develop the ability to image  the  native  structures  in  solution  using  transmission  electron   microscopy   (TEM).  To

  6. Effects of dietary excesses of branched-chain amino acids on the metabolism and tissue composition of lake trout (Salvelinus namaycush)

    Science.gov (United States)

    Hughes, S.G.; Rumsey, G.L.; Nesheim, M.C.

    1984-01-01

    1. Excesses of either leucine, isoleucine or valine were fed in separate experiments to determine if the branched-chain amino acid antagonism reported in other animals occur in trout (Salvelinus namaycush).2. Parameters measured include growth rate, feed utilization efficiency, plasma and muscle-free amino acids, carcass composition and branched-chain amino acid aminotransferase.3. Dietary excesses of leucine or isoleucine caused an increase in the valine requirement.4. The inability of leucine and isoleucine supplementations to ameliorate the effects of excess dietary valine are interpreted as a valine toxicity rather than an antagonism.

  7. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy.

    Science.gov (United States)

    Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo

    2014-09-01

    Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Investigation of the effect of sugar stereochemistry on biologically relevant lyotropic phases from branched-chain synthetic glycolipids by small-angle X-ray scattering.

    Science.gov (United States)

    Zahid, N Idayu; Conn, Charlotte E; Brooks, Nicholas J; Ahmad, Noraini; Seddon, John M; Hashim, Rauzah

    2013-12-23

    Synthetic branched-chain glycolipids are suitable as model systems in understanding biological cell membranes, particularly because certain natural lipids possess chain branching. Herein, four branched-chain glycopyranosides, namely, 2-hexyl-decyl-α-D-glucopyranoside (α-Glc-OC10C6), 2-hexyl-decyl-β-D-glucopyranoside (β-Glc-OC10C6), 2-hexyl-decyl-α-D-galactopyranoside (α-Gal-OC10C6), and 2-hexyl-decyl-β-D-galactopyranoside (β-Gal-OC10C6), with a total alkyl chain length of 16 carbon atoms have been synthesized, and their phase behavior has been studied. The partial binary phase diagrams of these nonionic surfactants in water were investigated by optical polarizing microscopy (OPM) and small-angle X-ray scattering (SAXS). The introduction of chain branching in the hydrocarbon chain region is shown to result in the formation of inverse structures such as inverse hexagonal and inverse bicontinuous cubic phases. A comparison of the four compounds showed that they exhibited different polymorphism, especially in the thermotropic state, as a result of contributions from anomeric and epimeric effects according to their stereochemistry. The neat α-Glc-OC10C6 compound exhibited a lamellar (Lα) phase whereas dry α-Gal-OC10C6 formed an inverse bicontinuous cubic Ia3d (QII(G)) phase. Both β-anomers of glucoside and galactoside adopted the inverse hexagonal phase (HII) in the dry state. Generally, in the presence of water, all four glycolipids formed inverse bicontinuous cubic Ia3d (QII(G)) and Pn3m (QII(D)) phases over wide temperature and concentration ranges. The formation of inverse nonlamellar phases by these Guerbet branched-chain glycosides confirms their potential as materials for novel biotechnological applications such as drug delivery and crystallization of membrane proteins.

  9. Cloning and characterization of brnQ, a gene encoding a low-affinity, branched chain amino acid carrier in Lactobacillus delbruckii subsp lactis DSM7290

    NARCIS (Netherlands)

    Stucky, K; Hagting, A; Klein, J.R.; Matern, H; Henrich, B; Konings, WN; Plapp, R

    1995-01-01

    A gene (brnQ), encoding a carrier for branched-chain amino acids in Lactobacillus delbruckii subsp. lactis DSM7290 was cloned in the low-copy-number vector pLG339 by complementation of a transport-deficient Escherichia coli strain. The plasmid carrying the cloned gene restored growth of an E. coli

  10. Regulation of adipose branched-chain amin acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched-chain amin acids (BCAA)are often assoicated with insulin resistance and type2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metaboli...

  11. Branched Chain Amino Acids Are Associated with Insulin Resistance Independent of Leptin and Adiponectin in Subjects with Varying Degrees of Glucose Tolerance

    NARCIS (Netherlands)

    Connelly, Margery A.; Wolak-Dinsmore, Justyna; Dullaart, Robin P. F.

    Background: Branched chain amino acids (BCAA) may be involved in the pathogenesis of insulin resistance and are associated with type 2 diabetes mellitus (T2DM) development. Adipokines such as leptin and adiponectin influence insulin resistance and reflect adipocyte dysfunction. We examined the

  12. Rumen odd and branched chain fatty acids in relation to in vitro rumen volatile fatty acid productions and dietary characteristics of incubated substrates

    NARCIS (Netherlands)

    Vlaeminck, B.; Fievez, V.; Laar, van H.; Demeyer, D.

    2004-01-01

    A first aim of this batch in vitro experiment (21 h) was to use changes in odd and branched chain fatty acid (OBCFA) patterns to suggest shifts in microbial populations, associated with four types of incubated whole dairy cow diets. Principal component analysis suggested higher dietary starch

  13. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents.

    Science.gov (United States)

    McCormack, S E; Shaham, O; McCarthy, M A; Deik, A A; Wang, T J; Gerszten, R E; Clish, C B; Mootha, V K; Grinspoon, S K; Fleischman, A

    2013-02-01

    What is already known about this subject Circulating concentrations of branched-chain amino acids (BCAAs) can affect carbohydrate metabolism in skeletal muscle, and therefore may alter insulin sensitivity. BCAAs are elevated in adults with diet-induced obesity, and are associated with their future risk of type 2 diabetes even after accounting for baseline clinical risk factors. What this study adds Increased concentrations of BCAAs are already present in young obese children and their metabolomic profiles are consistent with increased BCAA catabolism. Elevations in BCAAs in children are positively associated with insulin resistance measured 18 months later, independent of their initial body mass index. Branched-chain amino acid (BCAA) concentrations are elevated in response to overnutrition, and can affect both insulin sensitivity and secretion. Alterations in their metabolism may therefore play a role in the early pathogenesis of type 2 diabetes in overweight children. To determine whether paediatric obesity is associated with elevations in fasting circulating concentrations of BCAAs (isoleucine, leucine and valine), and whether these elevations predict future insulin resistance. Sixty-nine healthy subjects, ages 8-18 years, were enrolled as a cross-sectional cohort. A subset of subjects who were pre- or early-pubertal, ages 8-13 years, were enrolled in a prospective longitudinal cohort for 18 months (n = 17 with complete data). Elevations in the concentrations of BCAAs were significantly associated with body mass index (BMI) Z-score (Spearman's Rho 0.27, P = 0.03) in the cross-sectional cohort. In the subset of subjects that followed longitudinally, baseline BCAA concentrations were positively associated with homeostasis model assessment for insulin resistance measured 18 months later after controlling for baseline clinical factors including BMI Z-score, sex and pubertal stage (P = 0.046). Elevations in the concentrations of circulating BCAAs are significantly

  14. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen

    Directory of Open Access Journals (Sweden)

    Keyuan Liu

    2017-11-01

    Full Text Available Objective This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. Methods To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C. The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. Results The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05. The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05. The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. Conclusion This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

  15. Chronic dietary exposure to branched chain amino acids impairs glucose disposal in vegans but not in omnivores.

    Science.gov (United States)

    Gojda, J; Rossmeislová, L; Straková, R; Tůmová, J; Elkalaf, M; Jaček, M; Tůma, P; Potočková, J; Krauzová, E; Waldauf, P; Trnka, J; Štich, V; Anděl, M

    2017-05-01

    Branched chain amino acids (BCAA) are among nutrients strongly linked with insulin sensitivity (IS) measures. We investigated the effects of a chronic increase of BCAA intake on IS in two groups of healthy subjects differing in their basal consumption of BCAA, that is, vegans and omnivores. Eight vegans and eight matched omnivores (five men and three women in each group) received 15 g (women) or 20 g (men) of BCAA daily for 3 months. Anthropometry, blood analyses, glucose clamp, arginine test, subcutaneous abdominal adipose tissue (AT) and skeletal muscle (SM) biopsies (mRNA levels of selected metabolic markers, respiratory chain (RC) activity) were performed at baseline, after the intervention and after a 6 month wash-out period. Compared with omnivores, vegans had higher IS at baseline (GIR, glucose infusion rate: 9.6±2.4 vs 7.1±2.4 mg/kg/min, 95% CI for difference: 0.55 to 5.82) that declined after the intervention and returned to baseline values after the wash-out period (changes in GIR with 95% CI, 3-0 months: -1.64 [-2.5; -0.75] and 9-3 months: 1.65 [0.75; 2.54] mg/kg/min). No such change was observed in omnivores. In omnivores the intervention led to an increased expression of lipogenic genes (DGAT2, FASN, PPARγ, SCD1) in AT. SM RC activity increased in both groups. Negative impact of increased BCAA intake on IS was only detected in vegans, that is, subjects with low basal amino acids/BCAA intake, which appear to be unable to induce sufficient compensatory changes within AT and SM on a BCAA challenge.

  16. Response of muscle protein and glutamine kinetics to branched-chain-enriched amino acids in intensive care patients after radical cancer surgery.

    Science.gov (United States)

    Biolo, Gianni; De Cicco, Marcello; Dal Mas, Viviana; Lorenzon, Stefania; Antonione, Raffaella; Ciocchi, Beniamino; Barazzoni, Rocco; Zanetti, Michela; Dore, Franca; Guarnieri, Gianfranco

    2006-05-01

    Patients with cancer are characterized by decreased muscle protein synthesis and glutamine availability that contribute to an impaired immune response. These abnormalities worsen after surgical stress. We tested the hypothesis that pharmacologic doses of branched-chain amino acids would improve the early metabolic response after major cancer surgery. By using a crossover experimental design, we compared the metabolic effects of isonitrogenous solutions of balanced and branched-chain-enriched amino acid mixtures infused at the rate of 82 mg x h(-1) x kg(-1) for 3 h in patients with colorectal or cervical cancer on the first and second days after radical surgery combined with intraoperative radiation therapy. The ratios of leucine to total amino acid (grams) in the two mixtures were 0.09 and 0.22, respectively. Muscle protein and glutamine kinetics were determined by using stable isotope of amino acids and the leg arteriovenous balance technique. Glucose and insulin were continuously infused throughout the 2-d study to maintain near euglycemia. Rates of muscle protein synthesis and degradation were not significantly affected by the balanced amino acid infusion. In contrast, the isonitrogenous, branched-chain-enriched amino acid mixture accelerated muscle protein turnover by stimulating (P change after infusion of the balanced amino acid mixture but increased (P branched-chain-enriched amino acid mixture. An excess of branched-chain amino acids in the presence of an optimal profile of other essential amino acids acutely increased muscle protein synthesis and glutamine flux from skeletal muscle in cancer patients after surgery.

  17. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem.

    Science.gov (United States)

    Racovita, Radu C; Jetter, Reinhard

    2016-01-01

    In this work, cuticular waxes from flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem were investigated in search for novel wax compounds. Seven wax compound classes were detected that had previously not been reported, and their structures were elucidated using gas chromatography-mass spectrometry of various derivatives. Six of the classes were identified as series of homologs differing by two methylene units, while the seventh was a homologous series with homologs with single methylene unit differences. In the waxes of flag leaf blades, secondary alcohols (predominantly C27 and C33), primary/secondary diols (predominantly C28) and esters of primary/secondary diols (predominantly C50, combining C28 diol with C22 acid) were found, all sharing similar secondary hydroxyl group positions at and around C-12 or ω-12. 7- and 8-hydroxy-2-alkanol esters (predominantly C35), 7- and 8-oxo-2-alkanol esters (predominantly C35), and 4-alkylbutan-4-olides (predominantly C28) were found both in flag leaf and peduncle wax mixtures. Finally, a series of even- and odd-numbered alkane homologs was identified in both leaf and peduncle waxes, with an internal methyl branch preferentially on C-11 and C-13 of homologs with even total carbon number and on C-12 of odd-numbered homologs. Biosynthetic pathways are suggested for all compounds, based on common structural features and matching chain length profiles with other wheat wax compound classes.

  18. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem.

    Directory of Open Access Journals (Sweden)

    Radu C Racovita

    Full Text Available In this work, cuticular waxes from flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem were investigated in search for novel wax compounds. Seven wax compound classes were detected that had previously not been reported, and their structures were elucidated using gas chromatography-mass spectrometry of various derivatives. Six of the classes were identified as series of homologs differing by two methylene units, while the seventh was a homologous series with homologs with single methylene unit differences. In the waxes of flag leaf blades, secondary alcohols (predominantly C27 and C33, primary/secondary diols (predominantly C28 and esters of primary/secondary diols (predominantly C50, combining C28 diol with C22 acid were found, all sharing similar secondary hydroxyl group positions at and around C-12 or ω-12. 7- and 8-hydroxy-2-alkanol esters (predominantly C35, 7- and 8-oxo-2-alkanol esters (predominantly C35, and 4-alkylbutan-4-olides (predominantly C28 were found both in flag leaf and peduncle wax mixtures. Finally, a series of even- and odd-numbered alkane homologs was identified in both leaf and peduncle waxes, with an internal methyl branch preferentially on C-11 and C-13 of homologs with even total carbon number and on C-12 of odd-numbered homologs. Biosynthetic pathways are suggested for all compounds, based on common structural features and matching chain length profiles with other wheat wax compound classes.

  19. The effect of the head group on branched-alkyl chain surfactants in glycolipid/n-octane/water ternary system.

    Science.gov (United States)

    Nainggolan, Irwana; Radiman, Shahidan; Hamzah, Ahmad Sazali; Hashim, Rauzah

    2009-10-01

    Two novel glycolipids have been synthesized and their phase behaviour studied. They have been characterized using FT-IR, FAB and 13C NMR and 1H NMR to ensure the purity of novel glycolipids. The two glycolipids are distinguished based on the head group of glycolipids (monosaccharide/glucose and disaccharide/maltose). These two novel glycolipids have been used as surfactant to perform two phase diagrams. Phase behaviours that have been investigated are 2-hexyldecyl-beta-D-glucopyranoside (2-HDG)/n-octane/water ternary system and 2-hexyldecyl-beta-D-maltoside (2-HDM)/n-octane/water ternary system. SAXS and polarizing optical microscope have been used to study the phase behaviours of these two surfactants in ternary phase diagram. Study of effect of the head group on branched-alkyl chain surfactants in ternary system is a strategy to derive the structure-property relationship. For comparison, 2-HDM and 2-HDG have been used as surfactant in the same ternary system. The phase diagram of 2-hexyldecyl-beta-D-maltoside/n-octane/water ternary system exhibited a Lalpha phase at a higher concentration regime, followed with two phases and a micellar solution region in a lower concentration regime. The phase diagram of 2-HDG/water/n-octane ternary system shows hexagonal phase, cubic phase, rectangular ribbon phase, lamellar phase, cubic phase as the surfactant concentration increase.

  20. Acute dopamine depletion with branched chain amino acids decreases auditory top-down event-related potentials in healthy subjects.

    Science.gov (United States)

    Neuhaus, Andres H; Goldberg, Terry E; Hassoun, Youssef; Bates, John A; Nassauer, Katharine W; Sevy, Serge; Opgen-Rhein, Carolin; Malhotra, Anil K

    2009-06-01

    Cerebral dopamine homeostasis has been implicated in a wide range of cognitive processes and is of great pathophysiological importance in schizophrenia. A novel approach to study cognitive effects of dopamine is to deplete its cerebral levels with branched chain amino acids (BCAAs) that acutely lower dopamine precursor amino acid availability. Here, we studied the effects of acute dopamine depletion on early and late attentive cortical processing. Auditory event-related potential (ERP) components N2 and P3 were investigated using high-density electroencephalography in 22 healthy male subjects after receiving BCAAs or placebo in a randomized, double-blind, placebo-controlled crossover design. Total free serum prolactin was also determined as a surrogate marker of cerebral dopamine depletion. Acute dopamine depletion increased free plasma prolactin and significantly reduced prefrontal ERP components N2 and P3. Subcomponent analysis of N2 revealed a significant attenuation of early attentive N2b over prefrontal scalp sites. As a proof of concept, these results strongly suggest that BCAAs are acting on basic information processing. Dopaminergic neurotransmission seems to be involved in auditory top-down processing as indexed by prefrontal N2 and P3 reductions during dopamine depletion. In healthy subjects, intact early cortical top-down processing can be acutely dysregulated by ingestion of BCAAs. We discuss the potential impact of these findings on schizophrenia research.

  1. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view.

    Science.gov (United States)

    Bifari, Francesco; Nisoli, Enzo

    2017-06-01

    Substantial evidence has been accumulated suggesting that branched-chain amino acid (BCAA) supplementation or BCAA-rich diets have a positive effect on the regulation of body weight, muscle protein synthesis, glucose homeostasis, the ageing process and extend healthspan. Despite these beneficial effects, epidemiological studies have shown that BCAA plasma concentrations and BCAA metabolism are altered in several metabolic disorders, including type 2 diabetes mellitus and cardiovascular diseases. In this review article, we present an overview of the current literature on the different effects of BCAAs in health and disease. We also highlight the results showing the most promising therapeutic effects of dietary BCAA supplementation and discuss how BCAAs can trigger different and even opposite effects, depending on the catabolic and anabolic states of the organisms. Moreover, we consider the effects of BCAAs when metabolism is abnormal, in the presence of a mixture of different anabolic and catabolic signals. These unique pharmacodynamic properties may partially explain some of the markedly different effects found in BCAA supplementation studies. To predict accurately these effects, the overall catabolic/anabolic status of patients should be carefully considered. In wider terms, a correct modulation of metabolic disorders would make nutraceutical interventions with BCAAs more effective. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British Pharmacological Society.

  2. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis.

    Science.gov (United States)

    Pires, Marcel V; Pereira Júnior, Adilson A; Medeiros, David B; Daloso, Danilo M; Pham, Phuong Anh; Barros, Kallyne A; Engqvist, Martin K M; Florian, Alexandra; Krahnert, Ina; Maurino, Veronica G; Araújo, Wagner L; Fernie, Alisdair R

    2016-06-01

    During dark-induced senescence isovaleryl-CoA dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH) act as alternate electron donors to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D-2GHDH, loss-of-function etfqo-1, d2hgdh-2 and ivdh-1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought-induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched-chain amino acids in loss-of-function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response. © 2015 John Wiley & Sons Ltd.

  3. The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen.

    Science.gov (United States)

    Liu, Keyuan; Hao, Xiaoyan; Li, Yang; Luo, Guobin; Zhang, Yonggen; Xin, Hangshu

    2017-11-01

    This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (pacids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (pacid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

  4. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    Science.gov (United States)

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  5. A New Route for Evaluating Short Chain Branching Distribution of High Density Polyethylene by Measuring Crystallizability of Molar Mass Fractions

    Directory of Open Access Journals (Sweden)

    Andres KRUMME

    2011-09-01

    Full Text Available A bimodal high density polyethylene (HDPE has been successfully fractionated by analytical size exclusion chromatography into molar mass fractions with Mw's ranging from 3.6 kg/mol to 8 000 kg/mol, and subsequently deposited on germanium disks using the Lab Connections Transform method. After removal of the fractions from the disks, having masses in between 10 µg - 150 µg, differential scanning calorimetry has been successful in measuring the (recrystallization and melting behavior of these fractions. Comparing the crystallization and melting peak temperatures of the fractions with those of narrow molar mass linear polyethylenes points to the HDPE being linear below and short chain branched above 100 kg/mol respectively. This value coincides roughly with the 'split' between the molar mass distributions resulting from the first and the second polymerization reactor - confirming the addition of 1-butene in the second reactor.http://dx.doi.org/10.5755/j01.ms.17.3.590

  6. Effects of eccentric exercise on branched-chain amino acid profiles in rat serum and skeletal muscle.

    Science.gov (United States)

    Qun, Z; Xinkai, Y; Jing, W

    2014-04-01

    Supplementation of branched-chain amino acid (BCAA) is often used to attenuate exercise-induced skeletal muscle damage and promote adaptation, but no definitive conclusion on the benefits of BCAA on muscle recovery after injurious exercise can be drawn. Exploration of the systematic BCAA alteration in muscular injury-repair stage per se without any BCAA supplement should provide some useful information in favour of BCAA application in muscle regeneration after injury. One bout of 90-min downhill-running exercise was performed to cause rat skeletal muscle injury. After exercise, myofibrillar BCAA concentrations showed minor changes compared with exercise before, while serum concentrations of BCAA were lower after exercise. Especially, serum leucine, isoleucine and total BCAA concentrations 2 weeks post-run were significantly lower than normal values of exercise before (p = 0.008, p = 0.041, p = 0.015). The data demonstrate that a single eccentric exercise can significantly decrease the serum BCAA concentrations, which mean high utilization of BCAA for myogenesis after injurious exercise. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  7. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway

    Directory of Open Access Journals (Sweden)

    Yunxia Liu

    2017-10-01

    Full Text Available Recent studies have linked branched-chain amino acid (BCAA with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15 is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.

  8. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats.

    Science.gov (United States)

    Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi

    2014-04-01

    Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.

  9. Branched-Chain Amino Acid Supplementation Reduces Oxidative Stress and Prolongs Survival in Rats with Advanced Liver Cirrhosis

    Science.gov (United States)

    Mifuji-Moroka, Rumi; Hara, Nagisa; Miyachi, Hirohide; Sugimoto, Ryosuke; Tanaka, Hideaki; Fujita, Naoki; Gabazza, Esteban C.; Takei, Yoshiyuki

    2013-01-01

    Long-term supplementation with branched-chain amino acids (BCAA) is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC) in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (PBCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver. PMID:23936183

  10. Effect of branched-chain amino acids (BCAA), glucose, and glucose plus BCAA on endurance performance in rats.

    Science.gov (United States)

    Calders, P; Matthys, D; Derave, W; Pannier, J L

    1999-04-01

    The purpose of this study was to assess the effects of pre-exercise administration of branched-chain amino acids (BCAA), glucose, and glucose plus BCAA on time to exhaustion during treadmill exercise in rats. Wistar rats were injected intraperitoneally with 1 mL of saline (0.9% NaCl), BCAA (30 mg), glucose (100 mg), or glucose plus BCAA 5 min before either 45 min of submaximal exercise (N = 32) or running to exhaustion (N = 24). After the submaximal exercise test, blood was collected for the measurement of ammonia, BCAA, free tryptophan (free TRP), glucose, free fatty acid, and lactic acid, and muscle samples were taken from the m. soleus for determination of glycogen content. Mean run time to exhaustion was significantly longer after BCAA administration (158+/-26 min) compared with that after saline (118+/-35 min)(PBCAA had no additional effect on performance (171+/-12 min). The data on blood ammonia, ratio of free TRP/BCAA, and muscle glycogen did not provide a clue for explaining the higher endurance performance after BCAA supplementation. The results support the hypothesis that the effect of BCAA administration on performance could be related to carbohydrate availability during exercise.

  11. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Motoh Iwasa

    Full Text Available Long-term supplementation with branched-chain amino acids (BCAA is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (P<0.05. The prolonged survival due to BCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver.

  12. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway.

    Science.gov (United States)

    Liu, Yunxia; Dong, Weibing; Shao, Jing; Wang, Yibin; Zhou, Meiyi; Sun, Haipeng

    2017-01-01

    Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.

  13. Is administrating branched-chain amino acid-enriched nutrition achieved symptom-free in malnourished cirrhotic patients?

    Science.gov (United States)

    Tsuda, Yasuhiro; Fukui, Hideo; Sujishi, Tetsuya; Ohama, Hideko; Tsuchimoto, Yusuke; Asai, Akira; Fukunisi, Shinya; Higuchi, Kazuhide

    2014-01-01

    Administration of branched-chain amino acids (BCAA) has been reported to improve liver function, quality of life (QOL). However, in some malnourished patients, serum albumin levels do not improve in response to BCAA granules. In this study, we examined the effects of BCAA-enriched enteral nutrition in patients unresponsive to BCAA granules. Thirty-two decompensated cirrhotic patients at Osaka Medical College were enrolled in this study. Since all patients showed no improvement in serum albumin levels despite 3 months of BCAA granule administration, they were administered 50 g of a flavored BCAA-enriched enteral nutrient twice daily, i.e., during the daytime and late evening. Serum albumin levels and major cirrhotic symptoms were examined 1, 3, and 5 months after treatment initiation. Serum albumin levels improved significantly 3 months after treatment initiation (3.14 ± 0.32 g/dl vs 3.5 ± 0.31 g/dl, pBCAA-enriched nutrients improves QOL of cirrhotic patients unresponsive to BCAA granules.

  14. NUTRITIONAL INTERACTIONS BETWEEN ZINC AND BRANCHED CHAIN AMINO ACID (BCAA SUPPLEMENT IN RATS: A MULTICOMPARTMENT MODELING APPROACH

    Directory of Open Access Journals (Sweden)

    JAIR RODRIGUES GARCIA-JÊNIOR

    2009-07-01

    Full Text Available

    The influence of supplementary-branched chain amino acids (BCAA on 65Zn metabolism in rats was investigated in this study. Nutritional indicators of Zn, as absorption, body retention and secretion, were estimated using a multicompartment model. Two groups of eight male rats were force-fed a zinc-adequate diet (control group and a zinc-adequate diet plus 0.52 9 BCAA/kg diet during 15 days. There was no significant difference for intake of Zn, absorption (34%, intestinal transit (tso and the leveI of Zn in the intravascular compartment (plasma. On the other hand the extravascular compartment (organs and specific concentration of Zn per 9 of tissue decreased after experimental period (p < 0.05 The rats supplememted with BCAA secreted Zn by urine twice faster than controls, but the secrotion of zinc by endogen feces were not decreased in this group. Thus, BCAA supplement changed the kinetic of Zn, increasing the urinary secretion and the loss of Zn from the body.

  15. Branched-chain amino acid-enriched nutrient increases blood platelet count in patients after endoscopic injection sclerotherapy.

    Science.gov (United States)

    Furuichi, Yoshihiro; Imai, Yasuharu; Miyata, Yuki; Sugimoto, Katsutoshi; Sano, Takatomo; Taira, Junichi; Kojima, Mayumi; Kobayashi, Yoshiyuki; Nakamura, Ikuo; Moriyasu, Fuminori

    2016-10-01

    Protein and energy malnutrition is a severe problem for patients with liver cirrhosis (LC) and fasting often induces starvation which is a vitally important outcome. Dietary restriction is essential for endoscopic injection sclerotherapy (EIS) in patients with risky esophageal varices, thereby creating the possible exacerbation of nutritional state and inducing liver dysfunction. Whether EIS induces nutritional deficiency in LC patients and the effects of branched-chain amino acid (BCAA)-enriched nutrient are prospectively investigated. A total of 61 LC patients were randomly divided into an EIS monotherapy group (non-BCAA group, n = 31) and an EIS combined with BCAA therapy group (n = 30). Platelet count, blood chemistry and somatometry values were prospectively measured at five time points. The platelet counts before treatment were at the same level in both groups (P = 0.72). Three months after treatment, the counts decreased in the non-BCAA group; however, they increased in the BCAA group (P = 0.019). Body mass index, triceps skin fold thickness and arm muscle circumference significantly decreased in both groups. The BCAA and tyrosine ratio value increased only in the BCAA group (P BCAA group (P BCAA. Administration of BCAA had some effect in maintaining the nutritional state, and may improve the platelet count. Taking a greater amount of nutrients and shorter dietary restriction period or hospitalization was desirable. © 2016 The Japan Society of Hepatology.

  16. Elevated α-Hydroxybutyrate and Branched-Chain Amino Acid Levels Predict Deterioration of Glycemic Control in Adolescents.

    Science.gov (United States)

    Tricò, Domenico; Prinsen, Hetty; Giannini, Cosimo; de Graaf, Robin; Juchem, Christoph; Li, Fangyong; Caprio, Sonia; Santoro, Nicola; Herzog, Raimund I

    2017-07-01

    Traditional risk factors for type 2 diabetes mellitus are weak predictors of changes in glucose tolerance and insulin sensitivity in youth. To identify early metabolic features of insulin resistance (IR) in youth and whether they predict deterioration of glycemic control. A cross-sectional and longitudinal study was conducted at the Yale Pediatric Obesity Clinic. Concentrations of α-hydroxybutyrate, β-hydroxybutyrate, lactate, and branched-chain amino acids (BCAAs) were measured by nuclear magnetic resonance spectroscopy in 78 nondiabetic adolescents during an oral glucose tolerance test (OGTT). Associations between baseline metabolic alterations and longitudinal changes in glucose control were tested in 16 subjects after a mean follow-up of 2.3 years. The relationship between metabolite levels, parameters of IR, and glycemic control, and their progression over time. Elevated fasting α-hydroxybutyrate levels were observed in adolescents with reduced insulin sensitivity after adjusting for age, sex, ethnicity, Tanner stage, and body mass index z-score (P = 0.014). Plasma α-hydroxybutyrate and BCAAs were increased throughout the course of the OGTT in this group (P hydroxybutyrate decrease from elevated baseline concentrations to normal levels (P = 0.02). Increased baseline α-hydroxybutyrate concentrations were further associated with progressive worsening of glucose tolerance and disposition index. α-Hydroxybutyrate and BCAA concentrations during an OGTT characterize insulin-resistant youth and predict worsening of glycemic control. These findings provide potential biomarkers for risk assessment of type 2 diabetes and new insights into IR pathogenesis.

  17. The Supplementation of Branched-Chain Amino Acids, Arginine, and Citrulline Improves Endurance Exercise Performance in Two Consecutive Days

    Directory of Open Access Journals (Sweden)

    I-Shiung Cheng, Yi-Wen Wang, I-Fan Chen, Gi-Sheng Hsu, Chun-Fang Hsueh, Chen-Kang Chang

    2016-09-01

    Full Text Available The central nervous system plays a crucial role in fatigue during endurance exercise. Branched-chain amino acids (BCAA could reduce cerebral serotonin synthesis by competing with its precursor tryptophan for crossing the blood brain barrier. Arginine and citrulline could prevent excess hyperammonemia accompanied by BCAA supplementation. This study investigated the combination of BCAA, arginine, and citrulline on endurance performance in two consecutive days. Seven male and three female endurance runners ingested 0.17 g·kg-1 BCAA, 0.05 g·kg-1 arginine and 0.05 g·kg-1 citrulline (AA trial or placebo (PL trial in a randomized cross-over design. Each trial contained a 5000 m time trial on the first day, and a 10000 m time trial on the second day. The AA trial had significantly better performance in 5000 m (AA: 1065.7 ± 33.9 s; PL: 1100.5 ± 40.4 s and 10000 m (AA: 2292.0 ± 211.3 s; PL: 2375.6 ± 244.2 s. The two trials reported similar ratings of perceived exertion. After exercise, the AA trial had significantly lower tryptophan/BCAA ratio, similar NH3, and significantly higher urea concentrations. In conclusion, the supplementation could enhance time-trial performance in two consecutive days in endurance runners, possibly through the inhibition of cerebral serotonin synthesis by BCAA and the prevention of excess hyperammonemia by increased urea genesis.

  18. A Branched-Chain Amino Acid-Related Metabolic Signature Characterizes Obese Adolescents with Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Martina Goffredo

    2017-06-01

    Full Text Available Dysregulation of several metabolite pathways, including branched-chain amino acids (BCAAs, are associated with Non-Alcoholic Fatty Liver Disease (NAFLD and insulin resistance in adults, while studies in youth reported conflicting results. We explored whether, independently of obesity and insulin resistance, obese adolescents with NAFLD display a metabolomic signature consistent with disturbances in amino acid and lipid metabolism. A total of 180 plasma metabolites were measured by a targeted metabolomic approach in 78 obese adolescents with (n = 30 or without (n = 48 NAFLD assessed by magnetic resonance imaging (MRI. All subjects underwent an oral glucose tolerance test and subsets of patients underwent a two-step hyperinsulinemic-euglycemic clamp and/or a second MRI after a 2.2 ± 0.8-year follow-up. Adolescents with NAFLD had higher plasma levels of valine (p = 0.02, isoleucine (p = 0.03, tryptophan (p = 0.02, and lysine (p = 0.02 after adjustment for confounding factors. Circulating BCAAs were negatively correlated with peripheral and hepatic insulin sensitivity. Furthermore, higher baseline valine levels predicted an increase in hepatic fat content (HFF at follow-up (p = 0.01. These results indicate that a dysregulation of BCAA metabolism characterizes obese adolescents with NAFLD independently of obesity and insulin resistance and predict an increase in hepatic fat content over time.

  19. Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent Maintenance of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Kayo Ikeda

    2017-11-01

    Full Text Available Foxp3+ regulatory T (Treg cells, which suppress immune responses, are highly proliferative in vivo. However, it remains unclear how the active replication of Treg cells is maintained in vivo. Here, we show that branched-chain amino acids (BCAAs, including isoleucine, are required for maintenance of the proliferative state of Treg cells via the amino acid transporter Slc3a2-dependent metabolic reprogramming. Mice fed BCAA-reduced diets showed decreased numbers of Foxp3+ Treg cells with defective in vivo proliferative capacity. Mice lacking Slc3a2 specifically in Foxp3+ Treg cells showed impaired in vivo replication and decreased numbers of Treg cells. Slc3a2-deficient Treg cells showed impaired isoleucine-induced activation of the mTORC1 pathway and an altered metabolic state. Slc3a2 mutant mice did not show an isoleucine-induced increase of Treg cells in vivo and exhibited multi-organ inflammation. Taken together, these findings demonstrate that BCAA controls Treg cell maintenance via Slc3a2-dependent metabolic regulation.

  20. INVERSION SYMMETRY, ARCHITECTURE AND DISPERSITY, AND THEIR EFFECTS ON THERMODYNAMICS IN BULK AND CONFINED REGIONS: FROM RANDOMLY BRANCHED POLYMERS TO LINEAR CHAINS, STARS AND DENDRIMERS

    Directory of Open Access Journals (Sweden)

    P.D.Gujrati

    2002-01-01

    Full Text Available Theoretical evidence is presented in this review that architectural aspects can play an important role, not only in the bulk but also in confined geometries by using our recursive lattice theory, which is equally applicable to fixed architectures (regularly branched polymers, stars, dendrimers, brushes, linear chains, etc. and variable architectures, i.e. randomly branched structures. Linear chains possess an inversion symmetry (IS of a magnetic system (see text, whose presence or absence determines the bulk phase diagram. Fixed architectures possess the IS and yield a standard bulk phase diagram in which there exists a theta point at which two critical lines C and C' meet and the second virial coefficient A2 vanishes. The critical line C appears only for infinitely large polymers, and an order parameter is identified for this criticality. The critical line C' exists for polymers of all sizes and represents phase separation criticality. Variable architectures, which do not possess the IS, give rise to a topologically different phase diagram with no theta point in general. In confined regions next to surfaces, it is not the IS but branching and monodispersity, which becomes important in the surface regions. We show that branching plays no important role for polydisperse systems, but become important for monodisperse systems. Stars and linear chains behave differently near a surface.

  1. Branched Chain Amino Acid Suppresses Hepatocellular Cancer Stem Cells through the Activation of Mammalian Target of Rapamycin

    Science.gov (United States)

    Nishitani, Shinobu; Horie, Mayumi; Ishizaki, Sonoko; Yano, Hirohisa

    2013-01-01

    Differentiation of cancer stem cells (CSCs) into cancer cells causes increased sensitivity to chemotherapeutic agents. Although inhibition of mammalian target of rapamycin (mTOR) leads to CSC survival, the effect of branched chain amino acids (BCAAs), an mTOR complex 1 (mTORC1) activator remains unknown. In this study, we examined the effects of BCAA on hepatocellular carcinoma (HCC) cells expressing a hepatic CSC marker, EpCAM. We examined the effects of BCAA and/or 5-fluorouracil (FU) on expression of EpCAM and other CSC-related markers, as well as cell proliferation in HCC cells and in a xenograft mouse model. We also characterized CSC-related and mTOR signal-related molecule expression and tumorigenicity in HCC cells with knockdown of Rictor or Raptor, or overexpression of constitutively active rheb (caRheb). mTOR signal-related molecule expression was also examined in BCAA-treated HCC cells. In-vitro BCAA reduced the frequency of EpCAM-positive cells and improved sensitivity to the anti-proliferative effect of 5-FU. Combined 5-FU and BCAA provided better antitumor efficacy than 5-FU alone in the xenograft model. Stimulation with high doses of BCAA activated mTORC1. Knockdown and overexpression experiments revealed that inhibition of mTOR complex 2 (mTORC2) or activation of mTORC1 led to decreased EpCAM expression and little or no tumorigenicity. BCAA may enhance the sensitivity to chemotherapy by reducing the population of cscs via the mTOR pathway. This result suggests the utility of BCAA in liver cancer therapy. PMID:24312415

  2. Associations among circulating branched-chain amino acids and tyrosine with muscle volume and glucose metabolism in individuals without diabetes.

    Science.gov (United States)

    Honda, Tatsuro; Kobayashi, Yoshinao; Togashi, Kenji; Hasegawa, Hiroshi; Iwasa, Motoh; Taguchi, Osamu; Takei, Yoshiyuki; Sumida, Yasuhiro

    2016-05-01

    Amino acid metabolites, including branched-chain amino acids (BCAA) and tyrosine (Tyr), affect glucose metabolism. The effects of BCAA on insulin resistance in patients with diabetes seem to conflict with mechanisms determined in animal models and cultured cells. The aim of this study was to clarify the controversy surrounding the effects of BCAA by investigating the physiological effects of BCAA and Tyr on glucose metabolism in healthy community dwellers. We investigated associations among BCAA and Tyr and metabolic parameters in 78 residents (median age, 52 y) of Mie, Japan, who did not have prediabetes, diabetes, or a body mass index >30 kg/m(2). Muscle volume, serum BCAA, and Tyr levels were higher in men than in women (n = 32 and 46, respectively; all P BCAA positively with muscle volume (regression coefficient/t/p/95% confidence interval, 281.8/3.7/0.0004/129.7-433.8), fasting blood glucose (FBG; 12699.4/3.22/0.0020/4830.9-20567.8), fasting immunoreactive insulin (IRI; 8505.1/2.75/0.0078/2322.5-14687.6), and homeostasis model assessment of β-cell function (HOMA-β; 893.6/2.58/0.0122/201.8-1585.5), and negatively with the HOMA-insulin resistance (HOMA-IR; -9294.1/-2.89/0.0052/-15711.0 to -2877.1). Tyr positively correlated with fasting IRI (26/2.77/0.0072/7.3-44.7). Insulin sensitivity and muscle volume are positively associated with BCAA in individuals without diabetes. In turn, BCAA correlate with increased FBG and fasting IRI levels. Tyr correlated with fasting IRI, but not with insulin sensitivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice

    Science.gov (United States)

    Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke

    2015-01-01

    Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780

  4. Effects of branched-chain amino acid supplementation after radiofrequency ablation for hepatocellular carcinoma: A randomized trial.

    Science.gov (United States)

    Nojiri, Shunsuke; Fujiwara, Kei; Shinkai, Noboru; Iio, Etsuko; Joh, Takashi

    2017-01-01

    Maintenance of liver function is important for better outcomes after radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC). The aim of this study was to examine the effects of oral branched-chain amino acid (BCAA) supplementation on liver function, intrahepatic recurrence rate, and incidence of complications after RFA for HCC. Patients with cirrhosis who underwent RFA were enrolled between August 2009 and April 2012, randomized to oral supplementation with Aminoleban EN (BCAA group) or diet alone (control group), and followed to determine changes in serum parameters and health status. Patients in the BCAA group were instructed to ingest a packet of Aminoleban EN twice daily. Levels of physical and mental stress were assessed using the Short Form-8 health survey. Oral BCAA and dietary interventions were initiated 2 wk before local therapy, and contrast-enhanced computed tomography was performed every 3 mo to assess recurrence. We evaluated 25 patients in the BCAA group and 26 in the control group. The median follow-up period was 3.9 y (736-1818 d). There were no significant differences between the two groups in basal characteristics. Complications were less frequent in the BCAA group (P = 0.03). Event-free survival was significantly higher in the BCAA group, whereas the intrahepatic recurrence rate was significantly lower (P = 0.04 and 0.036, respectively). A significant improvement in the Short Form-8 mental component score was observed in the BCAA group only (P < 0.01). Aminoleban EN may be beneficial for cirrhotic patients after RFA to relieve mental stress and reduce the risks for intrahepatic recurrence and complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Branched-chain aminoacid supplementation attenuates a decrease in power-producing ability following acute strength training.

    Science.gov (United States)

    Gee, Thomas I; Deniel, Stefan

    2016-12-01

    This study aimed to investigate the effects of branched-chain amino acid (BCAA) supplementation on recovery of power-producing ability following a strength training (ST) session. Eleven resistance-trained males, performed baseline measures of a countermovement jump (CMJ) and a seated shot-put throw (SSPT). In a counterbalanced fashion, participants were provided with either 20-g of BCAA or a placebo. Each dose was divided into two equal quantities and consumed before and after a ST session consisting of various multi-joint barbell exercises. For both conditions, the CMJ and SSPT were repeated at 24-h post-ST, in addition participants attributed their perceived muscle soreness level via a 200-mm visual analogue scale. Following ST there were significant decrements in CMJ (baseline; 55.2±7.4-cm, BCAA; 52.8±5.9-cm placebo; 50.6±7.3-cm) and SSPT (baseline; 4.55±0.56-m, BCAA; 4.37±0.61-m, placebo; 4.22±0.64-m) for both conditions in comparison to baseline values (PBCAA was shown to attenuate the decrements in CMJ and SSPT performance compared to placebo (PBCAA and placebo ingestion. BCAA administered acutely before and following intensive ST attenuates a decrease in power-producing ability experienced by resistance-trained males. The apparent small but significant effects on functional power suggest that BCAA is an effective ergogenic aid for athletes who require augmented recovery of power-producing ability following intensive ST.

  6. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

    Science.gov (United States)

    Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling

    2016-11-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte. Copyright © 2016. Published by Elsevier

  7. Effects of carbohydrate, branched-chain amino acids, and arginine in recovery period on the subsequent performance in wrestlers

    Directory of Open Access Journals (Sweden)

    Jang Tsong-Rong

    2011-11-01

    Full Text Available Abstract Many athletes need to participate in multiple events in a single day. The efficient post-exercise glycogen recovery may be critical for the performance in subsequent exercise. This study examined whether post-exercise carbohydrate supplementation could restore the performance in the subsequent simulated wrestling match. The effect of branched-chain amino acids and arginine on glucose disposal and performance was also investigated. Nine well-trained male wrestlers participated in 3 trials in a random order. Each trial contained 3 matches with a 1-hr rest between match 1 and 2, and a 2-hr rest between match 2 and 3. Each match contained 3 exercise periods interspersed with 1-min rests. The subjects alternated 10-s all-out sprints and 20-s rests in each exercise period. At the end of match 2, 3 different supplementations were consumed: 1.2 g/kg glucose (CHO trial, 1 g/kg glucose + 0.1 g/kg Arg + 0.1 g/kg BCAA (CHO+AA trial, or water (placebo trial. The peak and average power in the 3 matches was similar in the 3 trials. After the supplementation, CHO and CHO+AA trial showed significantly higher glucose and insulin, and lower glycerol and non-esterified fatty acid concentrations than the placebo trial. There was no significant difference in these biochemical parameters between the CHO and CHO+AA trials. Supplementation of carbohydrate with or without BCAA and arginine during the post-match period had no effect on the performance in the following simulated match in wrestlers. In addition, BCAA and arginine did not provide additional insulinemic effect.

  8. Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women's Health Initiative.

    Science.gov (United States)

    Isanejad, Masoud; LaCroix, Andrea Z; Thomson, Cynthia A; Tinker, Lesley; Larson, Joseph C; Qi, Qibin; Qi, Lihong; Cooper-DeHoff, Rhonda M; Phillips, Lawrence S; Prentice, Ross L; Beasley, Jeannette M

    2017-06-01

    Knowledge regarding association of dietary branched-chain amino acid (BCAA) and type 2 diabetes (T2D), and the contribution of BCAA from meat to the risk of T2D are scarce. We evaluated associations between dietary BCAA intake, meat intake, interaction between BCAA and meat intake and risk of T2D. Data analyses were performed for 74 155 participants aged 50-79 years at baseline from the Women's Health Initiative for up to 15 years of follow-up. We excluded from analysis participants with treated T2D, and factors potentially associated with T2D or missing covariate data. The BCAA and total meat intake was estimated from FFQ. Using Cox proportional hazards models, we assessed the relationship between BCAA intake, meat intake, and T2D, adjusting for confounders. A 20 % increment in total BCAA intake (g/d and %energy) was associated with a 7 % higher risk for T2D (hazard ratio (HR) 1·07; 95 % CI 1·05, 1·09). For total meat intake, a 20 % increment was associated with a 4 % higher risk of T2D (HR 1·04; 95 % CI 1·03, 1·05). The associations between BCAA intake and T2D were attenuated but remained significant after adjustment for total meat intake. These relations did not materially differ with or without adjustment for BMI. Our results suggest that dietary BCAA and meat intake are positively associated with T2D among postmenopausal women. The association of BCAA and diabetes risk was attenuated but remained positive after adjustment for meat intake suggesting that BCAA intake in part but not in full is contributing to the association of meat with T2D risk.

  9. Branched-Chain Amino Acids as New Biomarkers of Major Depression - A Novel Neurobiology of Mood Disorder.

    Directory of Open Access Journals (Sweden)

    Andreas Baranyi

    Full Text Available The proteinogenic branched-chain amino acids (BCAAs valine, leucine and isoleucine might play an unrecognised crucial role in the development of depression through their activation of the mammalian target of rapamycin (mTor pathway. The aim of this research project is to evaluate whether BCAAs are altered in patients with major depression and might thus be appropriate biomarkers for major depression.The concentrations of valine, leucine and isoleucine were determined in 71 in-patients with major depression and 48 healthy controls by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at the time of in-patient admittance.The BCAAs are significantly decreased in patients with major depression in comparison with healthy subjects (valine: Mann-Whitney-U: 968.0; p <0.0001, leucine: Mann-Whitney-U: 1246.5; p = 0.013, isoleucine: Mann-Whitney-U: 1252.5; p = 0.014. Furthermore, as shown by Spearman's rank correlation coefficients, there is a significant negative correlation between valine, leucine and isoleucine concentrations and the Hamilton Depression Rating Scale (HAMD-17 as well as Beck Depression Inventory (BDI-II scores.Our study results are strong evidence that in patients with major depression, BCAAs might be appropriate biomarkers for depression. Reduced activation of the mammalian target of rapamycin (mTor due to a reduction of BCAAs might play a crucial unrecognised factor in the etiology of depression and may evoke depressive symptomatology and lower energy metabolism in patients with major depression. In the future, mTor and its up- and downstream signalling partners might be important targets for the development of novel antidepressants.

  10. Branched-Chain Amino Acid Levels Are Related with Surrogates of Disturbed Lipid Metabolism among Older Men

    Directory of Open Access Journals (Sweden)

    Urho M Kujala

    2016-11-01

    Full Text Available Aims/hypothesis Existing studies suggest that decreased branched-chain amino acid (BCAA catabolism and thus elevated levels in blood are associated with metabolic disturbances. Based on such information we have developed a hypothesis how BCAA degradation mechanistically connects to tricarboxylic acid (TCA cycle, intramyocellular lipid storage and oxidation thus allowing more efficient mitochondrial energy production from lipids as well as providing better metabolic health. We analyzed whether data from aged Finnish men are in line with our mechanistic hypothesis linking BCAA catabolism and metabolic disturbances. Methods Older Finnish men enriched with individuals having been athletes in young adulthood (n=593; mean age 72.6 ± 5.9 years responded to questionnaires, participated in a clinical examination including assessment of body composition with bioimpedance and gave fasting blood samples for various analytes as well as participated in a 2 hour 75 g oral glucose tolerance test. Metabolomics measurements from serum included BCAAs (isoleucine, leucine and valine.Results Out of the 593 participants 59 had previously known type 2 diabetes, further 67 had screen-detected type 2 diabetes, 127 IGT and 125 IFG while 214 had normal glucose regulation. There were group differences in all of the BCAA concentrations (p≤0.005 for all BCAAs, such that those with normal glucose tolerance had the lowest and those with diabetes mellitus had the highest BCAA concentrations. All BCAA levels correlated positively with body fat percentage (r=.29 - .34, p<.0001 for all. Expected associations with high BCAA concentrations and unfavorable metabolic profile indicators from metabolomics analysis were found. Except for glucose concentrations, the associations were stronger with isoleucine and leucine than with valine. Conclusions/interpretation The findings provided further support for our hypothesis by strengthening the idea that the efficiency of BCAA catabolism

  11. Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin.

    Directory of Open Access Journals (Sweden)

    Shinobu Nishitani

    Full Text Available Differentiation of cancer stem cells (CSCs into cancer cells causes increased sensitivity to chemotherapeutic agents. Although inhibition of mammalian target of rapamycin (mTOR leads to CSC survival, the effect of branched chain amino acids (BCAAs, an mTOR complex 1 (mTORC1 activator remains unknown. In this study, we examined the effects of BCAA on hepatocellular carcinoma (HCC cells expressing a hepatic CSC marker, EpCAM. We examined the effects of BCAA and/or 5-fluorouracil (FU on expression of EpCAM and other CSC-related markers, as well as cell proliferation in HCC cells and in a xenograft mouse model. We also characterized CSC-related and mTOR signal-related molecule expression and tumorigenicity in HCC cells with knockdown of Rictor or Raptor, or overexpression of constitutively active rheb (caRheb. mTOR signal-related molecule expression was also examined in BCAA-treated HCC cells. In-vitro BCAA reduced the frequency of EpCAM-positive cells and improved sensitivity to the anti-proliferative effect of 5-FU. Combined 5-FU and BCAA provided better antitumor efficacy than 5-FU alone in the xenograft model. Stimulation with high doses of BCAA activated mTORC1. Knockdown and overexpression experiments revealed that inhibition of mTOR complex 2 (mTORC2 or activation of mTORC1 led to decreased EpCAM expression and little or no tumorigenicity. BCAA may enhance the sensitivity to chemotherapy by reducing the population of cscs via the mTOR pathway. This result suggests the utility of BCAA in liver cancer therapy.

  12. Determination of short-chain branching content in polyethylene by pyrolysis comprehensive multidimensional gas chromatography using low thermal mass column technology.

    Science.gov (United States)

    Eckerle, Patric; Pursch, Matthias; Cortes, Hernan J; Sun, Kefu; Winniford, Bill; Luong, Jim

    2008-10-01

    A research effort was undertaken to utilize the pyrolysis process to create fragments of polyethylene that could be indicative of branching, and allow quantitiation of said short-chain branches by pyrolysis comprehensive 2-D GC (Py-GC x GC). Several strategies for sample introduction and pyrolysis such as the in-column pyrolysis device and the programmed temperature vaporizer (PTV) were studied. The chromatographic separations were executed using low-thermal mass (LTM) comprehensive 2-D GC (GC x GC). A series of polyethylene-co-hexene samples were analyzed and a linear correlation of 1-hexene content with branching peak ratio was found. Correlation coefficients were determined as 0.97 for the measurements performed.

  13. Effects of branched-chain amino acids supplementation on both plasma amino acids concentration and muscle energetics changes resulting from muscle damage: A randomized placebo controlled trial.

    Science.gov (United States)

    Fouré, Alexandre; Nosaka, Kazunori; Gastaldi, Marguerite; Mattei, Jean-Pierre; Boudinet, Hélène; Guye, Maxime; Vilmen, Christophe; Le Fur, Yann; Bendahan, David; Gondin, Julien

    2016-02-01

    Branched-chain amino acids promote muscle-protein synthesis, reduce protein oxidation and have positive effects on mitochondrial biogenesis and reactive oxygen species scavenging. The purpose of the study was to determine the potential benefits of branched-chain amino acids supplementation on changes in force capacities, plasma amino acids concentration and muscle metabolic alterations after exercise-induced muscle damage. (31)P magnetic resonance spectroscopy and biochemical analyses were used to follow the changes after such damage. Twenty six young healthy men were randomly assigned to supplemented branched-chain amino acids or placebo group. Knee extensors maximal voluntary isometric force was assessed before and on four days following exercise-induced muscle damage. Concentrations in phosphocreatine [PCr], inorganic phosphate [Pi] and pH were measured during a standardized rest-exercise-recovery protocol before, two (D2) and four (D4) days after exercise-induced muscle damage. No significant difference between groups was found for changes in maximal voluntary isometric force (-24% at D2 and -21% at D4). Plasma alanine concentration significantly increased immediately after exercise-induced muscle damage (+25%) in both groups while concentrations in glycine, histidine, phenylalanine and tyrosine decreased. No difference between groups was found in the increased resting [Pi] (+42% at D2 and +34% at D4), decreased resting pH (-0.04 at D2 and -0.03 at D4) and the slower PCr recovery rate (-18% at D2 and -24% at D4). The damaged muscle was not able to get benefits out of the increased plasma branched-chain amino acids availability to attenuate changes in indirect markers of muscle damage and muscle metabolic alterations following exercise-induced muscle damage. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Biological Functions of ilvC in Branched-Chain Fatty Acid Synthesis and Diffusible Signal Factor Family Production in Xanthomonas campestris

    Directory of Open Access Journals (Sweden)

    Kai-Huai Li

    2017-12-01

    Full Text Available In bacteria, the metabolism of branched-chain amino acids (BCAAs is tightly associated with branched-chain fatty acids (BCFAs synthetic pathways. Although previous studies have reported on BCFAs biosynthesis, more detailed associations between BCAAs metabolism and BCFAs biosynthesis remain to be addressed. In this study, we deleted the ilvC gene, which encodes ketol-acid reductoisomerase in the BCAAs synthetic pathway, from the Xanthomonas campestris pv. campestris (Xcc genome. We characterized gene functions in BCFAs biosynthesis and production of the diffusible signal factor (DSF family signals. Disruption of ilvC caused Xcc to become auxotrophic for valine and isoleucine, and lose the ability to synthesize BCFAs via carbohydrate metabolism. Furthermore, ilvC mutant reduced the ability to produce DSF-family signals, especially branched-chain DSF-family signals, which might be the main reason for Xcc reduction of pathogenesis toward host plants. In this report, we confirmed that BCFAs do not have major functions in acclimatizing Xcc cells to low temperatures.

  15. Arabidopsis and Maize RidA Proteins Preempt Reactive Enamine/Imine Damage to Branched-Chain Amino Acid Biosynthesis in Plastids[C][W][OPEN

    Science.gov (United States)

    Niehaus, Thomas D.; Nguyen, Thuy N.D.; Gidda, Satinder K.; ElBadawi-Sidhu, Mona; Lambrecht, Jennifer A.; McCarty, Donald R.; Downs, Diana M.; Cooper, Arthur J.L.; Fiehn, Oliver; Mullen, Robert T.; Hanson, Andrew D.

    2014-01-01

    RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase. PMID:25070638

  16. Superiority of branched side chains in spontaneous nanowire formation: exemplified by poly(3-2-methylbutylthiophene) for high-performance solar cells.

    Science.gov (United States)

    Chen, Hsieh-Chih; Wu, I-Che; Hung, Jui-Hsiang; Chen, Fu-Je; Chen, I-Wen P; Peng, Yung-Kang; Lin, Chao-Sung; Chen, Chun-Hsien; Sheng, Yu-Jane; Tsao, Heng-Kwong; Chou, Pi-Tai

    2011-04-18

    One-dimensional nanostructures containing heterojunctions by conjugated polymers, such as nanowires, are expected to greatly facilitate efficient charge transfer in bulk-heterojunction (BHJ) solar cells. Thus, a combined theoretical and experimental approach is pursued to explore spontaneous nanowire formation. A dissipative particle dynamics simulation is first performed to study the morphologies formed by rodlike polymers with various side-chain structures. The results surprisingly predict that conjugated polymers with branched side chains are well suited to form thermodynamically stable nanowires. Proof of this concept is provided via the design and synthesis of a branched polymer of regioregular poly(3-2-methylbutylthiophene) (P3MBT), which successfully demonstrates highly dense nanowire formation free from any stringent conditions and stratagies. In BHJ solar cells fabricated using a blend of P3MBT and [6,6]-phenyl-C71-butyric acid methyl ester (PC(71) BM), P3MBT polymers are self-organized into highly crystalline nanowires with a d(100) spacing of 13.30 Å. The hole mobility of the P3MBT:PC(71) BM (1:0.5 by weight) blend film reaches 3.83 × 10(-4) cm(2) V(-1) s(-1) , and the maximum incident photon-to-current efficiency reaches 68%. The results unambiguously prove the spontaneous formation of nanowires using solution-processable conjugated polymers with branched alkyl side chains in BHJ solar cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Minjun Xu

    Full Text Available It is known that the catabolism of branched-chain amino acids (BCAAs in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK. In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  18. Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review.

    Science.gov (United States)

    Fouré, Alexandre; Bendahan, David

    2017-09-21

    Amino acids and more precisely, branched-chain amino acids (BCAAs), are usually consumed as nutritional supplements by many athletes and people involved in regular and moderate physical activities regardless of their practice level. BCAAs have been initially shown to increase muscle mass and have also been implicated in the limitation of structural and metabolic alterations associated with exercise damage. This systematic review provides a comprehensive analysis of the literature regarding the beneficial effects of BCAAs supplementation within the context of exercise-induced muscle damage or muscle injury. The potential benefit of a BCAAs supplementation was also analyzed according to the supplementation strategy-amount of BCAAs, frequency and duration of the supplementation-and the extent of muscle damage. The review protocol was registered prospectively with Prospective Register for Systematic Reviews (registration number CRD42017073006) and followed Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Literature search was performed from the date of commencement until August 2017 using four online databases (Medline, Cochrane library, Web of science and ScienceDirect). Original research articles: (i) written in English; (ii) describing experiments performed in Humans who received at least one oral BCAAs supplementation composed of leucine, isoleucine and valine mixture only as a nutritional strategy and (iii) reporting a follow-up of at least one day after exercise-induced muscle damage, were included in the systematic review analysis. Quality assessment was undertaken independently using the Quality Criteria Checklist for Primary Research. Changes in indirect markers of muscle damage were considered as primary outcome measures. Secondary outcome measures were the extent of change in indirect markers of muscle damage. In total, 11 studies were included in the analysis. A high heterogeneity was found regarding the different outcomes of

  19. Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review

    Directory of Open Access Journals (Sweden)

    Alexandre Fouré

    2017-09-01

    Full Text Available Amino acids and more precisely, branched-chain amino acids (BCAAs, are usually consumed as nutritional supplements by many athletes and people involved in regular and moderate physical activities regardless of their practice level. BCAAs have been initially shown to increase muscle mass and have also been implicated in the limitation of structural and metabolic alterations associated with exercise damage. This systematic review provides a comprehensive analysis of the literature regarding the beneficial effects of BCAAs supplementation within the context of exercise-induced muscle damage or muscle injury. The potential benefit of a BCAAs supplementation was also analyzed according to the supplementation strategy—amount of BCAAs, frequency and duration of the supplementation—and the extent of muscle damage. The review protocol was registered prospectively with Prospective Register for Systematic Reviews (registration number CRD42017073006 and followed Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Literature search was performed from the date of commencement until August 2017 using four online databases (Medline, Cochrane library, Web of science and ScienceDirect. Original research articles: (i written in English; (ii describing experiments performed in Humans who received at least one oral BCAAs supplementation composed of leucine, isoleucine and valine mixture only as a nutritional strategy and (iii reporting a follow-up of at least one day after exercise-induced muscle damage, were included in the systematic review analysis. Quality assessment was undertaken independently using the Quality Criteria Checklist for Primary Research. Changes in indirect markers of muscle damage were considered as primary outcome measures. Secondary outcome measures were the extent of change in indirect markers of muscle damage. In total, 11 studies were included in the analysis. A high heterogeneity was found regarding the

  20. A 7-day oral supplementation with branched-chain amino acids was ineffective to prevent muscle damage during a marathon.

    Science.gov (United States)

    Areces, Francisco; Salinero, Juan Jose; Abian-Vicen, Javier; González-Millán, Cristina; Gallo-Salazar, Cesar; Ruiz-Vicente, Diana; Lara, Beatriz; Del Coso, Juan

    2014-05-01

    The aim of this study was to determine the effectiveness of a 7-day oral supplementation with branched-chain amino acids (BCAA) to prevent muscle damage during a marathon. Forty-six experienced runners were randomly divided into two groups, one with BCAA supplementation (n = 25, supplemented with 5 g day(-1) of powdered 1:0.5:0.5 leucine:isoleucine:valine, during the 7 days prior to the competition) and the other as a control group (n = 21, supplemented with an isocaloric placebo). Before the marathon race and within 3 min of finishing, leg muscle power was measured with a maximal countermovement jump and a urine sample was obtained. During the race, running pace was measured by means of a time-chip. Myoglobin concentration was determined in the urine samples as an indirect marker of muscle damage. A visual analog scale (0-10 points) was used to assess leg muscle pain during the race. In the BCAA group, the mean running pace during the marathon was similar to the control group (3.3 ± 0.4 vs. 3.3 ± 0.5 m s(-1), respectively, 0.98). The pre- to post-race reduction in muscle power was similar in both BCAA and control groups (-23.0 ± 16.1 vs. -17.3 ± 13.8 %, P = 0.13). Post-race urine myoglobin concentration was similar in both BCAA and control groups (5.4 ± 7.5 vs. 4.5 ± 8.6 μg mL(-1), P = 0.70). Finally, there were no differences between groups in the perceived muscle pain during the race (6 ± 1 vs. 5 ± 1 points, P = 0.80). A 7-day supplementation of BCAA (5 g day(-1)) did not increase the running performance during a marathon. Furthermore, BCAA supplementation was ineffective to prevent muscle power loss, muscle damage or perceived muscle pain during a marathon race.

  1. Association of branched-chain amino acids with carotid intima-media thickness and coronary artery disease risk factors.

    Directory of Open Access Journals (Sweden)

    Ruiyue Yang

    Full Text Available BACKGROUND: Recent studies have determined that branched-chain (BCAAs and aromatic (AAAs amino acids are strongly correlated with obesity and atherogenic dyslipidemia and are strong predictors of diabetes. However, it is not clear if these amino acids are capable of identifying subjects with coronary artery disease (CAD, particularly with subclinical atherosclerosis who are at risk of developing CAD. METHODS: Four hundred and seventy two Chinese subjects (272 males and 200 females, 42-97 y of age undergoing physical exams were recruited at random for participation in the cross-sectional study. Serum BCAAs and AAAs were measured using our previously reported isotope dilution liquid chromatography tandem mass spectrometry method. Bilateral B-mode carotid artery images for carotid intima-media thickness (cIMT were acquired at end diastole and cIMT values more than 0.9 mm were categorized as increased. Correlations of BCAAs with cIMT and other CAD risk factors were analyzed. RESULTS: BCAAs and AAAs were significantly and positively associated with risk factors of CAD, e.g., cIMT, BMI, waist circumference, blood pressure, fasting blood glucose, TG, apoB, apoB/apoAI ratio, apoCII, apoCIII and hsCRP, and were significantly and negatively associated with HDL-C and apoAI. Stepwise multiple linear regression analysis revealed that age (β = 0.175, P<0.001, log BCAA (β = 0.147, P<0.001 and systolic blood pressure (β = 0.141, P = 0.012 were positively and independently associated with cIMT. In the logistic regression model, the most and only powerful laboratory factor correlated with increased cIMT was BCAA (the odds ratio of the fourth quartile compared to the first quartile was 2.679; P = 0.009. CONCLUSION: BCAAs are independently correlated with increased cIMT. This correlation would open a new field of research in the mechanistic understanding and risk assessment of CAD.

  2. A novel branched chain amino acids responsive transcriptional regulator, BCARR, negatively acts on the proteolytic system in Lactobacillus helveticus.

    Directory of Open Access Journals (Sweden)

    Taketo Wakai

    Full Text Available Transcriptional negative regulation of the proteolytic system of Lactobacillus helveticus CM4 in response to amino acids seems to be very important for the control of antihypertensive peptide production; however, it remains poorly understood. A 26-kDa protein with N-terminal cystathionine β-synthase domains (CBS domain protein, which seems to be involved in the regulatory system, was purified by using a DNA-sepharose bound 300-bp DNA fragment corresponding to the upstream regions of the six proteolytic genes that are down-regulated by amino acids. The CBS domain protein bound to a DNA fragment corresponding to the region upstream of the pepV gene in response to branched chain amino acids (BCAAs. The expression of the pepV gene in Escherichia coli grown in BCAA-enriched medium was repressed when the CBS domain protein was co-expressed. These results reveal that the CBS domain protein acts as a novel type of BCAA-responsive transcriptional regulator (BCARR in L. helveticus. From comparative analysis of the promoter regions of the six proteolysis genes, a palindromic AT-rich motif, 5'-AAAAANNCTWTTATT-3', was predicted as the consensus DNA motif for the BCARR protein binding. Footprint analysis using the pepV promotor region and gel shift analyses with the corresponding short DNA fragments strongly suggested that the BCARR protein binds adjacent to the pepV promoter region and affects the transcription level of the pepV gene in the presence of BCAAs. Homology search analysis of the C-terminal region of the BCARR protein suggested the existence of a unique βαββαβ fold structure that has been reported in a variety of ACT (aspartate kinase-chorismate mutase-tyrA domain proteins for sensing amino acids. These results also suggest that the sensing of BCAAs by the ACT domain might promote the binding of the BCARR to DNA sequences upstream of proteolysis genes, which affects the gene expression of the proteolytic system in L. helveticus.

  3. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A.; Illman, Walter A.

    2015-06-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios.

  5. Effects of leucine supplementation and serum withdrawal on branched-chain amino acid pathway gene and protein expression in mouse adipocytes.

    Directory of Open Access Journals (Sweden)

    Abderrazak Kitsy

    Full Text Available The essential branched-chain amino acids (BCAA, leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2 and branched-chain alpha keto acid dehydrogenase (Bckdha was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4 compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our

  6. Effects of Leucine Supplementation and Serum Withdrawal on Branched-Chain Amino Acid Pathway Gene and Protein Expression in Mouse Adipocytes

    Science.gov (United States)

    Vivar, Juan C.; Knight, Megan S.; Pointer, Mildred A.; Gwathmey, Judith K.; Ghosh, Sujoy

    2014-01-01

    The essential branched-chain amino acids (BCAA), leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2) and branched-chain alpha keto acid dehydrogenase (Bckdha) was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4) compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our understanding of

  7. Engineering Erg10 thiolase from Saccharomyces cerevisiae as a synthetic toolkit for the production of branched-chain alcohols.

    Science.gov (United States)

    Torres-Salas, Pamela; Bernal, Vicente; López-Gallego, Fernando; Martínez-Crespo, Javier; Sánchez-Murcia, Pedro Alejandro; Barrera, Víctor; Morales-Jiménez, Rocío; García-Sánchez, Ana; Mañas-Fernández, Aurora; Seoane, José Miguel; Sagrera Polo, Marta; Miranda, Juande D; Calvo, Javier; Huertas, Sonia; Torres, José Luis; Alcalde-Bascones, Ana; González-Barrera, Sergio; Gago, Federico; Morreale, Antonio; González-Barroso, María Del Mar

    2018-01-23

    Thiolases catalyze the condensation of acyl-CoA thioesters through the Claisen condensation reaction. The best described enzymes usually yield linear condensation products. Using a combined computational/experimental approach, and guided by structural information, we have studied the potential of thiolases to synthesize branched compounds. We have identified a bulky residue located at the active site that blocks proper accommodation of substrates longer than acetyl-CoA. Amino acid replacements at such position exert effects on the activity and product selectivity of the enzymes that are highly dependent on protein scaffold. Among the set of five thiolases studied, Erg10 thiolase from Saccharomyces cerevisiae showed no acetyl-CoA/butyryl-CoA branched condensation activity, but variants in position F293 resulted the most active and selective biocatalysts for this reaction. This is the first time that a thiolase has been engineered to synthesize branched compounds. These novel enzymes enrich the toolbox of combinatorial (bio)chemistry, paving the way for manufacturing a variety of α-substituted synthons. As a proof of concept, we have engineered Clostridium's 1-butanol pathway to obtain 2-ethyl-1-butanol, an alcohol which is interesting as branched model compound.

  8. Characterization of a Lipoyl Domain-Independent B-Cell Autoepitope on the Human Branched-Chain Acyltransferase in Primary Biliary Cirrhosis and Overlap Syndrome with Autoimmune Hepatitis

    Directory of Open Access Journals (Sweden)

    Antal Csepregi

    2003-01-01

    Full Text Available Background and aims: Antimitochondrial antibodies (AMA which recognize pyruvate acetyltransferase (PDC-E2 represent a highly diagnostic feature of primary biliary cirrhosis (PBC. The analysis of immunofluorescence (IF-AMA-positive sera in PBC patients indicates a conformational epitope located within the lipoyl binding domain of bovine branched-chain acyltransferase (BCKADC-E2 alone or in combination with AMA directed against PDC-E2 the significance of which is presently unclear. In the present study, immunoreactivities and disease associations of AMA against BCKADC-E2 were analyzed. B-cell autoepitopes on BCKADC-E2 were mapped by immunoprecipitation assay.

  9. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise

    DEFF Research Database (Denmark)

    Moberg, Marcus; Apró, William; Ekblom, Björn

    2016-01-01

    Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution...... of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo...

  10. Transient overshoot extensional rheology of long-chain branched polyethylenes: Experimental and numerical comparisons between filament stretching and cross-slot flow

    DEFF Research Database (Denmark)

    Hoyle, D.M.; Huang, Qian; Auhl, D.

    2013-01-01

    the imposed strain rate on a filament, allowing Hencky strains of around 7 to be reached. The cross-slot extensional rheometer uses optical birefringence patterns to determine the steady-state extensional viscosity from planar stagnation point flow. The two methods probe different strain-rate regimes...... and in this paper we demonstrate the agreement when the operating regimes overlap and explore the steady-state extensional viscosity in the full strain-rate regime that these two complimentary techniques offer. For long-chain branched materials, the cross-slot birefringence images show a double cusp pattern around...

  11. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints

    National Research Council Canada - National Science Library

    Mack, Isabelle; Cuntz, Ulrich; Graemer, Claudia; Niedermaier, Sabrina; Pohl, Charlotte; Schwiertz, Aneas; Zimmermann, Kurt; Zipfel, Stephan; Enck, Paul; Penders, John

    2016-01-01

    .... To explore the potential role of the intestinal microbiota in anorexia nervosa (AN), we comprehensively investigated the faecal microbiota and short-chain fatty acids in these patients before (n = 55...

  12. Branched chain enriched amino acid versus glucose treatment of hepatic encephalopathy. A double-blind study of 65 patients with cirrhosis

    DEFF Research Database (Denmark)

    Vilstrup, Hendrik; Gluud, C; Hardt, F

    1990-01-01

    . In the glucose group ten died, three developed renal and two respiratory failure, and one remained encephalopathic. The coma score worsened in three of the patients who died in the amino acid group, but in all patients who died in the glucose group. The negative nitrogen balance on entry reversed in the amino......We studied the effects of infusion of a branched chain enriched amino acid mixture versus glucose on acute hepatic encephalopathy in patients with cirrhosis. Sixty-five patients were randomly treated with 1 g/kg per day of an amino acid mixture with 40% branched chain contents (32 patients......), or isocaloric glucose (33 patients) for a maximum of 16 days. The regimens further included glucose infusion to a total of 26.5 kcal/kg per day and lactulose. The patients took part in the study for 5-6 days. In each group 17 patients woke up. In the amino acid group eleven died and four developed renal failure...

  13. KEJADIAN INDEL SIMULTAN PADA INTRON 7 GEN BRANCHED-CHAIN Α-KETOACID DEHYDROGENASE E1A (BCKDHA PADA SAPI MADURA

    Directory of Open Access Journals (Sweden)

    Asri Febriana

    2015-08-01

    Full Text Available Madura cattle is one of the Indonesian local cattle breeds derived from crossing between Zebu cattle (Bos indicus and banteng (Bos javanicus. Branched-chain α-ketoacid dehydrogenase (BCKDH is one of the main enzyme complexes in the inner mitochondrial membrane that metabolizes branched chain amino acid (BCAA, ie valine, leucine, and isoleucine. The diversity of the nucleotide sequences of the genes largely determine the efficiency of enzyme encoded. This paper aimed to determine the nucleotide variation contained in section intron 7, exon 8, and intron 8 genes BCKDHA on Madura cattle. This study was conducted on three Madura cattle that used as bull race (karapan, beauty contest (sonok, and beef cattle. The analysis showed that the variation in intron higher than occurred in the exon. Simultaneous indel found at base position 34 and 68 in sonok cattle. In addition, the C266T variant found in beef cattle. These variants do not cause significant changes in amino acids. There was no specific mutation in intron 7, exon 8, and intron 8 were found in Madura cattle designation. This indicated the absence of differentiation Madura cattle designation of selection pressure of BCKDHA gene.

  14. Solid-State Organization and Ambipolar Field-Effect Transistors of Benzothiadiazole-Cyclopentadithiophene Copolymer with Long Branched Alkyl Side Chains

    Directory of Open Access Journals (Sweden)

    Martin Baumgarten

    2013-06-01

    Full Text Available The solid-state organization of a benzothiadiazole-cyclopentadithiophene copolymer with long, branched decyl-tetradecyl side chains (CDT-BTZ-C14,10 is investigated. The C14,10 substituents are sterically demanding and increase the π-stacking distance to 0.40 nm from 0.37 nm for the same polymer with linear hexadecyls (C16. Despite the bulkiness, the C14,10 side chains tend to crystallize, leading to a small chain-to-chain distance between lamellae stacks and to a crystal-like microstructure in the thin film. Interestingly, field-effect transistors based on solution processed layers of CDT-BTZ-C14,10 show ambipolar behavior in contrast to CDT-BTZ-C16 with linear side chains, for which hole transport was previously observed. Due to the increased π-stacking distance, the mobilities are only 6 × 10−4 cm²/Vs for electrons and 6 × 10−5 cm²/Vs for holes, while CDT-BTZ-C16 leads to values up to 5.5 cm²/Vs. The ambipolarity is attributed to a lateral shift between stacked backbones provoked by the bulky C14,10 side chains. This reorganization is supposed to change the transfer integrals between the C16 and C14,10 substituted polymers. This work shows that the electronic behavior in devices of one single conjugated polymer (in this case CDT-BTZ can be controlled by the right choice of the substituents to place the backbones in the desired packing.

  15. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    Energy Technology Data Exchange (ETDEWEB)

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-08-05

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly /sup 14/C-labeled BCAA, together with (methyl-/sup 3/H)methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of /sup 14/C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans.

  16. Correcting false positive medium-chain acyl-CoA dehydrogenase deficiency results from newborn screening; synthesis, purification, and standardization of branched-chain C8 acylcarnitines for use in their selective and accurate absolute quantitation by UHPLC-MS/MS.

    Science.gov (United States)

    Minkler, Paul E; Stoll, Maria S K; Ingalls, Stephen T; Hoppel, Charles L

    2017-04-01

    While selectively quantifying acylcarnitines in thousands of patient samples using UHPLC-MS/MS, we have occasionally observed unidentified branched-chain C8 acylcarnitines. Such observations are not possible using tandem MS methods, which generate pseudo-quantitative acylcarnitine "profiles". Since these "profiles" select for mass alone, they cannot distinguish authentic signal from isobaric and isomeric interferences. For example, some of the samples containing branched-chain C8 acylcarnitines were, in fact, expanded newborn screening false positive "profiles" for medium-chain acyl-CoA dehydrogenase deficiency (MCADD). Using our fast, highly selective, and quantitatively accurate UHPLC-MS/MS acylcarnitine determination method, we corrected the false positive tandem MS results and reported the sample results as normal for octanoylcarnitine (the marker for MCADD). From instances such as these, we decided to further investigate the presence of branched-chain C8 acylcarnitines in patient samples. To accomplish this, we synthesized and chromatographically characterized several branched-chain C8 acylcarnitines (in addition to valproylcarnitine): 2-methylheptanoylcarnitine, 6-methylheptanoylcarnitine, 2,2-dimethylhexanoylcarnitine, 3,3-dimethylhexanoylcarnitine, 3,5-dimethylhexanoylcarnitine, 2-ethylhexanoylcarnitine, and 2,4,4-trimethylpentanoylcarnitine. We then compared their behavior with branched-chain C8 acylcarnitines observed in patient samples and demonstrated our ability to chromographically resolve, and thus distinguish, octanoylcarnitine from branched-chain C8 acylcarnitines, correcting false positive MCADD results from expanded newborn screening. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints

    OpenAIRE

    Isabelle Mack; Ulrich Cuntz; Claudia Grämer; Sabrina Niedermaier; Charlotte Pohl; Andreas Schwiertz; Kurt Zimmermann; Stephan Zipfel; Paul Enck; John Penders

    2016-01-01

    The gut microbiota not only influences host metabolism but can also affect brain function and behaviour through the microbiota-gut-brain axis. To explore the potential role of the intestinal microbiota in anorexia nervosa (AN), we comprehensively investigated the faecal microbiota and short-chain fatty acids in these patients before (n?=?55) and after weight gain (n?=?44) in comparison to normal-weight participants (NW, n?=?55) along with dietary intake and gastrointestinal complaints. We sho...

  18. Effect of a high-protein, high-fiber diet plus supplementation with branched-chain amino acids on the nutritional status of patients with cirrhosis.

    Science.gov (United States)

    Ruiz-Margáin, A; Macías-Rodríguez, R U; Ríos-Torres, S L; Román-Calleja, B M; Méndez-Guerrero, O; Rodríguez-Córdova, P; Torre, A

    The potential benefits of branched-chain amino acids (BCAAs) in cirrhosis extend beyond just the improvement of nutritional status. Their effects include improvement of glucose tolerance, oxidative stress, and inflammatory markers, as has been shown in several studies. A dual nutritional approach of a high-protein, high-fiber diet plus BCAAs in cirrhosis could have additional benefits, compared with BCAAs alone. Such an approach has not been explored and therefore the aim of the present study was to evaluate the effect of a combination of a high-protein, high-fiber diet plus BCAA supplementation over a 6-month period of time on the nutritional status of patients with cirrhosis, as well as its safety and tolerability for those same patients. An open, randomized clinical trial was conducted. Patients were randomized to one of two groups: the BCAAs+HPHF diet intervention group: a high-protein, high-fiber diet with 1.2g/kg protein and 30g of fiber plus supplementation with oral branched-chain amino acids 110g daily and the HPHF diet control group: a high-protein, high-fiber diet with 1.2g/kg protein and 30g of fiber. The differences between the treatment groups were compared using the unpaired T test and the differences at the end of treatment were compared using the paired T test. A total of 72 patients were included, 37 in the intervention group and 35 in the control group. At the end of the study period, ammonia and glucose levels showed no significant increase in either group, reflecting the safety of the BCAA supplement. Furthermore, muscle and fat mass were evaluated through triceps skinfold thickness and mid-arm muscle circumference measurements. There was an increase in muscle mass and a decrease in fat mass in the BCAA group, but not in the control group. After the intervention, there were no significant changes in the Psychometric Hepatic Encephalopathy Score or the Critical Flicker Frequency score results in either group, and no episodes of hepatic

  19. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis.

    Directory of Open Access Journals (Sweden)

    Luca A Lotta

    2016-11-01

    Full Text Available Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question.Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8. The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25, encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8 for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6 for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6 for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are

  20. [Usefulness of branched-chain amino acid (BCAA)-enriched nutrient mixture for nutritional treatment undergoing endoscopic treatment for esophageal varices].

    Science.gov (United States)

    Shibata, Naozumi; Matsui, Hidetaka; Takeshita, Eiji; Yokota, Tomoyuki; Higaki, Naoyuki; Murakami, Hidehiro; Ikeda, Yoshiou; Minami, Hisaka; Matsuura, Bunzo; Onji, Morikazu

    2005-07-01

    We investigated the alteration of nutritional status in 144 patients who were treated for the first time with endoscopic sclerotherapy or endoscopic variceal ligation during their therapies. The serum levels of albumin, cholinesterase and total cholesterol were compared before and after treatment. The serum level of cholinesterase declined significantly. To investigate the impact of aging on the changes of nutritional status we divided all patients into two groups: (1) under 65 years, and (2) over 65 years. The decline of serum albumin of elderly patients (n=65) was significantly greater than that of younger patients (n=79). A branched-chain amino acid (BCAA)-enriched nutrient mixture for nutritional treatment significantly suppressed the decline of serum albumin in elderly patients. Nutritional treatment with a BCAA-enriched nutrient mixture should be considered during endoscopic therapy for esophageal varices, especially in elderly patients.

  1. Nontargeted LC–MS Metabolomics Approach for Metabolic Profiling of Plasma and Urine from Pigs Fed Branched Chain Amino Acids for Maximum Growth Performance

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham; Hedemann, Mette Skou; Poulsen, Hanne Damgaard

    2016-01-01

    was optimum. The optimum dietary Leu resulted in increased urinary excretion of ascorbic acid and choline and relatively decreased excretion of 2-aminoadipic acid, acetyl-dl-valine, Ile, 2-methylbutyrylglycine, and Tyr. In conclusion, plasma glycocholic acid and taurocholic acid were discriminating...... metabolites to the optimum dietary Ile. The optimum dietary Leu was associated with reduced plasma creatine and urinary 2-aminoadipic acid and elevated urinary excretion of ascorbic acid and choline. The optimum dietary Val had a less pronounced metabolic response reflected in plasma or urine than other BCAA.......The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked...

  2. bkaR is a TetR-type repressor that controls an operon associated with branched-chain keto-acid metabolism in Mycobacteria.

    Science.gov (United States)

    Balhana, Ricardo J C; Swanston, Sade N; Coade, Stephen; Withers, Mike; Sikder, Mahmudul Hasan; Stoker, Neil G; Kendall, Sharon L

    2013-08-01

    This study describes how bkaR, a highly conserved mycobacterial TetR-like transcriptional repressor, regulates a number of nearby genes that have associations with branched-chain keto-acid metabolism. bkaR (MSMEG_4718) was deleted from the nonpathogenic species Mycobacterium smegmatis, and changes in global gene expression were assessed using microarray analysis and reporter gene studies. bkaR was found to directly control the expression of 10 genes in M. smegmatis, and its ortholog in Mycobacterium tuberculosis (Rv2506) is predicted to control at least 12 genes. A conserved operator motif was identified, and binding of purified recombinant M. tuberculosis BkaR to the motif was demonstrated. Analysis of the stoichiometry of binding showed that BkaR binds to the motif as a dimer. © 2013 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  3. The Effects of Adding Whey Protein and Branched-chain Amino Acid to Carbohydrate Beverages on Indices of Muscle Damage after Eccentric Resistance Exercise in Untrained Young Males

    Directory of Open Access Journals (Sweden)

    Foad Asjodi

    2017-07-01

    Full Text Available Abstract Background: The aim of this study was to evaluate the effects of supplementation of Branched-Chain Amino Acids (BCAAs plus carbohydrate (CHO and whey protein plus CHO on muscle damage indices after eccentric resistant exercise. Materials and Methods: Twenty four untrained healthy males participated in this study. They were randomly divided into three groups, BCAA +glucose (0.1+0.1g/kg supplement group (n=8, Whey+glucose (0.1+0.1g/kg supplement group (n=8, and placebo (malto dextrin 0.2g/kg group (n=8. Each subject consumed a carbohydrate beverage with addition of whey protein or branched-chain amino acid or placebo 30 minutes before exercise in a randomized,double-blind fashion. Serum levels of Creatine Kinase (CK, Lactate dehydrogenase (LDH, and muscle pain were measured before, 24, 48, 72 h after exercise. Follow-up analyses included 1-way repeated measures ANOVAs, and Bonferroni post hoc comparisons. Results: 24 h after test, serum levels of CK, LDH and muscle pain in both supplement groups were increased less than placebo group (0.015, 0.001 and 0.001, respectively. Also, the levels of CK and LDH showed significant changes in both intervention groups compared to placebo group at 24 h (0.001, 0. 015, respectively. Similarly, significant differences in the levels of CK and LDH between groups were observed. Conclusion: These data indicate that muscle damage and pain after resistant exercise were reduced by an ingestion of either BCAA drink or whey protein drink.

  4. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.

    Science.gov (United States)

    Zheng, Liufeng; Zuo, Fangrui; Zhao, Shengjun; He, Pingli; Wei, Hongkui; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2017-04-01

    Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.

  5. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Huang, Tengfang; Jander, Georg

    2017-07-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  6. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Lackey, Denise E.; Lynch, Christopher J.; Olson, Kristine C.; Mostaedi, Rouzbeh; Ali, Mohamed; Smith, William H.; Karpe, Fredrik; Humphreys, Sandy; Bedinger, Daniel H.; Dunn, Tamara N.; Thomas, Anthony P.; Oort, Pieter J.; Kieffer, Dorothy A.; Amin, Rajesh; Bettaieb, Ahmed; Haj, Fawaz G.; Permana, Paska; Anthony, Tracy G.

    2013-01-01

    Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35–50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals. PMID:23512805

  7. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems.

    Directory of Open Access Journals (Sweden)

    J Samuel Zigler

    Full Text Available A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs, leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body, and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70-80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of

  8. Aspectos atuais sobre aminoácidos de cadeia ramificada e exercício físico Current aspects of branched chain amino acid and exercise

    Directory of Open Access Journals (Sweden)

    Marcelo Macedo Rogero

    2008-12-01

    Full Text Available Em humanos saudáveis, nove aminoácidos são considerados essenciais, uma vez que não podem ser sintetizados endogenamente e, portanto, devem ser ingeridos por meio da dieta. Dentre os aminoácidos essenciais, se incluem os três aminoácidos de cadeia ramificada, ou seja, leucina, valina e isoleucina. Esses aminoácidos participam da regulação do balanço protéico corporal além de serem fonte de nitrogênio para a síntese de alanina e glutamina. No tocante à regulação da síntese protéica muscular, verifica-se que a leucina age estimulando a fase de iniciação da tradução do RNA-mensageiro em proteína, por mecanismos tanto dependentes quanto independentes de insulina. No que concerne ao exercício físico, supõe-se que esses aminoácidos estejam envolvidos na fadiga central, no balanço protéico muscular, na secreção de insulina, na modulação da imunocompetência, no aumento da performance de indivíduos que se exercitam em ambientes quentes e na diminuição do grau de lesão muscular. Nesse contexto, essa revisão aborda os aspectos atuais do metabolismo e da suplementação de aminoácidos de cadeia ramificada no exercício físico.In healthy humans, nine amino acids are considered to be essential once they cannot be endogenously synthesised and must therefore be ingested in the diet. Amongst the essential amino acids are the three branched chain amino acids, namely, leucine, valine and isoleucine. These amino acids participate in the regulation of protein balance in addition to being nitrogen sources for the synthesis of alanine and glutamine. As to the regulation of muscle protein synthesis, leucine acts in the stimulation of initiation of mRNA translation into protein, both through mechanisms that are dependent and independent of insulin. In the physiology of physical exercise, these branched amino acids play a role in central fatigue hypothesis, in muscle protein balance, in the secretion of insulin, in the

  9. Structure Effect of Some New Anticancer Pt(II) Complexes of Amino Acid Derivatives with Small Branched or Linear Hydrocarbon Chains on Their DNA Interaction.

    Science.gov (United States)

    Kantoury, Mahshid; Eslami Moghadam, Mahboube; Tarlani, Ali Akbar; Divsalar, Adeleh

    2016-07-01

    The aim of this study was to investigate the structure effect and identify the modes of binding of amino acid-Pt complexes to DNA molecule for cancer treatment. Hence, three novel water soluble platinum complexes, [Pt(phen)(R-gly)]NO3 (where phen is 1,10-phenanthroline, R-gly is methyl, amyl, and isopentyl-glycine), have been synthesized and characterized by spectroscopic methods, conductivity measurements, and chemical analysis. The anticancer activities of synthesized complexes were investigated against human breast cancer cell line of MDA-MB 231. The 50% cytotoxic concentration values were determined to be 42.5, 58, and 70 μm for methyl-, amyl-, and isopentyl-gly complexes, respectively. These complexes were interacted with calf thymus DNA (ct-DNA) via positive cooperative interaction. The modes of binding of the complexes to DNA were investigated by fluorescence spectroscopy and circular dichroism in combination with a molecular docking study. The result indicates that complexes with small or branched hydrocarbon chains can intercalate with DNA. This is while amyl complexes with linear chains interacted additionally via groove binding. The results of the negative value of Gibbs energy for binding of isopentyl-platinum to DNA and those of the molecular docking were coherent. Furthermore, the docking results demonstrated that hydrophobic interaction plays an important role in the complex-DNA interaction. © 2016 John Wiley & Sons A/S.

  10. Effects of EPSPS Copy Number Variation (CNV and Glyphosate Application on the Aromatic and Branched Chain Amino Acid Synthesis Pathways in Amaranthus palmeri

    Directory of Open Access Journals (Sweden)

    Manuel Fernández-Escalada

    2017-11-01

    Full Text Available A key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19, is the known target of the widely used herbicide glyphosate. Glyphosate resistance in Amaranthus palmeri, one of the most troublesome weeds in agriculture, has evolved through increased EPSPS gene copy number. The aim of this work was to study the pleiotropic effects of (i EPSPS increased transcript abundance due to gene copy number variation (CNV and of (ii glyphosate application on the aromatic amino acid (AAA and branched chain amino acid (BCAA synthesis pathways. Hydroponically grown glyphosate sensitive (GS and glyphosate resistant (GR plants were treated with glyphosate 3 days after treatment. In absence of glyphosate treatment, high EPSPS gene copy number had only a subtle effect on transcriptional regulation of AAA and BCAA pathway genes. In contrast, glyphosate treatment provoked a general accumulation of the transcripts corresponding to genes of the AAA pathway leading to synthesis of chorismate in both GS and GR. After chorismate, anthranilate synthase transcript abundance was higher while chorismate mutase transcription showed a small decrease in GR and remained stable in GS, suggesting a regulatory branch point in the pathway that favors synthesis toward tryptophan over phenylalanine and tyrosine after glyphosate treatment. This was confirmed by studying enzyme activities in vitro and amino acid analysis. Importantly, this upregulation was glyphosate dose dependent and was observed similarly in both GS and GR populations. Glyphosate treatment also had a slight effect on the expression of BCAA genes but no general effect on the pathway could be observed. Taken together, our observations suggest that the high CNV of EPSPS in A. palmeri GR populations has no major pleiotropic effect on the expression of AAA biosynthetic genes, even in response to glyphosate treatment. This finding supports the idea that the fitness cost associated

  11. Comparison of the Photovoltaic Characteristics and Nanostructure of Fullerenes Blended with Conjugated Polymers with Siloxane-Terminated and Branched Aliphatic Side Chains

    KAUST Repository

    Kim, Do Hwan

    2013-02-12

    All-organic bulk heterojunction solar cells based on blends of conjugated polymers with fullerenes have recently surpassed the 8% efficiency mark and are well on their way to the industrially relevant ∼15% threshold. Using a low band-gap conjugated polymer, we have recently shown that polymer side chain engineering can lead to dramatic improvement in the in-plane charge carrier mobility. In this article, we investigate the effectiveness of siloxy side chain derivatization in controlling the photovoltaic performance of polymer:[6,6]-phenyl-C[71]-butyric acid methyl ester (PC71BM) blends and hence its influence on charge transport in the out-of-plane direction relevant for organic solar cells. We find that, in neat blends, the photocurrent of the polymer with siloxy side chains (PII2T-Si) is 4 times greater than that in blends using the polymer with branched aliphatic side chains (PII2T-ref). This difference is due to a larger out-of-plane hole mobility for PII2T-Si brought about by a largely face-on crystallite orientation as well as more optimal nanoscale polymer:PC71BM mixing. However, upon incorporating a common processing additive, 1,8-diiodooctane (DIO), into the spin-casting blend solution and following optimization, the PII2T-ref:PC71BM OPV device performance undergoes a large improvement and becomes the better-performing device, almost independent of DIO concentration (>1%). We find that the precise amount of DIO plays a larger role in determining the efficiency of PII2T-Si:PC71BM, and even at its maximum, the device performance lags behind optimized PII2T-ref:PC71BM blends. Using a combination of atomic force microscopy and small- and wide-angle X-ray scattering, we are able to elucidate the morphological modifications associated with the DIO-induced changes in both the nanoscale morphology and the molecular packing in blend films. © 2012 American Chemical Society.

  12. Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates : effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids

    NARCIS (Netherlands)

    Jansen, Michael; Veurink, Janine H.; Euverink, Gert-Jan W.; Dijkhuizen, Lubbert

    Zygosaccharomyces rouxii, a salt-tolerant yeast isolated from the soy sauce process, produces fusel alcohols (isoamyl alcohol, active amyl alcohol and isobutyl alcohol) from branched-chain amino acids (leucine, isoleucine and valine, respectively) via the Ehrlich pathway. Using a high-throughput

  13. Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a ne, secreted metabolite serving as a temporary redox sink.

    NARCIS (Netherlands)

    Ward, D.E.; van der Weijden, C.C.; van der Merwe, M.J.; Westerhoff, H.V.; Claiborne, A.; Snoep, J.L.

    2000-01-01

    Recently the bkd gene cluster from Enterococcus faecalis was sequenced, and it was shown that the gene products constitute a pathway for the catabolism of branched-chain α-keto acids. We have now investigated the regulation and physiological role of this pathway. Primer extension analysis identified

  14. Roux-en-Y Gastric Bypass Surgery, but Not Calorie Restriction, Reduces Plasma Branched-Chain Amino Acids in Obese Women Independent of Weight Loss or the Presence of Type 2 Diabetes

    NARCIS (Netherlands)

    Lips, M.A.; Klinken, J.B. van; Harmelen, V. van; Dharuri, H.K.; Hoen, P.A.C. 't; Laros, J.F.; Ommen, G.J.B. van; Janssen, I.M; Ramshorst, B. van; Wagensveld, B.A. van; Swank, D.J.; Dielen, F. Van; Dane, A.; Harms, A.; Vreeken, R.; Hankemeier, T.; Smit, J.W.A.; Pijl, H.; Dijk, K van

    2014-01-01

    OBJECTIVE: Obesity and type 2 diabetes mellitus (T2DM) have been associated with increased levels of circulating branched-chain amino acids (BCAAs) that may be involved in the pathogenesis of insulin resistance. However, weight loss has not been consistently associated with the reduction of BCAA

  15. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    Science.gov (United States)

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of

  16. CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism.

    Science.gov (United States)

    Menazza, Sara; Wong, Renee; Nguyen, Tiffany; Wang, Guanghui; Gucek, Marjan; Murphy, Elizabeth

    2013-03-01

    Cyclophilin D (CypD) is a mitochondrial chaperone that has been shown to regulate the mitochondrial permeability transition pore (MPTP). MPTP opening is a major determinant of mitochondrial dysfunction and cardiomyocyte death during ischemia/reperfusion (I/R) injury. Mice lacking CypD have been widely used to study regulation of the MPTP, and it has been shown recently that genetic depletion of CypD correlates with elevated levels of mitochondrial Ca(2+). The present study aimed to characterize the metabolic changes in CypD(-/-) hearts. Initially, we used a proteomics approach to examine protein changes in CypD(-/-) mice. Using pathway analysis, we found that CypD(-/-) hearts have alterations in branched chain amino acid metabolism, pyruvate metabolism and the Krebs cycle. We tested whether these metabolic changes were due to inhibition of electron transfer from these metabolic pathways into the electron transport chain. As we found decreased levels of succinate dehydrogenase and electron transfer flavoprotein in the proteomics analysis, we examined whether activities of these enzymes might be altered. However, we found no alterations in their activities. The proteomics study also showed a 23% decrease in carnitine-palmitoyltransferase 1 (CPT1), which prompted us to perform a metabolomics analysis. Consistent with the decrease in CPT1, we found a significant decrease in C4/Ci4, C5-OH/C3-DC, C12:1, C14:1, C16:1, and C20:3 acyl carnitines in hearts from CypD(-/-) mice. In summary, CypD(-/-) hearts exhibit changes in many metabolic pathways and caution should be used when interpreting results from these mice as due solely to inhibition of the MPTP. Published by Elsevier Ltd.

  17. Branched-chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Jung Hoon Cha

    Full Text Available PURPOSE: Recent studies have revealed that branched-chain amino acids (BCAA reduce the development of hepatocellular carcinoma (HCC in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR. The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN-induced HCC and liver cirrhosis in a rat model. METHODS: Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. RESULTS: The mean area and number of dysplastic nodules (DNs and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. CONCLUSIONS: BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level.

  18. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation.

    Science.gov (United States)

    Zhenyukh, Olha; Civantos, Esther; Ruiz-Ortega, Marta; Sánchez, Maria Soledad; Vázquez, Clotilde; Peiró, Concepción; Egido, Jesús; Mas, Sebastián

    2017-03-01

    Leucine, isoleucine and valine are essential aminoacids termed branched-chain amino acids (BCAA) due to its aliphatic side-chain. In several pathological and physiological conditions increased BCAA plasma concentrations have been described. Elevated BCAA levels predict insulin resistance development. Moreover, BCAA levels higher than 2mmol/L are neurotoxic by inducing microglial activation in maple syrup urine disease. However, there are no studies about the direct effects of BCAA in circulating cells. We have explored whether BCAA could promote oxidative stress and pro-inflammatory status in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. In cultured PBMCs, 10mmol/L BCAA increased the production of reactive oxygen species (ROS) via both NADPH oxidase and the mitochondria, and activated Akt-mTOR signalling. By using several inhibitors and activators of these molecular pathways we have described that mTOR activation by BCAA is linked to ROS production and mitochondrial dysfunction. BCAA stimulated the activation of the redox-sensitive transcription factor NF-κB, which resulted in the release of pro-inflammatory molecules, such as interleukin-6, tumor necrosis factor-α, intracellular adhesion molecule-1 or CD40L, and the migration of PBMCs. In conclusion, elevated BCAA blood levels can promote the activation of circulating PBMCs, by a mechanism that involving ROS production and NF-κB pathway activation. These data suggest that high concentrations of BCAA could exert deleterious effects on circulating blood cells and therefore contribute to the pro-inflammatory and oxidative status observed in several pathophysiological conditions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Branched-Chain Amino Acids Ameliorate Fibrosis and Suppress Tumor Growth in a Rat Model of Hepatocellular Carcinoma with Liver Cirrhosis

    Science.gov (United States)

    Cha, Jung Hoon; Bae, Si Hyun; Kim, Hye Lim; Park, Na Ri; Choi, Eun Suk; Jung, Eun Sun; Choi, Jong Young; Yoon, Seung Kew

    2013-01-01

    Purpose Recent studies have revealed that branched-chain amino acids (BCAA) reduce the development of hepatocellular carcinoma (HCC) in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR). The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN)-induced HCC and liver cirrhosis in a rat model. Methods Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight) for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. Results The mean area and number of dysplastic nodules (DNs) and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. Conclusions BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level. PMID:24223741

  20. Performance of a Branch Chain RNA In Situ Hybridization Assay for the Detection of High-risk Human Papillomavirus in Head and Neck Squamous Cell Carcinoma.

    Science.gov (United States)

    Kerr, Darcy A; Arora, Kshitij S; Mahadevan, Krishnan K; Hornick, Jason L; Krane, Jeffrey F; Rivera, Miguel N; Ting, David T; Deshpande, Vikram; Faquin, William C

    2015-12-01

    High-risk human papillomavirus (HR-HPV) is a major etiologic agent in a subset of head and neck squamous cell carcinomas (HNSCCs), and its recognition has prognostic and predictive implications. The availability of a sensitive and specific test to assess HR-HPV status is limited. We evaluate an RNA in situ hybridization (ISH) method using branch chain technology to detect HR-HPV and compare its results with DNA ISH, p16 immunohistochemistry, and polymerase chain reaction (PCR). Tissue sections from 54 patients were stained with a manual RNA ISH assay (ViewRNA), which detects 14 HR-HPV types, an automated DNA ISH assay, and p16 immunohistochemistry. Most cases (83%, n=45) were also tested on an automated platform for 14 HR-HPV types and 1 limited to HPV 16/18. PCR was performed in all cases and was successful in 93% (n=50). The RNA ISH assay produced results in 96% of the cases with strong signals and was easily interpreted. HR-HPV was detected in more cases (63%, n=34) by RNA ISH than by DNA ISH (39%, n=21). Compared with PCR, both ISH platforms were 94% specific. RNA ISH was more sensitive (91%) than DNA ISH (65%), and RNA ISH correlated more strongly with p16 immunostaining. HPV 16 represented 89% of HR-HPV detected. The cocktail HPV 16/18 platform was concordant with the pooled HR-HPV assay in all expected cases. The automated assay demonstrated high concordance (96%) with the manual version, showed decreased background, and should allow for easy implementation into the workflow of the diagnostic pathology laboratory.

  1. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm² V(-1) s(-1).

    Science.gov (United States)

    Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben

    2013-02-13

    Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.

  2. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects.

    Science.gov (United States)

    Liu, Liyan; Feng, Rennan; Guo, Fuchuan; Li, Ying; Jiao, Jundong; Sun, Changhao

    2015-04-01

    Obesity is the result of a positive energy balance and often leads to difficulties in maintaining normal postprandial metabolism. The changes in postprandial metabolites after an oral glucose tolerance test (OGTT) in young obese Chinese men are unclear. In this work, the aim is to investigate the complex metabolic alterations in obesity provoked by an OGTT using targeted metabolomics. We used gas chromatography-mass spectrometry and ultra high performance liquid chromatography-triple quadrupole mass spectrometry to analyze serum fatty acids, amino acids and biogenic amines profiles from 15 control and 15 obese subjects at 0, 30, 60, 90 and 120 min during an OGTT. Metabolite profiles from 30 obese subjects as independent samples were detected in order to validate the change of metabolites. There were the decreased levels of fatty acid, amino acids and biogenic amines after OGTT in obesity. At 120 min, percent change of 20 metabolites in obesity has statistical significance when comparing with the controls. The obese parameters was positively associated with changes in arginine and histidine (Pchange in palmitic acid (PA), branched-chain amino acids (BCAAs) and phenylalanine between 1 and 120 min were positively associated with fasting insulin and HOMA-IR (all Presistance in obesity. Our findings offer new insights in the complex physiological regulation of the metabolism during an OGTT in obesity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Cistus ladanifer L. Shrub is Rich in Saturated and Branched Chain Fatty Acids and their Concentration Increases in the Mediterranean Dry Season.

    Science.gov (United States)

    Guerreiro, Olinda; Alves, Susana P; Duarte, Maria F; Bessa, Rui J B; Jerónimo, Eliana

    2015-05-01

    The Cistus ladanifer L. shrub is a widespread species of the Mediterranean region that is available as a feed source for ruminants all the year round, constituting a source of energy and nutrients when most of the vegetation is dry. However, there is no trustworthy information about the fatty acid composition of C. ladanifer, as well as no information about the seasonal and age related changes in their fatty acid composition. Thus, we collected the aerial parts of C. ladanifer plants of two age groups [young vs. older ones (2-6 years old)] during four consecutive seasons to characterize their fatty acid composition. The fatty acid composition of C. ladanifer is dominated by saturated fatty acids including the occurrence of two methyl branched chain fatty acids (BCFA), the iso-19:0 and iso-21:0, which as far as we know were detected for the first time in shrubs. Also, we demonstrated that several labdane type compounds might interfere with the fatty acid analysis of C. ladanifer. Marked seasonal changes in BCFA and polyunsaturated fatty acids (PUFA) were found, suggesting that BCFA can replace PUFA in plant lipids at high environmental temperatures.

  4. A 48-Hour Vegan Diet Challenge in Healthy Women and Men Induces a BRANCH-Chain Amino Acid Related, Health Associated, Metabolic Signature.

    Science.gov (United States)

    Draper, Colleen Fogarty; Vassallo, Irene; Di Cara, Alessandro; Milone, Cristiana; Comminetti, Ornella; Monnard, Irina; Godin, Jean-Philippe; Scherer, Max; Su, MingMing; Jia, Wei; Guiraud, Seu-Ping; Praplan, Fabienne; Guignard, Laurence; Ammon Zufferey, Corinne; Shevlyakova, Maya; Emami, Nashmil; Moco, Sofia; Beaumont, Maurice; Kaput, Jim; Martin, Francois-Pierre

    2018-02-01

    Research is limited on diet challenges to improve health. A short-term, vegan protein diet regimen nutritionally balanced in macronutrient composition compared to an omnivorous diet is hypothesized to improve metabolic measurements of blood sugar regulation, blood lipids, and amino acid metabolism. This randomized, cross-over, controlled vegan versus animal diet challenge is conducted on 21 (11 female,10 male) healthy participants. Fasting plasma is measured during a 3 d diet intervention for clinical biochemistry and metabonomics. Intervention diet plans meet individual caloric needs. Meals are provided and supervised. Diet compliance is monitored. The vegan diet lowers triglycerides, insulin and homeostatic model assessment (HOMA-IR), bile acids, elevated magnesium levels, and changed branched-chain amino acids (BCAAs) metabolism (p vegan versus omnivorous diets. Plasma amino acid and magnesium concentrations positively correlate with dietary amino acids. Polyunsaturated fatty acids and dietary fiber inversely correlate with insulin, HOMA-IR, and triglycerides. Nutritional biochemistries, BCAAs, insulin, and HOMA-IR are impacted by sexual dimorphism. A health-promoting, BCAA-associated metabolic signature is produced from a short-term, healthy, controlled, vegan diet challenge when compared with a healthy, controlled, omnivorous diet. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pharmaceutical and nutraceutical approaches for preventing liver carcinogenesis: chemoprevention of hepatocellular carcinoma using acyclic retinoid and branched-chain amino acids.

    Science.gov (United States)

    Shimizu, Masahito; Shirakami, Yohei; Hanai, Tatsunori; Imai, Kenji; Suetsugu, Atsushi; Takai, Koji; Shiraki, Makoto; Moriwaki, Hisataka

    2014-01-01

    The poor prognosis for patients with hepatocellular carcinoma (HCC) is associated with its high rate of recurrence in the cirrhotic liver. Therefore, more effective strategies need to be urgently developed for the chemoprevention of this malignancy. The malfunction of retinoid X receptor α, a retinoid receptor, due to phosphorylation by Ras/mitogen-activated protein kinase is closely associated with liver carcinogenesis and may be a promising target for HCC chemoprevention. Acyclic retinoid (ACR), a synthetic retinoid, can prevent HCC development by inhibiting retinoid X receptor α phosphorylation and improve the prognosis for this malignancy. Supplementation with branched-chain amino acids (BCAA), which are used to improve protein malnutrition in patients with liver cirrhosis, can also reduce the risk of HCC in obese cirrhotic patients. In experimental studies, both ACR and BCAA exert suppressive effects on HCC development and the growth of HCC cells. In particular, combined treatment with ACR and BCAA cooperatively inhibits the growth of HCC cells. Furthermore, ACR and BCAA inhibit liver tumorigenesis associated with obesity and diabetes, both of which are critical risk factors for HCC development. These findings suggest that pharmaceutical and nutraceutical approaches using ACR and BCAA may be promising strategies for preventing HCC and improving the prognosis of this malignancy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pre-, peri-, and postoperative oral administration of branched-chain amino acids for primary liver cancer patients for hepatic resection: a systematic review.

    Science.gov (United States)

    Meng, Jianyuan; Zhong, Jianhong; Zhang, Hanguang; Zhong, Wenhe; Huang, Zhihong; Jin, Yuanming; Xu, Jing

    2014-01-01

    Pre-, peri-, and postoperative oral administration of branched-chain amino acids (BCAA) to patients with primary liver cancer (PLC) during hepatic resection (HR) remains controversial. The aim of this systematic review was to evaluate the efficacy and safety of this practice. Seven literature databases were systematically searched for randomized controlled trials (RCTs) that reported pre-, peri-, and postoperative oral administration of BCAA for PLC patients during HR. Three RCTs were included in a meta-analysis in which risk ratios (RRs) and 95% confidence intervals (95% CIs) were calculated. The 2 groups showed similar recurrence rates (RR = 1.03, 95% CI 0.78 to 1.36) and similar overall survival (RR = 0.91, 95% CI 0.71 to 1.18). Adverse events related to oral administration of BCAA were more than the control group, including nausea, vomiting, diarrhea, abdominal distension, abdominal pain, and hypertension. However, all adverse reactions disappeared after symptomatic treatment. The available evidence suggests that although pre-, peri-, and postoperative oral BCAA for patients with PLC is safe, it is of questionable clinical value. More RCTs are warranted to explore this question definitively.

  7. Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials.

    Science.gov (United States)

    Gluud, Lise L; Dam, Gitte; Borre, Mette; Les, Iñigo; Cordoba, Juan; Marchesini, Giulio; Aagaard, Niels K; Risum, Niels; Vilstrup, Hendrik

    2013-08-01

    Supplements with branched-chain amino acid (BCAA) have cerebral, metabolic, and nutritional effects that may benefit patients with hepatic encephalopathy (HE). We therefore conducted a systematic review on the effects of oral BCAAs compared with control supplements or placebo for patients with cirrhosis and recurrent overt or minimal HE. The quantitative analyses included data from 8 trials (n = 382 patients). Individual patient data were retrieved from 4 trials to recalculate outcomes (n = 255 patients). The mean dose of the oral BCAA supplements was 0.25 g/(kg body weight · d). Random effects meta-analysis showed that improvements in HE manifestations were registered for 87 of 172 patients in the BCAA group compared with 56 of 210 controls [risk ratio = 1.71 (95% CI: 1.17, 2.51) number needed to treat = 5 patients]. The effect of BCAAs differed (P = 0.04) for patients with overt [risk ratio = 3.26 (95% CI: 1.47, 7.22)] and minimal HE [risk ratio = 1.32 (95% CI: 0.97, 1.79)]. Subgroup, sensitivity, regression, and sequential analyses found no other sources of heterogeneity or bias. BCAA supplements had no effect on mortality or markers of nutritional status and did not induce adverse events. In conclusion, oral BCAA supplements improve manifestations of HE but have no effect on survival.

  8. The effects of bolus supplementation of branched-chain amino acids on skeletal muscle mass, strength, and function in patients with rheumatic disorders during glucocorticoid treatment.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Uehara, Masaaki; Oda, Aya; Matsumiya, Ryo; Matsubara, Erika; Kobayashi, Hiroshi; Hosono, Osamu; Kuribara-Souta, Akiko; Baba, Hiroyuki; Nagamura, Fumitaka; Kiryu, Shigeru; Tanaka, Hirotoshi

    2017-05-01

    To test the effects of bolus supplementation of branched-chain amino acids (BCAA) on skeletal muscle mass, strength, and function in patients with rheumatic disorders taking glucocorticoid (GC). Patients with rheumatic disorders treated with prednisolone (≥10 mg/day) were randomized to ingest additional daily 12 g of BCAA (n = 9) or not (n = 9) for 12 weeks. At baseline, and 4, 8, and 12 weeks, they underwent bioelectrical impedance analysis, muscle strength and functional tests, and computed tomography analysis for cross-sectional area of mid-thigh muscle. Disease activities of the patients were well controlled and daily GC dose was similarly reduced in both groups. Limb muscle mass was recovered in both groups. Whole-body muscle mass and muscle strength and functional mobility were increased only in BCAA (+) group. The effects of BCAA supplementation on recovering skeletal muscle mass were prominent in particular muscles including biceps femoris muscle. This trial is the first-in-man clinical trial to demonstrate that BCAA supplementation might be safe and, at least in part, improve skeletal muscle mass, strength, and function in patients with rheumatic disorders treated with GC.

  9. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet.

    Science.gov (United States)

    Ren, M; Zhang, S H; Zeng, X F; Liu, H; Qiao, S Y

    2015-12-01

    As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (pBCAA group improved ADG (pBCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (pBCAA supplementation significantly increased BCAA concentrations (pBCAA supplementation increased villous height in the duodenum (pBCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

  10. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans.

    Science.gov (United States)

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C; Dedmon, William L; Katsanos, Christos S

    2016-10-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA. Copyright © 2016 the American Physiological Society.

  11. Branched chain amino acids supplemented with L-acetylcarnitine versus BCAA treatment in hepatic coma: a randomized and controlled double blind study.

    Science.gov (United States)

    Malaguarnera, Mariano; Risino, Corrado; Cammalleri, Lisa; Malaguarnera, Lucia; Astuto, Marinella; Vecchio, Ignazio; Rampello, Liborio

    2009-07-01

    Our earlier study has demonstrated that the administration of L-acetylcarnitine (LAC) improves neurological symptoms and serum parameters in hepatic coma. The aim of this work has been to evaluate the efficacy of the LAC and branched chain amino acids (BCAA) versus BCAA, administered in intravenous infusion, in patients with cirrhotic hepatic coma. Forty-eight highly selected patients were enrolled in the study and, after randomization, received blindly LAC+BCAA (n=24) versus BCAA (n=24). The two groups were similar in age, sex, pathogenesis of cirrhosis, and severity of liver disease. The comparison between values before and after LAC planned treatment showed statistical significant differences in neurological findings, evaluated by the Glasgow Scale, ammonia serum levels, blood urea nitrogen, and EEG. After 60 min of the study period, the LAC+BCAA treated patients compared with BCCA treated showed a significant decrease of ammonia serum levels: 41.20 versus 10.40 mumol PBCAA treated patients compared with BCCA treated patients showed a significant increase of Glasgow's score: 3.60 versus 1.50 score PBCAA supplemented with LAC might improve neurological symptoms and serum ammonium levels in selected cirrhotic patients with hepatic coma.

  12. "Weariness" and "unpleasantness" reduce adherence to branched-chain amino acid granules among Japanese patients with liver cirrhosis: results of a single-center cross-sectional survey.

    Science.gov (United States)

    Eguchi, Yuichiro; Furukawa, Naoko; Furukawa, Takeshi; Egashira, Yoshimitsu; Hotokezaka, Hiroshi; Oeda, Satoshi; Iwane, Shinji; Anzai, Keizo

    2017-03-01

    Branched-chain amino acids (BCAA) are valuable in the treatment of liver cirrhosis because they increase serum albumin levels. Poor adherence to BCAA may adversely affect prognosis, but little is known about factors predicting adherence. We undertook a survey of patients prescribed BCAA for the treatment of cirrhosis. Pharmacists carried out face-to-face interviews with patients (or their representatives) prescribed any of nine BCAA formulations. Question categories included patient characteristics, prescription of BCAA granules, and perceptions of BCAA administration, including adherence and possible factors that might impact adherence. "Poor adherence" was defined as "not taking the medication appropriately" or "forgetting to take the medication". Overall, 253 patients (or representatives) completed the survey, of whom 135 were men, 114 were women, and 148 were ≥70 years old. Most patients (163) were prescribed BCAA for ≥2 years and were using three packs per day. Thirty-two patients did not take their medication appropriately and 69 sometimes forgot to administer it. Weariness of taking the medication (P BCAA in clinical practice. Poor adherence was associated with weariness with taking medication, and the unpleasantness of the medication itself. Patient education from general practitioners and hepatologists combined with adherence counseling from pharmacists may help improve adherence. © 2016 The Authors. Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Hepatology.

  13. Branched-chain amino acid supplementation in treatment of liver cirrhosis: Updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation.

    Science.gov (United States)

    Holeček, Milan

    2017-09-01

    Branched-chain amino acid (BCAA; valine, leucine, and isoleucine) supplementation is common for patients with liver cirrhosis due to decreased levels of BCAA in the blood plasma of these patients, which plays a role in pathogenesis of hepatic encephalopathy and cachexia. The unique pharmacologic properties of BCAA also are a factor for use as supplementation in this population. In the present article, BCAA is shown to provide nitrogen to alpha-ketoglutarate (α-KG) for synthesis of glutamate, which is a substrate for ammonia detoxification to glutamine (GLN) in the brain and muscles. The article also demonstrates that the favorable effects of BCAA supplementation might be associated with three adverse effects: draining of α-KG from tricarboxylic acid cycle (cataplerosis), increased GLN content and altered glutamatergic neurotransmission in the brain, and activated GLN catabolism to ammonia in the gut and kidneys. Cataplerosis of α-KG can be attenuated by dimethyl-α-ketoglutarate, l-ornithine-l-aspartate, and ornithine salt of α-KG. The pros and cons of GLN elimination from the body using phenylbutyrate (phenylacetate), which may impair liver regeneration and decrease BCAA levels, should be examined. The therapeutic potential of BCAA might be enhanced also by optimizing its supplementation protocol. It is concluded that the search for strategies attenuating adverse and increasing positive effects of the BCAA is needed to include the BCAA among standard medications for patients with cirrhosis of the liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise.

    Science.gov (United States)

    Moberg, Marcus; Apró, William; Ekblom, Björn; van Hall, Gerrit; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-06-01

    Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo, leucine, BCAA, or EAA (including the BCAA) in random order. Muscle biopsies were taken at rest, immediately after exercise, and following 90 and 180 min of recovery. Following 90 min of recovery the activity of S6 kinase 1 (S6K1) was greater than at rest in all four trials (PlaceboBCAABCAA. However, after 180 min of recovery this difference between EAA and BCAA had disappeared, although with both these supplements the increases were still higher than with leucine (40%, P BCAA. Copyright © 2016 the American Physiological Society.

  15. Effect of Oral Supplementation with Branched-chain Amino Acid (BCAA) during Radiotherapy in Patients with Hepatocellular Carcinoma: A Double-Blind Randomized Study.

    Science.gov (United States)

    Lee, Ik Jae; Seong, Jinsil; Bae, Jung Im; You, Sei Hwan; Rhee, Yumie; Lee, Jong Ho

    2011-03-01

    The present study evaluated whether oral supplementation with a branched-chain amino acid (BCAA) improves the biochemical and amino acid profiles of liver tumor patients undergoing radiotherapy. Patients were randomly assigned to one of 2 groups: a group given oral supplementation with BCAA granules (LIVACT granules; Samil Pharm Co., Korea, each granule containing L-isoleucine 952 mg, L-leucine 1,904 mg, and L-valine 1,144 mg) during radiotherapy, or a placebo group. Physical and biochemical examinations and measurements, including subjective symptoms, Child-Pugh class, body mass index, plasma albumin concentration, and plasma amino acid profiles were monitored. Fifty were enrolled between November 2005 and November 2006. We also analyzed data from 37 hepatocellular carcinoma (HCC) patients in order to evaluate a more homogenous group. The two groups of patients were comparable in terms of age, gender, Child-Pugh score, and underlying hepatitis virus type. Serum albumin, total protein, liver enzymes, and cholesterol showed a tendency to increase in the BCAA group. In this group, the percentage of cases that reverted to normal serum albumin levels between 3 and 10 weeks after administration of BCAA was significantly higher (41.18%) than in the placebo group (p=0.043). Oral supplementation with a BCAA preparation seems to help HCC patients undergoing radiotherapy by increasing the BCAA concentration.

  16. Photoluminescent Honeycomb Structures from Polyoxometalates and an Imidazolium-Based Ionic Liquid Bearing a π-Conjugated Moiety and a Branched Aliphatic Chain.

    Science.gov (United States)

    Zhang, Geping; Zhu, Hongxia; Chen, Mengjun; Li, Hongguang; Yuan, Ye; Ma, Tiantai; Hao, Jingcheng

    2017-05-29

    Honeycomb-structured films represent an intriguing class of two-dimensional porous materials. Specifically, polyoxometalate (POM) macroanions can be introduced into these films by complexing with oppositely charged, double-tailed surfactants. Here highly-ordered honeycomb structures are reported that can be constructed by the complexes between POMs and a room temperature ionic liquid (IL1) having an imidazolium moiety in the middle and a naphthyl unit and a branched aliphatic chain at the ends. The complexes can be produced through phase transfer between an aqueous solution of POMs (typically {Mo72 Fe30 }) and a CS2 (or chloroform) solution of IL1. Based on the intrinsic properties of {Mo72 Fe30 } and the functional groups of the IL1, the honeycomb structures show multiple functions with bright photoluminescence and rich electrochemical properties. This work shows that by simply engineering the organic ligands involved in the POM-based inorganic-organic complexes, supramolecular structures with improved properties and wide applications can be obtained. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitation of branched-chain amino acids in ascites by capillary electrophoresis with light-emitting diode-induced fluorescence detection.

    Science.gov (United States)

    Chang, Po-Ling; Chiu, Tai-Chia; Wang, Tsang-En; Hu, Kuang-Chun; Tsai, Yu-Hsien; Hu, Cho-Chun; Bair, Ming-Jong; Chang, Huan-Tsung

    2011-04-01

    Branched-chain amino acids (BCAAs) are one of the important biomarkers for monitoring liver disease such as hepatitis or hepatoma. In this communication, we present the determination of the concentrations of BCAA in ascites by CE light-emitted diode-induced fluorescence (LEDIF) using 1.5% m/v poly(ethylene oxide) (average M(v) : ~8 000 000 g/mol) that was prepared in 10 mM sodium tetraborate solution (pH 9.3). Naphthalene-2,3-dicarboxaldehyde was used to derivatize 15 amino acids (AAs) to form naphthalene-2,3-dicarboxaldehyde (NDA)-AA derivatives prior to CE analysis. The separation of 15 NDA-AA derivatives was accomplished within 15 min, with RSD values of gold standard method using an AA analyzer. We have found that the concentrations of the three BCAAs in ascites obtained from patients suffering from liver diseases were lower than those from healthy individuals. Our approach is highly efficient, sensitive, and cost-effective, which holds great potential for the diagnosis of liver diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Relationship between Branched-Chain Amino Acids, Metabolic Syndrome, and Cardiovascular Risk Profile in a Chinese Population: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Wen Hu

    2016-01-01

    Full Text Available Objective. This study aimed to evaluate the relationship between branched-chain amino acids (BCAAs, metabolic syndrome (MS, and other cardiovascular (CV risk factors in middle-aged and elderly Chinese population at high risk for the development of cardiovascular disease (CVD. Methods. 1302 subjects were enrolled from the Huai’an Diabetes Prevention Program. Results. BCAAs levels were positively correlated with MS, its components, and CV risk profile. The odds ratio (OR for MS among subjects in the fourth quartile of BCAAs levels showed a 2.17-fold increase compared with those in the first quartile. BCAAs were independently associated with high Framingham risk score even after adjusting for MS and its components (P<0.0001. Additionally, the OR for high CV risk was 3.20-fold (P<0.0001 in participants in the fourth BCAAs quartile with MS compared with participants in the first BCAAs quartile without MS. Conclusions. Increased BCAAs levels are independent risk factors of MS and CVD in addition to the traditional factors in middle-aged and elderly Chinese population. The development of CVD in MS patients with high level BCAAs is accelerated. Intervention studies are needed to investigate whether the strategy of BCAAs reduction has impacts on endpoints in patients with higher CV risk. This study is registered with ChiCTR-TRC-14005029.

  19. Rapid and precise measurement of serum branched-chain and aromatic amino acids by isotope dilution liquid chromatography tandem mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Ruiyue Yang

    Full Text Available BACKGROUND: Serum branched-chain and aromatic amino acids (BCAAs and AAAs have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. METHODS: An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standards and the amino acids were extracted with acetonitrile, followed by analysis using LC/MS/MS. The LC separation was performed on a reversed-phase C18 column, and the MS/MS detection was performed via the positive electronic spray ionization in multiple reaction monitoring mode. RESULTS: Specific analysis of the amino acids was achieved within 2 min. Intra-run and total CVs for the amino acids were less than 2% and 4%, respectively, and the analytical recoveries ranged from 99.6 to 103.6%. CONCLUSION: A rapid and precise method for the measurement of serum BCAAs and AAAs was developed and may serve as a quick tool for screening serum BCAAs and AAAs in studies assessing diabetes risk.

  20. Is additional enrichment of diet in branched-chain amino acids or glutamine beneficial for patients receiving total parenteral nutrition after gastrointestinal cancer surgery?

    Science.gov (United States)

    Szpetnar, Maria; Matras, Przemysław; Boguszewska-Czubara, Anna; Kiełczykowska, Małgorzata; Rudzki, Sławomir; Musik, Irena

    2014-01-01

    Total Parenteral Nutrition (TPN) is necessary in patients unable to receive oral or enteral feeding for a period of at least 7 days. Branched-chain amino acids (BCAA): valine (Val), leucine (Leu), and isoleucine (Ile) are essential amino acids, which are important regulators in protein metabolism. They are also the main nitrogen source for glutamine synthesis in muscles. In this process they undergo irreversible degradation and cannot be reutilised for protein synthesis. In catabolic states, like cancers, glutamine demand increases and therefore also its utilisation, which can decrease the level of BCAA required for Gln synthesis. The purpose of this study was to evaluate the necessity of BCAA or glutamine-enriched TPN in patients after gastrointestinal cancers surgery. Our aim was to investigate changes of plasma BCAA and glutamine concentrations in patients operated for colorectal, small intestine or pancreatic cancer and who are either receiving TPN or not in the postoperative period. Free amino acids plasma concentrations were determined by the ion-exchange chromatography. Surgery in the control group caused a decrease in Val, Ile and Leu concentrations in the postoperative period. In TPN patients this depression was inhibited beginning from the third day after surgery, except for Val and Leu in colorectal cancer group. In control and TPN patient groups, Gln concentration decreased after the surgery and subsequently increased beginning from the third day after the operation. Gastrointestinal cancer patients' surgery results in decrease in BCAA concentrations. Standard TPN exerts a beneficial effect on the BCAA level in patients with pancreatic and small intestine cancer. In colorectal cancer such TPN should be enriched with Leu and Val.

  1. Content and Composition of Branched-Chain Fatty Acids in Bovine Milk Are Affected by Lactation Stage and Breed of Dairy Cow.

    Science.gov (United States)

    Bainbridge, Melissa L; Cersosimo, Laura M; Wright, André-Denis G; Kraft, Jana

    2016-01-01

    Dairy products contain bioactive fatty acids (FA) and are a unique dietary source of an emerging class of bioactive FA, branched-chain fatty acids (BCFA). The objective of this study was to compare the content and profile of bioactive FA in milk, with emphasis on BCFA, among Holstein (HO), Jersey (JE), and first generation HO x JE crossbreeds (CB) across a lactation to better understand the impact of these factors on FA of interest to human health. Twenty-two primiparous cows (n = 7 HO, n = 7 CB, n = 8 JE) were followed across a lactation. All cows were fed a consistent total mixed ration (TMR) at a 70:30 forage to concentrate ratio. Time points were defined as 5 days in milk (DIM), 95 DIM, 185 DIM, and 275 DIM. HO and CB had a higher content of n-3 FA at 5 DIM than JE and a lower n-6:n-3 ratio. Time point had an effect on the n-6:n-3 ratio, with the lowest value observed at 5 DIM and the highest at 185 DIM. The content of vaccenic acid was highest at 5 DIM, yet rumenic acid was unaffected by time point or breed. Total odd and BCFA (OBCFA) were higher in JE than HO and CB at 185 and 275 DIM. Breed affected the content of individual BCFA. The content of iso-14:0 and iso-16:0 in milk was higher in JE than HO and CB from 95 to 275 DIM. Total OBCFA were affected by time point, with the highest content in milk at 275 DIM. In conclusion, HO and CB exhibited a higher content of several bioactive FA in milk than JE. Across a lactation the greatest content of bioactive FA in milk occurred at 5 DIM and OBCFA were highest at 275 DIM.

  2. Occurrence of oleic and 18:1 methyl-branched acyl chains in lipids of Rhodobacter sphaeroides 2.4.1.

    Science.gov (United States)

    Granafei, Sara; Losito, Ilario; Salivo, Simona; Tranchida, Peter Q; Mondello, Luigi; Palmisano, Francesco; Cataldi, Tommaso R I

    2015-07-23

    The fatty acids (FAs) composition of lipids extracted from Rhodobacter sphaeroides 2.4.1 was investigated by gas chromatography-mass spectrometry (GC-MS) analysis of the corresponding FA methyl esters (FAMEs), obtained through trans-esterification of the original lipid species. A GC stationary phase based on a highly polar ionic liquid (IL) was selected, aimed to enhance the separation of isomeric FAMEs with particular emphasis on positional and geometrical isomers of monounsaturated 16:1 and 18:1 fatty acyl chains. The occurrence of 18:1 cis-Δ(9) (oleic) acid, a positional isomer of the well-known and most predominant 18:1 cis-Δ(11) (cis-vaccenic) acid, has been demonstrated here for the first time. Furthermore a methyl branched 18:1 FA was also identified and its structure tentatively assigned as 11-methyl-Δ(12)-octadecenoic acid (most likely as trans isomer). The unprecedented observation about 18:1 cis-Δ(9) FA occurrence in R. sphaeroides 2.4.1 is, even indirectly, supported by a biosynthetic pathway postulated with the aid of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The concurrent presence of 16:1 cis-Δ(7) and 18:1 cis-Δ(9) FAs suggested the existence of parallel and/or complementary processes to those invoked for the formation of most common 16:1 cis-Δ(9) and 18:1 cis-Δ(11) FAs. A further route was hypothesized for the trans FAs biosynthesis in wild-type cells of R. sphaeroides. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Branched-Chain Amino Acids and Arginine Improve Performance in Two Consecutive Days of Simulated Handball Games in Male and Female Athletes: A Randomized Trial

    Science.gov (United States)

    Chang, Chen-Kang; Chang Chien, Kun-Ming; Chang, Jung-Hsien; Huang, Mei-Hsuan; Liang, Ya-Chuan; Liu, Tsung-Han

    2015-01-01

    The central nervous system plays a crucial role in the development of physical fatigue. The purpose of this study is to investigate the effect of combined supplementation of branched-chain amino acids (BCAA) and arginine on intermittent sprint performance in simulated handball games on 2 consecutive days. Methods: Fifteen male and seven female handball players consumed 0.17 g/kg BCAA and 0.04 g/kg arginine together (AA trial), or placebo (PB trial) before exercise. Each trial contained two 60-min simulated handball games on consecutive days. The game was consisted of 30 identical 2-min blocks and a 20 m all-out sprint was performed at the end of each block. The performance, measured by percentage changes of sprint time between day 1 and 2, was significantly better in the AA trial (first half: AA trial: -1.34±0.60%, PB trial: -0.21±0.69%; second half: AA trial: -1.68±0.58%, PB trial: 0.49±0.42%). The average ratings of perceive exertion throughout the 2-day trial was significantly lower in the AA trial (14.2±0.3) than the PB trial (15.1±0.4). Concurrently, post-exercise tryptophan/BCAA ratio on both days in the AA trial was significantly lower than the baseline. This study showed that BCAA and arginine supplementation could improve performance in intermittent sprints on the second consecutive day of simulated handball games in well-trained athletes by potentially alleviating central fatigue. PMID:25803783

  4. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study

    Directory of Open Access Journals (Sweden)

    Howatson Glyn

    2012-07-01

    Full Text Available Abstract Background It is well documented that exercise-induced muscle damage (EIMD decreases muscle function and causes soreness and discomfort. Branched-chain amino acid (BCAA supplementation has been shown to increase protein synthesis and decrease muscle protein breakdown, however, the effects of BCAAs on recovery from damaging resistance training are unclear. Therefore, the aim of this study was to examine the effects of a BCAA supplementation on markers of muscle damage elicited via a sport specific bout of damaging exercise in trained volunteers. Methods Twelve males (mean ± SD age, 23 ± 2 y; stature, 178.3 ± 3.6 cm and body mass, 79.6 ± 8.4 kg were randomly assigned to a supplement (n = 6 or placebo (n = 6 group. The damaging exercise consisted of 100 consecutive drop-jumps. Creatine kinase (CK, maximal voluntary contraction (MVC, muscle soreness (DOMS, vertical jump (VJ, thigh circumference (TC and calf circumference (CC were measured as markers of muscle damage. All variables were measured immediately before the damaging exercise and at 24, 48, 72 and 96 h post-exercise. Results A significant time effect was seen for all variables. There were significant group effects showing a reduction in CK efflux and muscle soreness in the BCAA group compared to the placebo (P Conclusion The present study has shown that BCAA administered before and following damaging resistance exercise reduces indices of muscle damage and accelerates recovery in resistance-trained males. It seems likely that BCAA provided greater bioavailablity of substrate to improve protein synthesis and thereby the extent of secondary muscle damage associated with strenuous resistance exercise. Clinical Trial Registration Number: NCT01529281.

  5. Quantitation of underivatized branched-chain amino acids in sport nutritional supplements by capillary electrophoresis with direct or indirect UV absorbance detection

    Science.gov (United States)

    Liu, Huiqing; Ren, Jie

    2017-01-01

    The branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) play a pivotal role in the human body. Herein, we developed capillary electrophoresis (CE) coupled with conventional UV detector to quantify underivatized BCAAs in two kinds of sport nutritional supplements. For direct UV detection at 195 nm, the BCAAs (Leu, two enantiomers of Ile and Val) were separated in a background electrolyte (BGE) consisting of 40.0 mmol/L sodium tetraborate, and 40.0 mmol/L β-cyclodextrin (β-CD) at pH 10.2. In addition, the indirect UV detection at 264 nm was achieved in a BGE of 2.0 mmol/L Na2HPO4, 10.0 mmol/L p-aminosalicylic acid (PAS) as UV absorbing probe, and 40.0 mmol/L β-CD at pH 12.2. The β-CD significantly benefited the isomeric separation of Leu, L- and D-Ile. The optimal conditions allowed the LODs (limit of detections) of direct and indirect UV absorption detection to be tens μmol/L level, which was comparable to the reported CE inline derivatization method. The RSDs (relative standard deviations) of migration time and peak area were less than 0.91% and 3.66% (n = 6). Finally, CE with indirect UV detection method was applied for the quantitation of BCAAs in two commercial sport nutritional supplements, and good recovery and precision were obtained. Such simple CE method without tedious derivatization process is feasible of quality control and efficacy evaluation of the supplemental proteins. PMID:28640882

  6. Quantitation of underivatized branched-chain amino acids in sport nutritional supplements by capillary electrophoresis with direct or indirect UV absorbance detection.

    Directory of Open Access Journals (Sweden)

    Jun Qiu

    Full Text Available The branched-chain amino acids (BCAAs including leucine (Leu, isoleucine (Ile and valine (Val play a pivotal role in the human body. Herein, we developed capillary electrophoresis (CE coupled with conventional UV detector to quantify underivatized BCAAs in two kinds of sport nutritional supplements. For direct UV detection at 195 nm, the BCAAs (Leu, two enantiomers of Ile and Val were separated in a background electrolyte (BGE consisting of 40.0 mmol/L sodium tetraborate, and 40.0 mmol/L β-cyclodextrin (β-CD at pH 10.2. In addition, the indirect UV detection at 264 nm was achieved in a BGE of 2.0 mmol/L Na2HPO4, 10.0 mmol/L p-aminosalicylic acid (PAS as UV absorbing probe, and 40.0 mmol/L β-CD at pH 12.2. The β-CD significantly benefited the isomeric separation of Leu, L- and D-Ile. The optimal conditions allowed the LODs (limit of detections of direct and indirect UV absorption detection to be tens μmol/L level, which was comparable to the reported CE inline derivatization method. The RSDs (relative standard deviations of migration time and peak area were less than 0.91% and 3.66% (n = 6. Finally, CE with indirect UV detection method was applied for the quantitation of BCAAs in two commercial sport nutritional supplements, and good recovery and precision were obtained. Such simple CE method without tedious derivatization process is feasible of quality control and efficacy evaluation of the supplemental proteins.

  7. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Directory of Open Access Journals (Sweden)

    Sarah Everman

    Full Text Available Plasma branched-chain amino acids (BCAA are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans.Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5 to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5. In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U in association with the above BCAA infusion (N = 4 or under the same conditions without BCAA infusion (N = 3. Plasma glucose turnover was measured prior to and during insulin infusion.Insulin infusion completely suppressed the endogenous glucose production (EGP across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05. Insulin infusion stimulated whole-body glucose disposal rate (GDR across all groups. However, the increase (% in GDR was not different [median (1st quartile - 3rd quartile] between Control and BCAA in either the 40U ([199 (167-278 vs. 186 (94-308] or 80 U ([491 (414-548 vs. 478 (409-857] experiments (P > 0.05. Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P 0.05.Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  8. Branched Chain Amino Acids Are Associated with Insulin Resistance Independent of Leptin and Adiponectin in Subjects with Varying Degrees of Glucose Tolerance.

    Science.gov (United States)

    Connelly, Margery A; Wolak-Dinsmore, Justyna; Dullaart, Robin P F

    2017-05-01

    Branched chain amino acids (BCAA) may be involved in the pathogenesis of insulin resistance and are associated with type 2 diabetes mellitus (T2DM) development. Adipokines such as leptin and adiponectin influence insulin resistance and reflect adipocyte dysfunction. We examined the extent to which the association of BCAA with insulin resistance is attributable to altered leptin and adiponectin levels in individuals with varying degrees of glucose tolerance. BCAA were measured by nuclear magnetic resonance, whereas leptin and adiponectin were measured by immunoassay, in subjects with normal fasting glucose (n = 30), impaired fasting glucose (n = 25), and T2DM (n = 15). Insulin resistance was estimated by homeostasis model assessment (HOMAir). BCAA were higher in men than in women (P BCAA were correlated with HOMAir (r = 0.46; P  0.05). Multivariable linear regression analysis, adjusting for age, sex, T2DM, and body mass index (BMI), demonstrated that BCAA were positively associated with HOMAir (β = 0.242, P = 0.023). When BCAA, leptin, and adiponectin were included together, the positive relationship of HOMAir with BCAA (β = 0.275, P = 0.012) remained significant. Insulin resistance was associated with BCAA. This association remained after adjusting for age, sex, T2DM, BMI, as well as leptin and adiponectin. It is unlikely that the relationship of insulin resistance with BCAA is to a major extent attributable to effects of leptin and adiponectin.

  9. Effects of Diets Supplemented with Branched-Chain Amino Acids on the Performance and Fatigue Mechanisms of Rats Submitted to Prolonged Physical Exercise

    Directory of Open Access Journals (Sweden)

    Inar Alves de Castro

    2012-11-01

    Full Text Available This study aimed to determine the effects of diets chronically supplemented with branched-chain amino acids (BCAA on the fatigue mechanisms of trained rats. Thirty-six adult Wistar rats were trained for six weeks. The training protocol consisted of bouts of swimming exercise (one hour a day, five times a week, for six weeks. The animals received a control diet (C (n = 12, a diet supplemented with 3.57% BCAA (S1 (n = 12, or a diet supplemented with 4.76% BCAA (S2 (n = 12. On the last day of the training protocol, half the animals in each group were sacrificed after one hour of swimming (1H, and the other half after a swimming exhaustion test (EX. Swimming time until exhaustion was increased by 37% in group S1 and reduced by 43% in group S2 compared to group C. Results indicate that the S1 diet had a beneficial effect on performance by sparing glycogen in the soleus muscle (p < 0.05 and by inducing a lower concentration of plasma ammonia, whereas the S2 diet had a negative effect on performance due to hyperammonemia (p < 0.05. The hypothalamic concentration of serotonin was not significantly different between the 1H and EX conditions. In conclusion, chronic BCAA supplementation led to increased performance in rats subjected to a swimming test to exhaustion. However, this is a dose-dependent effect, since chronic ingestion of elevated quantities of BCAA led to a reduction in performance.

  10. A Randomized Clinical Trial of Preoperative Administration of Branched-Chain Amino Acids to Prevent Postoperative Ascites in Patients with Liver Resection for Hepatocellular Carcinoma.

    Science.gov (United States)

    Kikuchi, Yutaro; Hiroshima, Yukihiko; Matsuo, Kenichi; Kawaguchi, Daisuke; Murakami, Takashi; Yabushita, Yasuhiro; Endo, Itaru; Taguri, Masataka; Koda, Keiji; Tanaka, Kuniya

    2016-10-01

    Massive postoperative ascites remains a major threat that can lead to liver failure and other fatal complications, especially in patients with poor liver function. Branched-chain amino acid (BCAA) administration increases biosynthesis and secretion of albumin by hepatocytes and increases oncotic pressure by elevating blood albumin concentration, thereby decreasing peripheral edema, ascites, and pleural effusion. We randomly allocated consecutive patients undergoing major liver resection for hepatocellular carcinoma to either a group where oral BCAA administration was initiated 3 weeks before liver resection, or a non-BCAA group. The primary study endpoint was development of postoperative ascites. Overall, 39 patients were allocated to the BCAA group, while 38 were assigned to the non-BCAA group. No significant difference in the rate of refractory ascites, considered alone, was evident between the BCAA (5.1 %) and non-BCAA groups (13.2 %; p = 0.263). However, the occurrence of refractory ascites and/or pleural effusion was significantly less frequent in the BCAA group (5.1 %) than in the non-BCAA group (21.1 %; p = 0.047). Furthermore, the postoperative serum concentration of reduced-state albumin was greater immediately after liver resection in the BCAA group than in the non-BCAA group. Preoperative administration of BCAA did not significantly improve prevention of refractory ascites, but significant effectiveness in preventing ascites, pleural effusion, or both, as well as improving metabolism of albumin, was demonstrated [University Hospital Medical Information Network (UMIN) reference number 000004244].

  11. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice.

    Science.gov (United States)

    Honda, Takashi; Ishigami, Masatoshi; Luo, Fangqiong; Lingyun, Ma; Ishizu, Yoji; Kuzuya, Teiji; Hayashi, Kazuhiko; Nakano, Isao; Ishikawa, Tetsuya; Feng, Guo-Gang; Katano, Yoshiaki; Kohama, Tomoya; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Goto, Hidemi; Hirooka, Yoshiki

    2017-04-01

    For successful treatment for nonalcoholic steatohepatitis (NASH), it may be important to treat the individual causative factors. At present, however, there is no established treatment for this disease. Branched-chain amino acids (BCAAs) have been used to treat patients with decompensated cirrhosis. In order to elucidate the mechanisms responsible for the effects of BCAAs on hepatic steatosis and disease progression, we investigated the effects of BCAA supplementation in mice fed a choline-deficient high-fat diet (CDHF), which induces NASH. Male mice were divided into four groups that received (1) choline-sufficient high fat (HF) diet (HF-control), (2) HF plus 2% BCAA in drinking water (HF-BCAA), (3) CDHF diet (CDHF-control), or (4) CDHF-BCAA for 8weeks. We monitored liver injury, hepatic steatosis and cholesterol, gene expression related to lipid metabolism, and hepatic fat accumulation. Serum alanine aminotransferase (ALT) levels and hepatic triglyceride (TG) were significantly elevated in CDHF-control relative to HF-control. Liver histopathology revealed severe steatosis, inflammation, and pericellular fibrosis in CDHF-control, confirming the NASH findings. Serum ALT levels and hepatic TG and lipid droplet areas were significantly lower in CDHF-BCAA than in CDHF-control. Gene expression and protein level of fatty acid synthase (FAS), which catalyzes the final step in fatty acid biosynthesis, was significantly decreased in CDHF-BCAA than in CDHF-control (PBCAA was significantly lower than those of CDHF-control. BCAA can alleviate hepatic steatosis and liver injury associated with NASH by suppressing FAS gene expression and protein levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Science.gov (United States)

    Everman, Sarah; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2015-01-01

    Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity. To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans. Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion. Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile - 3rd quartile)] between Control and BCAA in either the 40U ([199 (167-278) vs. 186 (94-308)] or 80 U ([491 (414-548) vs. 478 (409-857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P BCAA in either of the experiments (P > 0.05). Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  13. Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model.

    Science.gov (United States)

    Takegoshi, Kai; Honda, Masao; Okada, Hikari; Takabatake, Riuta; Matsuzawa-Nagata, Naoto; Campbell, Jean S; Nishikawa, Masashi; Shimakami, Tetsuro; Shirasaki, Takayoshi; Sakai, Yoshio; Yamashita, Taro; Takamura, Toshinari; Tanaka, Takuji; Kaneko, Shuichi

    2017-03-14

    Oral supplementation with branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in patients with liver cirrhosis potentially suppresses the incidence of hepatocellular carcinoma (HCC) and improves event-free survival. However, the detailed mechanisms of BCAA action have not been fully elucidated. BCAA were administered to atherogenic and high-fat (Ath+HF) diet-induced nonalcoholic steatohepatitis (NASH) model mice. Liver histology, tumor incidence, and gene expression profiles were evaluated. Ath+HF diet mice developed hepatic tumors at a high frequency at 68 weeks. BCAA supplementation significantly improved hepatic steatosis, inflammation, fibrosis, and tumors in Ath+HF mice at 68 weeks. GeneChip analysis demonstrated the significant resolution of pro-fibrotic gene expression by BCAA supplementation. The anti-fibrotic effect of BCAA was confirmed further using platelet-derived growth factor C transgenic mice, which develop hepatic fibrosis and tumors. In vitro, BCAA restored the transforming growth factor (TGF)-β1-stimulated expression of pro-fibrotic genes in hepatic stellate cells (HSC). In hepatocytes, BCAA restored TGF-β1-induced apoptosis, lipogenesis, and Wnt/β-Catenin signaling, and inhibited the transformation of WB-F344 rat liver epithelial stem-like cells. BCAA repressed the promoter activity of TGFβ1R1 by inhibiting the expression of the transcription factor NFY and histone acetyltransferase p300. Interestingly, the inhibitory effect of BCAA on TGF-β1 signaling was mTORC1 activity-dependent, suggesting the presence of negative feedback regulation from mTORC1 to TGF-β1 signaling. Thus, BCAA induce an anti-fibrotic effect in HSC, prevent apoptosis in hepatocytes, and decrease the incidence of HCC; therefore, BCAA supplementation would be beneficial for patients with advanced liver fibrosis with a high risk of HCC.

  14. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model.

    Directory of Open Access Journals (Sweden)

    Anna G Wessels

    Full Text Available In addition to its role as an essential protein component, leucine (Leu displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH. To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2 and four-fold (L4 higher Leu contents than the recommended amount (control. We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P < 0.05, liver (1.8-fold, P < 0.05 and cardiac muscle (1.7-fold, P < 0.05, whereas we found no changes in enzyme activity in the pancreas, skeletal muscle, adipose tissue and intestinal mucosa. The L2 diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth.

  16. Effects of Combined Treatment with Branched-Chain Amino Acids, Citric Acid, L-Carnitine, Coenzyme Q10, Zinc, and Various Vitamins in Tumor-Bearing Mice.

    Science.gov (United States)

    Awa, Hiroko; Futamura, Akihiko; Higashiguchi, Takashi; Ito, Akihiro; Mori, Naoharu; Murai, Miyo; Ohara, Hiroshi; Chihara, Takeshi; Kaneko, Takaaki

    2017-03-01

    A functional dietary supplement (FDS) containing Coenzyme Q10, branched-chain amino acids and L-carnitine was administered to tumor-bearing mice, investigating its effects on tumor and muscle tissues. Experiment (A): B16 melanoma cells were implanted subcutaneously into the right side of the abdomen of 8- to 9-week-old C57BL/6J mice. The mice were divided into two groups: a FDS group that received oral administration of FDS (n=10), and a control group that received oral administration of glucose (n=10). The moribund condition was used as the endpoint, and median survival time was determined. Experiment (B): On day 21 after tumor implantation, tumors, soleus muscle, gastrocnemius muscle, and suprahyoid muscles were collected. Tumor and muscle weight and other aspects were evaluated in each group: FDS group (n=15) and control group (n=15). The median survival time was comparable (21 d in the FDS group vs. 18 d in the control group, p=0.30). However, cumulative food intake was significantly higher in the FDS group than the control group (p=0.011). Metastasis of melanoma to the lung was observed in the control group but not in the FDS group (p=0.043). The weight of the suprahyoid muscles was significantly higher in the FDS group than in the control group (p=0.0045). The weight of the tumor was significantly lower in the FDS group than in the control group (p=0.013). The results possibly suggest oral administration of FDS in tumor-bearing mice enhances the maintenance of suprahyoid muscles, resulting in an extended feeding period and suppression of tumor growth and metastasis.

  17. Effects of long-term exposures to low iron and branched-chain amino acid containing diets on aging skeletal muscle of Fisher 344 × Brown Norway rats.

    Science.gov (United States)

    Kim, Yuho; Men, Sok Sambo; Liang, Chen; Receno, Candace N; Brutsaert, Tom D; Korol, Donna L; Heffernan, Kevin S; DeRuisseau, Keith C

    2018-02-01

    Aging skeletal muscle displays an altered iron status that may promote oxidative stress and sarcopenia. A diet containing low iron (LI) could reduce muscle iron status and attenuate age-related muscle atrophy. Supplemental branched-chain amino acids (BCAA) may also alleviate sarcopenia by promoting muscle protein synthesis and iron status improvement. This study examined individual and combined effects of LI and BCAA diets on anabolic signaling and iron status in skeletal muscle of aging rats. Twenty-nine-month-old male Fisher 344 × Brown Norway rats consumed the following control-base diets: control + regular iron (35 mg iron/kg) (CR; n = 11); control + LI (∼6 mg iron/kg) (CL; n = 11); 2×BCAA + regular iron (BR; n = 10); and 2×BCAA + LI (BL; n = 12) for 12 weeks. Although LI and/or 2×BCAA did not affect plantaris muscle mass, 2×BCAA groups showed lower muscle iron content than did CR and CL groups (P < 0.05). p70 ribosomal protein S6 kinase phosphorylation was greater in 2×BCAA and LI animals compared with CR animals (P < 0.05). Interactions between IRON and BCAA were observed for proteins indicative of mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1 alpha) and oxidative capacity (cytochrome c oxidase subunit 2 and citrate synthase) (P < 0.05) wherein the combined diet (BL) negated potential benefits of individual diets. Antioxidant capacity, superoxide dismutase activity, and oxidative injury (3-nitrotyrosine, protein carbonyls, and 4-hydroxynonenal) were similar between groups. In conclusion, 12 weeks of LI and 2×BCAA diets showed significant impacts on increasing anabolic signaling as well as ameliorating iron status; however, these interventions did not affect muscle mass.

  18. Branched-chain fatty acid composition of human milk and the impact of maternal diet: the Global Exploration of Human Milk (GEHM) Study.

    Science.gov (United States)

    Dingess, Kelly A; Valentine, Christina J; Ollberding, Nicholas J; Davidson, Barbara S; Woo, Jessica G; Summer, Suzanne; Peng, Yongmei M; Guerrero, M Lourdes; Ruiz-Palacios, Guillermo M; Ran-Ressler, Rinat R; McMahon, Robert J; Brenna, J Thomas; Morrow, Ardythe L

    2017-01-01

    An understudied component of the diet, branched-chain fatty acids (BCFAs) are distinctive saturated fatty acids that may have an important influence on health. Human-milk fatty acid composition is known to differ worldwide, but comparative data are lacking on BCFAs. We tested the hypotheses that concentrations of BCFAs in human milk differ between populations and are associated with maternal diet. We surveyed the BCFA composition of samples collected as part of a standardized, prospective study of human-milk composition. Mothers were enrolled from 3 urban populations with differing diets: Cincinnati, Ohio; Shanghai, China; and Mexico City, Mexico. Enrollment was limited to healthy mothers of term singleton infants. We undertook a cross-sectional analysis of milk from all women with samples at postpartum week 4 (n = 359; ∼120 women/site). Fatty acids were extracted from milk by using a modified Bligh-Dyer technique and analyzed by gas chromatography. Statistical analysis was performed by ANOVA and Tobit regression. For Cincinnati mothers, 24-h diet recalls were analyzed in relation to the individual BCFA concentrations measured in milk samples. Total BCFAs in milk differed by site, with the highest concentration in Cincinnati followed by Mexico City and Shanghai (mean ± SE: 7.90 ± 0.41, 6.10 ± 0.36, and 4.27 ± 0.25 mg/100 mL, respectively; P Milk concentrations of iso-14:0 and anteiso-15:0 were associated with maternal intake of dairy; iso-16:0 was associated with maternal intakes of dairy and beef. BCFA concentrations in milk at 4 wk postpartum differed between mothers from Cincinnati, Shanghai, and Mexico City. Variations in human-milk BCFAs are influenced by diet. The impact of BCFAs on infant health warrants investigation. © 2017 American Society for Nutrition.

  19. The effects of acute branched-chain amino acid supplementation on recovery from a single bout of hypertrophy exercise in resistance-trained athletes.

    Science.gov (United States)

    Waldron, Mark; Whelan, Kieran; Jeffries, Owen; Burt, Dean; Howe, Louis; Patterson, Stephen David

    2017-06-01

    This study investigated the effects of acute branched-chain amino acid (BCAA) supplementation on recovery from exercise-induced muscle damage among experienced resistance-trained athletes. In a double-blind matched-pairs design, 16 resistance-trained participants, routinely performing hypertrophy training, were randomly assigned to a BCAA (n = 8) or placebo (n = 8) group. The BCAAs were administered at a dosage of 0.087 g/kg body mass, with a 2:1:1 ratio of leucine, isoleucine, and valine. The participants performed 6 sets of 10 full-squats at 70% 1-repetition maximum to induce muscle damage. All participants were diet-controlled across the study. Creatine kinase, peak isometric knee-extensor force, perceived muscle soreness, and countermovement jump (CMJ) height were measured immediately before (baseline) and at 1 h, 24 h, and 48 h postexercise. There were large to very large time effects for all measurements between baseline and 24-48 h. Between-group comparisons, expressed as a percentage of baseline, revealed differences in isometric strength at 24-h (placebo ∼87% vs. BCAA ∼92%; moderate, likely), CMJ at 24 h (placebo ∼93% vs. BCAA ∼96%; small, likely), and muscle soreness at both 24 h (placebo ∼685% vs. BCAA ∼531%; small, likely) and 48 h (placebo ∼468% vs. BCAA ∼350%; small, likely). Acute supplementation of BCAAs (0.087 g/kg) increased the rate of recovery in isometric strength, CMJ height, and perceived muscle soreness compared with placebo after a hypertrophy-based training session among diet-controlled, resistance-trained athletes. These findings question the need for longer BCAA loading phases and highlight the importance of dietary control in studies of this type.

  20. Content and Composition of Branched-Chain Fatty Acids in Bovine Milk Are Affected by Lactation Stage and Breed of Dairy Cow.

    Directory of Open Access Journals (Sweden)

    Melissa L Bainbridge

    Full Text Available Dairy products contain bioactive fatty acids (FA and are a unique dietary source of an emerging class of bioactive FA, branched-chain fatty acids (BCFA. The objective of this study was to compare the content and profile of bioactive FA in milk, with emphasis on BCFA, among Holstein (HO, Jersey (JE, and first generation HO x JE crossbreeds (CB across a lactation to better understand the impact of these factors on FA of interest to human health. Twenty-two primiparous cows (n = 7 HO, n = 7 CB, n = 8 JE were followed across a lactation. All cows were fed a consistent total mixed ration (TMR at a 70:30 forage to concentrate ratio. Time points were defined as 5 days in milk (DIM, 95 DIM, 185 DIM, and 275 DIM. HO and CB had a higher content of n-3 FA at 5 DIM than JE and a lower n-6:n-3 ratio. Time point had an effect on the n-6:n-3 ratio, with the lowest value observed at 5 DIM and the highest at 185 DIM. The content of vaccenic acid was highest at 5 DIM, yet rumenic acid was unaffected by time point or breed. Total odd and BCFA (OBCFA were higher in JE than HO and CB at 185 and 275 DIM. Breed affected the content of individual BCFA. The content of iso-14:0 and iso-16:0 in milk was higher in JE than HO and CB from 95 to 275 DIM. Total OBCFA were affected by time point, with the highest content in milk at 275 DIM. In conclusion, HO and CB exhibited a higher content of several bioactive FA in milk than JE. Across a lactation the greatest content of bioactive FA in milk occurred at 5 DIM and OBCFA were highest at 275 DIM.

  1. Branched-chain amino acids enhance premature senescence through mammalian target of rapamycin complex I-mediated upregulation of p21 protein.

    Directory of Open Access Journals (Sweden)

    Masayuki Nakano

    Full Text Available Branched-chain amino acids (BCAAs have been applied as an oral supplementation to patients with liver cirrhosis. BCAAs not only improve nutritional status of patients but also decrease the incidence of liver cancer. Mammalian target of rapamycin (mTOR links cellular metabolism with growth and proliferation in response to nutrients, energy, and growth factors. BCAAs, especially leucine, have been shown to regulate protein synthesis through mTOR activities. On the other hand, cellular senescence is suggested to function as tumor suppressor mechanisms, and induced by a variety of stimuli including DNA damage-inducing drugs. However, it is not clear how BCAA supplementation prevents the incidence of liver cancer in patients with cirrhosis. Here we showed that human cancer cells, HepG2 and U2OS, cultured in medium containing BCAAs with Fischer's ratio about 3, which was shown to have highest activities to synthesize and secrete of albumin, had higher activities to induce premature senescence and elevate mTORC1 activities. Furthermore, BCAAs themselves enhanced the execution of premature senescence induced by DNA damage-inducing drugs, which was effectively prevented by rapamycin. These results strongly suggested the contribution of the mTORC1 pathway to the regulation of premature senescence. Interestingly, the protein levels of p21, a p53 target and well-known gene essential for the execution of cellular senescence, were upregulated in the presence of BCAAs. These results suggested that BCAAs possibly contribute to tumor suppression by enhancing cellular senescence mediated through the mTOR signalling pathway.

  2. [Impact of glutamine, eicosapntemacnioc acid, branched-chain amino acid supplements on nutritional status and treatment compliance of esophageal cancer patients on concurrent chemoradiotherapy and gastric cancer patients on chemotherapy].

    Science.gov (United States)

    Cong, Minghua; Song, Chenxin; Zou, Baohua; Deng, Yingbing; Li, Shuluan; Liu, Xuehui; Liu, Weiwei; Liu, Jinying; Yu, Lei; Xu, Binghe

    2015-03-17

    To explore the effects of glutamine, eicosapntemacnioc acid (EPA) and branched-chain amino acids supplements in esophageal cancer patients on concurrent chemoradiotherapy and gastric cancer patients on chemotherapy. From April 2013 to April 2014, a total of 104 esophageal and gastric carcinoma patients on chemotherapy or concurrent chemoradiotherapy were recruited and randomly divided into experimental and control groups. Both groups received dietary counseling and routine nutritional supports while only experimental group received supplements of glutamine (20 g/d), EPA (3.3 g/d) and branched-chain amino acids (8 g/d). And body compositions, blood indicators, incidence of complications and completion rates of therapy were compared between two groups. After treatment, free fat mass and muscle weight increased significantly in experiment group while decreased in control group (P nutrition status, decrease the complications and improve compliance for esophageal cancer patients on concurrent chemo-radiotherapy and gastric cancer patients on postoperative adjuvant chemotherapy.

  3. Two randomized controlled studies comparing the nutritional benefits of branched-chain amino acid (BCAA) granules and a BCAA-enriched nutrient mixture for patients with esophageal varices after endoscopic treatment

    OpenAIRE

    Sakai, Yoshiyuki; Iwata, Yoshinori; Enomoto, Hirayuki; Saito, Masaki; Yoh, Kazunori; Ishii, Akio; Takashima, Tomoyuki; Aizawa, Nobuhiro; Ikeda, Naoto; Tanaka, Hironori; Iijima, Hiroko; Nishiguchi, Shuhei

    2014-01-01

    Background The usefulness of branched-chain amino acid (BCAA) granules and BCAA-enriched nutrient mixtures for patients with liver cirrhosis is often reported. However, no randomized controlled studies have investigated the usefulness of these supplements in the nutritional intervention of cirrhotic patients receiving endoscopic treatment for esophageal varices. Methods Patients without BCAA before endoscopic treatment were divided into study 1, and those who received BCAA were divided into s...

  4. Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids.

    Science.gov (United States)

    Jansen, Michael; Veurink, Janine H; Euverink, Gert-Jan W; Dijkhuizen, Lubbert

    2003-05-01

    Zygosaccharomyces rouxii, a salt-tolerant yeast isolated from the soy sauce process, produces fusel alcohols (isoamyl alcohol, active amyl alcohol and isobutyl alcohol) from branched-chain amino acids (leucine, isoleucine and valine, respectively) via the Ehrlich pathway. Using a high-throughput screening approach in microtiter plates, we have studied the effects of pH, temperature and salt concentration on growth of Z. rouxii and formation of fusel alcohols from branched-chain amino acids. Application of minor variations in pH (range 3-7) and NaCl concentrations (range 0-20%) per microtiter plate well allowed a rapid and detailed evaluation of fermentation conditions for optimal growth and metabolite production. Conditions yielding the highest cell densities were not optimal for fusel alcohol production. Maximal fusel alcohol production occurred at low pH (3.0-4.0) and low NaCl concentrations (0-4%) at 25 degrees C. At pH 4.0-6.0 and 0-18% NaCl, considerable amounts of alpha-keto acids, the deaminated products from the branched-chain amino acids, accumulated extracellularly. The highest cell densities were obtained in plates incubated at 30 degrees C. The results obtained under various incubation conditions with (deep-well) microtiter plates were validated in Erlenmeyer shake-flask cultures.

  5. Effects of supplementation with branched-chain amino acids to low-protein diets on expression of genes related to lipid metabolism in skeletal muscle of growing pigs.

    Science.gov (United States)

    Duan, Yehui; Duan, Yangmiao; Li, Fengna; Li, Yinghui; Guo, Qiuping; Ji, Yujiao; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-09-01

    Branched-chain amino acids (BCAA), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in energy homeostasis and lipid metabolism in addition to their other functions, such as in protein metabolism. This study investigated the effects of different dietary BCAA ratios on the intramuscular fat (IMF) content and fatty acid composition in different location of skeletal muscles, including the longissimus dorsi (LD), biceps femoris (BF), and psoas major (PM) muscles of growing pigs, and also examined the mRNA expression levels of genes involved in lipid metabolism in these muscle tissues. The experiment was performed on 40 growing pigs (Large White × Landrace) with a similar initial weight (9.85 ± 0.35 kg). The pigs were randomly assigned to one of five diets: diet A was a positive control and contained 20 % crude protein (CP) with a Leu:Ile:Val ratio of 1:0.51:0.63 according to the recommendation of the National Research Council (NRC); for diets B to E, the CP level was reduced to 17 %, and the Leu:Ile:Val ratios were 1:1:1, 1:0.75:0.75, 1:0.51:0.63, and 1:0.25:0.25, respectively. No significant difference was observed in the average feed intake and feed efficiency of the pigs fed the low protein diet (17 % CP) with BCAA treatments relative to the positive control. However, there was a tendency for increased feed efficiency of the 1:0.75:0.75 group compared with the 1:1:1 group (P = 0.09). The BCAA ratio of 1:0.75:0.75 (17 % CP) increased the IMF content of BF muscle (P IMF content in BF muscle and significantly improve the fatty acid composition in different skeletal muscles accompanied by changes in the expression of genes involved in lipid metabolism, compared with those in the pigs that received adequate dietary protein (20 %), which might result in improved eating quality and nutritional value of the meat.

  6. Intermediate Levels of Bacillus subtilis CodY Activity Are Required for Derepression of the Branched-Chain Amino Acid Permease, BraB.

    Directory of Open Access Journals (Sweden)

    Boris R Belitsky

    2015-10-01

    Full Text Available The global transcriptional regulator, CodY, binds strongly to the regulatory region of the braB gene, which encodes a Bacillus subtilis branched-chain amino acid (BCAA permease. However, under conditions that maximize CodY activity, braB expression was similar in wild-type and codY null mutant cells. Nonetheless, expression from the braB promoter was significantly elevated in cells containing partially active mutant versions of CodY or in wild-type cells under growth conditions leading to intermediate levels of CodY activity. This novel pattern of regulation was shown to be due to two opposing mechanisms, negative and positive, by which CodY affects braB expression. A strong CodY-binding site located downstream of the transcription start point conferred negative regulation by direct interaction with CodY. Additionally, sequences upstream and downstream of the promoter were required for repression by a second pleiotropic B. subtilis regulator, ScoC, whose own expression is repressed by CodY. ScoC-mediated repression of braB in codY null mutants cells was as efficient as direct, CodY-mediated repression in wild-type cells under conditions of high CodY activity. However, under conditions of reduced CodY activity, CodY-mediated repression was relieved to a greater extent than ScoC-mediated repression was increased, leading to elevated braB expression. We conclude that restricting increased expression of braB to conditions of moderate nutrient limitation is the raison d'être of the feed-forward regulatory loop formed by CodY and ScoC at the braB promoter. The increase in BraB expression only at intermediate activities of CodY may facilitate the uptake of BCAA when they are not in excess but prevent unneeded BraB synthesis when other BCAA transporters are active.

  7. In silico designing of therapeutic protein enriched with branched-chain amino acids for the dietary treatment of chronic liver disease.

    Science.gov (United States)

    L, Sunil; Vasu, Prasanna

    2017-09-01

    Leucine, isoleucine, and valine are three essential branched-chain amino acids (BCAA) account for 40-45% of total essential amino acids. BCAA stimulates protein synthesis primarily in skeletal muscles, and it can directly transport to circulatory blood stream bypassing the liver. Hence, a protein enriched with BCAA is an important therapeutic target for the dietary treatment of chronic liver disease. The present study is to design a synthetic protein enriched with BCAA and the challenge is to maximize the BCAA content, keeping the balanced ratio of leucine, isoleucine, valine - 2: 1: 1.2 as specified by WHO/UNU/FAO. Here, we turned the general concept of homology modeling and tried to find a suitable scaffold (α-helix) to host an excess amount of BCAA for increased stability and digestibility. A total of 50 protein models were constructed by using SWISS-MODEL, Modeller 9.17, ProtParam tool, and allergen online tools. Out of 50 different protein models, protein model-50 was found to be best, which had a well-defined 3D structure, good in silico digestibility, balanced ratio of BCAA and showed 65.57% structure identity to the template apo-bovine α-lactalbumin (1F6R). Templates search was performed against PDB using PSI-BLAST, SWISS-MODEL, PROFUNC, I-TASSER, and ConSurf. The secondary structure was predicted by PSSPred, PSIPRED, I-TASSER, PORTER, and SPIDER2. The modeled structure of protein Model-50 was validated by PROCHECK, ERRAT, ProSA, and QMEAN. COACH and ProFUNC tools were performed to determine the functional effects of protein model-50. Overall, the BCAA was enriched from 22 to 56.4% with the balanced ratio of Leu: Ile: Val (2: 1: 1.2). The Ramachandran plot showed 97.7% of the amino acid residues in allowed regions with ERRAT score of 86.05. We have successfully modeled the complete three-dimensional structure of the target protein model-50 using highly reputed computational tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effects of supplementation with branched chain amino acids and ornithine aspartate on plasma ammonia and central fatigue during exercise in healthy men.

    Science.gov (United States)

    Mikulski, Tomasz; Dabrowski, Jan; Hilgier, Wojciech; Ziemba, Andrzej; Krzeminski, Krzysztof

    2015-01-01

    Our previous studies showed only slight improvement in central fatigue, measured indirectly by psychomotor performance, after branched chain amino acids (BCAA) supplementation during various efforts in healthy men. It is hypothesised that hyperammonaemia resulting from amino acids metabolism may attenuate their beneficial effect on psychomotor performance; therefore, the L-ornithine L-aspartate (OA) as an ammonia decreasing agent was used. The aim of this study was to investigate the effectiveness of oral BCAA + OA supplementation to reduce plasma ammonia concentration and enhance psychomotor performance during exhaustive exercise in healthy men. Eleven endurance-trained men (mean age 32.6 ± 1.9 years) performed two sessions (separated by one week) of submaximal cycloergometer exercise for 90 minutes at 60% of maximal oxygen uptake followed by graded exercise until exhaustion with randomised, double-blind supplementation with a total of 16 g BCAA and 12 g OA (BCAA + OA trial) or flavoured water (placebo trial). Before exercise, during both efforts and after 20 minutes of recovery multiple choice reaction time (MCRT), perceived exertion, heart rate and oxygen uptake were measured and venous blood samples were taken for plasma leucine, valine, isoleucine, ornithine, aspartate, free tryptophan (fTRP), ammonia, lactate and glucose determination. After ingestion, during both efforts and after 20 minutes of recovery the plasma concentrations of all supplemented amino acids were significantly increased, while the fTRP/BCAA ratio decreased in the BCAA + OA trial more than in the placebo trial. At the end of graded exercise plasma fTRP was lower and MCRT shorter in BCAA + OA than in the placebo trial (p BCAA + OA than in placebo trial (p BCAA + OA than in the placebo trial. Plasma ammonia positively correlated with the total plasma BCAA and MCRT only in the BCAA + OA trial. The fTRP/BCAA ratio positively correlated with MCRT only in the placebo trial. Supplementation with

  9. Effect of branched-chain amino acid-enriched nutritional supplementation on interferon therapy in Japanese patients with chronic hepatitis C virus infection: a retrospective study

    Directory of Open Access Journals (Sweden)

    Nagao Yumiko

    2012-11-01

    Full Text Available Abstract Background The aims of this study were to evaluate the effects of nutritional supplementation with branched-chain amino acids (BCAA with zinc component (Aminofeel® on adherence to and outcome of therapy in patients treated with interferon (IFN for chronic hepatitis C and cirrhosis and to determine whether to recommend the supplement. Methods In this retrospective study, 51 patients who received IFN therapy were investigated among 203 consecutive patients who visited our hospital and were advised regarding the potential benefit of taking Aminofeel®. Each patient was free to choose whether to purchase and take Aminofeel®. Results Twenty four patients (group 1-A took Aminofeel® during standard IFN therapy and 13 (group 1-B did not. Low-dose, long-term IFN (maintenance therapy, mainly peglated (Peg-IFN alpha 2a, was administered to 14 patients who were difficult to treat, because of no effect or harmful side effects with standard IFN therapy, and who had advanced liver fibrosis. Among the 14, 11 patients (group 2-A took Aminofeel® and 3 (group 2-B did not. The prevalence of obesity was significantly higher (P=0.04 in group 1-A than in group 1-B. The rate of adherence to IFN therapy was higher in group 1-A (83.3% than in group 1-B (53.8%, P=0.05. There were no significant differences between the two groups in the rates of sustained virological response (SVR to IFN therapy. According to multivariate analysis, two factors, SVR and intake of Aminofeel®, were associated with successful adherence to IFN therapy. The adjusted odds ratios for these two factors were 13.25 and 12.59, respectively, and each was statistically significant. The SVR rate of maintenance IFN therapy was in 18.2% group 2-A and 0% in group 2-B. Conclusion Our data show that BCAA intake is useful for adherence to and effect of IFN therapy for patients with chronic hepatitis C. Nutritional supplementation with BCAA seems to be useful for HCV-infected patients receiving

  10. Discriminative Ability of Plasma Branched-Chain Amino Acid Levels for Glucose Intolerance in Families At Risk for Type 2 Diabetes.

    Science.gov (United States)

    Jainandunsing, Sjaam; Wattimena, J L Darcos; Verhoeven, Adrie J M; Langendonk, Janneke G; Rietveld, Trinet; Isaacs, Aaron J; Sijbrands, Eric J G; de Rooij, Felix W M

    2016-04-01

    Insulin resistance and glucose intolerance have been associated with increased plasma levels of branched-chain amino acids (BCAA). BCAA levels do not predict T2DM in the population. We determined the discriminative ability of fasting BCAA levels for glucose intolerance in nondiabetic relatives of patients with T2DM of two different ethnicities. Based on oral glucose tolerance test (OGTT), first-degree relatives of patients with T2DM were categorized as normal glucose tolerance, prediabetes, or T2DM. Included were 34, 12, and 18 Caucasian and 22, 12, and 23 Asian Indian participants, respectively. BCAA levels were measured in fasting plasma together with alanine, phenylalanine, and tyrosine. Insulin sensitivity and beta-cell function were assessed by indices derived from an extended OGTT and their relationship with plasma BCAA levels was assessed in multivariate regression analysis. The value of the amino acids for discriminating prediabetes among nondiabetic family members was determined with the area under the curve of receiver-operated characteristics (c-index). BCAA levels were higher in diabetic than in normoglycemic family members in the Caucasians (P = 0.001) but not in the Asian Indians. In both groups, BCAA levels were associated with waist-hip ratio (β = 0.31; P = 0.03 and β = 0.42; P = 0.001, respectively) but not with indices of insulin sensitivity or beta-cell function. The c-index of BCAA for discriminating prediabetes among nondiabetic participants was 0.83 and 0.74 in Caucasians and Asian Indians, respectively, which increased to 0.84 and 0.79 by also including the other amino acids. The c-index of fasting glucose for discriminating prediabetes increased from 0.91 to 0.92 in Caucasians and 0.85 to 0.97 (P = 0.04) in Asian Indians by inclusion of BCAA+alanine, phenylalanine, and tyrosine. Adding fasting plasma BCAA levels, combined with phenylalanine, tyrosine and alanine to fasting glucose improved discriminative ability for the prediabetic state

  11. Post-exercise branched chain amino acid supplementation does not affect recovery markers following three consecutive high intensity resistance training bouts compared to carbohydrate supplementation.

    Science.gov (United States)

    Kephart, Wesley C; Mumford, Petey W; McCloskey, Anna E; Holland, A Maleah; Shake, Joshua J; Mobley, C Brooks; Jagodinsky, Adam E; Weimar, Wendi H; Oliver, Gretchen D; Young, Kaelin C; Moon, Jordan R; Roberts, Michael D

    2016-01-01

    Amino acid supplementation has been shown to potentially reduced exercise-induced muscle soreness. Thus, the purpose of this study was to examine if branched chain amino acid and carbohydrate (BCAACHO) versus carbohydrate-only sports drink (CHO) supplementation attenuated markers of muscle damage while preserving performance markers following 3 days of intense weight training. Healthy resistance-trained males (n = 30) performed preliminary testing (T1) whereby they: 1) donated a baseline blood draw, 2) performed knee extensor dynamometry to obtain peak quadriceps isometric and isokinetic torque as well as electromyography (EMG) activity at 60°/s and 120°/s, and 3) performed a one repetition maximum (1RM) barbell back squat. The following week participants performed 10 sets x 5 repetitions at 80 % of their 1RM barbell back squat for 3 consecutive days and 48 h following the third lifting bout participants returned for (T2) testing whereby they repeated the T1 battery. Immediately following and 24 h after the three lifting bouts, participants were randomly assigned to consume one of two commercial products in 600 mL of tap water: 1) BCAAs and CHO (3 g/d L-leucine, 1 g/d L-isoleucine and 2 g/d L-valine with 2 g of CHO; n = 15), or 2) 42 g of CHO only (n = 15). Additionally, venous blood was drawn 24 h following the first and second lifting bouts and 48 h following the third bout to assess serum myoglobin concentrations, and a visual analog scale was utilized prior, during, and after the 3-d protocol to measure subjective perceptions of muscular soreness. There were similar decrements in 1RM squat strength and isokinetic peak torque measures in the BCAA-CHO and CHO groups. Serum myoglobin concentrations (p = 0.027) and perceived muscle soreness (p < 0.001) increased over the intervention regardless of supplementation. A group*time interaction was observed for monocyte percentages (p = 0.01) whereby BCAA-CHO supplementation

  12. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet

    Directory of Open Access Journals (Sweden)

    M. Ren

    2015-12-01

    Full Text Available As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON, a protein restricted diet (17% CP, PR and a BCAA diet (BCAA supplementation in the PR diet for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG (p0.05. The PR and BCAA treatments had a higher (p<0.05 plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc. in plasma of the PR group was lower (p<0.05 than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01 and decreased urea concentration (p<0.01 in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs number (p<0.05 and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA (p = 0.04, secreted IgA (sIgA (p = 0.03 and immunoglobulin M (p = 0.08, and ileal IgA (p = 0.01 and immunoglobulin G (p = 0.08. The BCAA supplementation increased villous height in the duodenum (p<0.01, reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal

  13. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 72, Revision 1 (FGE.72Rev1): Consideration of aliphatic, branched-chain saturated and unsaturated alcohols, aldehydes, acids, and related esters, evaluated by the JECFA (61st meeting) structurally related to branched- and straight-chain unsaturated carboxylic acids, esters of these and straight-chain aliphatic saturated alcohols evaluated by EFSA in FGE.05Rev2

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 23 aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids and related esters, evaluated by the JECFA at their 61st meeting. This revision is made due...... threshold of concern, and available data on metabolism and toxicity. The Panel agrees with the application of the Procedure as performed by the JECFA for all 23 substances considered in this FGE and agrees with the JECFA conclusion, “No safety concern at estimated levels of intake as flavouring substances...

  14. Both total chain length and position of dimethyl-branching effect the myocardial uptake and retention of radioiodinated analogues of 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid (DMIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Goodman, M.M.; Kirsch, G.; Ambrose, K.R.; Lambert, C.R.; Goudonnet, A. [Oak Ridge National Lab., TN (United States). Health Sciences Research Division; Reske, S.N.; Kropp, J.; Biersack, H.-J.

    1996-02-01

    Introduction of geminal dimethyl-branching into the 3-position of 15-(p-iodophenyl)pentadecanoic acid (IPPA) significantly delays myocardial clearance in rats and dogs following intravenous administration. Several new analogues of DMIPP have been synthesized and evaluated in fasted rats. The effects of both the position of dimethyl-branching and the total chain-length of 3,3-dimethyl analogues on heart uptake and clearance kinetics have been studied. In the first series of compounds, two methyl groups were introduced into the 3-, 4-, 6-, or 9-position. Tissue distribution studies of the 15-(p-[I-125]iodophenyl)-analogues demonstrated that the position of dimethyl-branching is an important factor affecting both myocardial specificity and retention. The [I-125] labeled 3,3-and 4,4-DMIPP analogues showed higher myocardial uptake and faster blood clearance than the 6,6- and 9,9-DMIPP analogues [heart], % dose/gm (heart:blood), 30 min: 3,3-DMIPP=5.06 (12: 1); 4,4-DMIPP=8.03 (16.7: 1); 6,6-DMIPP=2.26 (3.1: 1); 9,9-DMIPP=3.06 [(2.77)]. In the second series, the effects of total fatty acid chain length were evaluated with 3,3-dimethyl-substituted analogues with C{sub 11}, C{sub 12}, C{sub 13}, C{sub 14}, C{sub 15}, and C{sub 19} chain lengths. The C{sub 14} and C{sub 15} chain length analogues showed the best properties [global heart uptake] (heart: blood ratios): 30 min: C{sub 11}, 0.70 (0.82); C{sub 12}, 1.25 (0.68); C{sub 13}, 0.47 (0.90); C{sub 14}, 1.63 (3.54); C{sub 15}, 5.06 (12); C{sub 19}, 1.29 (0.82). These detailed studies have demonstrated that both total chain length and the position of geminal dimethyl-branching are important structural parameters which affect myocardial specificity and retention of {omega}-(p-iodophenyl)-substituted fatty acid analogues and that 3,3-DMIPP and 4,4-DMIPP are the best candidates with optimal properties for further study. (author).

  15. Jugular-infused methionine, lysine and branched-chain amino acids does not improve milk production in Holstein cows experiencing heat stress.

    Science.gov (United States)

    Kassube, K R; Kaufman, J D; Pohler, K G; McFadden, J W; Ríus, A G

    2017-12-01

    Poor utilization of amino acids contributes to losses of milk protein yield in dairy cows exposed to heat stress (HS). Our objective was to test the effect of essential amino acids on milk production in lactating dairy cows exposed to short-term HS conditions. To achieve this objective, 12 multiparous, lactating Holstein cows were assigned to two environments (thermoneutral (THN) or HS) from days 1 to 14 in a split-plot type cross-over design. All cows received 0 g/day of essential amino acids from days 1 to 7 (negative control (NC)) followed by an intravenous infusion of l-methionine (12 g/day), l-lysine (21 g/day), l-leucine (35 g/day), l-isoleucine (15 g/day) and l-valine (15 g/day, methionine, lysine and branched-chain amino acids (ML+BCAA)) from days 8 to 14. The basal diet was composed of ryegrass silage and hay, and a concentrate mix. This diet supplied 44 g of methionine, 125 g of lysine, 167 g of leucine, 98 g of isoleucine and 109 g of valine per day to the small intestine of THN cows. Temperature-humidity index was maintained below 66 for the THN environment, whereas the index was maintained above 68, peaking at 76, for 14 continuous h/day for the HS environment. Heat stress conditioning increased the udder temperature from 37.0°C to 39.6°C. Cows that received the ML+BCAA treatment had greater p.m. rectal and vaginal temperatures (0.50°C and 0.40°C, respectively), and respiration rate (8 breaths/min) compared with those on the NC treatment and exposed to a HS environment. However, neither NC nor ML+BCAA affected rectal or vaginal temperatures and respiration rates in the THN environment. Compared with THN, the HS environment reduced dry matter intake (1.48 kg/day), milk yield (2.82 kg/day) and milk protein yield (0.11 kg/day). However, compared with NC, the ML+BCAA treatment increased milk protein percent by 0.07 points. For the THN environment, the ML+BCAA treatment increased concentrations of milk urea nitrogen. For the HS environment, the ML

  16. Novel consortium of Klebsiella variicola and Lactobacillus species enhances the functional potential of fermented dairy products by increasing the availability of branched-chain amino acids and the amount of distinctive volatiles.

    Science.gov (United States)

    Rosales-Bravo, H; Morales-Torres, H C; Vázquez-Martínez, J; Molina-Torres, J; Olalde-Portugal, V; Partida-Martínez, L P

    2017-11-01

    Identify novel bacterial taxa that could increase the availability of branched-chain amino acids and the amount of distinctive volatiles during skim milk fermentation. We recovered 344 bacterial isolates from stool samples of healthy and breastfed infants. Five were selected based on their ability to produce branched-chain amino acids. Three strains were identified as Escherichia coli, one as Klebsiella pneumoniae and other as Klebsiella variicola by molecular and biochemical methods. HPLC and solid-phase microextraction with GC-MS were used for the determination of free amino acids and volatile compounds respectively. The consortium formed by K. variicola and four Lactobacillus species showed the highest production of Leu and Ile in skim milk fermentation. In addition, the production of volatile compounds, such as acetoin, ethanol, 2-nonanone, and acetic, hexanoic and octanoic acids, increased in comparison to commercial yogurt, Emmental and Gouda cheese. Also, distinctive volatiles, such as 2,3-butanediol, 4-methyl-2- hexanone and octanol, were identified. The use of K. variicola in combination with probiotic Lactobacillus species enhances the availability of Leu and Ile and the amount of distinctive volatiles during skim milk fermentation. The identified consortium increases the functional potential of fermented dairy products. © 2017 The Society for Applied Microbiology.

  17. C-nitroso compounds. Part XIII: monomeric nitroso compounds by photochemical nitrosation of branched-chain hydrocarbons with tert-butyl nitrite

    NARCIS (Netherlands)

    Mackor, A.; Boer, T.J. de

    1970-01-01

    The photochemical nitrosation with t‐butyl nitrite of some branched‐chain hydrocarbons, containing tertiary hydrogen atoms leads to the formation of monomeric nitroso compounds in yields up to 78%, when a special Soxhlet technique is employed. The use of wavelengths around 400 nm is essential for

  18. Combined urea-thin layer chromatography and silver nitrate-thin layer chromatography for micro separation and determination of hard-to-detect branched chain fatty acids in natural lipids.

    Science.gov (United States)

    Yan, Yuanyuan; Wang, Xingguo; Liu, Yijun; Xiang, Jingying; Wang, Xiaosan; Zhang, Huijun; Yao, Yunping; Liu, Ruijie; Zou, Xiaoqiang; Huang, Jianhua; Jin, Qingzhe

    2015-12-18

    A simple, fast and efficient procedure was developed for micro separation and enrichment of branched chain fatty acids (BCFA) from natural products using successive thin layer chromatography (TLC) technique coupling novel urea-TLC with AgNO3-TLC, which rely on the formation of urea adduction and AgNO3 bonding in methanol. These natural lipids contain a significant amount of straight chain fatty acids (FA). Fresh and fast urea-TLC and AgNO3-TLC plate making techniques were developed with more even coating and less coating material contamination before being utilized for separation. Goat milk fat was used as a model. Various experimental parameters that affect urea-TLC and AgNO3-TLC separation of BCFA were investigated and optimized, including coating of urea, concentration of original oil sample, mobile phase and sample application format. High efficiency of removal of straight chain FA was achieved with a low amount of sample in an easy and fast way. A total BCFA mix with much higher purity than previous studies was successfully achieved. The developed method has also been applied for the concentration and analysis of BCFA in cow milk fat and Anchovy oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets

    Directory of Open Access Journals (Sweden)

    Ye Tong Xu

    2018-01-01

    Full Text Available Objective The goal of this study was to investigate the effects of dietary standard ileal digestible (SID valine:lysine ratios on performance, intestinal morphology, amino acids of liver and muscle, plasma indices and mRNA expression of branched-chain amino acid (BCAA metabolism enzymes. Methods A total of 144 crossbred pigs (Duroc×Landrace×Large White weaned at 28±4 days of age (8.79±0.02 kg body weight were randomly allotted to 1 of 4 diets formulated to provide SID valine:lysine ratios of 50%, 60%, 70%, or 80%. Each diet was fed to 6 pens of pigs with 6 pigs per pen (3 gilts and 3 barrows for 28 days. Results Average daily gain increased quadratically (p<0.05, the villous height of the duodenum, jejunum and ileum increased linearly (p<0.05 as the SID valine:lysine ratio increased. The concentrations of plasma α-keto isovaleric and valine increased linearly (p<0.05, plasma aspartate, asparagine and cysteine decreased (p<0.05 as the SID valine:lysine ratio increased. An increase in SID lysine:valine levels increased mRNA expression levels of mitochondrial BCAA transaminase and branched-chain α-keto acid dehydrogenase in the longissimus dorsi muscle (p<0.05. Conclusion Using a quadratic model, a SID valine:lysine ratio of 68% was shown to maximize the growth of weaned pigs which is slightly higher than the level recommended by the National Research Council [6].

  20. Branched polymers on branched polymers

    OpenAIRE

    Durhuus, Bergfinnur; Jonsson, Thordur

    1996-01-01

    We study an ensemble of branched polymers which are embedded on other branched polymers. This is a toy model which allows us to study explicitly the reaction of a statistical system on an underlying geometrical structure, a problem of interest in the study of the interaction of matter and quantized gravity. We find a phase transition at which the embedded polymers begin to cover the basis polymers. At the phase transition point the susceptibility exponent $\\gamma$ takes the value 3/4 and the ...

  1. Permeation and metabolism of a series of novel lipophilic ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids with a branched-acyl chain, in a human living skin equivalent model.

    Science.gov (United States)

    Tai, Akihiro; Goto, Satomi; Ishiguro, Yutaka; Suzuki, Kazuko; Nitoda, Teruhiko; Yamamoto, Itaru

    2004-02-09

    A series of novel lipophilic vitamin C derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids possessing a branched-acyl chain of varying length from C(8) to C(16) (6-bAcyl-AA-2G), were evaluated as topical prodrugs of ascorbic acid (AA) with transdermal activity in a human living skin equivalent model. The permeability of 6-bAcyl-AA-2G was compared with those of the derivatives having a straight-acyl chain (6-sAcyl-AA-2G). Out of 10 derivatives of 6-sAcyl-AA-2G and 6-bAcyl-AA-2G, 6-sDode-AA-2G and 6-bDode-AA-2G exhibited most excellent permeability in this model. Measurement of the metabolites permeated from the skin model suggested that 6-bDode-AA-2G was mainly hydrolyzed via 6-O-acyl AA to AA by tissue enzymes, while 6-sDode-AA-2G was hydrolyzed via 2-O-alpha-D-glucopyranosyl-L-ascorbic acid to AA. The former metabolic pathway seems to be advantageous for a readily available source of AA, because 6-O-acyl AA, as well as AA, is able to show vitamin C activity.

  2. Lipase-catalyzed kinetic resolution of branched chain fatty acids and their esters : a study towards the production of enantiopure 4-methyloctanoic acid = Lipase-gekatalyseerde kinetische resolutie van vertakte vetzuren en hun esters : een studie naar de productie van enantiomeer zuiver 4-methyloctaanzuur

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.

    2000-01-01

    Flavors and fragrances make an important contribution to the taste and smell of all kinds of food products both as natural occurring components and as additional flavors or fragrances. One of these flavor components is 4-methyloctanoic acid (4-MOA). This branched chain fatty acid

  3. Intact Protein Analysis at 21 Tesla and X-Ray Crystallography Define Structural Differences in Single Amino Acid Variants of Human Mitochondrial Branched-Chain Amino Acid Aminotransferase 2 (BCAT2)

    Science.gov (United States)

    Anderson, Lissa C.; Håkansson, Maria; Walse, Björn; Nilsson, Carol L.

    2017-09-01

    Structural technologies are an essential component in the design of precision therapeutics. Precision medicine entails the development of therapeutics directed toward a designated target protein, with the goal to deliver the right drug to the right patient at the right time. In the field of oncology, protein structural variants are often associated with oncogenic potential. In a previous proteogenomic screen of patient-derived glioblastoma (GBM) tumor materials, we identified a sequence variant of human mitochondrial branched-chain amino acid aminotransferase 2 as a putative factor of resistance of GBM to standard-of-care-treatments. The enzyme generates glutamate, which is neurotoxic. To elucidate structural coordinates that may confer altered substrate binding or activity of the variant BCAT2 T186R, a 45 kDa protein, we applied combined ETD and CID top-down mass spectrometry in a LC-FT-ICR MS at 21 T, and X-Ray crystallography in the study of both the variant and non-variant intact proteins. The combined ETD/CID fragmentation pattern allowed for not only extensive sequence coverage but also confident localization of the amino acid variant to its position in the sequence. The crystallographic experiments confirmed the hypothesis generated by in silico structural homology modeling, that the Lys59 side-chain of BCAT2 may repulse the Arg186 in the variant protein (PDB code: 5MPR), leading to destabilization of the protein dimer and altered enzyme kinetics. Taken together, the MS and novel 3D structural data give us reason to further pursue BCAT2 T186R as a precision drug target in GBM. [Figure not available: see fulltext.

  4. Mechanisms of the Pellagragenic Effect of Leucine: Stimulation of Hepatic Tryptophan Oxidation by Administration of Branched-Chain Amino Acids to Healthy Human Volunteers and the Role of Plasma Free Tryptophan and Total Kynurenines

    Science.gov (United States)

    Badawy, Abdulla A-B; Lake, Sarah L; Dougherty, Donald M

    2014-01-01

    The pellagragenic effect of leucine (Leu) has been proposed to involve modulation of L-tryptophan (Trp) metabolism along the hepatic kynurenine pathway. Here, we discuss some of the mechanisms suggested and report the effects in healthy volunteers of single doses of Leu (4.05–6.75 g) administered in a 16-amino acid mixture on concentrations of plasma Trp and its kynurenine metabolites. Flux of Trp through Trp 2,3-dioxygenase (TDO) is dose-dependently enhanced most probably by Leu and can be attributed to TDO activation. Trp oxidation is better expressed using plasma total kynure-nines, rather than kynurenine, and free, rather than total, Trp. Increased hepatic Trp oxidation may be an additional mechanism of action of branched-chain amino acids in the acute Trp depletion test. Inhibition of intestinal absorption or hepatic uptake of Trp by Leu can be excluded. Potential mechanisms of the aggravation of pellagra symptoms by Leu are discussed. PMID:25520560

  5. The Ratio of Dietary Branched-Chain Amino Acids is Associated with a Lower Prevalence of Obesity in Young Northern Chinese Adults: An Internet-Based Cross-Sectional Study.

    Science.gov (United States)

    Li, Yan-Chuan; Li, Ying; Liu, Li-Yan; Chen, Yang; Zi, Tian-Qi; Du, Shan-Shan; Jiang, Yong-Shuai; Feng, Ren-Nan; Sun, Chang-Hao

    2015-11-18

    This study aims to examine the association between the ratio of dietary branched chain amino acids (BCAA) and risk of obesity among young northern Chinese adults. A total of 948 randomly recruited participants were asked to finish our internet-based dietary questionnaire for the Chinese (IDQC). Associations between dietary BCAA ratio and prevalence of overweight/obesity and abdominal obesity were analyzed. Furthermore, 90 subjects were randomly selected to explore the possible mechanism. Dietary BCAA ratio in obese participants was significantly lower than non-obese participants. We found negative correlations between the ratio of dietary BCAA and body mass index (BMI) (r = -0.197, p BCAA ratio for overweight/obesity were 0.508 (0.265-0.972) and 0.389 (0.193-0.783), respectively (all p BCAA ratio were 0.351 (0.145-0.845) and 0.376 (0.161-0.876), respectively (all p BCAA ratio was inversely associated with 2-h postprandial glucose (2 h-PG) and status of inflammation. In conclusion, a higher ratio of dietary BCAA is inversely associated with prevalence of obesity, postprandial glucose and status of inflammation in young northern Chinese adults.

  6. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial.

    Science.gov (United States)

    Piccolo, Brian D; Comerford, Kevin B; Karakas, Sidika E; Knotts, Trina A; Fiehn, Oliver; Adams, Sean H

    2015-04-01

    It has been suggested that perturbations in branched-chain amino acid (BCAA) catabolism are associated with insulin resistance and contribute to elevated systemic BCAAs. Evidence in rodents suggests dietary protein rich in BCAAs can increase BCAA catabolism, but there is limited evidence in humans. We hypothesize that a diet rich in BCAAs will increase BCAA catabolism, which will manifest in a reduction of fasting plasma BCAA concentrations. The metabolome of 27 obese women with metabolic syndrome before and after weight loss was investigated to identify changes in BCAA metabolism using GC-time-of-flight mass spectrometry. Subjects were enrolled in an 8-wk weight-loss study including either a 20-g/d whey (whey group, n = 16) or gelatin (gelatin group, n = 11) protein supplement. When matched for total protein by weight, whey protein has 3 times the amount of BCAAs compared with gelatin protein. Postintervention plasma abundances of Ile (gelatin group: 637 ± 18, quantifier ion peak height ÷ 100; whey group: 744 ± 65), Leu (gelatin group: 1210 ± 33; whey group: 1380 ± 79), and Val (gelatin group: 2080 ± 59; whey group: 2510 ± 230) did not differ between treatment groups. BCAAs were significantly correlated with homeostasis model assessment of insulin resistance at baseline (r = 0.52, 0.43, and 0.49 for Leu, Ile, and Val, respectively; all, P protein vs. gelatin protein supplementation in multivariate statistical analyses. These findings suggest that BCAA metabolism is, at best, only modestly affected at a whey protein supplementation dose of 20 g/d. Furthermore, the loss of an association between postintervention BCAA and homeostasis model assessment suggests that factors associated with calorie restriction or protein intake affect how plasma BCAAs relate to insulin sensitivity. This trial was registered at clinicaltrials.gov as NCT00739479. © 2015 American Society for Nutrition.

  7. A Rapid and Sensitive UPLC-MS/MS-Method for the Separation and Quantification of Branched-Chain Amino Acids from Dried Blood Samples of Patients with Maple Syrup Urine Disease (MSUD

    Directory of Open Access Journals (Sweden)

    Ralph Fingerhut

    2016-06-01

    Full Text Available Newborn screening for MSUD is a special challenge since patients with MSUD can metabolically decompensate rapidly without adequate treatment within the first two weeks of life. However, the screening method does not detect the actual marker metabolite (alloisoleucine specifically, but only as part of the group of the other isobaric amino acids leucine, isoleucine and hydroxyproline. We describe a sensitive and rapid second-tier UPLC-MS/MS method to determine branched-chain amino acids from the initial extraction of the screening sample. Quantification is based on a seven-point calibration curve. Reference ranges (mean ± SD in µmol/L were determined from 179 normal, not pre-selected samples from the newborn screening: leucine: 72 ± 27; isoleucine: 37 ± 19; valine: 98 ± 46; hydroxyproline: 23 ± 13. The concentration of alloisoleucine was below the detection limit in about 55% of the cases, and the highest concentration was 1.9 µmol/L. In all 30 retrospectively studied screening samples from patients with confirmed MSUD the concentration of alloisoleucine was significantly increased. In 238 samples with false-positive newborn screening due to a significant increase in the combined concentration of leucine + isoleucine + alloisoleucine + hydroxyproline (400 to >4000 µmol/L, alloisoleucine was below 6.5 µmol/L (n = 57 or not detectable (n = 181. The application of this assay markedly reduces the false-positive rate and the associated anxiety and costs. It is also suitable for routinely monitoring blood spots of patients with MSUD.

  8. Temperature-dependent Henry's law constants of 4-alkyl-branched chain fatty acids and 3-methylindole in an oil-air matrix and analysis of volatiles in lamb fat using selected ion flow tube mass spectrometry (SIFT-MS).

    Science.gov (United States)

    Castada, Hardy Z; Polentz, Victoria; Barringer, Sheryl; Wick, Macdonald

    2017-10-07

    4-Alkyl-branched chain fatty acids and 3-methylindole are characteristic flavor compounds associated with sheep meat. Determining their partitioning behavior between the gas and condensed phase and ultimately developing a correlation between the compound's headspace concentration and sensory descriptive grouping are important for high throughput characterization and grading classification. The headspace concentrations of 3-methylindole, 4-methyloctanoic acid, 4-ethyloctanoic acid, and 4-methylnonanoic acid above corn oil-based standard solutions, and lamb fat samples were measured using selected ion flow tube-mass spectrometry (SIFT-MS). The standard solutions were equilibrated at 80, 100, 110 and 125(o) C while the fat samples were equilibrated at 125(o) C. Statistical evaluation, linear and polynomial regression analyses were performed to establish the compound-specific and temperature-dependent Henry's law constants, enthalpy (∆H) and entropy (∆S) of phase changes. The Henry's law constants (kH(cp) ) were calculated from the regression analysis with a high degree of confidence (p 0.99). The kH(cp) increased with increase in equilibrium temperature. The empirical calculation of the ∆H and ∆S at different temperatures confirmed the temperature-dependence of the Henry's law constants. The headspace concentrations of the lamb-flavor compounds were determined above actual lamb fat samples and the corresponding condensed phase concentrations were successfully derived. The temperature-dependent Henry's law constants, ∆H, and ∆S of phase changes for 3-methylindole, 4-methyloctanoic acid, 4-ethyloctanoic acid, and 4-methylnonanoic acid in an air-oil matrix were empirically derived. The effectiveness of SIFT-MS for the direct, real-time, and rapid determination of key flavor compounds in lamb fat samples was established. This article is protected by copyright. All rights reserved.

  9. Two randomized controlled studies comparing the nutritional benefits of branched-chain amino acid (BCAA) granules and a BCAA-enriched nutrient mixture for patients with esophageal varices after endoscopic treatment.

    Science.gov (United States)

    Sakai, Yoshiyuki; Iwata, Yoshinori; Enomoto, Hirayuki; Saito, Masaki; Yoh, Kazunori; Ishii, Akio; Takashima, Tomoyuki; Aizawa, Nobuhiro; Ikeda, Naoto; Tanaka, Hironori; Iijima, Hiroko; Nishiguchi, Shuhei

    2015-01-01

    The usefulness of branched-chain amino acid (BCAA) granules and BCAA-enriched nutrient mixtures for patients with liver cirrhosis is often reported. However, no randomized controlled studies have investigated the usefulness of these supplements in the nutritional intervention of cirrhotic patients receiving endoscopic treatment for esophageal varices. Patients without BCAA before endoscopic treatment were divided into study 1, and those who received BCAA were divided into study 2. In study 1, 44 eligible patients were divided into a control group (n = 13), a general liquid nutrient (snack) group (n = 15), and a BCAA-enriched nutrient mixture (BCAA-EN) group (n = 16). In study 2, 48 eligible patients were divided into a BCAA group (n = 24) and a BCAA-EN group (n = 24). The nutritional status including non-protein respiratory quotient (NPRQ) levels, weight gain, and albumin were evaluated on days 0, 7, and 50. In study 1, the BCAA-EN group showed significant improvement in NPRQ levels on day 7 as compared with the snack group. In study 2, the BCAA-EN group showed significant improvement in NPRQ levels on day 7 and in weight levels on day 50 relative to the BCAA group, while the BCAA group showed improved serum albumin levels on day 7 compared to the BCAA-EN group. The BCAA-enriched nutrient mixture maintained NPRQ and weight in cirrhotic patients. Our findings suggest that supplements including both BCAA and a nutritional energy supplement would be beneficial for cirrhotic patients undergoing endoscopic treatment for esophageal varices.

  10. Simultaneous infusion of glutamine and branched-chain amino acids (BCAA) to septic rats does not have more favorable effect on protein synthesis in muscle, liver, and small intestine than separate infusions.

    Science.gov (United States)

    Holecek, Milan; Muthny, Tomas; Kovarik, Miroslav; Sispera, Ludek

    2006-01-01

    Glutamine and branched-chain amino acids (BCAA; valine, leucine, and isoleucine) are used as nutrition supplements in the treatment of proteocatabolic illness. We hypothesized that simultaneous administration of BCAA and glutamine affects protein metabolism more significantly than separate administration. In the present study, we evaluated their effect on protein synthesis in skeletal muscle, liver, and jejunum of septic rats. Twenty-four hours after induction of sepsis by subcutaneous injection of turpentine, the rats were infused for 6 hours with 5 mL of 1.75% glutamine, 1.75% BCAA, 1.75% glutamine+BCAA, or saline solution. The control group consisted of intact rats infused with saline. Protein synthesis was measured at the end of infusion by a "flooding method" with [3,4,5-(3)H]phenylalanine. In turpentine-treated animals, we observed a decrease in glutamine concentration in blood plasma and skeletal muscle, a decrease in BCAA concentration in liver and jejunum, and a decrease in protein synthesis in all tissues. Glutamine or glutamine+BCAA infusion increased glutamine concentration in plasma and muscle and stimulated protein synthesis in the liver. The BCAA infusion enhanced concentrations of BCAA in plasma and tissues, but the effect of BCAA on protein synthesis was insignificant. Synergistic effect of simultaneous infusion of glutamine and BCAA on protein synthesis was not observed. We conclude that glutamine infusion to rats with septic injury may significantly improve impaired protein synthesis in the liver and that there is no synergistic effect of glutamine and BCAA infusion on protein synthesis in skeletal muscle, liver, and jejunum.

  11. Characterization and conservation of the inner E2 core domain structure of branched-chain alpha-keto acid dehydrogenase complex from bovine liver. Construction of a cDNA encoding the entire transacylase (E2b) precursor.

    Science.gov (United States)

    Griffin, T A; Lau, K S; Chuang, D T

    1988-10-05

    A cDNA clone encoding the entire transacylase (E2b) precursor of the bovine branched-chain alpha-keto acid dehydrogenase complex has been constructed from two overlapping incomplete cDNA clones which were isolated from a lambda ZAP library prepared from bovine liver poly(A)+ RNA. Nucleotide sequencing indicates that this bovine E2b cDNA insert (bE2-11) is 2701 base pairs in length with an open reading frame of 1446 base pairs. The bE2-11 cDNA insert encodes a leader peptide of 61 residues and a mature E2b polypeptide of 421 amino acid residues with a calculated monomeric molecular mass of 46,518 daltons. The molecular mass of the native E2b component isolated from bovine liver is 1,110,000 daltons as determined by sedimentation equilibrium. This value establishes the 24-subunit octahedral model for the quaternary structure of bovine E2b. The amino-terminal sequences of two tryptic fragments (A and B) of the E2b protein have been determined. Fragment A comprises residues 175 to 421 of the E2b protein and is the inner E2 core domain which contains the transacylase active site. Fragment B, produced by further tryptic cleavage of fragment, comprises residues 205 to 421, but does not have transacylase activity. Both fragments A and B confer the highly assembled 24-mer structure. The primary structure of the inner E2 core domain of bovine E2b (fragment A) is very similar to those of three other E2 proteins (human E2p, Escherichia coli E2p, and E. coli E2k). These similarities suggest that these E2 proteins are structurally and evolutionarily related.

  12. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model.

    Science.gov (United States)

    Zheng, Liufeng; Wei, Hongkui; He, Pingli; Zhao, Shengjun; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2016-12-28

    Supplementation of branched-chain amino acids (BCAA) has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses-fed gains) in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1) and 28-day-old (Experiment 2) piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH 13 CO₃ for 2 h, followed by a 6-h infusion of [1- 13 C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC) and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle mass in

  13. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model

    Directory of Open Access Journals (Sweden)

    Liufeng Zheng

    2016-12-01

    Full Text Available Supplementation of branched-chain amino acids (BCAA has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses–fed gains in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1 and 28-day-old (Experiment 2 piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH13CO3 for 2 h, followed by a 6-h infusion of [1-13C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle

  14. Quantification of Structural Topology in Branched Polymers

    Science.gov (United States)

    Ramachandran, Ramnath

    Complex molecular structures occur in various natural and synthetic materials. From common plastics like polyethylene to proteins like hemoglobin, the significant effect of the molecular structure of these materials on their properties cannot be understated. Hence, it is fundamental to comprehensively characterize these complex structures. In the case of polyethylene, branching plays a significant role in determining its structure-property relationships. Various characterization techniques are available to measure the branch content in polyethylene. Qualitative techniques based on gel permeation chromatography and rheology; and absolute measurements from nuclear magnetic resonance spectroscopy are commonly used to estimate branch content. Drawbacks posed by these common techniques have been well documented in literature. Further, these techniques are unable to provide a comprehensive picture of the structural topology of polyethylene which is crucial to understanding the structure-property relationships of these systems. In this dissertation, a novel scaling approach is described to quantify branching in polyethylene. The approach is useful in quantifying both short-chain and long-chain branch contents in polyethylene. Additionally, unique measurements such as average long-chain branch length and hyperbranch (branch-on-branch) content are available through this approach. Such enhanced topological information can help us better understand the effect of catalyst systems on the structure of polyethylene as well as the effect of branching on the polymer's physical properties. The scaling approach was successful in quantifying the structure of variety of model and commercial branched polyethylene systems. Specific examples of high-density and linear low-density polyethylene as well as hydrogenated polybutadienes are discussed here. The dissertation is intended to standardize and corroborate the scaling approach in quantifying the structure of branched polymers. The

  15. Maple syrup urine disease: The E1{beta} gene of human branched-chain {alpha}-ketoacid dehydrogenase complex has 11 rather than 10 exons, and the 3{prime} UTR in one of the two E1{beta} mRNAs arises from intronic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, J.L.; Chuang, D.T.; Cox, R.P. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States)

    1996-06-01

    Maple syrup urine disease (MSUD) or branched-chain ketoaciduria is caused by a deficiency in the mitochondrial branched-chain {alpha}-ketoacid dehydrogenase (BCKAD) complex. The clinical manifestations are characterized by accumulation of branched chain amino and {alpha}-ketoacids, which leads to severe cerebral edema with seizures, ketoacidosis, and mental retardation. The BCKAD complex comprises three catalytic components, i.e., a decarboxylase (E1) consisting of two E1{alpha} (M{sub r} = 46,000) and two E1{Beta} (M{sub r} = 37,500) subunits, a transacylase (E2) that contains 24 lipoic acid-bearing subunits, and a dehydrogenase (E3), which is a homodimeric flavoprotein. MSUD is genetically heterogeneous, since mutations in the E1{alpha} subunit (type IA MSUD), the E1{Beta} subunit (type IB), the E2 subunit (type II) and the E3 subunit (type III) have been described. The functional consequences of certain mutations in the BCKAD complex have been studied. 23 refs., 3 figs.

  16. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides

    Science.gov (United States)

    Gaborieau, Marianne

    2010-01-01

    Branched polymers are among the most important polymers, ranging from polyolefins to polysaccharides. Branching plays a key role in the chain dynamics. It is thus very important for application properties such as mechanical and adhesive properties and digestibility. It also plays a key role in viscous properties, and thus in the mechanism of the separation of these polymers in size-exclusion chromatography (SEC). Critically reviewing the literature, particularly on SEC of polyolefins, polyacrylates and starch, we discuss common pitfalls but also highlight some unexplored possibilities to characterize branched polymers. The presence of a few long-chain branches has been shown to lead to a poor separation in SEC, as evidenced by multiple-detection SEC or multidimensional liquid chromatography. The local dispersity can be large in that case, and the accuracy of molecular weight determination achieved by current methods is poor, although hydrodynamic volume distributions offer alternatives. In contrast, highly branched polymers do not suffer from this extensive incomplete separation in terms of molecular weight. Figure Representation of (a) a linear polymer chain and various branched polymer structures with (b) longchain branches (amylose-like), (c) short-chain branches (amylopectin-like), (d) both short-chain and long-chain branches (polyacrylate- or polyethylene-like). PMID:20967430

  17. Supplementation of branched-chain amino acids in protein-restricted diets modulates the expression levels of amino acid transporters and energy metabolism associated regulators in the adipose tissue of growing pigs

    Directory of Open Access Journals (Sweden)

    Yinghui Li

    2016-03-01

    Full Text Available This experiment was conducted to investigate the effects of branched-chain amino acids (BCAA supplemented in protein-restricted diets on the growth performance and the expression profile of amino acid transporters and energy metabolism related regulators in the white adipose tissue (WAT of different regional depots including dorsal subcutaneous adipose (DSA and abdominal subcutaneous adipose (ASA. A total of 24 crossbred barrows (7.40 ± 0.70 kg were randomly divided into 4 groups and were fed the following isocaloric diets for 33 days: 1 a recommended adequate protein diet (AP, 20% CP, as a positive control; 2 a low protein diet (LP, 17% CP; 3 the LP diet supplemented with BCAA (LP + B, 17% CP to reach the same level of the AP diet group; 4 the LP diet supplemented with 2 times the amount of BCAA (LP + 2B, 17% CP. The daily gain and daily feed intake of the LP diet group were the lowest among all the treatments (P  0.05. Moreover, BCAA supplementation down-regulated the expression levels of amino acid transporters including L-type amino acid transporter 1 and sodium-coupled neutral amino acid transporter 2 in DSA, but up-regulated the expression level of L-type amino acid transporter 4 in ASA (P < 0.05. Meanwhile, the energy sensor AMP-activated protein kinase α was activated in the DSA of pigs fed LP diet and in the ASA of the pigs fed AP or LP + 2B diets (P < 0.05. The mRNA expression profile of the selected mitochondrial component and mitochondrial biogenesis associated regulators in DSA and ASA also responded differently to dietary BCAA supplementation. These results suggested that the growth performance of growing pigs fed protein restricted diets supplemented with BCAA could catch up to that of the pigs fed AP diets. The results also partly demonstrated that the regulation mechanisms of BCAA are different in the adipose tissues of different depots.

  18. Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect.

    Science.gov (United States)

    Zheng, Liufeng; Wei, Hongkui; Cheng, Chuanshang; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2016-06-01

    The aim of this study was to investigate whether supplementing branched-chain amino acids (AA) (BCAA) along with a reduced-protein diet increases piglet growth, and whether elevated feed intake and muscle growth-promoting effect contribute to this improvement. In Expt 1, twenty-eight weanling piglets were randomly fed one of the following four diets: a positive control (PC) diet, a reduced-protein negative control (NC) diet, an NC diet supplemented with BCAA to the same levels as in the PC diet (test 1 (T1)) and an NC diet supplemented with a 2-fold dose of BCAA in T1 diet (test 2 (T2)) for 28 d. In Expt 2, twenty-one weanling piglets were randomly assigned to NC, T1 and pair-fed T1 (P) groups. NC and T1 diets were the same as in Expt 1, whereas piglets in the P group were individually pair-fed with the NC group. In Expt 1, the NC group had reduced piglet growth and feed intake compared with the PC group, which were restored in T1 and T2 groups, but no differences were detected between T1 and T2 groups. In Expt 2, T1 and P groups showed increases in growth and mass of some muscles compared with the NC group. Increased feed intake after BCAA supplementation was associated with increased mRNA expressions of agouti-related peptide and co-express neuropeptide Y (NPY) and phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1), as well as decreased mRNA expressions of melanocortin-4 receptor and cocaine- and amphetamine-regulated transcript and phosphorylation of eukaryotic initiation factor 2α in the hypothalamus. No differences were observed among PC, T1 and T2 groups except for higher NPY mRNA expression in the T2 group than in the PC group (Expt 1). Phosphorylation of mTOR and S6K1 in muscle was enhanced after BCAA supplementation, which was independent of change in feed intake (Expt 2). In conclusion, supplementing BCAA to reduced-protein diets increases feed intake and muscle mass, and contributes to better growth

  19. Consumo de aminoácidos de cadeia ramificada não afeta o desempenho de endurance Branched-chain amino acids ingestion does not affect endurance performance

    Directory of Open Access Journals (Sweden)

    Marco Carlos Uchida

    2008-02-01

    Full Text Available A suplementação com aminoácidos de cadeia ramificada (BCAA é uma das manipulações dietéticas mais populares entre atletas engajados em atividades de endurance. Entretanto, o papel ergogênico destes aminoácidos ainda não está totalmente estabelecido. Portanto, o objetivo do presente trabalho foi avaliar o efeito do consumo de BCAA sobre o exercício de endurance realizado até a exaustão. A fim de provocar redução do estoque de glicogênio muscular e, por conseguinte, maximizar a utilização dos BCAA, os sujeitos (n=17 foram submetidos a uma sessão prévia de exercício (corrida realizada a 75% do VO2max por 40 min seguida por 2 tiros a 90% do VO2max por 10 min cada um. Subseqüentemente, após o consumo aleatório de BCAA (77 mg.kg-1 ou placebo, seguindo modelo duplo cego cruzado, os participantes executaram um teste para determinação da capacidade de endurance (corrida a 90% do Limiar anaeróbio até a exaustão. Ambos os experimentos, BCAA e placebo, foram separados por uma semana. Com relação ao tempo até a exaustão e a distância percorrida, nenhuma diferença foi detectada entre as condições experimentais. (Placebo: 50,1±8,9 vs BCAA: 52,4±4,5 min, respectivamente (Placebo: 8,8±1,3 vs BCAA: 9,1±0,6 km, respectivamente. Além disto, também não foi evidenciada diferença na concentração plasmática de glicose, de lactato e de amônia entre ambas condições experimentais. Em conclusão, a suplementação de BCAA não afetou o desempenho de endurance em um teste de corrida até a exaustão.Branched-chain amino acids (BCAA supplementation is one of the most popular dietary manipulations used by endurance athletes. However, the ergogenic role of these amino acids in endurance exercise is not well established yet. Therefore, the aim of this study was to evaluate the effect of BCAA supplementation upon endurance exercise performed until exhaustion. In order to induce glycogen supply reduction, and thus maximize BCAA

  20. Neuro-Oncology Branch

    Science.gov (United States)

    ... BTTC are experts in their respective fields. Neuro-Oncology Clinical Fellowship This is a joint program with ... can increase survival rates. Learn more... The Neuro-Oncology Branch welcomes Dr. Mark Gilbert as new Branch ...

  1. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  2. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved....

  3. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath

    2012-01-24

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  4. Electrostatically anchored branched brush layers.

    Science.gov (United States)

    Liu, Xiaoyan; Dedinaite, Andra; Rutland, Mark; Thormann, Esben; Visnevskij, Ceslav; Makuska, Ricardas; Claesson, Per M

    2012-11-06

    A novel type of block copolymer has been synthesized. It consists of a linear cationic block and an uncharged bottle-brush block. The nonionic bottle-brush block contains 45 units long poly(ethylene oxide) side chains. This polymer was synthesized with the intention of creating branched brush layers firmly physisorbed to negatively charged surfaces via the cationic block, mimicking the architecture (but not the chemistry) of bottle-brush molecules suggested to be present on the cartilage surface, and contributing to the efficient lubrication of synovial joints. The adsorption properties of the diblock copolymer as well as of the two blocks separately were studied on silica surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry. The adsorption kinetics data highlight that the diblock copolymers initially adsorb preferentially parallel to the surface with both the cationic block and the uncharged bottle-brush block in contact with the surface. However, as the adsorption proceeds, a structural change occurs within the layer, and the PEO bottle-brush block extends toward solution, forming a surface-anchored branched brush layer. As the adsorption plateau is reached, the diblock copolymer layer is 46-48 nm thick, and the water content in the layer is above 90 wt %. The combination of strong electrostatic anchoring and highly hydrated branched brush structures provide strong steric repulsion, low friction forces, and high load bearing capacity. The strong electrostatic anchoring also provides high stability of preadsorbed layers under different ionic strength conditions.

  5. Effect of the direction of ester linkage on molecular shape selectivity through multiple carbonyl-pi interaction with octadecyl chain branched polymers as organic phases in reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Rana, Ashequl A; Takafuji, Makoto; Ihara, Hirotaka

    2009-10-30

    Poly(vinyl octadecanoate)-grafted porous silica (Sil-VODn, n=23) was newly prepared to investigate the efficiencies of the carbonyl groups in the polymer chain for recognition of polycyclic aromatic hydrocarbons (PAHs) in RP-HPLC. In Sil-VOD23, the octadecyl side chains were connected to the polymer main chain through ester linkage in opposite direction to that in poly(octadecylacrylate)-grafted silica (Sil-ODAn, n=25) which has been reported by us. Sil-ODAn performs enhanced molecular shape selectivity of PAHs in RP-HPLC through multiple carbonyl-pi interaction of aligned carbonyl groups which are induced by the formation of highly oriented structure of side chains. Differential scanning calorimetry of VOD23 demonstrated that octadecyl alkyl chains showed crystalline to isotropic phase transition with endothermic peak at 48.7 degrees C which was similar to ODA25 (at 47.8 degrees C). After grafting of both polymers, phase transition phenomenon was completely disappeared in Sil-VOD23 whereas Sil-ODA25 still exhibits phase transition although at lower endothermic peak top temperature (38.5 degrees C). This indicates that the slight structural change in Sil-VODn and Sil-ODAn influence the ordered structure of side alkyl chains. Moreover, solid-state 13C NMR revealed that the long alkyl chain in Sil-VOD23 is highly disordered as compared with that of Sil-ODA25. Sil-VOD23 was applied to RP-HPLC stationary phase using PAHs as pi-electron containing elutes, and compared with Sil-ODA25 and conventional monomeric octadecylated silica (ODS). Results confirmed that Sil-VOD23 showed much higher selectivity for PAH isomers than ODS, but lower than Sil-ODA25. For example, the separation factors for trans-/cis-stilbene were 1.47 (Sil-VOD23), 1.70 (Sil-ODA25) and 1.07 (ODS), respectively. These results indicate that carbonyl groups in Sil-VOD23 are effective for molecular shape recognition of PAHs through carbonyl-pi interactions even in the disordered state.

  6. Coherent branching feature bisimulation

    Directory of Open Access Journals (Sweden)

    Tessa Belder

    2015-04-01

    Full Text Available Progress in the behavioral analysis of software product lines at the family level benefits from further development of the underlying semantical theory. Here, we propose a behavioral equivalence for feature transition systems (FTS generalizing branching bisimulation for labeled transition systems (LTS. We prove that branching feature bisimulation for an FTS of a family of products coincides with branching bisimulation for the LTS projection of each the individual products. For a restricted notion of coherent branching feature bisimulation we furthermore present a minimization algorithm and show its correctness. Although the minimization problem for coherent branching feature bisimulation is shown to be intractable, application of the algorithm in the setting of a small case study results in a significant speed-up of model checking of behavioral properties.

  7. Direct and Indirect Determinations of Elementary Rate Constants H + O2: Chain Branching; the Dehydration of tertiary-Butanol; the Retro Diels-Alder Reaction of Cyclohexene; the Dehydration of Isopropanol

    Science.gov (United States)

    Heyne, Joshua S.

    Due to growing environmental concern over the continued use of fossil fuels, methods to limit emissions and partially replace fossil fuel use with renewable biofuels are of considerable interest. Developing chemical kinetic models for the chemistry that affects combustion properties is important to understanding how new fuels affect combustion energy conversion processes in transportation devices. This thesis reports the experimental study of several important reactions (the H + O2 branching reaction, the key decomposition reactions of tertiary-butanol, the dehydration reaction of isopropanol, and the retro Diels-Alder reaction of cyclohexene) and develops robust analysis methods to estimate the absolute uncertainties of specific elementary rate constants derived from the experimental data. In the study of the above reactions, both a direct and indirect rate constant determination technique with associated uncertainty estimation methodologies are developed. In the study of the decomposition reactions, a direct determination technique is applied to experimental data gathered in preparation of this thesis. In the case of the dehydration reaction of tertiary-butanol and the retro Diels-Alder reaction of cyclohexene, both of which are used as internal standards for relative rate studies (Herzler et al. 1997) and chemical thermometry (Rosado-Reyes et al. 2013) , analysis showed an ˜20 K difference in the reaction rate between the reported results and the previous recommendations. In light of these discrepancies, an uncertainty estimation of previous recommendations illuminated an uncertainty of at least 20 K for the dehydration reaction of tertiary-butanol and the retro Diels-Alder reaction of cyclohexene, thus resolving the discrepancies. The determination of the H + O2 branching reaction and decomposition reactions of isopropanol used an indirect determination technique. The uncertainty of the H + O2 branching reaction rate is shown to be underestimated by previous

  8. Renal Branch Artery Stenosis

    DEFF Research Database (Denmark)

    Andersson, Zarah; Thisted, Ebbe; Andersen, Ulrik Bjørn

    2017-01-01

    Renovascular hypertension is a common cause of pediatric hypertension. In the fraction of cases that are unrelated to syndromes such as neurofibromatosis, patients with a solitary stenosis on a branch of the renal artery are common and can be diagnostically challenging. Imaging techniques...... that perform well in the diagnosis of main renal artery stenosis may fall short when it comes to branch artery stenosis. We report 2 cases that illustrate these difficulties and show that a branch artery stenosis may be overlooked even by the gold standard method, renal angiography....

  9. Materials Test Branch

    Science.gov (United States)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  10. Species Specificity in the Biosynthesis of Branched Paraffins in Leaves

    Science.gov (United States)

    Kolattukudy, P. E.

    1968-01-01

    Isobutyrate-1-14C and l-isoleucine-U-14C fed through the petiole labeled the surface lipids of broccoli leaves, but the incorporation was much less than from straight chain precursors. Not more than one-third of the 14C incorporated into the surface lipids was found in the C29 paraffin and derivatives, whereas more than two-thirds of the 14C from straight chain precursors are usually found in these compounds. The small amount of 14C incorporated into the paraffin fraction was found in the n-C29 paraffin rather than branched paraffins showing that the 14C in the paraffin must have come from degradation products. Radio gas-liquid chromatography of the saturated fatty acids showed that, in addition to the n-C16 acid which was formed from both branched precursors, isoleucine-U-14C gave rise to branched C15, C17, and C19 fatty acids, and isobutyrate-1-14C gave rise to branched C16 and C18 acids. Thus the reason for the failure of broccoli leaf to incorporate branched precursors into branched paraffins is not the unavailability of branched fatty acids, but the absolute specificity of the system that synthesizes paraffins, probably the elongation-decar-boxylation enzyme complex. Consistent with this view, no labeled branched fatty acids longer than C19 could be found in the broccoli leaf. The branched fatty acids were also found in the surface lipids indicating that the epidermal layer of cells did have access to branched chains. Thus the paraffin synthesizing enzyme system is specific for straight chains in broccoli, but the fatty acid synthetase is not. PMID:16656932

  11. Bundle Branch Block

    Science.gov (United States)

    ... 2015. Bundle branch block Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  12. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  13. Small Angle Neutron Scattering for the Detection of Branching in Worm-Like Micellar Systems

    Science.gov (United States)

    Vogtt, Karsten; Rai, Durgesh; Beaucage, Gregory

    2014-03-01

    Micellar solutions can exhibit a broad variety of phase structure as a function of counter ion content, surfactant concentration, and the presence of ternary components. Under some conditions extended cylindrical structures that display persistence and other chain features of polymers are produced. These worm-like micelles (WLMs) can form branched structures that dynamically change under shear and even in quiescent conditions. The rheology of these branched WLMs is strongly dependent on migration of the branch points, and the dynamics of branch formation and removal. We have recently developed a scattering model for branched polyolefins and other topologically complex materials that can quantify the branching density, branch length, branch functionality and the hyperbranch (branch-on-branch) content of polymers. Using small angle neutron scattering these parameters are determined for model emulsions with varying surfactant and salt concentrations.

  14. Synthesis of branched polysaccharides with tunable degree of branching

    NARCIS (Netherlands)

    Ciric, Jelena; Loos, Katja

    2013-01-01

    An in vitro enzyme-catalyzed tandem reaction using the enzymes phosphorylase b from rabbit muscle and Deinococcus geothermalis glycogen branching enzyme (Dg GBE) to obtain branched polyglucans with tunable degree of branching (2% divided by 13%) is presented. The tunable degree of branching is

  15. Nature of branching in disordered materials

    Science.gov (United States)

    Kulkarni, Amit S.

    The phenomenon of structural branching is ubiquitous in a wide array of materials such as polymers, ceramic aggregates, networks and gels. These materials with structural branching are a unique class of disordered materials and often display complex architectures. Branching has a strong influence over the structure-property relationships of these materials. Despite the generic importance across a wide spectrum of materials, our physical understanding of the scientific nature of branching and the analytic description and quantification of branching is at an early stage, though many decades of effort have been made. For polymers, branching is conventionally characterized by hydrodynamic radius (size exclusion chromatography, SEC, rheology) or by counting branch sites (nuclear magnetic resonance spectroscopy, NMR). SEC and rheology are, at best, qualitative; and quantitative characterization techniques like NMR and transmission electron microscopy (TEM) (for ceramic nanoparticulate aggregates) have limitations in providing routine quantification. Effective structure characterization, though an important step in understanding these materials, remains elusive. For ceramic aggregates, theoretical work has dominated and only a few publications on analytic studies exist to support theory. A new generic scaling model is proposed in Chapter I, which encompasses the critical structural features associated with these complex architectures. The central theme of this work is the application of this model to describe a variety of disordered structures like aggregated nano-particulates, long chain branched polymers like polyethylene, hyperbranched polymers, multi-arm star polymers, and cyclic macromolecules. The application of the proposed model to these materials results in a number of fundamental structural parameters, like the mass-fractal dimension, df, the minimum path dimension, dmin, connectivity dimension, c, and the mole fraction branch content, φbr. These dimensions

  16. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly...... increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch block was associated...

  17. State-set branching

    DEFF Research Database (Denmark)

    Jensen, Rune Møller; Veloso, Manuela M.; Bryant, Randal E.

    2008-01-01

    In this article, we present a framework called state-set branching that combines symbolic search based on reduced ordered Binary Decision Diagrams (BDDs) with best-first search, such as A* and greedy best-first search. The framework relies on an extension of these algorithms from expanding a sing...

  18. Tracheobronchial Branching Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)

    2010-04-15

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  19. Tau leptonic branching ratios

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    A sample of 62249 \\tau-pair events is selected from data taken with the ALEPH detector in 1991, 1992 and 1993. The measurement of the branching fractions for \\tau decays into electrons and muons is presented with emphasis on the study of systematic effects from selection, particle identification and decay classification. Combined with the most recent ALEPH determination of the \\tau lifetime, these results provide a relative measurement of the leptonic couplings in the weak charged current for transverse W bosons.

  20. Fixman compensating potential for general branched molecules

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Abhinandan, E-mail: Abhi.Jain@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States); Kandel, Saugat; Wagner, Jeffrey; Larsen, Adrien; Vaidehi, Nagarajan, E-mail: nvaidehi@coh.org [Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010 (United States)

    2013-12-28

    The technique of constraining high frequency modes of molecular motion is an effective way to increase simulation time scale and improve conformational sampling in molecular dynamics simulations. However, it has been shown that constraints on higher frequency modes such as bond lengths and bond angles stiffen the molecular model, thereby introducing systematic biases in the statistical behavior of the simulations. Fixman proposed a compensating potential to remove such biases in the thermodynamic and kinetic properties calculated from dynamics simulations. Previous implementations of the Fixman potential have been limited to only short serial chain systems. In this paper, we present a spatial operator algebra based algorithm to calculate the Fixman potential and its gradient within constrained dynamics simulations for branched topology molecules of any size. Our numerical studies on molecules of increasing complexity validate our algorithm by demonstrating recovery of the dihedral angle probability distribution function for systems that range in complexity from serial chains to protein molecules. We observe that the Fixman compensating potential recovers the free energy surface of a serial chain polymer, thus annulling the biases caused by constraining the bond lengths and bond angles. The inclusion of Fixman potential entails only a modest increase in the computational cost in these simulations. We believe that this work represents the first instance where the Fixman potential has been used for general branched systems, and establishes the viability for its use in constrained dynamics simulations of proteins and other macromolecules.

  1. Molecular basis of maple syrup urine disease: Novel mutations at the E1[alpha] locus that impair E1([alpha][sub 2][beta][sub 2]) assembly or decrease steady-state E1[alpha] mRNA levels of branched-chain [alpha]-keto acid dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, J.L.; Fisher, C.R.; Chuang, D.T.; Cox, R.P. (Univ. of Texas Southwestern Medical Center, Dallas, TX (United States))

    1994-08-01

    The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertion generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.

  2. Thermal Energy Conversion Branch

    Science.gov (United States)

    Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.

    2004-01-01

    The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.

  3. The branch librarians' handbook

    CERN Document Server

    Rivers, Vickie

    2004-01-01

    ""Recommended""--Booklist; ""an excellent addition...highly recommended""--Public Libraries; ""clear...very sound advice...strongly recommend""--Catholic Library World; ""excellent resource...organized...well written""--Against the Grain; ""interesting...thoroughly practical...a very good book...well organized...clearly written""--ARBA. This handbook covers a wide variety of issues that the branch librarian must deal with every day. Chapters are devoted to mission statements (the Dallas Public Library and Dayton Metro Library mission statements are highlighted as examples), library systems,

  4. Flight Dynamics Analysis Branch

    Science.gov (United States)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  5. Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature.

    Science.gov (United States)

    Suutari, M; Laakso, S

    1992-01-01

    Streptomyces griseus showed three different modes of changing fatty acids in response to temperature change. In Brevibacterium fermentans, two such responses were found. The responses involved changes in fatty acid branching, unsaturation, or chain length, depending on growth temperature range. Changes in unsaturation of branched-chain acids were characteristic at low growth temperatures. PMID:1637171

  6. Synthesis and Photovoltaic properties of branched chain polymeric ...

    Indian Academy of Sciences (India)

    They have been characterized and studied by FT-IR, GPC, Elemental analysis, TGA, UV-vis absorption spectroscopy, photoluminescence spectroscopy and cyclic ... of the crucial importance of molecular engineering and pave a new path to design novel conjugated organic polymer dye for highly efficient and stable DSSCs.

  7. Synthesis and Photovoltaic properties of branched chain polymeric ...

    Indian Academy of Sciences (India)

    MS received 17 January 2014; revised 30 June 2014; accepted 24 July 2014. Abstract. Three donor-π-acceptor (D-π-A) dyes (P1–P3) of ... phenothiazine,9 coumarin,10–12 and indoline13,14 have been successfully used as electron donors. ..... A and Sun L C 2007 Chem. Commun. 43 3741. 18. Wu W J, Yang J B, Hua J L, ...

  8. The branched-chain amino acid requerement in neonates

    NARCIS (Netherlands)

    F. Maingay-de Groof (Femke)

    2012-01-01

    textabstractGrowth during the earliest stages of life is an important determinant of an individual’s later health and risk of chronic disease. Substantial evidence shows that growth in the first 2 years of life, especially high early weight gain, is associated with adverse health outcomes later in

  9. Dietary branched-chain amino acid (BCAA) and tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W.; Baron, L.; Baron, P.; White, F.; Banks, W.L. Jr.

    1986-03-05

    The effects of high dietary BCAA on tumor growth was examined in adult male Fischer 344 rats inoculated with 10/sup 6/ viable MCA fibrosarcoma cells. Ten days after tumor inoculation, when tumors were of palpable size, rats were divided into two groups at random. The experimental(E) group was fed the AIN-76 diet supplemented with 4X the BCAA content of diet casein and the control(C) group was fed the AIN-76 made isonitrogenous with the E diet by glutamic acid supplementation. Five rats from each group were killed at days 0,3,6, and 9. Rats were injected with /sup 14/C-Tyrosine and /sup 3/H-Thymidine i.p. (2 and 4 uCi/100g BW, respectively) an hour before they were killed. The incorporation of /sup 14/C and /sup 3/H into the acid insoluble fraction of the tumor tissues samples were measured. Single cell suspension of tumor were prepared for cell cycle kinetics analysis using a Coulter EPICS IV flow microflorometer. The percentage of normal and hyperdiploid cells were analyzed. Results showed that both tumor size and weight were doubled at each time point the rats were killed. At day 0, the /sup 3/H and /sup 14/C incorporation were 32 +/- 10dpm and 27 +/- 4dpm/mg tumor, respectively. The /sup 3/H incorporation dropped in both diet groups at days 6 and 9 but the /sup 14/C incorporation showed a decrease only at day 9. These changes were statistically significant, P>0.05. No difference in the tumor growth parameters used in this study can be attributed to the high dietary BCAA.

  10. Branched chain amino acids requirements and metabolism in pigs

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham

    2015-01-01

    by increasing SID Leu:Lys in the diet were plasma Phe, α-ketoisovaleric acid, creatine, Ile, 3-methyl-oxovaleric acid, Trp and urinary Ile, glutamate, choline, cytosine, 3-hydroxy-2-methyl-[S-(R,R)]-butanoic acid, acetyl-DL-valine, L-2-aminoadipic acid, 2-methylbutyrylglycine, Tyr, and L-ascorbic acid. Among...... the identified metabolites, those that could be linked to the animal growth performance were plasma glycocholic acid and taurocholic acid which were concluded as biomarkers of the optimum dietary Ile level. Plasma creatine, urinary 2-aminoadipic acid, ascorbic acid, and choline were identified as biomarkers......There is an interest to reduce the dietary crude protein (CP) level to promote the gut health of piglets, eliminate the environmental nitrogen load from intensive pig farming, and to reduce diet costs. This is possible by estimating individual amino acid (AA) requirements and by optimizing the diet...

  11. Modeling Radioactive Decay Chains with Branching Fraction Uncertainties

    Science.gov (United States)

    2013-03-01

    as computationally efficient. AFIT-ENP-13-M-14 v Dedicated to God and my family, when it is all said and...distribution creates a pdf based on known data. Dirichlet Distribution The Dirichlet distribution is the conjugate prior to the multinomial distribution... Integer , Intent(In):: n !number of linear terms to use Real(dp):: SampleX, y, PDF Real(dp):: a, b, u Real(dp):: x(0:n), s(0:n), Area

  12. Branched-chain amino acids and brain function

    National Research Council Canada - National Science Library

    Fernstrom, John D

    2005-01-01

    ...), and is competitive. Consequently, when plasma BCAA concentrations rise, which can occur in response to food ingestion or BCAA administration, or with the onset of certain metabolic diseases (e.g...

  13. Linear, branched and network polysilanes with thienyl/furyl ...

    Indian Academy of Sciences (India)

    Linear, branched and network polysilanes with thienyl/furyl substituted sila-alkyl side chains and their applications for the synthesis of fluorescent silver ... By virtue of -delocalized silicon backbone and variable HOMO-LUMO band gap energies, these polymers are found to be promising candidates as reducing agents for ...

  14. Quiver Varieties and Branching

    Directory of Open Access Journals (Sweden)

    Hiraku Nakajima

    2009-01-01

    Full Text Available Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on $R^4/Z_r$ correspond to weight spaces of representations of the Langlands dual group $G_{aff}^{vee}$ at level $r$. When $G = SL(l$, the Uhlenbeck compactification is the quiver variety of type $sl(r_{aff}$, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for $G = SL(l$.

  15. Preparation and Properties of Branched Polystyrene through Radical Suspension Polymerization

    Directory of Open Access Journals (Sweden)

    Wenyan Huang

    2017-01-01

    Full Text Available Radical solvent-free suspension polymerization of styrene with 3-mercapto hexyl-methacrylate (MHM as the branching monomer has been carried out using 2,2′-azobisisobutyronitrile (AIBN as the initiator to prepare branched polymer beads of high purity. The molecular weight and branching structure of the polymers have been characterized by triple detection size exclusion chromatography (TD-SEC, proton nuclear magnetic resonance spectroscopy (1H-NMR, and Fourier transform infrared spectroscopy (FTIR. The glass transition temperature and rheological properties have been measured by using differential scanning calorimetry (DSC and rotational rheometry. At mole ratios of MHM to AIBN less than 1.0, gelation was successfully avoided and branched polystyrene beads were prepared in the absence of any solvent. Branched polystyrene has a relatively higher molecular weight and narrower polydispersity (Mw.MALLS = 1,036,000 g·mol−1, Mw/Mn = 7.76 than those obtained in solution polymerization. Compared with their linear analogues, lower glass transition temperature and decreased chain entanglement were observed in the presently obtained branched polystyrene because of the effects of branching.

  16. Durability of branches in branched and fenestrated endografts.

    Science.gov (United States)

    Mastracci, Tara M; Greenberg, Roy K; Eagleton, Matthew J; Hernandez, Adrian V

    2013-04-01

    Branched and fenestrated repair has been shown to be effective for treatment of complex aortic aneurysms. However, the long-term durability of branches is not well reported. Prospective data collected for all patients enrolled in a physician-sponsored investigational device exemption trial for branched and fenestrated endografts were analyzed. Retrospective review of imaging studies and electronic records was used to supplement the dataset. Incidences of branch stent secondary intervention, stent fracture, migration, branch-related rupture, and death were calculated. A time-to-event analysis was performed for secondary intervention for any branch. Univariable and multivariable analyses were performed to identify related variables. Branch instability, a composite outcome of any branch event, was reported as a function of exponential decay to capture the loss of freedom from complications over time. Between the years 2001 and 2010, 650 patients underwent endovascular aortic repair with branched or fenestrated devices. Over 9 years of follow-up (mean [standard deviation], 3 [2.3] years), secondary procedures were performed for 0.6% of celiac, 4% of superior mesenteric artery (SMA), 6% of right renal artery, and 5% of left renal artery stents. Mean time to reintervention was 237 (354) days. The 30-day, 1-year, and 5-year freedom from branch intervention was 98% (95% confidence interval [CI], 96%-99%), 94% (95% CI, 92%-96%), and 84% (95% CI, 78%-90%), respectively. Death from branch stent complications occurred in three patients, two related to SMA thrombosis and one due to an unstented SMA scallop. Multivariable analysis revealed no factors as independent predictors of need for branch reintervention. Branches, after branched or fenestrated aortic repair, appear to be durable and are rarely the cause of patient death. The absence of long-term data on branch patency in open repair precludes comparison, yet the lower morbidity and mortality risk coupled with longer

  17. The control of branching morphogenesis

    Science.gov (United States)

    Iber, Dagmar; Menshykau, Denis

    2013-01-01

    Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663

  18. Methods and Technologies Branch (MTB)

    Science.gov (United States)

    The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.

  19. Heavy Chain Diseases

    Science.gov (United States)

    ... heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy chain ... disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy chain ...

  20. Tau hadronic branching ratios

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...

  1. Legislative Branch: FY2014 Appropriations

    Science.gov (United States)

    2013-11-25

    Authorizations Since 1999, by Matthew E. Glassman . Legislative Branch: FY2014 Appropriations Congressional Research Service 10 The FY2012 level of...Congresses, by Matthew E. Glassman . Legislative Branch: FY2014 Appropriations Congressional Research Service 11 Members’ Representational...vehicles; communications equipment; security equipment and its installation; dignitary protection; intelligence analysis; hazardous material response

  2. Markov chains

    CERN Document Server

    Revuz, D

    1984-01-01

    This is the revised and augmented edition of a now classic book which is an introduction to sub-Markovian kernels on general measurable spaces and their associated homogeneous Markov chains. The first part, an expository text on the foundations of the subject, is intended for post-graduate students. A study of potential theory, the basic classification of chains according to their asymptotic behaviour and the celebrated Chacon-Ornstein theorem are examined in detail. The second part of the book is at a more advanced level and includes a treatment of random walks on general locally compact abelian groups. Further chapters develop renewal theory, an introduction to Martin boundary and the study of chains recurrent in the Harris sense. Finally, the last chapter deals with the construction of chains starting from a kernel satisfying some kind of maximum principle.

  3. Density functional steric analysis of linear and branched alkanes.

    Science.gov (United States)

    Ess, Daniel H; Liu, Shubin; De Proft, Frank

    2010-12-16

    Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E(s)[ρ]), an electrostatic energy term (E(e)[ρ]), and a fermionic quantum energy term (E(q)[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.

  4. Models of lung branching morphogenesis.

    Science.gov (United States)

    Miura, Takashi

    2015-03-01

    Vertebrate airway has a tree-like-branched structure. This structure is generated by repeated tip splitting, which is called branching morphogenesis. Although this phenomenon is extensively studied in developmental biology, the mechanism of the pattern formation is not well understood. Conversely, there are many tree-like structures in purely physical or chemical systems, and their pattern formation mechanisms are well-understood using mathematical models. Recent studies correlate these biological observations and mathematical models to understand lung branching morphogenesis. These models use slightly different mechanisms. In this article, we will review recent progress in modelling lung branching morphogenesis, and future directions to experimentally verify the models. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  6. Structural Mechanics and Dynamics Branch

    Science.gov (United States)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  7. Environmental management in product chains

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Forman, Marianne; Hansen, Anne Grethe

    of environmental initiatives, a number of recommendations for governmental regulation, which can support the further diffusion of environmental management in product chains, are developed. Furthermore, the report describes a number of theoretical perspectives from sociology of technology, organisation theory......This report presents the analyses of the shaping, implementation and embedding of eight types of environmental initiatives in product chains. The analyses focus on • the role of the type of product and branch, of the size of the companies and of governmental regulation • the focus...... of the environmental concerns and the reductions in environmental impact • organisational changes which have been part of the embedding of the initiatives The analyses are based on 25 cases from national and international product chains involving one or more Danish companies. Based on the analyses of the eight types...

  8. Viscoelasticity of randomly branched polymers in the vulcanization class.

    Science.gov (United States)

    Lusignan, C P; Mourey, T H; Wilson, J C; Colby, R H

    1999-11-01

    We report viscosity, recoverable compliance, and molar mass distribution for a series of randomly branched polyester samples with long linear chain sections between branch points. Molecular structure characterization determines tau=2.47+/-0.05 for the exponent controlling the molar mass distribution, so this system belongs to the vulcanization (mean-field) universality class. Consequently, branched polymers of similar size strongly overlap and form interchain entanglements. The viscosity diverges at the gel point with an exponent s=6.1+/-0.3, that is significantly larger than the value of 1.33 predicted by the branched polymer Rouse model (bead-spring model without entanglements). The recoverable compliance diverges at the percolation threshold with an exponent t=3.2+/-0.2. This effect is consistent with the idea that each branched polymer of size equal to the correlation length stores k(B)T of elastic energy. Near the gel point, the complex shear modulus is a power law in frequency with an exponent u=0.33+/-0.05. The measured rheological exponents confirm that the dynamic scaling law u=t/(s+t) holds for the vulcanization class. Since s is larger and u is smaller than the Rouse values observed in systems that belong to the critical percolation universality class, we conclude that entanglements profoundly increase the longest relaxation time. Examination of the literature data reveals clear trends for the exponents s and u as functions of the chain length between branch points. These dependencies, qualitatively explained by hierarchical relaxation models, imply that the dynamic scaling observed in systems that belong to the vulcanization class is nonuniversal.

  9. A simple model of stiff and flexible polymer chain adsorption: the influence of the internal chain architecture.

    Science.gov (United States)

    Adamczyk, Piotr; Romiszowski, Piotr; Sikorski, Andrzej

    2008-04-21

    In this study, we investigated the process of random sequential adsorption of stiff and flexible polymer chains on a two-dimensional square lattice. The polymer chains were represented by sequence of lattice points forming needles, T shapes, and crosses as well as flexible linear chains and star-branched chains consisted of three and four arms. The Monte Carlo method was employed to generate the model systems. The percolation threshold and the jamming threshold were determined for all systems under consideration. The influence of the chain length and the chain architecture on both thresholds was calculated and discussed. The changes in the ordering of the system were also studied.

  10. Dual chain synthetic heparin-binding growth factor analogs

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  11. Dual chain synthetic heparin-binding growth factor analogs

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  12. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), Senda del Rey 9, 28040 Madrid (Spain)], E-mail: jfreire@invi.uned.es

    2008-07-16

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.

  13. Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung.

    Science.gov (United States)

    Kim, Hye Young; Varner, Victor D; Nelson, Celeste M

    2013-08-01

    Branching morphogenesis sculpts the airway epithelium of the lung into a tree-like structure to conduct air and promote gas exchange after birth. In the avian lung, a series of buds emerges from the dorsal surface of the primary bronchus via monopodial branching to form the conducting airways; anatomically, these buds are similar to those formed by domain branching in the mammalian lung. Here, we show that monopodial branching is initiated by apical constriction of the airway epithelium, and not by differential cell proliferation, using computational modeling and quantitative imaging of embryonic chicken lung explants. Both filamentous actin and phosphorylated myosin light chain were enriched at the apical surface of the airway epithelium during monopodial branching. Consistently, inhibiting actomyosin contractility prevented apical constriction and blocked branch initiation. Although cell proliferation was enhanced along the dorsal and ventral aspects of the primary bronchus, especially before branch formation, inhibiting proliferation had no effect on the initiation of branches. To test whether the physical forces from apical constriction alone are sufficient to drive the formation of new buds, we constructed a nonlinear, three-dimensional finite element model of the airway epithelium and used it to simulate apical constriction and proliferation in the primary bronchus. Our results suggest that, consistent with the experimental results, apical constriction is sufficient to drive the early stages of monopodial branching whereas cell proliferation is dispensable. We propose that initial folding of the airway epithelium is driven primarily by apical constriction during monopodial branching of the avian lung.

  14. Synthesis and characterization of an exact comb polyisoprene with three branches having the middle branch twice the molecular weight of the other two identical external branches

    KAUST Repository

    Ratkanthwar, Kedar

    2013-01-01

    An exact comb polyisoprene (PI) with three branches, with the middle branch having twice the molecular weight of the two other identical external branches, was synthesized by using anionic polymerization high vacuum techniques and appropriate chlorosilane chemistry. The synthetic approach involves (a) the selective replacement of the two chlorines of 4-(dichloromethylsilyl) diphenylethylene (DCMSDPE, key molecule) with identical PI chains by titration with PILi, (b) the addition of sec-BuLi to the double bond of DPE followed by the polymerization of isoprene from the newly created anionic site to form a 3-arm living star PI, (c) the selective replacement of the two chlorines of trichloromethylsilane with 3-arm star PI to form an H-shape intermediate, and (d) the replacement of the remaining chlorine of trichloromethylsilane by linear PI chains with double the molecular weight. All intermediate and final products were characterized via size exclusion chromatography, temperature gradient interaction chromatography and 1H-NMR spectroscopy. As expected, due to the inability to control the exact stoichiometry of the linking reactants, the main product (exact comb PI) is contaminated by a few by-products, despite the fact that anionic polymerization is the most efficient way to produce well-defined polymers. © 2013 The Royal Society of Chemistry.

  15. Tail paradox, partial identifiability, and influential priors in Bayesian branch length inference.

    Science.gov (United States)

    Rannala, Bruce; Zhu, Tianqi; Yang, Ziheng

    2012-01-01

    Recent studies have observed that Bayesian analyses of sequence data sets using the program MrBayes sometimes generate extremely large branch lengths, with posterior credibility intervals for the tree length (sum of branch lengths) excluding the maximum likelihood estimates. Suggested explanations for this phenomenon include the existence of multiple local peaks in the posterior, lack of convergence of the chain in the tail of the posterior, mixing problems, and misspecified priors on branch lengths. Here, we analyze the behavior of Bayesian Markov chain Monte Carlo algorithms when the chain is in the tail of the posterior distribution and note that all these phenomena can occur. In Bayesian phylogenetics, the likelihood function approaches a constant instead of zero when the branch lengths increase to infinity. The flat tail of the likelihood can cause poor mixing and undue influence of the prior. We suggest that the main cause of the extreme branch length estimates produced in many Bayesian analyses is the poor choice of a default prior on branch lengths in current Bayesian phylogenetic programs. The default prior in MrBayes assigns independent and identical distributions to branch lengths, imposing strong (and unreasonable) assumptions about the tree length. The problem is exacerbated by the strong correlation between the branch lengths and parameters in models of variable rates among sites or among site partitions. To resolve the problem, we suggest two multivariate priors for the branch lengths (called compound Dirichlet priors) that are fairly diffuse and demonstrate their utility in the special case of branch length estimation on a star phylogeny. Our analysis highlights the need for careful thought in the specification of high-dimensional priors in Bayesian analyses.

  16. A diverse suite of spiroacetals, including a novel branched representative, is released by female Bactrocera tryoni (Queensland fruit fly).

    Science.gov (United States)

    Booth, Yvonne K; Schwartz, Brett D; Fletcher, Mary T; Lambert, Lynette K; Kitching, William; De Voss, James J

    2006-10-14

    A remarkably diverse suite of spiroacetals including a novel member of the rare, branched chain class has been identified in the glandular secretions of Bactrocera tryoni, the most destructive horticultural pest in Australia.

  17. Multiple pathways regulate shoot branching

    Directory of Open Access Journals (Sweden)

    Catherine eRameau

    2015-01-01

    Full Text Available Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TCP transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply.

  18. Branch prediction in the pentium family

    DEFF Research Database (Denmark)

    Fog, Agner

    1998-01-01

    How the branch prediction mechanism in the Pentium has been uncovered with all its quirks, and the incredibly more effective branch prediction in the later versions.......How the branch prediction mechanism in the Pentium has been uncovered with all its quirks, and the incredibly more effective branch prediction in the later versions....

  19. Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide.

    Science.gov (United States)

    Belloche, Arnaud; Garrod, Robin T; Müller, Holger S P; Menten, Karl M

    2014-09-26

    The largest noncyclic molecules detected in the interstellar medium (ISM) are organic with a straight-chain carbon backbone. We report an interstellar detection of a branched alkyl molecule, iso-propyl cyanide (i-C3H7CN), with an abundance 0.4 times that of its straight-chain structural isomer. This detection suggests that branched carbon-chain molecules may be generally abundant in the ISM. Our astrochemical model indicates that both isomers are produced within or upon dust grain ice mantles through the addition of molecular radicals, albeit via differing reaction pathways. The production of iso-propyl cyanide appears to require the addition of a functional group to a nonterminal carbon in the chain. Its detection therefore bodes well for the presence in the ISM of amino acids, for which such side-chain structure is a key characteristic. Copyright © 2014, American Association for the Advancement of Science.

  20. National Zoological Park Branch Library.

    Science.gov (United States)

    Kenyon, Kay A.

    1988-01-01

    Describes the functions of the National Zoological Park Branch of the Smithsonian Institution Libraries, which is dedicated to supporting the special information needs of the zoo. Topics covered include the library's history, collection, programs, services, future plans, and relations with other zoo libraries. (two references) (Author/CLB)

  1. Branching diffusion with particle interactions

    OpenAIRE

    Engländer, János; Zhang, Liang

    2016-01-01

    A $d$-dimensional branching diffusion, $Z$, is investigated, where the linear attraction or repulsion between particles is competing with an Ornstein-Uhlenbeck drift, with parameter $b$ (we take $b>0$ for inward O-U and $b0$) or repulsion ($\\gamma 0$, while escapes to infinity exponentially fast (rate $|b|$) when $b

  2. Risk Factor Assessment Branch (RFAB)

    Science.gov (United States)

    The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.

  3. Runtime Verification Through Forward Chaining

    Directory of Open Access Journals (Sweden)

    Alan Perotti

    2014-12-01

    Full Text Available In this paper we present a novel rule-based approach for Runtime Verification of FLTL properties over finite but expanding traces. Our system exploits Horn clauses in implication form and relies on a forward chaining-based monitoring algorithm. This approach avoids the branching structure and exponential complexity typical of tableaux-based formulations, creating monitors with a single state and a fixed number of rules. This allows for a fast and scalable tool for Runtime Verification: we present the technical details together with a working implementation.

  4. Branching processes in disease epidemics

    Science.gov (United States)

    Singh, Sarabjeet

    Branching processes have served as a model for chemical reactions, biological growth processes and contagion (of disease, information or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this thesis, we focus on branching processes as a model for infectious diseases spreading between individuals belonging to different populations. The distinction between populations can arise from species separation (as in the case of diseases which jump across species) or spatial separation (as in the case of disease spreading between farms, cities, urban centers, etc). A prominent example of the former is zoonoses -- infectious diseases that spill from animals to humans -- whose specific examples include Nipah virus, monkeypox, HIV and avian influenza. A prominent example of the latter is infectious diseases of animals such as foot and mouth disease and bovine tuberculosis that spread between farms or cattle herds. Another example of the latter is infectious diseases of humans such as H1N1 that spread from one city to another through migration of infectious hosts. This thesis consists of three main chapters, an introduction and an appendix. The introduction gives a brief history of mathematics in modeling the spread of infectious diseases along with a detailed description of the most commonly used disease model -- the Susceptible-Infectious-Recovered (SIR) model. The introduction also describes how the stochastic formulation of the model reduces to a branching process in the limit of large population which is analyzed in detail. The second chapter describes a two species model of zoonoses with coupled SIR processes and proceeds into the calculation of statistics pertinent to cross species infection using multitype branching processes. The third chapter describes an SIR process driven by a Poisson process of infection spillovers. This is posed as a

  5. Branched endografts for thoracoabdominal aneurysms.

    Science.gov (United States)

    Greenberg, Roy; Eagleton, Matthew; Mastracci, Tara

    2010-12-01

    Endovascular management of thoracoabdominal aneurysms has been studied since 2001, with marked advances allowing for the treatment of complex anatomic situations including chronic aortic dissections, tortuous anatomy, and extensive aneurysms that involve the visceral segment, aortic arch, and iliacs as well. However, the technology is not widely disseminated, and a thorough understanding of the engineering principles, imaging techniques, and devices available is required. Reinforced fenestrated branches coupled with balloon expandable stent grafts, and side-arm branch designs mated with self-expanding stent grafts have been used. Pure fenestrated designs were used for juxtarenal aneurysms, whereas thoracoabdominal aneurysms were treated with reinforced fenestrated branches or hybrid devices including side-arm branches and reinforced fenestrated branches. Intraoperative fusion techniques have been used since 2009, whereby preoperative computed tomographic data are fused with intraoperative fluoroscopy. Long-term survival in accordance with extent of disease was assessed with life table analysis techniques, and differences were analyzed using the log rank test. Intermediate-term data pertaining to patency related to both types of branches and paraplegia have been evaluated and previously published. A total of 406 patients with thoracoabdominal aneurysms and 227 patients with juxtarenal aneurysms have been enrolled in a prospective study. Perioperative and 2-year survival were most closely related to extent of initial disease and were estimated to be 1.8% and 82% for juxtarenal aneurysms, 2.3% and 82% for type IV, and 5.2% and 74% for type II and III thoracoabdominal aneurysms at 24 months, respectively. When patients undergoing endovascular repair (ER group) were matched with those having contemporary surgical repair (SR group) for anatomic disease extent, mortality was similar at 30 days (5.7% ER vs 8.3% SR; P = .2) and at 12 months (15.6% ER vs 15.9% SR; P = .9

  6. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  7. Branching processes and neutral evolution

    CERN Document Server

    Taïb, Ziad

    1992-01-01

    The Galton-Watson branching process has its roots in the problem of extinction of family names which was given a precise formulation by F. Galton as problem 4001 in the Educational Times (17, 1873). In 1875, an attempt to solve this problem was made by H. W. Watson but as it turned out, his conclusion was incorrect. Half a century later, R. A. Fisher made use of the Galton-Watson process to determine the extinction probability of the progeny of a mutant gene. However, it was J. B. S. Haldane who finally gave the first sketch of the correct conclusion. J. B. S. Haldane also predicted that mathematical genetics might some day develop into a "respectable branch of applied mathematics" (quoted in M. Kimura & T. Ohta, Theoretical Aspects of Population Genetics. Princeton, 1971). Since the time of Fisher and Haldane, the two fields of branching processes and mathematical genetics have attained a high degree of sophistication but in different directions. This monograph is a first attempt to apply the current sta...

  8. Workshop on Branching Processes and Their Applications

    CERN Document Server

    Gonzalez Velasco, Miguel; Martinez, Rodrigo; Molina, Manuel

    2010-01-01

    Contains papers presented at the Workshop on Branching Processes and Their Applications (WBPA09), held in Badajoz, Spain, April 20-23, 2009, which deal with theoretical and practical aspects of branching process theory

  9. Coulomb branch localization in quiver quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Kazutoshi; Sasai, Yuya [Institute of Physics, Meiji Gakuin University,1518 Kamikurata-cho, Yokohama, 244-8539 (Japan)

    2016-02-16

    We show how to exactly calculate the refined indices of N=4U(1)×U(N) supersymmetric quiver quantum mechanics in the Coulomb branch by using the localization technique. The Coulomb branch localization is discussed from the viewpoint of both non-linear and gauged linear sigma models. A classification of fixed points in the Coulomb branch differs from one in the Higgs branch, but the derived indices completely agree with the results which were obtained by the localization in the Higgs branch. In the Coulomb branch localization, the refined indices can be written as a summation over different sets of the Coulomb branch fixed points. We also discuss a space-time picture of the fixed points in the Coulomb branch.

  10. The Effects of a Branch Campus

    Science.gov (United States)

    Lien, Donald; Wang, Yaqin

    2012-01-01

    We examine the effects of a branch campus on the social welfare of the host country and the foreign university. Overall, we find that a branch campus increases both the domestic social welfare (measured by the aggregate student utility) and the tuition revenue of the foreign university. The effect of a branch campus on the brain drain is…

  11. Introduction of Branching Degrees of Octane Isomers.

    Science.gov (United States)

    Perdih, Anton

    2016-01-01

    The concept of branching degrees is introduced. In the case of octane isomers it is derived from the values of a set of their physicochemical properties, calculating for each isomer the average of the normalized values and these averages are defined as branching degrees of octane isomers. The sequence of these branching degrees of octane isomers does not differ much from the »regular« one defined earlier. 2,2-Dimethylhexane appears to be less branched than 3,4-dimethylhexane and 3-ethyl, 2-methylpentane, whereas 2,3,4-trimethylpentane appears to be less branched than 3-ethyl, 3-methylpentane. While the increasing number of branches gives rise to increasing branching degrees, the peripheral position of branches and the separation between branches decreases the value of the branching degree. The central position of branches increases it. A bigger branch increases it more than a smaller one. The quantification of these structural features and their correlations with few indices is given as well.

  12. Structural dynamics branch research and accomplishments

    Science.gov (United States)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  13. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.

    2016-05-27

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  14. Chiral methyl-branched pheromones.

    Science.gov (United States)

    Ando, Tetsu; Yamakawa, Rei

    2015-07-01

    Insect pheromones are some of the most interesting natural products because they are utilized for interspecific communication between various insects, such as beetles, moths, ants, and cockroaches. A large number of compounds of many kinds have been identified as pheromone components, reflecting the diversity of insect species. While this review deals only with chiral methyl-branched pheromones, the chemical structures of more than one hundred non-terpene compounds have been determined by applying excellent analytical techniques. Furthermore, their stereoselective syntheses have been achieved by employing trustworthy chiral sources and ingenious enantioselective reactions. The information has been reviewed here not only to make them available for new research but also to understand the characteristic chemical structures of the chiral pheromones. Since biosynthetic studies are still limited, it might be meaningful to examine whether the structures, particularly the positions and configurations of the branched methyl groups, are correlated with the taxonomy of the pheromone producers and also with the function of the pheromones in communication systems.

  15. Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Román Marín, José Manuel; Huang, Qian

    2013-01-01

    We provide conclusive evidence of nonmonotonic mechanical behavior in the extension of long-chain branched polymer melts. While nonmonotonic behavior is known to occur for solids, for the case of polymeric melts, this phenomenon is in direct contrast with current theoretical models. We rule out t...

  16. Chemical modifications of Sterculia foetida L. oil to branched ester derivatives

    NARCIS (Netherlands)

    Manurung, Robert; Daniel, Louis; van de Bovenkamp, Hendrik H.; Buntara, Teddy; Maemunah, Siti; Kraai, Gerard; Makertihartha, I. G. B. N.; Broekhuis, Antonius A.; Heeres, Hero J.

    An experimental study to modify Sterculia foetida L. oil (STO) or the corresponding methyl esters (STO FAME) to branched ester derivatives is reported. The transformations involve conversion of the cyclopropene rings in the fatty acid chains of STO through various catalytic as well as stoichiometric

  17. Synthesis and properties of highly branched Jatropha curcas L. oil derivatives

    NARCIS (Netherlands)

    Daniel, Louis; Ardiyanti, Agnes R.; Schuur, Boelo; Manurung, Robert; Broekhuis, Antonius A.; Heeres, Hero J.

    The synthesis and properties of a number of novel branched Jatropha curcas L. oil (JO) derivatives containing vicinal di-ester units in the fatty acid chains are reported. Both the length (acetyl vs. hexanoyl) and the stereochemistry of the vicinal di-ester units (cis vs. trans) were varied. The

  18. The Considere condition and rapid stretching of linear and branched polymer melts

    DEFF Research Database (Denmark)

    McKinley, Gareth H; Hassager, Ole

    1999-01-01

    and the Considere criterion originally developed in solid mechanics can be used to quantitatively predict the critical Hencky strain to failure. By comparing the predictions of the Doi-Edwards model for linear homopolymer melts with those of the "Pom-Pom" model recently proposed by McLeish and Larson [J. Rheol. 42......, 81-110 (1998)] for prototypical branched melts we show that the critical strain to failure in rapid elongation of a rubbery material is intimately linked to the molecular topology of the chain, especially the degree of chain branching. The onset of necking instability is monotonically shifted...... to larger Hencky strains as the number of branches is increased. Numerical computations at finite Deborah numbers also show that there is an optimal range of deformation rates over which homogeneous extensions can be maintained to large strain. We also consider other rapid homogeneous stretching...

  19. SOURCES OF SUPPLY CHAIN CONFLICTS – A FISHBONE DIAGRAM CORRELATION

    Directory of Open Access Journals (Sweden)

    Gabriel-Cristian CONSTANTINESCU

    2017-05-01

    Full Text Available Identifying the sources of conflict in a supply chain is the starting point of managing conflicts along chain and initiating the proper actions for lasting outcomes. An extended review of literature on sources of supply chain conflict was concluded with an ample list of various causes. The conflicts sources were classified in 8 categories: commercial, financial, logistics, management, quality, relationship along the chain, inter-personal communication and business environment. The main identified category of conflict sources was relationship along the chain, but commercial, financial, management and logistics were also important categories of conflict cause. The overall analysis emphasizes a fishbone diagram of supply chain conflict causes, having the 8 identified categories as branches and being highly developed with the related sources. This general diagram could be a good lead-off for a deeper analysis of conflict causes in a particular supply chain.

  20. Marginal AMP chain graphs

    OpenAIRE

    Pena, Jose M.

    2014-01-01

    We present a new family of models that is based on graphs that may have undirected, directed and bidirected edges. We name these new models marginal AMP (MAMP) chain graphs because each of them is Markov equivalent to some AMP chain graph under marginalization of some of its nodes. However, MAMP chain graphs do not only subsume AMP chain graphs but also multivariate regression chain graphs. We describe global and pairwise Markov properties for MAMP chain graphs and prove their equivalence for...

  1. Branching process models of cancer

    CERN Document Server

    Durrett, Richard

    2015-01-01

    This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the authors evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time. Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.

  2. Vegetation survey of PEN Branch wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  3. Molecular Analysis of Salivary Gland Branching Morphogenesis

    National Research Council Canada - National Science Library

    Sakai, Takayoshi; Larsen, Melinda; Kogo, Mikihiko; Yamada, Kenneth M

    2004-01-01

    .... This mini-review describes a recently developed and tested set of approaches for identifying and characterizing molecules essential for branching morphogenesis and other developmental processes...

  4. Axis deviation without left bundle branch block.

    Science.gov (United States)

    Patanè, Salvatore; Marte, Filippo; Mancuso, Antonia

    2010-04-15

    It has been rarely reported changing axis deviation in the presence of left bundle branch block also during atrial fibrillation and with acute myocardial infarction too. It has also been rarely reported changing axis deviation with changing bundle branch block with onset of atrial fibrillation during acute myocardial infarction. We present a case of axis deviation without left bundle branch block and without atrial fibrillation and acute myocardial infarction in a 65-year-old Italian man. To our knowledge, this is the first report of axis deviation without left bundle branch block and without atrial fibrillation and acute myocardial infarction. Copyright 2008 Elsevier Ireland Ltd. All rights reserved.

  5. Clinical and Translational Epidemiology Branch (CTEB)

    Science.gov (United States)

    The Clinical and Translational Epidemiology Branch focuses on factors that influence cancer progression, recurrence, survival, and other treatment outcomes, and factors associated with cancer development.

  6. Toward improved branch prediction through data mining.

    Energy Technology Data Exchange (ETDEWEB)

    Hemmert, K. Scott; Johnson, D. Eric (University of Texas at Austin)

    2009-09-01

    Data mining and machine learning techniques can be applied to computer system design to aid in optimizing design decisions, improving system runtime performance. Data mining techniques have been investigated in the context of branch prediction. Specifically, a comparison of traditional branch predictor performance has been made to data mining algorithms. Additionally, the possiblity of whether additional features available within the architectural state might serve to further improve branch prediction has been evaluated. Results show that data mining techniques indicate potential for improved branch prediction, especially when register file contents are included as a feature set.

  7. Logistic chain modelling

    NARCIS (Netherlands)

    Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.

    1995-01-01

    Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to

  8. Health supply chain management.

    Science.gov (United States)

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors.

  9. Chains and identity

    NARCIS (Netherlands)

    Grijpink, J.H.A.M.

    2012-01-01

    This article is available in English and DutchGuidelines are presented to cope with identity problems in chains. A chain is a collaboration of a great number of autonomous organisations and professionals to tackle a dominant chain problem. In many chains identity fraud is an aspect of the dominant

  10. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  11. 3D modelling of branching in plants

    NARCIS (Netherlands)

    Evers, J.B.

    2011-01-01

    Shoot branching is a key determinant of overall aboveground plant form. During plant development, the number of branches formed strongly influences the amount of light absorbed by the plant, and thus the plant’s competitive strength in terms of light capture in relation to neighbouring plants.

  12. A Unifying Theory of Branching Morphogenesis

    NARCIS (Netherlands)

    Hannezo, Edouard; Scheele, Colinda L G J; Moad, Mohammad; Drogo, Nicholas; Heer, Rakesh; Sampogna, Rosemary V; van Rheenen, Jacco; Simons, Benjamin D

    2017-01-01

    The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that,

  13. Variants of the left aortic arch branches

    African Journals Online (AJOL)

    ORIGINAL ARTICLE. Variants of the left aortic arch branches. N Z Makhanya. MB ChB. R T Mamogale. MB 0113. N Khan. FCRaD (0). Department of Diagnostic Radiology. Medical University of Southern Africa. Abstract. The normal aorta has three branches from its arch, but variations in this pattern are not uncommon. Our.

  14. Model-checking algorithms for continuous-time Markov chains

    NARCIS (Netherlands)

    Baier, Christel; Haverkort, Boudewijn R.H.M.; Hermanns, H.; Katoen, Joost P.

    Continuous-time Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steady-state and transient-state probabilities. This paper introduces a branching temporal logic for expressing

  15. Sustainable Supply Chain Design

    DEFF Research Database (Denmark)

    Bals, Lydia; Tate, Wendy

    A significant conceptual and practical challenge is how to integrate triple bottom line (TBL; including economic, social and environmental) sustainability into global supply chains. Although this integration is necessary to slow down global resource depletion, understanding is limited of how...... to implement TBL goals across the supply chain. In supply chain design, the classic economic perspective still dominates, although the idea of the TBL is more widely disseminated. The purpose of this research is to add to the sustainable supply chain management literature (SSCM) research agenda...... by incorporating the physical chain, and the (information and financial) support chains into supply chain design. This manuscript tackles issues of what the chains are designed for and how they are designed structurally. Four sustainable businesses are used as illustrative case examples of innovative supply chain...

  16. Improved β Decay Branching Ratios

    Science.gov (United States)

    Iacob, V. E.; Hardy, J. C.; Golovko, V.

    2008-04-01

    The work we report here aims at increasing the precision possible in the measurement of branching ratios for superallowed β^+decays. Such highly accurate values are essential in generating precise ft-values for 0^+->0^+decays, which can then be used to test the Standard Model via the unitarity of the Cabibbo-Kobayashi-Maskawa matrix [1]. The required precision is ˜0.1% or better. While this limit was already achieved in the case of ^34Ar [2], it would have been very difficult, if not impossible, to achieve it for other β^+-decays without an upgrade to our acquisition and data-reduction systems. We have thus improved the controls over all the key elements in our experimental set-up: we now have direct control over the dead-time for the singles and coincidence channels and <0.1 mm control over the source-detector distance. In addition, we have extensively studied the efficiency of the β-detector with source-measurements tested against various Monte Carlo programs [3]. We have tested our new acquisition set-up on ^60Co and ^22Na (β^- and β^+ emitters respectively) to validate our new methods. Preliminary results on the two sources are statistically consistent with the expected values. An ^34Ar decay experiment using the new experimental configuration has already been performed and is currently analyzed. [1] J.C. Hardy and I.S. Towner, PRC 71, 055501 (2005) [2] V. Iacob et al., BAPS 52(3)B16; BAPS 52(9)HF3 [3] V. Golovko et al., BAPS 52(9)DH4; this BAPS

  17. [Croatian Medical Association--Branch Zagreb].

    Science.gov (United States)

    Kaić, Zvonimir; Sain, Snjezana; Gulić, Mirjana; Mahovlić, Vjekoslav; Krznarić, Zeljko

    2014-01-01

    The available literature shows us that "Druztvo ljeciteljah u Zagrebus (the Society of Healers in Zagreb) was founded as far back as the year 1845 by a total of thirteen members. This data allows us to follow the role of doctors and health workers in Zagreb through their everyday profession, research, organizational and social work as well as management through a period of over one hundred to seventy years. The Branch Zagreb was active before the official establishment of subsidiaries of CMA which is evident from the minutes of the regular annual assembly of the Croatian Medical Association on 21 March 1948. Until the end of 1956, there was no clear division of labor, functions and competencies between the Branch and the Main Board. Their actions were instead consolidated and the Branch operated within and under the name of Croatian Medical Association. In that year the Branch became independent. The Branch Zagreb is the largest and one of the most active branches of the Croatian Medical Association. At the moment, the Branch brings together 3621 members, regular members--doctors of medicine (2497), doctors of dental medicine (384), retired physicians (710), and associate members (30 specialists with higher education who are not doctors). The Branch is especially accomplished in its activities in the area of professional development of its members and therefore organizes a series of scientific conferences in the framework of continuous education of physicians, allowing its members to acquire necessary points for the extension of their operating license. The choir "Zagrebacki lijecnici pjevaci" (Zagreb Physicians' Choir) of the Croatian Medical Music Society of the CMA and its activities are inseparable from the Branch Zagreb. The Branch is firmly linked to the parent body, the CMA, and thus has a visible impact on the strategy and the activities of the Association as a whole. Most professional societies of the CMA have their headquarters in Zagreb and this is

  18. Integrability and the conformal field theory of the Higgs branch

    Energy Technology Data Exchange (ETDEWEB)

    Sax, Olof Ohlsson [Theoretical Physics, The Blackett Laboratory, Imperial College,London, SW7 2AZ (United Kingdom); Sfondrini, Alessandro [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS Gebäude,Zum Grossen Windkanal 6, Berlin, 12489 (Germany); Bogdan, Stefański Jr. [Centre for Mathematical Science, City University London,Northampton Square, London, EC1V 0HB (United Kingdom)

    2015-06-16

    In the context of the AdS{sub 3}/CFT{sub 2} correspondence, we investigate the Higgs branch CFT{sub 2}. Witten showed that states localised near the small instanton singularity can be described in terms of vector multiplet variables. This theory has a planar, weak-coupling limit, in which anomalous dimensions of single-trace composite operators can be calculated. At one loop, the calculation reduces to finding the spectrum of a spin-chain with nearest-neighbour interactions. This CFT{sub 2} spin-chain matches precisely the one that was previously found as the weak-coupling limit of the integrable system describing the AdS{sub 3} side of the duality. We compute the one-loop dilatation operator in a non-trivial compact subsector and show that it corresponds to an integrable spin-chain Hamiltonian. This provides the first direct evidence of integrability on the CFT{sub 2} side of the correspondence.

  19. Mechanisms of Side Branching and Tip Splitting in a Model of Branching Morphogenesis

    Science.gov (United States)

    Guo, Yina; Sun, Mingzhu; Garfinkel, Alan; Zhao, Xin

    2014-01-01

    Recent experimental work in lung morphogenesis has described an elegant pattern of branching phenomena. Two primary forms of branching have been identified: side branching and tip splitting. In our previous study of lung branching morphogenesis, we used a 4 variable partial differential equation (PDE), due to Meinhardt, as our mathematical model to describe the reaction and diffusion of morphogens creating those branched patterns. By altering key parameters in the model, we were able to reproduce all the branching styles and the switch between branching modes. Here, we attempt to explain the branching phenomena described above, as growing out of two fundamental instabilities, one in the longitudinal (growth) direction and the other in the transverse direction. We begin by decoupling the original branching process into two semi-independent sub-processes, 1) a classic activator/inhibitor system along the growing stalk, and 2) the spatial growth of the stalk. We then reduced the full branching model into an activator/inhibitor model that embeds growth of the stalk as a controllable parameter, to explore the mechanisms that determine different branching patterns. We found that, in this model, 1) side branching results from a pattern-formation instability of the activator/inhibitor subsystem in the longitudinal direction. This instability is far from equilibrium, requiring a large inhomogeneity in the initial conditions. It successively creates periodic activator peaks along the growing stalk, each of which later on migrates out and forms a side branch; 2) tip splitting is due to a Turing-style instability along the transversal direction, that creates the spatial splitting of the activator peak into 2 simultaneously-formed peaks at the growing tip, the occurrence of which requires the widening of the growing stalk. Tip splitting is abolished when transversal stalk widening is prevented; 3) when both instabilities are satisfied, tip bifurcation occurs together with side

  20. Mechanisms of side branching and tip splitting in a model of branching morphogenesis.

    Directory of Open Access Journals (Sweden)

    Yina Guo

    Full Text Available Recent experimental work in lung morphogenesis has described an elegant pattern of branching phenomena. Two primary forms of branching have been identified: side branching and tip splitting. In our previous study of lung branching morphogenesis, we used a 4 variable partial differential equation (PDE, due to Meinhardt, as our mathematical model to describe the reaction and diffusion of morphogens creating those branched patterns. By altering key parameters in the model, we were able to reproduce all the branching styles and the switch between branching modes. Here, we attempt to explain the branching phenomena described above, as growing out of two fundamental instabilities, one in the longitudinal (growth direction and the other in the transverse direction. We begin by decoupling the original branching process into two semi-independent sub-processes, 1 a classic activator/inhibitor system along the growing stalk, and 2 the spatial growth of the stalk. We then reduced the full branching model into an activator/inhibitor model that embeds growth of the stalk as a controllable parameter, to explore the mechanisms that determine different branching patterns. We found that, in this model, 1 side branching results from a pattern-formation instability of the activator/inhibitor subsystem in the longitudinal direction. This instability is far from equilibrium, requiring a large inhomogeneity in the initial conditions. It successively creates periodic activator peaks along the growing stalk, each of which later on migrates out and forms a side branch; 2 tip splitting is due to a Turing-style instability along the transversal direction, that creates the spatial splitting of the activator peak into 2 simultaneously-formed peaks at the growing tip, the occurrence of which requires the widening of the growing stalk. Tip splitting is abolished when transversal stalk widening is prevented; 3 when both instabilities are satisfied, tip bifurcation occurs

  1. Cellular and physical mechanisms of branching morphogenesis

    Science.gov (United States)

    Varner, Victor D.; Nelson, Celeste M.

    2014-01-01

    Branching morphogenesis is the developmental program that builds the ramified epithelial trees of various organs, including the airways of the lung, the collecting ducts of the kidney, and the ducts of the mammary and salivary glands. Even though the final geometries of epithelial trees are distinct, the molecular signaling pathways that control branching morphogenesis appear to be conserved across organs and species. However, despite this molecular homology, recent advances in cell lineage analysis and real-time imaging have uncovered surprising differences in the mechanisms that build these diverse tissues. Here, we review these studies and discuss the cellular and physical mechanisms that can contribute to branching morphogenesis. PMID:25005470

  2. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Geisler, Daniela A; Møller, Ian Max

    2008-01-01

    The electron transport chain in mitochondria of different organisms contains a mixture of common and specialised components. The specialised enzymes form branches to the universal electron path, especially at the level of ubiquinone, and allow the chain to adjust to different cellular and metabol...

  3. The Global Value Chain

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull

    The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...

  4. Arkansas State University Beebe Branch Faculty Handbook.

    Science.gov (United States)

    Arkansas State Univ., Beebe.

    Arkansas State University Beebe Branch provides a liberal arts oriented program for traditional and nontraditional students. Its faculty handbook contains institutional goals, description of responsibilities of administrative officers and faculty committees, faculty employment policies, and administrative and instructional policies. The…

  5. 77 FR 39143 - Executive Branch Qualified Trusts

    Science.gov (United States)

    2012-07-02

    ... executive branch qualified trust, an entity must meet the strict requirements for independence set forth in... this subpart. A parent or guardian may execute the umbrella trust agreement on behalf of a required...

  6. FY 1990 Applied Sciences Branch annual report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.M.; Dippo, P.C. (eds.)

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  7. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  8. Using Gagne`s Chain in OJT

    Energy Technology Data Exchange (ETDEWEB)

    Fetters, F.E.

    1993-11-01

    This report discusses Gagne`s Chain which is a taxonomy which can used as a tool to identify trainee deficiencies encountered during On-the-Job Training. It also assists in the development of effective training strategies for the training of deficient behaviors and knowledges. Gagne`s Chain presupposes three phases of acquisition for knowledges and skills identified as deficiencies: precondition, qualified acquisition, and unassisted demonstration. The hierarchy of the taxonomy identifies both the psychomotor and cognitive branches. At the ``Principles`` level, verbal and psychomotor activities are combined. Gagne`s Chain identifies the hierarchy as follows: Problem Solving [higher psychomotor and verbal combined level], Principles (lower psychomotor and verbal combined level), Association [highest verbal level], Discrimination [second highest verbal level], Signal Recognition [lowest verbal level], Operant Chain [higher psychomotor level], and Single Operant [lower psychomotor level]. A ``rule of thumb`` associated with the use of Gagne`s Chain is, if behavior or knowledge are not acquired at a higher level, the trainee should be trained at the next lower step. Then the knowledge or behavior acquired at this step becomes the precondition for the acquisition of the actual knowledge or skill identified at the original level.

  9. How Banks Go Abroad : Branches or Subsidiaries?

    OpenAIRE

    Cerutti, Eugenio; Dell'Ariccia, Giovanni; Martínez Pería, Maria Soledad

    2005-01-01

    The authors examine the factors that influence banks' type of organizational form when operating in foreign markets using an original database of the branches and subsidiaries in Latin America and Eastern Europe of the top 100 international banks. They find that regulation, taxation, the degree of desired penetration in the local market, and host-country economic and political risks matter. Banks are more likely to operate as branches in countries that have higher corporate taxes and when the...

  10. Branch retinal artery occlusion in Susac's syndrome

    Directory of Open Access Journals (Sweden)

    Ricardo Evangelista Marrocos de Aragão

    2015-02-01

    Full Text Available Susac's syndrome is a rare disease attribuited to a microangiopathy involving the arterioles of the cochlea, retina and brain. Encefalopathy, hearing loss, and visual deficits are the hallmarks of the disease. Visual loss is due to multiple, recurrent branch arterial retinal occlusions. We report a case of a 20-year-old women with Susac syndrome presented with peripheral vestibular syndrome, hearing loss, ataxia, vertigo, and vision loss due occlusion of the retinal branch artery.

  11. All change at the CERN UBS branch

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    UBS branches across the country are being modernised, and the CERN branch is no exception. The Bulletin brings you a preview of the project, which will get under way in January 2013.   Mock-up of the renovated UBS branch. The changes at the UBS branch in CERN's Main Building will be no simple facelift. The entire bank will be renovated, transforming the present relatively confined premises into an open and attractive area. "The renovation of the UBS branches is part of a wider campaign designed to further enhance our customer relations," explains Ezio Mangia, the head of the CERN branch.  The UBS bank currently occupies three sets of premises in CERN's Main Building (two on the ground floor and one in the basement). "By the end of the work, which is scheduled to be completed by the middle of next year, CERN customers will benefit from a new area with open-plan counters and "hole-in-the-wall" machines accessible to...

  12. The function of heparan sulfate during branching morphogenesis

    Science.gov (United States)

    Patel, Vaishali N.; Pineda, Dallas L.; Hoffman, Matthew P.

    2016-01-01

    Branching morphogenesis is a fundamental process in the development of diverse epithelial organs such as the lung, kidney, liver, pancreas, prostate, salivary, lacrimal and mammary glands. A unifying theme during organogenesis is the importance of epithelial cell interactions with the extracellular matrix (ECM) and growth factors (GFs). The diverse developmental mechanisms giving rise to these epithelial organs involve many organ-specific GFs, but a unifying paradigm during organogenesis is the regulation of GF activity by heparan sulfates (HS) on the cell surface and in the ECM. This primarily involves the interactions of GFs with the sulfated side-chains of HS proteoglycans. HS is one of the most diverse biopolymers and modulates GF binding and signaling at the cell surface and in the ECM of all tissues. Here, we review what is known about how HS regulates branching morphogenesis of epithelial organs with emphasis on the developing salivary gland, which is a classic model to investigate epithelial-ECM interactions. We also address the structure, biosynthesis, turnover and function of HS during organogenesis. Understanding the regulatory mechanisms that control HS dynamics may aid in the development of therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine. PMID:27609403

  13. Better branch prediction through prophet/critic hybrids

    OpenAIRE

    Falcón Samper, Ayose Jesús; Stark, Jared; Ramírez Bellido, Alejandro; Lai, Konrad; Valero Cortés, Mateo

    2005-01-01

    The prophet/critic hybrid conditional branch predictor has two component predictors. The prophet uses a branch's history to predict its direction. We call this prediction and the ones for branches following it the branch future. The critic uses the branch's history and future to critique the prophet's prediction. The hybrid combines the prophet's prediction with the critique, either agrees or disagree, forming the branch's overall prediction. Results shows these hybrids can reduce mispredicts...

  14. A Comparative Analysis of Schemes for Correlated Branch Prediction

    OpenAIRE

    Young, Cliff; Gloy, Nicolas; Smith, Michael D.

    1995-01-01

    Modern high-performance architectures require extremely accurate branch prediction to overcome the performance limitations of conditional branches. We present a framework that categorizes branch prediction schemes by the way in which they partition dynamic branches and by the kind of predictor that they use. The framework allows us to compare and contrast branch prediction schemes, and to analyze why they work. We use the framework to show how a static correlated branch prediction scheme incr...

  15. Combining living anionic polymerization with branching reactions in an iterative fashion to design branched polymers.

    Science.gov (United States)

    Higashihara, Tomoya; Sugiyama, Kenji; Yoo, Hee-Soo; Hayashi, Mayumi; Hirao, Akira

    2010-06-16

    This paper reviews the precise synthesis of many-armed and multi-compositional star-branched polymers, exact graft (co)polymers, and structurally well-defined dendrimer-like star-branched polymers, which are synthetically difficult, by a commonly-featured iterative methodology combining living anionic polymerization with branched reactions to design branched polymers. The methodology basically involves only two synthetic steps; (a) preparation of a polymeric building block corresponding to each branched polymer and (b) connection of the resulting building unit to another unit. The synthetic steps were repeated in a stepwise fashion several times to successively synthesize a series of well-defined target branched polymers. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Photoregulation of permeability across a membrane from a graft copolymer containing a photoresponsive polypeptide branch

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Masato; Watanabe, Jun; Inoue, Shohei (Univ. of Tokyo (Japan))

    1990-07-04

    The first example of the photoregulation of the permeability across a membrane containing a polypeptide by photoinduced conformational change of the polypeptide chains without any concomitant change in electrostatic repulsion along the polypeptide chain was achieved. A new polyvinyl/polypeptide graft copolymer composed of a photoresponsive copolypeptide branch from {beta}-p-phenylazobenyl L-aspartate and {beta}-benzyl L-aspartate attached to a poly(butyl methacrylate) backbone was synthesized and the membrane was prepared. The permeation rate of mandelic acid across the membrane immersed in trimethyl phosphate (TMP) was raised by about six times with UV irradiation and was suppressed on irradiation with visible light.

  17. Supply Chain Management og Supply Chain costing

    DEFF Research Database (Denmark)

    Nielsen, Steen; Mortensen, Ole

    2002-01-01

    Formålet med denne artikel er at belyse de muligheder som ligger i at integrere virksomhedens økonomiske styring med begrebet Supply Chain Management (SCM). Dette søges belyst ved først at beskrive den teoretiske ramme, hvori SCM indgår. Herefter analyseres begrebet Supply Chain Costing (SCC) som...... Århus. Et resultat er, at via begrebet Supply Chain Costing skabes der mulighed for at måle logistikkædens aktiviteter i kr./øre. Anvendelsen af denne information har også strategisk betydning for at kunne vælge kunde og leverandør. Ved hjælp af integrationen skabes der også helt nye mulighed...

  18. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn

    2010-11-01

    Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to

  19. Editorial: Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Dimitrios Aidonis

    2017-05-01

    Full Text Available This special issue has followed up the 3rd Olympus International Conference on Supply Chains held on Athens Metropolitan Expo, November 7 & 8 2015, Greece. The Conference was organized by the Department of Logistics Technological Educational Institute of Central Macedonia, in collaboration with the: a Laboratory of Quantitative Analysis, Logistics and Supply Chain Management of the Department of Mechanical Engineering, Aristotle University of Thessaloniki (AUTH, b Greek Association of Supply Chain Management (EEL of Northern Greece and the c Supply Chain & Logistics Journal. During the 2-Days Conference more than 60 research papers were presented covering the following thematic areas: (i Transportation, (ii Best Practices in Logistics, (iii Information and Communication Technologies in Supply Chain Management, (iv Food Logistics, (v New Trends in Business Logistics, and (vi Green Supply Chain Management. Three keynote invited speakers addressed interesting issues for the Operational Research, the Opportunities and Prospects of Greek Ports chaired Round Tables with other Greek and Foreign Scientists and Specialists.

  20. Understanding the Chain Fountain

    CERN Document Server

    Biggins, John Simeon

    2013-01-01

    If a chain is initially at rest in a beaker at a height h1 above the ground, and the end of the chain is pulled over the rim of the beaker and down towards the ground and then released, the chain will spontaneously "flow" out of the beaker under gravity. Furthermore, if h1 is sufficient, the beads do not simply drag over the edge of the beaker but form a fountain reaching a height h2 above it. We show that the formation of a fountain requires that the beads come into motion not only by being pulled upwards by the part of the chain immediately above the pile, but also by being pushed upwards by an anomalous reaction force from the pile of stationary chain. We propose possible origins for this force, argue that its magnitude will be proportional to the square of the chain velocity, and predict and verify experimentally that h2 is proportional to h1.

  1. A Unifying Theory of Branching Morphogenesis.

    Science.gov (United States)

    Hannezo, Edouard; Scheele, Colinda L G J; Moad, Mohammad; Drogo, Nicholas; Heer, Rakesh; Sampogna, Rosemary V; van Rheenen, Jacco; Simons, Benjamin D

    2017-09-21

    The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that, in mouse mammary gland, kidney, and human prostate, these features can be explained quantitatively within a single unifying framework of branching and annihilating random walks. Based on quantitative analyses of large-scale organ reconstructions and proliferation kinetics measurements, we propose that morphogenesis follows from the proliferative activity of equipotent tips that stochastically branch and randomly explore their environment but compete neutrally for space, becoming proliferatively inactive when in proximity with neighboring ducts. These results show that complex branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple but generic rule, without recourse to a rigid and deterministic sequence of genetically programmed events. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Supply chain components

    Directory of Open Access Journals (Sweden)

    Vieraşu, T.

    2011-01-01

    Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  3. Measurement of Tau Lepton Branching Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, N.

    2003-12-19

    We present {tau}{sup -} lepton branching fraction measurements based on data from the TPC/Two-Gamma detector at PEP. Using a sample of {tau}{sup -} {yields} {nu}{sub {tau}}K{sup -}{pi}{sup +}{pi}{sup -} events, we examine the resonance structure of the K{sup -}{pi}{sup +}{pi}{sup -} system and obtain the first measurements of branching fractions for {tau}{sup -} {yields} {nu}{sub {tau}}K{sub 1}{sup -}(1270) and {tau}{sup -} {yields} {nu}{sub {tau}}K{sub 1}{sup -}(1400). We also describe a complete set of branching fraction measurements in which all the decays of the {tau}{sup -} lepton are separated into classes defined by the identities of the charged particles and an estimate of the number of neutrals. This is the first such global measurement with decay classes defined by the four possible charged particle species, e, {mu}, {pi}, and K.

  4. Ab initio study of key branching reactions in biodiesel and Fischer-Tropsch fuels.

    Science.gov (United States)

    Davis, Alexander C; Francisco, Joseph S

    2011-11-30

    Many biologically and Fischer-Tropsch synthesized fuels contain branched alkanes which, during their combustion and atmospheric oxidation mechanism, produce methylalkyl radicals. As a result, an accurate description of the chemistry of these species is essential to integrating these fuels into our energy systems. Even though branched alkanes make up roughly one-third of the compounds in gasoline and diesel fuels, both experimental and theoretical data on methylalkyl radicals and their reactions are scarce, especially for larger chain systems and combustion conditions. The present work investigates all the hydrogen migration reactions available to the n-methylprop-1-yl through n-methylhept-1-yl radicals, for n = 2-6, using the CBS-Q, G2, and G4 composite computational methods, over a wide temperature range. The resulting thermodynamic and kinetic parameters are used to determine the effect that the presence of the methyl group has on these important unimolecular, chain branching reactions, for the reactions involving not only a tertiary abstraction site but also all the primary and secondary sites. The activation energies of hydrogen migration reactions with the methyl group, either within or immediately outside the ring, are found to be roughly 0.8-1.6 kcal mol(-1) lower in energy than expected on the basis of analogous reactions in n-alkyl radicals. An important implication of this result is that the current method of using rate parameters derived from n-alkyl radicals to predict the chain branching characteristics of methylated alkyl radicals significantly underpredicts the importance of these reactions in atmospheric and combustion processes. Discussion of a possible cause for this phenomenon and its effect on the overall combustion mechanism of branched hydrocarbons is presented. Of particular concern is that 2,2,4,4,6,8,8-heptamethylnonane, which is currently used to model branched alkanes in diesel fuel surrogates, is predicted to have a much lower activation

  5. Crack branching in cross-ply composites

    Science.gov (United States)

    La Saponara, Valeria

    2001-10-01

    The purpose of this research work is to examine the behavior of an interface crack in a cross-ply laminate which is subject to static and fatigue loading. The failure mechanism analyzed here is crack branching (or crack kinking or intra-layer crack): the delamination located between two different plies starts growing as an interface crack and then may branch into the less tough ply. The specimens were manufactured from different types of Glass/Epoxy and Graphite/Epoxy, by hand lay-up, vacuum bagging and cure in autoclave. Each specimen had a delamination starter. Static mixed mode tests and compressive fatigue tests were performed. Experiments showed the scale of the problem, one ply thickness, and some significant features, like contact in the branched crack. The amount of scatter in the experiments required use of statistics. Exploratory Data Analysis and a factorial design of experiments based on a 8 x 8 Hadamard matrix were used. Experiments and statistics show that there is a critical branching angle above which crack growth is greatly accelerated. This angle seems: (1) not to be affected by the specimens' life; (2) not to depend on the specimen geometry and loading conditions; (3) to strongly depend on the amount of contact in the branched crack. Numerical analysis was conducted to predict crack propagation based on the actual displacement/load curves for static tests. This method allows us to predict the total crack propagation in 2D conditions, while neglecting branching. Finally, the existence of a solution based on analytic continuation is discussed.

  6. The branching channel network in the Yangtze Estuary

    NARCIS (Netherlands)

    Wang, Z.B.; Ding, P.X.

    2012-01-01

    The channels in the Yangtze Estuary have an ordered-branching structure: The estuary is first divided by the Chongming Island into the North Branch and the South Branch. Then the South Branch is divided into the North Channel and South Channel by the Islands Changxing and Hengsha. The South Channel

  7. FGF7 signals are relayed to autocrine EGF family growth factors to induce branching morphogenesis of mouse salivary epithelium.

    Science.gov (United States)

    Kera, Hayashi; Yuki, Satoshi; Nogawa, Hiroyuki

    2014-04-01

    The Matrigel-embedded epithelium of the mouse submandibular gland undergoes branching morphogenesis when cultured in medium supplemented with fibroblast growth factor 7 (FGF7) and lysophosphatidic acid (LPA), whereas it elongates a stalk with limited branching in medium with only FGF7. Because LPA is a well-known activator of epidermal growth factor (EGF) signaling, we hypothesized the involvement of autocrine EGF family growth factors in the branching morphogenesis. Reverse transcriptase polymerase chain reaction studies showed that three members, Tgfa, Hbegf,and Nrg1 of the EGF family were expressed in the epithelium cultured with FGF7 + LPA as well as in the epithelium freshly isolated from the rudiments. All the growth factors induced extensive branching morphogenesis in the Matrigel-embedded epithelium in the presence of LPA. Tyrphostin AG112, an inhibitor of EGF signaling, severely impaired branching morphogenesis induced by FGF7 + LPA without exogenous addition of EGF family growth factors to the culture medium. The shaking cultures, which were expected to decrease the concentration of autocrine growth factors near the epithelium by promoting their diffusion, significantly reduced branching morphogenesis induced by FGF7 + LPA. Autocrine EGF family growth factors are involved in epithelial branching morphogenesis induced by FGF7 + LPA. Copyright © 2013 Wiley Periodicals, Inc.

  8. Failures of chain systems

    CSIR Research Space (South Africa)

    James, A

    1997-03-01

    Full Text Available Chains are used for various purposes in a wide range of industries. This paper describes three case studies where a failure analysis was carried out on chains used in markedly different applications namely: a furnace health, a drilling rig for rock...

  9. Value Chain Engineering

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Slepniov, Dmitrij

    2015-01-01

    This workbook is recommended for the attention of students of and managers in Danish small and medium sized enterprises (SMEs). Danish SMEs are currently facing a number of key challenges related to their position in global value chains. This book provides an insight into value chain management...

  10. Shared Value Chain Design

    DEFF Research Database (Denmark)

    Bals, Lydia; Tate, Wendy L.

    In Sustainable Supply Chain Management (SSCM) research still the classic economic perspective is the dominating perspective, although the triple bottom line (including economic, social and ecological) is well accepted. The theoretical foundation for the paper is Stakeholder Theory. Case studies...... in local communities, fundamentally changing supply chains....

  11. Supply Chain Management

    DEFF Research Database (Denmark)

    Wieland, Andreas; Handfield, Robert B.

    Supply chain management has made great strides in becoming a discipline with a standalone body of theories. As part of this evolution, researchers have sought to embed and integrate observed supply chain management phenomena into theoretical statements. In our review, we explore where we have been...

  12. REVERSE SUPPLY CHAIN

    Directory of Open Access Journals (Sweden)

    Tomasz DOMAGAŁA

    2013-10-01

    Full Text Available The paper focuses on the presentation of the reverse supply chain, of which the role in the modern business grows along with the increasing number of environmental regulations and possibilities of reducing an operating cost. The paper also describes main problems in developing the profitable chain and possibilities to take an action in order to overcome them.

  13. The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains.

    NARCIS (Netherlands)

    Palomo, M.; Kralj, S.; van der Maarel, M. J. E. C.; Dijkhuizen, L.

    2009-01-01

    Glycogen branching enzymes (GBE) or 1,4-alpha-glucan branching enzymes (EC 2.4.1.18) introduce alpha-1,6 branching points in alpha-glucans, e.g., glycogen. To identify structural features in GBEs that determine their branching pattern specificity, the Deinococcus geothermalis and Deinococcus

  14. Pressure- and Temperature-Dependent Branching Ratios of the OH + NO2 Reaction

    Science.gov (United States)

    Messinger, J. P.; Mertens, L. A.; Amedro, D.; Okumura, M.; Sander, S. P.

    2016-12-01

    The reaction of OH and NO2 to form nitric acid, HONO2, is critical in atmospheric chemistry, as nitric acid is an unreactive reservoir species and thus serves as a sink of both HOx and NOx. This chain termination step plays a key role in ozone formation in polluted air and the nonlinearities that lead to the Weekend Effect. Complicating our understanding of this reaction, however, is the fact that OH and NO2 can also react to form peroxynitrous acid, HOONO, which in the troposphere quickly dissociates back to OH and NO2, regenerating these key species. Experimental rate measurements measure only total loss, but the HOONO/HONO2 branching ratio must be known to establish the net chain termination rate. The temperature dependence of this branching ratio is one of the largest errors in current atmospheric models, leading to significant uncertainty in predictions of HOx, NOx, HONO2 and ozone throughout the atmosphere and inhibiting our ability to reduce atmospheric pollution. We have previously used pulsed laser photolysis cavity ringdown spectroscopy (PLP-CRDS) in the mid-infrared (3200 - 3750 cm-1) to detect HONO2 and HOONO via their OH stretch, and have measured the branching ratio at room temperature between 25 and 760 Torr. In this work, we extend our previous results to determine the pressure dependent branching ratio over a range of tropospherically relevant temperatures (250 - 350 K) and pressures (50 - 700 Torr). Our results quantify how the branching ratio of changes with temperature, and provides a greatly needed input for atmospheric models.

  15. Partial Order Reduction for Probabilistic Branching Time

    NARCIS (Netherlands)

    Baier, Christel; d' Argenio, P.R.; Größer, Marcus

    2005-01-01

    In the past, partial order reduction has been used successfully to combat the state explosion problem in the context of model checking for non-probabilistic systems. For both linear time and branching time specifications, methods have been developed to apply partial order reduction in the context of

  16. Simple statistical model for branched aggregates

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Hansen, Jesper Schmidt

    2015-01-01

    We propose a statistical model that can reproduce the size distribution of any branched aggregate, including amylopectin, dendrimers, molecular clusters of monoalcohols, and asphaltene nanoaggregates. It is based on the conditional probability for one molecule to form a new bond with a molecule...

  17. Medial branch neurotomy in low back pain

    Energy Technology Data Exchange (ETDEWEB)

    Masala, Salvatore; Mammucari, Matteo; Simonetti, Giovanni [Interventional Radiology and Radiotherapy University ' ' Tor Vergata' ' , Department of Diagnostic and Molecular Imaging, Rome (Italy); Nano, Giovanni [Interventional Radiology and Radiotherapy University ' ' Tor Vergata' ' , Department of Diagnostic and Molecular Imaging, Rome (Italy); University ' ' Tor Vergata' ' , Department of Radiology, Rome (Italy); Marcia, Stefano [S. Giovanni di Dio Hospital, Department of Diagnostic and Molecular Imaging, Cagliari (Italy)

    2012-07-15

    This study aimed to assess the effectiveness of pulsed radiofrequency medial branch dorsal ramus neurotomy in patients with facet joint syndrome. From January 2008 to April 2010, 92 patients with facet joint syndrome diagnosed by strict inclusion criteria and controlled diagnostic blocks undergone medial branch neurotomy. We did not exclude patients with failed back surgery syndrome (FBSS). Electrodes (20G) with 5-mm active tip were placed under fluoroscopy guide parallel to medial branch. Patients were followed up by physical examination and by Visual Analog Scale and Oswestry Disability Index at 1, 6, and 12 months. In all cases, pain improvement was statistically significant and so quality of life. Three non-FBSS patients had to undergo a second neurotomy because of non-satisfactory pain decrease. Complications were reported in no case. Medial branch radiofrequency neurotomy has confirmed its well-established effectiveness in pain and quality of life improvement as long as strict inclusion criteria be fulfilled and nerve ablation be accomplished by parallel electrode positioning. This statement can be extended also to FBSS patients. (orig.)

  18. Origin of buds, branches, and sprouts

    Science.gov (United States)

    Kevin T. Smith

    2014-01-01

    Recent research shows that survivor trees in rural, managed forests rebuild broken crowns with new branches and foliage after ice storm injury (Shortle et al. 2014). Veteran trees in historic parks and landscapes show repeated cycles of crown loss and recovery (Fay 2002). Crown rebuilding or reiteration from sprouts is a physiological response with architectural...

  19. Academic Branch Libraries: Assessment and Collection Development

    Science.gov (United States)

    Poole, Julie

    2009-01-01

    An ongoing project at Mercer University's Regional Academic Center Libraries illustrates how utilizing established assessment guidelines, stakeholder input, and a clear understanding of audience and curriculum needs may all be used to optimize a collection. Academic branch libraries often have clear collection development limitations in terms of…

  20. Headward growth and branching in subterranean channels

    Science.gov (United States)

    Kudrolli, Arshad; Ionkin, Nikolay; Panaitescu, Andreea

    2017-11-01

    We investigate the erosive growth of channels in a thin subsurface sedimentary layer driven by hydrodynamic drag toward understanding subterranean networks and their relation to river networks charged by ground water. Building on a model based on experimental observations of fluid-driven evolution of bed porosity, we focus on the characteristics of the channel growth and their bifurcations in a horizontal rectangular domain subject to various fluid source and sink distributions. We find that the erosion front between low- and high-porosity regions becomes unstable, giving rise to branched channel networks, depending on the spatial fluctuations of the fluid flow near the front and the degree to which the flow is above the erodibility threshold of the medium. Focusing on the growth of a network starting from a single channel, and by identifying the channel heads and their branch points, we find that the number of branches increases sublinearly and is affected by the source distribution. The mean angles between branches are found to be systematically lower than river networks in humid climates and depend on the domain geometry.

  1. The AFCRL Lunar amd Planetary Research Branch

    Science.gov (United States)

    Price, Stephan D.

    2011-07-01

    The Lunar and Planetary research program led by Dr John (Jack) Salisbury in the 1960s at the United States Air Force Cambridge Research Laboratories (AFCRL) investigated the surface characteristics of Solar System bodies. The Branch was one of the first groups to measure the infrared spectra of likely surface materials in the laboratory under appropriate vacuum and temperature conditions. The spectral atlases created from the results were then compared to photometric and spectral measurements obtained from ground- and balloon-based telescopes to infer the mineral compositions and physical conditions of the regoliths of the Moon, Mars and asteroids. Starting from scratch, the Branch initially sponsored observations of other groups while its in-house facilities were being constructed. The earliest contracted efforts include the spatially-resolved mapping of the Moon in the first half of the 1960s by Richard W. Shorthill and John W. Saari of the Boeing Scientific Research Laboratories in Seattle. This effort ultimately produced isophotal and isothermal contour maps of the Moon during a lunation and time-resolved thermal images of the eclipsed Moon. The Branch also sponsored probe rocket-based experiments flown by Riccardo Giacconi and his group at American Science and Engineering Inc. that produced the first observations of X-ray stars in 1962 and later the first interferometric measurement of the ozone and C02 emission in the upper atmosphere. The Branch also made early use of balloon-based measurements. This was a singular set of experiments, as these observations are among the very few mid-infrared astronomical measurements obtained from a balloon platform. Notable results of the AFCRL balloon flights were the mid-infrared spectra of the spatially-resolved Moon obtained with the University of Denver mid-infrared spectrometer on the Branch's balloon-borne 61-cm telescope during a 1968 flight. These observations remain among the best available. Salisbury also funded

  2. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    Science.gov (United States)

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  3. Dust lattice waves in Debye binary dust chain

    Science.gov (United States)

    He, Kerong; Chen, Hui; Liu, Sanqiu

    2017-12-01

    The dust lattice waves in a one-dimensional Debye binary dust chain consisting of two distinct dust particle species with different charges and masses are investigated. It is found that there are two branches for both longitudinal and transverse modes, namely the optical mode of high frequency and the acoustic mode of low frequency, which will be merged into one ordinary longitudinal (transverse) mode of single dust chain. The influence of the parameters, i.e., the dimensionless lattice parameter α, the mass ratio σ, and the charge ratio ɛ of the two particles, on the dispersion relation of longitudinal and transverse waves is discussed. Furthermore, the branching and the merging of longitudinal and transverse waves are discussed in detail.

  4. Understanding the supply chain

    Directory of Open Access Journals (Sweden)

    Aćimović Slobodan

    2006-01-01

    Full Text Available Supply chain management represents new business philosophy and includes strategically positioned and much wider scope of activity in comparison with its "older brother" - management of logistics. Philosophy of the concept of supply chain is directed to more coordination of key business functions of every link in distribution chain in the process of organization of the flow of both goods and information, while logistic managing instruments are focused on internal optimum of flows of goods and information within one company. Applying the concept of integrated supply chain among several companies makes the importance of operative logistics activity even greater on the level of one company, thus advancing processes of optimum and coordination within and between different companies and confirms the importance of logistics performances for the company’s profitability. Besides the fact that the borders between companies are being deleted, this concept of supply chain in one distribution channel influences increasing of importance of functional, i.e. traditional business managing approaches but instead it points out the importance of process managing approaches. Although the author is aware that "there is nothing harder, more dangerous and with uncertain success, but to find a way for introducing some novelties (Machiavelli, it would be even his additional stimulation for trying to bring closer the concept and goals of supply chain implementation that are identified in key, relevant, modern, theoretical and consulting approaches in order to achieve better understanding of the subject and faster implementation of the concept of supply chain management by domestic companies.

  5. Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene

    Directory of Open Access Journals (Sweden)

    M.A. AlMaadeed

    2015-05-01

    The wax dispersion in the matrix strongly depends on the percentage of wax added to the polymer and the molecular structure of the polymer. It was found that increasing the wax content enhances the phase separation. LDPE undergoes less phase separation due to its highly branched structure composed of a network of short and long chain branches. The wax has no pronounced plasticising effect on the polymer. This is clearly manifested in LDPE as no change in the melting temperature occurred. LLDPE and HDPE were slightly affected by a high concentration of wax (30% and 40%. This is due to the non-uniform distribution of short chain branching along the LLDPE and HDPE main chains, which can interact with the wax structure.

  6. Project Decision Chain

    DEFF Research Database (Denmark)

    Rolstadås, Asbjørn; Pinto, Jeffrey K.; Falster, Peter

    2015-01-01

    To add value to project performance and help obtain project success, a new framework for decision making in projects is defined. It introduces the project decision chain inspired by the supply chain thinking in the manufacturing sector and uses three types of decisions: authorization, selection......, and plan decision. A primitive decision element is defined where all the three decision types can be accommodated. Each task in the primitive element can in itself contain subtasks that in turn will comprise new primitive elements. The primitive elements are nested together in a project decision chain....

  7. Global Value Chain Configuration

    DEFF Research Database (Denmark)

    Hernandez, Virginia; Pedersen, Torben

    2017-01-01

    This paper reviews the literature on global value chain configuration, providing an overview of this topic. Specifically, we review the literature focusing on the concept of the global value chain and its activities, the decisions involved in its configuration, such as location, the governance...... modes chosen and the different ways of coordinating them. We also examine the outcomes of a global value chain configuration in terms of performance and upgrading. Our aim is to review the state of the art of these issues, identify research gaps and suggest new lines for future research that would...

  8. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  9. Pasting and thermal properties of waxy corn starch modified by 1,4-α-glucan branching enzyme.

    Science.gov (United States)

    Ren, Junyan; Li, Yang; Li, Caiming; Gu, Zhengbiao; Cheng, Li; Hong, Yan; Li, Zhaofeng

    2017-04-01

    Waxy corn starch was modified with the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. Incubating waxy corn starch with GBE increased the number of α-1,6 branch points and reduced the average chain length. Enzymatic modification also decreased the breakdown and setback values of Brabender viscosity curves, indicating that the modified starch had higher paste stability. Preheating the starch at 65°C for 30min before incubation with GBE could promote enzymatic modification of starch. Linear regression was used to describe the relationships between starch structure and its pasting and thermal properties. The setback value showed a negative linear correlation with the α-1,6 branch point content (R2=0.9824) and a positive linear correlation with the average chain length (R2=0.8954). Meanwhile, the gelatinization enthalpy was also linearly correlated to the α-1,6 branch point content (R2=0.9326) and the average chain length (R2=0.8567). These insights provide a useful reference for food processors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 3rd Workshop on Branching Processes and their Applications

    CERN Document Server

    González, Miguel; Gutiérrez, Cristina; Martínez, Rodrigo; Minuesa, Carmen; Molina, Manuel; Mota, Manuel; Ramos, Alfonso; WBPA15

    2016-01-01

    This volume gathers papers originally presented at the 3rd Workshop on Branching Processes and their Applications (WBPA15), which was held from 7 to 10 April 2015 in Badajoz, Spain (http://branching.unex.es/wbpa15/index.htm). The papers address a broad range of theoretical and practical aspects of branching process theory. Further, they amply demonstrate that the theoretical research in this area remains vital and topical, as well as the relevance of branching concepts in the development of theoretical approaches to solving new problems in applied fields such as Epidemiology, Biology, Genetics, and, of course, Population Dynamics. The topics covered can broadly be classified into the following areas: 1. Coalescent Branching Processes 2. Branching Random Walks 3. Population Growth Models in Varying and Random Environments 4. Size/Density/Resource-Dependent Branching Models 5. Age-Dependent Branching Models 6. Special Branching Models 7. Applications in Epidemiology 8. Applications in Biology and Genetics Offer...

  11. Clinical considerations of the glandular branch of the lacrimal artery.

    Science.gov (United States)

    Kluckman, Matthew; Fan, Jerry; Balsiger, Heather; Scott, Gabriel; Gest, Thomas

    2015-10-01

    The lacrimal artery is classically described as a branch of the ophthalmic artery supplied by the internal carotid. In this study, 25 orbits were dissected to identify variations in glandular branching and to compare them to previously published accounts. The glandular branching patterns of the lacrimal artery fall into two categories, those that branch (56%) and those that do not branch (44%). We found the medial and lateral glandular branches to be equal in diameter with a divergence of 2.67-40.58 mm proximal to the gland parenchyma. The long glandular branches run alongside the superolateral aspect of the orbit. The lateral branch runs lateral to the lateral rectus muscle. The medial branch runs superomedial to the lateral rectus muscle and lateral to the superior rectus muscle. In relation to the lacrimal gland, the medial branch enters the superior aspect of the gland parenchyma and the lateral branch enters its inferior aspect. The average branch lengths were 17.88 mm (medial) and 13.51 mm (lateral) as measured with a Mitutoyo Absolute 1/100 mm caliper. We could not confirm the existence of a third branch supplying the lacrimal gland, as posited by other authors. The key finding in this study is that the lacrimal gland is predominantly supplied by two significant arterial branches, both of which must be identified during procedures involving the lateral orbit. © 2015 Wiley Periodicals, Inc.

  12. Control of branch formation in ethylene polymerization by a [Ni(h3-2-MeC3H4(diimine] PF6 / DEAC catalyst system

    Directory of Open Access Journals (Sweden)

    Escher Fernanda F. N.

    2001-01-01

    Full Text Available The polymerization of ethylene mediated by [Ni(eta³-2-MeC3H4{ArN=C(HC(H=NAr}] PF6, Ar = 2,6-C6H3iPr2 /DEAC catalyst precursor under mild reaction conditions (reaction temperature between -10 ºC and 25 ºC and ethylene pressure between 109 and 1520 kPa yields high molecular weight branched polyethylene. The degree of branching was modulated by a careful choice of reaction conditions. Thus, at 0 ºC and 109 kPa, the branching degree was 17 branches/1000 backbone carbon atoms and at 25 ºC, it went up to 90 branches/1000 backbone carbon atoms. The nature of the observed branches (methyl, ethyl and longer, their quantity and distribution along the polymer backbone chain can be rationalized in terms of a chain walking process and control of the extend of isomerization by the steric hindrance of the growing chain.

  13. Synthesis of Long-Chain-Branched (LCB) Polysulfones for Multifunctional Transport Membranes

    Science.gov (United States)

    2010-09-01

    Experimental Materials and Methods 4,4’-dihydroxydiphenylsulfone ([DHDPS], Alfa Aesar, 99.9%) was purified by dissolving in a 5% sodium bicarbonate ...solution and precipitation through adjustment of the pH to a value of 5 with concentrated hydrochloric acid . The crystals were redissolved in aqueous

  14. Radiation chemistry of the branched-chain monoamide di-ethylhexyl-isobutyramide

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    The radiolytic degradation rate of DEHiBA is similar to that of TBP and malonamides, and slow compared to the DGAs, and is unaffected by contact with an aqueous phase or aeration. However, product distributions vary with irradiation conditions. Based on these results, DEHiBA apparently undergoes degradation via two pathways: an acid promoted pathway, Scheme 1, and an acid independent pathway, Scheme 2. It is clear that the monoamide degrades when irradiated in the presence of an aqueous phase to form a series of lower molecular weight species generated from the cleavage of the C-N amide bond or C-N amine bond. As this is the active site during synthesis, it is not surprising that this is the weak point in the ligand structure. The main degradation products appear to be DEHA and EHiBA. These species, and the smaller fragments produced by their radioysis have increased solubility in the aqueous phase. Another product common to all irradiation conditions was the species at m/z 310.2, which is identified as an unsaturated derivative of DEHiBA, resulting from the loss of two H-atoms. In contrast, when an aqueous phase is not present, higher molecular weight products are generated via carbon radical addition reactions under the more reducing conditions. These products have maximum abundance at 750 kGy, and then decrease with increasing absorbed dose. Their significance to a biphasic solvent extraction process is probably inconsequential. Solvent extraction results show that DEHiBA radiolytic degradation had little effect on uranium distribution ratios even at absorbed doses as high as 1 MGy. The build-up of degradation products in the aqueous phase apparently decreased stripping distribution ratios, which is not adverse to a process application. Thus, these findings for DEHiBA are in agreement with previous work that claimed good radiation stability and generation of inoffensive radiolysis products for the monoamides. This, in addition to their CHON nature suggests that they will be good candidates for the development of advanced fuel cycles. Interesting future work would include a comparison study on the n-alkane monoamide DEHBA.

  15. 2-ethylhydracrylic aciduria in short/branched-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Korman, Stanley H; Andresen, Brage S; Zeharia, Avraham

    2005-01-01

    of urine acylglycines is problematic. Excretion of 2-ethylhydracrylic acid (2-EHA), an intermediate formed in the normally minor R-pathway of L-isoleucine oxidation, has not previously been described in SBCADD. METHODS: Samples from four patients with 2-MBG excretion were analyzed by gas chromatography......-mass spectrometry for urine organic acids, quantification of 2-MBG, and chiral determination of 2-methylbutyric acid. Blood-spot acylcarnitines were measured by electrospray-tandem mass spectrometry. Mutations in the ACADSB gene encoding SBCAD were identified by direct sequencing. RESULTS: SBCADD was confirmed...... in each patient by demonstration of different ACADSB gene mutations. In multiple urine samples, organic acid analysis revealed a prominent 2-EHA peak usually exceeding the size of the 2-MBG peak. Approximately 40-46% of total 2-methylbutyric acid conjugates were in the form of the R-isomer, indicating...

  16. Genetics Home Reference: short/branched chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... statistics provide? Why are some genetic conditions more common in particular ethnic groups? ... (SBCAD), which performs a chemical reaction that helps process the amino acid isoleucine. Mutations ...

  17. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells.

    Directory of Open Access Journals (Sweden)

    Chieko Iwao

    Full Text Available The acyclic diterpenoid acid geranylgeranoic acid (GGA has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1 GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2 all-trans retinoic acid induces XBP1 splicing but little cell death; and 3 phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells.

  18. Branched-Chain Amino and Keto Acid Biochemistry and Cellular Biology in Central Nervous System Diseases

    Science.gov (United States)

    2009-05-21

    and SDH mutations, Hum Mol Genet 14 (2005) 2231-2239. [29] M.A. Selak, S.M. Armour, E.D. MacKenzie, H. Boulahbel, D.G. Watson, K.D. Mansfield, Y...expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14(15):2231-9. Popov KM, Zhao Y, Shimomura Y, Kuntz

  19. Generation of unusual branched long chain alkanes from hydrous pyrolysis of anammox bacterial biomass

    NARCIS (Netherlands)

    Rush, D.; Jaeschke, A.; Geenevasen, J.A.J.; Tegelaar, E.; Pureveen, J.; Lewan, M.D.; Schouten, S.; Sinninghe Damsté, J.S.

    2014-01-01

    Anammox, the microbial anaerobic oxidation of NH4+ by NO2- to produce N2, is recognised as a key process in the marine, freshwater and soil N cycles, and has been found to be a major sink for fixed inorganic N in the ocean. Ladderane lipids are unique anammox bacterial membrane lipids used as

  20. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.