WorldWideScience

Sample records for brainstem frequency-following responses

  1. Speech-evoked brainstem frequency-following responses during verbal transformations due to word repetition.

    Science.gov (United States)

    Galbraith, G C; Jhaveri, S P; Kuo, J

    1997-01-01

    Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.

  2. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...

  3. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  4. Impact of monaural frequency compression on binaural fusion at the brainstem level.

    Science.gov (United States)

    Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I

    2015-08-01

    A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.

  5. Brainstem response audiometry in the determination of low-frequency hearing loss : a study of various methods for frequency-specific ABR-threshold assessment

    NARCIS (Netherlands)

    E.A.G.J. Conijn

    1992-01-01

    textabstractBrainstem Electric Response Audiometry (BERA) is a method to visualize some of the electric activity generated in the auditory nerve and the brainstem during the processing of sound. The amplitude of the Auditory Brainstem Response (ABR) is very small (0.05-0.5 flV). The potentials

  6. Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.

    Science.gov (United States)

    Galbraith, G C

    2001-06-01

    The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.

  7. Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation.

    Science.gov (United States)

    Gockel, Hedwig E; Krugliak, Alexandra; Plack, Christopher J; Carlyon, Robert P

    2015-12-01

    The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.

  8. Speech-evoked auditory brainstem responses in children with hearing loss.

    Science.gov (United States)

    Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine

    2017-08-01

    The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Brainstem auditory responses to resolved and unresolved harmonics of a synthetic vowel in quiet and noise.

    Science.gov (United States)

    Laroche, Marilyn; Dajani, Hilmi R; Prévost, François; Marcoux, André M

    2013-01-01

    This study investigated speech auditory brainstem responses (speech ABR) with variants of a synthetic vowel in quiet and in background noise. Its objectives were to study the noise robustness of the brainstem response at the fundamental frequency F0 and at the first formant F1, evaluate how the resolved/unresolved harmonics regions in speech contribute to the response at F0, and investigate the origin of the response at F0 to resolved and unresolved harmonics in speech. In total, 18 normal-hearing subjects (11 women, aged 18-33 years) participated in this study. Speech ABRs were recorded using variants of a 300 msec formant-synthesized /a/ vowel in quiet and in white noise. The first experiment employed three variants containing the first three formants F1 to F3, F1 only, and F2 and F3 only with relative formant levels following those reported in the literature. The second experiment employed three variants containing F1 only, F2 only, and F3 only, with the formants equalized to the same level and the signal-to-noise ratio (SNR) maintained at -5 dB. Overall response latency was estimated, and the amplitude and local SNR of the envelope following response at F0 and of the frequency following response at F1 were compared for the different stimulus variants in quiet and in noise. The response at F0 was more robust to noise than that at F1. There were no statistically significant differences in the response at F0 caused by the three stimulus variants in both experiments in quiet. However, the response at F0 with the variant dominated by resolved harmonics was more robust to noise than the response at F0 with the stimulus variants dominated by unresolved harmonics. The latencies of the responses in all cases were very similar in quiet, but the responses at F0 due to resolved and unresolved harmonics combined nonlinearly when both were present in the stimulus. Speech ABR has been suggested as a marker of central auditory processing. The results of this study support

  10. Frequency-dependent effects of background noise on subcortical response timing.

    Science.gov (United States)

    Tierney, A; Parbery-Clark, A; Skoe, E; Kraus, N

    2011-12-01

    The addition of background noise to an auditory signal delays brainstem response timing. This effect has been extensively documented using manual peak selection. Peak picking, however, is impractical for large-scale studies of spectrotemporally complex stimuli, and leaves open the question of whether noise-induced delays are frequency-dependent or occur across the frequency spectrum. Here we use an automated, objective method to examine phase shifts between auditory brainstem responses to a speech sound (/da/) presented with and without background noise. We predicted that shifts in neural response timing would also be reflected in frequency-specific phase shifts. Our results indicate that the addition of background noise causes phase shifts across the subcortical response spectrum (70-1000 Hz). However, this noise-induced delay is not uniform such that some frequency bands show greater shifts than others: low-frequency phase shifts (300-500 Hz) are largest during the response to the consonant-vowel formant transition (/d/), while high-frequency shifts (720-1000 Hz) predominate during the response to the steady-state vowel (/a/). Most importantly, phase shifts occurring in specific frequency bands correlate strongly with shifts in the latencies of the predominant peaks in the auditory brainstem response, while phase shifts in other frequency bands do not. This finding confirms the validity of phase shift detection as an objective measure of timing differences and reveals that this method detects noise-induced shifts in timing that may not be captured by traditional peak latency measurements. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Effect of Infant Prematurity on Auditory Brainstem Response at Preschool Age

    Directory of Open Access Journals (Sweden)

    Sara Hasani

    2013-03-01

    Full Text Available Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age.   Materials and Methods: An auditory brainstem response (ABR test was performed with low rates of stimuli in 60 children aged 4 to 6 years. Thirty subjects had been born following a very preterm labor or late-preterm labor and 30 control subjects had been born following a full-term labor.   Results: Significant differences in the ABR test result were observed in terms of the inter-peak intervals of the I–III and III–V waves, and the absolute latency of the III wave (P

  12. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  13. The absence of later wave components in auditory brainstem responses as an initial manifestation of type 2 Gaucher disease.

    Science.gov (United States)

    Okubo, Yusuke; Goto, Masahiro; Sakakibara, Hiroshi; Terakawa, Toshiro; Kaneko, Takashi; Miyama, Sahoko

    2014-12-01

    Type 2 Gaucher disease is the most severe neuronopathic form of Gaucher disease and is characterized by severe neurodegeneration with brainstem involvement and organ failure. Prediction or diagnosis of type 2 Gaucher disease before the development of neurological complications is difficult. A 5-month-old female infant presented with deafness without other neurological abnormalities. Auditory brainstem response analysis revealed the absence of later wave components. Two months later, muscular rigidity became evident, followed by the development of opisthotonus and strabismus. Rapid progression of splenomegaly led to the diagnosis of type 2 Gaucher disease. Abnormal auditory brainstem response findings may already exist before the development of severe brainstem abnormalities such as muscular rigidity and opisthotonus in type 2 Gaucher disease. When patients present with deafness and absent later wave components on auditory brainstem response, type 2 Gaucher disease should be included in the differential diagnosis even in the absence of other neurological abnormalities. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Improved Detection of Vowel Envelope Frequency Following Responses Using Hotelling's T2 Analysis.

    Science.gov (United States)

    Vanheusden, Frederique J; Bell, Steven L; Chesnaye, Michael A; Simpson, David M

    2018-05-11

    Objective detection of brainstem responses to natural speech stimuli is an important tool for the evaluation of hearing aid fitting, especially in people who may not be able to respond reliably in behavioral tests. Of particular interest is the envelope frequency following response (eFFR), which refers to the EEG response at the stimulus' fundamental frequency (and its harmonics), and here in particular to the response to natural spoken vowel sounds. This article introduces the frequency-domain Hotelling's T (HT2) method for eFFR detection. This method was compared, in terms of sensitivity in detecting eFFRs at the fundamental frequency (HT2_F0), to two different single-channel frequency domain methods (F test on Fourier analyzer (FA) amplitude spectra [FA-F-Test] and magnitude-squared coherence [MSC]) in detecting envelope following responses to natural vowel stimuli in simulated data and EEG data from normal-hearing subjects. Sensitivity was assessed based on the number of detections and the time needed to detect a response for a false-positive rate of 5%. The study also explored whether a single-channel, multifrequency HT2 (HT2_3F) and a multichannel, multifrequency HT2 (HT2_MC) could further improve response detection. Four repeated words were presented sequentially at 70 dB SPL LAeq through ER-2 insert earphones. The stimuli consisted of a prolonged vowel in a /hVd/ structure (where V represents different vowel sounds). Each stimulus was presented over 440 sweeps (220 condensation and 220 rarefaction). EEG data were collected from 12 normal-hearing adult participants. After preprocessing and artifact removal, eFFR detection was compared between the algorithms. For the simulation study, simulated EEG signals were generated by adding random noise at multiple signal to noise ratios (SNRs; 0 to -60dB) to the auditory stimuli as well as to a single sinusoid at the fluctuating and flattened fundamental frequency (f0). For each SNR, 1000 sets of 440 simulated epochs

  15. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant?

    Science.gov (United States)

    Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani

    2018-05-17

    Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Renata Mota Mamede de Carvallo

    2008-09-01

    Full Text Available Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU, as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests could be applied to all babies. The “pass” result for the group of babies from the nursery was 94.7% using Transient Evoked Otoacoustic Emissions and 96% using Automatic Auditory Brainstem Response. The newborn intensive care unit group obtained 87.1% on Transient Evoked Otoacoustic Emissions and 80% on the Automatic Auditory Brainstem Response, and there was no statistical difference between the procedures when the groups were evaluated individually. However, comparing the groups, Transient Evoked Otoacoustic Emissions were presented in 94.7% of the nursery babies and in 87.1% in the group from the newborn intensive care unit. Considering the Automatic Auditory Brainstem Response, we found 96 and 87%, respectively. Cconclusions: Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response had similar “pass” and “fail” results when the procedures were applied to neonates from the regular nursery, and the combined tests were more precise to detect hearing impairment in the newborn intensive care unit babies.

  17. Brainstem evoked potentials in infantile spasms

    International Nuclear Information System (INIS)

    Miyazaki, Masahito; Hashimoto, Toshiaki; Murakawa, Kazuyoshi; Tayama, Masanobu; Kuroda, Yasuhiro

    1992-01-01

    In ten patients with infantile spasms, brainstem evoked potentials and MRI examinations were performed to evaluate the brainstem involvement. The result of short latency somatosensory evoked potentials (SSEP) following the right median nerve stimulation revealed abnormal findings including the absence or low amplitudes of the waves below wave P3 and delayed central conduction time in 7 of the ten patients. The result of auditory brainstem responses (ABR) revealed abnormal findings including low amplitudes of wave V, prolonged interpeak latency of waves I-V and absence of the waves below wave IV in 5 of the ten patients. The result of the MRI examinations revealed various degrees of the brainstem atrophy in 6 of the ten patients, all of whom showed abnormal brainstem evoked potentials. The result of this study demonstrates that patients with infantile spasms are frequently associated with brainstem dysfunction and raises the possibility that brainstem atrophy might be a cause of infantile spasms. (author)

  18. The auditory brainstem response in two lizard species

    DEFF Research Database (Denmark)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong

    2010-01-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal...... animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform......). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than...

  19. A comparison of auditory brainstem responses across diving bird species

    Science.gov (United States)

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  20. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  1. Age-related hearing loss in dogs : Diagnosis with Brainstem-Evoked Response Audiometry and Treatment with Vibrant Soundbridge Middle Ear Implant.

    NARCIS (Netherlands)

    ter Haar, G.

    2009-01-01

    Age-related hearing loss (ARHL) is the most common cause of acquired hearing impairment in dogs. Diagnosis requires objective electrophysiological tests (brainstem evoked response audiometry [BERA]) evaluating the entire audible frequency range in dogs. In our laboratory a method was developed to

  2. The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention.

    Science.gov (United States)

    Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias

    2017-10-10

    Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.

  3. Abnormal Auditory Brainstem Response (ABR Findings in a Near-Normal Hearing Child with Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Bahram Jalaei

    2017-01-01

    Full Text Available Introduction: Noonan syndrome (NS is a heterogeneous genetic disease that affects many parts of the body. It was named after Dr. Jacqueline Anne Noonan, a paediatric cardiologist.Case Report: We report audiological tests and auditory brainstem response (ABR findings in a 5-year old Malay boy with NS. Despite showing the marked signs of NS, the child could only produce a few meaningful words. Audiological tests found him to have bilateral mild conductive hearing loss at low frequencies. In ABR testing, despite having good waveform morphology, the results were atypical. Absolute latency of wave V was normal but interpeak latencies of wave’s I-V, I-II, II-III were prolonged. Interestingly, interpeak latency of waves III-V was abnormally shorter.Conclusion:Abnormal ABR results are possibly due to abnormal anatomical condition of brainstem and might contribute to speech delay.

  4. Four cases with localized brain-stem lesion on CT scan following closed head injury

    International Nuclear Information System (INIS)

    Saeki, Naokatsu; Odaki, Masaru; Oka, Nobuo; Takase, Manabu; Ono, Junichi.

    1981-01-01

    Cases of primary brain-stem injury following closed head injury, verified by a CT scan, have been increasingly reported. However, most of them have other intracranial lesions in addition to the brain stem, resulting in a poor outcome. The CT scan of 200 cases with severe head injury-Araki's classification of types 3 and 4 - were analysed. Four cases out of them had localized brain-stem lesion without any other significant intracranial injury on a CT scan at the acute stage and had a better outcome than had previously been reported. In this analysis, these 4 cases were studied, and the CT findings, prognosis, and pathogenesis of the localized brain-stem injury were discussed. Follow-up CT of three cases, and taken one month or more later, showed diffuse cortical atrophy. This may indicate the presence of diffuse cerebral injury which could not be seen on CT scans at the acute stage. This atrophic change may also be related with the mechanism of posttraumatic conscious impairment and posttraumatic neurological deficits, such as mental symptoms and impairment of the higher cortical function. Shearing injury is a probable pathogenesis for this diffuse cortical injury. On the other hand, one case did not have any cortical atrophy on a follow-up CT scan. Therefore, this is a case with a localized primary brain-stem injury. Coup injury against the brain stem by a tentorial margin in a case with a small tentorial opening is a possible mechanism producing the localized brain-stem injury. (J.P.N.)

  5. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  6. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials.

    Science.gov (United States)

    Bidelman, Gavin M

    2015-02-15

    Simultaneous recording of brainstem and cortical event-related brain potentials (ERPs) may offer a valuable tool for understanding the early neural transcription of behaviorally relevant sounds and the hierarchy of signal processing operating at multiple levels of the auditory system. To date, dual recordings have been challenged by technological and physiological limitations including different optimal parameters necessary to elicit each class of ERP (e.g., differential adaptation/habitation effects and number of trials to obtain adequate response signal-to-noise ratio). We investigated a new stimulus paradigm for concurrent recording of the auditory brainstem frequency-following response (FFR) and cortical ERPs. The paradigm is "optimal" in that it uses a clustered stimulus presentation and variable interstimulus interval (ISI) to (i) achieve the most ideal acquisition parameters for eliciting subcortical and cortical responses, (ii) obtain an adequate number of trials to detect each class of response, and (iii) minimize neural adaptation/habituation effects. Comparison between clustered and traditional (fixed, slow ISI) stimulus paradigms revealed minimal change in amplitude or latencies of either the brainstem FFR or cortical ERP. The clustered paradigm offered over a 3× increase in recording efficiency compared to conventional (fixed ISI presentation) and thus, a more rapid protocol for obtaining dual brainstem-cortical recordings in individual listeners. We infer that faster recording of subcortical and cortical potentials might allow more complete and sensitive testing of neurophysiological function and aid in the differential assessment of auditory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cortical and brainstem plasticity in Tourette syndrome and obsessive-compulsive disorder.

    Science.gov (United States)

    Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Berardelli, Isabella; Roselli, Valentina; Pasquini, Massimo; Cardona, Francesco; Berardelli, Alfredo

    2014-10-01

    Gilles de la Tourette syndrome is characterized by motor/vocal tics commonly associated with psychiatric disorders, including obsessive-compulsive disorder. We investigated primary motor cortex and brainstem plasticity in Tourette patients, exposed and unexposed to chronic drug treatment, with and without psychiatric disturbances. We also investigated primary motor cortex and brainstem plasticity in obsessive-compulsive disorder. We studied 20 Tourette patients with and without psychiatric disturbances, 15 with obsessive-compulsive disorder, and 20 healthy subjects. All groups included drug-naïve patients. We conditioned the left primary motor cortex with intermittent/continuous theta-burst stimulation and recorded motor evoked potentials. We conditioned the supraorbital nerve with facilitatory/inhibitory high-frequency stimulation and recorded the blink reflex late response area. In healthy subjects, intermittent theta-burst increased and continuous theta-burst stimulation decreased motor evoked potentials. Differently, intermittent theta-burst failed to increase and continuous theta-burst stimulation failed to decrease motor evoked potentials in Tourette patients, with and without psychiatric disturbances. In obsessive-compulsive disorder, intermittent/continuous theta-burst stimulation elicited normal responses. In healthy subjects and in subjects with obsessive-compulsive disorder, the blink reflex late response area increased after facilitatory high-frequency and decreased after inhibitory high-frequency stimulation. Conversely, in Tourette patients, with and without psychiatric disturbances, facilitatory/inhibitory high-frequency stimulation left the blink reflex late response area unchanged. Theta-burst and high-frequency stimulation elicited similar responses in drug-naïve and chronically treated patients. Tourette patients have reduced plasticity regardless of psychiatric disturbances. These findings suggest that abnormal plasticity contributes to the

  8. Binaural interaction in the auditory brainstem response: a normative study.

    Science.gov (United States)

    Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Battmer, Rolf-Dieter; Dhooge, Ingeborg J M

    2015-04-01

    Binaural interaction can be investigated using auditory evoked potentials. A binaural interaction component can be derived from the auditory brainstem response (ABR-BIC) and is considered evidence for binaural interaction at the level of the brainstem. Although click ABR-BIC has been investigated thoroughly, data on 500 Hz tone-burst (TB) ABR-BICs are scarce. In this study, characteristics of click and 500 Hz TB ABR-BICs are described. Furthermore, reliability of both click and 500 Hz TB ABR-BIC are investigated. Eighteen normal hearing young adults (eight women, ten men) were included. ABRs were recorded in response to clicks and 500 Hz TBs. ABR-BICs were derived by subtracting the binaural response from the sum of the monaural responses measured in opposite ears. Good inter-rater reliability is obtained for both click and 500 Hz TB ABR-BICs. The most reliable peak in click ABR-BIC occurs at a mean latency of 6.06 ms (SD 0.354 ms). Reliable 500 Hz TB ABR-BIC are obtained with a mean latency of 9.47 ms (SD 0.678 ms). Amplitudes are larger for 500 Hz TB ABR-BIC than for clicks. The most reliable peak in click ABR-BIC occurs at the downslope of wave V. Five hundred Hertz TB ABR-BIC is characterized by a broad positivity occurring at the level of wave V. The ABR-BIC is a useful technique to investigate binaural interaction in certain populations. Examples are bilateral hearing aid users, bilateral cochlear implant users and bimodal listeners. The latter refers to the combination of unilateral cochlear implantation and contralateral residual hearing. The majority of these patients have residual hearing in the low frequencies. The current study suggests that 500 Hz TB ABR-BIC may be a suitable technique to assess binaural interaction in this specific population of cochlear implant users. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Diverse Intrinsic Properties Shape Functional Phenotype of Low-Frequency Neurons in the Auditory Brainstem

    Directory of Open Access Journals (Sweden)

    Hui Hong

    2018-06-01

    Full Text Available In the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM, an auditory brainstem structure. We found that NM neurons responsible for encoding the lowest sound frequencies (termed NMc neurons have enhanced excitability and fired bursts of action potentials to sinusoidal inputs ≤10 Hz; a distinct firing pattern compared to higher-frequency neurons. This response property was due to lower amounts of voltage dependent potassium (KV conductances, unique combination of KV subunits and specialized sodium (NaV channel properties. Particularly, NMc neurons had significantly lower KV1 and KV3 currents, but higher KV2 current. NMc neurons also showed larger and faster transient NaV current (INaT with different voltage dependence of inactivation from higher-frequency neurons. In contrast, significantly smaller resurgent sodium current (INaR was present in NMc with kinetics and voltage dependence that differed from higher-frequency neurons. Immunohistochemistry showed expression of NaV1.6 channel subtypes across the tonotopic axis. However, various immunoreactive patterns were observed between regions, likely underlying some tonotopic differences in INaT and INaR. Finally, using pharmacology and computational modeling, we concluded that KV3, KV2 channels and INaR work synergistically to regulate burst firing in NMc.

  10. The auditory brainstem response in two lizard species.

    Science.gov (United States)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong; Carr, Catherine; Dooling, Robert J

    2010-08-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform in response to click stimulation showed one prominent and several smaller peaks occurring within 10 ms of the stimulus onset. ABRs to brief tone bursts revealed that geckos and anoles were most sensitive between 1.6-2 kHz and had similar hearing sensitivity up to about 5 kHz (thresholds typically 20-50 dB SPL). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than in most bird species.

  11. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  12. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  13. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    OpenAIRE

    Renata Mota Mamede de Carvallo; Carla Gentile Matas; Isabela de Souza Jardim

    2008-01-01

    Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU), as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem...

  14. Comparison between chloral hydrate and propofol-ketamine as sedation regimens for pediatric auditory brainstem response testing.

    Science.gov (United States)

    Abulebda, Kamal; Patel, Vinit J; Ahmed, Sheikh S; Tori, Alvaro J; Lutfi, Riad; Abu-Sultaneh, Samer

    2017-10-28

    The use of diagnostic auditory brainstem response testing under sedation is currently the "gold standard" in infants and young children who are not developmentally capable of completing the test. The aim of the study is to compare a propofol-ketamine regimen to an oral chloral hydrate regimen for sedating children undergoing auditory brainstem response testing. Patients between 4 months and 6 years who required sedation for auditory brainstem response testing were included in this retrospective study. Drugs doses, adverse effects, sedation times, and the effectiveness of the sedative regimens were reviewed. 73 patients underwent oral chloral hydrate sedation, while 117 received propofol-ketamine sedation. 12% of the patients in the chloral hydrate group failed to achieve desired sedation level. The average procedure, recovery and total nursing times were significantly lower in the propofol-ketamine group. Propofol-ketamine group experienced higher incidence of transient hypoxemia. Both sedation regimens can be successfully used for sedating children undergoing auditory brainstem response testing. While deep sedation using propofol-ketamine regimen offers more efficiency than moderate sedation using chloral hydrate, it does carry a higher incidence of transient hypoxemia, which warrants the use of a highly skilled team trained in pediatric cardio-respiratory monitoring and airway management. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  15. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    Science.gov (United States)

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    1998-08-01

    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.

  16. Human frequency-following response to speech-like sounds: correlates of off-frequency masking.

    Science.gov (United States)

    Krishnan, Ananthanarayan; Agrawal, Smita

    2010-01-01

    Off-frequency masking of the second formant by energy at the first formant has been shown to influence both identification and discrimination of the second formant in normal-hearing and hearing-impaired listeners. While both excitatory spread and two-tone suppression have been implicated in this simultaneous masking, their relative contribution has been shown to depend on both the level of the masker and the frequency separation between the probe and the masker. Off-frequency masking effects were evaluated in 10 normal-hearing human adults using the frequency-following response (FFR) to two two-tone approximations of vowel stimuli (/a/ and /u/). In the first experiment, the masking effect of F(1) on F(2) was evaluated by attenuating the level of F(1) relative to a fixed F(2) level. In the second experiment, the masking effect was evaluated by increasing the frequency separation between F(1) and F(2) using F(2) frequency as the variable. Results revealed that both attenuation of the F(1) level, and increasing the frequency separation between F(1) and F(2) increased the magnitude of the FFR component at F(2). These results are consistent with a release from off-frequency masking. Given that the results presented here are for high signal and masker levels and for relatively smaller frequency separation between the masker and the probe, it is possible that both suppression and excitatory spread contributed to the masking effects observed in our data. Copyright2009 S. Karger AG, Basel.

  17. Brainstem encoding of speech and musical stimuli in congenital amusia: Evidence from Cantonese speakers

    Directory of Open Access Journals (Sweden)

    Fang eLiu

    2015-01-01

    Full Text Available Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB, and two cello tones in quiet while their frequency-following responses (FFRs to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain.

  18. Brainstem encoding of speech and musical stimuli in congenital amusia: evidence from Cantonese speakers.

    Science.gov (United States)

    Liu, Fang; Maggu, Akshay R; Lau, Joseph C Y; Wong, Patrick C M

    2014-01-01

    Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain.

  19. Brainstem encoding of speech and musical stimuli in congenital amusia: evidence from Cantonese speakers

    Science.gov (United States)

    Liu, Fang; Maggu, Akshay R.; Lau, Joseph C. Y.; Wong, Patrick C. M.

    2015-01-01

    Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain. PMID:25646077

  20. Automatic hearing loss detection system based on auditory brainstem response

    International Nuclear Information System (INIS)

    Aldonate, J; Mercuri, C; Reta, J; Biurrun, J; Bonell, C; Gentiletti, G; Escobar, S; Acevedo, R

    2007-01-01

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory

  1. A brainstem variant of reversible posterior leukoencephalopathy syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, H.; Tomimoto, H.; Terada, K. [Kyoto University, Department of Neurology, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Miki, Y.; Yamamoto, A. [Kyoto University, Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Satoi, H.; Kanda, M. [Ijinkai Takeda General Hospital, Department of Neurology, Fushimi-ku, Kyoto (Japan); Fukuyama, H. [Kyoto University, Human Brain Research Center, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan)

    2005-09-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is caused by various heterogeneous factors, the commonest being hypertension, followed by nonhypertensive causes such as eclampsia, renal diseases and immunosuppressive therapy. Patients with RPLS exhibit bilateral white and gray matter abnormalities in the posterior aspects of the cerebral hemispheres. However, this syndrome may affect the brainstem predominantly, and these cases are designated as hypertensive brainstem encephalopathy. We present here two patients with reversible brainstem encephalopathy: one with hypertension and the other without hypertension. These patients presented with swelling and diffuse hyperintensities of the brainstem in fluid-attenuated inversion-recovery (FLAIR) and T2-weighted MRI, but with relatively mild clinical symptoms. They recovered without major neurological deficits, but had residual lacunar lesions in the pons. Reversible brainstem encephalopathy with characteristic MRI features was found in both hypertensive and nonhypertensive patients. These patients were diagnosed with a brainstem variant of RPLS, which is potentially fully reversible after an adequate treatment, and therefore should be carefully differentiated from other brainstem disease conditions. (orig.)

  2. A brainstem variant of reversible posterior leukoencephalopathy syndrome

    International Nuclear Information System (INIS)

    Kitaguchi, H.; Tomimoto, H.; Terada, K.; Miki, Y.; Yamamoto, A.; Satoi, H.; Kanda, M.; Fukuyama, H.

    2005-01-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is caused by various heterogeneous factors, the commonest being hypertension, followed by nonhypertensive causes such as eclampsia, renal diseases and immunosuppressive therapy. Patients with RPLS exhibit bilateral white and gray matter abnormalities in the posterior aspects of the cerebral hemispheres. However, this syndrome may affect the brainstem predominantly, and these cases are designated as hypertensive brainstem encephalopathy. We present here two patients with reversible brainstem encephalopathy: one with hypertension and the other without hypertension. These patients presented with swelling and diffuse hyperintensities of the brainstem in fluid-attenuated inversion-recovery (FLAIR) and T2-weighted MRI, but with relatively mild clinical symptoms. They recovered without major neurological deficits, but had residual lacunar lesions in the pons. Reversible brainstem encephalopathy with characteristic MRI features was found in both hypertensive and nonhypertensive patients. These patients were diagnosed with a brainstem variant of RPLS, which is potentially fully reversible after an adequate treatment, and therefore should be carefully differentiated from other brainstem disease conditions. (orig.)

  3. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance

    Science.gov (United States)

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2013-01-01

    Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…

  4. Contribution of resolved and unresolved harmonic regions to brainstem speech-evoked responses in quiet and in background noise

    Directory of Open Access Journals (Sweden)

    M. Laroche

    2011-03-01

    Full Text Available Speech auditory brainstem responses (speech ABR reflect activity that is phase-locked to the harmonics of the fundamental frequency (F0 up to at least the first formant (F1. Recent evidence suggests that responses at F0 in the presence of noise are more robust than responses at F1, and are also dissociated in some learning-impaired children. Peripheral auditory processing can be broadly divided into resolved and unresolved harmonic regions. This study investigates the contribution of these two regions to the speech ABR, and their susceptibility to noise. We recorded, in quiet and in background white noise, evoked responses in twelve normal hearing adults in response to three variants of a synthetic vowel: i Allformants, which contains all first three formants, ii F1Only, which is dominated by resolved harmonics, and iii F2&F3Only, which is dominated by unresolved harmonics. There were no statistically significant differences in the response at F0 due to the three variants of the stimulus in quiet, nor did the noise affect this response with the Allformants and F1Only variants. On the other hand, the response at F0 with the F2&F3Only variant was significantly weaker in noise than with the two other variants (p<0.001. With the response at F1, there was no difference with the Allformants and F1Only variants in quiet, but was expectedly weaker with the F2&F3Only variant (p<0.01. The addition of noise significantly weakened the response at F1 with the F1Only variant (p<0.05, but this weakening only tended towards significance with the Allformants variant (p=0.07. The results of this study indicate that resolved and unresolved harmonics are processed in different but interacting pathways that converge in the upper brainstem. The results also support earlier work on the differential susceptibility of responses at F0 and F1 to added noise.

  5. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Liebsch, N.J.; O'Farrel, D.; Finkelstein, D.; Efird, J.; Munzenrider, J.E.

    1997-01-01

    Purpose: The aim of this study was to analyze the long-term incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Methods and Materials: Between 1974 and 1995, 367 patients with chordomas (n = 195) and chondrosarcomas (n = 172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. Following 3D treatment planning with delineation of target volumes and critical nontarget structures dose distributions and dose-volume histograms were calculated. Radiotherapy was given an 1.8 Gy or CGE (=Cobalt Gray Equivalent) dose per fraction, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Results: Follow-up time ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem toxicity was observed in 17 of 367 patients attributable to treatment, resulting in death of three patients. Actuarial rates of 5 and 10-year high-grade toxicity-free survival were 94 and 88%, respectively. Increased risk of brainstem toxicity was significantly associated with maximum dose to brainstem, volume of brainstem receiving ≥50 CGE, ≥55 CGE, and ≥60 CGE, number of surgical procedures, and prevalence of diabetes or high blood pressure. Multivariate analysis identified three independent factors as important prognosticators: number of surgical procedures (p < 0.001), volume of the brainstem receiving 60 CGE (p < 0.001), and prevalence of diabetes (p < 0.01). Conclusions: Tolerance of brainstem to fractionated radiotherapy appears to be a steep function of tissue volume included in high dose regions rather than the maximum dose of brainstem alone. In addition, presence of predisposing factors as well as extent of surgical manipulation can significantly lower brainstem tolerance in the individual patient

  6. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    Science.gov (United States)

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Auditory Brainstem Responses and EMFs Generated by Mobile Phones.

    Science.gov (United States)

    Khullar, Shilpa; Sood, Archana; Sood, Sanjay

    2013-12-01

    There has been a manifold increase in the number of mobile phone users throughout the world with the current number of users exceeding 2 billion. However this advancement in technology like many others is accompanied by a progressive increase in the frequency and intensity of electromagnetic waves without consideration of the health consequences. The aim of our study was to advance our understanding of the potential adverse effects of GSM mobile phones on auditory brainstem responses (ABRs). 60 subjects were selected for the study and divided into three groups of 20 each based on their usage of mobile phones. Their ABRs were recorded and analysed for latency of waves I-V as well as interpeak latencies I-III, I-V and III-V (in ms). Results revealed no significant difference in the ABR parameters between group A (control group) and group B (subjects using mobile phones for maximum 30 min/day for 5 years). However the latency of waves was significantly prolonged in group C (subjects using mobile phones for 10 years for a maximum of 30 min/day) as compared to the control group. Based on our findings we concluded that long term exposure to mobile phones may affect conduction in the peripheral portion of the auditory pathway. However more research needs to be done to study the long term effects of mobile phones particularly of newer technologies like smart phones and 3G.

  8. DESCRIPTION OF BRAINSTEM AUDITORY EVOKED RESPONSES (AIR AND BONE CONDUCTION IN CHILDREN WITH NORMAL HEARING

    Directory of Open Access Journals (Sweden)

    A. V. Pashkov

    2014-01-01

    Full Text Available Diagnosis of hearing level in small children with conductive hearing loss associated with congenital craniofacial abnormalities, particularly with agenesis of external ear and external auditory meatus is a pressing issue. Conventional methods of assessing hearing in the first years of life, i. e. registration of brainstem auditory evoked responses to acoustic stimuli in the event of air conduction, does not give an indication of the auditory analyzer’s condition due to potential conductive hearing loss in these patients. This study was aimed at assessing potential of diagnosing the auditory analyzer’s function with registering brainstem auditory evoked responses (BAERs to acoustic stimuli transmitted by means of a bone vibrator. The study involved 17 children aged 3–10 years with normal hearing. We compared parameters of registering brainstem auditory evoked responses (peak V depending on the type of stimulus transmission (air/bone in children with normal hearing. The data on thresholds of the BAERs registered to acoustic stimuli in the event of air and bone conduction obtained in this study are comparable; hearing thresholds in the event of acoustic stimulation by means of a bone vibrator correlates with the results of the BAERs registered to the stimuli transmitted by means of air conduction earphones (r = 0.9. High correlation of thresholds of BAERs to the stimuli transmitted by means of a bone vibrator with thresholds of BAERs registered when air conduction earphones were used helps to assess auditory analyzer’s condition in patients with any form of conductive hearing loss.  

  9. Delayed neuronal cell death in brainstem after transient brainstem ischemia in gerbils

    Directory of Open Access Journals (Sweden)

    Hakuba Nobuhiro

    2010-09-01

    Full Text Available Abstract Background Because of the lack of reproducible brainstem ischemia models in rodents, the temporal profile of ischemic lesions in the brainstem after transient brainstem ischemia has not been evaluated intensively. Previously, we produced a reproducible brainstem ischemia model of Mongolian gerbils. Here, we showed the temporal profile of ischemic lesions after transient brainstem ischemia. Results Brainstem ischemia was produced by occlusion of the bilateral vertebral arteries just before their entry into the transverse foramina of the cervical vertebrae of Mongolian gerbils. Animals were subjected to brainstem ischemia for 15 min, and then reperfused for 0 d (just after ischemia, 1 d, 3 d and 7 d (n = 4 in each group. Sham-operated animals (n = 4 were used as control. After deep anesthesia, the gerbils were perfused with fixative for immunohistochemical investigation. Ischemic lesions were detected by immunostaining for microtubule-associated protein 2 (MAP2. Just after 15-min brainstem ischemia, ischemic lesions were detected in the lateral vestibular nucleus and the ventral part of the spinal trigeminal nucleus, and these ischemic lesions disappeared one day after reperfusion in all animals examined. However, 3 days and 7 days after reperfusion, ischemic lesions appeared again and clusters of ionized calcium-binding adapter molecule-1(IBA-1-positive cells were detected in the same areas in all animals. Conclusion These results suggest that delayed neuronal cell death took place in the brainstem after transient brainstem ischemia in gerbils.

  10. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    Science.gov (United States)

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e

  11. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences.

    Science.gov (United States)

    Grose, John H; Buss, Emily; Hall, Joseph W

    2017-01-01

    The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.

  12. Synchronized Progression of Prestin Expression and Auditory Brainstem Response during Postnatal Development in Rats

    Directory of Open Access Journals (Sweden)

    Jianfeng Hang

    2016-01-01

    Full Text Available Prestin is the motor protein expressed in the cochlear outer hair cells (OHCs of mammalian inner ear. The electromotility of OHCs driven by prestin is responsible for the cochlear amplification which is required for normal hearing in adult animals. Postnatal expression of prestin and activity of OHCs may contribute to the maturation of hearing in rodents. However, the temporal and spatial expression of prestin in cochlea during the development is not well characterized. In the present study, we examined the expression and function of prestin from the OHCs in apical, middle, and basal turns of the cochleae of postnatal rats. Prestin first appeared at postnatal day 6 (P6 for basal turn, P7 in middle turn, and P9 for apical turn of cochlea. The expression level increased progressively over the next few days and by P14 reached the mature level for all three segments. By comparison with the time course of the development of auditory brainstem response for different frequencies, our data reveal that prestin expression synchronized with the hearing development. The present study suggests that the onset time of hearing may require the expression of prestin and is determined by the mature function of OHCs.

  13. Brainstem tumors: Current management and future directions

    Directory of Open Access Journals (Sweden)

    Pablo F Recinos

    2012-01-01

    Full Text Available Tumors arising in the brainstem comprise 10-20% of all pediatric central nervous system (CNS tumors and account for a small percentage in adults. The prognosis for these tumors was considered uniformly poor prior to the era of modern neuroimaging and the location was fraught with disaster being considered a ′no man′s land′ for neurosurgeons. Following the introduction of advanced imaging modalities and neurophysiological monitoring, striking progress has occurred in the management of these lesions. Brainstem tumors are presently classified based on their anatomic location, focality, and histopathology. This article reviews the current classification of brainstem tumors, current management options, and future directions in the treatment for these rare tumors.

  14. MRI findings of multiple sclerosis involving the brainstem

    International Nuclear Information System (INIS)

    Park, Jeong Hoon; Jeong, Hae Woong; Kim, Hyun Jin; Cho, Jae Kwoeng; Kim, Chang Soo

    2001-01-01

    To describe MRI findings of multiple sclerosis involving the brainstem. Among 35 cases of clinically definite multiple sclerosis, the authors retrospectively analysed 20 in which the brainstem was involved. MR images were analysed with regard to involvement sites in the brainstem or other locations, signal intensity, multiplicity, shape, enhancement pattern, and contiguity of brainstem lesions with cisternal or ventricular CSF space. The brainstem was the only site of involvement in five cases (25%), while simultaneous involvement of the brainstem and other sites was observed in 15 cases (75%). No case involved only the midbrain or medulla oblongata, and simultaneous involvement of the midbrain, pons and medulla oblongata was noted in 12 cases (60%). The most frequently involved region of the brainstem was the medulla oblongata (n=13; 90%), followed by the pons (n=17; 85%) and the midbrain (n=16; 80%). Compared with normal white matter, brainstem lesions showed low signal intensity on T1 weighted images, and high signal intensity on T2 weighted, proton density weighted, and FLAIR images. In 17 cases (85%), multiple intensity was observed, and the shape of lesions varied: oval, round, elliptical, patchy, crescentic, confluent or amorphous were seen on axial MR images, and in 14 cases (82%), coronal or sagittal scanning showed that lesions were long and tubular. Contiguity between brainstem lesions and cisternal or ventricular CSF space was seen in all cases (100%) involving midbrain (16/16) and medulla oblongata (18/18) and in 15 of 17 (88%) involving the pons. Contrast enhancement was apparent in 7 of 12 cases (58%). In the brainstem, MRI demonstrated partial or total contiguity between lesions and cisternal or ventricular CSF space, and coronal or sagittal images showed that lesions were long and tubuler

  15. Development of a Chirp Stimulus PC-Based Auditory Brainstem Response Audiometer

    Directory of Open Access Journals (Sweden)

    Ali AL-Afsaa

    2004-05-01

    Full Text Available Hearing losses during infancy and childhood have many negative future effects and impacts on the child life and productivity. The earlier detection of hearing losses, the earlier medical intervention and then the greater benefit of remediation will be. During this research a PC-based audiometer is designed and, currently, the audiometer prototype is in its final development steps. It is based on the auditory brainstem response (ABR method. Chirp stimuli instead of traditional click stimuli will be used to invoke the ABR signal. The stimulus is designed to synchronize the hair cells movement when it spreads out over the cochlea. In addition to the available hardware utilization (PC and PCI board, the efforts confined to design and implement a hardware prototype and to develop a software package that enables the system to behave as ABR audiometer. By using such a method and chirp stimulus, it is expected to be able to detect hearing impairment (sensorineural in the first few days of the life and conduct hearing test at low frequency of stimulus. Currently, the intended chirp stimulus has been successfully generated and the implemented module is able to amplify a signal (on the order of ABR signal to a recordable level. Moreover, a NI-DAQ data acquisition board has been chosen to implement the PC-prototype interface.

  16. Effects of noise exposure on neonatal auditory brainstem response thresholds in pregnant guinea pigs at different gestational periods.

    Science.gov (United States)

    Morimoto, Chihiro; Nario, Kazuhiko; Nishimura, Tadashi; Shimokura, Ryota; Hosoi, Hiroshi; Kitahara, Tadashi

    2017-01-01

    Noise exposure during pregnancy has been reported to cause fetal hearing impairment. However, little is known about the effects of noise exposure during various gestational stages on postnatal hearing. In the present study, we investigated the effects of noise exposure on auditory brainstem response (ABR) at the early, mid-, and late gestational periods in newborn guinea pigs. Pregnant guinea pigs were exposed to 4-kHz pure tone at a 120-dB sound pressure level for 4 h. We divided the animals into four groups as follows: the control, early gestational exposure, mid-gestational exposure, and late gestational exposure groups. ABR thresholds and latencies in newborns were recorded using 1-, 2-, and 4-kHz tone burst on postnatal days 1, 7, 14, and 28. Changes in ABR thresholds and latencies were measured between the 4 × 4 and 4 × 3 factorial groups mentioned above (gestational periods × postnatal days, gestational periods × frequencies). The thresholds were low in the order of control group guinea pigs. This is the first study to show that noise exposure during the early, mid-, and late gestational periods significantly elevated ABR thresholds in neonatal guinea pigs. © 2016 Japan Society of Obstetrics and Gynecology.

  17. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  18. Dyslexia risk gene relates to representation of sound in the auditory brainstem.

    Science.gov (United States)

    Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D

    2017-04-01

    Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Auditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes

    Directory of Open Access Journals (Sweden)

    Susan Abadi

    2016-09-01

    Full Text Available Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cross-sectional study, we compared click auditory brainstem responses between 261 children who were clinically diagnosed with delayed speech with unknown causes based on normal routine auditory test findings and neurological examinations and had >12 months of speech delay (case group and 261 age- and sex-matched normally developing children (control group. Our results indicated that the case group exhibited significantly higher wave amplitude responses to click stimuli (waves I, III, and V than did the control group (P=0.001. These amplitudes were significantly reduced after 1 year (P=0.001; however, they were still significantly higher than those of the control group (P=0.001. The significant differences were seen regardless of the age and the sex of the participants. There were no statistically significant differences between the 2 groups considering the latency of waves I, III, and V. In conclusion, the higher amplitudes of waves I, III, and V, which were observed in the auditory brainstem responses to click stimuli among the patients with speech delay with unknown causes, might be used as a diagnostic tool to track patients’ improvement after treatment.

  20. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Munzenrider, J.E.; Liebsch, N.J.; O'Farrell, D.; Efird, J.; Daly, W.; Suit, H.D.

    1996-01-01

    Purpose/Objective: Brainstem tolerance to inhomogenous radiation doses applied by modern conformal radiotherapy has not yet been examined. The aim of this study was to analyse the incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Materials and Methods: Between 1974 and 1995, 367 patients with chordomas (n=195) and chondrosarcomas (n=172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. All patients had previously undergone biopsy, subtotal or total tumor removal. 104 patients had two or more surgical procedures before radiotherapy. Following 3D treatment planning with delineation of target volumes and critical non-target structures, dose distributions and dose volume histograms were calculated [at the time of treatment delivery]. Radiotherapy was given once a day, 1.8 Gy or CGE (Cobalt Gy Equivalent: Proton Gy X 1.1) per fraction, 5 fractions per week, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Dose distributions were developed to limit dose to brainstem surface and center; current plans limit dose to surface and center to ≤64 CGE and ≤53 CGE, respectively. Brainstem toxicity was scored according to the RTOG grading system. Results: Follow-up ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem symptoms, attributable to the treatment, developed in 17 of 282 patients with local tumor control (6.0%), resulting in death of three patients. The mean time to onset of symptoms was 17 months (range: 4.5 to 177 months). These symptoms appeared in 89.5% within 3 years. Grading of the brainstem toxicity is listed in table 1. Actuarial rates of 5 and 10 year toxicity free survival were 87% and 82% respectively. Increased risk of brainstem toxicity was significantly associated with maximum brainstem dose

  1. Challenge-driven attention: interacting frontal and brainstem systems

    Directory of Open Access Journals (Sweden)

    Rajeev D S Raizada

    2008-03-01

    Full Text Available The world is an unpredictable place, presenting challenges that fl uctuate from moment to moment. However, the neural systems for responding to such challenges are far from fully understood. Using fMRI, we studied an audiovisual task in which the trials' diffi culty and onset times varied unpredictably. Two regions were found to increase their activation for challenging trials, with their activities strongly correlated: right frontal cortex and the brainstem. The frontal area matched regions found in previous human studies of cognitive control, and activated in a graded manner with increasing task diffi culty. The brainstem responded only to the most diffi cult trials, showing a phasic activity pattern paralleling locus coeruleus recordings in monkeys. These results reveal a bridge between animal and human studies, and suggest interacting roles for the brainstem and right frontal cortex: the brainstem may signal that an attentional challenge is occurring, while right frontal cortex allocates cognitive resources in response.

  2. Lyme disease of the brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Kalina, Peter [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Decker, Andrew [Northern Westchester Hospital Center, Department of Neurology, Mt. Kisco, NY (United States); Kornel, Ezriel [Northern Westchester Hospital Center, Division of Neurosurgery, Mt. Kisco, NY (United States); Halperin, John J. [North Shore University Hospital, Department of Neurology, Manhasset, NY (United States)

    2005-12-01

    Lyme disease is a multisystem infectious disease caused by the tick-borne spirochete, Borrelia burgdorferi. Central nervous system (CNS) involvement typically causes local inflammation, most commonly meningitis, but rarely parenchymal brain involvement. We describe a patient who presented with clinical findings suggesting a brainstem process. Magnetic resonance imaging (MRI) and positron emission tomography (PET) suggested a brainstem neoplasm. Prior to biopsy, laboratory evaluation led to the diagnosis of Lyme disease. Clinical and imaging abnormalities improved markedly following antimicrobial therapy. We describe Lyme disease involvement of the cerebellar peduncles with hypermetabolism on PET. Although MRI is the primary imaging modality for most suspected CNS pathology, the practical applications of PET continue to expand. (orig.)

  3. Lyme disease of the brainstem

    International Nuclear Information System (INIS)

    Kalina, Peter; Decker, Andrew; Kornel, Ezriel; Halperin, John J.

    2005-01-01

    Lyme disease is a multisystem infectious disease caused by the tick-borne spirochete, Borrelia burgdorferi. Central nervous system (CNS) involvement typically causes local inflammation, most commonly meningitis, but rarely parenchymal brain involvement. We describe a patient who presented with clinical findings suggesting a brainstem process. Magnetic resonance imaging (MRI) and positron emission tomography (PET) suggested a brainstem neoplasm. Prior to biopsy, laboratory evaluation led to the diagnosis of Lyme disease. Clinical and imaging abnormalities improved markedly following antimicrobial therapy. We describe Lyme disease involvement of the cerebellar peduncles with hypermetabolism on PET. Although MRI is the primary imaging modality for most suspected CNS pathology, the practical applications of PET continue to expand. (orig.)

  4. Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia.

    Science.gov (United States)

    Lehmann, Alexandre; Skoe, Erika; Moreau, Patricia; Peretz, Isabelle; Kraus, Nina

    2015-07-01

    Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine-grained automatic processing of sounds is impoverished in amusia. Compared with matched non-musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants' behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. MR findings of brainstem injury

    Energy Technology Data Exchange (ETDEWEB)

    Park, Man Soo; Hwang, Woo Cheol; Park, Choong Ki [Hallym University College of Medicine, Seoul (Korea, Republic of); Suh, Dae Chul [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang Joon [Dankook University of College of Medicine, Cheonan (Korea, Republic of)

    1995-02-15

    To analyze the characteristics of traumatic brainstem injury by CT and MR. CT and MR studies of 10 patients with traumatic brainstem lesion in MR were retrospectively reviewed, particularly attended to location, signal intensity and associated lesions. CT failed to depict 8 of 10 brainstem lesions. All lesions were detected in MR images with T2-weighted images showing higher detection rate (n = 10) (100%) than T1-weighted images (n = 3) (30%) or CT (n = 2) (20%). The brainstem lesions located in the dorsolateral aspects of the rostral brainstem (mid brain and upper pons) in 7 (70%) cases, in ventral aspects of rostral brain in 2 (20%) cases and in median portion of pons in 1 (10%) case. Corpus callosal (n = 5), lobar white matter (n = 5) diffuse axonal injury, and 2 hemorrhagic lesions in basal ganglia were the associated findings. MR imaging is more helpful than CT in the detection of brainstem injury, especially T2 weighted images. Primary brainstem lesions were typically located in the dorsolateral aspect of rostral brainstem (midbrain and upper pons). Corpus callosum and white matter lesions were frequently associated.

  6. Stereotactic Radiosurgery for Brainstem Metastases: An International Cooperative Study to Define Response and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Trifiletti, Daniel M., E-mail: daniel.trifiletti@gmail.com [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia (United States); Lee, Cheng-Chia [Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan (China); Kano, Hideyuki; Cohen, Jonathan [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Janopaul-Naylor, James; Alonso-Basanta, Michelle; Lee, John Y.K. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Simonova, Gabriela; Liscak, Roman [Department of Radiation and Stereotactic Neurosurgery, Na Homolce Hospital, Prague (Czech Republic); Wolf, Amparo; Kvint, Svetlana [Department of Neurosurgery, New York University Lagone Medical Center, New York, New York (United States); Grills, Inga S.; Johnson, Matthew [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Liu, Kang-Du; Lin, Chung-Jung [Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan (China); Mathieu, David; Héroux, France [Division of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec (Canada); Silva, Danilo; Sharma, Mayur [Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (United States); Cifarelli, Christopher P. [Departments of Neurosurgery and Radiation Oncology, West Virginia University, Morgantown, West Virginia (United States); and others

    2016-10-01

    Purpose: To pool data across multiple institutions internationally and report on the cumulative experience of brainstem stereotactic radiosurgery (SRS). Methods and Materials: Data on patients with brainstem metastases treated with SRS were collected through the International Gamma Knife Research Foundation. Clinical, radiographic, and dosimetric characteristics were compared for factors prognostic for local control (LC) and overall survival (OS) using univariate and multivariate analyses. Results: Of 547 patients with 596 brainstem metastases treated with SRS, treatment of 7.4% of tumors resulted in severe SRS-induced toxicity (grade ≥3, increased odds with increasing tumor volume, margin dose, and whole-brain irradiation). Local control at 12 months after SRS was 81.8% and was improved with increasing margin dose and maximum dose. Overall survival at 12 months after SRS was 32.7% and impacted by age, gender, number of metastases, tumor histology, and performance score. Conclusions: Our study provides additional evidence that SRS has become an option for patients with brainstem metastases, with an excellent benefit-to-risk ratio in the hands of experienced clinicians. Prior whole-brain irradiation increases the risk of severe toxicity in brainstem metastasis patients undergoing SRS.

  7. Clinical Experience of Auditory Brainstem Response Testing on Pediatric Patients in the Operating Room

    Directory of Open Access Journals (Sweden)

    Guangwei Zhou

    2012-01-01

    Full Text Available Objectives. To review our experience of conducting auditory brainstem response (ABR test on children in the operating room and discuss the benefits versus limitations of this practice. Methods. Retrospective review study conducted in a pediatric tertiary care facility. A total of 267 patients identified with usable data, including ABR results, medical and surgical notes, and follow-up evaluation. Results. Hearing status successfully determined in all patients based on the ABR results form the operating room. The degrees and the types of hearing loss also documented in most of the cases. In addition, multiple factors that may affect the outcomes of ABR in the operating room identified. Conclusions. Hearing loss in children with complicated medical issues can be accurately evaluated via ABR testing in the operating room. Efforts should be made to eliminate adverse factors to ABR recording, and caution should be taken when interpreting ABR results from the operating room.

  8. Combined laryngeal inflammation and trauma mediate long-lasting immunoreactivity response in the brainstem sensory nuclei in the rat

    Directory of Open Access Journals (Sweden)

    Kristina eSimonyan

    2012-11-01

    Full Text Available Somatosensory feedback from the larynx plays a critical role in regulation of normal upper airway functions, such as breathing, deglutition and voice production, while altered laryngeal sensory feedback is known to elicit a variety of pathological reflex responses, including persistent coughing, dysphonia and laryngospasm. Despite its clinical impact, the central mechanisms underlying the development of pathological laryngeal responses remain poorly understood. We examined the effects of persistent vocal fold (VF inflammation and trauma, as frequent causes of long-lasting modulation of laryngeal sensory feedback, on brainstem immunoreactivity in the rat. Combined VF inflammation and trauma were induced by injection of lipopolysaccharide (LPS solution and compared to VF trauma alone from injection of vehicle solution and to controls without any VF manipulations. Using a c-fos marker, we found significantly increased Fos-like immunoreactivity (FLI in the bilateral intermediate/parvicellular reticular formation (IRF/PCRF with a trend in the left solitary tract nucleus (NTS only in animals with LPS-induced VF inflammation and trauma. Further, FLI in the right NTS was significantly correlated with the severity of LPS-induced VF changes. However, increased brainstem FLI response was not associated with FLI changes in the first-order neurons of the laryngeal afferents located in the nodose and jugular ganglia in either group. Our data indicate that complex VF alterations (i.e., inflammation/trauma vs. trauma alone may cause prolonged excitability of the brainstem nuclei receiving a direct sensory input from the larynx, which, in turn, may lead to (malplastic changes within the laryngeal central sensory control.

  9. Craniofacial Pain: Brainstem Mechanisms

    Directory of Open Access Journals (Sweden)

    Barry J Sessle

    1996-01-01

    Full Text Available This article reviews recent research advances in animals that have identified critical neural elements in the brainstem receiving and transmitting craniofacial nociceptive inputs, as well as some of the mechanisms involved in the modulation and plasticity of nociceptive transmission. Nociceptive neurones in the trigeminal (V brainstem sensory nuclear complex can be classified as nociceptive-specific (NS or wide dynamic range (WDR. Some of these neurones respond exclusively to sensory inputs evoked by stimulation of facial skin or oral mucosa and have features suggesting that they are critical neural elements involved in the ability to localize an acute superficial pain and sense its intensity and duration. Many of the V brainstem nociceptive neurones, however, receive convergent inputs from afferents supplying deep craniofacial tissues (eg, dural vessel, muscle and skin or mucosa. These neurones are likely involved in deep pain, including headache, because few nociceptive neurones receive inputs exclusively from afferents supplying these tissues. These extensive convergent input patterns also appear to be important factors in pain spread and referral, and in central mechanisms underlying neuroplastic changes in V neuronal properties that may occur with injury and inflammation. For example, application of the small fibre excitant and inflammatory irritant mustard oil into the temporomandibular joint, masseter or tongue musculature induces a prolonged but reversible enhancement of responses to cutaneous and deep afferent inputs of most WDR and NS neurones. These effects may be accompanied by increased electromyographic activity reflexly induced in the masticatory muscles by mustard oil, and involve endogenous N-methyl-D-aspartate and opioid neurochemical mechanisms. Such peripherally induced modulation of brainstem nociceptive neuronal properties reflects the functional plasticity of the central V system, and may be involved in the development of

  10. A brainstem anosognosia of hemiparesis

    Directory of Open Access Journals (Sweden)

    Kazuo Abe

    2009-10-01

    Full Text Available A woman had anosognosia for hemiplegia as a manifestation of brainstem infarction. She had no mental or neuropsychological disturbances, and had involvement of the brainstem in the frontal/parietal-subcortical circuits to the right cerebral hemisphere. Brainstem lesions that disrupt frontal/parietal-subcortical areas may affect anosognosia for hemiplegia.

  11. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    Science.gov (United States)

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  12. Thresholds of Tone Burst Auditory Brainstem Responses for Infants and Young Children with Normal Hearing in Taiwan

    Directory of Open Access Journals (Sweden)

    Chung-Yi Lee

    2007-10-01

    Conclusion: Based on the published research and our study, we suggest setting the normal criterion levels for infants and young children in Taiwan of the tone burst auditory brainstem response to air-conducted tones as 30 dB nHL for 500 and 1000 Hz, and 25 dB nHL for 2000 and 4000 Hz.

  13. Age-Related Changes in Binaural Interaction at Brainstem Level.

    Science.gov (United States)

    Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Beynon, Andy J; Dhooge, Ingeborg J M

    2016-01-01

    Age-related hearing loss hampers the ability to understand speech in adverse listening conditions. This is attributed to a complex interaction of changes in the peripheral and central auditory system. One aspect that may deteriorate across the lifespan is binaural interaction. The present study investigates binaural interaction at the level of the auditory brainstem. It is hypothesized that brainstem binaural interaction deteriorates with advancing age. Forty-two subjects of various age participated in the study. Auditory brainstem responses (ABRs) were recorded using clicks and 500 Hz tone-bursts. ABRs were elicited by monaural right, monaural left, and binaural stimulation. Binaural interaction was investigated in two ways. First, grand averages of the binaural interaction component were computed for each age group. Second, wave V characteristics of the binaural ABR were compared with those of the summed left and right ABRs. Binaural interaction in the click ABR was demonstrated by shorter latencies and smaller amplitudes in the binaural compared with the summed monaural responses. For 500 Hz tone-burst ABR, no latency differences were found. However, amplitudes were significantly smaller in the binaural than summed monaural condition. An age-effect was found for 500 Hz tone-burst, but not for click ABR. Brainstem binaural interaction seems to decline with age. Interestingly, these changes seem to be stimulus-dependent.

  14. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Erika Matsumura

    Full Text Available Abstract Introduction Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. Objective To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. Methods The sample consisted of 38 adult males, mean age of 35.8 (±7.2, divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n = 10, mild obstructive sleep apnea (n = 11 moderate obstructive sleep apnea (n = 8 and severe obstructive sleep apnea (n = 9. All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. Results There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p = 0.03. There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p = 0.01. Conclusion The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem

  15. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  16. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Johan Källstrand

    2010-05-01

    Full Text Available Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD. In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs elicited by forward masking in adults diagnosed with Asperger syndrome (AS. Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16, schizophrenic patients (n = 16 and attention deficit hyperactivity disorder patients (n = 16, respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005, which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases.Keywords: asperger syndrome, auditory brainstem response, forward masking, psychoacoustics

  17. Attention-related modulation of auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2008-10-29

    As determinants facilitating attention-related modulation of the auditory brainstem response (ABR), two experimental factors were examined: (i) auditory discrimination; and (ii) contralateral masking intensity. Tone pips at 80 dB sound pressure level were presented to the left ear via either single-tone exposures or oddball exposures, whereas white noise was delivered continuously to the right ear at variable intensities (none--80 dB sound pressure level). Participants each conducted two tasks during stimulation, either reading a book (ignoring task) or detecting target tones (attentive task). Task-related modulation within the ABR range was found only during oddball exposures at contralateral masking intensities greater than or equal to 60 dB. Attention-related modulation of ABR can thus be detected reliably during auditory discrimination under contralateral masking of sufficient intensity.

  18. Concentrated pitch discrimination modulates auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2010-03-31

    This study examined a notion that auditory discrimination is a requisite for attention-related modulation of the auditory brainstem response (ABR) during contralateral noise exposure. Given that the right ear was exposed continuously with white noise at an intensity of 60-80 dB sound pressure level, tone pips at 80 dB sound pressure level were delivered to the left ear through either single-stimulus or oddball procedures. Participants conducted reading (ignoring task) and counting target tones (attentive task) during stimulation. The oddball but not the single-stimulus procedures elicited task-related modulations in both early (ABR) and late (processing negativity) event-related potentials simultaneously. The elicitation of the attention-related ABR modulation during contralateral noise exposure is thus considered to require auditory discrimination and have the corticofugal nature evidently.

  19. Stance disturbance in multiple sclerosis: brainstem lesions and posturographic assessment

    Directory of Open Access Journals (Sweden)

    Peter Schalek

    2012-01-01

    Full Text Available

    Background. Balance disorders are commonly evidenced during the course of multiple sclerosis (MS. The aim of this study is to report characteristics of MS patient stance control disorders, measured by means of posturography and related to the brainstem lesions.

    Methods. Thirty-eight patients affected by MS, mildly to moderately disable according to Kurtzke’s Expanded Disability Status Scale, underwent a complete clinical neurological and vestibular evaluation and brain MRI scanning. All patients were then tested on a static posturography platform (Tetrax, Israel in four conditions: eyes open and closed standing on a firm surface and on a foam pad.

    Results. Clinical and/or MRI evidence of brainstem involvement was observed in 55.3 % of patients. When brainstem lesion was detected, Fourier analysis showed a typical pattern characterized by inversion of the  0- 0.1 Hz and  0.1 - 0.25 Hz. frequency bands.

    Conclusions. MS leads to pervasive postural disturbances in the majority of subjects, including the visuo-vestibular loops and proprioception involving vestibulo-spinal pathways in at least 55.3 % of patients. Our results may also suggest the presence of Fourier inversion in patients with brainstem lesions.


  20. Lateralization and Binaural Interaction of Middle-Latency and Late-Brainstem Components of the Auditory Evoked Response.

    Science.gov (United States)

    Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander

    2016-08-01

    We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI.

  1. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    Science.gov (United States)

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  2. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    Directory of Open Access Journals (Sweden)

    Domenico Bucci

    2017-11-01

    Full Text Available Catecholamine nuclei within the brainstem reticular formation (RF play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH immune-positive cells of the brainstem correspond to dopamine (DA-, norepinephrine (NE-, and epinephrine (E-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  3. Responses of Medullary Lateral Line Units of the Goldfish, Carassius auratus, to Amplitude-Modulated Sinusoidal Wave Stimuli

    Directory of Open Access Journals (Sweden)

    Ramadan Ali

    2010-01-01

    Full Text Available This paper describes the responses of brainstem lateral line units in goldfish, Carassius auratus, to constant-amplitude and to amplitude-modulated sinusoidal water motions. If stimulated with constant-amplitude sinusoidal water motions, units responded with phasic (50% or with sustained (50% increases in dicharge rate. Based on isodisplacement curves, units preferred low (33 Hz, 12.5%, mid (50 Hz, 10% and 100 Hz, 30% or high (200 Hz, 47.5% frequencies. In most units, responses were weakly phase locked to the carrier frequency. However, at a carrier frequency of 50 Hz or 100 Hz, a substantial proportion of the units exhibited strong phase locking. If stimulated with amplitude-modulated water motions, units responded with a burst of discharge to each modulation cycle, that is, units phase locked to the amplitude modulation frequency. Response properties of brainstem units were in many respects comparable to those of midbrain units, suggesting that they emerge first in the lateral line brainstem.

  4. Stereotactic radiosurgery for brainstem metastases: Survival, tumor control, and patient outcomes

    International Nuclear Information System (INIS)

    Hussain, Aamir; Brown, Paul D.; Stafford, Scott L.; Pollock, Bruce E.

    2007-01-01

    Purpose: Patients with brainstem metastases have limited treatment options. In this study, we reviewed outcomes after stereotactic radiosurgery (SRS) in the management of patients with brainstem metastases. Methods and Materials: Records were reviewed of 22 consecutive patients presenting with brainstem metastases who underwent SRS. The most frequent primary malignancy was the lung (n = 11), followed by breast (n = 3) and kidney (n = 2). Three patients (14%) also underwent whole-brain radiation therapy (WBRT). The median tumor volume was 0.9 mL (range, 0.1-3.3 mL); the median tumor margin dose was 16 Gy (range, 14-23 Gy). Results: Median survival time after SRS was 8.5 months. Although local tumor control was achieved in all patients with imaging follow-up (n = 19), 5 patients died from development and progression of new brain metastases. Two patients (9%) had symptom improvement after SRS, whereas 1 patient (5%) developed a new hemiparesis after SRS. Conclusions: Radiosurgery is safe and provides a high local tumor control rate for patients with small brainstem metastases. Patients with limited systemic disease and good performance status should be strongly considered for SRS

  5. Auditory brainstem response in neonates: influence of gender and weight/gestational age ratio

    Directory of Open Access Journals (Sweden)

    Rosanna M. Giaffredo Angrisani

    2013-12-01

    Full Text Available OBJECTIVE: To investigate the influence of gender and weight/gestational age ratio on the Auditory Brainstem Response (ABR in preterm (PT and term (T newborns. METHODS: 176 newborns were evaluated by ABR; 88 were preterm infants - 44 females (22 small and 22 appropriate for gestational age and 44 males (22 small and 22 appropriate for gestational age. The preterm infants were compared to 88 term infants - 44 females (22 small and 22 appropriate for gestational age and 44 males (22 small and 22 appropriate for gestational age. All newborns had bilateral presence of transient otoacoustic emissions and type A tympanometry. RESULTS: No interaural differences were found. ABR response did not differentiate newborns regarding weight/gestational age in males and females. Term newborn females showed statistically shorter absolute latencies (except on wave I than males. This finding did not occur in preterm infants, who had longer latencies than term newborns, regardless of gender. CONCLUSIONS: Gender and gestational age influence term infants' ABR, with lower responses in females. The weight/gestational age ratio did not influence ABR response in either groups.

  6. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea.

    Science.gov (United States)

    Matsumura, Erika; Matas, Carla Gentile; Magliaro, Fernanda Cristina Leite; Pedreño, Raquel Meirelles; Lorenzi-Filho, Geraldo; Sanches, Seisse Gabriela Gandolfi; Carvallo, Renata Mota Mamede

    2016-11-25

    Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. The sample consisted of 38 adult males, mean age of 35.8 (±7.2), divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n=10), mild obstructive sleep apnea (n=11) moderate obstructive sleep apnea (n=8) and severe obstructive sleep apnea (n=9). All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p=0.03). There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p=0.01). The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem Auditory Evoked Response. Copyright © 2016 Associação Brasileira de

  7. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    Science.gov (United States)

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  8. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of lo...... of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem. J. Comp. Neurol. 520:17841799, 2012. (C) 2011 Wiley Periodicals, Inc...

  9. Intraparenchymal papillary meningioma of brainstem: case report and literature review

    Directory of Open Access Journals (Sweden)

    Jiang Xiao-Bing

    2012-01-01

    Full Text Available Abstract Both intraparenchymal papillary meningioma and papillary meningioma with cyst formation of brainstem have never been reported. The authors present an extremely rare case of patient with intraparenchymal papillary meningioma of brainstem. A 23-year-old Chinese male presented with a 4-month history of progressive left upper limb and facial nerve palsy. Magnetic resonance imaging revealed a cystic-solid, heterogeneously enhancing mass in pons and right cerebral peduncle with no dural attachment. The tumor was totally removed via subtemporal approach. During surgery, the lesion was found to be completely intraparenchymal. Histological and immunohistochemical examinations were compatible with the diagnosis of papillary meningioma. The lesion recurred nine months after primary surgery, a second surgery followed by radiotherapy was performed. Till to now (nearly 2 years after the treatment, the patient is tumor free survival. Intraparenchymal meningioma of brainstem with cystic formation is very rare, however, it should be considered as a differential diagnosis of a brainstem neoplasm. The present case strongly recommended that postoperative radiotherapy was essential for the patients with papillary meningiomas.

  10. Speech auditory brainstem response (speech ABR) characteristics depending on recording conditions, and hearing status: an experimental parametric study.

    Science.gov (United States)

    Akhoun, Idrick; Moulin, Annie; Jeanvoine, Arnaud; Ménard, Mikael; Buret, François; Vollaire, Christian; Scorretti, Riccardo; Veuillet, Evelyne; Berger-Vachon, Christian; Collet, Lionel; Thai-Van, Hung

    2008-11-15

    Speech elicited auditory brainstem responses (Speech ABR) have been shown to be an objective measurement of speech processing in the brainstem. Given the simultaneous stimulation and recording, and the similarities between the recording and the speech stimulus envelope, there is a great risk of artefactual recordings. This study sought to systematically investigate the source of artefactual contamination in Speech ABR response. In a first part, we measured the sound level thresholds over which artefactual responses were obtained, for different types of transducers and experimental setup parameters. A watermelon model was used to model the human head susceptibility to electromagnetic artefact. It was found that impedances between the electrodes had a great effect on electromagnetic susceptibility and that the most prominent artefact is due to the transducer's electromagnetic leakage. The only artefact-free condition was obtained with insert-earphones shielded in a Faraday cage linked to common ground. In a second part of the study, using the previously defined artefact-free condition, we recorded speech ABR in unilateral deaf subjects and bilateral normal hearing subjects. In an additional control condition, Speech ABR was recorded with the insert-earphones used to deliver the stimulation, unplugged from the ears, so that the subjects did not perceive the stimulus. No responses were obtained from the deaf ear of unilaterally hearing impaired subjects, nor in the insert-out-of-the-ear condition in all the subjects, showing that Speech ABR reflects the functioning of the auditory pathways.

  11. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  12. Surgical management of spontaneous hypertensive brainstem hemorrhage

    Directory of Open Access Journals (Sweden)

    Bal Krishna Shrestha

    2015-09-01

    Full Text Available Spontaneous hypertensive brainstem hemorrhage is the spontaneous brainstem hemorrhage associated with long term hypertension but not having definite focal or objective lesion. It is a catastrophic event which has a poor prognosis and usually managed conservatively. It is not uncommon, especially in eastern Asian populations, accounting approximately for 10% of the intracerebral hemorrhage. Before the advent of computed tomography, the diagnosis of brainstem hemorrhage was usually based on the clinical picture or by autopsy and believed to be untreatable via surgery. The introduction of computed tomography permitted to categorize the subtypes of brainstem hemorrhage with more predicted outcome. Continuous ongoing developments in the stereotactic surgery and microsurgery have added more specific surgical management in these patients. However, whether to manage conservatively or promptly with surgical evacuation of hematoma is still a controversy. Studies have shown that an accurate prognostic assessment based on clinical and radiological features on admission is critical for establishing a reasonable therapeutic approach. Some authors have advocate conservative management, whereas others have suggested the efficacy of surgical treatment in brainstem hemorrhage. With the widening knowledge in microsurgical techniques as well as neuroimaging technology, there seems to have more optimistic hope of surgical management of spontaneous hypertensive brainstem hemorrhage for better prognosis. Here we present five cases of severe spontaneous hypertensive brainstem hemorrhage patients who had undergone surgery; and explore the possibilities of surgical management in patients with the spontaneous hypertensive brainstem hemorrhage.

  13. Brainstem auditory evoked potentials in horses

    Directory of Open Access Journals (Sweden)

    Juliana Almeida Nogueira da Gama

    2016-04-01

    Full Text Available ABSTRACT: The brainstem auditory evoked potential (BAEP evaluates the integrity of the auditory pathways to the brainstem. The aim of this study was to evoke BAEPs in 21 clinically normal horses. The animals were sedated with detomidine hydrochloride (0.013mg.kg-1 BW. Earphones were inserted and rarefaction clicks at 90 dB and noise masking at 40 dB were used. After performing the test, the latencies of waves (I, II, III, IV, and V and interpeaks(I-III, III-V, and I-V were identified. The mean latencies of the waves were as follows: wave I, 2.4 ms; wave II, 2.24 ms; wave III, 3.61ms; wave IV, 4.61ms; and wave V, 5.49ms. The mean latencies of the interpeaks were as follows: I-III, 1.37ms; III-V, 1.88ms; and I-V, 3.26ms. This is the first study using BAEPs in horses in Brazil, and the observed latencies will be used as normative data for the interpretation of tests performed on horses with changes related to auditory system or neurologic abnormalities.

  14. Enterovirus 71 Brainstem Encephalitis and Cognitive and Motor Deficits

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-12-01

    Full Text Available Follow-up studies were conducted in 63 previously healthy children with enterovirus 71 brainstem encephalitis (49 stage II, 7 stage Ilia, and 7 stage Illb at National Cheng Kung University Hospital, Tainan, Taiwan.

  15. Investigation of auditory brainstem function in elderly diabetic patients with presbycusis.

    Science.gov (United States)

    Kovacií, Jelena; Lajtman, Zoran; Ozegović, Ivan; Knezević, Predrag; Carić, Tomislav; Vlasić, Ana

    2009-01-01

    We performed brainstem auditory evoked potential (BAEP) examinations in 100 patients older than 60 years and having type I diabetes mellitus and presbycusis. The aim of our investigation was to compare the BAEP results of this group with those of healthy controls with presbycusis and to look for possible correlations between alteration of the auditory brainstem function and the aging of elderly diabetic patients. Absolute and interpeak latencies of all waves were prolonged significantly in the study group of diabetic patients. The amplitudes of all waves I through V were diminished in the study group as compared to those in the control group, with statistical significance present for all waves. Analysis of the latencies (waves I, II, I, and V), interpeak latencies (I-V), and amplitudes (I, II, III, and V) of BAEP revealed a significant difference between those of diabetics and those of healthy elderly controls with presbycusis. These data support a hypothesis that there is a brainstem neuropathy in diabetes mellitus that can be assessed with auditory brainstem response testing even in the group of elderly patients with sensorineural hearing loss.

  16. Test-retest reliability of speech-evoked auditory brainstem response in healthy children at a low sensation level.

    Science.gov (United States)

    Zakaria, Mohd Normani; Jalaei, Bahram

    2017-11-01

    Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Frequency Response Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kosterev, Dmitry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dai, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  18. Elastic-plastic response characteristics during frequency nonstationary waves

    International Nuclear Information System (INIS)

    Miyama, T.; Kanda, J.; Iwasaki, R.; Sunohara, H.

    1987-01-01

    The purpose of this paper is to study fundamental effects of the frequency nonstationarity on the inelastic responses. First, the inelastic response characteristics are examined by applying stationary waves. Then simple representation of nonstationary characteristics is considered to general nonstationary input. The effects for frequency nonstationary response are summarized for inelastic systems. The inelastic response characteristics under white noise and simple frequency nonstationary wave were investigated, and conclusions can be summarized as follows. 1) The maximum response values for both BL model and OO model corresponds fairly well with those estimated from the energy constant law, even when R is small. For the OO model, the maximum displacement response forms a unique curve except for very small R. 2) The plastic deformation for the BL model is affected by wide frequency components, as R decreases. The plastic deformation for the OO model can be determined from the last stiffness. 3). The inelastic response of the BL model is considerably affected by the frequency nonstationarity of the input motion, while the response is less affected by the nonstationarity for OO model. (orig./HP)

  19. Interictal dysfunction of a brainstem descending modulatory center in migraine patients.

    Directory of Open Access Journals (Sweden)

    Eric A Moulton

    Full Text Available The brainstem contains descending circuitry that can modulate nociceptive processing (neural signals associated with pain in the dorsal horn of the spinal cord and the medullary dorsal horn. In migraineurs, abnormal brainstem function during attacks suggest that dysfunction of descending modulation may facilitate migraine attacks, either by reducing descending inhibition or increasing facilitation. To determine whether a brainstem dysfunction could play a role in facilitating migraine attacks, we measured brainstem function in migraineurs when they were not having an attack (i.e. the interictal phase.Using fMRI (functional magnetic resonance imaging, we mapped brainstem activity to heat stimuli in 12 episodic migraine patients during the interictal phase. Separate scans were collected to measure responses to 41 degrees C and noxious heat (pain threshold+1 degrees C. Stimuli were either applied to the forehead on the affected side (as reported during an attack or the dorsum of the hand. This was repeated in 12 age-gender-matched control subjects, and the side tested corresponded to that in the matched migraine patients. Nucleus cuneiformis (NCF, a component of brainstem pain modulatory circuits, appears to be hypofunctional in migraineurs. 3 out of the 4 thermal stimulus conditions showed significantly greater NCF activation in control subjects than the migraine patients.Altered descending modulation has been postulated to contribute to migraine, leading to loss of inhibition or enhanced facilitation resulting in hyperexcitability of trigeminovascular neurons. NCF function could potentially serve as a diagnostic measure in migraine patients, even when not experiencing an attack. This has important implications for the evaluation of therapies for migraine.

  20. Auditory brainstem responses of CBA/J mice with neonatal conductive hearing losses and treatment with GM1 ganglioside.

    Science.gov (United States)

    Money, M K; Pippin, G W; Weaver, K E; Kirsch, J P; Webster, D B

    1995-07-01

    Exogenous administration of GM1 ganglioside to CBA/J mice with a neonatal conductive hearing loss ameliorates the atrophy of spiral ganglion neurons, ventral cochlear nucleus neurons, and ventral cochlear nucleus volume. The present investigation demonstrates the extent of a conductive loss caused by atresia and tests the hypothesis that GM1 ganglioside treatment will ameliorate the conductive hearing loss. Auditory brainstem responses were recorded from four groups of seven mice each: two groups received daily subcutaneous injections of saline (one group had normal hearing; the other had a conductive hearing loss); the other two groups received daily subcutaneous injections of GM1 ganglioside (one group had normal hearing; the other had a conductive hearing loss). In mice with a conductive loss, decreases in hearing sensitivity were greatest at high frequencies. The decreases were determined by comparing mean ABR thresholds of the conductive loss mice with those of normal hearing mice. The conductive hearing loss induced in the mice in this study was similar to that seen in humans with congenital aural atresias. GM1 ganglioside treatment had no significant effect on ABR wave I thresholds or latencies in either group.

  1. Enhanced auditory brainstem response and parental bonding style in children with gastrointestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Shizuka Seino

    Full Text Available The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS are unclear. We hypothesized that children with chronic gastrointestinal (GI symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP responses and receive more inadequate parental bonding.Children aged seven and their mothers (141 pairs participated. BAEP was measured by summation of 1,000 waves of the electroencephalogram triggered by 75 dB click sounds. The mothers completed their Children's Somatization Inventory (CSI and Parental Bonding Instrument (PBI. CSI results revealed 66 (42% children without GI symptoms (controls and 75 (58% children with one or more GI symptoms (GI group. The III wave in the GI group (median 4.10 interquartile range [3.95-4.24] ms right, 4.04 [3.90-4.18] ms left had a significantly shorter peak latency than controls (4.18 [4.06-4.34] ms right, p = 0.032, 4.13 [4.02-4.24] ms left, p = 0.018. The female GI group showed a significantly shorter peak latency of the III wave (4.00 [3.90-4.18] ms than controls (4.18 [3.97-4.31] ms, p = 0.034 in the right side. BAEP in the male GI group did not significantly differ from that in controls. GI scores showed a significant correlation with the peak latency of the III wave in the left side (rho = -0.192, p = 0.025. The maternal care PBI scores in the GI group (29 [26]-[33] were significantly lower than controls (31 [28.5-33], p = 0.010, while the maternal over-protection PBI scores were significantly higher in the GI group (16 [12]-[17] than controls (13 [10.5-16], p = 0.024. Multiple regression analysis in females also supported these findings.It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms.

  2. A Clinical Research Study of Cognitive Dysfunction and Affective Impairment after Isolated Brainstem Stroke

    Science.gov (United States)

    Fu, Xiujuan; Lu, Zuneng; Wang, Yan; Huang, Lifang; Wang, Xi; Zhang, Hong; Xiao, Zheman

    2017-01-01

    Although the function of the cerebellum in neurocognition has been well-documented, the similar role of the brainstem has yet to be fully elucidated. This clinical research study aimed to combine data relating to neuropsychological assessments and P300 to explore cognitive dysfunction and affective impairment following brainstem stroke. Thirty-four patients with isolated brainstem stroke and twenty-six healthy controls were recruited; for each patient, we collated data pertaining to the P300, Addenbrooke's Cognitive Examination III (ACE-III), Montreal Cognitive Assessment Chinese version (MoCA), trail-making test (TMT), Symbol Digit Modalities Test (SDMT), Wechsler Adult Intelligence Scale-Digit Spans (DS), Stroop test, Self Rating Depression Scale (SDS), and Self Rating Anxiety Scale (SAS). Significance was analyzed using an independent T-test or the Mann-Whitney U-test. Correlation was analyzed using Pearson's correlation analysis or Spearman's correlation analysis. Collectively, data revealed that brainstem stroke caused mild cognitive impairment (MCI), and that visuospatial, attention, linguistic, and emotional disturbances may occur after isolated brainstem stroke. Cognitive decline was linked to P300 latency, ACE-III, and MoCA; P300 latency was correlated with ACE-III. Patients with right brainstem lesions were more likely to suffer memory decline. The present study provides initial data relating to the role of the brainstem in neurocognition, and will be useful for further understanding of vascular cognitive and affective impairment. PMID:29311895

  3. A Clinical Research Study of Cognitive Dysfunction and Affective Impairment after Isolated Brainstem Stroke

    Directory of Open Access Journals (Sweden)

    Xiujuan Fu

    2017-12-01

    Full Text Available Although the function of the cerebellum in neurocognition has been well-documented, the similar role of the brainstem has yet to be fully elucidated. This clinical research study aimed to combine data relating to neuropsychological assessments and P300 to explore cognitive dysfunction and affective impairment following brainstem stroke. Thirty-four patients with isolated brainstem stroke and twenty-six healthy controls were recruited; for each patient, we collated data pertaining to the P300, Addenbrooke's Cognitive Examination III (ACE-III, Montreal Cognitive Assessment Chinese version (MoCA, trail-making test (TMT, Symbol Digit Modalities Test (SDMT, Wechsler Adult Intelligence Scale-Digit Spans (DS, Stroop test, Self Rating Depression Scale (SDS, and Self Rating Anxiety Scale (SAS. Significance was analyzed using an independent T-test or the Mann-Whitney U-test. Correlation was analyzed using Pearson's correlation analysis or Spearman's correlation analysis. Collectively, data revealed that brainstem stroke caused mild cognitive impairment (MCI, and that visuospatial, attention, linguistic, and emotional disturbances may occur after isolated brainstem stroke. Cognitive decline was linked to P300 latency, ACE-III, and MoCA; P300 latency was correlated with ACE-III. Patients with right brainstem lesions were more likely to suffer memory decline. The present study provides initial data relating to the role of the brainstem in neurocognition, and will be useful for further understanding of vascular cognitive and affective impairment.

  4. Magnetic resonance imaging in the evaluation of the brainstem

    International Nuclear Information System (INIS)

    Han, J.S.; Bonstelle, C.T.; Kaufman, B.; Benson, J.E.; Alfidi, R.J.; Clampitt, M.; Van Dyke, C.; Huss, R.G.

    1984-01-01

    Magnetic resonance (MR) images of the brainstem region from 100 normal or asymptomatic individuals were reviewed in addition to those of 17 patients with intra-axial brainstem lesions and 15 patients with extra-axial masses around the brainstem. MR was able to demonstrate consistently the normal anatomy of the brainstem and adjacent cisterns, though the distinction between gray and white matter was seldom possible with the present technology. Masses in and around the brainstem were all accurately identified on MR and its sensitivity was superior to that of x-ray computed tomography (CT). These study results show that despite its technical limitations, MR is presently the examination of choice for the evaluation of brainstem abnormalities and eventually it will undoubtedly replace metrizamide CT cisternography

  5. Gamma Knife Treatment of Brainstem Metastases

    Science.gov (United States)

    Peterson, Halloran E.; Larson, Erik W.; Fairbanks, Robert K.; MacKay, Alexander R.; Lamoreaux, Wayne T.; Call, Jason A.; Carlson, Jonathan D.; Ling, Benjamin C.; Demakas, John J.; Cooke, Barton S.; Peressini, Ben; Lee, Christopher M.

    2014-01-01

    The management of brainstem metastases is challenging. Surgical treatment is usually not an option, and chemotherapy is of limited utility. Stereotactic radiosurgery has emerged as a promising palliative treatment modality in these cases. The goal of this study is to assess our single institution experience treating brainstem metastases with Gamma Knife radiosurgery (GKRS). This retrospective chart review studied 41 patients with brainstem metastases treated with GKRS. The most common primary tumors were lung, breast, renal cell carcinoma, and melanoma. Median age at initial treatment was 59 years. Nineteen (46%) of the patients received whole brain radiation therapy (WBRT) prior to or concurrent with GKRS treatment. Thirty (73%) of the patients had a single brainstem metastasis. The average GKRS dose was 17 Gy. Post-GKRS overall survival at six months was 42%, at 12 months was 22%, and at 24 months was 13%. Local tumor control was achieved in 91% of patients, and there was one patient who had a fatal brain hemorrhage after treatment. Karnofsky performance score (KPS) >80 and the absence of prior WBRT were predictors for improved survival on multivariate analysis (HR 0.60 (p = 0.02), and HR 0.28 (p = 0.02), respectively). GKRS was an effective treatment for brainstem metastases, with excellent local tumor control. PMID:24886816

  6. Primary Frequency Response with Aggregated DERs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guggilam, Swaroop S.; Dhople, Sairaj V.; Zhao, Changhong; Dall' Anese, Emiliano; Chen, Yu Christine

    2017-03-03

    Power networks have to withstand a variety of disturbances that affect system frequency, and the problem is compounded with the increasing integration of intermittent renewable generation. Following a large-signal generation or load disturbance, system frequency is arrested leveraging primary frequency control provided by governor action in synchronous generators. In this work, we propose a framework for distributed energy resources (DERs) deployed in distribution networks to provide (supplemental) primary frequency response. Particularly, we demonstrate how power-frequency droop slopes for individual DERs can be designed so that the distribution feeder presents a guaranteed frequency-regulation characteristic at the feeder head. Furthermore, the droop slopes are engineered such that injections of individual DERs conform to a well-defined fairness objective that does not penalize them for their location on the distribution feeder. Time-domain simulations for an illustrative network composed of a combined transmission network and distribution network with frequency-responsive DERs are provided to validate the approach.

  7. Piracetam-induced changes on the brainstem auditory response in anesthetized juvenile rhesus monkeys (Macaca mulatta). Report of two clinical cases.

    Science.gov (United States)

    Durand-Rivera, A; Gonzalez-Pina, R; Hernandez-Godinez, B; Ibanez-Contreras, A; Bueno-Nava, A; Alfaro-Rodriguez, A

    2012-10-01

    We describe two clinical cases and examine the effects of piracetam on the brainstem auditory response in infantile female rhesus monkeys (Macaca mulatta). We found that the interwave intervals show a greater reduction in a 3-year-old rhesus monkey compared to a 1-year-old rhesus monkey. In this report, we discuss the significance of these observations. © 2012 John Wiley & Sons A/S.

  8. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  9. Intermittent hypercapnic hypoxia effects on the nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem.

    Science.gov (United States)

    Vivekanandarajah, Arunnjah; Aishah, Atqiya; Waters, Karen A; Machaalani, Rita

    2017-05-01

    This study investigated the effects of acute (1 day) vs repeated (4 days) exposure to intermittent hypercapnic hypoxia (IHH) on the immunohistochemical expression of α2, α3, α5, α7, α9 and β2 nicotinic acetylcholine receptor (nAChR) subunits in the developing piglet hippocampus and brainstem medulla, and how prior nicotine exposure alters the response to acute IHH. Five piglet groups included: 1day IHH (1D IHH, n=9), 4days IHH (4D IHH, n=8), controls exposed only to air cycles for 1day (1D Air, n=6) or 4days (4D Air, n=5), and pre-exposed to nicotine for 13days prior to 1day IHH (Nic+1D IHH, n=7). The exposure period alternated 6min of HH (8%O 2 , 7%CO 2 , balance N 2 ) and 6min of air over 48min, while controls were switched from air-to-air. Results showed that: 1. repeated IHH induces more changes in nAChR subunit expression than acute IHH in both the hippocampus and brainstem medulla, 2. In the hippocampus, α2 and β2 changed the most (increased) following IHH and the CA3, CA2 and DG were mostly affected. In the brainstem medulla, α2, α5, α9 and β2 were changed (decreased) in most nuclei with the hypoglossal and nucleus of the solitary tract being mostly affected. 3. Pre-exposure to nicotine enhanced the changes in the hippocampus but dampened those in the brainstem medulla. These findings indicate that the nAChRs (predominantly with the α2/β2 complex) are affected by IHH in critical hippocampal and brainstem nuclei during early brain development, and that pre-exposure to nicotine alters the pattern of susceptibility to IHH. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg.

    Science.gov (United States)

    Maskey, Dhiraj; Kim, Hyung Gun; Suh, Myung-Whan; Roh, Gu Seob; Kim, Myeung Ju

    2014-08-01

    The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region

  11. The influence of cochlear traveling wave and neural adaptation on auditory brainstem responses

    DEFF Research Database (Denmark)

    Junius, D.; Dau, Torsten

    2005-01-01

    of the responses to the single components, as a function of stimulus level. In the first experiment, a single rising chirp was temporally and spectrally embedded in two steady-state tones. In the second experiment, the stimulus consisted of a continuous alternating train of chirps: each rising chirp was followed...... by the temporally reversed (falling) chirp. In both experiments, the transitions between stimulus components were continuous. For stimulation levels up to approximately 70 dB SPL, the responses to the embedded chirp corresponded to the responses to the single chirp. At high stimulus levels (80-100 dB SPL......), disparities occurred between the responses, reflecting a nonlinearity in the processing when neural activity is integrated across frequency. In the third experiment, the effect of within-train rate on wave-V response was investigated. The response to the chirp presented at a within-train rate of 95 Hz...

  12. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    Science.gov (United States)

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  13. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    Science.gov (United States)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  14. Neonatal hearing screening of high-risk infants using automated auditory brainstem response: a retrospective analysis of referral rates.

    LENUS (Irish Health Repository)

    McGurgan, I J

    2013-10-07

    The past decade has seen the widespread introduction of universal neonatal hearing screening (UNHS) programmes worldwide. Regrettably, such a programme is only now in the process of nationwide implementation in the Republic of Ireland and has been largely restricted to one screening modality for initial testing; namely transient evoked otoacoustic emissions (TEOAE). The aim of this study is to analyse the effects of employing a different screening protocol which utilises an alternative initial test, automated auditory brainstem response (AABR), on referral rates to specialist audiology services.

  15. Cerebral and brainstem electrophysiologic activity during euthanasia with pentobarbital sodium in horses.

    Science.gov (United States)

    Aleman, M; Williams, D C; Guedes, A; Madigan, J E

    2015-01-01

    An overdose of pentobarbital sodium administered i.v. is the most commonly used method of euthanasia in veterinary medicine. Determining death after the infusion relies on the observation of physical variables. However, it is unknown when cortical electrical activity and brainstem function are lost in a sequence of events before death. To examine changes in the electrical activity of the cerebral cortex and brainstem during an overdose of pentobarbital sodium solution for euthanasia. Our testing hypothesis is that isoelectric pattern of the brain in support of brain death occurs before absence of electrocardiogram (ECG) activity. Fifteen horses requiring euthanasia. Prospective observational study. Horses with neurologic, orthopedic, and cardiac illnesses were selected and instrumented for recording of electroencephalogram, electrooculogram, brainstem auditory evoked response (BAER), and ECG. Physical and neurologic (brainstem reflexes) variables were monitored. Loss of cortical electrical activity occurred during or within 52 seconds after the infusion of euthanasia solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of the BAER happened subsequently. Despite undetectable heart sounds, palpable arterial pulse, and mean arterial pressure, recordable ECG was the last variable to be lost after the infusion (5.5-16 minutes after end of the infusion). Overdose of pentobarbital sodium solution administered i.v. is an effective, fast, and humane method of euthanasia. Brain death occurs within 73-261 seconds of the infusion. Although absence of ECG activity takes longer to occur, brain death has already occurred. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  16. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Hua Chiaho; Merchant, Thomas E.; Gajjar, Amar; Broniscer, Alberto; Zhang, Yong; Li Yimei; Glenn, George R.; Kun, Larry E.; Ogg, Robert J.

    2012-01-01

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4–39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54–59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6–5.0 years). The median mean dose to the pons was 56 Gy (range, 7–59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response

  17. Herpetic brainstem encephalitis: report of a post-mortem case studied electron microscopically and immunohisiochemically

    Directory of Open Access Journals (Sweden)

    José Eymard Homem Pitella

    1987-03-01

    Full Text Available A post-mortem examined case of herpetic brainstem encephalitis is presented. Clinically, the patient had cephalea followed by ataxia, drowsiness and multiple palsies of some cranial nerves, developing into death in eight days. The pathologic examination of the brain showed necrotizing encephalitis in multiple foci limited to the brainstem, more distinctly in the pons and medula oblongata. The technique of immunoperoxidase revealed rare glial cells with intranuclear immunoreactivity for herpes antigen. Rare viral particles with the morphological characteristics of the herpesvirus were identified in the nuclei of neurons in 10% formol fixed material. This is the second reported case of herpetic brainstem encephalitis confirmed by post-mortem examination. The pathway used by the virus to reach the central nervous system and its posterior dissemination to the oral cavity, the orbitofrontal region and the temporal lobes as well as to the brainstem, after a period of latency and reactivation, are discussed.

  18. Clinical Approach to Supranuclear Brainstem Saccadic Gaze Palsies

    Directory of Open Access Journals (Sweden)

    Alexandra Lloyd-Smith Sequeira

    2017-08-01

    Full Text Available Failure of brainstem supranuclear centers for saccadic eye movements results in the clinical presence of a brainstem-mediated supranuclear saccadic gaze palsy (SGP, which is manifested as slowing of saccades with or without range of motion limitation of eye movements and as loss of quick phases of optokinetic nystagmus. Limitation in the range of motion of eye movements is typically worse with saccades than with smooth pursuit and is overcome with vestibular–ocular reflexive eye movements. The differential diagnosis of SGPs is broad, although acute-onset SGP is most often from brainstem infarction and chronic vertical SGP is most commonly caused by the neurodegenerative condition progressive supranuclear palsy. In this review, we discuss the brainstem anatomy and physiology of the brainstem saccade-generating network; we discuss the clinical features of SGPs, with an emphasis on insights from quantitative ocular motor recordings; and we consider the broad differential diagnosis of SGPs.

  19. Stereotactic radiosurgery for deep intracranial arteriovenous malformations, part 1: Brainstem arteriovenous malformations.

    Science.gov (United States)

    Cohen-Inbar, Or; Ding, Dale; Chen, Ching-Jen; Sheehan, Jason P

    2016-02-01

    The management of brainstem arteriovenous malformations (AVM) are one of the greatest challenges encountered by neurosurgeons. Brainstem AVM have a higher risk of hemorrhage compared to AVM in other locations, and rupture of these lesions commonly results in devastating neurological morbidity and mortality. The potential morbidity associated with currently available treatment modalities further compounds the complexity of decision making for affected patients. Stereotactic radiosurgery (SRS) has an important role in the management of brainstem AVM. SRS offers acceptable obliteration rates with lower risks of hemorrhage occurring during the latency period. Complex nidal architecture requires a multi-disciplinary treatment approach. Nidi partly involving subpial/epipial regions of the dorsal midbrain or cerebellopontine angle should be considered for a combination of endovascular embolization, micro-surgical resection and SRS. Considering the fact that incompletely obliterated lesions (even when reduced in size) could still cause lethal hemorrhages, additional treatment, including repeat SRS and surgical resection should be considered when complete obliteration is not achieved by first SRS. Patients with brainstem AVM require continued clinical and radiological observation and follow-up after SRS, well after angiographic obliteration has been confirmed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Upregulation of [125I] CGP42112 binding in the rat brainstem following nodose ganglionectomy

    International Nuclear Information System (INIS)

    Roulston, C.L.; Lawrence, A.J.; Jarrott, B.; Widdop, R.E.

    1999-01-01

    Full text: [ 125 I] CGP42112 is a specific ligand which has been used to demonstrate the presence of angiotensin AT 2 receptors in peripheral and brain tissue, although [ 125 I] CGP42112 also binds to a non-angiotensin II (Ang II) site. In the present study we have examined [ 125 I] CGP42112 binding in the brainstem following nodose ganglionectomy using autoradiography. Male spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats underwent unilateral nodose ganglionectomy or sham operation (anaesthetised with methohexitone, 60mg/kg ip). Following a 14 day recovery period, animals were killed and slide mounted brainstem sections (14μm) were prepared and incubated in the presence of either [ 125 I] (Sar 1 Ile 8 )Ang II (0.5nM), [ 125 I] CGP42112 (0.3nM) or [ 3 H] PKI11195 (3nM, a marker for activated microglia). Following incubation, slides were apposed to film for 10 days. Specific binding was determined in adjacent sections by co-incubations with either the AT 1 receptor antagonist losartan, the AT 2 receptor antagonist PD 123319, Ang II or PKI11195 (all at 10μM). In the ganglionectomised groups, there were significant reductions in [ 125 I] (Sar 1 Ile 8 )Ang II binding on the denervated side of the nucleus of the solitary tract (NTS) by 30 ± 2 % (n=5, P 125 I] CGP42112 binding in the NTS revealed an AT 2 receptor component which was displaceable by PD 123319 and Ang II (∼60%), and a non-Ang II component (∼40%). Nodose ganglionectomy increased the density of [ 125 I] CGP42112 binding on the denervated side of the NTS by 55 ± 3 % (n=5, P 125 I] CGP42112 binding in the NTS of the ganglionectomised groups was comprised of a greater non-Ang II component than in the sham group, since only ∼30% was displaced by PD123319 and Ang II. [ 125 I] CGP42112 also revealed high binding density in the dorsal motor nucleus and the nucleus ambiguus on the denervated side in both SHR and WKY rats. This binding was absent in shams and was only ∼30-40% displaceable

  1. Erythropoietin and its receptors in the brainstem of adults with fatal falciparum malaria

    Directory of Open Access Journals (Sweden)

    White Nicholas J

    2009-11-01

    Full Text Available Abstract Background Facilitation of endogenous neuroprotective pathways, such as the erythropoietin (Epo pathway, has been proposed as adjuvant treatment strategies in cerebral malaria. Whether different endogenous protein expression levels of Epo or differences in the abundance of its receptor components could account for the extent of structural neuropathological changes or neurological complications in adults with severe malaria was investigated. Methods High sensitivity immunohistochemistry was used to assess the frequency, distribution and concordance of Epo and components of its homodimeric and heteromeric receptors, Epo receptor and CD131, within the brainstem of adults who died of severe malaria. The following relationships with Epo and its receptor components were also defined: (i sequestration and indicators of hypoxia; (ii vascular damage in the form of plasma protein leakage and haemorrhage; (iii clinical complications and neuropathological features of severe malaria disease. Brainstems of patients dying in the UK from unrelated non-infectious causes were examined for comparison. Results The incidence of endogenous Epo in parenchymal brain cells did not greatly differ between severe malaria and non-neurological UK controls at the time of death. However, EpoR and CD131 labelling of neurons was greater in severe malaria compared with non-neurological controls (P = .009. EpoR labelling of vessels was positively correlated with admission peripheral parasite count (P = .01 and cerebral sequestration (P P = .001. There were no significant correlations with indicators of vascular damage, neuronal chromatolysis, axonal swelling or vital organ failure. Conclusion Cells within the brainstem of severe malaria patients showed protein expression of Epo and its receptor components. However, the incidence of endogeneous expression did not reflect protection from vascular or neuronal injury, and/or clinical manifestations, such as coma. These

  2. Auditory brainstem response screening for hearing loss in high risk neonates.

    Science.gov (United States)

    Watson, D R; McClelland, R J; Adams, D A

    1996-07-01

    The present paper reports the findings of a 7 year study evaluating the use of the auditory brainstem response (ABR) as the basis of a hearing screening procedure in a group of newborns at increased risk of hearing impairment. A Special Care Baby Unit (SCBU) population of 417 infants with diverse clinical backgrounds and treatment histories was tested for hearing impairment at birth using ABR audiometry. Some 332 passed the original screen at 30 dBnHL test level in both ears. Of the failure group, 18 did not survive and 32 had some degree of hearing impairment confirmed, nine of which were sensorineural in origin. An increased incidence of persistent middle ear disease was also noted in the failure group. A detailed operational analysis demonstrates that provided appropriate pass/fail criteria are adopted, the ABR technique offers excellent sensitivity and specificity for the detection of significant hearing loss in the test population. Furthermore, the study establishes that implementation of an ABR-based screening programme could reduce the average age at detection of permanent hearing loss by 7 months. A cost assessment shows that the introduction of such a targetted screening procedure could be done at a reasonable outlay.

  3. Eastern Frequency Response Study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.W.; Shao, M.; Pajic, S.; D' Aquila, R.

    2013-05-01

    This study was specifically designed to investigate the frequency response of the Eastern Interconnection that results from large loss-of-generation events of the type targeted by the North American Electric Reliability Corp. Standard BAL-003 Frequency Response and Frequency Bias Setting (NERC 2012a), under possible future system conditions with high levels of wind generation.

  4. Effectiveness of interferon-[beta], ACNU, and radiation therapy in pediatric patients with brainstem glioma

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Toshihiko; Yoshida, Jun; Mizuno, Masaaki; Sugita, Kenichiro [Nagoya Univ. (Japan). Faculty of Medicine; Kito, Akira

    1992-12-01

    Sixteen pediatric patients with brainstem glioma were treated with a combination of interferon-[beta], 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl -3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU), and radiation therapy (IAR therapy). All patients received 1-1.5 million IU/day of interferon-[beta] intravenously for 1 week of each 6-week cycle. In addition, ACNU (2-3 mg/kg) was given on the 2nd day of each cycle. Conventional focal irradiation (1.5-2 Gy/day for 5 days to a total dosage of 40-60 Gy) was administered beginning on day 3. Patients underwent at least two 6-week cycles. Adverse effects included nausea, vomiting, and myelosuppression, but were mild and transient. Response to treatment was evaluated by the reduction in tumor size measured on postcontrast computed tomographic scans and magnetic resonance images. Responses occurred in 10 of 11 patients with the intrinsic type of brainstem glioma, including three complete and seven partial responses. Two of the five patients with exophytic type gliomas partially responded. The median survival was 15.7 months, a remarkable improvement over the natural course of this disease. These results indicate that IAR therapy is a useful primary treatment for pediatric patients with brainstem gliomas. (author).

  5. Correlation of Acute and Late Brainstem Toxicities With Dose-Volume Data for Pediatric Patients With Posterior Fossa Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Ronica H., E-mail: rhazari@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Ganju, Rohit G.; Schreibmann, Edward [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Chen, Zhengjia; Zhang, Chao [Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, Georgia (United States); Jegadeesh, Naresh; Cassidy, Richard; Deng, Claudia; Eaton, Bree R.; Esiashvili, Natia [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States)

    2017-06-01

    Purpose: Radiation-induced brainstem toxicity after treatment of pediatric posterior fossa malignancies is incompletely understood, especially in the era of intensity modulated radiation therapy (IMRT). The rates of, and predictive factors for, brainstem toxicity after photon RT for posterior fossa tumors were examined. Methods and Materials: After institutional review board approval, 60 pediatric patients treated at our institution for nonmetastatic infratentorial ependymoma and medulloblastoma with IMRT were included in the present analysis. Dosimetric variables, including the mean and maximum dose to the brainstem, the dose to 10% to 90% of the brainstem (in 10% increments), and the volume of the brainstem receiving 40, 45, 50, and 55 Gy were recorded for each patient. Acute (onset within 3 months) and late (>3 months of RT completion) RT-induced brainstem toxicities with clinical and radiographic correlates were scored using Common Terminology Criteria for Adverse Events, version 4.0. Results: Patients aged 1.4 to 21.8 years underwent IMRT or volumetric arc therapy postoperatively to the posterior fossa or tumor bed. At a median clinical follow-up period of 2.8 years, 14 patients had developed symptomatic brainstem toxicity (crude incidence 23.3%). No correlation was found between the dosimetric variables examined and brainstem toxicity. Vascular injury or ischemia showed a strong trend toward predicting brainstem toxicity (P=.054). Patients with grade 3 to 5 brainstem toxicity had undergone treatment to significant volumes of the posterior fossa. Conclusion: The results of the present series demonstrate a low, but not negligible, risk of brainstem radiation necrosis for pediatric patients with posterior fossa malignancies treated with IMRT. No specific dose-volume correlations were identified; however, modern treatment volumes might help limit the incidence of severe toxicity. Additional work investigating inherent biologic sensitivity might also provide

  6. Brainstem auditory evoked response characteristics in normal-hearing subjects with chronic tinnitus and in non-tinnitus group

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-06-01

    Full Text Available Background and Aim: While most of the people with tinnitus have some degrees of hearing impairment, a small percent of patients admitted to ear, nose and throat clinics or hearing evaluation centers are those who complain of tinnitus despite having normal hearing thresholds. This study was performed to better understanding of the reasons of probable causes of tinnitus and to investigate possible changes in the auditory brainstem function in normal-hearing patients with chronic tinnitus.Methods: In this comparative cross-sectional, descriptive and analytic study, 52 ears (26 with and 26 without tinnitus were examined. Components of the auditory brainstem response (ABR including wave latencies and wave amplitudes were determined in the two groups and analyzed using appropriate statistical methods.Results: The mean differences between the absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that was not statistically significant. Also, the interpeak latency values of waves I-III, III-V and I-V in both groups had no significant difference. Only, the V/I amplitude ratio in the tinnitus group was significantly higher (p=0.04.Conclusion: The changes observed in amplitude of waves, especially in the latter ones, can be considered as an indication of plastic changes in neuronal activity and its possible role in generation of tinnitus in normal-hearing patients.

  7. Physiological Characterization of Vestibular Efferent Brainstem Neurons Using a Transgenic Mouse Model

    Science.gov (United States)

    Leijon, Sara; Magnusson, Anna K.

    2014-01-01

    The functional role of efferent innervation of the vestibular end-organs in the inner ear remains elusive. This study provides the first physiological characterization of the cholinergic vestibular efferent (VE) neurons in the brainstem by utilizing a transgenic mouse model, expressing eGFP under a choline-acetyltransferase (ChAT)-locus spanning promoter in combination with targeted patch clamp recordings. The intrinsic electrical properties of the eGFP-positive VE neurons were compared to the properties of the lateral olivocochlear (LOC) brainstem neurons, which gives rise to efferent innervation of the cochlea. Both VE and the LOC neurons were marked by their negative resting membrane potential neurons differed significantly in the depolarizing range. When injected with positive currents, VE neurons fired action potentials faithfully to the onset of depolarization followed by sparse firing with long inter-spike intervals. This response gave rise to a low response gain. The LOC neurons, conversely, responded with a characteristic delayed tonic firing upon depolarizing stimuli, giving rise to higher response gain than the VE neurons. Depolarization triggered large TEA insensitive outward currents with fast inactivation kinetics, indicating A-type potassium currents, in both the inner ear-projecting neuronal types. Immunohistochemistry confirmed expression of Kv4.3 and 4.2 ion channel subunits in both the VE and LOC neurons. The difference in spiking responses to depolarization is related to a two-fold impact of these transient outward currents on somatic integration in the LOC neurons compared to in VE neurons. It is speculated that the physiological properties of the VE neurons might be compatible with a wide-spread control over motion and gravity sensation in the inner ear, providing likewise feed-back amplification of abrupt and strong phasic signals from the semi-circular canals and of tonic signals from the gravito-sensitive macular organs. PMID:24867596

  8. Benefits of Demand-Side Response in Providing Frequency Response Service in the Future GB Power System

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Fei, E-mail: fei.teng09@imperial.ac.uk; Aunedi, Marko; Pudjianto, Danny; Strbac, Goran [Department of Electrical and Electronic Engineering, Imperial College London, London (United Kingdom)

    2015-08-18

    The demand for ancillary service is expected to increase significantly in the future Great Britain (GB) electricity system due to high penetration of wind. In particular, the need for frequency response, required to deal with sudden frequency drops following a loss of generator, will increase because of the limited inertia capability of wind plants. This paper quantifies the requirements for primary frequency response and analyses the benefits of frequency response provision from demand-side response (DSR). The results show dramatic changes in frequency response requirements driven by high penetration of wind. Case studies carried out by using an advanced stochastic generation scheduling model suggest that the provision of frequency response from DSR could greatly reduce the system operation cost, wind curtailment, and carbon emissions in the future GB system characterized by high penetration of wind. Furthermore, the results demonstrate that the benefit of DSR shows significant diurnal and seasonal variation, whereas an even more rapid (instant) delivery of frequency response from DSR could provide significant additional value. Our studies also indicate that the competing technologies to DSR, namely battery storage, and more flexible generation could potentially reduce its value by up to 35%, still leaving significant room to deploy DSR as frequency response provider.

  9. Benefits of Demand-Side Response in Providing Frequency Response Service in the Future GB Power System

    International Nuclear Information System (INIS)

    Teng, Fei; Aunedi, Marko; Pudjianto, Danny; Strbac, Goran

    2015-01-01

    The demand for ancillary service is expected to increase significantly in the future Great Britain (GB) electricity system due to high penetration of wind. In particular, the need for frequency response, required to deal with sudden frequency drops following a loss of generator, will increase because of the limited inertia capability of wind plants. This paper quantifies the requirements for primary frequency response and analyses the benefits of frequency response provision from demand-side response (DSR). The results show dramatic changes in frequency response requirements driven by high penetration of wind. Case studies carried out by using an advanced stochastic generation scheduling model suggest that the provision of frequency response from DSR could greatly reduce the system operation cost, wind curtailment, and carbon emissions in the future GB system characterized by high penetration of wind. Furthermore, the results demonstrate that the benefit of DSR shows significant diurnal and seasonal variation, whereas an even more rapid (instant) delivery of frequency response from DSR could provide significant additional value. Our studies also indicate that the competing technologies to DSR, namely battery storage, and more flexible generation could potentially reduce its value by up to 35%, still leaving significant room to deploy DSR as frequency response provider.

  10. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem...... and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial...... synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity...

  11. Arterial territories of human brain: brainstem and cerebellum

    International Nuclear Information System (INIS)

    Tatu, L.; Moulin, T.; Bogousslavsky, J.; Duvernoy, H.

    1997-01-01

    The development of neuroimaging has allowed clinicians to improve clinico-anatomic correlations in patients with strokes. Brainstem and cerebellum structures are well delineated on MRI, but there is a lack of standardization in their arterial supply. We present a system of 12 brainstem and cerebellum axial sections, depicting the dominant arterial territories and the most important anatomic structures. These sections may be used as a practical tool to determine arterial territories on MRI, and may help establish consistent clinico-anatomic correlations in patients with brainstem and cerebellar ischemic strokes. (authors)

  12. Brain-stem evoked potentials and noise effects in seagulls.

    Science.gov (United States)

    Counter, S A

    1985-01-01

    Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.

  13. Pediatric brainstem oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Sandeep Mohindra

    2012-01-01

    Full Text Available The authors present the first report of pediatric brainstem oligodendroglioma, infiltrating midbrain, and medulla oblongata. The report details clinical features, radiological findings, and surgical steps. As this entity is exceedingly uncommon, the overall epidemiology, prognosis, and long-term outcome remain far from established.

  14. Benefits of Demand Side Response in Providing Frequency Response Service in the Future GB Power System

    Directory of Open Access Journals (Sweden)

    Fei eTeng

    2015-08-01

    Full Text Available The demand for ancillary service is expected to increase significantly in the future GB electricity system due to high penetration of wind. In particular, the need for frequency response, required to deal with sudden frequency drops following a loss of generator, will increase because of the limited inertia capability of wind plants. This paper quantifies the requirements for primary frequency response and analyses the benefits of frequency response provision from DSR. The results show dramatic changes in frequency response requirements driven by high penetration of wind. Case studies carried out by using an advanced stochastic generation scheduling model suggest that the provision of frequency response from DSR could greatly reduce the system operation cost, wind curtailment and carbon emissions in the future GB system characterised by high penetration of wind. Furthermore, the results demonstrate that the benefit of DSR shows significant diurnal and seasonal variation, whereas an even more rapid (instant delivery of frequency response from DSR could provide significant additional value. Our studies also indicate that the competing technologies to DSR, namely battery storage and more flexible generation could potentially reduce its value by up to 35%, still leaving significant room to deploy DSR as frequency response provider.

  15. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  16. Detection of brainstem involvemetn in multiple sclerosis

    International Nuclear Information System (INIS)

    Martinelli, V.; Comi, G.; Filippi, M.; Sora, M.G.N.; Magnani, G.; Locatelli, T.; Visciani, A.; Scotti, G.; Canal, N.

    1989-01-01

    The Gradient Refocusing Technique, which seppresses the influence of cerebrospinal fluis (GSF) and vascular motion artifact on MRI sensitivity, is applied combined with Brainstem Auditory Evoked Potentials (BAEPs) and median Somatosensory Evoked Potentials (SEPs) in the evaluation of the brainstem in 30 MS patients with clinical signs of involvement of this structure in order to reevaluate the sensitivity of these techniques. (Author). 2 refs.; 1 tab

  17. Correlation of augmented startle reflex with brainstem electrophysiological responses in Tay-Sachs disease.

    Science.gov (United States)

    Nakamura, Sadao; Saito, Yoshiaki; Ishiyama, Akihiko; Sugai, Kenji; Iso, Takashi; Inagaki, Masumi; Sasaki, Masayuki

    2015-01-01

    To clarify the evolution of an augmented startle reflex in Tay-Sachs disease and compare the temporal relationship between this reflex and brainstem evoked potentials. Clinical and electrophysiological data from 3 patients with Tay-Sachs disease were retrospectively collected. The augmented startle reflex appeared between the age of 3 and 17 months and disappeared between the age of 4 and 6 years. Analysis of brainstem auditory evoked potentials revealed that poor segregation of peak I, but not peak III, coincided with the disappearance of the augmented startle reflex. A blink reflex with markedly high amplitude was observed in a patient with an augmented startle reflex. The correlation between the augmented startle reflex and the preservation of peak I but not peak III supports the theory that the superior olivary nucleus is dispensable for this reflex. The blink reflex with high amplitudes may represent augmented excitability of reticular formation at the pontine tegmentum in Tay-Sachs disease, where the pattern generators for the augmented startle and blink reflexes may functionally overlap. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. Curcumin decreases astrocytic reaction after gliotoxic injury in the rat brainstem

    Directory of Open Access Journals (Sweden)

    Eduardo Bondan

    Full Text Available ABSTRACT Recent studies have demonstrated that curcumin (Cur has antioxidant, anti-inflammatory and anti-fibrotic effects. Ethidium bromide (EB injections into the central nervous system (CNS are known to induce local oligodendroglial and astrocytic loss, resulting in primary demyelination and neuroinflammation. Peripheral astrogliosis is seen around the injury site with increased immunoreactivity to glial fibrillary acidic protein (GFAP. This investigation aimed to evaluate the effect of Cur administration on astrocytic response following gliotoxic injury. Wistar rats were injected with EB into the cisterna pontis and treated, or not, with Cur (100 mg/kg/day, intraperitoneal route during the experimental period. Brainstem sections were collected at 15, 21 and 31 days after EB injection and processed for GFAP immunohistochemical staining. Astrocytic reactivity was measured in a computerized system for image analysis. In Cur-treated rats, the GFAP-stained area around the lesion was significantly smaller in all periods after EB injection compared to untreated animals, showing that Cur reduces glial scar development following injury.

  19. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    Energy Technology Data Exchange (ETDEWEB)

    Nightingale, S. (Royal Victoria Infirmary, Newcastle upon Tyne (UK)); Schofield, I.S.; Dawes, P.J.D.K. (Newcastle upon Tyne Univ. (UK). Newcastle General Hospital)

    1984-01-01

    Visual, cortical somatosensory and brainstem auditory evoked potentials were recorded before incidental irradiation of the rhombencephalon during radiotherapy in and around the middle ear, and at 11 weeks and eight months after completion of treatment. No patient experienced neurological symptoms during this period. No consistent changes in evoked potentials were found. The failure to demonstrate subclinical radiation-induced demyelination suggests either that the syndrome of early-delayed radiation rhombencephalopathy occurs in an idiosyncratic manner, or that any subclinical lesions are not detectable by serial evoked potential recordings.

  20. Magnetic resonance imaging in brain-stem tumors

    International Nuclear Information System (INIS)

    Nomura, Mikio; Saito, Hisazumi; Akino, Minoru; Abe, Hiroshi.

    1988-01-01

    Four patients with brain-stem tumors underwent magnetic resonance imaging (MRI) before and after radiotherapy. The brain-stem tumors were seen as a low signal intensity on T1-weighted images and as a high signal intensity on T2-weighted images. A tumor and its anatomic involvement were more clearly visualized on MRI than on cuncurrently performed CT. Changes in tumor before and after radiotherapy could be determined by measuring the diameter of tumor on sagittal and coronal images. This allowed quantitative evaluation of the reduction of tumor in association with improvement of symptoms. The mean T1 value in the central part of tumors was shortened in all patients after radiotherapy. The results indicate that MRI may assist in determining the effect of radiotherapy for brain-stem tumors. (Namekawa, K)

  1. Brainstem disconnection

    International Nuclear Information System (INIS)

    Duffield, Curtis; Wootton-Gorges, Sandra L.; Jocson, Jennifer

    2009-01-01

    Brainstem disconnection is a very rare neonatal abnormality, with only seven cases reported. We report a unique case of a neonate who presented at delivery with hypertonia, dysmorphic facial features, and respiratory distress, as well as numerous musculoskeletal and genitourinary abnormalities. MRI of the brain showed disconnection between the pons and medulla with cerebellar hypoplasia and absent cerebellar peduncles. It aided in the description of the neurological and vascular anomalies associated with this diagnosis. (orig.)

  2. Brainstem disconnection

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, Curtis; Wootton-Gorges, Sandra L. [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Radiology, Sacramento, CA (United States); Jocson, Jennifer [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Pediatrics, Sacramento, CA (United States)

    2009-12-15

    Brainstem disconnection is a very rare neonatal abnormality, with only seven cases reported. We report a unique case of a neonate who presented at delivery with hypertonia, dysmorphic facial features, and respiratory distress, as well as numerous musculoskeletal and genitourinary abnormalities. MRI of the brain showed disconnection between the pons and medulla with cerebellar hypoplasia and absent cerebellar peduncles. It aided in the description of the neurological and vascular anomalies associated with this diagnosis. (orig.)

  3. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    International Nuclear Information System (INIS)

    Nightingale, S.; Schofield, I.S.; Dawes, P.J.D.K.

    1984-01-01

    Visual, cortical somatosensory and brainstem auditory evoked potentials were recorded before incidental irradiation of the rhombencephalon during radiotherapy in and around the middle ear, and at 11 weeks and eight months after completion of treatment. No patient experienced neurological symptoms during this period. No consistent changes in evoked potentials were found. The failure to demonstrate subclinical radiation-induced demyelination suggests either that the syndrome of early-delayed radiation rhombencephalopathy occurs in an idiosyncratic manner, or that any subclinical lesions are not detectable by serial evoked potential recordings. (author)

  4. Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Christoforidis, Dimitrios; Dau, Torsten

    2009-01-01

    response times. For the same listeners, auditory-filter bandwidths at 2 kHz were estimated using a behavioral notched-noise masking paradigm. Generally, shorter derived-band latencies were observed for the HI than for the NH listeners. Only at low click sensation levels, prolonged latencies were obtained...

  5. Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Patrick Grabher

    2017-01-01

    Conclusion: Neurodegeneration, indicated by volume loss and myelin reductions, is evident in major brainstem pathways and nuclei following traumatic SCI; the magnitude of these changes relating to clinical impairment. Thus, quantitative MRI protocols offer new targets, which may be used as neuroimaging biomarkers in treatment trials.

  6. Tractography of the brainstem in major depressive disorder using diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Yun Ju C Song

    Full Text Available BACKGROUND: The brainstem is the main region that innervates neurotransmitter release to the Hypothalamic-Pituitary Adrenal (HPA axis and fronto-limbic circuits, two key brain circuits found to be dysfunctional in Major Depressive Disorder (MDD. However, the brainstem's role in MDD has only been evaluated in limited reports. Using Diffusion Tensor Imaging (DTI, we investigated whether major brainstem white matter tracts that relate to these two circuits differ in MDD patients compared to healthy controls. METHODS: MDD patients (n = 95 and age- and gender-matched controls (n = 34 were assessed using probabilistic tractography of DTI to delineate three distinct brainstem tracts: the nigrostriatal tract (connecting brainstem to striatum, solitary tract (connecting brainstem to amygdala and corticospinal tract (connecting brainstem to precentral cortex. Fractional anisotropy (FA was used to measure the white matter integrity of these tracts, and measures were compared between MDD and control participants. RESULTS: MDD participants were characterized by a significant and specific decrease in white matter integrity of the right solitary tract (p<0.009 using independent t-test, which is a "bottom up" afferent pathway that connects the brainstem to the amygdala. This decrease was not related to symptom severity. CONCLUSIONS: The results provide new evidence to suggest that structural connectivity between the brainstem and the amygdala is altered in MDD. These results are interesting in light of predominant theories regarding amygdala-mediated emotional reactivity observed in functional imaging studies of MDD. The characterization of altered white matter integrity in the solitary tract in MDD supports the possibility of dysfunctional brainstem-amygdala connectivity impacting vulnerable circuits in MDD.

  7. Lung inflammation induces IL-1β expression in hypoglossal neurons in rat brainstem

    Science.gov (United States)

    Jafri, Anjum; Belkadi, Abdelmadjid; Zaidi, Syed I. A.; Getsy, Paulina; Wilson, Christopher G.; Martin, Richard J.

    2013-01-01

    Perinatal inflammation is associated with respiratory morbidity. Immune modulation of brainstem respiratory control centers may provide a link for this pathobiology. We exposed 11-day old rats to intratracheal lipopolysaccharide (LPS, 0.5 µg/g) to test the hypothesis that intrapulmonary inflammation increases expression of the proinflammatory cytokine IL-1β within respiratory-related brainstem regions. Intratracheal LPS resulted in a 32% increase in IL-1β protein expression in the medulla oblongata. In situ hybridization showed increased intensity of IL-1β mRNA but no change in neuronal numbers. Co-localization experiments showed that hypoglossal neurons express IL-1β mRNA and immunostaining showed a 43% increase in IL-1β protein-expressing cells after LPS exposure. LPS treatment also significantly increased microglial cell numbers though they did not express IL-1β mRNA. LPS-induced brainstem expression of neuronal IL-1β mRNA and protein may have implications for our understanding of the vulnerability of neonatal respiratory control in response to a peripheral pro-inflammatory stimulus. PMID:23648475

  8. Optimization behavior of brainstem respiratory neurons. A cerebral neural network model.

    Science.gov (United States)

    Poon, C S

    1991-01-01

    A recent model of respiratory control suggested that the steady-state respiratory responses to CO2 and exercise may be governed by an optimal control law in the brainstem respiratory neurons. It was not certain, however, whether such complex optimization behavior could be accomplished by a realistic biological neural network. To test this hypothesis, we developed a hybrid computer-neural model in which the dynamics of the lung, brain and other tissue compartments were simulated on a digital computer. Mimicking the "controller" was a human subject who pedalled on a bicycle with varying speed (analog of ventilatory output) with a view to minimize an analog signal of the total cost of breathing (chemical and mechanical) which was computed interactively and displayed on an oscilloscope. In this manner, the visuomotor cortex served as a proxy (homolog) of the brainstem respiratory neurons in the model. Results in 4 subjects showed a linear steady-state ventilatory CO2 response to arterial PCO2 during simulated CO2 inhalation and a nearly isocapnic steady-state response during simulated exercise. Thus, neural optimization is a plausible mechanism for respiratory control during exercise and can be achieved by a neural network with cognitive computational ability without the need for an exercise stimulus.

  9. Brainstem neurons survive the identical ischemic stress that kills higher neurons: insight to the persistent vegetative state.

    Directory of Open Access Journals (Sweden)

    C Devin Brisson

    Full Text Available Global ischemia caused by heart attack, pulmonary failure, near-drowning or traumatic brain injury often damages the higher brain but not the brainstem, leading to a 'persistent vegetative state' where the patient is awake but not aware. Approximately 30,000 U.S. patients are held captive in this condition but not a single research study has addressed how the lower brain is preferentially protected in these people. In the higher brain, ischemia elicits a profound anoxic depolarization (AD causing neuronal dysfunction and vasoconstriction within minutes. Might brainstem nuclei generate less damaging AD and so be more resilient? Here we compared resistance to acute injury induced from simulated ischemia by 'higher' hippocampal and striatal neurons versus brainstem neurons in live slices from rat and mouse. Light transmittance (LT imaging in response to 10 minutes of oxygen/glucose deprivation (OGD revealed immediate and acutely damaging AD propagating through gray matter of neocortex, hippocampus, striatum, thalamus and cerebellar cortex. In adjacent brainstem nuclei, OGD-evoked AD caused little tissue injury. Whole-cell patch recordings from hippocampal and striatal neurons under OGD revealed sudden membrane potential loss that did not recover. In contrast brainstem neurons from locus ceruleus and mesencephalic nucleus as well as from sensory and motor nuclei only slowly depolarized and then repolarized post-OGD. Two-photon microscopy confirmed non-recoverable swelling and dendritic beading of hippocampal neurons during OGD, while mesencephalic neurons in midbrain appeared uninjured. All of the above responses were mimicked by bath exposure to 100 µM ouabain which inhibits the Na+/K+ pump or to 1-10 nM palytoxin which converts the pump into an open cationic channel. Therefore during ischemia the Na+/K+ pump of higher neurons fails quickly and extensively compared to naturally resilient hypothalamic and brainstem neurons. The selective survival

  10. Auditory brainstem response as a diagnostic tool for patients suffering from schizophrenia, attention deficit hyperactivity disorder, and bipolar disorder: protocol.

    Science.gov (United States)

    Wahlström, Viktor; Åhlander, Fredrik; Wynn, Rolf

    2015-02-12

    Psychiatric disorders, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and bipolar disorder, may sometimes be difficult to diagnose. There is a great need for a valid and reliable diagnostic tool to aid clinicians in arriving at the diagnoses in a timely and accurate manner. Prior studies have suggested that patients suffering from schizophrenia and ADHD may process certain sound stimuli in the brainstem in an unusual manner. When these patient groups have been examined with the electrophysiological method of brainstem audiometry, some studies have found illness-specific aberrations. Such aberrations may also exist for patients suffering from bipolar disorder. In this study, we will examine whether the method of brainstem audiometry can be used as a diagnostic tool for patients suffering from schizophrenia, ADHD, and bipolar disorder. The method includes three steps: (1) auditory stimulation with specific sound stimuli, (2) simultaneous measurement of brainstem activity, and (3) automated interpretation of the resulting brain stem audiograms with data-based signal analysis. We will compare three groups of 12 individuals with confirmed diagnoses of schizophrenia, ADHD, or bipolar disorder with 12 healthy subjects under blinded conditions for a total of 48 participants. The extent to which the method can be used to reach the correct diagnosis will be investigated. The project is now in a recruiting phase. When all patients and controls have been recruited and the measurements have been performed, the data will be analyzed according to a previously arranged algorithm. We expect the recruiting phase and measurements to be completed in early 2015, the analyses to be performed in mid-2015, and the results of the study to be published in early 2016. If the results support previous findings, this will lend strength to the idea that brainstem audiometry can offer objective diagnostic support for patients suffering from schizophrenia, ADHD, and

  11. 1H magnetic resonance spectroscopy metabolite profiles of neonatal rat hippocampus and brainstem regions following early postnatal exposure to intermittent hypoxia

    Science.gov (United States)

    Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor

    2017-03-01

    Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.

  12. A clinical study of brainstem infarction identified on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-04-01

    We conducted a clinical study of 155 cases that were confirmed to have brainstem infarctions on MRI (T[sub 1]-weighted image showed a low signal and T[sub 2]-weighted image showed a high signal, measuring in excess of 2 x 2 mm). The majority of the brainstem infarction was located in the pontine base in 132 cases (85.2%). Of these, 19 cases had double lesions including infarctions in the pontine base. Second infarctions frequently occurred in the cerebral peduncle or medical medulla oblongata, unilateral to the pontine infarctions. In addition to 98 symptomatic cases, there were 57 cases of 'asymptomatic' brainstem infarction. They comprised 24 cases accompanying other symptomatic cerebrovascular diseases in the supratentorium and 33 cases of transient subjective complaints such as headache or vertigo-dizziness. Complication by supratentorial infarctions was significantly frequent in cases of brainstem infarction (p<0.001), 122 of 155 cases (78.7%), especially in the pontine base (88.6%); while in the control cases (without brainstem infarction) only 65 of 221 cases (29.4%). These findings are considered to show the widespread progress of arteriosclerosis in brainstem infarction, especially in ones in the pontine base. (author).

  13. Organization of diencephalic and brainstem afferent projections to the lateral septum in the rat

    NARCIS (Netherlands)

    Luiten, Paul G.M.; Kuipers, Folkert; Schuitmaker, Hans

    1982-01-01

    Ascending diencephalic and brainstem afferents to the lateral septal column were studied by retrograde transport of horseradish peroxidase following microiontophoretic injections in the various subdivisions of the lateral septal area. Predominantly ispilateral cells, of which several coincide with

  14. Is enhanced MRI helpful in brainstem infarction?

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. M.; Shin, G. H.; Choi, W. S. [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1994-12-15

    To determine the role of MR contrast enhancement in evaluating time course of brainstem infarction. MR imaging with IV administration of gadopentetate dimeglumine was retrospectively reviewed in 43 patients with clinically and radiologically documented brainstem infarctions. The pattern of infarction was classified into spotty and patchy. Presence of parenchymal enhancement in infarction was evaluated. By location, there were 34 pontine, 3 midbrain, 6 medullary infarctions. The age of the infarctions ranged from 1 day to 9 months, with 5 patients scanned within 3 days and 10 scanned within 2 weeks of clinical ictus. Abnormalities on T2-weighted images were encountered in every case, with spotty pattern in 14 cases and patchy pattern in 29 cases. Parenchymal contrast enhancement was seen in 9 cases(20%), primarily occurring between days 8 and 20. MR contrast enhancement in brainstem infarction was infrequent that it may not be useful in the estimation of the age of infarction.

  15. Endovascular treatment of brain-stem arteriovenous malformations: safety and efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.M.; Wang, Y.H.; Chen, Y.F.; Huang, K.M. [Department of Medical Imaging, National Taiwan University Hospital, 7 Chung-Shan South Road, 10016, Taipei (Taiwan); Tu, Y.K. [Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, 1001, Taipei (Taiwan)

    2003-09-01

    Our purpose was to evaluate the safety and efficacy of endovascular treatment of brain-stem arteriovenous malformations (AVMs), reviewing six cases managed in the last 5 years. There were four patients who presented with bleeding, one with a progressive neurological deficit and one with obstructive hydrocephalus. Of the six patients, one showed 100%, one 90%, two 75% and two about 50% angiographic obliteration of the AVM after embolisation; the volume decreased about 75% on average. Five patients had a good outcome and one an acceptable outcome, with a mild postprocedure neurological deficit; none had further bleeding during midterm follow-up. Endovascular management of a brain-stem AVM may be an alternative to treatment such as radiosurgery and microsurgery in selected cases. It may be not as risky as previously thought. Embolisation can reduce the size of the AVM and possibly make it more treatable by radiosurgery and decrease the possibility of radiation injury. (orig.)

  16. Identification of clinical target areas in the brainstem of prion‐infected mice

    Science.gov (United States)

    Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian

    2015-01-01

    Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251

  17. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    International Nuclear Information System (INIS)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S.

    2006-01-01

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  18. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan)

    2006-03-15

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  19. Hidden Markov modeling of frequency-following responses to Mandarin lexical tones.

    Science.gov (United States)

    Llanos, Fernando; Xie, Zilong; Chandrasekaran, Bharath

    2017-11-01

    The frequency-following response (FFR) is a scalp-recorded electrophysiological potential reflecting phase-locked activity from neural ensembles in the auditory system. The FFR is often used to assess the robustness of subcortical pitch processing. Due to low signal-to-noise ratio at the single-trial level, FFRs are typically averaged across thousands of stimulus repetitions. Prior work using this approach has shown that subcortical encoding of linguistically-relevant pitch patterns is modulated by long-term language experience. We examine the extent to which a machine learning approach using hidden Markov modeling (HMM) can be utilized to decode Mandarin tone-categories from scalp-record electrophysiolgical activity. We then assess the extent to which the HMM can capture biologically-relevant effects (language experience-driven plasticity). To this end, we recorded FFRs to four Mandarin tones from 14 adult native speakers of Chinese and 14 of native English. We trained a HMM to decode tone categories from the FFRs with varying size of averages. Tone categories were decoded with above-chance accuracies using HMM. The HMM derived metric (decoding accuracy) revealed a robust effect of language experience, such that FFRs from native Chinese speakers yielded greater accuracies than native English speakers. Critically, the language experience-driven plasticity was captured with average sizes significantly smaller than those used in the extant literature. Our results demonstrate the feasibility of HMM in assessing the robustness of neural pitch. Machine-learning approaches can complement extant analytical methods that capture auditory function and could reduce the number of trials needed to capture biological phenomena. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Analysis of diffuse brain injury with primary brainstem lesion on MRI

    International Nuclear Information System (INIS)

    Shibata, Masayoshi; Matsumae, Mitsunori; Shimoda, Masami; Ishizaka, Hideo; Shiramizu, Hideki; Morita, Seiji; Tsugane, Ryuichi

    2003-01-01

    It has been reported that diffuse brain injury patients with primary brainstem lesions have a poor prognosis. Predicting the existence of brainstem injury at hospital arrival is problematic in actual clinical practice. We conducted magnetic resonance imaging (MRI), to visualize brainstem lesions clearly, and retrospectively analyzed predictive factors of brainstem lesions by stepwise multiple logistic regression analysis of patient characteristics, neurological findings, laboratory data, and CT findings at arrival in each case. We compared 24 patients with brainstem lesion and 60 without using MRI obtained less than 3 weeks after admission. Items investigated were blood pressure immediately after hospital arrival, arterial blood gas analysis, existence of abnormal respiration, blow direction, Glasgow coma scale (GCS), light reflex, oculocephalic reflex, corneal reflex, intracranial pressure, jugular venous oxygen saturation, and CT findings such as existence of subarachnoid hemorrhage at the suprasellar cistern, perimesencephalic cistern and convexity, lesions on the thalamus and basal ganglia, gliding contusion, intraventricular hemorrhage and Traumatic Coma Data Bank classification. Independent predictive factors of primary brainstem lesion included impaired light reflex (odds ratio: 2.269), subarachnoid hemorrhage at convexity (odds ratio: 3.592) and suprasellar cistern (odds ratio: 2.458), and Traumatic Coma Data Bank group III (odds ratio: 11.062). (author)

  1. Comprehensive evaluation of a child with an auditory brainstem implant.

    Science.gov (United States)

    Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P

    2008-02-01

    We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.

  2. Regulatory T cell frequencies and phenotypes following anti-viral vaccination.

    Directory of Open Access Journals (Sweden)

    A Charlotte M T de Wolf

    Full Text Available Regulatory T cells (Treg function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity. In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg and activated (aTreg subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization. Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication. To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen. Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation

  3. Giant tubercular brainstem abscess: A case report

    Directory of Open Access Journals (Sweden)

    Pragati Chigurupati

    2014-01-01

    Full Text Available Tubercular brain abscesses are uncommon and tubercular brainstem abscesses are rarely reported. Most of these cases occur in immunocompromised patients. We report a case of giant brainstem abscess in a 5-year-old human immunodeficiency virus-seronegative female child who presented with complaints of headache, diplopia and unsteadiness of gait since 6 months. Diagnosis was made by a magnetic resonance imaging scan of brain. The patient demonstrated a remarkable clinical recovery after microsurgery combined with a course of antituberculous therapy. Microbiological and histological findings confirmed the diagnosis of a tuberculous abscess.

  4. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging.

    Science.gov (United States)

    Zhang, Bei; Seifert, Alan C; Kim, Joo-Won; Borrello, Joseph; Xu, Junqian

    2017-10-01

    Increased signal-to-noise ratio and blood oxygenation level-dependent sensitivity at 7 Tesla (T) have the potential to enable high-resolution imaging of the human cervical spinal cord and brainstem. We propose a new two-panel radiofrequency coil design for these regions to fully exploit the advantages of ultra-high field. A two-panel array, containing four transmit/receive and 18 receive-only elements fully encircling the head and neck, was constructed following simulations demonstrating the B1+ and specific absorption rate (SAR) benefits of two-panel over one-panel arrays. This array was compared with a previously reported posterior-only array and tested for safety using a phantom. Its anatomical, functional, and diffusion MRI performance was demonstrated in vivo. The two-panel array produced more uniform B1+ across the brainstem and cervical spinal cord without compromising SAR, and achieved 70% greater receive sensitivity than the posterior-only array. The two-panel design enabled acceleration of R = 2 × 2 in two dimensions or R = 3 in a single dimension. High quality in vivo anatomical, functional, and diffusion images of the human cervical spinal cord and brainstem were acquired. We have designed and constructed a wrap-around coil array with excellent performance for cervical spinal cord and brainstem MRI at 7T, which enables simultaneous human cervical spinal cord and brainstem functional MRI. Magn Reson Med 78:1623-1634, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Clinical and radiological features of hypertensive brainstem encephalopathy

    Directory of Open Access Journals (Sweden)

    Xiao-qiu LI

    2015-07-01

    Full Text Available Objective To discuss the diagnosis and treatment of hypertensive brainstem encephalopathy. Methods  The clinical and imaging data of 3 cases of hypertensive brainstem encephalopathy were summarized and analyzed for the purpose of improving the acumen in diagnosis and treatment. Results All the 3 patients showed relatively mild clinical symptoms, and they were misdiagnosed in different degrees during the treatment, but their clinical symptoms were improved by rapid and effective antihypertensive therapy. Cerebral CT and MRI scans revealed extensive abnormal signals in brain stem, with or without supratentorial lesions and brain stem hemorrhage. The lesions as revealed by imaging were improved significantly after treatment. Conclusions Clinical-radiographic dissociation is the classic feature of hypertensive brainstem encephalopathy. The clinical symptoms and lesions as shown by imaging could be improved after active treatment. DOI: 10.11855/j.issn.0577-7402.2015.06.03

  6. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.

    Science.gov (United States)

    Thai-Van, Hung; Cozma, Sebastian; Boutitie, Florent; Disant, François; Truy, Eric; Collet, Lionel

    2007-03-01

    Maturation of acoustically evoked brainstem responses (ABR) in hearing children is not complete at birth but rather continues over the first two years of life. In particular, it has been established that the decrease in ABR wave V latency can be modeled as the sum of two decaying exponential functions with respective time-constants of 4 and 50 weeks [Eggermont, J.J., Salamy, A., 1988a. Maturational time-course for the ABR in preterm and full term infants. Hear Res 33, 35-47; Eggermont, J.J., Salamy, A., 1988b. Development of ABR parameters in a preterm and a term born population. Ear Hear 9, 283-9]. Here, we investigated the maturation of electrically evoked auditory brainstem responses (EABR) in 55 deaf children who recovered hearing after cochlear implantation, and proposed a predictive model of EABR maturation depending on the onset of deafness. The pattern of EABR maturation over the first 2 years of cochlear implant use was compared with the normal pattern of ABR maturation in hearing children. Changes in EABR wave V latency over the 2 years following cochlear implant connection were analyzed in two groups of children. The first group (n=41) consisted of children with early-onset of deafness (mostly congenital), and the second (n=14) of children who had become profoundly deaf after 1 year of age. The modeling of changes in EABR wave V latency with time was based on the mean values from each of the two groups, allowing comparison of the rates of EABR maturation between groups. Differences between EABRs elicited at the basal and apical ends of the implant electrode array were also tested. There was no influence of age at implantation on the rate of wave V latency change. The main factor for EABR changes was the time in sound. Indeed, significant maturation was observed over the first 2 years of implant use only in the group with early-onset deafness. In this group maturation of wave V progressed as in the ABR model of [Eggermont, J.J., Salamy, A., 1988a

  7. A probabilistic atlas of human brainstem pathways based on connectome imaging data.

    Science.gov (United States)

    Tang, Yuchun; Sun, Wei; Toga, Arthur W; Ringman, John M; Shi, Yonggang

    2018-04-01

    The brainstem is a critical structure that regulates vital autonomic functions, houses the cranial nerves and their nuclei, relays motor and sensory information between the brain and spinal cord, and modulates cognition, mood, and emotions. As a primary relay center, the fiber pathways of the brainstem include efferent and afferent connections among the cerebral cortex, spinal cord, and cerebellum. While diffusion MRI has been successfully applied to map various brain pathways, its application for the in vivo imaging of the brainstem pathways has been limited due to inadequate resolution and large susceptibility-induced distortion artifacts. With the release of high-resolution data from the Human Connectome Project (HCP), there is increasing interest in mapping human brainstem pathways. Previous works relying on HCP data to study brainstem pathways, however, did not consider the prevalence (>80%) of large distortions in the brainstem even after the application of correction procedures from the HCP-Pipeline. They were also limited in the lack of adequate consideration of subject variability in either fiber pathways or region of interests (ROIs) used for bundle reconstruction. To overcome these limitations, we develop in this work a probabilistic atlas of 23 major brainstem bundles using high-quality HCP data passing rigorous quality control. For the large-scale data from the 500-Subject release of HCP, we conducted extensive quality controls to exclude subjects with severe distortions in the brainstem area. After that, we developed a systematic protocol to manually delineate 1300 ROIs on 20 HCP subjects (10 males; 10 females) for the reconstruction of fiber bundles using tractography techniques. Finally, we leveraged our novel connectome modeling techniques including high order fiber orientation distribution (FOD) reconstruction from multi-shell diffusion imaging and topography-preserving tract filtering algorithms to successfully reconstruct the 23 fiber bundles

  8. Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds

    DEFF Research Database (Denmark)

    Mehraei, Golbarg; Paredes Gallardo, Andreu; Shinn-Cunningham, Barbara G.

    2017-01-01

    In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels...... and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave......-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low...

  9. Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Berezova, Inna V; Dygalo, Nikolay N

    2012-01-01

    Mechanisms underlying stress-induced depression and antidepressant drug action were shown to involve alterations in serotonergic (5-HT) neurotransmission and expression of genes coding for proteins associated with neurotrophic signaling pathways and cell-survival in the hippocampus and cortex. Expression of these genes in the brainstem containing 5-HT neurons may also be related to vulnerability or resilience to stress-related psychopathology. Here we investigated 5-HT markers and expression of genes for Brain-Derived Neurotrophic Factor (BDNF) and apoptotic proteins in the brainstem in relation to swim stress-induced behavioral despair. We found that anti-apoptotic Bcl-xL gene is sensitive to stress during the course of fluoxetine administration. Responsiveness of this gene to stress appeared concomitantly with an antidepressant-like effect of fluoxetine in the forced swim test. Bcl-xL transcript levels showed negative correlations with duration of immobility in the test and 5-HT turnover in the brainstem. In contrast, BDNF and pro-apoptotic protein Bax mRNA levels were unchanged by either fluoxetine or stress, suggesting specificity of Bcl-xL gene responses to these treatments. We also found that the levels of mRNAs for tryptophan hydroxylase-2 (TPH2) and 5-HT transporter (5-HTT) were significantly down-regulated following prolonged treatment with fluoxetine, but were not affected by stress. Unlike TPH2 and 5-HTT, 5-HT1A receptor mRNA levels were not altered by fluoxetine but significantly increased in response to swim stress. These data show that long-term fluoxetine treatment leads to changes in 5-HT and Bcl-xL responses to stress associated with antidepressant-like effects of the drug. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Evidence for altered basal ganglia-brainstem connections in cervical dystonia.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    Full Text Available There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia.In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients.These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.

  11. Intraglomerular inhibition maintains mitral cell response contrast across input frequencies.

    Science.gov (United States)

    Shao, Zuoyi; Puche, Adam C; Shipley, Michael T

    2013-11-01

    Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MTCs) and external tufted cells (ETCs); ETCs provide additional feed-forward excitation to MTCs. Both are strongly regulated by intraglomerular inhibition that can last up to 1 s and, when blocked, dramatically increases ON-evoked MC spiking. Intraglomerular inhibition thus limits the magnitude and duration of MC spike responses to sensory input. In vivo, sensory input is repetitive, dictated by sniffing rates from 1 to 8 Hz, potentially summing intraglomerular inhibition. To investigate this, we recorded MTC responses to 1- to 8-Hz ON stimulation in slices. Inhibitory postsynaptic current area (charge) following each ON stimulation was unchanged from 1 to 5 Hz and modestly paired-pulse attenuated at 8 Hz, suggesting there is no summation and only limited decrement at the highest input frequencies. Next, we investigated frequency independence of intraglomerular inhibition on MC spiking. MCs respond to single ON shocks with an initial spike burst followed by reduced spiking decaying to baseline. Upon repetitive ON stimulation peak spiking is identical across input frequencies but the ratio of peak-to-minimum rate before the stimulus (max-min) diminishes from 30:1 at 1 Hz to 15:1 at 8 Hz. When intraglomerular inhibition is selectively blocked, peak spike rate is unchanged but trough spiking increases markedly decreasing max-min firing ratios from 30:1 at 1 Hz to 2:1 at 8 Hz. Together, these results suggest intraglomerular inhibition is relatively frequency independent and can "sharpen" MC responses to input across the range of frequencies. This suggests that glomerular circuits can maintain "contrast" in MC encoding during sniff-sampled inputs.

  12. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision......-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions....

  13. The Structural, Functional and Molecular Organization of the Brainstem

    Directory of Open Access Journals (Sweden)

    Rudolf eNieuwenhuys

    2011-06-01

    Full Text Available According to Wilhelm His (1891, 1893 the brainstem consists of two longitudinal zones, the dorsal alar plate (sensory in nature and the ventral basal plate (motor in nature. Johnston and Herrick indicated that both plates can be subdivided into separate somatic and visceral zones, distinguishing somatosensory and viscerosensory zones within the alar plate, and visceromotor and somatomotor zones within the basal plate. To test the validity of this ‘four-functional-zones’ concept, I developed a topological procedure, surveying the spatial relationships of the various cell masses in the brainstem in a single figure. Brainstems of 16 different anamniote species were analyzed, and revealed that the brainstems are clearly divisible into four morphological zones, which correspond largely with the functional zones of Johnston and Herrick. Exceptions include (1 the magnocellular vestibular nucleus situated in the viscerosensory zone; (2 the basal plate containing a number of evidently non-motor centres (superior and inferior olives. Nevertheless the ‘functional zonal model’ has explanatory value. Thus, it is possible to interpret certain brain specializations related to particular behavioural profiles, as ‘local hypertrophies’ of one or two functional columns. Recent developmental molecular studies on brains of birds and mammals confirmed the presence of longitudinal zones, and also showed molecularly defined transverse bands or neuromeres throughout development. The intersecting boundaries of the longitudinal zones and the transverse bands appeared to delimit radially arranged histogenetic domains. Because neuromeres have been observed in embryonic and larval stages of numerous anamniote species, it may be hypothesized that the brainstems of all vertebrates share a basic organizational plan, in which intersecting longitudinal and transverse zones form fundamental histogenetic and genoarchitectonic units.

  14. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei.

    Science.gov (United States)

    Tang, Yezhong; Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2012-06-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of low to middle best-frequency fibers that bifurcate to project to both the NA and the nucleus magnocellularis (NM). The projection to NM formed large somatic terminals and bouton terminals. NM projected bilaterally to the second-order nucleus laminaris (NL), such that the ipsilateral projection innervated the dorsal NL neuropil, whereas the contralateral projection crossed the midline and innervated the ventral dendrites of NL neurons. Neurons in NL were generally bitufted, with dorsoventrally oriented dendrites. NL projected to the contralateral torus semicircularis and to the contralateral ventral superior olive (SOv). NA projected to ipsilateral dorsal superior olive (SOd), sent a major projection to the contralateral SOv, and projected to torus semicircularis. The SOd projected to the contralateral SOv, which projected back to the ipsilateral NM, NL, and NA. These results suggest homologous patterns of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem. Copyright © 2011 Wiley Periodicals, Inc.

  15. Minocycline treatment attenuates non-Ang II[125I] CGP42112 binding in brainstem following nodose ganglionectomy

    International Nuclear Information System (INIS)

    Roulston, C.L.; Widdop, R.E.; Jarrott, B.

    2001-01-01

    Full text: Non-Ang II [ 125 I]CGP42112 binding was revealed in rat dorsal motor nucleus (DMX), ambiguus nucleus (n.amb), and nucleus of the solitary tract (NTS), following unilateral nodose ganglionectomy (NGX). This upregulated binding may be due to activated microglia. Given that tetracyclines inhibit microglia activation, we examined the effect of minocycline treatment on [ 125 I]CGP42112 and [ 3 H] PK11195 binding (a know marker for activated microglia), following NGX using autoradiography. Male Wistar Kyoto (WKY)rats underwent NGX or sham operation (mexohexitione anaesthesia, 60mg/kg ip). Animals were given saline or minocycline (50 mg/kg ip)12 hours before surgery and twice daily after NGX (each 100mg/kg ip)for 3 days. Slide-mounted brainstem sections (14 μm) were prepared and incubated in the presence of either [ 125 I]CGP42112 (0.3nM) or [ 3 H]PK11195 (3nM) and apposed to film for 10 days. Specific binding was determined in adjacent sections co- incubated with unlabelled displacers. Non-Ang II [ 125 I]CGP42112 binding in DMX and n.amb was revealed on the denervated side in saline-treated rats (n=4), whereas this effect was reduced by ∼41 % and ∼ 54%, respectively, in minocycline-treated rats (n=4). Analogous experiments using [ 3 H] PK11195 showed upregulated binding on the denervated side in DMX (44 ± 4 %) and in n.amb (68 ± 3 %) of saline-treated rats (n=4), which was reduced by ∼ 45% with minocyline treatment in both nuclei (n=4). Minocycline also attenuated NGX-induced upregulated binding to both ligands in the NTS. Thus, these data suggest that non-Ang II[ 125 I]CGP42112 binds to activated microglia, indicated by reduced binding densities following treatment with minocycline. Copyright (2001) Australian Neuroscience Society

  16. Sensitization of trigeminal brainstem pathways in a model for tear deficient dry eye.

    Science.gov (United States)

    Rahman, Mostafeezur; Okamoto, Keiichiro; Thompson, Randall; Katagiri, Ayano; Bereiter, David A

    2015-05-01

    Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. Ocular-responsive neurons were recorded at the interpolaris/caudalis transition (Vi/Vc) and Vc/upper cervical cord (Vc/C1) regions under isoflurane, whereas OOemg activity was recorded under urethane. Spontaneous tear volume was reduced by ∼50% at 14 days after exorbital gland removal. Hypertonic saline-evoked eye blink behavior in awake rats was enhanced throughout the 14 days after surgery. Saline-evoked neural activity at the Vi/Vc transition and in superficial and deep laminae at the Vc/C1 region was greatly enhanced in DE rats. Neurons from DE rats classified as wide dynamic range displayed enlarged convergent periorbital receptive fields consistent with central sensitization. Saline-evoked OOemg activity was markedly enhanced in DE rats compared with controls. Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline-evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation.

  17. Intrinsic brainstem schwannoma – A rare clinical entity and a histological enigma

    Directory of Open Access Journals (Sweden)

    Anil Kumar Sharma

    2016-01-01

    Full Text Available Intraparenchymal schwannomas arising in the brainstem are very rare, and only eight cases have been reported in literature till now. We report an intraparenchymal brainstem schwannoma presenting with the classical clinical presentation of an intrinsic brainstem lesion, and discuss its clinicoradiological characteristics and histological origins. We highlight the importance of an intraoperative frozen section diagnosis in such cases. Intraoperative tissue diagnosis significantly may alter the surgical strategy, which should be aimed at near total intracapsular decompression of the schwannoma.

  18. Effects of auditory training in individuals with high-frequency hearing loss

    Directory of Open Access Journals (Sweden)

    Renata Beatriz Fernandes Santos

    2014-01-01

    Full Text Available OBJECTIVE: To determine the effects of a formal auditory training program on the behavioral, electrophysiological and subjective aspects of auditory function in individuals with bilateral high-frequency hearing loss. METHOD: A prospective study of seven individuals aged 46 to 57 years with symmetric, moderate high-frequency hearing loss ranging from 3 to 8 kHz was conducted. Evaluations of auditory processing (sound location, verbal and non-verbal sequential memory tests, the speech-in-noise test, the staggered spondaic word test, synthetic sentence identification with competitive ipsilateral and contralateral competitive messages, random gap detection and the standard duration test, auditory brainstem response and long-latency potentials and the administration of the Abbreviated Profile of Hearing Aid Benefit questionnaire were performed in a sound booth before and immediately after formal auditory training. RESULTS: All of the participants demonstrated abnormal pre-training long-latency characteristics (abnormal latency or absence of the P3 component and these abnormal characteristics were maintained in six of the seven individuals at the post-training evaluation. No significant differences were found between ears in the quantitative analysis of auditory brainstem responses or long-latency potentials. However, the subjects demonstrated improvements on all behavioral tests. For the questionnaire, the difference on the background noise subscale achieved statistical significance. CONCLUSION: Auditory training in adults with high-frequency hearing loss led to improvements in figure-background hearing skills for verbal sounds, temporal ordination and resolution, and communication in noisy environments. Electrophysiological changes were also observed because, after the training, some long latency components that were absent pre-training were observed during the re-evaluation.

  19. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K

    2000-07-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (autho000.

  20. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    International Nuclear Information System (INIS)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K.

    2000-01-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (author)

  1. Slot Machine Response Frequency Predicts Pathological Gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Rømer Thomsen, Kristine; Møller, Arne

    2013-01-01

    Slot machines are among the most addictive forms of gambling, and pathological gambling slot machine players represent the largest group of treatment seekers, accounting for 35% to 93% of the population. Pathological gambling sufferers have significantly higher response frequency (games / time......) on slot machines compared with non-problem gamblers, which may suggest increased reinforcement of the gambling behavior in pathological gambling. However, to date it is unknown whether or not the increased response frequency in pathological gambling is associated with symptom severity of the disorder....... This study tested the hypothesis that response frequency is associated with symptom severity in pathological gambling. We tested response frequency among twenty-two pathological gambling sufferers and twenty-one non-problem gamblers on a commercially available slot machine, and screened for pathological...

  2. Diffusion tensor imaging of the brainstem in children with achondroplasia.

    Science.gov (United States)

    Bosemani, Thangamadhan; Orman, Gunes; Carson, Kathryn A; Meoded, Avner; Huisman, Thierry A G M; Poretti, Andrea

    2014-11-01

    The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial, and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo-15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo-14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In

  3. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    Directory of Open Access Journals (Sweden)

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  4. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  5. Astrocyte-secreted factors modulate a gradient of primary dendritic arbors in nucleus laminaris of the avian auditory brainstem.

    Directory of Open Access Journals (Sweden)

    Matthew J Korn

    Full Text Available Neurons in nucleus laminaris (NL receive binaural, tonotopically matched input from nucleus magnocelluaris (NM onto bitufted dendrites that display a gradient of dendritic arbor size. These features improve computation of interaural time differences, which are used to determine the locations of sound sources. The dendritic gradient emerges following a period of significant reorganization at embryonic day 15 (E15, which coincides with the emergence of astrocytes that express glial fibrillary acidic protein (GFAP in the auditory brainstem. The major changes include a loss of total dendritic length, a systematic loss of primary dendrites along the tonotopic axis, and lengthening of primary dendrites on caudolateral NL neurons. Here we have tested whether astrocyte-derived molecules contribute to these changes in dendritic morphology. We used an organotypic brainstem slice preparation to perform repeated imaging of individual dye-filled NL neurons to determine the effects of astrocyte-conditioned medium (ACM on dendritic morphology. We found that treatment with ACM induced a decrease in the number of primary dendrites in a tonotopically graded manner similar to that observed during normal development. Our data introduce a new interaction between astrocytes and neurons in the auditory brainstem and suggest that these astrocytes influence multiple aspects of auditory brainstem maturation.

  6. Musicians and Tone-Language Speakers Share Enhanced Brainstem Encoding but Not Perceptual Benefits for Musical Pitch

    Science.gov (United States)

    Bidelman, Gavin M.; Gandour, Jackson T.; Krishnan, Ananthanarayan

    2011-01-01

    Behavioral and neurophysiological transfer effects from music experience to language processing are well-established but it is currently unclear whether or not linguistic expertise (e.g., speaking a tone language) benefits music-related processing and its perception. Here, we compare brainstem responses of English-speaking musicians/non-musicians…

  7. Auditory brainstem evoked responses and temperature monitoring during pediatric cardiopulmonary bypass.

    Science.gov (United States)

    Rodriguez, R A; Edmonds, H L; Auden, S M; Austin, E H

    1999-09-01

    To examine the effects of temperature on auditory brainstem responses (ABRs) in infants during hypothermic cardiopulmonary bypass for total circulatory arrest (TCA). The relationship between ABRs (as a surrogate measure of core-brain temperature) and body temperature as measured at several temperature monitoring sites was determined. In a prospective, observational study, ABRs were recorded non-invasively at normothermia and at every 1 or 2 degrees C change in ear-canal temperature during cooling and rewarming in 15 infants (ages: 2 days to 14 months) that required TCA. The ABR latencies and amplitudes and the lowest temperatures at which an ABR was identified (the threshold) were measured during both cooling and rewarming. Temperatures from four standard temperature monitoring sites were simultaneously recorded. The latencies of ABRs increased and amplitudes decreased with cooling (P < 0.01), but rewarming reversed these effects. The ABR threshold temperature as related to each monitoring site (ear-canal, nasopharynx, esophagus and bladder) was respectively determined as 23 +/- 2.2 degrees C, 20.8 +/- 1.7 degrees C, 14.6 +/- 3.4 degrees C, and 21.5 +/- 3.8 degrees C during cooling and 21.8 +/- 1.6 degrees C, 22.4 +/- 2.0 degrees C, 27.6 +/- 3.6 degrees C, and 23.0 +/- 2.4 degrees C during rewarming. The rewarming latencies were shorter and Q10 latencies smaller than the corresponding cooling values (P < 0.01). Esophageal and bladder sites were more susceptible to temperature variations as compared with the ear-canal and nasopharynx. No temperature site reliably predicted an electrophysiological threshold. A faster latency recovery during rewarming suggests that body temperature monitoring underestimates the effects of rewarming in the core-brain. ABRs may be helpful to monitor the effects of cooling and rewarming on the core-brain during pediatric cardiopulmonary bypass.

  8. Investigation of the Relationship Between Electrical Stimulation Frequency and Muscle Frequency Response Under Submaximal Contractions.

    Science.gov (United States)

    Papcke, Caluê; Krueger, Eddy; Olandoski, Marcia; Nogueira-Neto, Guilherme Nunes; Nohama, Percy; Scheeren, Eduardo Mendonça

    2018-03-25

    Neuromuscular electrical stimulation (NMES) is a common tool that is used in clinical and laboratory experiments and can be combined with mechanomyography (MMG) for biofeedback in neuroprostheses. However, it is not clear if the electrical current applied to neuromuscular tissues influences the MMG signal in submaximal contractions. The objective of this study is to investigate whether the electrical stimulation frequency influences the mechanomyographic frequency response of the rectus femoris muscle during submaximal contractions. Thirteen male participants performed three maximal voluntary isometric contractions (MVIC) recorded in isometric conditions to determine the maximal force of knee extensors. This was followed by the application of nine modulated NMES frequencies (20, 25, 30, 35, 40, 45, 50, 75, and 100 Hz) to evoke 5% MVIC. Muscle behavior was monitored by the analysis of MMG signals, which were decomposed into frequency bands by using a Cauchy wavelet transform. For each applied electrical stimulus frequency, the mean MMG spectral/frequency response was estimated for each axis (X, Y, and Z axes) of the MMG sensor with the values of the frequency bands used as weights (weighted mean). Only with respect to the Z (perpendicular) axis of the MMG signal, the stimulus frequency of 20 Hz did not exhibit any difference with the weighted mean (P = 0.666). For the frequencies of 20 and 25 Hz, the MMG signal displayed the bands between 12 and 16 Hz in the three axes (P frequencies from 30 to 100 Hz, the muscle presented a higher concentration of the MMG signal between the 22 and 29 Hz bands for the X and Z axes, and between 16 and 34 Hz bands for the Y axis (P frequency, because their frequency contents tend to mainly remain between the 20- and 25-Hz bands. Hence, NMES does not interfere with the use of MMG in neuroprosthesis. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. An Extended System Frequency Response Model Considering Wind Power Participation in Frequency Regulation

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available With increasing penetration of wind power into the power system, wind power participation in frequency regulation is regarded as a beneficial strategy to improve the dynamic frequency response characteristics of power systems. The traditional power system frequency response (SFR model, which only includes synchronous generators, is no longer suitable for power systems with high penetrated wind power. An extended SFR model, based on the reduced-order model of wind turbine generator (WTG and the traditional SFR model, is presented in this paper. In the extended SFR model, the reduced-order model of WTG with combined frequency control is deduced by employing small signal analysis theory. Afterwards, the stability analysis of a closed-loop control system for the extended SFR model is carried out. Time-domain simulations using a test system are performed to validate the effectiveness of the extended SFR model; this model can provide a simpler, clearer and faster way to analyze the dynamic frequency response characteristic for a high-wind integrated power systems. The impact of additional frequency control parameters and wind speed disturbances on the system dynamic frequency response characteristics are investigated.

  10. MR findings of neuro-Behcet's disease: initial and follow-up changes

    International Nuclear Information System (INIS)

    Kim, Hyun Beom; Chang, Ki Hyun; Kim, Hong Dae; Han, Moon Hee; Kang, Heung Sik; Lee, Joon Woo; Yu, In Kyu; Seong, Su Ok; Kim, Hyung Seok

    2000-01-01

    To evaluate the MR findings of neuro B ehcet's disease, and changes occurring during follow up. Brain MR imaging was performed in 19 patients in whom neuro-Behcet's disease had been clinically diagnosed. After treatment with corticosteroids and immunosuppressive agents, 23 follow-up MR images were obtained in 12 patients, and a total of 42 MR images were retrospectively reviewed by two radiologists. Of the 19 patients, 17 (89%) had parenchymal lesions, and the other two had dural venous sinus thrombosis. Among the 17 patients with parenchymal lesions, three showed leptomeningeal enhancement. A total of 72 parenchymal lesions were detected on initial MR images; 55 (76%) were patchy or nodular in shape and the lesion of the internal capsule appeared linear. Seventeen lesions (24%) in 12 patients were confluent. In order of frequency, the involved sites were the pons, midbrain, thalamus, basal ganglia, internal capsule, and frontal lobe. Thirteen lesions of 39 lesions detected on postcontrast images were enhanced, and a mass effect was seen in the area of 16 parenchymal lesions. Associated findings were microhemorrhage of the brain in two patients and spinal cord involvement in one. On short-term follow-up images obtained 1 week to 2 months after intensive treatment during the acute stage of the illness, the leptomeningeal enhancement seen in three patients had decreased and most parenchymal lesions showed improvement. Long-term follow-up images obtained 3 months to 3 years late showed that parenchymal lesions had relapsed in five patients, and brainstem atrophy had developed or progressed in five others. The most characteristic MR finding of neuro-Behcet's disease is multiple non-hemorrhagic lesions involving the brainstem. Leptomeningeal enhancement and dural venous sinus thrombosis may also be noted. On follow-up MR, the lesions may show either improvement or aggravation, and brainstem atrophy is not uncommon. (author)

  11. Optimal technique of linear accelerator–based stereotactic radiosurgery for tumors adjacent to brainstem

    International Nuclear Information System (INIS)

    Chang, Chiou-Shiung; Hwang, Jing-Min; Tai, Po-An; Chang, You-Kang; Wang, Yu-Nong; Shih, Rompin; Chuang, Keh-Shih

    2016-01-01

    Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)–based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5 different lesion catalogs were collected, and the patients were divided into 2 distance groups—1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5 cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and < 1 cm. Comparison was then made among the following 3 types of LINAC-based radiosurgery: dynamic conformal arcs (DCA), intensity-modulated radiosurgery (IMRS), and volumetric modulated arc radiotherapy (VMAT). All techniques included multiple noncoplanar beams or arcs with or without intensity-modulated delivery. The volume of gross tumor volume (GTV) ranged from 0.2 cm 3 to 21.9 cm 3 . Regarding the dose homogeneity index (HI ICRU ) and conformity index (CI ICRU ) were without significant difference between techniques statistically. However, the average CI ICRU = 1.09 ± 0.56 achieved by VMAT was the best of the 3 techniques. Moreover, notable improvement in gradient index (GI) was observed when VMAT was used (0.74 ± 0.13), and this result was significantly better than those achieved by the 2 other techniques (p < 0.05). For V 4 Gy of brainstem, both VMAT (2.5%) and IMRS (2.7%) were significantly lower than DCA (4.9%), both at the p < 0.05 level. Regarding V 2 Gy of normal brain, VMAT plans had attained 6.4 ± 5%; this was significantly better

  12. MRI and associated clinical characteristics of EV71-induced brainstem encephalitis in children with hand-foot-mouth disease

    International Nuclear Information System (INIS)

    Zeng, Hongwu; Gan, Yungen; Wen, Feiqiu; Huang, Wenxian

    2012-01-01

    This study was conducted to investigate MRI and associated clinical characteristics of brainstem encephalitis induced by enterovirus 71 (EV71) in children with hand-foot-mouth disease (HFMD). We analyzed clinical and imaging data from 42 HFMD cases with EV71-induced brainstem encephalitis. All patients underwent plain and enhanced MRI cranial scans and were placed into one of two groups according to MRI enhancement results, an enhanced group or a nonenhanced group. Thirty-two cases were positive on MRI exam. The primary location of the lesion for brainstem encephalitis was the dorsal pons and medulla oblongata (32 cases), followed by the cerebellar dentate nucleus (8 cases), midbrain (5 cases), and thalamus (2 cases). Plain T1-weighted images showed isointense or hypointense signals, and T2-weighted images showed isointense and hyperintense signals. Enhanced MRI scans showed that 12 cases had slight to moderate enhancement; 4 of these were normal on plain scan. The time from MRI examination to disease onset was statistically different between the enhanced (n = 12) and nonenhanced (n = 21) groups with a mean of 7.67 days (SD = 1.07) vs 11.95 days (SD = 5.33), respectively. The most common neurological symptoms for brainstem encephalitis were myoclonus and tremor. The greater the area of affected brain, the more severe the clinical symptoms were. The locations of EV71-induced HFMD-associated brainstem encephalitis lesions are relatively specific. Enhanced MRI scans could also identify the lesions missed by early plain scans. MRI scans can provide important information for clinical evaluation and treatment. (orig.)

  13. MRI and associated clinical characteristics of EV71-induced brainstem encephalitis in children with hand-foot-mouth disease

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hongwu; Gan, Yungen [Shenzhen Children' s Hospital, Department of Radiology, Shenzhen (China); Wen, Feiqiu [Shenzhen Children' s Hospital, Department of Neurology, Shenzhen (China); Huang, Wenxian [Shenzhen Children' s Hospital, Department of Respiratory, Shenzhen (China)

    2012-06-15

    This study was conducted to investigate MRI and associated clinical characteristics of brainstem encephalitis induced by enterovirus 71 (EV71) in children with hand-foot-mouth disease (HFMD). We analyzed clinical and imaging data from 42 HFMD cases with EV71-induced brainstem encephalitis. All patients underwent plain and enhanced MRI cranial scans and were placed into one of two groups according to MRI enhancement results, an enhanced group or a nonenhanced group. Thirty-two cases were positive on MRI exam. The primary location of the lesion for brainstem encephalitis was the dorsal pons and medulla oblongata (32 cases), followed by the cerebellar dentate nucleus (8 cases), midbrain (5 cases), and thalamus (2 cases). Plain T1-weighted images showed isointense or hypointense signals, and T2-weighted images showed isointense and hyperintense signals. Enhanced MRI scans showed that 12 cases had slight to moderate enhancement; 4 of these were normal on plain scan. The time from MRI examination to disease onset was statistically different between the enhanced (n = 12) and nonenhanced (n = 21) groups with a mean of 7.67 days (SD = 1.07) vs 11.95 days (SD = 5.33), respectively. The most common neurological symptoms for brainstem encephalitis were myoclonus and tremor. The greater the area of affected brain, the more severe the clinical symptoms were. The locations of EV71-induced HFMD-associated brainstem encephalitis lesions are relatively specific. Enhanced MRI scans could also identify the lesions missed by early plain scans. MRI scans can provide important information for clinical evaluation and treatment. (orig.)

  14. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura.

    Science.gov (United States)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E; Younis, Samaira; Wolfram, Frauke; Cramer, Stig P; Larsson, Henrik B W; Ashina, Messoud

    2017-06-01

    See Moskowitz (doi:10.1093/brain/awx099) for a scientific commentary on this article.The migraine aura is characterized by transient focal cortical disturbances causing dramatic neurological symptoms that are usually followed by migraine headache. It is currently not understood how the aura symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas of the anterior, middle and posterior circulation during spontaneous attacks of migraine with aura. Patients reported to our institution to undergo magnetic resonance imaging during the headache phase after presenting with typical visual aura. Nineteen patients were scanned during attacks and on an attack-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability in any of the investigated regions. There was no correlation between blood-brain barrier permeability, brain perfusion, and time from symptom onset to examination or pain intensity. Our findings demonstrate hyperperfusion in brainstem during the headache phase of migraine with aura, while the blood-brain barrier remains intact during attacks of migraine with aura. These data thus contradict the preclinical hypothesis of cortical spreading depression-induced blood-brain barrier

  15. Purinergic receptors are involved in tooth-pulp evoked nocifensive behavior and brainstem neuronal activity

    Directory of Open Access Journals (Sweden)

    Sessle Barry J

    2010-09-01

    Full Text Available Abstract Background To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK phosphorylation in trigeminal spinal subnucleus caudalis (Vc, trigeminal spinal subnucleus interpolaris (Vi, upper cervical spinal cord (C1/C2 and paratrigeminal nucleus (Pa5 neurons were analyzed in rats. Results Genioglossus (GG muscle activity was evoked by pulpal application of 100 mM α,β-meATP and was significantly larger than GG activity following vehicle (phosphate-buffered saline PBS application (p 1, P2X3 and, P2X2/3 antagonist. A large number of pERK-LI cells were expressed in the Vc, Vi/Vc, C1/C2 and Pa5 at 5 min following pulpal application of 100 mM α,β-meATP compared to PBS application to the pulp (p Conclusions The present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.

  16. Study of automated segmentation of the cerebellum and brainstem on brain MR images

    International Nuclear Information System (INIS)

    Hayashi, Norio; Matsuura, Yukihiro; Sanada, Shigeru; Suzuki, Masayuki

    2005-01-01

    MR imaging is an important method for diagnosing abnormalities of the brain. This paper presents an automated method to segment the cerebellum and brainstem for brain MR images. MR images were obtained from 10 normal subjects (male 4, female 6; 22-75 years old, average 31.0 years) and 15 patients with brain atrophy (male 3, female 12; 62-85 years of age, average 76.0 years). The automated method consisted of the following four steps: segmentation of the brain on original images, detection of an upper plane of the cerebellum using the Hough transform, correction of the plane using three-dimensional (3D) information, and segmentation of the cerebellum and brainstem using the plane. The results indicated that the regions obtained by the automated method were visually similar to those obtained by a manual method. The average rates of coincidence between the automated method and manual method were 83.0±9.0% in normal subjects and 86.4±3.6% in patients. (author)

  17. Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence

    Science.gov (United States)

    Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles

    2015-01-01

    The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective. PMID:26348628

  18. Optimal technique of linear accelerator-based stereotactic radiosurgery for tumors adjacent to brainstem.

    Science.gov (United States)

    Chang, Chiou-Shiung; Hwang, Jing-Min; Tai, Po-An; Chang, You-Kang; Wang, Yu-Nong; Shih, Rompin; Chuang, Keh-Shih

    2016-01-01

    Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)-based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5 different lesion catalogs were collected, and the patients were divided into 2 distance groups-1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and linear accelerator is only 1 modality can to establish for SRS treatment. Based on statistical evidence retrospectively, we recommend VMAT as the optimal technique for delivering treatment to tumors adjacent to brainstem. Copyright © 2016 American Association of Medical Dosimetrists. All rights reserved.

  19. Loads as a Resource: Frequency Responsive Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Tess L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This report presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC). The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.

  20. Characterising Ageing in the Human Brainstem Using Quantitative Multimodal MRI Analysis

    Directory of Open Access Journals (Sweden)

    Christian eLambert

    2013-08-01

    Full Text Available Ageing is ubiquitous to the human condition. The MRI correlates of healthy ageing have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI and DTI. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analysing this region. By utilising a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of ageing within the human brainstem in vivo. Using quantitative MRI (qMRI, tensor based morphometry (TBM and voxel based quantification (VBQ, the volumetric and quantitative changes across healthy adults between 19-75 years were characterised. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetisation transfer (MT and increase in proton density (PD, accounting for the previously described midbrain shrinkage. Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterised, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterised by early, pre-clinical involvement of the brainstem, such as Parkinson’s and Alzheimer’s diseases.

  1. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability

    OpenAIRE

    Wan, Ruiqian; Weigand, Letitia A.; Bateman, Ryan; Griffioen, Kathleen; Mendelowitz, David; Mattson, Mark P.

    2014-01-01

    Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Mice with a BDNF haplo...

  2. Combined CMV- and HSV-1 brainstem encephalitis restricted to medulla oblongata.

    Science.gov (United States)

    Katchanov, J; Branding, G; Stocker, H

    2014-04-15

    We report a very rare case of a combined CMV- and HSV-1 isolated brainstem encephalitis restricted to medulla oblongata in a patient with advanced HIV disease. Neither limbic nor general ventricular involvement was detected on neuroimaging. The case highlights the importance of testing for HSV-1 and CMV in HIV-infected patients presenting with an isolated brainstem syndrome. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. The auditory enhancement effect is not reflected in the 80-Hz auditory steady-state response.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J; Portron, Arthur; Semal, Catherine; Demany, Laurent

    2014-08-01

    The perceptual salience of a target tone presented in a multitone background is increased by the presentation of a precursor sound consisting of the multitone background alone. It has been proposed that this "enhancement" phenomenon results from an effective amplification of the neural response to the target tone. In this study, we tested this hypothesis in humans, by comparing the auditory steady-state response (ASSR) to a target tone that was enhanced by a precursor sound with the ASSR to a target tone that was not enhanced. In order to record neural responses originating in the brainstem, the ASSR was elicited by amplitude modulating the target tone at a frequency close to 80 Hz. The results did not show evidence of an amplified neural response to enhanced tones. In a control condition, we measured the ASSR to a target tone that, instead of being perceptually enhanced by a precursor sound, was acoustically increased in level. This level increase matched the magnitude of enhancement estimated psychophysically with a forward masking paradigm in a previous experimental phase. We found that the ASSR to the tone acoustically increased in level was significantly greater than the ASSR to the tone enhanced by the precursor sound. Overall, our results suggest that the enhancement effect cannot be explained by an amplified neural response at the level of the brainstem. However, an alternative possibility is that brainstem neurons with enhanced responses do not contribute to the scalp-recorded ASSR.

  5. Brainstem auditory evoked responses in an equine patient population: part I--adult horses.

    Science.gov (United States)

    Aleman, M; Holliday, T A; Nieto, J E; Williams, D C

    2014-01-01

    Brainstem auditory evoked response has been an underused diagnostic modality in horses as evidenced by few reports on the subject. To describe BAER findings, common clinical signs, and causes of hearing loss in adult horses. Study group, 76 horses; control group, 8 horses. Retrospective. BAER records from the Clinical Neurophysiology Laboratory were reviewed from the years of 1982 to 2013. Peak latencies, amplitudes, and interpeak intervals were measured when visible. Horses were grouped under disease categories. Descriptive statistics and a posthoc Bonferroni test were performed. Fifty-seven of 76 horses had BAER deficits. There was no breed or sex predisposition, with the exception of American Paint horses diagnosed with congenital sensorineural deafness. Eighty-six percent (n = 49/57) of the horses were younger than 16 years of age. The most common causes of BAER abnormalities were temporohyoid osteoarthropathy (THO, n = 20/20; abnormalities/total), congenital sensorineural deafness in Paint horses (17/17), multifocal brain disease (13/16), and otitis media/interna (4/4). Auditory loss was bilateral and unilateral in 74% (n = 42/57) and 26% (n = 15/57) of the horses, respectively. The most common causes of bilateral auditory loss were sensorineural deafness, THO, and multifocal brain disease whereas THO and otitis were the most common causes of unilateral deficits. Auditory deficits should be investigated in horses with altered behavior, THO, multifocal brain disease, otitis, and in horses with certain coat and eye color patterns. BAER testing is an objective and noninvasive diagnostic modality to assess auditory function in horses. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  6. LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE.

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T

    2014-12-01

    -term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information.

  7. Neuromyelitis Optica Lesion Mimicking Brainstem Glioma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available A 12-year-old girl who presented with weakness of the left extremities and right sided sixth cranial nerve palsy had neuromyelitis optica (NMO mistaken for brainstem glioma on MRI, in a report from Brain Research Institute, Yonsei University College of Medicine,Seoul, Republic of KoreaNeuromyelitis Optica, Optic-Spinal Syndrome, Spectroscopy.

  8. Frequency response of electrochemical cells

    Science.gov (United States)

    Thomas, Daniel L.

    1990-01-01

    The main objective was to examine the feasibility of using frequency response techniques (1) as a tool in destructive physical analysis of batteries, particularly for estimating electrode structural parameters such as specific area, porosity, and tortuosity and (2) as a non-destructive testing technique for obtaining information such as state of charge and acceptability for space flight. The phenomena that contribute to the frequency response of an electrode include: (1) double layer capacitance; (2) Faradaic reaction resistance; (3) mass transfer of Warburg impedance; and (4) ohmic solution resistance. Nickel cadmium cells were investigated in solutions of KOH. A significant amount of data was acquired. Quantitative data analysis, using the developed software, is planned for the future.

  9. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal

  10. Loads as a Resource: Frequency Responsive Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moya, Christian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-08

    Frequency control plays an important role in preserving the power balance of a multi-machine power system. Generators modify their power output when a non-zero frequency deviation is presented in order to restore power balance across the network. However, with plans for large-scale penetration of renewable energy resources, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive, but also technically difficult. Frequency control from the demand side or load control presents a novel and viable way for providing the desired frequency response. Loads can measure frequency locally and change their power consumption after a non-zero frequency deviation is presented in order to achieve power balance between generation and consumption. The specific objectives of this project are to: •Provide a framework to facilitate large-scale deployment of frequency responsive end-use devices •Systematically design decentralized frequency-based load control strategies for enhanced stability performance •Ensure applicability over wide range of operating conditions while accounting for unpredictable end-use behavior and physical device constraints •Test and validate control strategy using large-scale simulations and field demonstrations •Create a level-playing field for smart grid assets with conventional generators

  11. Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus.

    Science.gov (United States)

    Dieterich, Marianne; Kirsch, V; Brandt, T

    2017-10-01

    MRI diffusion tensor imaging tractography was performed on the bilateral vestibular brainstem pathways, which run from the vestibular nuclei via the paramedian and posterolateral thalamic subnuclei to the parieto-insular vestibular cortex. Twenty-one right-handed healthy subjects participated. Quantitative analysis revealed a rope-ladder-like system of vestibular pathways in the brainstem with crossings at pontine and mesencephalic levels. Three structural types of right-left fiber distributions could be delineated: (1) evenly distributed pathways at the lower pontine level from the vestibular nuclei to the pontine crossing, (2) a moderate, pontomesencephalic right-sided lateralization between the pontine and mesencephalic crossings, and (3) a further increase of the right-sided lateralization above the mesencephalic crossing leading to the thalamic vestibular subnuclei. The increasing lateralization along the brainstem was the result of an asymmetric number of pontine and mesencephalic crossing fibers which was higher for left-to-right crossings. The dominance of the right vestibular meso-diencephalic circuitry in right-handers corresponds to the right-hemispheric dominance of the vestibular cortical network. The structural asymmetry apparent in the upper brainstem might be interpreted in relation to the different functions of the vestibular system depending on their anatomical level: a symmetrical sensorimotor reflex control of eye, head, and body mediated by the lower brainstem; a lateralized right-sided upper brainstem-thalamic function as part of the dominant right-sided cortical/subcortical vestibular system that enables a global percept of body motion and orientation in space.

  12. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation.

    Science.gov (United States)

    Wang, Jun Yi; Hessl, David; Hagerman, Randi J; Simon, Tony J; Tassone, Flora; Ferrer, Emilio; Rivera, Susan M

    2017-07-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder typically affecting male premutation carriers with 55-200 CGG trinucleotide repeat expansions in the FMR1 gene after age 50. The aim of this study was to examine whether cerebellar and brainstem changes emerge during development or aging in late life. We retrospectively analyzed magnetic resonance imaging scans from 322 males (age 8-81 years). Volume changes in the cerebellum and brainstem were contrasted with those in the ventricles and whole brain. Compared to the controls, premutation carriers without FXTAS showed significantly accelerated volume decrease in the cerebellum and whole brain, flatter inverted U-shaped trajectory of the brainstem, and larger ventricles. Compared to both older controls and premutation carriers without FXTAS, carriers with FXTAS exhibited significant volume decrease in the cerebellum and whole brain and accelerated volume decrease in the brainstem. We therefore conclude that cerebellar and brainstem volumes were likely affected during both development and progression of neurodegeneration in premutation carriers, suggesting that interventions may need to start early in adulthood to be most effective. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Slot Machine Response Frequency Predicts Pathological Gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Rømer Thomsen, Kristine; Møller, Arne

    2013-01-01

    . This study tested the hypothesis that response frequency is associated with symptom severity in pathological gambling. We tested response frequency among twenty-two pathological gambling sufferers and twenty-one non-problem gamblers on a commercially available slot machine, and screened for pathological...... in individuals with exacerbated pathological gambling symptoms. These findings may have important implications for detecting behaviors underlying pathological gambling....

  14. Diffuse and focal presentations of brainstem tumors in children: the images and the prognostic value

    International Nuclear Information System (INIS)

    Menor, F.; Canete, A.; Romero, M. J.; Trilles, L.; Carvajal, E.; Marti-Bonmati, L.

    2000-01-01

    To determine whether the presentation of brainstem tumors as diffuse or focal lesions showed any prognostic value in children. A retrospective review was carried out of the neuroradiological findings in 43 children with brainstem tumors, all of whom underwent computed tomography (CT) and 31 of whom underwent magnetic resonance (MR). The diffuse tumors (n=20) were all located in the pons, spreading to mesencephalon in 6 cases and to medulla oblongata in 1, and exhibiting exophytic growth, preferentially to the prepontine cistern. They presented homogeneous low attenuation in CT (90%) and decrease/increased signal intensity in T1/T2-weighted MR images (91.6%). Contrast uptake was observed in 20% of cases, with agreement between CT and MR. The patients showed a good initial response to treatment (70%), a high rate of relapse (80%) and a 5-year survival of 12%. The focal tumors were located in the pons (11 cases, spreading to the medulla oblongata in 2), mesencephalon (11 cases, 9 tectal and 2 peduncular) and medulla oblongata (1 case), and exhibited exophytic growth predominantly to the pontocerebellar junction and to the cerebellar peduncles. They showed a certain tendency toward heterogeneity (21.7%), toward isoattenuation in CT (47.8%) and isointensity in T1-weighted MR images (26.3%). CT showed a rate of tumor uptake of 26%, while the rate of contrast iptake was 58% MR. Fifty percent of these lesions responded well to therapy, with a recurrence rate of 28% and 4-year survival of 63%. Neuroimaging helps to define two basic patterns in brainstem tumors that play a role in prognosis. The diffuse tumor, which characteristically shows a good initial response to therapy, has a worse prognosis, probably reflecting its histological aggressiveness. (Author) 21 refs

  15. Key Brainstem Structures Activated during Hypoxic Exposure in One-day-old Mice Highlight Characteristics for Modeling Breathing Network in Premature Infants

    Science.gov (United States)

    Joubert, Fanny; Loiseau, Camille; Perrin-Terrin, Anne-Sophie; Cayetanot, Florence; Frugière, Alain; Voituron, Nicolas; Bodineau, Laurence

    2016-01-01

    We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral, and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas ~45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labeled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labeled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labeled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by (i) the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, (ii) the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and (iii) the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modeling the breathing network of premature infants. PMID:28018238

  16. Key brainstem structures activated during hypoxic exposure in one-day-old mice highlight characteristics for modelling breathing network in premature infants

    Directory of Open Access Journals (Sweden)

    Fanny JOUBERT

    2016-12-01

    Full Text Available We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas approximately 45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labelled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labelled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labelled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by i the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, ii the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and iii the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modelling the breathing network of premature infants.

  17. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    with a CI, had auditory neuropathy; one child showed total cochlear ossification bilaterally due to meningitis; and one child had profound hearing loss with cochlear fractures after a head injury. Twelve of these children had multiple associated psychomotor handicaps. The retrosigmoid approach was used in all children. Intraoperative electrical auditory brainstem responses (EABRs) and postoperative EABRs and electrical middle latency responses (EMLRs) were performed. Perceptual auditory abilities were evaluated with the Evaluation of Auditory Responses to Speech (EARS) battery - the Listening Progress Profile (LIP), the Meaningful Auditory Integration Scale (MAIS), the Meaningful Use of Speech Scale (MUSS) - and the Category of Auditory Performance (CAP). Cognitive evaluation was performed on seven children using the Leiter International Performance Scale - Revised (LIPS-R) test with the following subtests: Figure ground, Form completion, Sequential order and Repeated pattern. No postoperative complications were observed. All children consistently used their devices for >75% of waking hours and had environmental sound awareness and utterance of words and simple sentences. Their CAP scores ranged from 1 to 7 (average =4); with MAIS they scored 2-97.5% (average =38%); MUSS scores ranged from 5 to 100% (average =49%) and LIP scores from 5 to 100% (average =45%). Owing to associated disabilities, 12 children were given other therapies (e.g. physical therapy and counselling) in addition to speech and aural rehabilitation therapy. Scores for two of the four subtests of LIPS-R in this study increased significantly during the first year of auditory brainstem implant use in all seven children selected for cognitive evaluation.

  18. Developmental study of vitamin C distribution in children's brainstems by immunohistochemistry.

    Science.gov (United States)

    Coveñas, R; González-Fuentes, J; Rivas-Infante, E; Lagartos-Donate, M J; Mangas, A; Geffard, M; Arroyo-Jiménez, M M; Cebada-Sánchez, S; Insausti, R; Marcos, P

    2015-09-01

    Vitamin C (Vit C) is an important antioxidant, exerts powerful neuroprotective brain effects and plays a role in neuronal development and maturation. Vit C is present in brain tissue at higher concentrations than in other organs, but its detailed distribution in brain is unknown. Immunohistochemical detection of this vitamin has been performed by using a highly specific antibody against Vit C. The aim of the present work was to analyze the distribution of Vit C in children's brainstems during postnatal development, comparing two groups of ages: younger and older than one year of life. In general, the same areas showing neurons with Vit C in young cases are also immunostained at older ages. The distribution of neurons containing Vit C was broader in the brainstems of older children, suggesting that brainstem neurons maintain or even increase their ability to retain Vit C along the life span. Immunohistochemical labeling revealed only cell bodies containing this vitamin, and no immunoreactive fibers were observed. The distribution pattern of Vit C in children's brainstems suggests a possible role of Vit C in brain homeostatic regulation. In addition, the constant presence of Vit C in neurons of locus coeruleus supports the important role of Vit C in noradrenaline synthesis, which seemed to be maintained along postnatal development. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Gestational flu exposure induces changes in neurochemicals, affiliative hormones and brainstem inflammation, in addition to autism-like behaviors in mice.

    Science.gov (United States)

    Miller, V M; Zhu, Y; Bucher, C; McGinnis, W; Ryan, L K; Siegel, A; Zalcman, S

    2013-10-01

    The prevalence of neurodevelopmental disorders such as autism is increasing, however the etiology of these disorders is unclear and thought to involve a combination of genetic, environmental and immune factors. A recent epidemiological study found that gestational viral exposure during the first trimester increases risk of autism in offspring by twofold. In mice gestational viral exposures alter behavior of offspring, but the biological mechanisms which underpin these behavioral changes are unclear. We hypothesized that gestational viral exposure induces changes in affiliative hormones, brainstem autonomic nuclei and neurotransmitters which are associated with behavioral alterations in offspring. To address this hypothesis, we exposed pregnant mice to influenza A virus (H3N2) on gestational day 9 and determined behavioral, hormonal and brainstem changes in male and female offspring. We found that gestational flu exposure induced dose-dependent alterations in social and aggressive behaviors (p≤0.05) in male and female offspring and increases in locomotor behaviors particularly in male offspring (p≤0.05). We found that flu exposure was also associated with reductions in oxytocin and serotonin (p≤0.05) levels in male and female offspring and sex-specific changes in dopamine metabolism. In addition we found changes in catecholaminergic and microglia density in brainstem tissues of male flu exposed offspring only (p≤0.05). This study demonstrates that gestational viral exposure induces behavioral changes in mice, which are associated with alterations in affiliative hormones. In addition we found sex-specific changes in locomotor behavior, which may be associated with sex-specific alterations in dopamine metabolism and brainstem inflammation. Further investigations into maternal immune responses are necessary to unravel the molecular mechanisms which underpin abnormal hormonal, immune and behavioral responses in offspring after gestational viral exposure

  20. A double expansion method for the frequency response of finite-length beams with periodic parameters

    Science.gov (United States)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response

  1. Prodominant hypertensive brainstem encephalopathy with supratentorial involvement: Case report and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hee; Park, Sung Tae; Lim, Hyun Kyung [Dept. of Radiology, Soonchunhyang University Hospital, Soonchunhyang University School of Medicine, Seoul (Korea, Republic of); Kim, Sung Tae; Cha, Ji Hoon [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Hypertensive encephalopathy typically presents with bilateral parietooccipital vasogenic edema. Brainstem and cerebellar edema are uncommon in association with typical supratentorial changes. We experienced three cases of atypical hypertensive encephalopathy involving brainstem and cerebellum as well as cerebral white matter, which showed characteristic alternating linear bright and low signals in the pons, the so-called 'stripe sign'. We report these cases here with a brief literature review.

  2. [Distribution of human enterovirus 71 in brainstem of infants with brain stem encephalitis and infection mechanism].

    Science.gov (United States)

    Hao, Bo; Gao, Di; Tang, Da-Wei; Wang, Xiao-Guang; Liu, Shui-Ping; Kong, Xiao-Ping; Liu, Chao; Huang, Jing-Lu; Bi, Qi-Ming; Quan, Li; Luo, Bin

    2012-04-01

    To explore the mechanism that how human enterovirus 71 (EV71) invades the brainstem and how intercellular adhesion molecules-1 (ICAM-1) participates by analyzing the expression and distribution of human EV71, and ICAM-1 in brainstem of infants with brain stem encephalitis. Twenty-two brainstem of infants with brain stem encephalitis were collected as the experimental group and 10 brainstems of fatal congenital heart disease were selected as the control group. The sections with perivascular cuffings were selected to observe EV71-VP1 expression by immunohistochemistry method and ICAM-1 expression was detected for the sections with EV71-VP1 positive expression. The staining image analysis and statistics analysis were performed. The experiment and control groups were compared. (1) EV71-VP1 positive cells in the experimental group were mainly astrocytes in brainstem with nigger-brown particles, and the control group was negative. (2) ICAM-1 positive cells showed nigger-brown. The expression in inflammatory cells (around blood vessels of brain stem and in glial nodules) and gliocytes increased. The results showed statistical difference comparing with control group (P diagnose fatal EV71 infection in infants. EV71 can invade the brainstem via hematogenous route. ICAM-1 may play an important role in the pathogenic process.

  3. Difficult diagnosis of brainstem glioblastoma multiforme in a woman: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2009-10-01

    Full Text Available Abstract Introduction Brainstem gliomas are rare in adults. They most commonly occur in the pons and are most likely to be high-grade lesions. The diagnosis of a high-grade brainstem glioma is usually reached due to the presentation of rapidly progressing brainstem, cranial nerve and cerebellar symptoms. These symptoms do, however, overlap with a variety of other central nervous system disorders. Magnetic resonance imaging is the radiographic modality of choice, but can still be misleading. Case presentation A 48-year-old Caucasian woman presented with headache and vomiting followed by cerebellar signs and confusion. Magnetic resonance imaging findings were suggestive of a demyelinating process, but the patient failed to respond to therapy. Her condition rapidly progressed and she died. At autopsy, a high-grade invasive pontine tumor was identified. Histological evaluation revealed glioblastoma multiforme. Conclusion While pontine gliomas are rare in adults, those that do occur tend to be high-grade and rapidly progressive. Progression of symptoms from non-specific findings of headache and vomiting to rapid neurological deterioration, as occurred in our patient, is common in glioblastoma multiforme. While radiographic findings are often suggestive of the underlying pathology, this case represents the possibility of glioblastoma multiforme presenting as a deceptively benign appearing lesion.

  4. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    International Nuclear Information System (INIS)

    Fobe, Lisete Pessoa de Oliveira

    1999-01-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  5. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Fobe, Lisete Pessoa de Oliveira [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina]. E-mail: lispessoa@yahoo.com

    1999-12-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  6. Bayesian segmentation of brainstem structures in MRI

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Van Leemput, Koen; Bhatt, Priyanka

    2015-01-01

    the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy...

  7. Cathode follower RF system with frequency modulation

    International Nuclear Information System (INIS)

    Irie, Y.; Yano, Y.; Kaneko, N.; Kobayashi, Y.

    1994-01-01

    A model RF system with a cathode follower was tested under frequency modulation in the 1-3.5 MHz range. The repetition rate was 40 Hz. The oscillation was stable, and the output impedance was measured to be around 20 ohm. (author)

  8. A Comparison of Two Objective Measures of Binaural Processing: The Interaural Phase Modulation Following Response and the Binaural Interaction Component.

    Science.gov (United States)

    Haywood, Nicholas R; Undurraga, Jaime A; Marquardt, Torsten; McAlpine, David

    2015-12-30

    There has been continued interest in clinical objective measures of binaural processing. One commonly proposed measure is the binaural interaction component (BIC), which is obtained typically by recording auditory brainstem responses (ABRs)-the BIC reflects the difference between the binaural ABR and the sum of the monaural ABRs (i.e., binaural - (left + right)). We have recently developed an alternative, direct measure of sensitivity to interaural time differences, namely, a following response to modulations in interaural phase difference (the interaural phase modulation following response; IPM-FR). To obtain this measure, an ongoing diotically amplitude-modulated signal is presented, and the interaural phase difference of the carrier is switched periodically at minima in the modulation cycle. Such periodic modulations to interaural phase difference can evoke a steady state following response. BIC and IPM-FR measurements were compared from 10 normal-hearing subjects using a 16-channel electroencephalographic system. Both ABRs and IPM-FRs were observed most clearly from similar electrode locations-differential recordings taken from electrodes near the ear (e.g., mastoid) in reference to a vertex electrode (Cz). Although all subjects displayed clear ABRs, the BIC was not reliably observed. In contrast, the IPM-FR typically elicited a robust and significant response. In addition, the IPM-FR measure required a considerably shorter recording session. As the IPM-FR magnitude varied with interaural phase difference modulation depth, it could potentially serve as a correlate of perceptual salience. Overall, the IPM-FR appears a more suitable clinical measure than the BIC. © The Author(s) 2015.

  9. Electroretinogram (ERG) to photic stimuli should be carefully distinct from photic brainstem reflex in patients with deep coma.

    Science.gov (United States)

    Mitsuhashi, Masahiro; Hitomi, Takefumi; Aoyama, Akihiro; Kaido, Toshimi; Ikeda, Akio; Takahashi, Ryosuke

    2017-08-31

    Patient 1: A 35-year-old woman became deep coma because of intracranial hemorrhage after pulmonary surgery. Patient 2: A 39-year-old woman became deep coma because of cerebellar hemorrhage after hepatic surgery. Scalp-recorded digital electroencephalography (EEG) showed electrocerebral inactivity in both cases. In addition, both EEG showed repetitive discharges at bilateral frontopolar electrodes in response to photic stimuli. The amplitude and latency of the discharges was 17 μV and 24 msec in case 1, and 9 μV and 27 msec in case 2 respectively. The activity at left frontopolar electrode disappeared after coverage of the ipsilateral eye. Based on these findings, we could exclude the possibility of brainstem response and judged it as electroretinogram (ERG). Photic stimulation is a useful activation method in EEG recording, and we can also evaluate brainstem function by checking photic blink reflex if it is evoked. However, we should be cautious about the distinction of ERG from photic blink reflex when brain death is clinically suspected.

  10. Influence of sucrose ingestion on brainstem and hypothalamic intrinsic oscillations in lean and obese women.

    Science.gov (United States)

    Kilpatrick, Lisa A; Coveleskie, Kristen; Connolly, Lynn; Labus, Jennifer S; Ebrat, Bahar; Stains, Jean; Jiang, Zhiguo; Suyenobu, Brandall Y; Raybould, Helen E; Tillisch, Kirsten; Mayer, Emeran A

    2014-05-01

    The study of intrinsic fluctuations in the blood oxygen level-dependent signal of functional magnetic resonance imaging can provide insight into the effect of physiologic states on brain processes. In an effort to better understand the brain-gut communication induced by the absorption and metabolism of nutrients in healthy lean and obese individuals, we investigated whether ingestion of nutritive and non-nutritive sweetened beverages differentially engages the hypothalamus and brainstem vagal pathways in lean and obese women. In a 2-day, double-blind crossover study, 11 lean and 11 obese healthy women underwent functional magnetic resonance imaging scans after ingestion of 2 beverages of different sucrose content, but identical sweetness. During scans, subjects rested with eyes closed. Blood oxygen level-dependent fluctuations demonstrated significantly greater power in the highest frequency band (slow-3: 0.073-0.198 Hz) after ingestion of high-sucrose compared with low-sucrose beverages in the nucleus tractus solitarius for both groups. Obese women had greater connectivity between the right lateral hypothalamus and a reward-related brain region and weaker connectivity with homeostasis and gustatory-related brain regions than lean women. In a functional magnetic resonance imaging study, we observed sucrose-related changes in oscillatory dynamics of blood oxygen level-dependent fluctuations in brainstem and hypothalamus in lean and obese women. The observed frequency changes are consistent with a rapid vagally mediated mechanism due to nutrient absorption, rather than sweet taste receptor activation. These findings provide support for altered interaction between homeostatic and reward networks in obese individuals. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Mosaic Evolution of Brainstem Motor Nuclei in Catarrhine Primates

    Directory of Open Access Journals (Sweden)

    Seth D. Dobson

    2011-01-01

    Full Text Available Facial motor nucleus volume coevolves with both social group size and primary visual cortex volume in catarrhine primates as part of a specialized neuroethological system for communication using facial expressions. Here, we examine whether facial nucleus volume also coevolves with functionally unrelated brainstem motor nuclei (trigeminal motor and hypoglossal due to developmental constraints. Using phylogenetically informed multiple regression analyses of previously published brain component data, we demonstrate that facial nucleus volume is not correlated with the volume of other motor nuclei after controlling for medulla volume. Our results show that brainstem motor nuclei can evolve independently of other developmentally linked structures in association with specific behavioral ecological conditions. This finding provides additional support for the mosaic view of brain evolution.

  12. Frequency response of slow beam extraction process

    International Nuclear Information System (INIS)

    Toyama, Takeshi; Sato, Hikaru; Marutsuka, Katsumi; Shirakata, Masashi.

    1994-01-01

    A servo control system has been incorporated into the practical slow extraction system in order to stabilize the spill structure less than a few kHz. Frequency responses of the components of the servo-spill control system and the open-loop frequency response were measured. The beam transfer function of the slow extraction process was derived from the measured data and approximated using a simple function. This is utilized to improve the performance of the servo-loop. (author)

  13. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  14. Frequency response functions for nonlinear convergent systems

    NARCIS (Netherlands)

    Pavlov, A.V.; Wouw, van de N.; Nijmeijer, H.

    2007-01-01

    Convergent systems constitute a practically important class of nonlinear systems that extends the class of asymptotically stable linear time-invariant systems. In this note, we extend frequency response functions defined for linear systems to nonlinear convergent systems. Such nonlinear frequency

  15. Frequency- and amplitude-transitioned waveforms mitigate the onset response in high-frequency nerve block

    Science.gov (United States)

    Gerges, Meana; Foldes, Emily L.; Ackermann, D. Michael; Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin L.

    2010-12-01

    High-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents. However, the complete block can be maintained at lower frequencies and amplitudes, using lower currents. In this in vivo study on whole mammalian peripheral nerves, we demonstrate a method to minimize the onset response by initiating the block using a stimulation paradigm with a high frequency and large amplitude, and then transitioning to a low-frequency and low-amplitude waveform, reducing the currents required to maintain the conduction block. In five of six animals, it was possible to transition from a 30 kHz to a 10 kHz waveform without inducing any transient neural firing. The minimum transition time was 0.03 s. Transition activity was minimized or eliminated with longer transition times. The results of this study show that this method is feasible for achieving a nerve block with minimal onset responses and current amplitude requirements.

  16. Exploding Head Syndrome as Aura of Migraine with Brainstem Aura: A Case Report.

    Science.gov (United States)

    Rossi, Fabian H; Gonzalez, Elizabeth; Rossi, Elisa Marie; Tsakadze, Nina

    2018-01-01

    This article reports a case of exploding head syndrome (EHS) as an aura of migraine with brainstem aura (MBA). A middle-aged man presented with intermittent episodes of a brief sensation of explosion in the head, visual flashing, vertigo, hearing loss, tinnitus, confusion, ataxia, dysarthria, and bilateral visual impairment followed by migraine headache. The condition was diagnosed as MBA. Explosive head sensation, sensory phenomena, and headaches improved over time with nortriptyline. This case shows that EHS can present as a primary aura symptom in patients with MBA.

  17. Transformation Algorithm of Dielectric Response in Time-Frequency Domain

    Directory of Open Access Journals (Sweden)

    Ji Liu

    2014-01-01

    Full Text Available A transformation algorithm of dielectric response from time domain to frequency domain is presented. In order to shorten measuring time of low or ultralow frequency dielectric response characteristics, the transformation algorithm is used in this paper to transform the time domain relaxation current to frequency domain current for calculating the low frequency dielectric dissipation factor. In addition, it is shown from comparing the calculation results with actual test data that there is a coincidence for both results over a wide range of low frequencies. Meanwhile, the time domain test data of depolarization currents in dry and moist pressboards are converted into frequency domain results on the basis of the transformation. The frequency domain curves of complex capacitance and dielectric dissipation factor at the low frequency range are obtained. Test results of polarization and depolarization current (PDC in pressboards are also given at the different voltage and polarization time. It is demonstrated from the experimental results that polarization and depolarization current are affected significantly by moisture contents of the test pressboards, and the transformation algorithm is effective in ultralow frequency of 10−3 Hz. Data analysis and interpretation of the test results conclude that analysis of time-frequency domain dielectric response can be used for assessing insulation system in power transformer.

  18. Brainstem Tuberculoma in Pregnancy

    Directory of Open Access Journals (Sweden)

    Dana A. Muin

    2015-01-01

    Full Text Available We report a case of a Somali refugee who presented in the second trimester of her first pregnancy with a four-week history of gradual right-sided sensomotoric hemisyndrome including facial palsy and left-sided paresis of the oculomotorius nerve causing drooping of the left eyelid and double vision. Cranial magnetic resonance imaging revealed a solitary brainstem lesion. Upon detection of hilar lymphadenopathy on chest X-ray (CXR, the diagnosis of disseminated tuberculosis with involvement of the central nervous system was confirmed by PCR and treatment induced with rifampicin, isoniazid, pyrazinamide, and ethambutol. The patient had a steady neurological improvement and a favorable pregnancy outcome.

  19. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    Directory of Open Access Journals (Sweden)

    Leeman Jonathan E

    2012-07-01

    Full Text Available Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SRT/SRS of brainstem metastases. Methods We retrospectively reviewed 38 tumors in 36 patients treated with SRT/SRS between February 2003 and December 2011. Treatment was delivered with the Cyberknife™ or Trilogy™ radiosurgical systems. The median age of patients was 62 (range: 28–89. Primary pathologies included 14 lung, 7 breast, 4 colon and 11 others. Sixteen patients (44% had received whole brain radiation therapy (WBRT prior to SRT/SRS; ten had received prior SRT/SRS at a different site (28%. The median tumor volume was 0.94 cm3 (range: 0.01-4.2 with a median prescription dose of 17 Gy (range: 12–24 delivered in 1–5 fractions. Results Median follow-up for the cohort was 3.2 months (range: 0.4-20.6. Nineteen patients (52% had an MRI follow-up available for review. Of these, one patient experienced local failure corresponding to an actuarial 6-month local control of 93%. Fifteen of the patients with available follow-up imaging (79% experienced intracranial failure outside of the treatment volume. The median time to distant intracranial failure was 2.1 months. Six of the 15 patients with distant intracranial failure (40% had received previous WBRT. The actuarial overall survival rates at 6- and 12-months were 27% and 8%, respectively. Predictors of survival included Graded Prognostic Assessment (GPA score, greater number of treatment fractions, and higher prescription dose. Three patients experienced acute treatment-related toxicity consisting of

  20. The Investigation of Median Frequency Changes in Paraspinal Muscles Following Fatigue

    Directory of Open Access Journals (Sweden)

    Saeed Talebian

    2009-10-01

    Conclusion: Median frequency shift toward low values following fatigue in global and local paraspinal muscles was seen. However, median frequency values for the local stabilizer muscle were higher than median frequency values for the global muscles.

  1. Providing frequency regulation reserve services using demand response scheduling

    International Nuclear Information System (INIS)

    Motalleb, Mahdi; Thornton, Matsu; Reihani, Ehsan; Ghorbani, Reza

    2016-01-01

    Highlights: • Proposing a market model for contingency reserve services using demand response. • Considering transient limitations of grid frequency for inverter-based generations. • Price-sensitive scheduling of residential batteries and water heaters using dynamic programming. • Calculating the profits of both generation companies and demand response aggregators. - Abstract: During power grid contingencies, frequency regulation is a primary concern. Historically, frequency regulation during contingency events has been the sole responsibility of the power utility. We present a practical method of using distributed demand response scheduling to provide frequency regulation during contingency events. This paper discusses the implementation of a control system model for the use of distributed energy storage systems such as battery banks and electric water heaters as a source of ancillary services. We present an algorithm which handles the optimization of demand response scheduling for normal operation and during contingency events. We use dynamic programming as an optimization tool. A price signal is developed using optimal power flow calculations to determine the locational marginal price of electricity, while sensor data for water usage is also collected. Using these inputs to dynamic programming, the optimal control signals are given as output. We assume a market model in which distributed demand response resources are sold as a commodity on the open market and profits from demand response aggregators as brokers of distributed demand response resources can be calculated. In considering control decisions for regulation of transient changes in frequency, we focus on IEEE standard 1547 in order to prevent the safety shut-off of inverter-based generation and further exacerbation of frequency droop. This method is applied to IEEE case 118 as a demonstration of the method in practice.

  2. Sensorineural hearing loss among cerebellopontine-angle tumor patients examined with pure tone audiometry and brainstem-evoked response audiometry

    Science.gov (United States)

    Rinindra, A. M.; Zizlavsky, S.; Bashiruddin, J.; Aman, R. A.; Wulani, V.; Bardosono, S.

    2017-08-01

    Tumor in the cerebellopontine angle (CPA) accurs for approximately 5-10% of all intracranial tumors, where unilateral hearing loss and tinnitus are the most frequent symptoms. This study aimed to collect data on sensorineural hearing loss in CPA tumor patients in Dr. Cipto Mangunkusumo Hospital (CMH) using pure tone audiometry and brainstem-evoked response audiometry (BERA). It also aimed to obtaine data on CPA-tumor imaging through magnetic resonance imaging (MRI). This was a descriptive, analytic, and cross-sectional study. The subjects of this study were gathered using a total sampling method from secondary data between July 2012 and November 2016. From 104 patients, 30 matched the inclusion criteria. The CPA-tumor patients in the ENT CMH outpatient clinic were mostly female, middle-aged patients (41-60 years) whose clinical presentation was mostly tinnitus and severe, asymmetric sensorineural hearing loss in 10 subjects. From 30 subjects, 29 showed ipsilaterally impaired BERA results, and 17 subjects showed contralaterally impaired BERA results. There were 24 subjects who with large-sized tumors and 19 subjects who had intracanal tumors that had spread until they were extracanal in 19 subjects.

  3. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    Science.gov (United States)

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  4. Rectennas at optical frequencies: How to analyze the response

    International Nuclear Information System (INIS)

    Joshi, Saumil; Moddel, Garret

    2015-01-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun

  5. Rectennas at optical frequencies: How to analyze the response

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Saumil; Moddel, Garret, E-mail: moddel@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States)

    2015-08-28

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  6. Rectennas at optical frequencies: How to analyze the response

    Science.gov (United States)

    Joshi, Saumil; Moddel, Garret

    2015-08-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  7. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients.

    Science.gov (United States)

    Tobin, William Oliver; Lennon, Vanda A; Komorowski, Lars; Probst, Christian; Clardy, Stacey Lynn; Aksamit, Allen J; Appendino, Juan Pablo; Lucchinetti, Claudia F; Matsumoto, Joseph Y; Pittock, Sean J; Sandroni, Paola; Tippmann-Peikert, Maja; Wirrell, Elaine C; McKeon, Andrew

    2014-11-11

    To describe the detection frequency and clinical associations of immunoglobulin G (IgG) targeting dipeptidyl-peptidase-like protein-6 (DPPX), a regulatory subunit of neuronal Kv4.2 potassium channels. Specimens from 20 patients evaluated on a service basis by tissue-based immunofluorescence yielded a synaptic immunostaining pattern consistent with DPPX-IgG (serum, 20; CSF, all 7 available). Transfected HEK293 cell-based assay confirmed DPPX specificity in all specimens. Sixty-nine patients with stiff-person syndrome and related disorders were also evaluated by DPPX-IgG cell-based assay. Of 20 seropositive patients, 12 were men; median symptom onset age was 53 years (range, 13-75). Symptom onset was insidious in 15 and subacute in 5. Twelve patients reported prodromal weight loss. Neurologic disorders were multifocal. All had one or more brain or brainstem manifestations: amnesia (16), delirium (8), psychosis (4), depression (4), seizures (2), and brainstem disorders (15; eye movement disturbances [8], ataxia [7], dysphagia [6], dysarthria [4], respiratory failure [3]). Nine patients reported sleep disturbance. Manifestations of central hyperexcitability included myoclonus (8), exaggerated startle (6), diffuse rigidity (6), and hyperreflexia (6). Dysautonomia involved the gastrointestinal tract (9; diarrhea [6], gastroparesis, and constipation [3]), bladder (7), cardiac conduction system (3), and thermoregulation (1). Two patients had B-cell neoplasms: gastrointestinal lymphoma (1), and chronic lymphocytic leukemia (1). Substantial neurologic improvements followed immunotherapy in 7 of 11 patients with available treatment data. DPPX-IgG was not detected in any of the stiff-person syndrome patients. DPPX-IgG is a biomarker for an immunotherapy-responsive multifocal neurologic disorder of the central and autonomic nervous systems. © 2014 American Academy of Neurology.

  8. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular

  9. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    Science.gov (United States)

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (Pconcussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  10. Effect of edaravone on acute brainstem-cerebellar infarction with vertigo and sudden hearing loss.

    Science.gov (United States)

    Inoue, Yuta; Yabe, Takao; Okada, Kazunari; Nakamura, Yuka

    2014-06-01

    We report 2 cases with acute brainstem and brainstem-cerebellar infarction showed improvement of their signs and symptoms after administration of edaravone. Case 1, a 74-year-old woman who experienced sudden vertigo, also had dysarthria and left hemiplegia. Magnetic resonance imaging (MRI) showed an abnormal region in the right ventrolateral medulla oblongata. The patient's vertigo and hemiplegia improved completely after treatment. Case 2, a 50-year-old man who experienced sudden vertigo and sensorineural hearing loss (SNHL), developed dysarthria after admission. MRI revealed acute infarction in the right cerebellar hemisphere. Magnetic resonance angiography revealed dissection of the basilar artery and occlusion of the right anterior inferior cerebellar artery. The patient's vertigo and hearing remarkably improved. We have described 2 patients whose early symptoms were vertigo and sudden SNHL, but who were later shown to have ischemic lesions of the central nervous system. Edaravone is neuroprotective drug with free radical-scavenging actions. Free radicals in the ear are responsible for ischemic damage. Edaravone, a free radical scavenger, may be useful in the treatment of vertigo and SNHL. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jer-Yuan; Crawley, Suzanne; Chen, Michael; Ayupova, Dina A.; Lindhout, Darrin A.; Higbee, Jared; Kutach, Alan; Joo, William; Gao, Zhengyu; Fu, Diana; To, Carmen; Mondal, Kalyani; Li, Betty; Kekatpure, Avantika; Wang, Marilyn; Laird, Teresa; Horner, Geoffrey; Chan, Jackie; McEntee, Michele; Lopez, Manuel; Lakshminarasimhan, Damodharan; White, Andre; Wang, Sheng-Ping; Yao, Jun; Yie, Junming; Matern, Hugo; Solloway, Mark; Haldankar, Raj; Parsons, Thomas; Tang, Jie; Shen, Wenyan D.; Alice Chen, Yu; Tian, Hui; Allan, Bernard B.

    2017-09-27

    Under homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure1,2. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand3. Recent studies have identified brain areas outside the hypothalamus that are activated under these ‘non-homeostatic’ conditions4,5,6, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive. Here we identify glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as a brainstem-restricted receptor for growth and differentiation factor 15 (GDF15). GDF15 regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses; we show that Gfral knockout mice are hyperphagic under stressed conditions and are resistant to chemotherapy-induced anorexia and body weight loss. GDF15 activates GFRAL-expressing neurons localized exclusively in the area postrema and nucleus tractus solitarius of the mouse brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which constitute part of the ‘emergency circuit’ that shapes feeding responses to stressful conditions7. GDF15 levels increase in response to tissue stress and injury, and elevated levels are associated with body weight loss in numerous chronic human diseases8,9. By isolating GFRAL as the receptor for GDF15-induced anorexia and weight loss, we identify a mechanistic basis for the non-homeostatic regulation of neural circuitry by a peripheral signal associated with tissue damage and stress. These findings provide opportunities to develop therapeutic agents for the treatment of disorders with altered energy demand.

  12. Control and Coordination of Frequency Responsive Residential Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Pratt, Richard M.

    2016-07-31

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC). The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.

  13. Effect of endothelin antagonism on apnea frequency following chronic intermittent hypoxia.

    Science.gov (United States)

    Donovan, Lucas M; Liu, Yuzhen; Weiss, J Woodrow

    2014-04-01

    Chronic hypoxia increases the hypoxic ventilatory response (HVR). Augmented HVR contributes to central apneas seen in heart failure and complex sleep apnea. Endothelin receptor (ETR) antagonism decreases carotid body afferent activity following chronic intermittent hypoxia (CIH). We speculated ETR antagonism would reduce HVR and apneas following CIH. HVR and apneas were measured after exposure to CIH and room air sham (SHAM). ETR blocker Ambrisentan was administered via the chow of CIH-exposed animals from days 1 to 12 of CIH (CIH/AMB). A separate crossover group was exposed to CIH and fed normal chow (placebo) days 1-6, and Ambrisentan days 7-12 (CIH/PLA-AMB). SHAM and CIH/PLA animals were fed placebo days 1-12. The CIH/AMB and CIH/PLA-AMB rats had reduced HVR compared to CIH/PLA, similar HVR compared to sham exposed animals, and reduced apnea frequency compared to CIH/PLA animals. The reduced HVR and post-hypoxic apneas resulting from Ambrisentan administration suggests ETR antagonists may have utility in reducing central apneas following CIH. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates.

    Science.gov (United States)

    Zhao, Hui; Yin, Zhiyong; Li, Kui; Liao, Zhikang; Xiang, Hongyi; Zhu, Feng

    2016-01-21

    Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes disastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is available for the immature brain tissue at dynamic strain rates. We harvested brainstem tissue from immature pigs (about 4 weeks old, and at a developmental stage similar to that of human toddlers) as a byproduct from a local slaughter house and very carefully prepared the samples. Tensile tests were performed on specimens at dynamic strain rates of 2/s, 20/s, and 100/s using a biological material instrument. The constitutive models, Fung, Ogden, Gent, and exponential function, for immature brainstem tissue material property were developed for the recorded experimental data using OriginPro 8.0 software. The t test was performed for infinitesimal shear modules. The curves of stress-versus-stretch ratio were convex in shape, and inflection points were found in all the test groups at the strain of about 2.5%. The average Lagrange stress of the immature brainstem specimen at the 30% strain at the strain rates of 2, 20, and 100/s was 273±114, 515±107, and 1121±197 Pa, respectively. The adjusted R-Square (R2) of Fung, Ogden, Gent, and exponential model was 0.820≤R2≤0.933, 0.774≤R2≤0.940, 0.650≤R2≤0.922, and 0.852≤R2≤0.981, respectively. The infinitesimal shear modulus of the strain energy functions showed a significant association with the strain rate (pmaterial in dynamic tensile tests, and the tissue becomes stiffer with increased strain rate. The reported results may be useful in the study of brain injuries in children who sustain injuries in road traffic accidents. Further research in more detail should be performed in the future.

  15. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Science.gov (United States)

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as

  16. Neonatal neurological disorders involving the brainstem: neurosonographic approaches through the squamous suture and the foramen magnum

    International Nuclear Information System (INIS)

    Tu, Yi-Fang; Chen, Cheng-Yu; Lin, Yuh-Jey; Chang, Ying-Chao; Huang, Chao-Ching

    2005-01-01

    Brainstem damage which often indicates a critical condition is usually underestimated by trans-anterior-fontanel neurosonography (NS) owing to the far-field limitations. Instead, NS alternately scanning through the squamous suture of the temporal bones and the foramen magnum could provide a better visualization of the brainstem structures. The NS characteristics of brainstem lesions caused by various neonatal neurological disorders, such as hypoxic-ischemic encephalopathy (HIE), metabolic encephalopathy, birth trauma and bacterial meningoencephalitis, can be depicted at the acute stage. An echogenic change in the midbrain was found in patients with HIE or metabolic encephalopathy. In addition to the echogenic change, bilateral transtentorial temporal lobe herniation distorting the contour of the midbrain was observed in a patient with group B streptococcus meningoencephalitis, whereas echogenic changes at the level of the pons and/or the medulla oblongata, mainly localized in the dorsal part, could be observed in newborns with severe HIE, maple syrup urine disease or birth trauma. In this pictorial assay, we demonstrate the feasibility of NS imaging in evaluating the entire brainstem structure of critically ill neonates in the near field and illustrate the characteristic features of brainstem involvement in various neonatal neurological disorders along with computed tomography or magnetic resonance imaging correlation. (orig.)

  17. Neonatal neurological disorders involving the brainstem: neurosonographic approaches through the squamous suture and the foramen magnum

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yi-Fang [National Cheng Kung University Hospital, Department of Emergency Medicine, Tainan (Taiwan); Chen, Cheng-Yu [National Defense Medical Center, Department of Radiology, Taipei (Taiwan); Lin, Yuh-Jey [National Cheng Kung University Hospital, Department of Pediatrics, Tainan (Taiwan); Chang, Ying-Chao [Kaohsiung Chang Gung Children Hospital, Department of Pediatrics, Kaohsiung (Taiwan); Huang, Chao-Ching [National Cheng Kung University Hospital, Department of Pediatrics, Tainan (Taiwan); National Cheng Kung University Hospital, Department of Institute of Molecular Medicine, Tainan (Taiwan)

    2005-09-01

    Brainstem damage which often indicates a critical condition is usually underestimated by trans-anterior-fontanel neurosonography (NS) owing to the far-field limitations. Instead, NS alternately scanning through the squamous suture of the temporal bones and the foramen magnum could provide a better visualization of the brainstem structures. The NS characteristics of brainstem lesions caused by various neonatal neurological disorders, such as hypoxic-ischemic encephalopathy (HIE), metabolic encephalopathy, birth trauma and bacterial meningoencephalitis, can be depicted at the acute stage. An echogenic change in the midbrain was found in patients with HIE or metabolic encephalopathy. In addition to the echogenic change, bilateral transtentorial temporal lobe herniation distorting the contour of the midbrain was observed in a patient with group B streptococcus meningoencephalitis, whereas echogenic changes at the level of the pons and/or the medulla oblongata, mainly localized in the dorsal part, could be observed in newborns with severe HIE, maple syrup urine disease or birth trauma. In this pictorial assay, we demonstrate the feasibility of NS imaging in evaluating the entire brainstem structure of critically ill neonates in the near field and illustrate the characteristic features of brainstem involvement in various neonatal neurological disorders along with computed tomography or magnetic resonance imaging correlation. (orig.)

  18. Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig.

    Science.gov (United States)

    McAlpine, D; Jiang, D; Palmer, A R

    1996-08-01

    Monaural and binaural response properties of single units in the inferior colliculus (IC) of the guinea pig were investigated. Neurones were classified according to the effect of monaural stimulation of either ear alone and the effect of binaural stimulation. The majority (309/334) of IC units were excited (E) by stimulation of the contralateral ear, of which 41% (127/309) were also excited by monaural ipsilateral stimulation (EE), and the remainder (182/309) were unresponsive to monaural ipsilateral stimulation (EO). For units with best frequencies (BF) up to 3 kHz, similar proportions of EE and EO units were observed. Above 3 kHz, however, significantly more EO than EE units were observed. Units were also classified as either facilitated (F), suppressed (S), or unaffected (O) by binaural stimulation. More EO than EE units were suppressed or unaffected by binaural stimulation, and more EE than EO units were facilitated. There were more EO/S units above 1.5 kHz than below. Binaural beats were used to examine the interaural delay sensitivity of low-BF (BF binaural facilitation, whilst those with larger BPs generally showed binaural suppression. The classification of units based upon binaural stimulation with BF tones was consistent with their interaural-delay sensitivity. Characteristic delays (CD) were examined for 96 low-BF units. A clear relationship between BF and CD was observed. CDs of units with very low BFs (binaural processing in the guinea pig at low frequencies is similar to that reported in all other species studied. However, the dependence of CD on BF would suggest that the delay line system that sets up the interaural-delay sensitivity in the lower brainstem varies across frequency as well as within each frequency band.

  19. Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities.

    Science.gov (United States)

    Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos

    2013-01-01

    Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (pwave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively). In the subgroup consisting of 10 patients suffering from

  20. Brainstem pathology in spasmodic dysphonia

    Science.gov (United States)

    Simonyan, Kristina; Ludlow, Christy L.; Vortmeyer, Alexander O.

    2009-01-01

    Spasmodic dysphonia (SD) is a primary focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speech production. We examined two rare cases of postmortem brainstem tissue from SD patients compared to four controls. In SD patients, small clusters of inflammation were found in the reticular formation surrounding solitary tract, spinal trigeminal and ambigual nuclei, inferior olive and pyramids. Mild neuronal degeneration and depigmentation were observed in the substantia nigra and locus coeruleus. No abnormal protein accumulations and no demyelination or axonal degeneration were found. These neuropathological findings may provide insights into the pathophysiology of SD. PMID:19795469

  1. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    Science.gov (United States)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  2. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure.

    Science.gov (United States)

    Heeringa, A N; van Dijk, P

    2014-06-01

    Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Frequency of micronuclei in hepatocytes following X and fast-neutron irradiations--an analysis by a linear-quadratic model

    International Nuclear Information System (INIS)

    Ono, K.; Nagata, Y.; Akuta, K.; Abe, M.; Ando, K.; Koike, S.

    1990-01-01

    The usefulness of the micronucleus assay for investigating the radiation response of hepatocytes was examined. The frequency was defined as the ratio of the total number of micronuclei to the number of hepatocytes examined. The dose-response curves were curvilinear after X rays and linear after neutrons. These dose-response curves were analyzed by a linear-quadratic model, frequency = aD + bD2 + c. The a/b ratio was 3.03 +/- 1.26 Gy following X irradiation. This value is within the range of the alpha/beta ratios reported by others using the clonogenic assay of hepatocytes. While the a/b value for neutrons was 24.3 +/- 11.7 Gy, the maximum relative biological effectiveness of neutrons was 6.30 +/- 2.53. Since the micronucleus assay is simple and rapid, it may be a good tool for evaluating the radiation response of hepatocytes in vivo

  4. DC response of dust to low frequency AC signals

    Science.gov (United States)

    McKinlay, Michael; Konopka, Uwe; Thomas, Edward

    2017-10-01

    Macroscopic changes in the shape and equilibrium position of clouds of charged microparticles suspended in a plasma have been observed in response to low frequency AC signals. In these experiments, dusty plasmas consisting of 2-micron diameter silica microspheres suspended between an anode and cathode in an argon, DC glow discharge plasma are produced in a grounded, 6-way cross vacuum chamber. An AC signal, produced by a function generator and amplified by a bipolar op-amp, is superimposed onto the potential from the cathode. The frequencies of the applied AC signals, ranging from tens to hundreds of kHz, are comparable to the ion-neutral collision frequency; well below the ion/electron plasma frequencies, but also considerably higher than the dust plasma frequency. This presentation will detail the experimental setup, present documentation and categorization of observations of the dust response, and present an initial model of the response. This work is supported by funding from the US Dept. of Energy, Grant Number DE-SC0016330, and by the National Science Foundation, Grant Number PHY-1613087.

  5. Day-Ahead Scheduling Considering Demand Response as a Frequency Control Resource

    Directory of Open Access Journals (Sweden)

    Yu-Qing Bao

    2017-01-01

    Full Text Available The development of advanced metering technologies makes demand response (DR able to provide fast response services, e.g., primary frequency control. It is recognized that DR can contribute to the primary frequency control like thermal generators. This paper proposes a day-ahead scheduling method that considers DR as a frequency control resource, so that the DR resources can be dispatched properly with other resources. In the proposed method, the objective of frequency control is realized by defining a frequency limit equation under a supposed contingency. The frequency response model is used to model the dynamics of system frequency. The nonlinear frequency limit equation is transformed to a linear arithmetic equation by piecewise linearization, so that the problem can be solved by mixed integer linear programming (MILP. Finally, the proposed method is verified on numerical examples.

  6. Spatial frequency information modulates response inhibition and decision-making processes.

    Directory of Open Access Journals (Sweden)

    Sara Jahfari

    Full Text Available We interact with the world through the assessment of available, but sometimes imperfect, sensory information. However, little is known about how variance in the quality of sensory information affects the regulation of controlled actions. In a series of three experiments, comprising a total of seven behavioral studies, we examined how different types of spatial frequency information affect underlying processes of response inhibition and selection. Participants underwent a stop-signal task, a two choice speed/accuracy balance experiment, and a variant of both these tasks where prior information was given about the nature of stimuli. In all experiments, stimuli were either intact, or contained only high-, or low- spatial frequencies. Overall, drift diffusion model analysis showed a decreased rate of information processing when spatial frequencies were removed, whereas the criterion for information accumulation was lowered. When spatial frequency information was intact, the cost of response inhibition increased (longer SSRT, while a correct response was produced faster (shorter reaction times and with more certainty (decreased errors. When we manipulated the motivation to respond with a deadline (i.e., be fast or accurate, removal of spatial frequency information slowed response times only when instructions emphasized accuracy. However, the slowing of response times did not improve error rates, when compared to fast instruction trials. These behavioral studies suggest that the removal of spatial frequency information differentially affects the speed of response initiation, inhibition, and the efficiency to balance fast or accurate responses. More generally, the present results indicate a task-independent influence of basic sensory information on strategic adjustments in action control.

  7. Effects of 12 months continuous positive airway pressure on sympathetic activity related brainstem function and structure in obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Luke Anthony Henderson

    2016-03-01

    Full Text Available Muscle sympathetic nerve activity (MSNA is greatly elevated in patients with obstructive sleep apnoea (OSA during normoxic daytime wakefulness. Increased MSNA is a precursor to hypertension and elevated cardiovascular morbidity and mortality. However, the mechanisms underlying the high MSNA in OSA are not well understood. In this study we used concurrent microneurography and magnetic resonance imaging to explore MSNA-related brainstem activity changes and anatomical changes in 15 control and 15 subjects with OSA prior to and following 6 and 12 months of continuous positive airway pressure (CPAP treatment. We found that 6 and 12 months of CPAP treatment significantly reduced the elevated resting MSNA in individuals with OSA. Furthermore, this MSNA reduction was associated with restoration of MSNA-related activity and structural changes in the medullary raphe, rostral ventrolateral medulla, dorsolateral pons and ventral midbrain. This restoration occurred after 6 months of CPAP treatment and was maintained following 12 months CPAP. These findings show that continual CPAP treatment is an effective long-term treatment for elevated MNSA likely due to its effects on restoring brainstem structure and function.

  8. 78 FR 45479 - Frequency Response and Frequency Bias Setting Reliability Standard

    Science.gov (United States)

    2013-07-29

    ... and Balancing Authorities to avoid overloading the Pacific AC ties. See NERC Petition, Exh. F at 62..., plays a crucial role in how fast frequency declines following the sudden loss of generation.\\63\\ When...

  9. Clinical, Radiologic, and Legal Significance of "Extensor Response" in Posttraumatic Coma.

    Science.gov (United States)

    Firsching, Raimund; Woischneck, Dieter; Langejürgen, Alexander; Parreidt, Andreas; Bondar, Imre; Skalej, Martin; Röhl, Friedrich; Voellger, Benjamin

    2015-11-01

    The timely detection of neurologic deterioration can be critical for the survival of a neurosurgical patient following head injury. Because little reliable evidence is available on the prognostic value of the clinical sign "extensor response" in comatose posttraumatic patients, we investigated the correlation of this clinical sign with outcome and with early radiologic findings from magnetic resonance imaging (MRI). This retrospective analysis of prospectively obtained data included 157 patients who had remained in a coma for a minimum of 24 hours after traumatic brain injury. All patients received a 1.5-T MRI within 10 days (median: 2 days) of the injury. The correlations between clinical findings 12 and 24 hours after the injury-in particular, extensor response and pupillary function, MRI findings, and outcome after 1 year-were investigated. Statistical analysis included contingency tables, Fisher exact test, odds ratios (ORs) with confidence intervals (CIs), and weighted κ values. There were 48 patients with extensor response within the first 24 hours after the injury. Patients with extensor response (World Federation of Neurosurgical Societies coma grade III) statistically were significantly more likely to harbor MRI lesions in the brainstem when compared with patients in a coma who had no further deficiencies (coma grade I; p = 0.0004 by Fisher exact test, OR 10.8 with 95% CI, 2.7-42.5) and patients with unilateral loss of pupil function (coma grade II; p = 0.0187, OR 2.8 with 95% CI, 1.2-6.5). The correlation of brainstem lesions as found by MRI and outcome according to the Glasgow Outcome Scale after 1 year was also highly significant (p ≤ 0.016). The correlation of extensor response and loss of pupil function with an unfavorable outcome and with brainstem lesions revealed by MRI is highly significant. Their sudden onset may be associated with the sudden onset of brainstem dysfunction and should therefore be regarded as one of the most

  10. Experiences with non-intrusive monitoring of distribution transformers based on the on-line frequency response

    OpenAIRE

    Eduardo Gomez Luna

    2015-01-01

    The following article presents the results obtained in experiences that use the Impulse Frequency Response Analysis (IFRA) method with a transformer in service. The IFRA method has been implemented in order to transform the transient signals to the frequency domain using Discrete Fourier Transform (DFT). However, it can be considered that the DFT is not the most suitable tool for this type of analysis, since, by definition, this tool is useful for processing stationary signals. Taking that in...

  11. Imaging of adult brainstem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  12. Corrections for frequency domain transformations of Winfrith binary cross correlator responses

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1968-04-01

    This report considers the corrections for frequency domain transformations of Winfrith binary cross correlator responses; (i) for the finite bandwidth of the equivalent input signal; (2) for the finite time required for the actuator to move between the two positions appropriate to the two levels of the periodic binary chain code input and (3) for the averaging of experimental determinations of the system frequency response and calculations of the standard deviations of the modulus and phase of the frequency responses determined from the cross correlator responses. (author)

  13. Frequency and voltage dependent electrical responses of poly(triarylamine thin film-based organic Schottky diode

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Anuar

    2017-01-01

    Full Text Available A metal-organic-metal (MOM type Schottky diode based on poly (triarylamine (PTAA thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f and capacitance-voltage (C-V-f characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit. Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz but decreases at high frequency (1 – 10 kHz. The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV−1cm−2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC signal.

  14. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.

    Science.gov (United States)

    Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A

    2014-04-01

    The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.

  15. Large central lesions compressing the hypothalamus and brainstem. Operative approaches and combination treatment with radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hiroshi K.; Negishi, Masatoshi; Kohga, Hideaki; Hirato, Masafumi; Ohye, Chihiro [Gunma Univ., Maebashi (Japan). School of Medicine; Shibazaki, Tohru

    1998-09-01

    A major aim of minimally invasive neurosurgery is to preserve function in the brain and cranial nerves. Based on previous results of radiosurgery for central lesions (19 craniopharyngiomas, 46 pituitary adenomas, 9 meningeal tumors), combined micro- and/or radiosurgery was applied for large lesions compressing the hypothalamus and/or brainstem. A basal interhemispheric approach via superomedial orbitotomy or a transcallosal-transforaminal approach was used for these large tumors. Tumors left behind in the hypothalamus or cavernous sinus were treated with radiosurgery using a gamma unit. Preoperative hypothalamo-pituitary functions were preserved in most of these patients. Radiosurgical results were evaluated in patients followed for more than 2 years after treatment. All 9 craniopharyngiomas decreased in size after radiosurgery, although a second treatment was required in 4 patients. All 20 pituitary adenomas were stable or decreased in size and 5 of 7 functioning adenomas showed normalized values of hormones in the serum. All 3 meningeal tumors were stable or decreased in size after treatment. No cavernous sinus symptoms developed after radiosurgery. We conclude that combined micro- and radio-neurosurgery is an effective and less invasive treatment for large central lesions compressing the hypothalamus and brainstem. (author)

  16. Large central lesions compressing the hypothalamus and brainstem. Operative approaches and combination treatment with radiosurgery

    International Nuclear Information System (INIS)

    Inoue, Hiroshi K.; Negishi, Masatoshi; Kohga, Hideaki; Hirato, Masafumi; Ohye, Chihiro; Shibazaki, Tohru

    1998-01-01

    A major aim of minimally invasive neurosurgery is to preserve function in the brain and cranial nerves. Based on previous results of radiosurgery for central lesions (19 craniopharyngiomas, 46 pituitary adenomas, 9 meningeal tumors), combined micro- and/or radiosurgery was applied for large lesions compressing the hypothalamus and/or brainstem. A basal interhemispheric approach via superomedial orbitotomy or a transcallosal-transforaminal approach was used for these large tumors. Tumors left behind in the hypothalamus or cavernous sinus were treated with radiosurgery using a gamma unit. Preoperative hypothalamo-pituitary functions were preserved in most of these patients. Radiosurgical results were evaluated in patients followed for more than 2 years after treatment. All 9 craniopharyngiomas decreased in size after radiosurgery, although a second treatment was required in 4 patients. All 20 pituitary adenomas were stable or decreased in size and 5 of 7 functioning adenomas showed normalized values of hormones in the serum. All 3 meningeal tumors were stable or decreased in size after treatment. No cavernous sinus symptoms developed after radiosurgery. We conclude that combined micro- and radio-neurosurgery is an effective and less invasive treatment for large central lesions compressing the hypothalamus and brainstem. (author)

  17. Linear accelerator-based stereotactic radiosurgery for brainstem metastases: the Dana-Farber/Brigham and Women's Cancer Center experience.

    Science.gov (United States)

    Kelly, Paul J; Lin, Yijie Brittany; Yu, Alvin Y C; Ropper, Alexander E; Nguyen, Paul L; Marcus, Karen J; Hacker, Fred L; Weiss, Stephanie E

    2011-09-01

    To review the safety and efficacy of linear accelerator-based stereotactic radiosurgery (SRS) for brainstem metastases. We reviewed all patients with brain metastases treated with SRS at DF/BWCC from 2001 to 2009 to identify patients who had SRS to a single brainstem metastasis. Overall survival and freedom-from-local failure rates were calculated from the date of SRS using the Kaplan-Meier method. Prognostic factors were evaluated using the log-rank test and Cox proportional hazards model. A total of 24 consecutive patients with brainstem metastases had SRS. At the time of SRS, 21/24 had metastatic lesions elsewhere within the brain. 23/24 had undergone prior WBRT. Primary diagnoses included eight NSCLC, eight breast cancer, three melanoma, three renal cell carcinoma and two others. Median dose was 13 Gy (range, 8-16). One patient had fractionated SRS 5 Gy ×5. Median target volume was 0.2 cc (range, 0.02-2.39). The median age was 57 years (range, 42-92). Follow-up information was available in 22/24 cases. At the time of analysis, 18/22 patients (82%) had died. The median overall survival time was 5.3 months (range, 0.8-21.1 months). The only prognostic factor that trended toward statistical significance for overall survival was the absence of synchronous brain metastasis at the time of SRS; 1-year overall survival was 31% with versus 67% without synchronous brain metastasis (log rank P = 0.11). Non-significant factors included primary tumor histology and status of extracranial disease (progressing vs. stable/absent). Local failure occurred in 4/22 cases (18%). Actuarial freedom from local failure for all cases was 78.6% at 1 year. RTOG grade 3 toxicities were recorded in two patients (ataxia, confusion). Linac-based SRS for small volume brainstem metastases using a median dose of 13 Gy is associated with acceptable local control and low morbidity.

  18. Dynamic Response to Pedestrian Loads with Statistical Frequency Distribution

    DEFF Research Database (Denmark)

    Krenk, Steen

    2012-01-01

    on the magnitude of the resulting response. A frequency representation of vertical pedestrian load is developed, and a compact explicit formula is developed for the magnitude of the resulting response, in terms of the damping ratio of the structure, the bandwidth of the pedestrian load, and the mean footfall...... frequency. The accuracy of the formula is verified by a statistical moment analysis using the Lyapunov equations....

  19. Guillain-Barré Syndrome with Absent Brainstem Reflexes: a Case Report

    Directory of Open Access Journals (Sweden)

    Susana Gordon Chaves

    2014-02-01

    Full Text Available A 41-year-old man was admitted to an intensive care unit following respiratory arrest. One day prior to admission, he had complaints of nausea and pain involving lower limbs. On the night of admission he developed diplopia, dysphagia, and rapidly progressive quadriparesis. He developed respiratory failure requiring mechanical lung ventilation 24 hours later. On the fifth day of hospital stay the patient became comatose with absent brainstem reflexes and appeared to be brain dead. The cerebrospinal fluid showed albuminocytological dissociation. The electroencephalogram revealed an alpha rhythmical activity. The electrophysiological evaluation revealed an inexcitability of all nerves. Guillain-Barré syndrome was suspected. With supportive treatment the patient had a remarkable recovery and now is able to independently conduct his daily activities.

  20. Seasonally adjusted birth frequencies follow the Poisson distribution.

    Science.gov (United States)

    Barra, Mathias; Lindstrøm, Jonas C; Adams, Samantha S; Augestad, Liv A

    2015-12-15

    Variations in birth frequencies have an impact on activity planning in maternity wards. Previous studies of this phenomenon have commonly included elective births. A Danish study of spontaneous births found that birth frequencies were well modelled by a Poisson process. Somewhat unexpectedly, there were also weekly variations in the frequency of spontaneous births. Another study claimed that birth frequencies follow the Benford distribution. Our objective was to test these results. We analysed 50,017 spontaneous births at Akershus University Hospital in the period 1999-2014. To investigate the Poisson distribution of these births, we plotted their variance over a sliding average. We specified various Poisson regression models, with the number of births on a given day as the outcome variable. The explanatory variables included various combinations of years, months, days of the week and the digit sum of the date. The relationship between the variance and the average fits well with an underlying Poisson process. A Benford distribution was disproved by a goodness-of-fit test (p Poisson process when monthly and day-of-the-week variation is included. The frequency is highest in summer towards June and July, Friday and Tuesday stand out as particularly busy days, and the activity level is at its lowest during weekends.

  1. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Directory of Open Access Journals (Sweden)

    Jun Yi Wang

    Full Text Available Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation to 0.978 (for SegAdapter-corrected segmentation for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large

  2. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    International Nuclear Information System (INIS)

    Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.

    2013-01-01

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.

  3. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials

    OpenAIRE

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-01-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion - midline nuchal ridge, left - right mastoids, vertex - midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re. human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (S...

  4. Neurophysiological responses to music and vibroacoustic stimuli in Rett syndrome.

    Science.gov (United States)

    Bergström-Isacsson, Märith; Lagerkvist, Bengt; Holck, Ulla; Gold, Christian

    2014-06-01

    People with Rett syndrome (RTT) have severe communicative difficulties. They have as well an immature brainstem that implies dysfunction of the autonomic nervous system. Music plays an important role in their life, is often used as a motivating tool in a variety of situations and activities, and caregivers are often clear about people with RTTs favourites. The aim of this study was to investigate physiological and emotional responses related to six different musical stimuli in people with RTT. The study included 29 participants with RTT who were referred to the Swedish Rett Center for medical brainstem assessment during the period 2006-2007. 11 children with a typical developmental pattern were used as comparison. A repeated measures design was used, and physiological data were collected from a neurophysiological brainstem assessment. The continuous dependent variables measured were Cardiac Vagal Tone (CVT), Cardiac Sensitivity to Baroreflex (CSB), Mean Arterial Blood Pressure (MAP) and the Coefficient of Variation of Mean Arterial Blood Pressure (MAP-CV). These parameters were used to categorise brainstem responses as parasympathetic (calming) response, sympathetic (activating) response, arousal (alerting) response and unclear response. The results showed that all participants responded to the musical stimuli, but not always in the expected way. It was noticeable that both people with and without RTT responded with an arousal to all musical stimuli to begin with. Even though the initial expressions sometimes changed after some time due to poor control functions of their brainstem, the present results are consistent with the possibility that the RTT participants' normal responses to music are intact. These findings may explain why music is so important for individuals with RTT throughout life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High frequency oscillations in brain hemodynamic response

    Science.gov (United States)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  6. Experiences with non-intrusive monitoring of distribution transformers based on the on-line frequency response

    Directory of Open Access Journals (Sweden)

    Eduardo Gomez Luna

    2015-01-01

    Full Text Available The following article presents the results obtained in experiences that use the Impulse Frequency Response Analysis (IFRA method with a transformer in service. The IFRA method has been implemented in order to transform the transient signals to the frequency domain using Discrete Fourier Transform (DFT. However, it can be considered that the DFT is not the most suitable tool for this type of analysis, since, by definition, this tool is useful for processing stationary signals. Taking that into consideration, the analysis of transient signals could be hypothetically improved by using continuous wavelet transform (CWT, given their variable time/frequency resolution. The analysis of transient signals in Wavelet domain has improved the repeatability of the frequency response curves, as it has been ob-served in experimental results. The proposed on-line IFRA method, based on Wavelet transform, was validated under load and no-load conditions on a 150 kVA three-phase transformer 13200/225 Volts, in the Campus of the Universidad del Valle, Cali, Colombia.

  7. Normal development of brainstem in childhood. Measurement of the area on mid-sagittal MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kutomi, Kimiko [Teikyo Univ., Tokyo (Japan). Faculty of Medicine

    2005-05-01

    Developmental abnormality of brainstem is shown in pediatric patients with mental retardation, autism, periventricular leukomalacia, neurodegenerative disease, and so on. Our purpose here is to clarify the normal developmental pattern of the brainstem. We measured the area of tectum, midbrain tegmentum, pons, basis pontis and pontine tegmentum on mid-sagittal MR images in 111 children (newborn to 20 year old). Different growth patterns were shown in all parts of the brainstem. Tectum showed a subtle increase in area from the newborn to adult period, while midbrain tegmentum and pontine tegmenturn showed a mild and gradual increase in area. Pons and pontine tegmentum showed a rapid and prominent increase in area from newborn to infant period and gradual increase in area until the adult period. These different growth patterns seemed to be consistent with differences in the myelination cycles of the neuronal fibers, maturation of the nuclei and proliferation of glial cells in each part of the brainstem. Mid-sagittal MR imaging of the head is accurate and reproducible and is used conveniently in routine head MR study, making it very useful for the diagnosis of many central nervous diseases and anomalies. We believe that this new milestone provided in this study will be helpful in distinguishing normal children from those that have neurodegenerative disorders. (author)

  8. Normal development of brainstem in childhood. Measurement of the area on mid-sagittal MR imaging

    International Nuclear Information System (INIS)

    Kutomi, Kimiko

    2005-01-01

    Developmental abnormality of brainstem is shown in pediatric patients with mental retardation, autism, periventricular leukomalacia, neurodegenerative disease, and so on. Our purpose here is to clarify the normal developmental pattern of the brainstem. We measured the area of tectum, midbrain tegmentum, pons, basis pontis and pontine tegmentum on mid-sagittal MR images in 111 children (newborn to 20 year old). Different growth patterns were shown in all parts of the brainstem. Tectum showed a subtle increase in area from the newborn to adult period, while midbrain tegmentum and pontine tegmenturn showed a mild and gradual increase in area. Pons and pontine tegmentum showed a rapid and prominent increase in area from newborn to infant period and gradual increase in area until the adult period. These different growth patterns seemed to be consistent with differences in the myelination cycles of the neuronal fibers, maturation of the nuclei and proliferation of glial cells in each part of the brainstem. Mid-sagittal MR imaging of the head is accurate and reproducible and is used conveniently in routine head MR study, making it very useful for the diagnosis of many central nervous diseases and anomalies. We believe that this new milestone provided in this study will be helpful in distinguishing normal children from those that have neurodegenerative disorders. (author)

  9. Step response and frequency response of an air conditioning system

    NARCIS (Netherlands)

    Crommelin, R.D.; Jackman, P.J.

    1978-01-01

    A system of induction units of an existing air conditioning system has been analyzed with respect to its dynamic properties. Time constants were calculated and measured by analogue models. Comparison with measurements at the installation itself showed a reasonable agreement. Frequency responses were

  10. Novel Anterior Brainstem Magnetic Resonance Imaging Findings in Non-Small Cell Lung Cancer with Leptomeningeal Carcinomatosis

    Directory of Open Access Journals (Sweden)

    Chun-Yu Cheng

    2017-10-01

    Full Text Available Leptomeningeal carcinomatosis (LC is found in around 4% of patients with non-small cell lung cancer (NSCLC. The most common radiological finding of LC is diffuse leptomeningeal enhancement on contrast-enhanced brain magnetic resonance imaging (MRI. Herein, we report a novel brain MRI finding—non-enhanced, band-like, symmetric restricted diffusion along the anterior surface of the brainstem—of LC in four patients with NSCLC. We also identified three additional cases with similar MRI findings in a literature review. We hypothesized that the restricted diffusion along the anterior brainstem was caused by malignant cells concentrating in the cistern around the brainstem and infiltrating into the circumferential perforating arteries along the anterior brainstem surface, which then resulted in microinfarctions.

  11. The anti-malarial drug Mefloquine disrupts central autonomic and respiratory control in the working heart brainstem preparation of the rat

    Directory of Open Access Journals (Sweden)

    Lall Varinder K

    2012-12-01

    Full Text Available Abstract Background Mefloquine is an anti-malarial drug that can have neurological side effects. This study examines how mefloquine (MF influences central nervous control of autonomic and respiratory systems using the arterially perfused working heart brainstem preparation (WHBP of the rat. Recordings of nerve activity were made from the thoracic sympathetic chain and phrenic nerve, while heart rate (HR and perfusion pressure were also monitored in the arterially perfused, decerebrate, rat WHBP. MF was added to the perfusate at 1 μM to examine its effects on baseline parameters as well as baroreceptor and chemoreceptor reflexes. Results MF caused a significant, atropine resistant, bradycardia and increased phrenic nerve discharge frequency. Chemoreceptor mediated sympathoexcitation (elicited by addition of 0.1 ml of 0.03% sodium cyanide to the aortic cannula was significantly attenuated by the application of MF to the perfusate. Furthermore MF significantly decreased rate of return to resting HR following chemoreceptor induced bradycardia. An increase in respiratory frequency and attenuated respiratory-related sympathetic nerve discharge during chemoreceptor stimulation was also elicited with MF compared to control. However, MF did not significantly alter baroreceptor reflex sensitivity. Conclusions These studies indicate that in the WHBP, MF causes profound alterations in autonomic and respiratory control. The possibility that these effects may be mediated through actions on connexin 36 containing gap junctions in central neurones controlling sympathetic nervous outflow is discussed.

  12. Macrovascular Decompression of the Brainstem and Cranial Nerves: Evolution of an Anteromedial Vertebrobasilar Artery Transposition Technique.

    Science.gov (United States)

    Choudhri, Omar; Connolly, Ian D; Lawton, Michael T

    2017-08-01

    Tortuous and dolichoectatic vertebrobasilar arteries can impinge on the brainstem and cranial nerves to cause compression syndromes. Transposition techniques are often required to decompress the brainstem with dolichoectatic pathology. We describe our evolution of an anteromedial transposition technique and its efficacy in decompressing the brainstem and relieving symptoms. To present the anteromedial vertebrobasilar artery transposition technique for macrovascular decompression of the brainstem and cranial nerves. All patients who underwent vertebrobasilar artery transposition were identified from the prospectively maintained database of the Vascular Neurosurgery service, and their medical records were reviewed retrospectively. The extent of arterial displacement was measured pre- and postoperatively on imaging. Vertebrobasilar arterial transposition and macrovascular decompression was performed in 12 patients. Evolution in technique was characterized by gradual preference for the far-lateral approach, use of a sling technique with muslin wrap, and an anteromedial direction of pull on the vertebrobasilar artery with clip-assisted tethering to the clival dura. With this technique, mean lateral displacement decreased from 6.6 mm in the first half of the series to 3.8 mm in the last half of the series, and mean anterior displacement increased from 0.8 to 2.5 mm, with corresponding increases in satisfaction and relief of symptoms. Compressive dolichoectatic pathology directed laterally into cranial nerves and posteriorly into the brainstem can be corrected with anteromedial transposition towards the clivus. Our technique accomplishes this anteromedial transposition from an inferolateral surgical approach through the vagoaccessory triangle, with sling fixation to clival dura using aneurysm clips. Copyright © 2017 by the Congress of Neurological Surgeons

  13. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area – an anterograde tract-tracing study

    Directory of Open Access Journals (Sweden)

    Rege Sugárka Papp

    2014-05-01

    Full Text Available The projections from the dorsolateral hypothalamic area (DLH to the lower brainstem have been investigated by using biotinylated dextran amine (BDA, an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area, and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington’s and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline and 9 serotonin cell groups received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.

  14. Neurodegenerative changes in the brainstem and olfactory bulb in people older than 50 years old: a descriptive study

    Directory of Open Access Journals (Sweden)

    Francine Hehn de Oliveira

    2015-07-01

    Full Text Available With the increase in life expectancy in Brazil, concerns have grown about the most prevalent diseases in elderly people. Among these diseases are neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. Protein deposits related to the development of these diseases can pre-date the symptomatic phases by years. The tau protein is particularly interesting: it might be found in the brainstem and olfactory bulb long before it reaches the limbic cortex, at which point symptoms occur. Of the 14 brains collected in this study, the tau protein was found in the brainstems of 10 (71.42% and in olfactory bulbs of 3 out 11. Of the 7 individuals who had a final diagnosis of Alzheimer’s disease (AD, 6 presented tau deposits in some region of the brainstem. Our data support the idea of the presence of tau protein in the brainstem and olfactory bulb in the earliest stages of AD.

  15. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  16. Frequency-dependent transient response of an oscillating electrically actuated droplet

    International Nuclear Information System (INIS)

    Dash, S; Kumari, N; Garimella, S V

    2012-01-01

    The transient response of a millimeter-sized sessile droplet under electrical actuation is experimentally investigated. Under dc actuation, the droplet spreading rate increases as the applied voltage is increased due to the higher electrical forces induced. At sufficiently high dc voltages, competition between the electrical actuation force, droplet inertia, the retarding surface tension force and contact line friction leads to droplet oscillation. The timescale for the droplet to attain its maximum wetted diameter during step actuation is analyzed. Systematic experiments are conducted over a frequency range of 5–200 Hz and actuation voltages of 40–80 V rms to determine the dependence of droplet oscillation on these parameters. The response of the droplet to different actuation frequencies and voltages is determined in terms of its contact angle and contact radius variation. The frequency of the driving force (equal to twice the frequency of the applied electrical signal) determines the mode of oscillation of the droplet which, together with its resonance characteristics, governs whether the droplet contact angle and contact radius vary in phase or out of phase with each other. In addition to the primary frequency response at the electrical forcing frequency, the droplet oscillation exhibits sub-harmonic oscillation at half of the forcing frequency that is attributed to the parametric nature of the electrical force acting on the triple contact line of the droplet. (paper)

  17. Detection of Perinatal Cytomegalovirus Infection and Sensorineural Hearing Loss in Belgian Infants by Measurement of Automated Auditory Brainstem Response▿

    OpenAIRE

    Verbeeck, Jannick; Van Kerschaver, Erwin; Wollants, Elke; Beuselinck, Kurt; Stappaerts, Luc; Van Ranst, Marc

    2008-01-01

    Since auditory disability causes serious problems in the development of speech and in the total development of a child, it is crucial to diagnose possible hearing impairment as soon as possible after birth. This study evaluates the neonatal hearing screening program in Flanders, Belgium. The auditory ability of 118,438 babies was tested using the automated auditory brainstem response. We selected 194 babies with indicative hearing impairment and 332 matched controls to investigate the associa...

  18. Inter- and intrapatient variability of facial nerve response areas in the floor of the fourth ventricle.

    Science.gov (United States)

    Bertalanffy, Helmut; Tissira, Nadir; Krayenbühl, Niklaus; Bozinov, Oliver; Sarnthein, Johannes

    2011-03-01

    Surgical exposure of intrinsic brainstem lesions through the floor of the 4th ventricle requires precise identification of facial nerve (CN VII) fibers to avoid damage. To assess the shape, size, and variability of the area where the facial nerve can be stimulated electrophysiologically on the surface of the rhomboid fossa. Over a period of 18 months, 20 patients were operated on for various brainstem and/or cerebellar lesions. Facial nerve fibers were stimulated to yield compound muscle action potentials (CMAP) in the target muscles. Using the sites of CMAP yield, a detailed functional map of the rhomboid fossa was constructed for each patient. Lesions resected included 14 gliomas, 5 cavernomas, and 1 epidermoid cyst. Of 40 response areas mapped, 19 reached the median sulcus. The distance from the obex to the caudal border of the response area ranged from 8 to 27 mm (median, 17 mm). The rostrocaudal length of the response area ranged from 2 to 15 mm (median, 5 mm). Facial nerve response areas showed large variability in size and position, even in patients with significant distance between the facial colliculus and underlying pathological lesion. Lesions located close to the facial colliculus markedly distorted the response area. This is the first documentation of variability in the CN VII response area in the rhomboid fossa. Knowledge of this remarkable variability may facilitate the assessment of safe entry zones to the brainstem and may contribute to improved outcome following neurosurgical interventions within this sensitive area of the brain.

  19. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    Comi, G.; Martinelli, V.; Medaglini, S.; Locatelli, T.; Magnani, G.; Poggi, A.; Triulzi, F.

    1988-01-01

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  20. Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex.

    Science.gov (United States)

    de Matos, Nuno M P; Hock, Andreas; Wyss, Michael; Ettlin, Dominik A; Brügger, Mike

    2017-11-15

    The trigeminal brainstem sensory nuclear complex is the first central relay structure mediating orofacial somatosensory and nociceptive perception. Animal studies suggest a substantial involvement of neurochemical alterations at such basal CNS levels in acute and chronic pain processing. Translating this animal based knowledge to humans is challenging. Human related examining of brainstem functions are challenged by MR related peculiarities as well as applicability aspects of experimentally standardized paradigms. Based on our experience with an MR compatible human orofacial pain model, the aims of the present study were twofold: 1) from a technical perspective, the evaluation of proton magnetic resonance spectroscopy at 3 T regarding measurement accuracy of neurochemical profiles in this small brainstem nuclear complex and 2) the examination of possible neurochemical alterations induced by an experimental orofacial pain model. Data from 13 healthy volunteers aged 19-46 years were analyzed and revealed high quality spectra with significant reductions in total N-acetylaspartate (N-acetylaspartate + N-acetylaspartylglutamate) (-3.7%, p = 0.009) and GABA (-10.88%, p = 0.041) during the pain condition. These results might reflect contributions of N-acetylaspartate and N-acetylaspartylglutamate in neuronal activity-dependent physiologic processes and/or excitatory neurotransmission, whereas changes in GABA might indicate towards a reduction in tonic GABAergic functioning during nociceptive signaling. Summarized, the present study indicates the applicability of 1 H-MRS to obtain neurochemical dynamics within the human trigeminal brainstem sensory nuclear complex. Further developments are needed to pave the way towards bridging important animal based knowledge with human research to understand the neurochemistry of orofacial nociception and pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Awake craniotomy for assisting placement of auditory brainstem implant in NF2 patients.

    Science.gov (United States)

    Zhou, Qiangyi; Yang, Zhijun; Wang, Zhenmin; Wang, Bo; Wang, Xingchao; Zhao, Chi; Zhang, Shun; Wu, Tao; Li, Peng; Li, Shiwei; Zhao, Fu; Liu, Pinan

    2018-06-01

    Auditory brainstem implants (ABIs) may be the only opportunity for patients with NF2 to regain some sense of hearing sensation. However, only a very small number of individuals achieved open-set speech understanding and high sentence scores. Suboptimal placement of the ABI electrode array over the cochlear nucleus may be one of main factors for poor auditory performance. In the current study, we present a method of awake craniotomy to assist with ABI placement. Awake surgery and hearing test via the retrosigmoid approach were performed for vestibular schwannoma resections and auditory brainstem implantations in four patients with NF2. Auditory outcomes and complications were assessed postoperatively. Three of 4 patients who underwent awake craniotomy during ABI surgery received reproducible auditory sensations intraoperatively. Satisfactory numbers of effective electrodes, threshold levels and distinct pitches were achieved in the wake-up hearing test. In addition, relatively few electrodes produced non-auditory percepts. There was no serious complication attributable to the ABI or awake craniotomy. It is safe and well tolerated for neurofibromatosis type 2 (NF2) patients using awake craniotomy during auditory brainstem implantation. This method can potentially improve the localization accuracy of the cochlear nucleus during surgery.

  2. Multiscale energy reallocation during low-frequency steady-state brain response.

    Science.gov (United States)

    Wang, Yifeng; Chen, Wang; Ye, Liangkai; Biswal, Bharat B; Yang, Xuezhi; Zou, Qijun; Yang, Pu; Yang, Qi; Wang, Xinqi; Cui, Qian; Duan, Xujun; Liao, Wei; Chen, Huafu

    2018-05-01

    Traditional task-evoked brain activations are based on detection and estimation of signal change from the mean signal. By contrast, the low-frequency steady-state brain response (lfSSBR) reflects frequency-tagging activity at the fundamental frequency of the task presentation and its harmonics. Compared to the activity at these resonant frequencies, brain responses at nonresonant frequencies are largely unknown. Additionally, because the lfSSBR is defined by power change, we hypothesize using Parseval's theorem that the power change reflects brain signal variability rather than the change of mean signal. Using a face recognition task, we observed power increase at the fundamental frequency (0.05 Hz) and two harmonics (0.1 and 0.15 Hz) and power decrease within the infra-slow frequency band ( .955) of their spatial distribution and brain-behavior relationship at all frequency bands. Additionally, the reallocation of finite energy was observed across various brain regions and frequency bands, forming a particular spatiotemporal pattern. Overall, results from this study strongly suggest that frequency-specific power and variability may measure the same underlying brain activity and that these results may shed light on different mechanisms between lfSSBR and brain activation, and spatiotemporal characteristics of energy reallocation induced by cognitive tasks. © 2018 Wiley Periodicals, Inc.

  3. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  4. Enterovirus 71 can directly infect the brainstem via cranial nerves and infection can be ameliorated by passive immunization.

    Science.gov (United States)

    Tan, Soon Hao; Ong, Kien Chai; Wong, Kum Thong

    2014-11-01

    Enterovirus 71 (EV71)-associated hand, foot, and mouth disease may be complicated by encephalomyelitis. We investigated EV71 brainstem infection and whether this infection could be ameliorated by passive immunization in a mouse model. Enterovirus 71 was injected into unilateral jaw/facial muscles of 2-week-old mice, and hyperimmune sera were given before or after infection. Harvested tissues were studied by light microscopy, immunohistochemistry, in situ hybridization, and viral titration. In unimmunized mice, viral antigen and RNA were detected within 24 hours after infection only in ipsilateral cranial nerves, motor trigeminal nucleus, reticular formation, and facial nucleus; viral titers were significantly higher in the brainstem than in the spinal cord samples. Mice given preinfection hyperimmune serum showed a marked reduction of ipsilateral viral antigen/RNA and viral titers in the brainstem in a dose-dependent manner. With optimum hyperimmune serum given after infection, brainstem infection was significantly reduced in a time-dependent manner. A delay in disease onset and a reduction of disease severity and mortality were also observed. Thus, EV71 can directly infect the brainstem, including the medulla, via cranial nerves, most likely by retrograde axonal transport. This may explain the sudden cardiorespiratory collapse in human patients with fatal encephalomyelitis. Moreover, our results suggest that passive immunization may still benefit EV71-infected patients who have neurologic complications.

  5. Dopamine in the Auditory Brainstem and Midbrain: Co-localization with Amino Acid Neurotransmitters and Gene Expression following Cochlear Trauma

    Directory of Open Access Journals (Sweden)

    Avril Genene eHolt

    2015-07-01

    Full Text Available Dopamine (DA modulates the effects of amino acid neurotransmitters, including GABA and glutamate, in motor, visual, olfactory and reward systems (Hnasko et al., 2010; Stuber et al., 2010; Hnasko and Edwards, 2012. The results suggest that DA may play a similar modulatory role in the auditory pathways. Previous studies have shown that deafness results in decreased GABA release, changes in excitatory neurotransmitter levels, and increased spontaneous neuronal activity within brainstem regions related to auditory function. Modulation of the expression and localization of tyrosine hydroxylase (TH; the rate limiting enzyme in the production of DA in the IC following cochlear trauma has been previously reported (Tong et al., 2005. In the current study the possibility of co-localization of TH with amino acid neurotransmitters (AANs was examined. Changes in the gene expression of TH were compared with changes in the gene expression of markers for AANs in the cochlear nucleus (CN and IC to determine whether those deafness related changes occur concurrently. The results indicate that bilateral cochlear ablation significantly reduced TH gene expression in the CN after two months while in the IC the reduction in TH was observed at both three days and two months following ablation. Furthermore, in the CN, glycine transporter 2 (GlyT2 and the GABA transporter (GABAtp were also significantly reduced only after two months. However, in the IC, DA receptor 1 (DRDA1, vesicular glutamate transporters 2 and 3 (vGluT2, vGluT3, GABAtp and GAD67 were reduced in expression both at the three day and two month time points. A close relationship between the distribution of TH and several of the AANs was determined in both the CN and the IC. In addition, GlyT2 and vGluT3 each co-localized with TH within IC somata and dendrites. Therefore, the results of the current study suggest that DA is spatially well positioned to influence the effects of AANs on auditory neurons.

  6. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations.

    Science.gov (United States)

    Flores, Bruno C; Whittemore, Anthony R; Samson, Duke S; Barnett, Samuel L

    2015-03-01

    Resection of brainstem cavernous malformations (BSCMs) may reduce the risk of stepwise neurological deterioration secondary to hemorrhage, but the morbidity of surgery remains high. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) are neuroimaging techniques that may assist in the complex surgical planning necessary for these lesions. The authors evaluate the utility of preoperative DTI and DTT in the surgical management of BSCMs and their correlation with functional outcome. A retrospective review was conducted to identify patients who underwent resection of a BSCM between 2007 and 2012. All patients had preoperative DTI/DTT studies and a minimum of 6 months of clinical and radiographic follow-up. Five major fiber tracts were evaluated preoperatively using the DTI/DTT protocol: 1) corticospinal tract, 2) medial lemniscus and medial longitudinal fasciculus, 3) inferior cerebellar peduncle, 4) middle cerebellar peduncle, and 5) superior cerebellar peduncle. Scores were applied according to the degree of distortion seen, and the sum of scores was used for analysis. Functional outcomes were measured at hospital admission, discharge, and last clinic visit using modified Rankin Scale (mRS) scores. Eleven patients who underwent resection of a BSCM and preoperative DTI were identified. The mean age at presentation was 49 years, with a male-to-female ratio of 1.75:1. Cranial nerve deficit was the most common presenting symptom (81.8%), followed by cerebellar signs or gait/balance difficulties (54.5%) and hemibody anesthesia (27.2%). The majority of the lesions were located within the pons (54.5%). The mean diameter and estimated volume of lesions were 1.21 cm and 1.93 cm(3), respectively. Using DTI and DTT, 9 patients (82%) were found to have involvement of 2 or more major fiber tracts; the corticospinal tract and medial lemniscus/medial longitudinal fasciculus were the most commonly affected. In 2 patients with BSCMs without pial presentation, DTI

  7. Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem α1 and β1 receptors.

    Science.gov (United States)

    Wang, Xin; Piñol, Ramón A; Byrne, Peter; Mendelowitz, David

    2014-04-30

    Locus ceruleus (LC) noradrenergic neurons are critical in generating alertness. In addition to inducing cortical arousal, the LC also orchestrates changes in accompanying autonomic system function that compliments increased attention, such as during stress, excitation, and/or exposure to averse or novel stimuli. Although the association between arousal and increased heart rate is well accepted, the neurobiological link between the LC and parasympathetic neurons that control heart rate has not been identified. In this study, we test directly whether activation of noradrenergic neurons in the LC influences brainstem parasympathetic cardiac vagal neurons (CVNs). CVNs were identified in transgenic mice that express channel-rhodopsin-2 (ChR2) in LC tyrosine hydroxylase neurons. Photoactivation evoked a rapid depolarization, increased firing, and excitatory inward currents in ChR2-expressing neurons in the LC. Photostimulation of LC neurons did not alter excitatory currents, but increased inhibitory neurotransmission to CVNs. Optogenetic activation of LC neurons increased the frequency of isolated glycinergic IPSCs by 27 ± 8% (p = 0.003, n = 26) and augmented GABAergic IPSCs in CVNs by 21 ± 5% (p = 0.001, n = 26). Inhibiting α1, but not α2, receptors blocked the evoked responses. Inhibiting β1 receptors prevented the increase in glycinergic, but not GABAergic, IPSCs in CVNs. This study demonstrates LC noradrenergic neurons inhibit the brainstem CVNs that generate parasympathetic activity to the heart. This inhibition of CVNs would increase heart rate and risks associated with tachycardia. The receptors activated within this pathway, α1 and/or β1 receptors, are targets for clinically prescribed antagonists that promote slower, cardioprotective heart rates during heightened vigilant states.

  8. Low frequency of anti-D alloimmunization following D+ platelet transfusion: the Anti-D Alloimmunization after D-incompatible Platelet Transfusions (ADAPT) study.

    Science.gov (United States)

    Cid, Joan; Lozano, Miguel; Ziman, Alyssa; West, Kamille A; O'Brien, Kerry L; Murphy, Michael F; Wendel, Silvano; Vázquez, Alejandro; Ortín, Xavier; Hervig, Tor A; Delaney, Meghan; Flegel, Willy A; Yazer, Mark H

    2015-02-01

    The reported frequency of D alloimmunization in D- recipients after transfusion of D+ platelets varies. This study was designed to determine the frequency of D alloimmunization, previously reported to be an average of 5 ± 2%. A primary anti-D immune response was defined as the detection of anti-D ≥ 28 d following the first D+ platelet transfusion. Data were collected on 485 D- recipients of D+ platelets in 11 centres between 2010 and 2012. Their median age was 60 (range 2-100) years. Diagnoses included: haematological (203/485, 42%), oncological (64/485, 13%) and other diseases (218/485, 45%). Only 7/485 (1·44%; 95% CI 0·58-2·97%) recipients had a primary anti-D response after a median serological follow-up of 77 d (range: 28-2111). There were no statistically significant differences between the primary anti-D formers and the other patients, in terms of gender, age, receipt of immunosuppressive therapy, proportion of patients with haematological/oncological diseases, transfusion of whole blood-derived or apheresis platelets or both, and total number of transfused platelet products. This is the largest study with the longest follow-up of D alloimmunization following D+ platelet transfusion. The low frequency of D alloimmunization should be considered when deciding whether to administer Rh Immune Globulin to D- males and D- females without childbearing potential after transfusion of D+ platelets. © 2014 John Wiley & Sons Ltd.

  9. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P

    2017-02-01

    It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring.

    Science.gov (United States)

    Ferreira, Diorginis Soares; Liu, Yuri; Fernandes, Mariana Pinheiro; Lagranha, Claudia Jacques

    2016-10-01

    Studies in humans and animal models have established a close relationship between early environment insult and subsequent risk of development of non-communicable diseases, including the cardiovascular. Whereas experimental evidences highlight the early undernutrition and the late cardiovascular disease relation, the central mechanisms linking the two remain unknown. Owing to the oxidative balance influence in several pathologies, the aim of the present study was to evaluate the effects of maternal undernutrition (i.e. a low-protein (LP) diet) on oxidative balance in the brainstem. Male rats from mothers fed with an LP diet (8% casein) throughout the perinatal period (i.e. gestation and lactation) showed 10× higher lipid peroxidation levels than animals treated with normoprotein (17% casein) at 100 days of age. In addition, we observed the following reductions in enzymatic activities: superoxide dismutase, 16%; catalase, 30%; glutathione peroxidase, 34%; glutathione-S-transferase, 51%; glutathione reductase, 23%; glucose-6-phosphate dehydrogenase, 31%; and in non-enzymatic glutathione system, 46%. This study is the first to focus on the role of maternal LP nutrition in oxidative balance in a central nervous system structure responsible for cardiovascular control in adult rats. Our data observed changes in oxidative balance in the offspring, therefore, bring a new concept related to early undernutrition and can help in the development of a new clinical strategy to combat the effects of nutritional insult. Wherein the central oxidative imbalance is a feasible mechanism underlying the hypertension risk in adulthood triggered by maternal LP diet.

  11. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Science.gov (United States)

    Zhang, Dian; Cui, Jianguo; Tang, Yezhong

    2012-01-01

    In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  12. Frequency-Independent Response of Self-Complementary Checkerboard Screens

    Science.gov (United States)

    Urade, Yoshiro; Nakata, Yosuke; Nakanishi, Toshihiro; Kitano, Masao

    2015-06-01

    This research resolves a long-standing problem on the electromagnetic response of self-complementary metallic screens with checkerboardlike geometry. Although Babinet's principle implies that they show a frequency-independent response, this unusual characteristic has not been observed yet due to the singularities of the metallic point contacts in the checkerboard geometry. We overcome this difficulty by replacing the point contacts with resistive sheets. The proposed structure is prepared and characterized by terahertz time-domain spectroscopy. It is experimentally confirmed that the resistive checkerboard structures exhibit a flat transmission spectrum over 0.1-1.1 THz. It is also demonstrated that self-complementarity can eliminate even the frequency-dependent transmission characteristics of resonant metamaterials.

  13. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Christophe; Cabanis, Emmanuel A. [UPMC Paris 6, Service de NeuroImagerie, Hopital des Quinze-Vingts, Paris (France)

    2007-10-15

    The aims of this study were: (1) to test whether higher spatial resolution diffusion tensor images and a higher field strength (3 T) enable a more accurate delineation of the anatomical tract within the brainstem, and, in particular, (2) to try to distinguish the different components of the corticopontocerebellar paths in terms of their cortical origins. The main tracts of the brainstem of four volunteers were studied at 3 T using a probabilistic diffusion tensor imaging (DTI) axonal tracking. The resulting tractograms enabled anatomical well-delineated structures to be identified on the diffusion tensor coloured images. We tracked corticopontine, corticospinal, central tegmental, inferior and superior cerebellopeduncular, transverse, medial lemniscal and, possibly, longitudinal medial fibres. Moreover, DTI tracking allowed a broad delineation of the corticopontocerebellar paths. Diffusion tensor coloured images allow a rapid and reliable access to the white matter broad parcellation of the brainstem and of the cerebellum, which can be completed by fibre tracking. However, a more accurate and exhaustive depiction of the anatomical connectivity within the brainstem requires the application of more sophisticated techniques and tractography algorithms, such as diffusion spectrum imaging. (orig.)

  14. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T

    International Nuclear Information System (INIS)

    Habas, Christophe; Cabanis, Emmanuel A.

    2007-01-01

    The aims of this study were: (1) to test whether higher spatial resolution diffusion tensor images and a higher field strength (3 T) enable a more accurate delineation of the anatomical tract within the brainstem, and, in particular, (2) to try to distinguish the different components of the corticopontocerebellar paths in terms of their cortical origins. The main tracts of the brainstem of four volunteers were studied at 3 T using a probabilistic diffusion tensor imaging (DTI) axonal tracking. The resulting tractograms enabled anatomical well-delineated structures to be identified on the diffusion tensor coloured images. We tracked corticopontine, corticospinal, central tegmental, inferior and superior cerebellopeduncular, transverse, medial lemniscal and, possibly, longitudinal medial fibres. Moreover, DTI tracking allowed a broad delineation of the corticopontocerebellar paths. Diffusion tensor coloured images allow a rapid and reliable access to the white matter broad parcellation of the brainstem and of the cerebellum, which can be completed by fibre tracking. However, a more accurate and exhaustive depiction of the anatomical connectivity within the brainstem requires the application of more sophisticated techniques and tractography algorithms, such as diffusion spectrum imaging. (orig.)

  15. Effect of input compression and input frequency response on music perception in cochlear implant users.

    Science.gov (United States)

    Halliwell, Emily R; Jones, Linor L; Fraser, Matthew; Lockley, Morag; Hill-Feltham, Penelope; McKay, Colette M

    2015-06-01

    A study was conducted to determine whether modifications to input compression and input frequency response characteristics can improve music-listening satisfaction in cochlear implant users. Experiment 1 compared three pre-processed versions of music and speech stimuli in a laboratory setting: original, compressed, and flattened frequency response. Music excerpts comprised three music genres (classical, country, and jazz), and a running speech excerpt was compared. Experiment 2 implemented a flattened input frequency response in the speech processor program. In a take-home trial, participants compared unaltered and flattened frequency responses. Ten and twelve adult Nucleus Freedom cochlear implant users participated in Experiments 1 and 2, respectively. Experiment 1 revealed a significant preference for music stimuli with a flattened frequency response compared to both original and compressed stimuli, whereas there was a significant preference for the original (rising) frequency response for speech stimuli. Experiment 2 revealed no significant mean preference for the flattened frequency response, with 9 of 11 subjects preferring the rising frequency response. Input compression did not alter music enjoyment. Comparison of the two experiments indicated that individual frequency response preferences may depend on the genre or familiarity, and particularly whether the music contained lyrics.

  16. Comparison of Predictable Smooth Ocular and Combined Eye-Head Tracking Behaviour in Patients with Lesions Affecting the Brainstem and Cerebellum

    Science.gov (United States)

    Grant, Michael P.; Leigh, R. John; Seidman, Scott H.; Riley, David E.; Hanna, Joseph P.

    1992-01-01

    We compared the ability of eight normal subjects and 15 patients with brainstem or cerebellar disease to follow a moving visual stimulus smoothly with either the eyes alone or with combined eye-head tracking. The visual stimulus was either a laser spot (horizontal and vertical planes) or a large rotating disc (torsional plane), which moved at one sinusoidal frequency for each subject. The visually enhanced Vestibulo-Ocular Reflex (VOR) was also measured in each plane. In the horizontal and vertical planes, we found that if tracking gain (gaze velocity/target velocity) for smooth pursuit was close to 1, the gain of combined eye-hand tracking was similar. If the tracking gain during smooth pursuit was less than about 0.7, combined eye-head tracking was usually superior. Most patients, irrespective of diagnosis, showed combined eye-head tracking that was superior to smooth pursuit; only two patients showed the converse. In the torsional plane, in which optokinetic responses were weak, combined eye-head tracking was much superior, and this was the case in both subjects and patients. We found that a linear model, in which an internal ocular tracking signal cancelled the VOR, could account for our findings in most normal subjects in the horizontal and vertical planes, but not in the torsional plane. The model failed to account for tracking behaviour in most patients in any plane, and suggested that the brain may use additional mechanisms to reduce the internal gain of the VOR during combined eye-head tracking. Our results confirm that certain patients who show impairment of smooth-pursuit eye movements preserve their ability to smoothly track a moving target with combined eye-head tracking.

  17. Modeling the frequency response of photovoltaic inverters

    NARCIS (Netherlands)

    Ernauli Christine Aprilia, A.; Cuk, V.; Cobben, J.F.G.; Ribeiro, P.F.; Kling, W.L.

    2012-01-01

    The increased presence of photovoltaic (PV) systems inevitably affects the power quality in the grid. This new reality demands grid power quality studies involving PV inverters. This paper proposes several frequency response models in the form of equivalent circuits. Models are based on laboratory

  18. Sequential change in MRI in two cases with small brainstem infarctions

    International Nuclear Information System (INIS)

    Masuda, Ryoichi; Fukuda, Osamu; Endoh, Shunro; Takaku, Akira; Suzuki, Takashi; Satoh, Shuji

    1987-01-01

    Magnetic resonance imaging (MRI) has been found to be very useful for the diagnosis of a small brainstem infarction. However, most reported cases have shown the changes at only the chronic stage. In this report, sequential changes in the MRI in two cases with small brainstem infarctions are presented. In Case 1, a 67-year-old man with a pure sensory stroke on the right side, a small infarcted area was observed at the left medial side of the pontomedullary junction on MRI. In Case 2, a 62-year-old man with a pure motor hemiparesis of the left side, MRI revealed a small infarcted area on the right ventral of the middle pons. The initial changes were confirmed 5 days (Case 1) and 18 hours (Case 2) after the onset of the completed stroke. No abnormal findings could be found in the computed tomography in either case. (author)

  19. Magnetic Frequency Response of HL-LHC Beam Screens

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, M. [CERN; Martino, M. [CERN; De Maria, R. [CERN; Fitterer, M. [Fermilab; Garion, C. [CERN

    2017-10-12

    Magnetic fields used to control particle beams in accelerators are usually controlled by regulating the electrical current of the power converters. In order to minimize lifetime degradation and ultimately luminosity loss in circular colliders, current-noise is a highly critical figure of merit of power converters, in particular for magnets located in areas with high beta-function, like the High Luminosity Large Hadron Collider (HL-LHC) insertions. However, what is directly acting upon the beam is the magnetic field and not the current of the power converter, which undergoes several frequency-dependent transformations until the desired magnetic field, seen by the beam, is obtained. Beam screens are very rarely considered when assessing or specifying the noise figure of merit, but their magnetic frequency response is such that they realize relatively effective low pass filtering of the magnetic field produced by the system magnet-power converter. This work aims at filling this gap by quantifying the expected impact of different beam screen layouts for the most relevant HL-LHC insertion magnets. A welldefined post-processing technique is used to derive the frequency response of the different multipoles from multi-physics Finite Element Method (FEM) simulation results. In addition, a well approximated analytical formula for the low-frequency range of multi-layered beam screens is presented.

  20. Method of detecting system function by measuring frequency response

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2013-01-08

    Methods of rapidly measuring an impedance spectrum of an energy storage device in-situ over a limited number of logarithmically distributed frequencies are described. An energy storage device is excited with a known input signal, and a response is measured to ascertain the impedance spectrum. An excitation signal is a limited time duration sum-of-sines consisting of a select number of frequencies. In one embodiment, magnitude and phase of each frequency of interest within the sum-of-sines is identified when the selected frequencies and sample rate are logarithmic integer steps greater than two. This technique requires a measurement with a duration of one period of the lowest frequency. In another embodiment, where selected frequencies are distributed in octave steps, the impedance spectrum can be determined using a captured time record that is reduced to a half-period of the lowest frequency.

  1. Frequency Response of Graphene Electrolyte-Gated Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Charles Mackin

    2018-02-01

    Full Text Available This work develops the first frequency-dependent small-signal model for graphene electrolyte-gated field-effect transistors (EGFETs. Graphene EGFETs are microfabricated to measure intrinsic voltage gain, frequency response, and to develop a frequency-dependent small-signal model. The transfer function of the graphene EGFET small-signal model is found to contain a unique pole due to a resistive element, which stems from electrolyte gating. Intrinsic voltage gain, cutoff frequency, and transition frequency for the microfabricated graphene EGFETs are approximately 3.1 V/V, 1.9 kHz, and 6.9 kHz, respectively. This work marks a critical step in the development of high-speed chemical and biological sensors using graphene EGFETs.

  2. Boxing sparring complicated by an acute subdural haematoma and brainstem haemorrhage.

    Science.gov (United States)

    Hart, Michael G; Trivedi, Rikin A; Hutchinson, Peter J

    2012-10-01

    A professional boxer developed an acute subdural haematoma after boxing sparring. Despite timely surgical decompression, he had a poor overall outcome predominantly from a delayed brainstem haematoma. Magnetic resonance imaging (MRI) was used to elucidate the pathophysiology of the patients' injury and clinical condition.

  3. MRI findings of the brainstem of the neuro-Behcet syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Naoto; Tashiro, Kunio; Yamada, Takayoshi; Ito, Kazunori; Honma, Sanae; Doi, Shizuki; Moriwaka, Fumio

    1987-10-01

    We reported three cases of neuro-Behcet's syndrome which showed brainstem lesions on MRI compatible with the clinical symptoms. In Case 1, MRI showed a large, abnormal signal-intensity area in the pons and small, abnormal signal-intensity areas at the right cerebral peduncle, the bilateral basal ganglia, and the left thalamus. These lesions disappeared on MRI, in accordance with the remission of clinical symptoms. On the other hand, CT showed no positive findings. In Case 2, an abnormal signal-intensity area was disclosed at the left cerebral peduncle on MRI. This lesion was also identified on the CT scan. In Case 3, an abnormal signal-intensity area was present in the pons on MRI. In this case, CT showed no positive findings. In Cases 2 and 3, these lesions seemed to represent inflammatory or necrotic areas attributable to vasculitis;however, the extensive brainstem lesion seen on the MRI of Case 1 was a quite unique finding, for which no exact pathophysiological explanation is possible at the present time.

  4. The relationship of age, gender, and IQ with the brainstem and thalamus in healthy children and adolescents: a magnetic resonance imaging volumetric study.

    Science.gov (United States)

    Xie, Yuhuan; Chen, Yian Ann; De Bellis, Michael D

    2012-03-01

    In healthy children, there is a paucity of information on the growth of the brainstem and thalamus measured anatomically magnetic resonance imaging. The relations of age, gender, and age by gender with brainstem and thalamus volumes were analyzed from magnetic resonance brain images of 122 healthy children and adolescents (62 males, 60 females; ages 4 to 17). Results showed that age is a significant predictor of brainstem and thalamus volumes. The volume of the brainstem increases with age, while thalamus volume declines with age. The volume of the right thalamus is significantly larger than that of the left in both genders, with greater rightward asymmetry and greater thalamus to grey matter ratio in females. Males have larger brainstems, but these differences are not significant when covarying for cerebral volume. Larger thalami were associated with higher Verbal IQ. These normative pediatric data are of value to researchers who study these regions in neurodevelopmental disorders.

  5. Immunohistochemical Mapping of TRK-Fused Gene Products in the Rat Brainstem

    International Nuclear Information System (INIS)

    Takeuchi, Shigeko; Masuda, Chiaki; Maebayashi, Hisae; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It was since reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. As shown in the accompanying paper, we produced an antibody to rat TFG and used it to localize TFG to selected neurons in specific regions. In the present study, we mapped the TFG-positive neurons in the brainstem, cerebellum, and spinal cord of rats. In the brainstem, neurons intensely positive for TFG were distributed in the raphe nuclei, the gigantocellular reticular nucleus, the reticulotegmental nucleus of the pons, and some cranial nerve nuclei such as the trigeminal nuclei, the vestibulocochlear nuclei, and the dorsal motor nucleus of the vagus. Purkinje cells in the cerebellum and motor neurons in the spinal anterior horn were also positive for TFG. These results provide fundamental data for studying the functions of TFG in the brain

  6. Features of the brainstem and tentorial foramen relationship and their practical value

    Directory of Open Access Journals (Sweden)

    O. V. Redyakina

    2016-11-01

    Full Text Available Objective. Establish the morphological features and practical significance of the tentorial-stem relationship from the position of individual anatomical variability. Methods: head morphometry, macro and microscopic examination of the brainstem, morphometry of the brainstem and its departments, tentorial aperture morphometry, foramen magnum craniometry, manufacture of corrosion molds of the posterior cranial fossa, statistical processing of the results, computer-graphic modeling of the brainstem and surrounding formations. Results.  In the course of the study, the features of the individual variability of the tentorial foramen form were established, namely: shortened-expanded and oval-convex forms were defined in brachycephalic; in dolichocephalic - oblong-narrowed and elongated-conical. At the same time, a number of existing sizes and forms of the tentorial-stem spaces were noted. Among them, four main ones are described: front, side (right and left and rear. They have individual characteristics. Thus, in the brachycephalic we define lateral holes, due to the convexity of the tentorial margins. In dolichocephalic - front and back gaps, depending on the characteristics of their elongations. The obtained data are of great importance for the craniotopographic justification of the tentorial-stem wedges, which are formed with tumors which located here. In our opinion, tumors have the greatest possibility of passage through the left or right lateral intervals in people with a brachymorph form of the head, and through the anterior and posterior intervals - in people with meso- and dolichomorph forms of the head.

  7. Responses of an isolation system with distinct multiple frequencies

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1991-01-01

    Base isolation systems are generally designed with a single natural frequency. A major concern for these isolation systems is that, if the dominant frequency of a future earthquake is equal or close to the system's natural frequency, the ground motion will be greatly amplified because of resonance,and the superstructure would suffer severe damages. This paper present an isolation system designed with two distinct frequencies. Its responses to different ground motions, including a harmonic motion, show that no excessive amplification will occur. Adoption of this isolation system would greatly enhance the safety of an isolated superstructure against future strong earthquakes. 3 refs., 4 figs., 2 tabs

  8. Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes.

    Science.gov (United States)

    Palmer, Alan R; Shackleton, Trevor M; Sumner, Christian J; Zobay, Oliver; Rees, Adrian

    2013-08-15

    A differential response to sound frequency is a fundamental property of auditory neurons. Frequency analysis in the cochlea gives rise to V-shaped tuning functions in auditory nerve fibres, but by the level of the inferior colliculus (IC), the midbrain nucleus of the auditory pathway, neuronal receptive fields display diverse shapes that reflect the interplay of excitation and inhibition. The origin and nature of these frequency receptive field types is still open to question. One proposed hypothesis is that the frequency response class of any given neuron in the IC is predominantly inherited from one of three major afferent pathways projecting to the IC, giving rise to three distinct receptive field classes. Here, we applied subjective classification, principal component analysis, cluster analysis, and other objective statistical measures, to a large population (2826) of frequency response areas from single neurons recorded in the IC of the anaesthetised guinea pig. Subjectively, we recognised seven frequency response classes (V-shaped, non-monotonic Vs, narrow, closed, tilt down, tilt up and double-peaked), that were represented at all frequencies. We could identify similar classes using our objective classification tools. Importantly, however, many neurons exhibited properties intermediate between these classes, and none of the objective methods used here showed evidence of discrete response classes. Thus receptive field shapes in the IC form continua rather than discrete classes, a finding consistent with the integration of afferent inputs in the generation of frequency response areas. The frequency disposition of inhibition in the response areas of some neurons suggests that across-frequency inputs originating at or below the level of the IC are involved in their generation.

  9. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    Science.gov (United States)

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.

  10. CiOpt: a program for optimization of the frequency response of linear circuits

    OpenAIRE

    Miró Sans, Joan Maria; Palà Schönwälder, Pere

    1991-01-01

    An interactive personal-computer program for optimizing the frequency response of linear lumped circuits (CiOpt) is presented. CiOpt has proved to be an efficient tool in improving designs where the inclusion of more accurate device models distorts the desired frequency response, as well as in device modeling. The outputs of CiOpt are the element values which best match the obtained and the desired frequency response. The optimization algorithms used (the Fletcher-Powell and Newton's methods,...

  11. The determination of frequency response function of the RSG Gas by laplace transform analysis

    International Nuclear Information System (INIS)

    Tukiran, S.; Surian, P.; Jujuratisbela, U.

    1997-01-01

    The response function of the RSG-GAS reactor system to the reactivity perturbations is necessary to be analyzed due to the interrelation with reliability and safety of reactor operation. the response depends on the power frequency response function H(s), while H(s) depends on the zero power frequency response function Z(s) and dynamic power coefficient of reactivity Kp(s) determination of the frequency response function of the RSG-GAS reactor was done by Fourier transform analysis method. Z(s) was obtained by fourier transform of P(t) and Cj(t) became P(S) and Cj(s) in point kinetic equations. Second order of simpson rule was used for completion of its numerical integration. then. LYMPR (Laplace transform for multipurpose reactor) code was made with fortran 77 computer language in vax 8550 system. the LTMPR code is able to determine the frequency response function and period-reactivity relation of RSG-GAS reactor by rod drop method. Profile of power as rod drop, zero power (without reactivity feedback) was used for determination frequency response of RSG-GAS reactor. The results of calculations are in a good agreement with experiment result, so the LTMPR code can be used for analysis response frequency of the RSG-GAS reactor

  12. Method of detecting system function by measuring frequency response

    Science.gov (United States)

    Morrison, John L [Butte, MT; Morrison, William H [Manchester, CT; Christophersen, Jon P [Idaho Falls, ID

    2012-04-03

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  13. The role of eABR with intracochlear test electrode in decision making between cochlear and brainstem implants: preliminary results.

    Science.gov (United States)

    Cinar, Betul Cicek; Yarali, Mehmet; Atay, Gamze; Bajin, Munir Demir; Sennaroglu, Gonca; Sennaroglu, Levent

    2017-09-01

    The objective of the study was to discuss the findings of intraoperative electrically evoked auditory brainstem response (eABR) test results with a recently designed intracochlear test electrode (ITE) in terms of their relation to decisions of cochlear or auditory brainstem implantation. This clinical study was conducted in Hacettepe University, Department of Otolaryngology, Head and Neck Surgery and Department of Audiology. Subjects were selected from inner ear malformation (IEM) database. Eleven subjects with profound sensorineural hearing loss were included in the current study with age range from 1 year 3 months to 4 years 3 months for children with prelingual hearing loss. There was only one 42-year-old post-lingual subject. eABR was recorded with an ITE and intraoperatively with an original cochlear implant (CI) electrode in 11 cases with different IEMs. Findings of eABR with ITE and their relation to the decision for CI or auditory brainstem implant (ABI) are discussed. Positive eABR test results were found to be dependent on close to normal cochlear structures and auditory nerve. The probability of positive result decreases with increasing degree of malformation severity. The prediction value of eABR via ITE on decision for hearing restoration was found to be questionable in this study. The results of eABR with ITE have predictive value on what we will get with the actual CI electrode. ITE appears to stimulate the cochlea like an actual CI. If the eABR is positive, the results are reliable. However, if eABR is negative, the results should be evaluated with preoperative audiological testing and MRI findings.

  14. Modeling the frequency response of microwave radiometers with QUCS

    International Nuclear Information System (INIS)

    Zonca, A; Williams, B; Rubin, I; Meinhold, P; Lubin, P; Roucaries, B; D'Arcangelo, O; Franceschet, C; Mennella, A; Bersanelli, M; Jahn, S

    2010-01-01

    Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.

  15. Retrospective analysis of 104 histologically proven adult brainstem gliomas: clinical symptoms, therapeutic approaches and prognostic factors

    International Nuclear Information System (INIS)

    Reithmeier, Thomas; Kuzeawu, Aanyo; Hentschel, Bettina; Loeffler, Markus; Trippel, Michael; Nikkhah, Guido

    2014-01-01

    Adult brainstem gliomas are rare primary brain tumors (<2% of gliomas). The goal of this study was to analyze clinical, prognostic and therapeutic factors in a large series of histologically proven brainstem gliomas. Between 1997 and 2007, 104 patients with a histologically proven brainstem glioma were retrospectively analyzed. Data about clinical course of disease, neuropathological findings and therapeutic approaches were analyzed. The median age at diagnosis was 41 years (range 18-89 years), median KPS before any operative procedure was 80 (range 20-100) and median survival for the whole cohort was 18.8 months. Histopathological examinations revealed 16 grade I, 31 grade II, 42 grade III and 14 grade IV gliomas. Grading was not possible in 1 patient. Therapeutic concepts differed according to the histopathology of the disease. Median overall survival for grade II tumors was 26.4 months, for grade III tumors 12.9 months and for grade IV tumors 9.8 months. On multivariate analysis the relative risk to die increased with a KPS ≤ 70 by factor 6.7, with grade III/IV gliomas by the factor 1.8 and for age ≥ 40 by the factor 1.7. External beam radiation reduced the risk to die by factor 0.4. Adult brainstem gliomas present with a wide variety of neurological symptoms and postoperative radiation remains the cornerstone of therapy with no proven benefit of adding chemotherapy. Low KPS, age ≥ 40 and higher tumor grade have a negative impact on overall survival

  16. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: a case study at 11.7 T.

    Science.gov (United States)

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-07-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125-255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7 T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong gray-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of gray matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Survey of the Knowledge of Brainstem Death and Attitude Toward Organ Donation Among Relations of Neurosurgical Patients in Nigeria.

    Science.gov (United States)

    Rabiu, T B; Oshola, H A; Adebayo, B O

    2016-01-01

    Organ transplantation is a developing field in Nigeria, and availability of organs for donation would be a determining factor of the success of the transplant programs. Patients with brainstem death (BSD) are a major source of organs for transplantation. The level of knowledge of BSD as well as attitudes toward organ donation are very important determinants of people's willingness or otherwise to donate organs. We conducted a survey of relations of our in-service neurosurgical patients to assess their knowledge of brainstem death and attitude toward organ donation. To our knowledge, this is the first study of its kind among the growing Nigerian neurosurgery patient and patient-relations population. Convenience sampling of randomly selected relations of neurosurgical patients on admission using interviewer-administered questionnaires was performed. Demographic information and information about brainstem death, attitude toward brainstem death, knowledge of organ donation, and attitude toward organ donation were obtained. The study comprised 127 respondents with a mean age of 36 years (range, 19-72). The majority of the respondents (87, 62.4%) were Christians, 122 (96.1%) were Yorubas, and 66 (52.0%) were women. Eighty-five (66.9%) of the respondents had at least a secondary level of education, and 77 (60.6%) were of low socioeconomic status. Twenty-eight (22.2%) of the respondents had heard of brainstem death. Twenty-six (92.9%) of those who had heard of brainstem death believed that the brain could die long before life finally ceases. One hundred twenty-five (98.4%) of the respondents believed that death only occurs when both breathing and heartbeat stop, and 107 (83.6%) would agree with the physician on a diagnosis of brainstem death in the relation. Sixty-five (51.2%) would want such patients put on a ventilator, and, of these, 43 (66.2%) would want such patients on the ventilator in hope that he or she may recover. One hundred twelve (88.2%) of the relations were

  18. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Directory of Open Access Journals (Sweden)

    Dian Zhang

    Full Text Available In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  19. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

    Directory of Open Access Journals (Sweden)

    Michael eVilliger

    2015-05-01

    Full Text Available Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI. However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI.We used tensor-based morphometry (TBM to analyze longitudinal brain volume changes associated with intensive virtual reality (VR-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16-20 training sessions. Before training, voxel-based morphometry (VBM and voxel-based cortical thickness (VBCT assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3-4 months follow-up. In patients relative to controls, reductions in VBM of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training.

  20. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

    Science.gov (United States)

    Villiger, Michael; Grabher, Patrick; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Curt, Armin; Bolliger, Marc; Hotz-Boendermaker, Sabina; Kollias, Spyros; Eng, Kynan; Freund, Patrick

    2015-01-01

    Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI). However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI. We used tensor-based morphometry (TBM) to analyze longitudinal brain volume changes associated with intensive virtual reality (VR)-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16–20 training sessions). Before training, voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3–4 months follow-up. In patients relative to controls, VBM revealed reductions of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced volume increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training. PMID:25999842

  1. Evaluation of random temperature fluctuation problems with frequency response approach

    International Nuclear Information System (INIS)

    Lejeail, Yves; Kasahara, Naoto

    2000-01-01

    Since thermal striping is a coupled thermohydraulic and thermomechanical phenomenon, sodium mock-up tests were usually required to confirm structural integrity. Authors have developed the frequency response function to establish design-by-analysis methodology for this phenomenon. Applicability of this method to sinusoidal fluctuation was validated through two benchmark problems with FAENA and TIFFSS facilities under EJCC contract. This report describes the extension of the frequency response method to random fluctuations. As an example of application, fatigue strength of a Tee junction of PHENIX secondary piping system was investigated. (author)

  2. Prenatal exposure to multiple pesticides is associated with auditory brainstem response at 9months in a cohort study of Chinese infants.

    Science.gov (United States)

    Sturza, Julie; Silver, Monica K; Xu, Lin; Li, Mingyan; Mai, Xiaoqin; Xia, Yankai; Shao, Jie; Lozoff, Betsy; Meeker, John

    2016-01-01

    Pesticides are associated with poorer neurodevelopmental outcomes, but little is known about the effects on sensory functioning. Auditory brainstem response (ABR) and pesticide data were available for 27 healthy, full-term 9-month-old infants participating in a larger study of early iron deficiency and neurodevelopment. Cord blood was analyzed by gas chromatography-mass spectrometry for levels of 20 common pesticides. The ABR forward-masking condition consisted of a click stimulus (masker) delivered via ear canal transducers followed by an identical stimulus delayed by 8, 16, or 64 milliseconds (ms). ABR peak latencies were evaluated as a function of masker-stimulus time interval. Shorter wave latencies reflect faster neural conduction, more mature auditory pathways, and greater degree of myelination. Linear regression models were used to evaluate associations between total number of pesticides detected and ABR outcomes. We considered an additive or synergistic effect of poor iron status by stratifying our analysis by newborn ferritin (based on median split). Infants in the sample were highly exposed to pesticides; a mean of 4.1 pesticides were detected (range 0-9). ABR Wave V latency and central conduction time (CCT) were associated with the number of pesticides detected in cord blood for the 64ms and non-masker conditions. A similar pattern seen for CCT from the 8ms and 16ms conditions, although statistical significance was not reached. Increased pesticide exposure was associated with longer latency. The relation between number of pesticides detected in cord blood and CCT depended on the infant's cord blood ferritin level. Specifically, the relation was present in the lower cord blood ferritin group but not the higher cord blood ferritin group. ABR processing was slower in infants with greater prenatal pesticide exposure, indicating impaired neuromaturation. Infants with lower cord blood ferritin appeared to be more sensitive to the effects of prenatal pesticide

  3. The brain stem function in patients with brain bladder; Clinical evaluation using dynamic CT scan and auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshihiro (Yokohama City Univ. (Japan). Faculty of Medicine)

    1990-11-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author).

  4. Hypertensive brainstem encephalopathy involving deep supratentorial regions: does only blood pressure matter?

    Directory of Open Access Journals (Sweden)

    Jong-Ho Park

    2010-04-01

    Full Text Available We report on a 42-year-old female patient who presented with high arterial blood pressure of 245/150 mmHg and hypertensive brainstem encephalopathy that involved the brainstem and extensive supratentorial deep gray and white matter. The lesions were nearly completely resolved several days after stabilization of the arterial blood pressure. Normal diffusion-weighted imaging findings and high apparent diffusion coefficient values suggested that the main pathomechanism was vasogenic edema owing to severe hypertension. On the basis of a literature review, the absolute value of blood pressure or whether the patient can control his/her blood pressure seems not to be associated with the degree of the lesions evident on magnetic resonance imaging. It remains to be determined if the acceleration rate and the duration of elevated arterial blood pressure might play a key role in the development of the hypertensive encephalopathy pattern.

  5. Intracranial neurenteric cyst traversing the brainstem

    Directory of Open Access Journals (Sweden)

    Jasmit Singh

    2015-01-01

    Full Text Available Neurenteric cysts (NECs, also called enterogenous cysts, are rare benign endodermal lesions of the central nervous system that probably result from separation failure of the notochord and upper gastrointestinal tract. Most frequently they are found in the lower cervical spine or the upper thoracic spine. Intracranial occurrence is rare and mostly confined to infratentorial compartment, in prepontine region [51%]. Other common locations are fourth ventricle and cerebellopontine angle. There are few reports of NEC in medulla or the cerebellum. Because of the rarity of the disease and common radiological findings, they are misinterpreted as arachnoid or simple cysts until the histopathological confirmation, unless suspected preoperatively. We herein report a rare yet interesting case of intracranial NEC traversing across the brainstem.

  6. Study on DFIG wind turbines control strategy for improving frequency response characteristics

    Science.gov (United States)

    Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu

    2012-01-01

    The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.

  7. Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    Frequency responses of seismic wave propagation can be obtained either by directly solving the frequency domain wave equations or by transforming the time domain wavefields using the Fourier transform. The former approach requires solving systems of linear equations, which becomes progressively difficult to tackle for larger scale models and for higher frequency components. On the contrary, the latter approach can be efficiently implemented using explicit time integration methods in conjunction with running summations as the computation progresses. Commonly used explicit time integration methods correspond to the truncated Taylor series approximations that can cause significant errors for large time steps. The rapid expansion method (REM) uses the Chebyshev expansion and offers an optimal solution to the second-order-in-time wave equations. When applying the Fourier transform to the time domain wavefield solution computed by the REM, we can derive a frequency response modeling formula that has the same form as the original time domain REM equation but with different summation coefficients. In particular, the summation coefficients for the frequency response modeling formula corresponds to the Fourier transform of those for the time domain modeling equation. As a result, we can directly compute frequency responses from the Chebyshev expansion polynomials rather than the time domain wavefield snapshots as do other time domain frequency response modeling methods. When combined with the pseudospectral method in space, this new frequency response modeling method can produce spectrally accurate results with high efficiency. © 2012 Society of Exploration Geophysicists.

  8. Bias Errors due to Leakage Effects When Estimating Frequency Response Functions

    Directory of Open Access Journals (Sweden)

    Andreas Josefsson

    2012-01-01

    Full Text Available Frequency response functions are often utilized to characterize a system's dynamic response. For a wide range of engineering applications, it is desirable to determine frequency response functions for a system under stochastic excitation. In practice, the measurement data is contaminated by noise and some form of averaging is needed in order to obtain a consistent estimator. With Welch's method, the discrete Fourier transform is used and the data is segmented into smaller blocks so that averaging can be performed when estimating the spectrum. However, this segmentation introduces leakage effects. As a result, the estimated frequency response function suffers from both systematic (bias and random errors due to leakage. In this paper the bias error in the H1 and H2-estimate is studied and a new method is proposed to derive an approximate expression for the relative bias error at the resonance frequency with different window functions. The method is based on using a sum of real exponentials to describe the window's deterministic autocorrelation function. Simple expressions are derived for a rectangular window and a Hanning window. The theoretical expressions are verified with numerical simulations and a very good agreement is found between the results from the proposed bias expressions and the empirical results.

  9. Brainstem encephalitis and acute polyneuropathy associated with hepatitis E infection.

    Science.gov (United States)

    Salim, Omar Jabbar; Davidson, Amy; Li, Kathy; Leach, John Paul; Heath, Craig

    2017-09-11

    A 59-year-old man presented with feverish illness. His Glasgow Coma Scale was 15, had reduced visual acuity in the left eye with partial left ptosis and mild left hemiparesis with an extensor left plantar. Over 48 hours, he accrued multiple cranial nerves palsies and progressed to a flaccid paralysis necessitating admission to an intensive care unit.Cerebrospinal fluid (CSF) study showed 20 lymphocytes and raised protein. Viral and bacterial PCRs were negative. Samples for Lyme, blood-borne viruses, syphilis and autoantibodies were also negative. MRI brain showed T2 abnormalities within the brainstem. Nerve conduction studies revealed an acute motor and sensory axonal neuropathy pattern of Guillian Barre Syndrome (GBS). The patient was treated for both infective and inflammatory causes of brainstem encephalitis and GBS.Retrospective studies confirmed the presence of hepatitis E virus (HEV) RNA in CSF and serum studies showed positive HEV IgG and IgM prior to intravenous infusion. After 3 months of intensive rehabilitation, the patient was discharged home walking with a frame. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Response identification in the extremely low frequency region of an electret condenser microphone.

    Science.gov (United States)

    Jeng, Yih-Nen; Yang, Tzung-Ming; Lee, Shang-Yin

    2011-01-01

    This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC) has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD) plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems.

  11. Response Identification in the Extremely Low Frequency Region of an Electret Condenser Microphone

    Directory of Open Access Journals (Sweden)

    Shang-Yin Lee

    2011-01-01

    Full Text Available This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems.

  12. Loads as a Resource: Frequency Responsive Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hansen, Jacob [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fuller, Jason C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Tess L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, Yannan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Current power grid operation predominantly relies on scheduling and regulating generation resources to supply loads and balance load changes. Due to the inherent intermittency of renewable energy, more flexible and fast ramping capacity is required to compensate for the uncertainty and variability introduced by renewable energy resources. With the advancement of information technologies, power system end-use loads are becoming more agile and can participate in provision of balancing energy and other grid services. The use of demand response can greatly reduce the required generation reserve in a clean and environmentally friendly way. In this report, a new frequency responsive load (FRL) controller was proposed based on the GFA controller, which can respond to both over and under-frequency events. A supervisory control was introduced to coordinate the autonomous response from FRLs in order to overcome the issues of excessive system response due to high penetration of FRLs. The effectiveness of the proposed FRL controller was demonstrated by large-scale simulation studies on the WECC system. Specifically, the FRLs were deployed in the WECC system at different penetration levels to analyze the performance of the proposed strategy both with and without supervisory level control. While both methods have their own advantages, the case without supervisory control could lead to system-wide instability depending on the size of the contingency and the number of FRLs deployed in the system. In addition, the voltage impacts of this controller on distribution system were also carefully investigated. Finally, a preliminary measurement and verification approach was also developed.

  13. Correlation between gadolinium-diethylenetriaminepentaacetic acid contrast enhancement and thallium-201 chloride uptake in pediatric brainstem glioma.

    Science.gov (United States)

    Maria, B L; Drane, W B; Quisling, R J; Hoang, K B

    1997-09-01

    We previously showed that thallium-201 (201Tl) chloride is accumulated in over 75% of brain tumors, including brainstem gliomas. The imaging of 201Tl with single photon emission computed tomography (SPECT) may require an abnormal increase in permeability of tumor vessels to allow penetration of the blood-brain barrier. To test this hypothesis, we evaluated the correlation between gadolinium enhancement and the degree of 201Tl uptake on SPECT and the contributions of either gadolinium enhancement or 201Tl uptake to the prognosis in children with brainstem gliomas. Forty-two sets of paired SPECT scans and magnetic resonance imaging (MRI) scans were obtained longitudinally in 13 cases. Altogether, 31 of 42 pairs (74%) of scans showed concordance between the presence of gadolinium enhancement and 201Tl uptake. There were no cases that demonstrated 201Tl uptake but lacked gadolinium enhancement. The results indicate that 201Tl SPECT is of value primarily when brainstem tumors have vessels that are demonstrably permeable to gadolinium, prior to or as a result of radiotherapy.

  14. Role of Wind Power in Primary Frequency Response of an Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. C.; Gevorgian, V.; Ela, E.; Singhvi, V.; Pourbeik, P.

    2013-09-01

    The electrical frequency of an interconnection must be maintained very close to its nominal level at all times. Large frequency deviations can lead to unintended consequences such as load shedding, instability, and machine damage, among others. Turbine governors of conventional generating units provide primary frequency response (PFR) to ensure that frequency deviations are not significant duringlarge transient events. Increasing penetrations of variable renewable generation, such as wind and solar power, and planned retirements of conventional thermal plants - and thus a reduction in the amount of suppliers with PFR capabilities - causes concerns about a decline of PFR and system inertia in North America. The capability of inverter-coupled wind generation technologies to contribute toPFR and inertia, if appropriately equipped with the necessary control features, can help alleviate concerns. However, these responses differ from those supplied by conventional generation and inertia, and it is not entirely understood how variable renewable generation will affect the system response at different penetration levels. This paper evaluates the impact of wind generation providing PFRand synthetic inertial response on a large interconnection.

  15. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    KAUST Repository

    Kuntz, Katanya B.; Wheatley, Trevor A.; Song, Hongbin; Webb, James G.; Mabrok, Mohamed; Huntington, Elanor H.; Yonezawa, Hidehiro

    2017-01-01

    Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity's optical response as a function of modulation frequency, which is also used to determine the modulator's frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity's characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

  16. Deletion of beta-2-microglobulin ameliorates spinal cord lesion load and promotes recovery of brainstem NAA levels in a murine model of multiple sclerosis.

    Science.gov (United States)

    Denic, Aleksandar; Pirko, Istvan; Wootla, Bharath; Bieber, Allan; Macura, Slobodan; Rodriguez, Moses

    2012-09-01

    We used genetic deletion of β2-microglobulin to study the influence of CD8(+) T cells on spinal cord demyelination, remyelination, axonal loss and brainstem N-acetyl aspartate levels during the acute and chronic phases of Theiler's murine encephalomyelitis virus (TMEV) infection. We used β2m(-/-) and β2m(+/+) B10.Q mice (of H-2(q) background) normally susceptible to TMEV-induced demyelination. Over the disease course, β2m(+/+) mice had increasing levels of demyelination and minimal late-onset remyelination. In contrast, β2m(-/-) mice had steady levels of demyelination from 45-390 dpi and remyelination was extensive and more complete. Early in the disease, brainstem NAA levels drop in both strains, but accordingly with remyelination and axonal preservation, NAA recover in β2m(-/-) mice despite equivalent brainstem pathology. At 270 dpi, β2m(+/+) mice had significantly fewer spinal cord axons than β2m(-/-) mice (up to 28% less). In addition, β2m(+/+) mice lost axons of all calibers, whereas β2m(-/-) mice had a modest loss of only medium- and large-caliber axons. This study further supports the hypothesis that CD8(+) T cells are involved in demyelination, and axonal loss following Theiler's virus-induced demyelination. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  17. Generation of artificial time-histories, rich in all frequencies, from given response spectra

    International Nuclear Information System (INIS)

    Levy, S.; Wilkinson, J.P.D.

    1976-01-01

    In the design of nuclear power plants, it has been found desirable in certain instances to use the time-history method of dynamic analysis to determine the plant response to seismic input. In the implementation of this method, it is necessary to determine an adequate representation of the excitation as a function of time. Because many design criteria are specified in terms of design response spectra one is faced with the problem of generating a time-history whose own response spectrum approximates as far as possible to the originally specified design response spectrum. One objective of this paper is to present a method of synthesizing such time-histories from a given design response spectrum. The design response spectra may be descriptive of floor responses at a particular location in a plant, or they may be descriptive of seismic ground motions at a plant site. The method described in this paper allows the generation of time histories that are rich in all frequencies in the spectrum. This richness is achieved by choosing a large number of closely-spaced frequency points such that the half-power points of adjacent frequencies overlap. Examples are given concerning seismic design response spectra, and a number of points are discussed concerning the effect of frequency spacing on convergence. (Auth.)

  18. Manipulation of cell cycle progression can counteract the apparent loss of correction frequency following oligonucleotide-directed gene repair

    Directory of Open Access Journals (Sweden)

    Kmiec Eric B

    2007-02-01

    Full Text Available Abstract Background Single-stranded oligonucleotides (ssODN are used routinely to direct specific base alterations within mammalian genomes that result in the restoration of a functional gene. Despite success with the technique, recent studies have revealed that following repair events, correction frequencies decrease as a function of time, possibly due to a sustained activation of damage response signals in corrected cells that lead to a selective stalling. In this study, we use thymidine to slow down the replication rate to enhance repair frequency and to maintain substantial levels of correction over time. Results First, we utilized thymidine to arrest cells in G1 and released the cells into S phase, at which point specific ssODNs direct the highest level of correction. Next, we devised a protocol in which cells are maintained in thymidine following the repair reaction, in which the replication is slowed in both corrected and non-corrected cells and the initial correction frequency is retained. We also present evidence that cells enter a senescence state upon prolonged treatment with thymidine but this passage can be avoided by removing thymidine at 48 hours. Conclusion Taken together, we believe that thymidine may be used in a therapeutic fashion to enable the maintenance of high levels of treated cells bearing repaired genes.

  19. Fitting of transfer functions to frequency response measurements

    International Nuclear Information System (INIS)

    Moret, J.M.

    1994-12-01

    An algorithm for approximating a given complex frequency response with a rational function of two polynomials with real coefficients is presented, together with its extension to distributed parameter systems, the corresponding error analysis and its application to a real case. (author) 5 figs., 4 refs

  20. Structural health monitoring in composite materials using frequency response methods

    Science.gov (United States)

    Kessler, Seth S.; Spearing, S. Mark; Atalla, Mauro J.; Cesnik, Carlos E. S.; Soutis, Constantinos

    2001-08-01

    Cost effective and reliable damage detection is critical for the utilization of composite materials in structural applications. Non-destructive evaluation techniques (e.g. ultrasound, radiography, infra-red imaging) are available for use during standard repair and maintenance cycles, however by comparison to the techniques used for metals these are relatively expensive and time consuming. This paper presents part of an experimental and analytical survey of candidate methods for the detection of damage in composite materials. The experimental results are presented for the application of modal analysis techniques applied to rectangular laminated graphite/epoxy specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Changes in natural frequencies and modes were then found using a scanning laser vibrometer, and 2-D finite element models were created for comparison with the experimental results. The models accurately predicted the response of the specimems at low frequencies, but the local excitation and coalescence of higher frequency modes make mode-dependent damage detection difficult and most likely impractical for structural applications. The frequency response method was found to be reliable for detecting even small amounts of damage in a simple composite structure, however the potentially important information about damage type, size, location and orientation were lost using this method since several combinations of these variables can yield identical response signatures.

  1. The effect of feeding frequency on insulin and ghrelin responses in human subjects

    DEFF Research Database (Denmark)

    Solomon, Thomas; Chambers, Edward S; Jeukendrup, Asker E

    2008-01-01

    Recent work shows that increased meal frequency reduces ghrelin responses in sheep. Human research suggests there is an interaction between insulin and ghrelin. The effect of meal frequency on this interaction is unknown. Therefore, we investigated the effect of feeding frequency on insulin...... and ghrelin responses in human subjects. Five healthy male volunteers were recruited from the general population: age 24 (SEM 2)years, body mass 75.7 (SEM 3.2) kg and BMI 23.8 (SEM 0.8) kg/m(2). Volunteers underwent three 8-h feeding regimens: fasting (FAST); low-frequency(two) meal ingestion (LOFREQ......(MEAL)); high-frequency (twelve) meal ingestion (HIFREQ(MEAL)). Meals were equi-energetic within trials,consisting of 64% carbohydrate, 23% fat and 13% protein. Total energy intake was equal between feeding trials. Total area under the curve for serum insulin and plasma ghrelin responses did not differ between...

  2. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    KAUST Repository

    Kuntz, Katanya B.

    2017-01-09

    Precise knowledge of an optical device\\'s frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity\\'s optical response as a function of modulation frequency, which is also used to determine the modulator\\'s frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity\\'s characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

  3. Generation of artificial time-histories, rich in all frequencies, from given response spectra

    International Nuclear Information System (INIS)

    Levy, S.; Wilkinson, J.P.D.

    1975-01-01

    In order to apply the time-history method of seismic analysis, it is often desirable to generate a suitable artificial time-history from a given response spectrum. The method described allows the generation of such a time-history that is also rich in all frequencies in the spectrum. This richness is achieved by choosing a large number of closely-spaced frequency points such that the adjacent frequencies have their half-power points overlap. The adjacent frequencies satisfy the condition that the frequency interval Δf near a given frequency f is such that (Δf)/f<2c/csub(c) where c is the damping of the system and csub(c) is the critical damping. In developing an artificial time-history, it is desirable to specify the envelope and duration of the record, very often in such a manner as to reproduce the envelope property of a specific earthquake record, and such an option is available in the method described. Examples are given of the development of typical artificial time-histories from earthquake design response spectra and from floor response spectra

  4. Frequency of single nucleotide polymorphisms of some immune response genes in a population sample from São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Léa Campos de Oliveira

    2011-09-01

    Full Text Available Objective: To present the frequency of single nucleotide polymorphismsof a few immune response genes in a population sample from SãoPaulo City (SP, Brazil. Methods: Data on allele frequencies ofknown polymorphisms of innate and acquired immunity genes werepresented, the majority with proven impact on gene function. Datawere gathered from a sample of healthy individuals, non-HLA identicalsiblings of bone marrow transplant recipients from the Hospital dasClínicas da Faculdade de Medicina da Universidade de São Paulo,obtained between 1998 and 2005. The number of samples variedfor each single nucleotide polymorphism analyzed by polymerasechain reaction followed by restriction enzyme cleavage. Results:Allele and genotype distribution of 41 different gene polymorphisms,mostly cytokines, but also including other immune response genes,were presented. Conclusion: We believe that the data presentedhere can be of great value for case-control studies, to define whichpolymorphisms are present in biologically relevant frequencies and toassess targets for therapeutic intervention in polygenic diseases witha component of immune and inflammatory responses.

  5. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    International Nuclear Information System (INIS)

    Ya-Jun, Zhao; Qian, Cheng; Meng-Lu, Qian

    2010-01-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions

  6. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    Science.gov (United States)

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. © 2015 Wiley Periodicals, Inc.

  7. Microbiome-Gut-Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS-A Novel Hypothesis.

    Science.gov (United States)

    Praveen, Vijayakumar; Praveen, Shama

    2016-01-01

    Sudden infant death syndrome (SIDS) continues to be a major public health issue. Following its major decline since the "Back to Sleep" campaign, the incidence of SIDS has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United States and thousands more throughout the world. The etiology of SIDS, the major cause of postneonatal mortality in the western world, is still poorly understood. Although sleeping in prone position is a major risk factor, SIDS continues to occur even in the supine sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction between a susceptible infant during a critical developmental period and stressor/s in the pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control to findings of altered neurochemistry, especially the serotonergic system that plays an important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem serotonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower in SIDS, supporting the evidence that defects in the medullary serotonergic system play a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associated with SIDS, although no direct evidence has been established. We present a new hypothesis that the infant's gut microbiome, and/or its metabolites, by its direct effects on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT levels through the microbiome-gut-brain axis, thus playing a significant role in SIDS during the critical period of gut flora development and vulnerability to SIDS. The shared similarities between various risk factors for SIDS and their relationship with the infant gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are required to test our hypothesis.

  8. Radioadaptive response: the results of a two-year follow-up study on a non-responder

    International Nuclear Information System (INIS)

    Mortazavi, Javad S M.; Ikushima, Takaji

    2001-01-01

    Scientists have been aware for many years that low doses of ionizing radiation may cause some changes in the cells and organisms, which lead to an adaptation to the detrimental effects of relatively high doses of radiation. In spite of the fact that human lymphocytes exposed in vivo to different adapting doses show a radioadaptive response (e.g. induction of radioadaptive response in radiation workers, residents of the contaminated areas after Chernobyl accident or the inhabitants of high background radiation areas), it is still an open question why the radioadaptive response cannot be induced in the lymphocytes of some individuals. We and other investigators reported that some non-responders showed a significant increase in the frequency of chromosome aberrations after an adapting dose. Considering the fact that we still don't know the frequency of non-responders in the population, any implication of radioadaptive response in the estimation of the risks of low-level exposure would be problematical. In this paper, we present the results of our two-year follow-up study on a non-responder. In 1998, we found out that one of the blood donors did not show radioadaptive response in any experiments. Interestingly, in some cases the donor's lymphocytes showed a strong synergistic effect after exposure to an adapting dose. As it was claimed that the existence or lack of radioadaptive response is possibly dependent on some transient physiological parameters, we evaluated the responses of this donor to a common adapting dose in a two-year follow-up study. The results showed that non-responsiveness was not a transient phenomenon. The non-responder donor never showed a radioadaptive response despite some changes in the magnitude of the synergistic effect induced by an adapting dose. These results suggest that the non-responsiveness of this donor is probably determined by some non-transient biological factors such as the genetic constitution. (authors)

  9. A pathway in the brainstem for roll-tilt of the subjective visual vertical: evidence from a lesion-behavior mapping study.

    Science.gov (United States)

    Baier, Bernhard; Thömke, Frank; Wilting, Janine; Heinze, Caroline; Geber, Christian; Dieterich, Marianne

    2012-10-24

    The perceived subjective visual vertical (SVV) is an important sign of a vestibular otolith tone imbalance in the roll plane. Previous studies suggested that unilateral pontomedullary brainstem lesions cause ipsiversive roll-tilt of SVV, whereas pontomesencephalic lesions cause contraversive roll-tilts of SVV. However, previous data were of limited quality and lacked a statistical approach. We therefore tested roll-tilt of the SVV in 79 human patients with acute unilateral brainstem lesions due to stroke by applying modern statistical lesion-behavior mapping analysis. Roll-tilt of the SVV was verified to be a brainstem sign, and for the first time it was confirmed statistically that lesions of the medial longitudinal fasciculus (MLF) and the medial vestibular nucleus are associated with ipsiversive tilt of the SVV, whereas contraversive tilts are associated with lesions affecting the rostral interstitial nucleus of the MLF, the superior cerebellar peduncle, the oculomotor nucleus, and the interstitial nucleus of Cajal. Thus, these structures constitute the anatomical pathway in the brainstem for verticality perception. Present data indicate that graviceptive otolith signals present a predominant role in the multisensory system of verticality perception.

  10. Estimating low-bias frequency response using random decrement

    DEFF Research Database (Denmark)

    Brincker, Rune; Brandt, Anders

    2011-01-01

    It is well known that in order to minimize the influence of leakage bias in frequency response function (FRF) estimates, smooth windows should be applied in the FFT processing. It is also normal practice to use self windowing excitation signals whenever possible. However, in many cases FRFs have...

  11. Quantitative Magnetic Resonance Imaging of Brainstem Volumes, Plaques, and Surface Area in the Occipital Regions of Patients with Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Alper, F.; Kantarci, M.; Altunkaynak, E.; Varoglu, A. O.; Karaman, A.; Oral, E.; Okur, A. [Ataturk Univ., Erzurum (Turkey). Depts. of Radiology, Histology, Neurology and Embryology, Psychiatry

    2006-07-15

    Purpose: To determine brainstem volumes, number of plaques, and surface areas in the occipital lobes of patients with relapsing remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), and to investigate whether there is any correlation between brainstem volume and the number/surface areas of plaque in the occipital lobes. Material and Methods: Magnetic resonance imaging was obtained on 14 relapsing-remitting (RR) and 13 secondary progressive (SP) MS patients and 26 female control subjects. The Cavalieri method was used by modern design stereology to measure brainstem volume. The point-counting grid was used to evaluate sclerotic plaque surface areas in the occipital lobe. The number of plaques in the imaging section was calculated. Results: Brainstem volumes for RR and SP with multiple sclerosis and control subjects were 3647 mm{sup 3} , 3515 mm{sup 3} , and 4517 mm{sup 3} , respectively. Mean number of plaques in the right-left occipital lobe was found to be 2.7-3.4 in RR-MS and 5.2-2.8 in SP-MS. Mean plaque surface area in the right-left occipital lobe was determined to be 58.52-88.24 mm{sup 2} in RR MS and 124.3-64.82 mm{sup 2} in SP MS. Brainstem volumes were significantly reduced in both groups of patients with MS compared to controls ( P <0.01). Conclusion: Magnetic-resonance-estimated volume and surface area values in multiple sclerosis may facilitate our understanding of the clinical situation of patients and provide a simple index for evaluating therapeutic efficiency.

  12. Quantitative Magnetic Resonance Imaging of Brainstem Volumes, Plaques, and Surface Area in the Occipital Regions of Patients with Multiple Sclerosis

    International Nuclear Information System (INIS)

    Alper, F.; Kantarci, M.; Altunkaynak, E.; Varoglu, A. O.; Karaman, A.; Oral, E.; Okur, A.

    2006-01-01

    Purpose: To determine brainstem volumes, number of plaques, and surface areas in the occipital lobes of patients with relapsing remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), and to investigate whether there is any correlation between brainstem volume and the number/surface areas of plaque in the occipital lobes. Material and Methods: Magnetic resonance imaging was obtained on 14 relapsing-remitting (RR) and 13 secondary progressive (SP) MS patients and 26 female control subjects. The Cavalieri method was used by modern design stereology to measure brainstem volume. The point-counting grid was used to evaluate sclerotic plaque surface areas in the occipital lobe. The number of plaques in the imaging section was calculated. Results: Brainstem volumes for RR and SP with multiple sclerosis and control subjects were 3647 mm 3 , 3515 mm 3 , and 4517 mm 3 , respectively. Mean number of plaques in the right-left occipital lobe was found to be 2.7-3.4 in RR-MS and 5.2-2.8 in SP-MS. Mean plaque surface area in the right-left occipital lobe was determined to be 58.52-88.24 mm 2 in RR MS and 124.3-64.82 mm 2 in SP MS. Brainstem volumes were significantly reduced in both groups of patients with MS compared to controls ( P <0.01). Conclusion: Magnetic-resonance-estimated volume and surface area values in multiple sclerosis may facilitate our understanding of the clinical situation of patients and provide a simple index for evaluating therapeutic efficiency

  13. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    International Nuclear Information System (INIS)

    Witteveen, Jeroen A.S.; Bijl, Hester

    2009-01-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  14. Clinical analysis of the outcome of patients with brainstem hemorrhage

    International Nuclear Information System (INIS)

    Arimoto, Hirohiko; Takasato, Yoshio; Masaoka, Hiroyuki

    2008-01-01

    To identify prognostic factors in patients with brainstem hemorrhage, we analyzed their clinical symptoms and laboratory data on admission to our hospital. In 70 patients with brainstem hemorrhage (51 men and 19 women aged 29-93, with a mean of 59 gears) who had been admitted to our hospital from 1995 to 2000, we statistically evaluated the association of the outcome with their age and clinical symptoms on admission, blood glucose levels and white blood counts within 6 hours of admission, and the volume and extent of hematoma, concomitant hydrocephalus, and intraventricular perforation on admission CT scans. The mortality tended to be higher, but not significantly (P=0.07), in patients aged 70 years or older (83%) than in those aged less than 70 years (55%). Quadriplegia or decerebrate rigidity (P 2 or higher (P<0.01) on admission were significantly correlated with the prognosis. Hematoma volumes of 6 ml or larger on CT scans were most strongly correlated with the prognosis (P<0.001). Central hematoma and hematoma with extension to the midbrain, thalamus, or medulla oblongata (P<0.05), as well as hemorrhage complicated by hydrocephalus or intraventricular perforation (P<0.01), were correlated with the prognosis. (author)

  15. Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference- frequency servo control.

    Science.gov (United States)

    Koch, Christian

    2010-05-01

    A technique for the calibration of photodiodes in ultrasonic measurement systems using standard and cost-effective optical and electronic components is presented. A heterodyne system was realized using two commercially available distributed feedback lasers, and the required frequency stability and resolution were ensured by a difference-frequency servo control scheme. The frequency-sensitive element generating the error signal for the servo loop comprised a delay-line discriminator constructed from electronic elements. Measurements were carried out at up to 450 MHz, and the uncertainties of about 5% (k = 2) can be further reduced by improved radio frequency power measurement without losing the feature of using only simple elements. The technique initially dedicated to the determination of the frequency response of photodetectors applied in ultrasonic applications can be transferred to other application fields of optical measurements.

  16. Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies.

    Science.gov (United States)

    Cooper, Bonnie; Sun, Hao; Lee, Barry B

    2012-02-01

    Gratings that contain luminance and chromatic components of different spatial frequencies were used to study the segregation of signals in luminance and chromatic pathways. Psychophysical detection and discrimination thresholds to these compound gratings, with luminance and chromatic components of the one either half or double the spatial frequency of the other, were measured in human observers. Spatial frequency tuning curves for detection of compound gratings followed the envelope of those for luminance and chromatic gratings. Different grating types were discriminable at detection threshold. Fourier analysis of physiological responses of macaque retinal ganglion cells to compound waveforms showed chromatic information to be restricted to the parvocellular pathway and luminance information to the magnocellular pathway. Taken together, the human psychophysical and macaque physiological data support the strict segregation of luminance and chromatic information in independent channels, with the magnocellular and parvocellular pathways, respectively, serving as likely the physiological substrates. © 2012 Optical Society of America

  17. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    Science.gov (United States)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  18. Generation of artificial time-histories, rich in all frequencies from given response spectra

    International Nuclear Information System (INIS)

    Levy, S.; Wilkinson, J.P.D.

    1975-01-01

    In order to apply the time-history method of seismic analysis, it is often desirable to generate a suitable artificial time-history from a given response spectrum. The method described in this paper allows the generation of such a time-history that is also rich in all frequencies in the spectrum. This richness is achieved by choosing a large number of closely-spaced frequency points such that the adjacent frequencies have their half-power points overlap. The adjacent frequencies satisfy the condition that the frequency interval Δf near a given frequency f is such that (Δf)/f<2c/csub(c) where c is the damping of the system and csub(c) is the critical damping. In developing an artificial time-history, it is desirable to specify the envelope and duration of the record, very often in such a manner as to reproduce the envelope property of a specific earthquake record, and such an option is available in the method described. Examples are given of the development of typical articifial time-histories from earthquake design response spectra and from floor response spectra. (Auth.)

  19. Two oculomotor-related areas of the brainstem project to the dorsolateral periaqueductal gray.

    NARCIS (Netherlands)

    Klop, E.M.; Mouton, Leonora J.; Holstege, Gert

    2005-01-01

    The dorsolateral column of the periaqueductal gray (PAGdl) is usually associated with defensive behavior, but how this is brought about is not yet fully understood. In order to elucidate the function of PAGdl, its afferents from the brainstem were investigated in cats. Retrograde tracing results

  20. Brainstem auditory evoked potentials in healthy cats recorded with surface electrodes

    Directory of Open Access Journals (Sweden)

    Mihai Musteata

    2013-01-01

    Full Text Available The aim of this study was to evaluate the brainstem auditory evoked potentials of seven healthy cats, using surface electrodes. Latencies of waves I, III and V, and intervals I–III, I–V and III–V were recorded. Monaural and binaural stimulation of the cats were done with sounds ranging between 40 and 90 decibel Sound Pressure Level. All latencies were lower than those described in previous studies, where needle electrodes were used. In the case of binaural stimulation, latencies of waves III and V were greater compared to those obtained for monaural stimulation (P P > 0.05. Regardless of the sound intensity, the interwave latency was constant (P > 0.05. Interestingly, no differences were noticed for latencies of waves III and V when sound intensity was higher than 80dB SPL. This study completes the knowledge in the field of electrophysiology and shows that the brainstem auditory evoked potentials in cats using surface electrodes is a viable method to record the transmission of auditory information. That can be faithfully used in clinical practice, when small changes of latency values may be an objective factor in health status evaluation.

  1. The analgesic agent tapentadol inhibits calcitonin gene-related peptide release from isolated rat brainstem via a serotonergic mechanism.

    Science.gov (United States)

    Greco, Maria Cristina; Navarra, Pierluigi; Tringali, Giuseppe

    2016-01-15

    In this study we tested the hypothesis that tapentadol inhibits GGRP release from the rat brainstem through a mechanism mediated by the inhibition of NA reuptake; as a second alternative hypothesis, we investigated whether tapentadol inhibits GGRP release via the inhibition of 5-HT reuptake. Rat brainstems were explanted and incubated in short-term experiments. CGRP released in the incubation medium was taken as a marker of CGRP release from the central terminals of trigeminal neurons within the brainstem. CGRP levels were measured by radioimmunoassay under basal conditions or in the presence of tapentadol; NA, 5-HT, clonidine, yohimbine and ondansetron were used as pharmacological tools to investigate the action mechanism of tapentadol. The α2-antagonist yohimbine failed to counteract the effects of tapentadol. Moreover, neither NA nor the α2-agonist clonidine per se inhibited K(+)-stimulated CGRP release, thereby indicating that the effects of tapentadol are nor mediated through the block of NA reuptake. Further experiments showed that 5-HT and tramadol, which inhibits both NA and 5-HT reuptake, significantly reduced K(+)-stimulated CGRP release. Moreover, the 5-HT3 antagonist ondansetron was able to counteract the effects of tapentadol in this system. This study provided pharmacological evidence that tapentadol inhibits stimulated CGRP release from the rat brainstem in vitro through a mechanism involving an increase in 5-HT levels in the system and the subsequent activation of 5-HT3 receptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of mistuning and matrix structure on the topology of frequency response curves

    Science.gov (United States)

    Afolabi, Dare

    1989-01-01

    The stability of a frequency response curve under mild perturbations of the system's matrix is investigated. Using recent developments in the theory of singularities of differentiable maps, it is shown that the stability of a response curve depends on the structure of the system's matrix. In particular, the frequency response curves of a cylic system are shown to be unstable. Consequently, slight parameter variations engendered by mistuning will induce a significant difference in the topology of the forced response curves, if the mistuning transformation crosses the bifurcation set.

  3. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats

    Science.gov (United States)

    Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi

    2009-01-01

    In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and γ-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABAA receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABAA receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin–NTS, lingual muscle–NTS and lingual muscle–Pa5–NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures. PMID:19124539

  4. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats.

    Science.gov (United States)

    Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi

    2009-02-15

    In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and gamma-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABA(A) receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABA(A) receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin-NTS, lingual muscle-NTS and lingual muscle-Pa5-NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures.

  5. Analysis of the frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Erteza, I.A.

    1995-04-01

    Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this report, we present the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal of the analysis is to describe possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this report was designed by Sandia National Laboratories and performed by Sandia and Phillips Laboratory personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1{mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this report, we discuss these effects from the perspective of anisotropic Bragg diffraction and momentum mismatch, and we discuss the effect on the signal processing functionality.

  6. Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus

    Science.gov (United States)

    Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait

    2012-01-01

    This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917

  7. Descending Command Neurons in the Brainstem that Halt Locomotion

    DEFF Research Database (Denmark)

    Bouvier, Julien; Caggiano, Vittorio; Leiras, Roberto

    2015-01-01

    identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons. We find that those neurons constitute a major excitatory pathway to locomotor areas of the ventral spinal cord....... Selective activation of V2a neurons of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a "stop neurons" represent a glutamatergic...

  8. Brainstem dose is associated with patient-reported acute fatigue in head and neck cancer radiation therapy.

    Science.gov (United States)

    Ferris, Matthew J; Zhong, Jim; Switchenko, Jeffrey M; Higgins, Kristin A; Cassidy, Richard J; McDonald, Mark W; Eaton, Bree R; Patel, Kirtesh R; Steuer, Conor E; Baddour, H Michael; Miller, Andrew H; Bruner, Deborah W; Xiao, Canhua; Beitler, Jonathan J

    2018-01-01

    Radiation (RT) dose to the central nervous system (CNS) has been implicated as a contributor to treatment-related fatigue in head and neck cancer (HNC) patients undergoing radiation therapy (RT). This study evaluates the association of RT dose to CNS structures with patient-reported (PRO) fatigue scores in a population of HNC patients. At pre-RT (baseline), 6th week of RT, and 1-month post-RT time points, Multidimensional Fatigue Inventory (MFI-20) scores were prospectively obtained from 124 patients undergoing definitive treatment for HNC. Medulla, pons, midbrain, total brainstem, cerebellum, posterior fossa, and pituitary dosimetry were evaluated using summary statistics and dose-volume histograms, and associations with MFI-20 scores were analyzed. Maximum dose (Dmax) to the brainstem and medulla was significantly associated with MFI-20 scores at 6th week of RT and 1-month post-RT time points, after controlling for baseline scores (p<0.05). Each 1Gy increase in medulla Dmax resulted in an increase in total MFI-20 score over baseline of 0.30 (p=0.026), and 0.25 (p=0.037), at the 6th week of RT and 1-month post-RT, respectively. Each 1Gy increase in brainstem Dmax resulted in an increase in total MFI-20 score over baseline of 0.30 (p=0.027), and 0.25 (p=0.037) at the 6th week of RT, 1-month post-RT, respectively. Statistically significant associations were not found between dosimetry for the other CNS structures and MFI-20 scores. In this analysis of PRO fatigue scores from a population of patients undergoing definitive RT for HNC, maximum dose to the brainstem and medulla was associated with a significantly increased risk of acute patient fatigue. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    Science.gov (United States)

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  10. Leucoencephalopathy with brainstem and spinal cord involvement and high lactate: quantitative magnetic resonance imaging

    NARCIS (Netherlands)

    Steenweg, M.E.; Pouwels, P.J.W.; Wolf, N.I.; van Wieringen, W.N.; Barkhof, F.; van der Knaap, M.S.

    2011-01-01

    Leucoencephalopathy with brainstem and spinal cord involvement and elevated lactate is a white matter disorder caused by DARS2 mutations. The pathology is unknown. We observed striking discrepancies between improvement on longitudinal conventional magnetic resonance images and clinical deterioration

  11. Audiometria de tronco encefálico (abr: o uso do mascaramento na avaliação de indivíduos portadores de perda auditiva unilateral Auditory brainstem response (abr: use of masking in unilateral hearing loss patients

    Directory of Open Access Journals (Sweden)

    Melissa M. T. Toma

    2003-06-01

    prospective. MATERIA AND METHOD: The sample was constituded of 22 persons with unilateral hearing loss, being 10 female and 12 male, ranging from 9 to 44 years old. All persons were submited to the following audiological exams: pure - tone and speech audiometry, accoustic impendance tests and audiometry brainstem response in absence and presence of masking. RESULTS: In general, all persons had profound sensorineural unilateral hearing loss and bilateral type - A tympanometric curves. In ABR evaluation, it was possible to observe in 100% of the sample the presence of wave V in poor ear. As soon as the masking was introduced, these waves has not been viewed. CONCLUSION: As might be expected that masking must be used with ABR evaluation on unilateral hearing loss to obtain authentical results. In ABR, interaural attenuation to clicks (65 dB was greater the examined in pure-tone audiometry. Thence it follows that less intensity of masking was needed to eliminate the contralateral response.

  12. Brainstem and limbic encephalitis with paraneoplastic neuromyelitis optica.

    Science.gov (United States)

    Moussawi, Khaled; Lin, David J; Matiello, Marcelo; Chew, Sheena; Morganstern, Daniel; Vaitkevicius, Henrikas

    2016-01-01

    The spectrum of disorders associated with anti-neuromyelitis optica (NMO) antibody is being extended to include infrequent instances associated with cancer. We describe a patient with brainstem and limbic encephalitis from NMO-immunoglobulin G in serum and cerebrospinal fluid in the context of newly diagnosed breast cancer. The neurological features markedly improved with excision of her breast cancer and immune suppressive therapy. This case further broadens the NMO spectrum disorders (NMOSD) by an association between NMOSD and cancer and raises the question of coincidental occurrence and the appropriate circumstances to search for a tumor in certain instances of NMO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest

    Science.gov (United States)

    Burton, J.A.; Hallgren, S.W.; Fuhlendorf, S.D.; Leslie, David M.

    2011-01-01

    Ecosystems in the eastern United States that were shaped by fire over thousands of years of anthropogenic burning recently have been subjected to fire suppression resulting in significant changes in vegetation composition and structure and encroachment by invasive species. Renewed interest in use of fire to manage such ecosystems will require knowledge of effects of fire regime on vegetation. We studied the effects of one aspect of the fire regime, fire frequency, on biomass, cover and diversity of understory vegetation in upland oak forests prescribe-burned for 20 years at different frequencies ranging from zero to five fires per decade. Overstory canopy closure ranged from 88 to 96% and was not affected by fire frequency indicating high tolerance of large trees for even the most frequent burning. Understory species richness and cover was dominated by woody reproduction followed in descending order by forbs, C3 graminoids, C4 grasses, and legumes. Woody plant understory cover did not change with fire frequency and increased 30% from one to three years after a burn. Both forbs and C3 graminoids showed a linear increase in species richness and cover as fire frequency increased. In contrast, C4 grasses and legumes did not show a response to fire frequency. The reduction of litter by fire may have encouraged regeneration of herbaceous plants and helped explain the positive response of forbs and C3 graminoids to increasing fire frequency. Our results showed that herbaceous biomass, cover, and diversity can be managed with long-term prescribed fire under the closed canopy of upland oak forests. ?? 2011 Springer Science+Business Media B.V.

  14. Transducer frequency response variations investigated by time reversal calibration

    Czech Academy of Sciences Publication Activity Database

    Kober, Jan; Převorovský, Zdeněk

    2016-01-01

    Roč. 26, č. 2 (2016), A16-A16 ISSN 1213-3825. [Europen Conference on Acoustic Emission Testing /32./. 07.09.2016-09.09.2016, Praha] Institutional support: RVO:61388998 Keywords : calibration * time reversal * transducer * frequency response Subject RIV: BI - Acoustics

  15. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    Science.gov (United States)

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  16. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI.

    Science.gov (United States)

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R; Setsompop, Kawin; Brown, Emery N; Hämäläinen, Matti S; Rosen, Bruce R; Wald, Lawrence L

    2016-06-01

    Our aim was to map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we used the increased contrast-to-noise ratio of 7-Tesla fMRI compared with 3 Tesla and time-efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1-mm isotropic nominal resolution) while maintaining a short repetition time (2.5 s). The delineated Pearson's correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor, and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson's disease, and other motor disorders.

  17. Engineering Inertial and Primary-Frequency Response for Distributed Energy Resources: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guggilam, Swaroop [University of Minnesota; Dhople, Sairaj V [University of Minnesota; Chen, Yu C [University of British Columbia; Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    We propose a framework to engineer synthetic-inertia and droop-control parameters for distributed energy resources (DERs) so that the system frequency in a network composed of DERs and synchronous generators conforms to prescribed transient and steady-state performance specifications. Our approach is grounded in a second-order lumped-parameter model that captures the dynamics of synchronous generators and frequency-responsive DERs endowed with inertial and droop control. A key feature of this reduced-order model is that its parameters can be related to those of the originating higher-order dynamical model. This allows one to systematically design the DER inertial and droop-control coefficients leveraging classical frequency-domain response characteristics of second-order systems. Time-domain simulations validate the accuracy of the model-reduction method and demonstrate how DER controllers can be designed to meet steady-state-regulation and transient-performance specifications.

  18. Subcortical encoding of speech cues in children with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Jafari, Zahra; Malayeri, Saeed; Rostami, Reza

    2015-02-01

    There is little information about processing of nonspeech and speech stimuli at the subcortical level in individuals with attention deficit hyperactivity disorder (ADHD). The auditory brainstem response (ABR) provides information about the function of the auditory brainstem pathways. We aim to investigate the subcortical function in neural encoding of click and speech stimuli in children with ADHD. The subjects include 50 children with ADHD and 34 typically developing (TD) children between the ages of 8 and 12 years. Click ABR (cABR) and speech ABR (sABR) with 40 ms synthetic /da/ syllable stimulus were recorded. Latencies of cABR in waves of III and V and duration of V-Vn (P⩽0.027), and latencies of sABR in waves A, D, E, F and O and duration of V-A (P⩽0.034) were significantly longer in children with ADHD than in TD children. There were no apparent differences in components the sustained frequency following response (FFR). We conclude that children with ADHD have deficits in temporal neural encoding of both nonspeech and speech stimuli. There is a common dysfunction in the processing of click and speech stimuli at the brainstem level in children with suspected ADHD. Copyright © 2015. Published by Elsevier Ireland Ltd.

  19. Heart rate variability and QT dispersion study in brain death patients and comatose patients with normal brainstem function

    International Nuclear Information System (INIS)

    Vakilian, A.R.; Iranmanesh, F.; Nadimi, A.E.; Kahnali, J.A.

    2011-01-01

    To compare heart rate variability (HRV) and QT dispersion in comatose patients with normal brainstem function and with brain death. Fourteen brain death patients with clinical signs of imminent brain death and 15 comatose patients were examined by neurologist in intensive care unit. HRV, RR interval and QT dispersion on ECG were assessed for 24 hours in both groups. Independent t-test and chi-square test were used for statistical analysis to determine significance which was set at p < 0.05. According to Holter findings, mean of standard deviation of RR-interval in the comatose and brain death groups was 48.33 and 35 respectively (p = 0.045). Mean of covariance coefficient of RR-interval was 0.065 in the comatose group and 0.043 in the brain deaths (p = 0.006). QT dispersion was not significant difference in two groups. HRV and RR-interval analysis appeared as an early finding for the diagnosis of brainstem death in comparison to comatose patients with normal brainstem function. QT dispersion had not significant in this regard. (author)

  20. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  1. Responses Following Sexual and Non-Sexual Assault.

    Science.gov (United States)

    Rothbaum, Barbara Olasov; And Others

    Assault victims exhibit a variety of emotional responses including fear, depression, and sexual impairment. For most assault victims, these responses decline over time. This study examined the pattern of post-assault responses during the first 12 weeks and compared the pattern of responses following rape with non-sexual criminal assault reactions.…

  2. On the quantification of SSVEP frequency responses in human EEG in realistic BCI conditions.

    Directory of Open Access Journals (Sweden)

    Rafał Kuś

    Full Text Available This article concerns one of the most important problems of brain-computer interfaces (BCI based on Steady State Visual Evoked Potentials (SSVEP, that is the selection of the a-priori most suitable frequencies for stimulation. Previous works related to this problem were done either with measuring systems that have little in common with actual BCI systems (e.g., single flashing LED or were presented on a small number of subjects, or the tested frequency range did not cover a broad spectrum. Their results indicate a strong SSVEP response around 10 Hz, in the range 13-25 Hz, and at high frequencies in the band of 40-60 Hz. In the case of BCI interfaces, stimulation with frequencies from various ranges are used. The frequencies are often adapted for each user separately. The selection of these frequencies, however, was not yet justified in quantitative group-level study with proper statistical account for inter-subject variability. The aim of this study is to determine the SSVEP response curve, that is, the magnitude of the evoked signal as a function of frequency. The SSVEP response was induced in conditions as close as possible to the actual BCI system, using a wide range of frequencies (5-30 Hz, in step of 1 Hz. The data were obtained for 10 subjects. SSVEP curves for individual subjects and the population curve was determined. Statistical analysis were conducted both on the level of individual subjects and for the group. The main result of the study is the identification of the optimal range of frequencies, which is 12-18 Hz, for the registration of SSVEP phenomena. The applied criterion of optimality was: to find the largest contiguous range of frequencies yielding the strong and constant-level SSVEP response.

  3. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Modeling Parkinson’s Disease Falls Associated With Brainstem Cholinergic Systems Decline

    OpenAIRE

    Kucinski, Aaron; Sarter, Martin

    2015-01-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson’s disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from t...

  5. The effect of sampling rate and anti-aliasing filters on high-frequency response spectra

    Science.gov (United States)

    Boore, David M.; Goulet, Christine

    2013-01-01

    The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency fsaa corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above fsaa should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than fsaa . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using

  6. Low-frequency stimulation cancels the high-frequency-induced long-lasting effects in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E; Zampolini, M

    1996-05-15

    In rat brainstem slices, we investigated the effects of low-frequency stimulation (LFS) of the primary vestibular afferents on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN). LFS induced long-term effects, the sign of which depended on whether the vestibular neurons were previously conditioned by HFS. In unconditioned slices, LFS evoked modifications of the responses that were similar to those observed after HFS but had a smaller extension. In fact, LFS caused long-lasting potentiation of the N1 wave in the MVN ventral portion (Vp) and long-lasting depression of the N2 wave in the MVN dorsal portion (Dp), whereas it provoked small and variable effects on the N1 wave. By contrast, when the synaptic transmission was already conditioned, LFS influenced the synaptic responses oppositely, reducing or annulling the HFS long-term effects. This phenomenon was specifically induced by LFS, because HFS was not able to cause it. The involvement of NMDA receptors in mediating the LFS long-term effects was supported by the fact that AP-5 prevented their induction. In addition, the annulment of HFS long-term effects by LFS was also demonstrated by the shift in the latency of the evoked unitary potentials after LFS. In conclusion, we suggest that the reduction of the previously induced conditioning could represent a cancellation mechanism, useful to quickly adapt the vestibular system to continuous different needs and to avoid saturation.

  7. Visualization of Oxytocin Release that Mediates Paired Pulse Facilitation in Hypothalamic Pathways to Brainstem Autonomic Neurons

    Science.gov (United States)

    Piñol, Ramón A.; Jameson, Heather; Popratiloff, Anastas; Lee, Norman H.; Mendelowitz, David

    2014-01-01

    Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2) expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV). We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs), neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection. PMID:25379676

  8. Low Frequency Dispersion Mechanism of Dielectric Response for Oil-paper Insulation Diagnosis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lijun; LI Xianlang; WU Guangning

    2013-01-01

    Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low frequencies,especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures,which is recognized as the low frequency dispersion (LFD).In order to explain this dispersion,a new mechanism of dielectric response of LFD of oil-paper insulation is proposed.A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved,which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecular chains to ions.A stochastic statistical model of the carrier mobility induced LFD is also developed.Moreover,actual tests under 50 ℃and 2% moisture content were put forward,as well as simulations with according current waveforms.The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion ofdielectric response for oil-paper insulation diagnosis.

  9. Dose Sparing of Brainstem and Spinal Cord for Re-Irradiating Recurrent Head and Neck Cancer with Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Chen, Chin-Cheng; Lee, Chen-Chiao; Mah, Dennis; Sharma, Rajiv; Landau, Evan; Garg, Madhur; Wu, Andrew

    2011-01-01

    Because of the dose limit for critical structures such as brainstem and spinal cord, administering a dose of 60 Gy to patients with recurrent head and neck cancer is challenging for those who received a previous dose of 60-70 Gy. Specifically, previously irradiated head and neck patients may have received doses close to the tolerance limit to their brainstem and spinal cord. In this study, a reproducible intensity-modulated radiation therapy (IMRT) treatment design is presented to spare the doses to brainstem and spinal cord, with no compromise of prescribed dose delivery. Between July and November 2008, 7 patients with previously irradiated, recurrent head and neck cancers were treated with IMRT. The jaws of each field were set fixed with the goal of shielding the brainstem and spinal cord at the sacrifice of partial coverage of the planning target volume (PTV) from any particular beam orientation. Beam geometry was arranged to have sufficient coverage of the PTV and ensure that the constraints of spinal cord o , patients could be treated by 18 fields. Six patients met these criteria and were treated in 25 minutes per fraction. One patient exceeded a 30 o Cobb's angle and was treated by 31 fields in 45 minutes per fraction. We have demonstrated a new technique for retreatment of head and neck cancers. The angle of cervical spine curvature plays an important role in the efficiency and effectiveness of our approach.

  10. Modal Identification from Ambient Responses using Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Zhang, L.; Andersen, P.

    2000-01-01

    In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, ie. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical ...

  11. Effect of bimodularity on frequency response of cylindrical panels ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The actual stress strain behaviour ... The work on frequency response of bimodular structures is scarce in open literature (Khan .... Analysis is carried out using a C0 eight-noded serendipity quadrilateral shear flexible shell ..... specified convergence tolerance (each incremental displacement becomes less than equal to. 10.

  12. Frequency Response Studies using Receptance Coupling Approach in High Speed Spindles

    Science.gov (United States)

    Shaik, Jakeer Hussain; Ramakotaiah, K.; Srinivas, J.

    2018-01-01

    In order to assess the stability of high speed machining, estimate the frequency response at the end of tool tip is of great importance. Evaluating dynamic response of several combinations of integrated spindle-tool holder-tool will consume a lot of time. This paper presents coupled field dynamic response at tool tip for the entire integrated spindle tool unit. The spindle unit is assumed to be relying over the front and rear bearings and investigated using the Timoshenko beam theory to arrive the receptances at different locations of the spindle-tool unit. The responses are further validated with conventional finite element model as well as with the experiments. This approach permits quick outputs without losing accuracy of solution and further these methods are utilized to analyze the various design variables on system dynamics. The results obtained through this analysis are needed to design the better spindle unit in an attempt to reduce the frequency amplitudes at the tool tip to improvise the milling stability during cutting process.

  13. Low-frequency response in antiferromagnetically coupled Fe/Cr multilayers

    International Nuclear Information System (INIS)

    Aliev, F.G.; Guerrero, R.; Martinez, J.L.; Moshchalkov, V.V.; Bruynseraede, Y.; Villar, R.

    2001-01-01

    We have studied the magnetic field dependences of the real (χ) and imaginary (χ') contributions to the low-frequency magnetic susceptibility in epitaxial antiferromagnetically coupled [Fe(Cr(1 0 0)] n (n=10-50) multilayers. For the magnetic field directed along (1 1 0), the magnetic susceptibility shows on orientation phase transition. For the magnetic field either along the easy or the hard axes we observe a strong enhancement of the χ'(H) (i.e. magnetic losses) at low magnetic fields (H<50 Oe), which we relate to AC field-induced domain wall movement. This response is strongly dependent on frequency and temperature

  14. The maturational process of the auditory system in the first year of life characterized by brainstem auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Raquel Beltrão Amorim

    2009-01-01

    Full Text Available The study of brainstem auditory evoked potentials (BAEP allows obtaining the electrophysiological activity generated in the cochlear nerve to the inferior colliculus. In the first months of life, a period of greater neuronal plasticity, important changes are observed in the absolute latency and inter-peak intervals of BAEP, which occur up to the completion of the maturational process, around 18 months of life in full-term newborns, when the response is similar to that of adults. OBJECTIVE: The goal of this study was to establish normal values of absolute latencies for waves I, III and V and inter-peak intervals I-III, III-V and I-V of the BAEP performed in full-term infants attending the Infant Hearing Health Program of the Speech-Language Pathology and Audiology Course at Bauru School of Dentistry, Brazil, with no risk history for hearing impairment. MATERIAL AND METHODS: The stimulation parameters were: rarefaction click stimulus presented by the 3ª insertion phone, intensity of 80 dBnHL and a rate of 21.1 c/s, band-pass filter of 30 and 3,000 Hz and average of 2,000 stimuli. A sample of 86 infants was first divided according to their gestational age in preterm (n=12 and full-term (n=74, and then according to their chronological age in three periods: P1: 0 to 29 days (n=46, P2: 30 days to 5 months 29 days (n=28 and P3: above 6 months (n= 12. RESULTS: The absolute latency of wave I was similar to that of adults, generally in the 1st month of life, demonstrating a complete process maturity of the auditory nerve. For waves III and V, there was a gradual decrease of absolute latencies with age, characterizing the maturation of axons and synaptic mechanisms in the brainstem level. CONCLUSION: Age proved to be a determining factor in the absolute latency of the BAEP components, especially those generated in the brainstem, in the first year of life.

  15. A computational methodology for a micro launcher engine test bench using a combined linear static and dynamic in frequency response analysis

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2017-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces, displacements and stress function of frequency, under a combined linear static (101 Solution - Linear Static and dynamic load in frequency response (108 Solution - Frequency Response, Direct Method, applied to a micro launcher engine test bench, using NASTRAN 400 Solution - Implicit Nonlinear. NASTRAN/PATRAN software is used. Practically in PATRAN the preprocessor has to define a linear or nonlinear static load at step 1 and a dynamic in frequency response load (time dependent at step 2. In Analyze the following options are chosen: for Solution Type Implicit Nonlinear Solution (SOL 400 is selected, for Subcases Static Load and Transient Dynamic is chosen and for Subcase Select the two cases static and dynamic will be selected. NASTRAN solver will overlap results from static analysis with the dynamic analysis. The running time will be reduced three times if using Krylov solver. NASTRAN SYSTEM (387 = -1 instruction is used in order to activate Krylov option. Also, in Analysis the OP2 Output Format shall be selected, meaning that in bdf NASTRAN input file the PARAM POST 1 instruction shall be written. The structural damping can be defined in two different ways: either at the material card or using the PARAM, G, 0.05 instruction (in this example a damping coefficient by 5% was used. The SDAMPING instruction in pair with TABDMP1 work only for dynamic in frequency response, modal method, or in direct method with viscoelastic material, not for dynamic in frequency response, direct method (DFREQ, with linear elastic material. The Direct method – DFREQ used in this example is more accurate. A set in translation of boundary conditions was used and defined at the base of the test bench.

  16. Frequency response function (FRF) based updating of a laser spot welded structure

    Science.gov (United States)

    Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.

    2018-04-01

    The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.

  17. Immediate, irreversible, posttraumatic coma: a review indicating that bilateral brainstem injury rather than widespread hemispheric damage is essential for its production.

    Science.gov (United States)

    Rosenblum, William I

    2015-03-01

    Traumatic brain injury may result in immediate long-lasting coma. Much attention has been given to predicting this outcome from the initial examination because these predictions can guide future treatment and interactions with the patient's family. Reports of diffuse axonal injury in these cases have ascribed the coma to widespread damage in the deep white matter that disconnects the hemispheres from the ascending arousal system (AAS). However, brainstem lesions are also present in such cases, and the AAS may be interrupted at the brainstem level. This review examines autopsy and imaging literature that assesses the presence, extent, and predictive value of lesions in both sites. The evidence suggests that diffuse injury to the deep white matter is not the usual cause of immediate long-lasting posttraumatic coma. Instead, brainstem lesions in the rostral pons or midbrain are almost always the cause but only if the lesions are bilateral. Moreover, recovery is possible if critical brainstem inputs to the AAS are spared. The precise localization of the latter is subject to ongoing investigation with advanced imaging techniques using magnets of very high magnetic gradients. Limited availability of this equipment plus the need to verify the findings continue to require meticulous autopsy examination.

  18. The brain responses to different frequencies of binaural beat sounds on QEEG at cortical level.

    Science.gov (United States)

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2015-01-01

    Beat phenomenon is occurred when two slightly different frequency waves interfere each other. The beat can also occur in the brain by providing two slightly different frequency waves separately each ear. This is called binaural beat. The brain responses to binaural beat are in discussion process whether the brain side and the brain area. Therefore, this study aims to figure out the brain responses to binaural beat by providing different binaural beat frequencies on 250 carrier tone continuously for 30 minutes to participants and using quantitative electroencephalography (QEEG) to interpret the data. The result shows that different responses appear in different beat frequency. Left hemisphere dominance occur in 3 Hz beat within 15 minutes and 15 Hz beat within 5 minutes. Right hemisphere dominance occurs in 10 Hz beat within 25 minute. 6 Hz beat enhances all area of the brain within 10 minutes. 8 Hz and 25 Hz beats have no clearly responses while 40 Hz beat enhances the responses in frontal lobe. These brain responses can be used for brain modulation application to induce the brain activity in further studies.

  19. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials.

    Science.gov (United States)

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-06-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion-midline nuchal ridge, left-right mastoids, vertex-midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re, human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (SOC), or myelin lesions localized to the fibers of the trapezoid body connecting these two structures. Neuronal lesions were induced by injection of kainic acid (KA), while myelin lesions were induced by injection of L-alpha-lysophosphatidylcholine (LPC). With CN neuronal lesions the major changes in 3CLT were in the time domain of 'b', 'c' and 'd' (components P2, P3 and P4 of single-channel ABEP). With SOC neuronal lesions the major changes were in 'c' and 'd' of 3CLT (P3 and P4 of ABEP). With trapezoid body lesions the major change was in 'c' (P3 of ABEP). The results are compatible with the peripheral generation of the first ABEP components (P1a and P1b). The second component (P2) is generated by ipsilateral CN neurones and their outputs. The third component (P3) is generated primarily by ipsilateral SOC neurones and their outputs, with the ipsilateral CN providing input. The The fourth component (P4) is generated bilaterally by the SOC neurones and their outputs, receiving their inputs from ipsilateral CN. The fifth ABEP component (P5) is generated by structures central to the SOCs and their immediate outputs. Neither focal neuronal nor myelin lesions were sufficient to produce obliteration of any component, consistent with a set of generators for each of the ABEP components, consisting of both cell bodies and their output fibers, that is distributed spatially in the brainstem.

  20. Modal Identification from Ambient Responses Using Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Zhang, Lingmi; Andersen, Palle

    2000-01-01

    In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, i.e. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical...

  1. Herpes simplex encephalitis with thalamic, brainstem and cerebellar involvement.

    Science.gov (United States)

    Garg, Meenal; Kulkarni, Shilpa; Udwadia Hegde, Anaita

    2018-04-01

    Herpes simplex virus encephalitis is a common and treatable cause of acute encephalitis in all age groups. Certain radiological features such as temporal parenchymal involvement facilitate the diagnosis. The use of herpes simplex virus polymerase chain reaction has expanded the clinical and imaging spectrum. We report the case of a young patient who presented with a movement disorder and predominant involvement of thalami, brainstem and cerebellum on magnetic resonance imaging, and was diagnosed with herpes simplex virus encephalitis. Differentiation from Japanese encephalitis may be difficult in these patients, especially in endemic areas, and may necessitate the use of relevant investigations in all patients.

  2. Effect of frequency and flexibility ratio on the seismic response of deep tunnels

    Directory of Open Access Journals (Sweden)

    Eimar Sandoval

    2017-06-01

    Full Text Available Two-dimensional dynamic numerical analyses have been conducted, using FLAC 7.0, to evaluate the seismic response of underground structures located far from the seismic source, placed in either linear-elastic or nonlinear elastoplastic ground. The interaction between the ground and deep circular tunnels with a tied interface is considered. For the simulations, it is assumed that the liner remains in its elastic regime, and plane strain conditions apply to any cross section perpendicular to the tunnel axis. An elastoplastic constitutive model is implemented in FLAC to simulate the nonlinear ground. The effect of input frequency and relative stiffness between the liner and the ground, on the seismic response of tunnels, is evaluated. The response is studied in terms of distortions normalized with respect to those of the free field, and load demand (axial forces and bending moments in the liner. In all cases, i.e. for linear-elastic and nonlinear ground models, the results show negligible effect of the input frequency on the distortions of the cross section, for input frequencies smaller than 5 Hz; that is for ratios between the wave length and the tunnel opening (λ/D larger than ten for linear-elastic and nine for nonlinear ground. Larger normalized distortions are obtained for the nonlinear than for the linear-elastic ground, for the same relative stiffness, with differences increasing as the tunnel becomes more flexible, or when the amplitude of the dynamic input shear stress increases. It has been found that normalized distortions for the nonlinear ground do not follow a unique relationship, as it happens for the linear-elastic ground, but increase as the amplitude of the dynamic input increases. The loading in the liner decreases as the structure becomes more flexible with respect to the ground, and is smaller for a tunnel placed in a stiffer nonlinear ground than in a softer nonlinear ground, for the same flexibility ratio.

  3. Auditory Magnetoencephalographic Frequency-Tagged Responses Mirror the Ongoing Segmentation Processes Underlying Statistical Learning.

    Science.gov (United States)

    Farthouat, Juliane; Franco, Ana; Mary, Alison; Delpouve, Julie; Wens, Vincent; Op de Beeck, Marc; De Tiège, Xavier; Peigneux, Philippe

    2017-03-01

    Humans are highly sensitive to statistical regularities in their environment. This phenomenon, usually referred as statistical learning, is most often assessed using post-learning behavioural measures that are limited by a lack of sensibility and do not monitor the temporal dynamics of learning. In the present study, we used magnetoencephalographic frequency-tagged responses to investigate the neural sources and temporal development of the ongoing brain activity that supports the detection of regularities embedded in auditory streams. Participants passively listened to statistical streams in which tones were grouped as triplets, and to random streams in which tones were randomly presented. Results show that during exposure to statistical (vs. random) streams, tritone frequency-related responses reflecting the learning of regularities embedded in the stream increased in the left supplementary motor area and left posterior superior temporal sulcus (pSTS), whereas tone frequency-related responses decreased in the right angular gyrus and right pSTS. Tritone frequency-related responses rapidly developed to reach significance after 3 min of exposure. These results suggest that the incidental extraction of novel regularities is subtended by a gradual shift from rhythmic activity reflecting individual tone succession toward rhythmic activity synchronised with triplet presentation, and that these rhythmic processes are subtended by distinct neural sources.

  4. Reduction in Mortality Following Pediatric Rapid Response Team Implementation.

    Science.gov (United States)

    Kolovos, Nikoleta S; Gill, Jeff; Michelson, Peter H; Doctor, Allan; Hartman, Mary E

    2018-05-01

    To evaluate the effectiveness of a physician-led rapid response team program on morbidity and mortality following unplanned admission to the PICU. Before-after study. Single-center quaternary-referral PICU. All unplanned PICU admissions from the ward from 2005 to 2011. The dataset was divided into pre- and post-rapid response team groups for comparison. A Cox proportional hazards model was used to identify the patient characteristics associated with mortality following unplanned PICU admission. Following rapid response team implementation, Pediatric Risk of Mortality, version 3, illness severity was reduced (28.7%), PICU length of stay was less (19.0%), and mortality declined (22%). Relative risk of death following unplanned admission to the PICU after rapid response team implementation was 0.685. For children requiring unplanned admission to the PICU, rapid response team implementation is associated with reduced mortality, admission severity of illness, and length of stay. Rapid response team implementation led to more proximal capture and aggressive intervention in the trajectory of a decompensating pediatric ward patient.

  5. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    Science.gov (United States)

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Controlled trial of the effect of length, incentives, and follow-up techniques on response to a mailed questionnaire.

    Science.gov (United States)

    Hoffman, S C; Burke, A E; Helzlsouer, K J; Comstock, G W

    1998-11-15

    Mailed questionnaires are an economical method of data collection for epidemiologic studies, but response tends to be lower than for telephone or personal interviews. As part of a follow-up study of volunteers who provided a brief health history and blood sample for a blood specimen bank in 1989, the authors conducted a controlled trial of the effect of length, incentives, and follow-up techniques on response to a mailed questionnaire. Interventions tested included variations on length of the questionnaire, effect of a monetary incentive, and effect of a postcard reminder versus a letter accompanied by a second questionnaire. Response was similar for the short (16-item, 4-page) and long (76-item, 16-page) questionnaire groups. The non-monetary [corrected] incentive did not improve the frequency of response. The second mailing of a questionnaire was significantly better than a postcard reminder in improving responses (23% vs. 10%). It is important to systematically test marketing principles to determine which techniques are effective in increasing response to mailed questionnaires for epidemiologic studies.

  7. Clinical Value of Dorsal Medulla Oblongata Involvement Detected with Conventional MRI for Prediction of Outcome in Children with Enterovirus 71-related Brainstem Encephalitis.

    Science.gov (United States)

    Liu, Kun; Zhou, Yongjin; Cui, Shihan; Song, Jiawen; Ye, Peipei; Xiang, Wei; Huang, Xiaoyan; Chen, Yiping; Yan, Zhihan; Ye, Xinjian

    2018-04-05

    Brainstem encephalitis is the most common neurologic complication after enterovirus 71 infection. The involvement of brainstem, especially the dorsal medulla oblongata, can cause severe sequelae or death in children with enterovirus 71 infection. We aimed to determine the prevalence of dorsal medulla oblongata involvement in children with enterovirus 71-related brainstem encephalitis (EBE) by using conventional MRI and to evaluate the value of dorsal medulla oblongata involvement in outcome prediction. 46 children with EBE were enrolled in the study. All subjects underwent a 1.5 Tesla MR examination of the brain. The disease distribution and clinical data were collected. Dichotomized outcomes (good versus poor) at longer than 6 months were available for 28 patients. Logistic regression was used to determine whether the MRI-confirmed dorsal medulla oblongata involvement resulted in improved clinical outcome prediction when compared with other location involvement. Of the 46 patients, 35 had MRI evidence of dorsal medulla oblongata involvement, 32 had pons involvement, 10 had midbrain involvement, and 7 had dentate nuclei involvement. Patients with dorsal medulla oblongata involvement or multiple area involvement were significantly more often in the poor outcome group than in the good outcome group. Logistic regression analysis showed that dorsal medulla oblongata involvement was the most significant single variable in outcome prediction (predictive accuracy, 90.5%), followed by multiple area involvement, age, and initial glasgow coma scale score. Dorsal medulla oblongata involvement on conventional MRI correlated significantly with poor outcomes in EBE children, improved outcome prediction when compared with other clinical and disease location variables, and was most predictive when combined with multiple area involvement, glasgow coma scale score and age.

  8. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2016-12-17

    Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.

    Science.gov (United States)

    Nam, Hui; Guinan, John J

    2017-12-14

    Recent cochlear mechanical measurements show that active processes increase the motion response of the reticular lamina (RL) at frequencies more than an octave below the local characteristic frequency (CF) for CFs above 5 kHz. A possible correlate is that in high-CF (>5 kHz) auditory-nerve (AN) fibers, responses to frequencies 1-3 octaves below CF ("tail" frequencies) can be inhibited by medial olivocochlear (MOC) efferents. These results indicate that active processes enhance the sensitivity of tail-frequency RL and AN responses. Perhaps related is that some apical low-CF AN fibers have tuning-curve (TC) "side-lobe" response areas at frequencies above and below the TC-tip that are MOC inhibited. We hypothesized that the tail and side-lobe responses are enhanced by the same active mechanisms as CF cochlear amplification. If responses to CF, tail-frequency, and TC-side-lobe tones are all enhanced by prestin motility controlled by outer-hair-cell (OHC) transmembrane voltage, then they should depend on OHC stereocilia position in the same way. To test this, we cyclically changed the OHC-stereocilia mechano-electric-transduction (MET) operating point with low-frequency "bias" tones (BTs) and increased the BT level until the BT caused quasi-static OHC MET saturation that reduced or "suppressed" the gain of OHC active processes. While measuring cat AN-fiber responses, 50 Hz BT level series, 70-120 dB SPL, were run alone and with CF tones, or 2.5 kHz tail-frequency tones, or side-lobe tones. BT-tone-alone responses were used to exclude BT sound levels that produced AN responses that might obscure BT suppression. Data were analyzed to show the BT phase that suppressed the tone responses at the lowest sound level. We found that AN responses to CF, tail-frequency, and side-lobe tones were suppressed at the same BT phase in almost all cases. The data are consistent with the enhancement of responses to CF, tail-frequency, and side-lobe tones all being due to the same

  10. Brainstem evoked response audiometry: an investigatory tool in detecting hepatic encephalopathy in decompensated chronic liver disease.

    Science.gov (United States)

    Kabali, Balasubramanian; Velayutham, Gowri; Kapali, Suresh Chander

    2014-01-01

    It is estimated that globally there is a marked increase in liver disease with reports of rising morbidity and mortality, particularly in younger age groups. Brainstem auditory evoked potential (BAEP) was recorded in 60 decompensated chronic liver disease (DCLD) subjects who fulfilled the selection criteria and compared to 60 age and gender matched healthy subjects with normal liver functions. DCLD subjects were divided into two inter groups based on presence or absence of hepatic encephalopathy (HE). Group 1 comprises of 30 subjects of grade- I HE and Group 2 included 30 subjects without hepatic encephalopathy (NHE). Absolute and interpeak wave latencies were measured. Results were analysed by student independent t- test using SPSS software 11 version. Statistical significance was tested using P value. From the present study it can be concluded that the central nervous system is involved in liver cirrhosis evidenced by an abnormal BAEP latencies parameters. This shows that there may be progressive demyelination occurring along with axonal loss or dysfunction in liver cirrhosis HE. This study suggests that periodic evaluation of cirrhotic individuals to such test will help in monitoring the progress of encephalopathy. The prime goal of this study is early diagnosis and initiation of treatment before the onset of coma can reduce the fatality rate.

  11. Dynamic Frequency Response of Wind Power Plants

    DEFF Research Database (Denmark)

    Altin, Müfit

    according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...

  12. Visuomotor Entrainment and the Frequency-Dependent Response of Walking Balance to Perturbations.

    Science.gov (United States)

    Franz, Jason R; Francis, Carrie; Allen, Matt; Thelen, Darryl G

    2016-08-26

    Visuomotor entrainment, or the synchronization of motor responses to visual stimuli, is a naturally emergent phenomenon in human standing. Our purpose was to investigate the prevalence and resolution of visuomotor entrainment in walking and the frequency-dependent response of walking balance to perturbations. We used a virtual reality environment to manipulate optical flow in ten healthy young adults during treadmill walking. A motion capture system recorded trunk, sacrum, and heel marker trajectories during a series of 3-min conditions in which we perturbed a virtual hallway mediolaterally with systematic changes in the driving frequencies of perceived motion. We quantified visuomotor entrainment using spectral analyses and balance deficits using trunk sway, gait variability, and detrended fluctuation analyses (DFA). ML kinematics were highly sensitive to visual perturbations, and instinctively synchronized (i.e., entrained) to a broad range of driving frequencies of perceived ML motion. However, the influence of visual perturbations on metrics of walking balance was frequency-dependent and governed by their proximity to stride frequency. Specifically, we found that a driving frequency nearest to subjects' average stride frequency uniquely compromised trunk sway, gait variability, and step-to-step correlations. We conclude that visuomotor entrainment is a robust and naturally emerging phenomenon during human walking, involving coordinated and frequency-dependent adjustments in trunk sway and foot placement to maintain balance at the whole-body level. These findings provide mechanistic insight into how the visuomotor control of walking balance is disrupted by visual perturbations and important reference values for the emergence of balance deficits due to age, injury, or disease.

  13. The anorectic actions of the TGFβ cytokine MIC-1/GDF15 require an intact brainstem area postrema and nucleus of the solitary tract.

    Directory of Open Access Journals (Sweden)

    Vicky Wang-Wei Tsai

    Full Text Available Macrophage inhibitory cytokine-1 (MIC-1/GDF15 modulates food intake and body weight under physiological and pathological conditions by acting on the hypothalamus and brainstem. When overexpressed in disease, such as in advanced cancer, elevated serum MIC-1/GDF15 levels lead to an anorexia/cachexia syndrome. To gain a better understanding of its actions in the brainstem we studied MIC-1/GDF15 induced neuronal activation identified by induction of Fos protein. Intraperitoneal injection of human MIC-1/GDF15 in mice activated brainstem neurons in the area postrema (AP and the medial (m portion of the nucleus of the solitary tract (NTS, which did not stain with tyrosine hydroxylase (TH. To determine the importance of these brainstem nuclei in the anorexigenic effect of MIC-1/GDF15, we ablated the AP alone or the AP and the NTS. The latter combined lesion completely reversed the anorexigenic effects of MIC-1/GDF15. Altogether, this study identified neurons in the AP and/or NTS, as being critical for the regulation of food intake and body weight by MIC-1/GDF15.

  14. Activation of the SOS response increases the frequency of small colony variants

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm Erik Axel; Ingmer, Hanne

    2015-01-01

    BACKGROUND: In Staphylococcus aureus sub-populations of slow-growing cells forming small colony variants (SCVs) are associated with persistent and recurrent infections that are difficult to eradicate with antibiotic therapies. In SCVs that are resistant towards aminoglycosides, mutations have been...... with different mechanism of action influence the formation of SCVs that are resistant to otherwise lethal concentrations of the aminoglycoside, gentamicin. We found that exposure of S. aureus to fluoroquinolones and mitomycin C increased the frequency of gentamicin resistant SCVs, while other antibiotic classes...... failed to do so. The higher proportion of SCVs in cultures exposed to fluoroquinolones and mitomycin C compared to un-exposed cultures correlate with an increased mutation rate monitored by rifampicin resistance and followed induction of the SOS DNA damage response. CONCLUSION: Our observations suggest...

  15. Determination of the theoretical and experimental zero-power frequency response of Ghana Research Reactor-1

    International Nuclear Information System (INIS)

    Intsiful, J.D.K.; Akaho, E.H.K.; Tetteh, G.K.

    1997-12-01

    The frequency response measurements of a reactor at low power help in determining the kinetic parameters of a reactor and ultimately in investigating its stability with respect to small perturbations in reactivity. In this report, we present the results of the zero-power frequency response measurements of GHARR-1 by rod method and its analytical analogue. The comparison in calculated and measured values is reasonably good in the frequency range used (author)

  16. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences.

    Science.gov (United States)

    Laumen, Geneviève; Tollin, Daniel J; Beutelmann, Rainer; Klump, Georg M

    2016-07-01

    The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Reverberation impairs brainstem temporal representations of voiced vowel sounds: challenging periodicity-tagged segregation of competing speech in rooms

    Directory of Open Access Journals (Sweden)

    Mark eSayles

    2015-01-01

    Full Text Available The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once, in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation. Brainstem circuits help segregate these complex acoustic mixtures into auditory objects. Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0 modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous.We examine the ability of 129 single units in the ventral cochlear nucleus of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels’ spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels’ spectral energy into two streams (corresponding to the two vowels, on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging

  18. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    Energy Technology Data Exchange (ETDEWEB)

    Visser, P. J. de, E-mail: p.j.devisser@tudelft.nl [Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Yates, S. J. C. [SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen (Netherlands); Guruswamy, T.; Goldie, D. J.; Withington, S. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Neto, A.; Llombart, N. [Faculty of Electrical Engineering, Mathematics and Computer Science, Terahertz Sensing Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands); Baryshev, A. M. [SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen (Netherlands); Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Klapwijk, T. M. [Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Baselmans, J. J. A. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Faculty of Electrical Engineering, Mathematics and Computer Science, Terahertz Sensing Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands)

    2015-06-22

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.

  19. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    International Nuclear Information System (INIS)

    Visser, P. J. de; Yates, S. J. C.; Guruswamy, T.; Goldie, D. J.; Withington, S.; Neto, A.; Llombart, N.; Baryshev, A. M.; Klapwijk, T. M.; Baselmans, J. J. A.

    2015-01-01

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements

  20. Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons.

    Directory of Open Access Journals (Sweden)

    Ramón A Piñol

    Full Text Available Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2 expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV. We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs, neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection.

  1. Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline.

    Science.gov (United States)

    Kucinski, Aaron; Sarter, Martin

    2015-04-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson's disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  2. Effects of brainstem lesions on the masseter inhibitory reflex. Functional mechanisms of reflex pathways

    NARCIS (Netherlands)

    Ongerboer de Visser, B. W.; Cruccu, G.; Manfredi, M.; Koelman, J. H.

    1990-01-01

    The masseter inhibitory reflex (MIR) was investigated in 16 patients with localized brainstem lesions involving the trigeminal system. The MIR consists of two phases of EMG silence (S1 and S2) evoked by stimulation of the mental nerve during maximal clenching of the teeth. The extent of the lesions

  3. Association of nicotinic acetylcholine receptors with central respiratory control in isolated brainstem-spinal cord preparation of neonatal rats

    Directory of Open Access Journals (Sweden)

    EIKI HATORI

    2006-01-01

    Full Text Available Nicotine exposure is a risk factor in several breathing disorders Nicotinic acetylcholine receptors (nAChRs exist in the ventrolateral medulla, an important site for respiratory control. We examined the effects of nicotinic acetylcholine neurotransmission on central respiratory control by addition of a nAChR agonist or one of various antagonists into superfusion medium in the isolated brainstem-spinal cord from neonatal rats. Ventral C4 neuronal activity was monitored as central respiratory output, and activities of respiratory neurons in the ventrolateral medulla were recorded in whole-cell configuration. RJR-2403 (0.1-10mM, alpha4beta2 nAChR agonist induced dose-dependent increases in respiratory frequency. Non-selective nAChR antagonist mecamylamine (0.1-100mM, alpha4beta2 antagonist dihydro-beta-erythroidine (0.1-100mM, alpha7 antagonist methyllycaconitine (0.1-100mM, and a-bungarotoxin (0.01-10mM all induced dose-dependent reductions in C4 respiratory rate. We next examined effects of 20mM dihydro-beta-erythroidine and 20mM methyllycaconitine on respiratory neurons. Dihydro-beta-erythroidine induces hyperpolarization and decreases intraburst firing frequency of inspiratory and preinspiratory neurons. In contrast, methyllycaconitine has no effect on the membrane potential of inspiratory neurons, but does decrease their intraburst firing frequency while inducing hyperpolarization and decreasing intraburst firing frequency in preinspiratory neurons. These findings indicate that alpha4beta2 nAChR is involved in both inspiratory and preinspiratory neurons, whereas alpha7 nAChR functions only in preinspiratory neurons to modulate C4 respiratory rate

  4. Frequency response as a surrogate eigenvalue problem in topology optimization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Ferrari, Federico; Sigmund, Ole

    2018-01-01

    This article discusses the use of frequency response surrogates for eigenvalue optimization problems in topology optimization that may be used to avoid solving the eigenvalue problem. The motivation is to avoid complications that arise from multiple eigenvalues and the computational complexity as...

  5. The Protective Effect of Conditioning on Noise-Induced Hearing Loss Is Frequency-Dependent

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2012-10-01

    Full Text Available We compared the extent of temporary threshold shift (TTS and hair cell loss following high level 4 kHz noise exposure with those preconditioned with moderate level 1 and 4 kHz octave band noise. Fifteen Male albino guinea pigs (300- 350 g in weight were randomly allocated into three groups: those exposed to 4 kHz octave band noise at 102 dB SPL (group 1, n=5; those conditioned with 1 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, then exposed to noise (group 2, n=5; those conditioned with 4 kHz octave band noise at 85 dB SPL, then exposed to noise (group 3, n=5. An hour and one week after noise exposure, threshold shifts were evaluated by auditory-evoked brainstem response (ABR and then animals were euthanized for histological evaluation. We found that TTS and cochlear damage caused by noise exposure were significantly reduced by 1 kHz and 4 kHz conditioning (P<0.001. We also showed that 4 kHz protocol attenuates noise- induced TTS but no significant TTS reduction occurred by 1 kHz conditioning. Both protocol protected noise-induced cochlear damage. We concluded that lower tone conditioning could not protect against higher tone temporary noise-induced hearing loss, thus conditioning is a local acting and frequency-dependent phenomenon.

  6. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Supersonic Turbine Bladed Disks

    Science.gov (United States)

    Brown, Andrew M.; Schmauch, Preston

    2011-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engines is to decompose a CFD-generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. A substantial effort has been made to account for this denser spatial Fourier content in frequency response analysis (described in another paper by the author), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. Six loading cases were generated by varying a baseline harmonic excitation in different ways based upon cold-flow testing from Heritage Fuel Air Turbine Test. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. It was hypothesized that enforcing periodicity in the CFD (inherent in the frequency response technique) would overestimate the

  7. Gamma Knife Radiosurgery Treatment for Metastatic Melanoma of the Trigeminal Nerve and Brainstem: A Case Report and a Review of the Literature

    Science.gov (United States)

    Peterson, Halloran E.; Larson, Erik W.; Fairbanks, Robert K.; Lamoreaux, Wayne T.; Mackay, Alexander R.; Call, Jason A.; Demakas, John J.; Cooke, Barton S.; Lee, Christopher M.

    2013-01-01

    Objective and Importance. Brainstem metastases (BSMs) are uncommon but serious complications of some cancers. They cause significant neurological deficit, and options for treatment are limited. Stereotactic radiosurgery (SRS) has been shown to be a safe and effective treatment for BSMs that prolongs survival and can preserve or in some cases improve neurological function. This case illustrates the use of repeated SRS, specifically Gamma Knife radiosurgery (GKRS) for management of a unique brainstem metastasis. Clinical Presentation. This patient presented 5 years after the removal of a lentigo maligna melanoma from her left cheek with left sided facial numbness and paresthesias with no reported facial weakness. Initial MRI revealed a mass on the left trigeminal nerve that appeared to be a trigeminal schwannoma. Intervention. After only limited response to the first GKRS treatment, a biopsy of the tumor revealed it to be metastatic melanoma, not schwannoma. Over the next two years, the patient would receive 3 more GKRS treatments. These procedures were effective in controlling growth in the treated areas, and the patient has maintained a good quality of life. Conclusion. GKRS has proven in this case to be effective in limiting the growth of this metastatic melanoma without acute adverse effects. PMID:24194991

  8. Central and peripheral components of short latency vestibular responses in the chicken

    Science.gov (United States)

    Nazareth, A. M.; Jones, T. A.

    1998-01-01

    Far-field recordings of short latency vestibular responses to pulsed cranial translation are composed of a series of positive and negative peaks occurring within 10 ms following stimulus onset. In the bird, these vestibular evoked potentials (VsEPs) can be recorded noninvasively and have been shown in the chicken and quail to depend strictly upon the activation of the vestibular component of the eighth nerve. The utility of the VsEP in the study of vestibular systems is dependent upon a clear understanding of the neural sources of response components. The primary aim of the current research in the chicken was to critically test the hypotheses that 1) responses are generated by both peripheral and central neurons and 2) peaks P1 and N1 originate from first order vestibular neurons, whereas later waves primarily depend on activity in higher order neurons. The principal strategy used here was to surgically isolate the eighth nerve as it enters the brainstem. Interruption of primary afferents of the eighth nerve in the brainstem substantially reduced or eliminated peaks beyond P2, whereas P1 and N1 were generally spared. Surgical sections that spared vestibular pathways had little effect on responses. The degree of change in response components beyond N1 was correlated with the extent of damage to central vestibular relays. These findings support the conclusion that responses are produced by both peripheral and central elements of the vestibular system. Further, response peaks later than N1 appear to be dependent upon central relays, whereas P1 and N1 reflect activity of the peripheral nerve. These findings clarify the roles of peripheral and central neurons in the generation of vestibular evoked potentials and provide the basis for a more useful and detailed interpretation of data from vestibular response testing.

  9. CCK response in bulimia nervosa and following remission.

    Science.gov (United States)

    Hannon-Engel, Sandra L; Filin, Evgeniy E; Wolfe, Barbara E

    2013-10-02

    The core defining features of bulimia nervosa (BN) are repeated binge eating episodes and inappropriate compensatory (e.g., purging) behavior. Previous studies suggest an abnormal post-prandial response in the satiety-signaling peptide cholecystokinin (CCK) in persons with BN. It is unknown whether this altered response persists following remission or if it may be a potential target for the development of clinical treatment strategies. To examine the nature of this altered response, this study assessed whether CCK normalizes following remission from BN (RBN). This study prospectively evaluated the plasma CCK response and corresponding eating behavior-related ratings (e.g., satiety, fullness, hunger, urge to binge and vomit) in individuals with BN-purging subtype (n=10), RBN-purging subtype (n=14), and healthy controls (CON, n=13) at baseline, +15, +30, and +60 min following the ingestion of a standardized liquid test meal. Subject groups did not significantly differ in CCK response to the test meal. A significant relationship between CCK response and satiety ratings was observed in the RBN group (r=.59, p<.05 two-tailed). A new and unanticipated finding in the BN group was a significant relationship between CCK response and ratings of "urge to vomit" (r=.86, p<.01, two-tailed). Unlike previous investigations, CCK response did not differ in BN and CON groups. Thus the role of symptom severity remains an area of further investigation. Additionally, findings suggest that in this sample, CCK functioning following remission from BN-purging subtype is not different from controls. It remains unknown whether or not CCK functioning may be a protective or liability factor in the stabilization and recovery process. Replication studies utilizing a larger sample size are needed to further elucidate the role of CCK in recovery from BN and its potential target of related novel treatment strategies. © 2013 Elsevier Inc. All rights reserved.

  10. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    Science.gov (United States)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; hide

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  11. Exploding head syndrome followed by sleep paralysis: a rare migraine aura.

    Science.gov (United States)

    Evans, Randolph W

    2006-04-01

    A 26-year-old patient is described with a unique migraine aura. She described an 8-year history of episodes occurring 1 to 2 times yearly of exploding head syndrome followed by sleep paralysis followed by a migraine headache. She also had identical headaches without aura about once per week. Both aura symptoms, which may occur in the brainstem, resulted in activation of the trigeminovascular system through an unknown mechanism.

  12. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output.

    Science.gov (United States)

    Zhao, K; Ao, Y; Harper, R M; Go, V L W; Yang, H

    2013-09-05

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. Published by Elsevier Ltd.

  13. Field Experience with Sweep Frequency Response Analysis for Power Transformer Diagnosis

    OpenAIRE

    Ambuj Kumar; Sunil Kumar Singh; Shrikant Singh

    2015-01-01

    Sweep frequency response analysis has been turning out a powerful tool for investigation of mechanical as well as electrical integration of transformers. In this paper various aspect of practical application of SFRA has been studied. Open circuit and short circuit measurement were done on different phases of high voltage and low voltage winding. A case study was presented for the transformer of rating 31.5 MVA for various frequency ranges. A clear picture was presented fo...

  14. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  15. Electrical coupling suppression and transient response improvement for a microgyroscope using ascending frequency drive with a 2-DOF PID controller

    International Nuclear Information System (INIS)

    Cui, J; Guo, Z Y; Yang, Z C; Hao, Y L; Yan, G Z

    2011-01-01

    In this paper, we demonstrate a novel control strategy for the drive mode of a microgyroscope using ascending frequency drive (AFD) with an AGC-2DOF PID controller, which drives a resonator with a modulation signal not at the resonant frequency and senses the vibration signal at the resonant frequency, thus realizing the isolation between the actual mechanical response and electrical coupling signal. This approach holds the following three advantages: (1) it employs the AFD signal instead of the resonant frequency drive signal to excite the gyroscope in the drive direction, suppressing the electrical coupling from the drive electrode to the sense electrode; (2) it can reduce the noise at low frequency and resonant frequency by shifting flicker noise to the high-frequency part; (3) it can effectively improve the performance of the transient response of the closed-loop control with a 2-DOF (degree of freedom) PID controller compared with the conventional 1-DOF PID. The stability condition of the whole loop is investigated by utilizing the averaging and linearization method. The control approach is applied to drive a lateral tuning fork microgyroscope. Test results show good agreement with the theoretical and simulation results. The non-ideal electrical antiresonance peak is removed and the resonant peak height increases by approximately 10 dB over a 400 Hz span with a flicker noise reduction of 30 dB within 100 Hz using AFD. The percent overshoot is reduced from 36.2% (1DOF PID) to 8.95% (2DOF PID, about 75.3% overshoot suppression) with 15.3% improvement in setting time

  16. Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber).

    Science.gov (United States)

    Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J; Koch, Ursula

    2016-01-01

    Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.

  17. Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber.

    Directory of Open Access Journals (Sweden)

    Nikodemus Gessele

    Full Text Available Naked mole-rats (Heterocephalus glaber live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.

  18. Distinguishing Buried Objects in Extremely Shallow Underground by Frequency Response Using Scanning Laser Doppler Vibrometer

    Science.gov (United States)

    Touma Abe,; Tsuneyoshi Sugimoto,

    2010-07-01

    A sound wave vibration using a scanning laser Doppler vibrometer are used as a method of exploring and imaging an extremely shallow underground. Flat speakers are used as a vibration source. We propose a method of distinguishing a buried object using a response range of a frequencies corresponding to a vibration velocities. Buried objects (plastic containers, a hollow steel can, an unglazed pot, and a stone) are distinguished using a response range of frequencies. Standardization and brightness imaging are used as methods of discrimination. As a result, it was found that the buried objects show different response ranges of frequencies. From the experimental results, we confirmed the effectiveness of our proposed method.

  19. Inflammatory lesions of the brainstem and the cerebellopontine angle; Entzuendungen des Hirnstamms und des Kleinhirnbrueckenwinkels

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.; Jaeger, L. [Klinikum Grosshadern der Ludwig-Maximilians-Universitaet Muenchen (Germany). Institut fuer Klinische Radiologie

    2006-03-15

    Inflammatory lesions of the brainstem and the cerebellopontine angle are often critical for the patient, because crucial neuronal and vascular structures are found in this region. The patient's prognosis mainly depends on rapid identification of the inflammation site and the radiological evaluation of the inflammation pathogenesis to develop therapeutic strategies. Therefore, cross-sectional imaging is complementary to laboratory and CSF analysis as well as biopsies. This article gives a survey of inflammatory lesions of the brainstem and the cerebellopontine angle. (orig.) [German] Entzuendliche Erkrankungen des Hirnstamms und Kleinhirnbrueckenwinkels stellen nicht selten eine kritische Situation fuer den Patienten dar, da in diesen Regionen wichtige neuronale Strukturen und Gefaesse verlaufen. Die Prognose und das weitere therapeutische Vorgehen haengen entscheidend von einer schnellen Diagnose der Entzuendungslokalisation sowie einer bildmorphologischen Einordnung der Entzuendungspathogenese ab. Folglich ergaenzt die Schnittbildgebung entscheidend die Liquoranalyse, die Biopsie und die Laboruntersuchungen. In diesem Artikel soll eine Uebersicht ueber die verschiedenen entzuendlichen Veraenderungen des Hirnstamms und Kleinhirnbrueckenwinkels gegeben werden. (orig.)

  20. Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    Frequency responses of seismic wave propagation can be obtained either by directly solving the frequency domain wave equations or by transforming the time domain wavefields using the Fourier transform. The former approach requires solving systems

  1. Diffuse and focal presentations of brainstem tumors in children: the images and the prognostic value; Presentacion difusa o focal de los tumores troncoencefalicos en los ninos: imagen y valor pronostico

    Energy Technology Data Exchange (ETDEWEB)

    Menor, F.; Canete, A.; Romero, M. J.; Trilles, L.; Carvajal, E. [Hospital Universitario La Fe. Valencia (Spain); Marti-Bonmati, L. [Hospital Universitario Dr. Peset. Valencia (Spain)

    2000-07-01

    To determine whether the presentation of brainstem tumors as diffuse or focal lesions showed any prognostic value in children. A retrospective review was carried out of the neuroradiological findings in 43 children with brainstem tumors, all of whom underwent computed tomography (CT) and 31 of whom underwent magnetic resonance (MR). The diffuse tumors (n=20) were all located in the pons, spreading to mesencephalon in 6 cases and to medulla oblongata in 1, and exhibiting exophytic growth, preferentially to the prepontine cistern. They presented homogeneous low attenuation in CT (90%) and decrease/increased signal intensity in T1/T2-weighted MR images (91.6%). Contrast uptake was observed in 20% of cases, with agreement between CT and MR. The patients showed a good initial response to treatment (70%), a high rate of relapse (80%) and a 5-year survival of 12%. The focal tumors were located in the pons (11 cases, spreading to the medulla oblongata in 2), mesencephalon (11 cases, 9 tectal and 2 peduncular) and medulla oblongata (1 case), and exhibited exophytic growth predominantly to the pontocerebellar junction and to the cerebellar peduncles. They showed a certain tendency toward heterogeneity (21.7%), toward isoattenuation in CT (47.8%) and isointensity in T1-weighted MR images (26.3%). CT showed a rate of tumor uptake of 26%, while the rate of contrast iptake was 58% MR. Fifty percent of these lesions responded well to therapy, with a recurrence rate of 28% and 4-year survival of 63%. Neuroimaging helps to define two basic patterns in brainstem tumors that play a role in prognosis. The diffuse tumor, which characteristically shows a good initial response to therapy, has a worse prognosis, probably reflecting its histological aggressiveness. (Author) 21 refs.

  2. Frequency response control of semiconductor laser by using hybrid modulation scheme.

    Science.gov (United States)

    Mieda, Shigeru; Yokota, Nobuhide; Isshiki, Ryuto; Kobayashi, Wataru; Yasaka, Hiroshi

    2016-10-31

    A hybrid modulation scheme that simultaneously applies the direct current modulation and intra-cavity loss modulation to a semiconductor laser is proposed. Both numerical calculations using rate equations and experiments using a fabricated laser show that the hybrid modulation scheme can control the frequency response of the laser by changing a modulation ratio and time delay between the two modulations. The modulation ratio and time delay provide the degree of signal mixing of the two modulations and an optimum condition is found when a non-flat frequency response for the intra-cavity loss modulation is compensated by that for the direct current modulation. We experimentally confirm a 8.64-dB improvement of the modulation sensitivity at 20 GHz compared with the pure direct current modulation with a 0.7-dB relaxation oscillation peak.

  3. Searching for the optimal stimulus eliciting auditory brainstem responses in humans

    DEFF Research Database (Denmark)

    Fobel, Oliver; Dau, Torsten

    2004-01-01

    -chirp, was based on estimates of human basilar membrane (BM) group delays derived from stimulus-frequency otoacoustic emissions (SFOAE) at a sound pressure level of 40 dB [Shera and Guinan, in Recent Developments in Auditory Mechanics (2000)]. The other chirp, referred to as the A-chirp, was derived from latency...

  4. A time-frequency analysis method to obtain stable estimates of magnetotelluric response function based on Hilbert-Huang transform

    Science.gov (United States)

    Cai, Jianhua

    2017-05-01

    The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.

  5. Divergent immunological responses following glutaraldehyde exposure

    International Nuclear Information System (INIS)

    Azadi, Shahla; Klink, Kimberly J.; Meade, B. Jean

    2004-01-01

    Although Glutaraldehyde (Glut) has been demonstrated to be a moderate contact sensitizer, numerous cases of occupational asthma related to Glut exposure have been reported. The purpose of these studies was to examine the dose-response relationship between Glut exposure and the development of T cell-mediated vs. IgE- mediated responses. Initial evaluation of the sensitization potential was conducted using the local lymph node assay (LLNA) at concentrations ranging from 0.75% to 2.5%. A concentration-dependent increase in lymphocyte proliferation was observed with EC3 values of 0.072% and 0.089% in CBA and BALB/c mice, respectively. The mouse ear swelling test (MEST) was used to evaluate the potential for Glut to elicit IgE (1/2 h post challenge) and contact hypersensitivity (24 and 48 h post challenge) responses. An immediate response was observed in animals induced and challenged with 2.5% Glut, whereas animals induced with 0.1% or 0.75% and challenged with 2.5% exhibited a delayed response 48 h post challenge. IgE-inducing potential was evaluated by phenotypic analysis of draining lymph node cells and measurement of total serum IgE levels. Only the 2.5% exposed group demonstrated a significant increase (P + B220 + cells and serum IgE. Following 3 days of dermal exposure, a significant increase in IL-4 mRNA in the draining lymph nodes was observed only in the 2.5% exposed group. These results indicate that the development of an immediate vs. a delayed hypersensitivity response following dermal exposure to Glut is at least in part mediated by the exposure concentration

  6. Adaptation responses to increasing drought frequency

    Science.gov (United States)

    Loch, A. J.; Adamson, D. C.; Schwabe, K.

    2016-12-01

    Using state contingent analysis we discuss how and why irrigators adapt to alternative water supply signals. This analysis approach helps to illustrate how and why producers currently use state-general and state-allocable inputs to adapt and respond to known and possible future climatic alternative natures. Focusing on the timing of water allocations, we explore inherent differences in the demand for water by two key irrigation sectors: annual and perennial producers which in Australia have allowed a significant degree of risk-minimisation during droughts. In the absence of land constraints, producers also had a capacity to respond to positive state outcomes and achieve super-normal profits. In the future, however, the probability of positive state outcomes is uncertain; production systems may need to adapt to minimise losses and/or achieve positive returns under altered water supply conditions that may arise as a consequence of more frequent drought states. As such, producers must assess whether altering current input/output choice sets in response to possible future climate states will enhance their long-run competitive advantage for both expected new normal and extreme water supply outcomes. Further, policy supporting agricultural sector climate change resilience must avoid poorly-designed strategies that increase producer vulnerability in the face of drought. Our analysis explores the reliability of alternative water property right bundles and how reduced allocations across time influence alternative responses by producers. We then extend our analysis to explore how management strategies could adapt to two possible future drier state types: i) where an average reduction in water supply is experienced; and ii) where the frequency of droughts increase. The combination of these findings are subsequently used to discuss the role water reform policy has to deal with current and future climate scenarios. We argue current policy strategies could drive producers to

  7. Extension of a nonlinear systems theory to general-frequency unsteady transonic aerodynamic responses

    Science.gov (United States)

    Silva, Walter A.

    1993-01-01

    A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.

  8. Multi-frequency response from a designed array of micromechanical cantilevers fabricated using a focused ion beam

    International Nuclear Information System (INIS)

    Ghatnekar-Nilsson, S; Graham, J; Hull, R; Montelius, L

    2006-01-01

    We demonstrate arrays of cantilevers with different lengths, fabricated by focused ion beam milling. The arrays of oscillators generate a spectrum of different resonant frequencies, where each frequency correlates to the corresponding individual cantilever. The frequency response from all the cantilevers is collected from a single measurement under the same environment and conditions for the entire array. The mass response of the system generated the same Δf/f 0 for the cantilevers, within 0.1% accuracy. We denote the method MFSAC: multi-frequency signal analysis from an array of cantilevers. The simultaneous detection of several frequencies in one spectrum has great benefits in mass sensor applications, offering the possibility for true label-free detection

  9. Frequency-dependence of the slow force response.

    Science.gov (United States)

    von Lewinski, Dirk; Zhu, Danan; Khafaga, Mounir; Kockskamper, Jens; Maier, Lars S; Hasenfuss, Gerd; Pieske, Burkert

    2008-05-01

    Stretch induces biphasic inotropic effects in mammalian myocardium. A delayed component (slow force response, SFR) has been demonstrated in various species, however, experimental conditions varied and the underlying mechanisms are controversial. The physiological relevance of the SFR is poorly understood. Experiments were performed in ventricular muscle strips from failing human hearts and non-failing rabbit hearts. Upon stretch, twitch force was assessed at basal conditions (1 Hz, 37 degrees C) and after changing stimulation frequency with and without blockade of the Na+/H+-exchanger-1 (NHE1) or reverse-mode Na+/Ca2+-exchange (NCX). Action potential duration (APD) was assessed using floating electrodes. Low stimulation rates (0.2 Hz) potentiated and higher stimulation rates (2 and 3 Hz) reduced the SFR. The extent of SFR inhibition by NHE1 or NCX inhibition was not affected by stimulation rate. APD decreased at 0.2 Hz but was not altered at higher stimulation rates. The data demonstrate frequency-dependence of the SFR with greater positive inotropic effects at lower stimulation rates. Subcellular mechanisms underlying the SFR are not fundamentally affected by stimulation rate. The SFR may have more pronounced physiological effects at lower heart rates.

  10. Magnetic Frequency Response of HL-LHC Beam Screens

    CERN Document Server

    Morrone, M; De Maria, R; Fitterer, M; Garion, C

    2017-01-01

    Magnetic fields used to control particle beams in accelerators are usually controlled by regulating the electrical current of the power converters. In order to minimize lifetime degradation and ultimately luminosity loss in circular colliders, current-noise is a highly critical figure of merit of power converters, in particular for magnets located in areas with high beta-function, like the High Luminosity Large Hadron Collider (HL-LHC) insertions. However, what is directly acting upon the beam is the magnetic field and not the current of the power converter, which undergoes several frequency-dependent transformations until the desired magnetic field, seen by the beam, is obtained. Beam screens are very rarely considered when assessing or specifying the noise figure of merit, but their magnetic frequency response is such that they realize relatively effective low pass filtering of the magnetic field produced by the system magnet-power converter. This work aims at filling this gap by quantifying the expected im...

  11. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  12. Bias and frequency response of the permeability of CoZrNb/SiO2 multilayers

    International Nuclear Information System (INIS)

    Louis, E.; Jeong, I.S.; Walser, R.M.

    1990-01-01

    Compared to single-layer films, CoZrNb/SiO 2 multilayers with amorphous, soft magnetic films exhibit increased high-frequency response (to about 100 MHz) that is not understood. We studied single and multilayer films in this system and observed three distinct types of magnetic bias and frequency responses (phases I--III). The high-frequency responses of phase II and III films were reduced from that of phase I. Phase changes were produced in the single-layer amorphous CoZrNb films by varying the film thickness, and in double-layer (N=2) and multilayer (N>2) films by varying the magnetic layer thickness. The phase boundaries in the former were shifted by magnetostatic coupling of the perpendicular component of M. These studies indicated that phase I films had uniform planar magnetizations, while phase II and III films had perpendicular components. The results are summarized in the form of a phase diagram (film thickness versus inverse film separation), which suggests that the frequency response of multilayer thin films is enhanced when the individual magnetic layers are sufficiently thin to insure a planar magnetization (phase I)

  13. Broadband frequency and angular response of a sinusoidal bull’s eye antenna

    Science.gov (United States)

    Beaskoetxea, U.; Navarro-Cía, M.; Beruete, M.

    2016-07-01

    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n  =  -1 and n  =  -2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation.

  14. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem

    International Nuclear Information System (INIS)

    Zhong, Yanjun; Dong, Guicheng; Luo, Haiguang; Cao, Jie; Wang, Chang; Wu, Jianyuan; Feng, Yu-Qi; Yue, Jiang

    2012-01-01

    Ethanol is one of the most commonly abused substances, and oxidative stress is an important causative factor in ethanol-induced neurotoxicity. Cytochrome P450 2E1 (CYP2E1) is involved in ethanol metabolism in the brain. This study investigates the role of brain CYP2E1 in the susceptibility of certain brain regions to ethanol neurotoxicity. Male Wistar rats were intragastrically treated with ethanol (3.0 g/kg, 30 days). CYP2E1 protein, mRNA expression, and catalytic activity in various brain regions were respectively assessed by immunoblotting, quantitative quantum dot immunohistochemistry, real-time RT-PCR, and LC–MS. The generation of reactive oxygen species (ROS) was analyzed using a laser confocal scanning microscope. The hippocampus, cerebellum, and brainstem were selectively damaged after ethanol treatment, indicated by both lactate dehydrogenase (LDH) activity and histopathological analysis. Ethanol markedly increased the levels of CYP2E1 protein, mRNA expression, and activity in the hippocampus and cerebellum. CYP2E1 protein and activity were significantly increased by ethanol in the brainstem, with no change in mRNA expression. ROS levels induced by ethanol paralleled the enhanced CYP2E1 proteins in the hippocampus, granular layer and white matter of cerebellum as well as brainstem. Brain CYP2E1 activity was positively correlated with the damage to the hippocampus, cerebellum, and brainstem. These results suggest that the selective sensitivity of brain regions to ethanol neurodegeneration may be attributed to the regional and cellular-specific induction of CYP2E1 by ethanol. The inhibition of CYP2E1 levels may attenuate ethanol-induced oxidative stress via ROS generation.

  15. The human premotor oculomotor brainstem system - can it help to understand oculomotor symptoms in Huntington's disease?

    NARCIS (Netherlands)

    Rueb, U.; Heinsen, H.; Brunt, E. R.; Landwehrmeyer, B.; Den Dunnen, W. F. A.; Gierga, K.; Deller, T.

    Recent progress in oculomotor research has enabled new insights into the functional neuroanatomy of the human premotor oculomotor brainstem network. In the present review, we provide an overview of its functional neuroanatomy and summarize the broad range of oculomotor dysfunctions that may occur in

  16. Regulatory T cell frequencies and phenotypes following anti-viral vaccination

    NARCIS (Netherlands)

    de Wolf, A Charlotte M T; van Aalst, Susan; Ludwig, Irene S; Bodinham, Caroline L; Lewis, David J; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2017-01-01

    Regulatory T cells (Treg) function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays

  17. A fortran programme for determining frequency responses for linear systems with time delays

    International Nuclear Information System (INIS)

    Milsom, P.R.

    1966-11-01

    In this report a digital computer programme for evaluating frequency responses is described. In its standard form the programme is capable of determining the gain and phase of up to 35 variables over a range of up to 30 frequencies for a system described by up to 65 equations. The equations must be either first order differential or algebraic and either type may include time delayed terms. Up to 50 such terms are permissible throughout the equation set. Provision is made for up to 10 inputs and up to 50 differentiated input terms are permitted throughout the equation set. However, it is possible for the user to increase a maximum dimension, albeit at the expense of another array dimension. In punching the data from the equations the user has no sorting or arranging of coefficients to do, and the equations may be in any order. The specifying of other input information, such as frequency range, the inputs to be perturbed and the variables for which frequency responses are required, is also very straightforward. (author)

  18. Abnormal auditory mismatch response in tinnitus sufferers with high-frequency hearing loss is associated with subjective distress level

    Directory of Open Access Journals (Sweden)

    Berg Patrick

    2004-03-01

    Full Text Available Abstract Background Tinnitus is an auditory sensation frequently following hearing loss. After cochlear injury, deafferented neurons become sensitive to neighbouring intact edge-frequencies, guiding an enhanced central representation of these frequencies. As psychoacoustical data 123 indicate enhanced frequency discrimination ability for edge-frequencies that may be related to a reorganization within the auditory cortex, the aim of the present study was twofold: 1 to search for abnormal auditory mismatch responses in tinnitus sufferers and 2 relate these to subjective indicators of tinnitus. Results Using EEG-mismatch negativity, we demonstrate abnormalities (N = 15 in tinnitus sufferers that are specific to frequencies located at the audiometrically normal lesion-edge as compared to normal hearing controls (N = 15. Groups also differed with respect to the cortical locations of mismatch responsiveness. Sources in the 90–135 ms latency window were generated in more anterior brain regions in the tinnitus group. Both measures of abnormality correlated with emotional-cognitive distress related to tinnitus (r ~ .76. While these two physiological variables were uncorrelated in the control group, they were correlated in the tinnitus group (r = .72. Concerning relationships with parameters of hearing loss (depth and slope, slope turned out to be an important variable. Generally, the steeper the hearing loss is the less distress related to tinnitus was reported. The associations between slope and the relevant neurophysiological variables are in agreement with this finding. Conclusions The present study is the first to show near-to-complete separation of tinnitus sufferers from a normal hearing control group based on neurophysiological variables. The finding of lesion-edge specific effects and associations with slope of hearing loss corroborates the assumption that hearing loss is the basis for tinnitus development. It is likely that some central

  19. Progressive supranuclear palsy: neuronal and glial cytoskeletal pathology in the higher order processing autonomic nuclei of the lower brainstem.

    Science.gov (United States)

    Rüb, U; Del Tredici, K; Schultz, C; de Vos, R A I; Jansen Steur, E N H; Arai, K; Braak, H

    2002-02-01

    The medial and lateral parabrachial nuclei (MPB, LPB), the gigantocellular reticular nucleus (GI), the raphes magnus (RMG) and raphes obscurus nuclei (ROB), as well as the intermediate reticular zone (IRZ) represent pivotal subordinate brainstem centres, all of which control autonomic functions. In this study, we investigated the occurrence and severity of the neuronal and glial cytoskeletal pathology in these six brainstem nuclei from 17 individuals with clinically diagnosed and neuropathologically confirmed progressive supranuclear palsy (PSP). The association between the severity of the pathology and the duration of the disease was investigated by means of correlation analysis. The brainstem nuclei in all of the PSP cases were affected by the neuronal cytoskeletal pathology, with the IRZ and GI regularly showing severe involvement, the MPB, RMG, and ROB marked involvement, and the LPB mild involvement. In the six nuclear greys studied, glial cells undergo alterations of their cytoskeleton on an irregular basis, whereby diseased oligodendrocytes predominantly presented as coiled bodies and affected astrocytes as thorn-shaped astrocytes. In all six nuclei, the severity of the neuronal or glial cytoskeletal pathology showed no correlation with the duration of PSP. In view of their functional role, the neuronal pathology in the nuclei studied offers a possible explanation for the autonomic dysfunctions that eventually develop in the course of PSP.

  20. Polysialylated-neural cell adhesion molecule (PSA-NCAM in the human trigeminal ganglion and brainstem at prenatal and adult ages

    Directory of Open Access Journals (Sweden)

    Melis Tiziana

    2008-11-01

    Full Text Available Abstract Background The polysialylated neuronal cell adhesion molecule (PSA-NCAM is considered a marker of developing and migrating neurons and of synaptogenesis in the immature vertebrate nervous system. However, it persists in the mature normal brain in some regions which retain a capability for morphofunctional reorganization throughout life. With the aim of providing information relevant to the potential for dynamic changes of specific neuronal populations in man, this study analyses the immunohistochemical occurrence of PSA-NCAM in the human trigeminal ganglion (TG and brainstem neuronal populations at prenatal and adult age. Results Western blot analysis in human and rat hippocampus supports the specificity of the anti-PSA-NCAM antibody and the immunodetectability of the molecule in postmortem tissue. Immunohistochemical staining for PSA-NCAM occurs in TG and several brainstem regions during prenatal life and in adulthood. As a general rule, it appears as a surface staining suggestive of membrane labelling on neuronal perikarya and proximal processes, and as filamentous and dot-like elements in the neuropil. In the TG, PSA-NCAM is localized to neuronal perikarya, nerve fibres, pericellular networks, and satellite and Schwann cells; further, cytoplasmic perikaryal staining and positive pericellular fibre networks are detectable with higher frequency in adult than in newborn tissue. In the adult tissue, positive neurons are mostly small- and medium-sized, and amount to about 6% of the total ganglionic population. In the brainstem, PSA-NCAM is mainly distributed at the level of the medulla oblongata and pons and appears scarce in the mesencephalon. Immunoreactivity also occurs in discretely localized glial structures. At all ages examined, PSA-NCAM occurs in the spinal trigeminal nucleus, solitary nuclear complex, vestibular and cochlear nuclei, reticular formation nuclei, and most of the precerebellar nuclei. In specimens of different age

  1. Studies on Several Hormone Responses Following Intravenous Alimentation: Insulin and growth hormone responses following oral or intravenous alimentation in patient with far advanced gastric cancer

    International Nuclear Information System (INIS)

    Sung, H. K.; Koh, J. H.; Ryu, Y. W.; Lee, J. O.; Lee, C. W.; Kim, J. Y.; Lee, J. K.

    1975-01-01

    Glucose tolerance, insulin and growth hormone responses following glucose for amino acids administration by means of parenteral or oral load were studied in patients with far advanced gastric cancer. Hormone responses following nutrients load showed in patients with gastric cancer were compared to those of healthy subjects. Results were as follows:1) Blood sugar appearance following oral glucose administration was diminished in patients with far advanced gastric cancer. 2) The insulin responses of gastric cancer following oral glucose were also diminished as compared to that of normal subjects and were identical with parenteral route. 3) Parenteral administration of glucose or amino acids to patients with gastric cancer resulted in a increase of plasma growth hormone level. 4) Lower insulin response to amino acids was observed on parenteral administration in patient with gastric cancer as in healthy subjects. 5) Author discussed that the low insulin response after oral glucose administration showed in gastric cancer, and any additional insulin requirement arise when longer periods of parenteral amino acid administration are necessary, as in the patient with malnutrition.

  2. Studies on Several Hormone Responses Following Intravenous Alimentation: Insulin and growth hormone responses following oral or intravenous alimentation in patient with far advanced gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sung, H K; Koh, J H; Ryu, Y W; Lee, J O; Lee, C W; Kim, J Y; Lee, J K [Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1975-09-15

    Glucose tolerance, insulin and growth hormone responses following glucose for amino acids administration by means of parenteral or oral load were studied in patients with far advanced gastric cancer. Hormone responses following nutrients load showed in patients with gastric cancer were compared to those of healthy subjects. Results were as follows:1) Blood sugar appearance following oral glucose administration was diminished in patients with far advanced gastric cancer. 2) The insulin responses of gastric cancer following oral glucose were also diminished as compared to that of normal subjects and were identical with parenteral route. 3) Parenteral administration of glucose or amino acids to patients with gastric cancer resulted in a increase of plasma growth hormone level. 4) Lower insulin response to amino acids was observed on parenteral administration in patient with gastric cancer as in healthy subjects. 5) Author discussed that the low insulin response after oral glucose administration showed in gastric cancer, and any additional insulin requirement arise when longer periods of parenteral amino acid administration are necessary, as in the patient with malnutrition.

  3. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Turbine Bladed Disks

    Science.gov (United States)

    Brown, Andrew M.; Schmauch, Preston

    2012-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. The standard technique for forced response analysis to assess structural integrity is to decompose a CFD generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. These complications suggest the question of whether frequency domain analysis is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. The results showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists.

  4. Axonal sprouting of a brainstem-spinal pathway after estrogen administration in the adult female rhesus monkey

    NARCIS (Netherlands)

    Vanderhorst, VGJM; Terasawa, E; Ralston, HJ

    2002-01-01

    The nucleus retroambiguus (NRA) is located in the caudal medulla oblongata and contains premotor neurons that project to motoneuronal cell groups in the brainstem and spinal cord. NRA projections to the lumbosacral cord are species specific and might be involved in mating behavior. In the female

  5. Limbic encephalitis with antibodies to glutamic acid decarboxylase presenting with brainstem symptoms

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2015-01-01

    Full Text Available Limbic encephalitis (LE is a neurological syndrome that may present in association with cancer, infection, or as an isolate clinical condition often accompanying autoimmune disorders. LE associated with glutamic acid decarboxylase antibodies (anti-GAD is rare in children. Here, we characterized the clinical and laboratory features of a patient presenting with brainstem involvement with non-paraneoplastic LE associated with anti-GAD antibodies. In our patient, after plasma exchange, we determined a dramatic improvement of the neurological deficits.

  6. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    Science.gov (United States)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  7. Board meeting frequency and corporate social responsibility (CSR reporting: Evidence from Malaysia

    Directory of Open Access Journals (Sweden)

    Nurulyasmin Binti Ju Ahmad

    2017-05-01

    Full Text Available This study aims at determining the effectiveness of board meeting frequency on Corporate Social Responsibility (CSR reporting by public listed companies on the Main Market of Bursa Malaysia. A CSR reporting index consisting of 51 items was developed based on six themes: General, Community, Environment, Human Resource, Marketplace and Other. A content analysis was used to determine the extent of CSR reporting. An Ordinary Least Square (OLS regression was employed in determining the association between board meeting frequency and CSR reporting. The finding of the study is that advising tendency (frequency of board meetings is not associated with CSR reporting. Overall this study strengthens the idea that advising tendency of the board is essential to companies in order to safeguard all stakeholders’ interests. Accordingly, regulators and policymakers should be more stringent in monitoring company’s conformance towards regulations. This study provides a new avenue of knowledge and contributes to the literature on the practices of the board of directors and corporate social responsibility reporting in the context of a semi-developed country

  8. A Hardware transverse beam frequency response simulator

    International Nuclear Information System (INIS)

    Ning, J.; Tan, C.Y.

    2005-01-01

    We built an electronic instrument that can mimic the transverse beam frequency response. The instrument consists of (1) a time delay circuit with an analog-to-digital converter (ADC) which contains a first-in-first-out random assess memory (FIFO RAM) and a digital-to-analog converter (DAC); (2) a variable phase shifter circuit which is based on an all pass filter with a bandwidth of 25kHz to 30kHz and (3) a commutating filter which is a nonlinear band pass filter. With this instrument, we can dynamically adjust the betatron tune, the synchrotron tune, and the chromaticity. Using this instrument, we are able to test other beam systems without using actual beam

  9. Theta frequency background tunes transmission but not summation of spiking responses.

    Directory of Open Access Journals (Sweden)

    Dhanya Parameshwaran

    Full Text Available Hippocampal neurons are known to fire as a function of frequency and phase of spontaneous network rhythms, associated with the animal's behaviour. This dependence is believed to give rise to precise rate and temporal codes. However, it is not well understood how these periodic membrane potential fluctuations affect the integration of synaptic inputs. Here we used sinusoidal current injection to the soma of CA1 pyramidal neurons in the rat brain slice to simulate background oscillations in the physiologically relevant theta and gamma frequency range. We used a detailed compartmental model to show that somatic current injection gave comparable results to more physiological synaptically driven theta rhythms incorporating excitatory input in the dendrites, and inhibitory input near the soma. We systematically varied the phase of synaptic inputs with respect to this background, and recorded changes in response and summation properties of CA1 neurons using whole-cell patch recordings. The response of the cell was dependent on both the phase of synaptic inputs and frequency of the background input. The probability of the cell spiking for a given synaptic input was up to 40% greater during the depolarized phases between 30-135 degrees of theta frequency current injection. Summation gain on the other hand, was not affected either by the background frequency or the phasic afferent inputs. This flat summation gain, coupled with the enhanced spiking probability during depolarized phases of the theta cycle, resulted in enhanced transmission of summed inputs during the same phase window of 30-135 degrees. Overall, our study suggests that although oscillations provide windows of opportunity to selectively boost transmission and EPSP size, summation of synaptic inputs remains unaffected during membrane oscillations.

  10. Frequency-dependent spatiotemporal profiles of visual responses recorded with subdural ECoG electrodes in awake monkeys: Differences between high- and low-frequency activity.

    Science.gov (United States)

    Takaura, Kana; Tsuchiya, Naotsugu; Fujii, Naotaka

    2016-01-01

    Electrocorticography (ECoG) constitutes a powerful and promising neural recording modality in humans and animals. ECoG signals are often decomposed into several frequency bands, among which the so-called high-gamma band (80-250Hz) has been proposed to reflect local cortical functions near the cortical surface below the ECoG electrodes. It is typically assumed that the lower the frequency bands, the lower the spatial resolution of the signals; thus, there is not much to gain by analyzing the event-related changes of the ECoG signals in the lower-frequency bands. However, differences across frequency bands have not been systematically investigated. To address this issue, we recorded ECoG activity from two awake monkeys performing a retinotopic mapping task. We characterized the spatiotemporal profiles of the visual responses in the time-frequency domain. We defined the preferred spatial position, receptive field (RF), and response latencies of band-limited power (BLP) (i.e., alpha [3.9-11.7Hz], beta [15.6-23.4Hz], low [30-80Hz] and high [80-250Hz] gamma) for each electrode and compared them across bands and time-domain visual evoked potentials (VEPs). At the population level, we found that the spatial preferences were comparable across bands and VEPs. The high-gamma power showed a smaller RF than the other bands and VEPs. The response latencies for the alpha band were always longer than the latencies for the other bands and fastest in VEPs. Comparing the response profiles in both space and time for each cortical region (V1, V4+, and TEO/TE) revealed regional idiosyncrasies. Although the latencies of visual responses in the beta, low-, and high-gamma bands were almost identical in V1 and V4+, beta and low-gamma BLP occurred about 17ms earlier than high-gamma power in TEO/TE. Furthermore, TEO/TE exhibited a unique pattern in the spatial response profile: the alpha and high-gamma responses tended to prefer the foveal regions, whereas the beta and low-gamma responses

  11. Frequency response testing at Experimental Breeder Reactor II using discrete-level periodic signals

    International Nuclear Information System (INIS)

    Rhodes, W.D.; Larson, H.A.

    1990-01-01

    The Experimental Breeder Reactor 2 (EBR-2) reactivity-to-power frequency-response function was measured with pseudo-random, discrete-level, periodic signals. The reactor power deviation was small with insignificant perturbation of normal operation and in-place irradiation experiments. Comparison of results with measured rod oscillator data and with theoretical predictions show good agreement. Moreover, measures of input signal quality (autocorrelation function and energy spectra) confirm the ability to enable this type of frequency response determination at EBR-2. Measurements were made with the pseudo-random binary sequence, quadratic residue binary sequence, pseudo-random ternary sequence, and the multifrequency binary sequence. 10 refs., 7 figs., 3 tabs

  12. The central responsiveness of the acute cerveau isolé rat.

    Science.gov (United States)

    User, P; Gottesmann, C

    1982-01-01

    The electrophysiological patterns of the frontal cortex and dorsal hippocampus were studied in the acute cerveau isolé rat. Central and peripheral stimulations were performed in order to modulate these patterns. The results showed that the permanent alternation of high amplitude spindle bursts and low voltage activity in the anterior neocortex of the acute cerveau isolé was influenced neither by olfactory nor by posterior hypothalamic stimulation. In contrast, these two kinds of stimulation easily modulated the continuous low frequency theta rhythm, recorded in the dorsal hippocampus, in terms of amplitude and in overall frequency. This modulation of the theta rhythm in the acute cerveau isolé rat mimics the changes observed when the normal rat comes from the intermediate stage of sleep (as characterized in the the acute intercollicular transected rat by high amplitude spindle bursts at frontal cortex level and low frequency theta activity in the dorsal hippocampus) to rapid sleep. These results further suggest that, during the intermediate stage (as in the cerveau isolé preparation), the hippocampus montonous theta activity appears through a brainstem disinhibitory process releasing the forebrain limbic pacemaker(s). During the following rapid sleep phase, the theta rhythm would be modulated by pontine activity influences acting on the theta generators.

  13. Broadband frequency and angular response of a sinusoidal bull’s eye antenna

    International Nuclear Information System (INIS)

    Beaskoetxea, U; Beruete, M; Navarro-Cía, M

    2016-01-01

    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n   =  −1 and n   =  −2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation. (paper)

  14. Time-frequency analysis of railway bridge response in forced vibration

    Science.gov (United States)

    Cantero, Daniel; Ülker-Kaustell, Mahir; Karoumi, Raid

    2016-08-01

    This paper suggests the use of the Continuous Wavelet Transform in combination with the Modified Littlewood-Paley basis to analyse bridge responses exited by traversing trains. The analysis provides an energy distribution map in the time-frequency domain that offers a better resolution compared to previous published studies. This is demonstrated with recorded responses of the Skidträsk Bridge, a 36 m long composite bridge located in Sweden. It is shown to be particularly useful to understand the evolution of the energy content during a vehicle crossing event. With this information it is possible to distinguish the effect of several of the governing factors involved in the dynamic response including vehicle's speed and axle configuration as well as non-linear behaviour of the structure.

  15. Filter frequency response of time dependent signal using Laplace transform

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, Aleksei I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-16

    We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/tc)2 e-t/t$_c$, where tc = const. We consider lowpass, highpass and bandpass filters.

  16. Effect of the Detector Width and Gas Pressure on the Frequency Response of a Micromachined Thermal Accelerometer

    Directory of Open Access Journals (Sweden)

    Johann Courteaud

    2011-05-01

    Full Text Available In the present work, the design and the environmental conditions of a micromachined thermal accelerometer, based on convection effect, are discussed and studied in order to understand the behavior of the frequency response evolution of the sensor. It has been theoretically and experimentally studied with different detector widths, pressure and gas nature. Although this type of sensor has already been intensively examined, little information concerning the frequency response modeling is currently available and very few experimental results about the frequency response are reported in the literature. In some particular conditions, our measurements show a cut-off frequency at −3 dB greater than 200 Hz. By using simple cylindrical and planar models of the thermal accelerometer and an equivalent electrical circuit, a good agreement with the experimental results has been demonstrated.

  17. A theoretical response of the electrostatic parallel plate to constant and low-frequency accelerations

    International Nuclear Information System (INIS)

    Lee, Ki Bang

    2009-01-01

    A theoretical response of an electrostatic gap-closing actuator based on parallel plates to constant and low-frequency accelerations has been derived as a function of the applied acceleration and voltage. The nonlinear equation of motion is obtained in a dimensionless form from the fact that the inertial and damping forces are neglected at a frequency much less than the resonant frequency of the parallel plate, and thereafter the nonlinear equation is solved for the stable inter-plate gap at the acceleration and voltage. From the derived solution, the pull-in acceleration is obtained as a function of the applied voltage, and the pull-in voltage is also expressed as a function of the acceleration. The closed-form solution is validated by comparison with a numerical solution. The theoretical solution is in excellent agreement with the numerical results when the actuator is exposed to a constant acceleration as well as a low-frequency acceleration. The theoretical solution and pull-in acceleration and voltage thus provide guidance to prescribe operational constraints for devices that use the parallel plate actuator and to predict the response of the electrostatic gap-closing parallel plates to constant and low-frequency acceleration

  18. Neck Vibration Proprioceptive Postural Response Intact in Progressive Supranuclear Palsy unlike Idiopathic Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-12-01

    Full Text Available Progressive supranuclear palsy (PSP and late-stage idiopathic Parkinson’s disease (IPD are neurodegenerative movement disorders resulting in different postural instability and falling symptoms. IPD falls occur usually forward in late stage, whereas PSP falls happen in early stages, mostly backward, unprovoked, and with high morbidity. Postural responses to sensory anteroposterior tilt illusion by bilateral dorsal neck vibration were probed in both groups versus healthy controls on a static recording posture platform. Three distinct anteroposterior body mass excursion peaks (P1–P3 were observed. 18 IPD subjects exhibited well-known excessive response amplitudes, whereas 21 PSP subjects’ responses remained unaltered to 22 control subjects. Neither IPD nor PSP showed response latency deficits, despite brainstem degeneration especially in PSP. The observed response patterns suggest that PSP brainstem pathology might spare the involved proprioceptive pathways and implies viability of neck vibration for possible biofeedback and augmentation therapy in PSP postural instability.

  19. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    Science.gov (United States)

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem

  20. Incorporating vehicle mix in stimulus-response car-following models

    Directory of Open Access Journals (Sweden)

    Saidi Siuhi

    2016-06-01

    Full Text Available The objective of this paper is to incorporate vehicle mix in stimulus-response car-following models. Separate models were estimated for acceleration and deceleration responses to account for vehicle mix via both movement state and vehicle type. For each model, three sub-models were developed for different pairs of following vehicles including “automobile following automobile,” “automobile following truck,” and “truck following automobile.” The estimated model parameters were then validated against other data from a similar region and roadway. The results indicated that drivers' behaviors were significantly different among the different pairs of following vehicles. Also the magnitude of the estimated parameters depends on the type of vehicle being driven and/or followed. These results demonstrated the need to use separate models depending on movement state and vehicle type. The differences in parameter estimates confirmed in this paper highlight traffic safety and operational issues of mixed traffic operation on a single lane. The findings of this paper can assist transportation professionals to improve traffic simulation models used to evaluate the impact of different strategies on ameliorate safety and performance of highways. In addition, driver response time lag estimates can be used in roadway design to calculate important design parameters such as stopping sight distance on horizontal and vertical curves for both automobiles and trucks.