WorldWideScience

Sample records for brainstem afferent cell

  1. Organization of diencephalic and brainstem afferent projections to the lateral septum in the rat

    NARCIS (Netherlands)

    Luiten, Paul G.M.; Kuipers, Folkert; Schuitmaker, Hans

    1982-01-01

    Ascending diencephalic and brainstem afferents to the lateral septal column were studied by retrograde transport of horseradish peroxidase following microiontophoretic injections in the various subdivisions of the lateral septal area. Predominantly ispilateral cells, of which several coincide with

  2. Delayed neuronal cell death in brainstem after transient brainstem ischemia in gerbils

    Directory of Open Access Journals (Sweden)

    Hakuba Nobuhiro

    2010-09-01

    Full Text Available Abstract Background Because of the lack of reproducible brainstem ischemia models in rodents, the temporal profile of ischemic lesions in the brainstem after transient brainstem ischemia has not been evaluated intensively. Previously, we produced a reproducible brainstem ischemia model of Mongolian gerbils. Here, we showed the temporal profile of ischemic lesions after transient brainstem ischemia. Results Brainstem ischemia was produced by occlusion of the bilateral vertebral arteries just before their entry into the transverse foramina of the cervical vertebrae of Mongolian gerbils. Animals were subjected to brainstem ischemia for 15 min, and then reperfused for 0 d (just after ischemia, 1 d, 3 d and 7 d (n = 4 in each group. Sham-operated animals (n = 4 were used as control. After deep anesthesia, the gerbils were perfused with fixative for immunohistochemical investigation. Ischemic lesions were detected by immunostaining for microtubule-associated protein 2 (MAP2. Just after 15-min brainstem ischemia, ischemic lesions were detected in the lateral vestibular nucleus and the ventral part of the spinal trigeminal nucleus, and these ischemic lesions disappeared one day after reperfusion in all animals examined. However, 3 days and 7 days after reperfusion, ischemic lesions appeared again and clusters of ionized calcium-binding adapter molecule-1(IBA-1-positive cells were detected in the same areas in all animals. Conclusion These results suggest that delayed neuronal cell death took place in the brainstem after transient brainstem ischemia in gerbils.

  3. Heat pulse excitability of vestibular hair cells and afferent neurons

    Science.gov (United States)

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  4. Heat pulse excitability of vestibular hair cells and afferent neurons.

    Science.gov (United States)

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in protein biophysics and manipulate cellular excitability. Copyright © 2016 the American Physiological Society.

  5. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    Science.gov (United States)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  6. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    Science.gov (United States)

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  7. Neuronal thresholds and choice-related activity of otolith afferent fibers during heading perception.

    Science.gov (United States)

    Yu, Xiong-jie; Dickman, J David; DeAngelis, Gregory C; Angelaki, Dora E

    2015-05-19

    How activity of sensory neurons leads to perceptual decisions remains a challenge to understand. Correlations between choices and single neuron firing rates have been found early in vestibular processing, in the brainstem and cerebellum. To investigate the origins of choice-related activity, we have recorded from otolith afferent fibers while animals performed a fine heading discrimination task. We find that afferent fibers have similar discrimination thresholds as central cells, and the most sensitive fibers have thresholds that are only twofold or threefold greater than perceptual thresholds. Unlike brainstem and cerebellar nuclei neurons, spike counts from afferent fibers do not exhibit trial-by-trial correlations with perceptual decisions. This finding may reflect the fact that otolith afferent responses are poorly suited for driving heading perception because they fail to discriminate self-motion from changes in orientation relative to gravity. Alternatively, if choice probabilities reflect top-down inference signals, they are not relayed to the vestibular periphery.

  8. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials.

    Science.gov (United States)

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-06-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion-midline nuchal ridge, left-right mastoids, vertex-midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re, human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (SOC), or myelin lesions localized to the fibers of the trapezoid body connecting these two structures. Neuronal lesions were induced by injection of kainic acid (KA), while myelin lesions were induced by injection of L-alpha-lysophosphatidylcholine (LPC). With CN neuronal lesions the major changes in 3CLT were in the time domain of 'b', 'c' and 'd' (components P2, P3 and P4 of single-channel ABEP). With SOC neuronal lesions the major changes were in 'c' and 'd' of 3CLT (P3 and P4 of ABEP). With trapezoid body lesions the major change was in 'c' (P3 of ABEP). The results are compatible with the peripheral generation of the first ABEP components (P1a and P1b). The second component (P2) is generated by ipsilateral CN neurones and their outputs. The third component (P3) is generated primarily by ipsilateral SOC neurones and their outputs, with the ipsilateral CN providing input. The The fourth component (P4) is generated bilaterally by the SOC neurones and their outputs, receiving their inputs from ipsilateral CN. The fifth ABEP component (P5) is generated by structures central to the SOCs and their immediate outputs. Neither focal neuronal nor myelin lesions were sufficient to produce obliteration of any component, consistent with a set of generators for each of the ABEP components, consisting of both cell bodies and their output fibers, that is distributed spatially in the brainstem.

  9. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    Science.gov (United States)

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  10. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C; De Palma, F; De Vito, L; Stefanelli, A [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell` Uomo

    1998-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  11. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C.; De Palma, F.; De Vito, L.; Stefanelli, A. [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell`Uomo

    1997-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  12. Convergence of cranial visceral afferents within the solitary tract nucleus.

    Science.gov (United States)

    McDougall, Stuart J; Peters, James H; Andresen, Michael C

    2009-10-14

    Primary afferent axons within the solitary tract (ST) relay homeostatic information via glutamatergic synapses directly to second-order neurons within the nucleus of the solitary tract (NTS). These primary afferents arise from multiple organ systems and relay multiple sensory modalities. How this compact network organizes the flow of primary afferent information will shape central homeostatic control. To assess afferent convergence and divergence, we recorded ST-evoked synaptic responses in pairs of medial NTS neurons in horizontal brainstem slices. ST shocks activated EPSCs along monosynaptic or polysynaptic pathways. Gradations in shock intensity discriminated multiple inputs and stimulus recruitment profiles indicated that each EPSC was unitary. In 24 pairs, 75% were second-order neurons with 64% receiving one direct ST input with the remainder receiving additional convergent ST afferent inputs (22% two; 14% three monosynaptic ST-EPSCs). Some (34%) second-order neurons received polysynaptic EPSCs. Neurons receiving only higher-order inputs were uncommon (13%). Most ST-EPSCs were completely independent, but 4 EPSCs of a total of 81 had equal thresholds, highly correlated latencies, and synchronized synaptic failures consistent with divergence from a single source ST axon or from a common interneuron producing a pair of polysynaptic EPSCs. We conclude that ST afferent inputs are remarkably independent with little evidence of substantial shared information. Individual cells receive highly focused information from the viscera. Thus, afferent excitation of second-order NTS neurons is generally dominated by single visceral afferents and therefore focused on a single afferent modality and/or organ region.

  13. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.

    Directory of Open Access Journals (Sweden)

    James H Peters

    Full Text Available TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS. TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 µs that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5 direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.

  14. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials

    OpenAIRE

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-01-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion - midline nuchal ridge, left - right mastoids, vertex - midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re. human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (S...

  15. Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells.

    Science.gov (United States)

    Lecca, Salvatore; Melis, Miriam; Luchicchi, Antonio; Ennas, Maria Grazia; Castelli, Maria Paola; Muntoni, Anna Lisa; Pistis, Marco

    2011-02-01

    Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.

  16. Craniofacial Pain: Brainstem Mechanisms

    Directory of Open Access Journals (Sweden)

    Barry J Sessle

    1996-01-01

    Full Text Available This article reviews recent research advances in animals that have identified critical neural elements in the brainstem receiving and transmitting craniofacial nociceptive inputs, as well as some of the mechanisms involved in the modulation and plasticity of nociceptive transmission. Nociceptive neurones in the trigeminal (V brainstem sensory nuclear complex can be classified as nociceptive-specific (NS or wide dynamic range (WDR. Some of these neurones respond exclusively to sensory inputs evoked by stimulation of facial skin or oral mucosa and have features suggesting that they are critical neural elements involved in the ability to localize an acute superficial pain and sense its intensity and duration. Many of the V brainstem nociceptive neurones, however, receive convergent inputs from afferents supplying deep craniofacial tissues (eg, dural vessel, muscle and skin or mucosa. These neurones are likely involved in deep pain, including headache, because few nociceptive neurones receive inputs exclusively from afferents supplying these tissues. These extensive convergent input patterns also appear to be important factors in pain spread and referral, and in central mechanisms underlying neuroplastic changes in V neuronal properties that may occur with injury and inflammation. For example, application of the small fibre excitant and inflammatory irritant mustard oil into the temporomandibular joint, masseter or tongue musculature induces a prolonged but reversible enhancement of responses to cutaneous and deep afferent inputs of most WDR and NS neurones. These effects may be accompanied by increased electromyographic activity reflexly induced in the masticatory muscles by mustard oil, and involve endogenous N-methyl-D-aspartate and opioid neurochemical mechanisms. Such peripherally induced modulation of brainstem nociceptive neuronal properties reflects the functional plasticity of the central V system, and may be involved in the development of

  17. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses.

    Science.gov (United States)

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T; Wangsawihardja, Felix; Ricci, Anthony J; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction.

    Science.gov (United States)

    Sultemeier, David R; Hoffman, Larry F

    2017-01-01

    Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin's potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla's crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had retracted

  19. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.

    Science.gov (United States)

    Contini, D; Zampini, V; Tavazzani, E; Magistretti, J; Russo, G; Prigioni, I; Masetto, S

    2012-12-27

    Mammalian vestibular organs contain two types of sensory receptors, named Type I and Type II hair cells. While Type II hair cells are contacted by several small afferent nerve terminals, the basolateral surface of Type I hair cells is almost entirely enveloped by a single large afferent nerve terminal, called calyx. Moreover Type I, but not Type II hair cells, express a low-voltage-activated outward K(+) current, I(K,L), which is responsible for their much lower input resistance (Rm) at rest as compared to Type II hair cells. The functional meaning of I(K,L) and associated calyx is still enigmatic. By combining the patch-clamp whole-cell technique with the mouse whole crista preparation, we have recorded the current- and voltage responses of in situ hair cells. Outward K(+) current activation resulted in K(+) accumulation around Type I hair cells, since it induced a rightward shift of the K(+) reversal potential the magnitude of which depended on the amplitude and duration of K(+) current flow. Since this phenomenon was never observed for Type II hair cells, we ascribed it to the presence of a residual calyx limiting K(+) efflux from the synaptic cleft. Intercellular K(+) accumulation added a slow (τ>100ms) depolarizing component to the cell voltage response. In a few cases we were able to record from the calyx and found evidence for intercellular K(+) accumulation as well. The resulting depolarization could trigger a discharge of action potentials in the afferent nerve fiber. Present results support a model where pre- and postsynaptic depolarization produced by intercellular K(+) accumulation cooperates with neurotransmitter exocytosis in sustaining afferent transmission arising from Type I hair cells. While vesicular transmission together with the low Rm of Type I hair cells appears best suited for signaling fast head movements, depolarization produced by intercellular K(+) accumulation could enhance signal transmission during slow head movements. Copyright

  20. Characterization of dendritic cells subpopulations in skin and afferent lymph in the swine model.

    Directory of Open Access Journals (Sweden)

    Florian Marquet

    Full Text Available Transcutaneous delivery of vaccines to specific skin dendritic cells (DC subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine field. In this study, we showed that pig skin DC comprise the classical epidermal langerhans cells (LC and dermal DC (DDC that could be divided in 3 subsets according to their phenotypes: (1 the CD163(neg/CD172a(neg, (2 the CD163(highCD172a(pos and (3 the CD163(lowCD172a(pos DDC. These subtypes have the capacity to migrate from skin to lymph node since we detected them in pseudo-afferent lymph. Extensive phenotyping with a set of markers suggested that the CD163(high DDC resemble the antibody response-inducing human skin DC/macrophages whereas the CD163(negCD172(low DDC share properties with the CD8(+ T cell response-inducing murine skin CD103(pos DC. This work, by showing similarities between human, mouse and swine skin DC, establishes pig as a model of choice for the development of transcutaneous immunisation strategies targeting DC.

  1. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells.

    Science.gov (United States)

    Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine

    2018-07-01

    The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Novel Anterior Brainstem Magnetic Resonance Imaging Findings in Non-Small Cell Lung Cancer with Leptomeningeal Carcinomatosis

    Directory of Open Access Journals (Sweden)

    Chun-Yu Cheng

    2017-10-01

    Full Text Available Leptomeningeal carcinomatosis (LC is found in around 4% of patients with non-small cell lung cancer (NSCLC. The most common radiological finding of LC is diffuse leptomeningeal enhancement on contrast-enhanced brain magnetic resonance imaging (MRI. Herein, we report a novel brain MRI finding—non-enhanced, band-like, symmetric restricted diffusion along the anterior surface of the brainstem—of LC in four patients with NSCLC. We also identified three additional cases with similar MRI findings in a literature review. We hypothesized that the restricted diffusion along the anterior brainstem was caused by malignant cells concentrating in the cistern around the brainstem and infiltrating into the circumferential perforating arteries along the anterior brainstem surface, which then resulted in microinfarctions.

  3. More sensitive correlation of afferent pupillary defect with ganglion cell complex

    Directory of Open Access Journals (Sweden)

    Eulogio Besada

    2018-04-01

    Full Text Available Purpose: This study investigated the correlation between the relative afferent pupillary defect (RAPD and retinal nerve fiber layer thickness (RNFLT in optic neuropathy. Methods: RAPD assessment was performed using a log unit neutral density filter bar. Spectral domain optical coherence tomography RTVue-100 (Optovue was used to examine the subjects. The optic nerve head pattern (ONH was subdivided and identified for the purpose of the study into circumpapillary RNFLT (cpRNFLT and peripheral circumpapillary RNFLT (pcpRNFLT. The cpRNFLT, pcpRNFLT and ganglion cell complex (GCC parameters were analyzed. Results: Eighteen females and twenty three males with asymmetric optic neuropathy and a RAPD participated. Thirty-three subjects had glaucoma and eight had optic neuropathy other than glaucoma. Significant correlations (p < 0.02 were obtained for the RAPD and the percentage difference loss of the GCC and RNFLT parameters. The grouped mean percentage difference loss for RNFLT was significantly different from that of the GCC (p < 0.001. At a 0.6 log unit RAPD, the average mean percentage difference loss was 23% for the CRNFLT, 15% for the GCC, 12% for the global loss volume percentage and 6% for the focal loss volume percentage (FLV%. Conclusions: Significant correlations between RNFLT loss for cpRNFLT, pcpRNFLT and GCC parameters with RAPD were observed. Approximately a 35% higher sensitivity was obtained using GCC compared to CRNFL parameters. The expected change in GCC average for every 0.3 log unit increment was approximately 8.49 μm. The FLV% corresponded more sensitively to a RAPD but appeared to be influenced by disease severity. Resumen: Objetivo: Este estudio investigó la correlación entre el defecto pupilar aferente relativo (DPAR y el grosor de la capa de fibras nerviosas de la retina (RNFLT en la neuropatía óptica. Métodos: La valoración del DPAR se realizó utilizando una barra de filtro de densidad neutra de unidades logar

  4. Transmission between type II hair cells and bouton afferents in the turtle posterior crista.

    Science.gov (United States)

    Holt, Joseph C; Xue, Jin-Tang; Brichta, Alan M; Goldberg, Jay M

    2006-01-01

    Synaptic activity was recorded with sharp microelectrodes during rest and during 0.3-Hz sinusoidal stimulation from bouton afferents identified by their efferent-mediated inhibitory responses. A glutamate antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased quantal size (qsize) while lowering external Ca(2+) decreased quantal rate (qrate). Miniature excitatory postsynaptic potentials (mEPSPs) had effective durations (qdur) of 3.5-5 ms. Their timing was consistent with Poisson statistics. Mean qsizes ranged in different units from 0.25 to 0.73 mV and mean qrates from 200 to 1,500/s; there was an inverse relation across the afferent population between qrate and qsize. qsize distributions were consistent with the independent release of variable-sized quanta. Channel noise, measured during AMPA-induced depolarizations, was small compared with quantal noise. Excitatory responses were larger than inhibitory responses. Peak qrates, which could approach 3,000/s, led peak excitatory mechanical stimulation by 40 degrees . Quantal parameters varied with stimulation phase with qdur and qsize being maximal during inhibitory stimulation. Voltage modulation (vmod) was in phase with qrate and had a peak depolarization of 1.5-3 mV. On average, 80% of vmod was accounted for by quantal activity; the remaining 20% was a nonquantal component that persisted in the absence of quantal activity. The extracellular accumulation of glutamate and K(+) are potential sources of nonquantal transmission and may provide a basis for the inverse relation between qrate and qsize. Comparison of the phases of synaptic and spike activity suggests that both presynaptic and postsynaptic mechanisms contribute to variations across afferents in the timing of spikes during sinusoidal stimulation.

  5. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  6. Brainstem disconnection

    International Nuclear Information System (INIS)

    Duffield, Curtis; Wootton-Gorges, Sandra L.; Jocson, Jennifer

    2009-01-01

    Brainstem disconnection is a very rare neonatal abnormality, with only seven cases reported. We report a unique case of a neonate who presented at delivery with hypertonia, dysmorphic facial features, and respiratory distress, as well as numerous musculoskeletal and genitourinary abnormalities. MRI of the brain showed disconnection between the pons and medulla with cerebellar hypoplasia and absent cerebellar peduncles. It aided in the description of the neurological and vascular anomalies associated with this diagnosis. (orig.)

  7. Brainstem disconnection

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, Curtis; Wootton-Gorges, Sandra L. [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Radiology, Sacramento, CA (United States); Jocson, Jennifer [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Pediatrics, Sacramento, CA (United States)

    2009-12-15

    Brainstem disconnection is a very rare neonatal abnormality, with only seven cases reported. We report a unique case of a neonate who presented at delivery with hypertonia, dysmorphic facial features, and respiratory distress, as well as numerous musculoskeletal and genitourinary abnormalities. MRI of the brain showed disconnection between the pons and medulla with cerebellar hypoplasia and absent cerebellar peduncles. It aided in the description of the neurological and vascular anomalies associated with this diagnosis. (orig.)

  8. Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea.

    Science.gov (United States)

    Thiers, Fabio A; Nadol, Joseph B; Liberman, M Charles

    2008-12-01

    Cochlear outer hair cells (OHCs) serve both as sensory receptors and biological motors. Their sensory function is poorly understood because their afferent innervation, the type-II spiral ganglion cell, has small unmyelinated axons and constitutes only 5% of the cochlear nerve. Reciprocal synapses between OHCs and their type-II terminals, consisting of paired afferent and efferent specialization, have been described in the primate cochlea. Here, we use serial and semi-serial-section transmission electron microscopy to quantify the nature and number of synaptic interactions in the OHC area of adult cats. Reciprocal synapses were found in all OHC rows and all cochlear frequency regions. They were more common among third-row OHCs and in the apical half of the cochlea, where 86% of synapses were reciprocal. The relative frequency of reciprocal synapses was unchanged following surgical transection of the olivocochlear bundle in one cat, confirming that reciprocal synapses were not formed by efferent fibers. In the normal ear, axo-dendritic synapses between olivocochlear terminals and type-II terminals and/or dendrites were as common as synapses between olivocochlear terminals and OHCs, especially in the first row, where, on average, almost 30 such synapses were seen in the region under a single OHC. The results suggest that a complex local neuronal circuitry in the OHC area, formed by the dendrites of type-II neurons and modulated by the olivocochlear system, may be a fundamental property of the mammalian cochlea, rather than a curiosity of the primate ear. This network may mediate local feedback control of, and bidirectional communication among, OHCs throughout the cochlear spiral.

  9. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature.

    Directory of Open Access Journals (Sweden)

    Phillip A Swanson

    2016-12-01

    Full Text Available Cerebral malaria (CM is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM, we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs, where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4 therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen

  10. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    Directory of Open Access Journals (Sweden)

    Hao Ren

    Full Text Available Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons. The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  11. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    Science.gov (United States)

    Ren, Hao; Liu, Ning-Yu; Andreasen, Arne; Thomsen, Jesper S; Cao, Liu; Christensen, Erik I; Zhai, Xiao-Yue

    2013-01-01

    Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons). The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  12. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  13. Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury.

    Science.gov (United States)

    Shimizu, Nobutaka; Doyal, Mark F; Goins, William F; Kadekawa, Katsumi; Wada, Naoki; Kanai, Anthony J; de Groat, William C; Hirayama, Akihide; Uemura, Hirotsugu; Glorioso, Joseph C; Yoshimura, Naoki

    2017-11-19

    Functional and morphological changes in C-fiber bladder afferent pathways are reportedly involved in neurogenic detrusor overactivity (NDO) after spinal cord injury (SCI). This study examined the morphological changes in different populations of bladder afferent neurons after SCI using replication-defective herpes simplex virus (HSV) vectors encoding the mCherry reporter driven by neuronal cell-type-specific promoters. Spinal intact (SI) and SCI mice were injected into the bladder wall with HSV mCherry vectors driven by the cytomegalovirus (CMV) promoter, CGRP promoter, TRPV1 promoter or neurofilament 200 (NF200) promoter. Two weeks after vector inoculation into the bladder wall, L1 and L6 dorsal root ganglia (DRG) were removed bilaterally for immunofluorescent staining using anti-mCherry antibody. The number of CMV promoter vector-labeled neurons was not altered after SCI. The number of CGRP and TRPV1 promoter vector-labeled neurons was significantly increased whereas the number of NF200 vector-labeled neurons was decreased in L6 DRG after SCI. The median size of CGRP promoter-labeled C-fiber neurons was increased from 247.0 in SI mice to 271.3μm 2 in SCI mice whereas the median cell size of TRPV1 promoter vector-labeled neurons was decreased from 245.2 in SI mice to 216.5μm 2 in SCI mice. CGRP and TRPV1 mRNA levels of laser-captured bladder afferent neurons labeled with Fast Blue were significantly increased in SCI mice compared to SI mice. Thus, using a novel HSV vector-mediated neuronal labeling technique, we found that SCI induces expansion of the CGRP- and TRPV1-expressing C-fiber cell population, which could contribute to C-fiber afferent hyperexcitability and NDO after SCI. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. A new model of strabismic amblyopia: Loss of spatial acuity due to increased temporal dispersion of geniculate X-cell afferents on to cortical neurons.

    Science.gov (United States)

    Crewther, D P; Crewther, S G

    2015-09-01

    Although the neural locus of strabismic amblyopia has been shown to lie at the first site of binocular integration, first in cat and then in primate, an adequate mechanism is still lacking. Here we hypothesise that increased temporal dispersion of LGN X-cell afferents driven by the deviating eye onto single cortical neurons may provide a neural mechanism for strabismic amblyopia. This idea was investigated via single cell extracellular recordings of 93 X and 50 Y type LGN neurons from strabismic and normal cats. Both X and Y neurons driven by the non-deviating eye showed shorter latencies than those driven by either the strabismic or normal eyes. Also the mean latency difference between X and Y neurons was much greater for the strabismic cells compared with the other two groups. The incidence of lagged X-cells driven by the deviating eye of the strabismic cats was higher than that of LGN X-cells from normal animals. Remarkably, none of the cells recorded from the laminae driven by the non-deviating eye were of the lagged class. A simple computational model was constructed in which a mixture of lagged and non-lagged afferents converge on to single cortical neurons. Model cut-off spatial frequencies to a moving grating stimulus were sensitive to the temporal dispersion of the geniculate afferents. Thus strabismic amblyopia could be viewed as a lack of developmental tuning of geniculate lags for neurons driven by the amblyopic eye. Monocular control of fixation by the non-deviating eye is associated with reduced incidence of lagged neurons, suggesting that in normal vision, lagged neurons might play a role in maintaining binocular connections for cortical neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Collateralization of descending spinal pathways from red nucleus and other brainstem cell groups in rat, cat and monkey

    NARCIS (Netherlands)

    A.M. Huisman (Margriet)

    1983-01-01

    textabstractThe somatotopically organized rubrospinal pathway is the major component of the laterally descending brainstem pathways, and is especially involved in steering of fractionated movements of the distal parts of the limbs. Electrophysiological studies in cat showed that this fiber

  17. Afferent fibers and sensory ganglion cells within the oculomotor nerve in some mammals and man. II. Electrophysiological investigations.

    Science.gov (United States)

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E

    1978-01-01

    The main aim of the present study was to localize with electrophysiological techniques the central projections and terminations of the aberrant trigeminal fibres contained in the oculomotor nerve of the lamb. After severing a trigeminal root, single-shock electrical stimulation of the trigeminal axons present in the central stump of the ipsilateral oculomotor nerve evoked field potentials in the area of, i) the subnucleus gelatinosus of the nucleus caudalis trigemini at the level of C1-C2; ii) the main sensory trigeminal nucleus; iii) the descending trigeminal nucleus and tract; iv) the adjacent reticular formation. Units whose discharge rate was influenced by such a stimulation were also found in the same territories. These regions actually exhibited degenerations after cutting an oculomotor nerve. We conclude, therefore, that the trigeminal fibres which leave the Vth nerve at the level of the cavernous sinus and enter the brain stem through the IIIrd nerve, end in the same structures which receive the terminations of the afferent fibres entering the brain stem through the sensory trigeminal root.

  18. Two oculomotor-related areas of the brainstem project to the dorsolateral periaqueductal gray.

    NARCIS (Netherlands)

    Klop, E.M.; Mouton, Leonora J.; Holstege, Gert

    2005-01-01

    The dorsolateral column of the periaqueductal gray (PAGdl) is usually associated with defensive behavior, but how this is brought about is not yet fully understood. In order to elucidate the function of PAGdl, its afferents from the brainstem were investigated in cats. Retrograde tracing results

  19. Activity-dependent long-term plasticity of afferent synapses on grafted stem/progenitor cell-derived neurons

    DEFF Research Database (Denmark)

    Sørensen, Andreas Toft; Rogelius, Nina; Lundberg, Cecilia

    2011-01-01

    Stem cell-based cell replacement therapies aiming at restoring injured or diseased brain function ultimately rely on the capability of transplanted cells to promote functional recovery. The mechanisms by which stem cell-based therapies for neurological conditions can lead to functional recovery...

  20. Histological identification of phrenic afferent projections to the spinal cord.

    Science.gov (United States)

    Nair, Jayakrishnan; Bezdudnaya, Tatiana; Zholudeva, Lyandysha V; Detloff, Megan R; Reier, Paul J; Lane, Michael A; Fuller, David D

    2017-02-01

    Limited data are available regarding the spinal projections of afferent fibers in the phrenic nerve. We describe a method that robustly labels phrenic afferent spinal projections in adult rats. The proximal end of the cut phrenic nerve was secured in a microtube filled with a transganglionic tracer (cholera toxin β-subunit, CT-β, or Cascade Blue) and tissues harvested 96-h later. Robust CT-β labeling occurred in C3-C5 dorsal root ganglia cell bodies and phrenic afferent projections were identified in the mid-cervical dorsal horn (laminae I-III), intermediate grey matter (laminae IV, VII) and near the central canal (laminae X). Afferent fiber labeling was reduced or absent when CT-β was delivered to the intrapleural space or directly to the hemidiaphragm. Soaking the phrenic nerve with Cascade Blue also produced robust labeling of mid-cervical dorsal root ganglia cells bodies, and primary afferent fibers were observed in spinal grey matter and dorsal white matter. Our results show that the 'nerve soak' method effectively labels both phrenic motoneurons and phrenic afferent projections, and show that primary afferents project throughout the ipsilateral mid-cervical gray matter. Copyright © 2016. Published by Elsevier B.V.

  1. A brainstem anosognosia of hemiparesis

    Directory of Open Access Journals (Sweden)

    Kazuo Abe

    2009-10-01

    Full Text Available A woman had anosognosia for hemiplegia as a manifestation of brainstem infarction. She had no mental or neuropsychological disturbances, and had involvement of the brainstem in the frontal/parietal-subcortical circuits to the right cerebral hemisphere. Brainstem lesions that disrupt frontal/parietal-subcortical areas may affect anosognosia for hemiplegia.

  2. Polysialylated-neural cell adhesion molecule (PSA-NCAM in the human trigeminal ganglion and brainstem at prenatal and adult ages

    Directory of Open Access Journals (Sweden)

    Melis Tiziana

    2008-11-01

    Full Text Available Abstract Background The polysialylated neuronal cell adhesion molecule (PSA-NCAM is considered a marker of developing and migrating neurons and of synaptogenesis in the immature vertebrate nervous system. However, it persists in the mature normal brain in some regions which retain a capability for morphofunctional reorganization throughout life. With the aim of providing information relevant to the potential for dynamic changes of specific neuronal populations in man, this study analyses the immunohistochemical occurrence of PSA-NCAM in the human trigeminal ganglion (TG and brainstem neuronal populations at prenatal and adult age. Results Western blot analysis in human and rat hippocampus supports the specificity of the anti-PSA-NCAM antibody and the immunodetectability of the molecule in postmortem tissue. Immunohistochemical staining for PSA-NCAM occurs in TG and several brainstem regions during prenatal life and in adulthood. As a general rule, it appears as a surface staining suggestive of membrane labelling on neuronal perikarya and proximal processes, and as filamentous and dot-like elements in the neuropil. In the TG, PSA-NCAM is localized to neuronal perikarya, nerve fibres, pericellular networks, and satellite and Schwann cells; further, cytoplasmic perikaryal staining and positive pericellular fibre networks are detectable with higher frequency in adult than in newborn tissue. In the adult tissue, positive neurons are mostly small- and medium-sized, and amount to about 6% of the total ganglionic population. In the brainstem, PSA-NCAM is mainly distributed at the level of the medulla oblongata and pons and appears scarce in the mesencephalon. Immunoreactivity also occurs in discretely localized glial structures. At all ages examined, PSA-NCAM occurs in the spinal trigeminal nucleus, solitary nuclear complex, vestibular and cochlear nuclei, reticular formation nuclei, and most of the precerebellar nuclei. In specimens of different age

  3. Pediatric brainstem oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Sandeep Mohindra

    2012-01-01

    Full Text Available The authors present the first report of pediatric brainstem oligodendroglioma, infiltrating midbrain, and medulla oblongata. The report details clinical features, radiological findings, and surgical steps. As this entity is exceedingly uncommon, the overall epidemiology, prognosis, and long-term outcome remain far from established.

  4. Afferent innervation of the utricular macula in pigeons

    Science.gov (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  5. Gamma Knife Treatment of Brainstem Metastases

    Science.gov (United States)

    Peterson, Halloran E.; Larson, Erik W.; Fairbanks, Robert K.; MacKay, Alexander R.; Lamoreaux, Wayne T.; Call, Jason A.; Carlson, Jonathan D.; Ling, Benjamin C.; Demakas, John J.; Cooke, Barton S.; Peressini, Ben; Lee, Christopher M.

    2014-01-01

    The management of brainstem metastases is challenging. Surgical treatment is usually not an option, and chemotherapy is of limited utility. Stereotactic radiosurgery has emerged as a promising palliative treatment modality in these cases. The goal of this study is to assess our single institution experience treating brainstem metastases with Gamma Knife radiosurgery (GKRS). This retrospective chart review studied 41 patients with brainstem metastases treated with GKRS. The most common primary tumors were lung, breast, renal cell carcinoma, and melanoma. Median age at initial treatment was 59 years. Nineteen (46%) of the patients received whole brain radiation therapy (WBRT) prior to or concurrent with GKRS treatment. Thirty (73%) of the patients had a single brainstem metastasis. The average GKRS dose was 17 Gy. Post-GKRS overall survival at six months was 42%, at 12 months was 22%, and at 24 months was 13%. Local tumor control was achieved in 91% of patients, and there was one patient who had a fatal brain hemorrhage after treatment. Karnofsky performance score (KPS) >80 and the absence of prior WBRT were predictors for improved survival on multivariate analysis (HR 0.60 (p = 0.02), and HR 0.28 (p = 0.02), respectively). GKRS was an effective treatment for brainstem metastases, with excellent local tumor control. PMID:24886816

  6. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    Science.gov (United States)

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats. Copyright © 2015 the American Physiological Society.

  7. Giant renin secretory granules in beige mouse renal afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Rasch, Ruth; Nyengaard, Jens Randel

    1997-01-01

    The mutant beige mouse (C57BL/6 bg) has a disease characterised by abnormally enlarged cytoplasmic granules in a variety of cells. With the purpose of establishing a suitable cellular model for studying renin secretion, the present study was undertaken to compare renin granule morphology in beige...... (average granular volume 0.681 microm3), whereas 1-2 large granules were present per cell in beige mice. The volume of afferent arteriole that contained secretory granules was lower in the beige mice. We conclude that the beige mouse synthesizes, stores and releases active renin. Renin secretory granules...... in beige mice are grossly enlarged with 1-2 granules per juxtaglomerular cell. Compared with control mice, a similar amount of total renin granule volume per afferent arteriole is contained in a smaller part of beige mouse afferent arteriole. Granular cells from beige mice could therefore be a valuable...

  8. Tractography of the brainstem in major depressive disorder using diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Yun Ju C Song

    Full Text Available BACKGROUND: The brainstem is the main region that innervates neurotransmitter release to the Hypothalamic-Pituitary Adrenal (HPA axis and fronto-limbic circuits, two key brain circuits found to be dysfunctional in Major Depressive Disorder (MDD. However, the brainstem's role in MDD has only been evaluated in limited reports. Using Diffusion Tensor Imaging (DTI, we investigated whether major brainstem white matter tracts that relate to these two circuits differ in MDD patients compared to healthy controls. METHODS: MDD patients (n = 95 and age- and gender-matched controls (n = 34 were assessed using probabilistic tractography of DTI to delineate three distinct brainstem tracts: the nigrostriatal tract (connecting brainstem to striatum, solitary tract (connecting brainstem to amygdala and corticospinal tract (connecting brainstem to precentral cortex. Fractional anisotropy (FA was used to measure the white matter integrity of these tracts, and measures were compared between MDD and control participants. RESULTS: MDD participants were characterized by a significant and specific decrease in white matter integrity of the right solitary tract (p<0.009 using independent t-test, which is a "bottom up" afferent pathway that connects the brainstem to the amygdala. This decrease was not related to symptom severity. CONCLUSIONS: The results provide new evidence to suggest that structural connectivity between the brainstem and the amygdala is altered in MDD. These results are interesting in light of predominant theories regarding amygdala-mediated emotional reactivity observed in functional imaging studies of MDD. The characterization of altered white matter integrity in the solitary tract in MDD supports the possibility of dysfunctional brainstem-amygdala connectivity impacting vulnerable circuits in MDD.

  9. Brainstem Tuberculoma in Pregnancy

    Directory of Open Access Journals (Sweden)

    Dana A. Muin

    2015-01-01

    Full Text Available We report a case of a Somali refugee who presented in the second trimester of her first pregnancy with a four-week history of gradual right-sided sensomotoric hemisyndrome including facial palsy and left-sided paresis of the oculomotorius nerve causing drooping of the left eyelid and double vision. Cranial magnetic resonance imaging revealed a solitary brainstem lesion. Upon detection of hilar lymphadenopathy on chest X-ray (CXR, the diagnosis of disseminated tuberculosis with involvement of the central nervous system was confirmed by PCR and treatment induced with rifampicin, isoniazid, pyrazinamide, and ethambutol. The patient had a steady neurological improvement and a favorable pregnancy outcome.

  10. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens.

    Science.gov (United States)

    Anderson, C W

    2001-09-01

    Using injections of small molecular weight fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101 (SR101), brainstem circuits presumed to be involved in feeding motor output were investigated. As has been shown previously in other studies, projections to the cerebellar nuclei were identified from the cerebellar cortex, the trigeminal motor nucleus, and the vestibular nuclei. Results presented here suggest an additional pathway from the hypoglossal motor nuclei to the cerebellar nucleus as well as an afferent projection from the peripheral hypoglossal nerve to the Purkinje cell layer of the cerebellar cortex. Injections in the cerebellar cortex combined with retrograde labeling of the peripheral hypoglossal nerve demonstrate anatomical convergence at the level of the medial reticular formation. This suggests a possible integrative region for afferent feedback from the hypoglossal nerve and information through the Purkinje cell layer of the cerebellar cortex. The activity-dependent uptake of SR101 additionally suggests a reciprocal, polysynaptic pathway between this same area of the medial reticular formation and the trigeminal motor nuclei. The trigeminal motor neurons innervate the m adductor mandibulae, the primary mouth-closing muscle. The SR101 uptake clearly labeled the ventrolateral hypoglossal nuclei, the medial reticular formation, and the Purkinje cell layer of the cerebellar cortex. Unlike retrograde labeling of the peripheral hypoglossal nerve, stimulating the hypoglossal nerve while SR101 was bath-applied labeled trigeminal motor neurons. This, combined with the dextran labeling, suggests a reciprocal connection between the trigeminal motor nuclei and the cerebellar nuclei, as well as the medulla. Taken together, these data are important for understanding the neurophysiological pathways used to coordinate the proper timing of an extremely rapid, goal-directed movement and may prove useful for elucidating some of the

  11. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow

    DEFF Research Database (Denmark)

    Jensen, Elisa Pouline; Poulsen, Steen Seier; Kissow, Hannelouise

    2015-01-01

    was to localize renal GLP-1 receptors and describe GLP-1 mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using 125I-GLP-1......, 125I-exendin-4 (GLP-1 analog) and 125I-exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1 mediated effects on blood pressure (BP), renal blood flow (RBF), heart rate (HR), renin secretion, urinary flow rate and Na+ and K+ excretion were...... conclude that GLP-1 receptors are located in the renal vasculature including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases renal blood flow in normotensive rats....

  12. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  13. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2000-01-01

    In the present study, we tested whether the alpha(1A) subunit, which encodes a neuronal isoform of voltage-dependent Ca(2+) channels (VDCCs) (P-/Q-type), was present and functional in vascular smooth muscle and renal resistance vessels. By reverse transcription-polymerase chain reaction...... preglomerular resistance vessels and aorta, as well as mesangial cells, and that P-type VDCCs contribute to Ca(2+) influx in aortic and renal VSMCs and are involved in depolarization-mediated contraction in renal afferent arterioles....

  14. MR findings of brainstem injury

    Energy Technology Data Exchange (ETDEWEB)

    Park, Man Soo; Hwang, Woo Cheol; Park, Choong Ki [Hallym University College of Medicine, Seoul (Korea, Republic of); Suh, Dae Chul [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang Joon [Dankook University of College of Medicine, Cheonan (Korea, Republic of)

    1995-02-15

    To analyze the characteristics of traumatic brainstem injury by CT and MR. CT and MR studies of 10 patients with traumatic brainstem lesion in MR were retrospectively reviewed, particularly attended to location, signal intensity and associated lesions. CT failed to depict 8 of 10 brainstem lesions. All lesions were detected in MR images with T2-weighted images showing higher detection rate (n = 10) (100%) than T1-weighted images (n = 3) (30%) or CT (n = 2) (20%). The brainstem lesions located in the dorsolateral aspects of the rostral brainstem (mid brain and upper pons) in 7 (70%) cases, in ventral aspects of rostral brain in 2 (20%) cases and in median portion of pons in 1 (10%) case. Corpus callosal (n = 5), lobar white matter (n = 5) diffuse axonal injury, and 2 hemorrhagic lesions in basal ganglia were the associated findings. MR imaging is more helpful than CT in the detection of brainstem injury, especially T2 weighted images. Primary brainstem lesions were typically located in the dorsolateral aspect of rostral brainstem (midbrain and upper pons). Corpus callosum and white matter lesions were frequently associated.

  15. Anatomy and physiology of phrenic afferent neurons.

    Science.gov (United States)

    Nair, Jayakrishnan; Streeter, Kristi A; Turner, Sara M F; Sunshine, Michael D; Bolser, Donald C; Fox, Emily J; Davenport, Paul W; Fuller, David D

    2017-12-01

    Large-diameter myelinated phrenic afferents discharge in phase with diaphragm contraction, and smaller diameter fibers discharge across the respiratory cycle. In this article, we review the phrenic afferent literature and highlight areas in need of further study. We conclude that 1 ) activation of both myelinated and nonmyelinated phrenic sensory afferents can influence respiratory motor output on a breath-by-breath basis; 2 ) the relative impact of phrenic afferents substantially increases with diaphragm work and fatigue; 3 ) activation of phrenic afferents has a powerful impact on sympathetic motor outflow, and 4 ) phrenic afferents contribute to diaphragm somatosensation and the conscious perception of breathing. Much remains to be learned regarding the spinal and supraspinal distribution and synaptic contacts of myelinated and nonmyelinated phrenic afferents. Similarly, very little is known regarding the potential role of phrenic afferent neurons in triggering or modulating expression of respiratory neuroplasticity. Copyright © 2017 the American Physiological Society.

  16. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

    Science.gov (United States)

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina

    2008-12-01

    Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.

  17. Long-Term Survival of a Patient with Brainstem and Recurrent Brain Metastasis from Stage IV Nonsmall Cell Lung Cancer Treated with Multiple Gamma Knife Radiosurgeries and Craniotomies: A Case Report and Review of the Literature

    Science.gov (United States)

    Lamm, Andrew F.; Elaimy, Ameer L.; Mackay, Alexander R.; Fairbanks, Robert K.; Demakas, John J.; Cooke, Barton S.; Lee, Christopher M.; Taylor, Blake S.; Lamoreaux, Wayne T.

    2012-01-01

    The prognosis of patients diagnosed with stage IV nonsmall cell lung cancer that have brain and brainstem metastasis is very poor, with less than a third surviving a year past their initial date of diagnosis. We present the rare case of a 57-year-old man who is a long-term survivor of brainstem and recurrent brain metastasis, after aggressive treatment. He is now five and a half years out from diagnosis and continues to live a highly functional life without evidence of disease. Four separate Gamma Knife stereotactic radiosurgeries in conjunction with two craniotomies were utilized since his initial diagnosis to treat recurrent brain metastasis while chemoradiation therapy and thoracic surgery were used to treat his primary disease in the right upper lung. In his situation, Gamma Knife radiosurgery proved to be a valuable, safe, and effective tool for the treatment of multiply recurrent brain metastases within critical normal structures. PMID:23056973

  18. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...

  19. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  20. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus

    Directory of Open Access Journals (Sweden)

    Michael C. Andresen

    2013-01-01

    Full Text Available The brainstem nucleus of the solitary tract (NTS holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current (EPSC often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g. hypothalamus neuron sources. Presynaptic receptors for angiotensin (AT1, vasopressin (V1a, oxytocin (OT, opioid (MOR, ghrelin (GHSR1 and cholecystokinin (CCK differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 (TRPV1 and the cannabinoid receptor (CB1 that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.

  1. A probabilistic atlas of human brainstem pathways based on connectome imaging data.

    Science.gov (United States)

    Tang, Yuchun; Sun, Wei; Toga, Arthur W; Ringman, John M; Shi, Yonggang

    2018-04-01

    The brainstem is a critical structure that regulates vital autonomic functions, houses the cranial nerves and their nuclei, relays motor and sensory information between the brain and spinal cord, and modulates cognition, mood, and emotions. As a primary relay center, the fiber pathways of the brainstem include efferent and afferent connections among the cerebral cortex, spinal cord, and cerebellum. While diffusion MRI has been successfully applied to map various brain pathways, its application for the in vivo imaging of the brainstem pathways has been limited due to inadequate resolution and large susceptibility-induced distortion artifacts. With the release of high-resolution data from the Human Connectome Project (HCP), there is increasing interest in mapping human brainstem pathways. Previous works relying on HCP data to study brainstem pathways, however, did not consider the prevalence (>80%) of large distortions in the brainstem even after the application of correction procedures from the HCP-Pipeline. They were also limited in the lack of adequate consideration of subject variability in either fiber pathways or region of interests (ROIs) used for bundle reconstruction. To overcome these limitations, we develop in this work a probabilistic atlas of 23 major brainstem bundles using high-quality HCP data passing rigorous quality control. For the large-scale data from the 500-Subject release of HCP, we conducted extensive quality controls to exclude subjects with severe distortions in the brainstem area. After that, we developed a systematic protocol to manually delineate 1300 ROIs on 20 HCP subjects (10 males; 10 females) for the reconstruction of fiber bundles using tractography techniques. Finally, we leveraged our novel connectome modeling techniques including high order fiber orientation distribution (FOD) reconstruction from multi-shell diffusion imaging and topography-preserving tract filtering algorithms to successfully reconstruct the 23 fiber bundles

  2. Afferent Endocrine Control of Eating

    DEFF Research Database (Denmark)

    Langhans, Wolfgang; Holst, Jens Juul

    2016-01-01

    The afferent endocrine factors that control eating can be separated into different categories. One obvious categorization is by the time course of their effects, with long-term factors that signal adiposity and short-term factors that operate within the time frame of single meals. The second...... obvious categorization is by the origin of the endocrine signalling molecules. The level of knowledge concerning the physiological mechanisms and relevance of the hormones that are implicated in the control of eating is clearly different. With the accumulating knowledge about the hormones' actions......, various criteria have been developed for when the effect of a hormone can be considered 'physiologic'. This chapter treats the hormones separately and categorizes them by origin. It discusses ALL hormones that are implicated in eating control such as Gastrointestinal (GI) hormone and glucagon-like peptide...

  3. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    Science.gov (United States)

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  4. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    Directory of Open Access Journals (Sweden)

    Domenico Bucci

    2017-11-01

    Full Text Available Catecholamine nuclei within the brainstem reticular formation (RF play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH immune-positive cells of the brainstem correspond to dopamine (DA-, norepinephrine (NE-, and epinephrine (E-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  5. Microbiome-Gut-Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS-A Novel Hypothesis.

    Science.gov (United States)

    Praveen, Vijayakumar; Praveen, Shama

    2016-01-01

    Sudden infant death syndrome (SIDS) continues to be a major public health issue. Following its major decline since the "Back to Sleep" campaign, the incidence of SIDS has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United States and thousands more throughout the world. The etiology of SIDS, the major cause of postneonatal mortality in the western world, is still poorly understood. Although sleeping in prone position is a major risk factor, SIDS continues to occur even in the supine sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction between a susceptible infant during a critical developmental period and stressor/s in the pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control to findings of altered neurochemistry, especially the serotonergic system that plays an important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem serotonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower in SIDS, supporting the evidence that defects in the medullary serotonergic system play a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associated with SIDS, although no direct evidence has been established. We present a new hypothesis that the infant's gut microbiome, and/or its metabolites, by its direct effects on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT levels through the microbiome-gut-brain axis, thus playing a significant role in SIDS during the critical period of gut flora development and vulnerability to SIDS. The shared similarities between various risk factors for SIDS and their relationship with the infant gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are required to test our hypothesis.

  6. [Myofibroblasts and afferent signalling in the urinary bladder. A concept].

    Science.gov (United States)

    Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U

    2008-09-01

    Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.

  7. Brainstem evoked potentials in infantile spasms

    International Nuclear Information System (INIS)

    Miyazaki, Masahito; Hashimoto, Toshiaki; Murakawa, Kazuyoshi; Tayama, Masanobu; Kuroda, Yasuhiro

    1992-01-01

    In ten patients with infantile spasms, brainstem evoked potentials and MRI examinations were performed to evaluate the brainstem involvement. The result of short latency somatosensory evoked potentials (SSEP) following the right median nerve stimulation revealed abnormal findings including the absence or low amplitudes of the waves below wave P3 and delayed central conduction time in 7 of the ten patients. The result of auditory brainstem responses (ABR) revealed abnormal findings including low amplitudes of wave V, prolonged interpeak latency of waves I-V and absence of the waves below wave IV in 5 of the ten patients. The result of the MRI examinations revealed various degrees of the brainstem atrophy in 6 of the ten patients, all of whom showed abnormal brainstem evoked potentials. The result of this study demonstrates that patients with infantile spasms are frequently associated with brainstem dysfunction and raises the possibility that brainstem atrophy might be a cause of infantile spasms. (author)

  8. Lyme disease of the brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Kalina, Peter [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Decker, Andrew [Northern Westchester Hospital Center, Department of Neurology, Mt. Kisco, NY (United States); Kornel, Ezriel [Northern Westchester Hospital Center, Division of Neurosurgery, Mt. Kisco, NY (United States); Halperin, John J. [North Shore University Hospital, Department of Neurology, Manhasset, NY (United States)

    2005-12-01

    Lyme disease is a multisystem infectious disease caused by the tick-borne spirochete, Borrelia burgdorferi. Central nervous system (CNS) involvement typically causes local inflammation, most commonly meningitis, but rarely parenchymal brain involvement. We describe a patient who presented with clinical findings suggesting a brainstem process. Magnetic resonance imaging (MRI) and positron emission tomography (PET) suggested a brainstem neoplasm. Prior to biopsy, laboratory evaluation led to the diagnosis of Lyme disease. Clinical and imaging abnormalities improved markedly following antimicrobial therapy. We describe Lyme disease involvement of the cerebellar peduncles with hypermetabolism on PET. Although MRI is the primary imaging modality for most suspected CNS pathology, the practical applications of PET continue to expand. (orig.)

  9. Lyme disease of the brainstem

    International Nuclear Information System (INIS)

    Kalina, Peter; Decker, Andrew; Kornel, Ezriel; Halperin, John J.

    2005-01-01

    Lyme disease is a multisystem infectious disease caused by the tick-borne spirochete, Borrelia burgdorferi. Central nervous system (CNS) involvement typically causes local inflammation, most commonly meningitis, but rarely parenchymal brain involvement. We describe a patient who presented with clinical findings suggesting a brainstem process. Magnetic resonance imaging (MRI) and positron emission tomography (PET) suggested a brainstem neoplasm. Prior to biopsy, laboratory evaluation led to the diagnosis of Lyme disease. Clinical and imaging abnormalities improved markedly following antimicrobial therapy. We describe Lyme disease involvement of the cerebellar peduncles with hypermetabolism on PET. Although MRI is the primary imaging modality for most suspected CNS pathology, the practical applications of PET continue to expand. (orig.)

  10. Modulation of the masseteric reflex by gastric vagal afferents.

    Science.gov (United States)

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  11. Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.

    Science.gov (United States)

    Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora

    2018-03-01

    Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2017-09-01

    The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic 'aggression area', suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli. © 2017 Wiley Periodicals, Inc.

  13. Brainstem pathology in spasmodic dysphonia

    Science.gov (United States)

    Simonyan, Kristina; Ludlow, Christy L.; Vortmeyer, Alexander O.

    2009-01-01

    Spasmodic dysphonia (SD) is a primary focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speech production. We examined two rare cases of postmortem brainstem tissue from SD patients compared to four controls. In SD patients, small clusters of inflammation were found in the reticular formation surrounding solitary tract, spinal trigeminal and ambigual nuclei, inferior olive and pyramids. Mild neuronal degeneration and depigmentation were observed in the substantia nigra and locus coeruleus. No abnormal protein accumulations and no demyelination or axonal degeneration were found. These neuropathological findings may provide insights into the pathophysiology of SD. PMID:19795469

  14. Afferent connectivity of the zebrafish habenulae

    Directory of Open Access Journals (Sweden)

    Katherine Jane Turner

    2016-04-01

    Full Text Available The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates.Here we describe the main afferents to the habenulae in larval and adult zebrafish.We observe afferents from the subpallium, nucleus rostrolateralis,posterior tuberculum, posterior hypothalamic lobe, median raphe, olfactory bulb to the right habenula and from the parapineal to the lefthabenula.In addition,we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus(vENT,confirming and extending observations of Amo et al.(2014.Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hpf.No afferents to the habenula were observed from the dorsal entopeduncular nucleus(dENT.Consequently,we confirm that the vENT(and not the dENT should be considered as the entopeduncular nucleus proper in zebrafish.Furthermore,comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus,being homologous to the entopeduncular nucleus of mammals(internal segment of the globus pallidus of primates by both embryonic origin and projections,as previously suggested by Amo et al.(2014.Key words: habenula,connections,afferents,entopeduncular nucleus,posterior tuberculum,basal ganglia,zebrafish

  15. Afferent Connectivity of the Zebrafish Habenulae

    Science.gov (United States)

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  16. Detection thresholds of macaque otolith afferents.

    Science.gov (United States)

    Yu, Xiong-Jie; Dickman, J David; Angelaki, Dora E

    2012-06-13

    The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing.

  17. Surgical management of spontaneous hypertensive brainstem hemorrhage

    Directory of Open Access Journals (Sweden)

    Bal Krishna Shrestha

    2015-09-01

    Full Text Available Spontaneous hypertensive brainstem hemorrhage is the spontaneous brainstem hemorrhage associated with long term hypertension but not having definite focal or objective lesion. It is a catastrophic event which has a poor prognosis and usually managed conservatively. It is not uncommon, especially in eastern Asian populations, accounting approximately for 10% of the intracerebral hemorrhage. Before the advent of computed tomography, the diagnosis of brainstem hemorrhage was usually based on the clinical picture or by autopsy and believed to be untreatable via surgery. The introduction of computed tomography permitted to categorize the subtypes of brainstem hemorrhage with more predicted outcome. Continuous ongoing developments in the stereotactic surgery and microsurgery have added more specific surgical management in these patients. However, whether to manage conservatively or promptly with surgical evacuation of hematoma is still a controversy. Studies have shown that an accurate prognostic assessment based on clinical and radiological features on admission is critical for establishing a reasonable therapeutic approach. Some authors have advocate conservative management, whereas others have suggested the efficacy of surgical treatment in brainstem hemorrhage. With the widening knowledge in microsurgical techniques as well as neuroimaging technology, there seems to have more optimistic hope of surgical management of spontaneous hypertensive brainstem hemorrhage for better prognosis. Here we present five cases of severe spontaneous hypertensive brainstem hemorrhage patients who had undergone surgery; and explore the possibilities of surgical management in patients with the spontaneous hypertensive brainstem hemorrhage.

  18. The Structural, Functional and Molecular Organization of the Brainstem

    Directory of Open Access Journals (Sweden)

    Rudolf eNieuwenhuys

    2011-06-01

    Full Text Available According to Wilhelm His (1891, 1893 the brainstem consists of two longitudinal zones, the dorsal alar plate (sensory in nature and the ventral basal plate (motor in nature. Johnston and Herrick indicated that both plates can be subdivided into separate somatic and visceral zones, distinguishing somatosensory and viscerosensory zones within the alar plate, and visceromotor and somatomotor zones within the basal plate. To test the validity of this ‘four-functional-zones’ concept, I developed a topological procedure, surveying the spatial relationships of the various cell masses in the brainstem in a single figure. Brainstems of 16 different anamniote species were analyzed, and revealed that the brainstems are clearly divisible into four morphological zones, which correspond largely with the functional zones of Johnston and Herrick. Exceptions include (1 the magnocellular vestibular nucleus situated in the viscerosensory zone; (2 the basal plate containing a number of evidently non-motor centres (superior and inferior olives. Nevertheless the ‘functional zonal model’ has explanatory value. Thus, it is possible to interpret certain brain specializations related to particular behavioural profiles, as ‘local hypertrophies’ of one or two functional columns. Recent developmental molecular studies on brains of birds and mammals confirmed the presence of longitudinal zones, and also showed molecularly defined transverse bands or neuromeres throughout development. The intersecting boundaries of the longitudinal zones and the transverse bands appeared to delimit radially arranged histogenetic domains. Because neuromeres have been observed in embryonic and larval stages of numerous anamniote species, it may be hypothesized that the brainstems of all vertebrates share a basic organizational plan, in which intersecting longitudinal and transverse zones form fundamental histogenetic and genoarchitectonic units.

  19. Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain.

    Science.gov (United States)

    Yamanaka, Hiroki; Obata, Koichi; Kobayashi, Kimiko; Dai, Yi; Fukuoka, Tetsuo; Noguchi, Koichi

    2007-02-01

    The cell adhesion molecule L1 (L1-CAM) plays important functional roles in the developing and adult nervous systems. Here we show that peripheral nerve injury induced dynamic post-transcriptional alteration of L1-CAM in the rat dorsal root ganglia (DRGs) and spinal cord. Sciatic nerve transection (SCNT) changed the expression of L1-CAM protein but not L1-CAM mRNA. In DRGs, SCNT induced accumulation of the L1-CAM into the surface of somata, which resulted in the formation of immunoreactive ring structures in a number of unmyelinated C-fiber neurons. These neurons with L1-CAM-immunoreactive ring structures were heavily colocalized with phosphorylated p38 MAPK. Western blot analysis revealed the increase of full-length L1-CAM and decrease of fragments of L1-CAM after SCNT in DRGs. Following SCNT, L1-CAM-immunoreactive profiles in the dorsal horn showed an increase mainly in pre-synaptic areas of laminae I-II with a delayed onset and colocalized with growth-associated protein 43. In contrast to DRGs, SCNT increased the proteolytic 80-kDa fragment of L1-CAM and decreased full-length L1-CAM in the spinal cord. The intrathecal injection of L1-CAM antibody for the extracellular domain of L1-CAM inhibited activation of p38 MAPK and emergence of ring structures of L1-CAM immunoreactivity in injured DRG neurons. Moreover, inhibition of extracellular L1-CAM binding by intrathecal administration of antibody suppressed the mechanical allodynia and thermal hyperalgesia induced by partial SCNT. Collectively, these data suggest that the modification of L1-CAM in nociceptive pathways might be an important pathomechanism of neuropathic pain.

  20. Imaging of adult brainstem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  1. Afferent loop syndrome - a case report

    International Nuclear Information System (INIS)

    Borges, Ana Karina Nascimento; Pinheiro, Marco Antonio Lopes; Galvao, Cristine Norwig

    2000-01-01

    The afferent loop syndrome occurs in patients with previous gastric surgery for tumor, when there is anastomotic edema, use of inappropriate reconstruction technique for gastro jejunostomy or recurrent gastric cancer. Complaints such jaundice, intermittent abdominal distension associated with pain, and vomiting should be investigated in order to rule out this syndrome. (author)

  2. [Distribution of human enterovirus 71 in brainstem of infants with brain stem encephalitis and infection mechanism].

    Science.gov (United States)

    Hao, Bo; Gao, Di; Tang, Da-Wei; Wang, Xiao-Guang; Liu, Shui-Ping; Kong, Xiao-Ping; Liu, Chao; Huang, Jing-Lu; Bi, Qi-Ming; Quan, Li; Luo, Bin

    2012-04-01

    To explore the mechanism that how human enterovirus 71 (EV71) invades the brainstem and how intercellular adhesion molecules-1 (ICAM-1) participates by analyzing the expression and distribution of human EV71, and ICAM-1 in brainstem of infants with brain stem encephalitis. Twenty-two brainstem of infants with brain stem encephalitis were collected as the experimental group and 10 brainstems of fatal congenital heart disease were selected as the control group. The sections with perivascular cuffings were selected to observe EV71-VP1 expression by immunohistochemistry method and ICAM-1 expression was detected for the sections with EV71-VP1 positive expression. The staining image analysis and statistics analysis were performed. The experiment and control groups were compared. (1) EV71-VP1 positive cells in the experimental group were mainly astrocytes in brainstem with nigger-brown particles, and the control group was negative. (2) ICAM-1 positive cells showed nigger-brown. The expression in inflammatory cells (around blood vessels of brain stem and in glial nodules) and gliocytes increased. The results showed statistical difference comparing with control group (P diagnose fatal EV71 infection in infants. EV71 can invade the brainstem via hematogenous route. ICAM-1 may play an important role in the pathogenic process.

  3. Herpetic brainstem encephalitis: report of a post-mortem case studied electron microscopically and immunohisiochemically

    Directory of Open Access Journals (Sweden)

    José Eymard Homem Pitella

    1987-03-01

    Full Text Available A post-mortem examined case of herpetic brainstem encephalitis is presented. Clinically, the patient had cephalea followed by ataxia, drowsiness and multiple palsies of some cranial nerves, developing into death in eight days. The pathologic examination of the brain showed necrotizing encephalitis in multiple foci limited to the brainstem, more distinctly in the pons and medula oblongata. The technique of immunoperoxidase revealed rare glial cells with intranuclear immunoreactivity for herpes antigen. Rare viral particles with the morphological characteristics of the herpesvirus were identified in the nuclei of neurons in 10% formol fixed material. This is the second reported case of herpetic brainstem encephalitis confirmed by post-mortem examination. The pathway used by the virus to reach the central nervous system and its posterior dissemination to the oral cavity, the orbitofrontal region and the temporal lobes as well as to the brainstem, after a period of latency and reactivation, are discussed.

  4. Kv1 channels and neural processing in vestibular calyx afferents

    Directory of Open Access Journals (Sweden)

    Frances L Meredith

    2015-06-01

    Full Text Available Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space.

  5. Kv1 channels and neural processing in vestibular calyx afferents.

    Science.gov (United States)

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  6. Immunomodulation of afferent neurons in guinea-pig isolated airway.

    Science.gov (United States)

    Riccio, M M; Myers, A C; Undem, B J

    1996-03-01

    1. The trachea, larynx and main bronchi with the right vagus nerve and nodose ganglion were isolated from guinea-pigs passively immunized 24 h previously with serum containing anti-ovalbumin antibody. 2. The airways were placed in one compartment of a Perspex chamber for recording of isometric tension while the nodose ganglion and attached vagus nerve were pulled into another compartment. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in the ganglion. Mechanosensitivity of the nerve endings was quantified using calibrated von Frey filaments immediately before and after exposure to antigen (10 micrograms ml-1 ovalbumin). 3. Ten endings responded to the force exerted by the lowest filament (0.078 mN) and were not further investigated. In airways from thirteen immunized guinea-pigs, the mechanical sensitivity of A delta afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) was enhanced 4.1 +/- 0.9-fold following airway exposure to antigen (P action potential generation except in one instance when the receptive field was located over the smooth muscle. This ending also responded to methacholine suggesting that spatial changes in the receptive field, induced by muscle contraction, were responsible for the activation. 5. The mediators responsible for these effects are unknown, although histamine, prostaglandins, leukotrienes and tachykinins do not appear to be essential. The increase in mechanical responsiveness was not associated with the smooth muscle contraction since leukotriene C4, histamine and tachykinins, which all caused a similar contraction to antigen, did not affect mechanical thresholds. Moreover, the antigen-induced increases in excitability persisted beyond the duration of the smooth muscle contraction. 6. These results demonstrate that antigen-antibody-mediated inflammatory processes may enhance the excitability of vagal afferent

  7. Anatomy and physiology of the afferent visual system.

    Science.gov (United States)

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Detection of brainstem involvemetn in multiple sclerosis

    International Nuclear Information System (INIS)

    Martinelli, V.; Comi, G.; Filippi, M.; Sora, M.G.N.; Magnani, G.; Locatelli, T.; Visciani, A.; Scotti, G.; Canal, N.

    1989-01-01

    The Gradient Refocusing Technique, which seppresses the influence of cerebrospinal fluis (GSF) and vascular motion artifact on MRI sensitivity, is applied combined with Brainstem Auditory Evoked Potentials (BAEPs) and median Somatosensory Evoked Potentials (SEPs) in the evaluation of the brainstem in 30 MS patients with clinical signs of involvement of this structure in order to reevaluate the sensitivity of these techniques. (Author). 2 refs.; 1 tab

  9. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear.

    Science.gov (United States)

    Mendus, Diana; Sundaresan, Srividya; Grillet, Nicolas; Wangsawihardja, Felix; Leu, Rose; Müller, Ulrich; Jones, Sherri M; Mustapha, Mirna

    2014-04-01

    Thrombospondins (TSPs) constitute a family of secreted extracellular matrix proteins that have been shown to be involved in the formation of synapses in the central nervous system. In this study, we show that TSP1 and TSP2 are expressed in the cochlea, and offer the first description of their putative roles in afferent synapse development and function in the inner ear. We examined mice with deletions of TSP1, TSP2 and both (TSP1/TSP2) for inner ear development and function. Immunostaining for synaptic markers indicated a significant decrease in the number of formed afferent synapses in the cochleae of TSP2 and TSP1/TSP2 knockout (KO) mice at postnatal day (P)29. In functional studies, TSP2 and TSP1/TSP2 KO mice showed elevated auditory brainstem response (ABR) thresholds as compared with wild-type littermates, starting at P15, with the most severe phenotype being seen for TSP1/TSP2 KO mice. TSP1/TSP2 KO mice also showed reduced wave I amplitudes of ABRs and vestibular evoked potentials, suggesting synaptic dysfunction in both the auditory and vestibular systems. Whereas ABR thresholds in TSP1 KO mice were relatively unaffected at early ages, TSP1/TSP2 KO mice showed the most severe phenotype among all of the genotypes tested, suggesting functional redundancy between the two genes. On the basis of the above results, we propose that TSPs play an important role in afferent synapse development and function of the inner ear. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley.

    Science.gov (United States)

    Turco, Claudia V; El-Sayes, Jenin; Fassett, Hunter J; Chen, Robert; Nelson, Aimee J

    2017-07-01

    Long-latency afferent inhibition (LAI) is the inhibition of the transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) by the sensory afferent volley following electrical stimulation of a peripheral nerve. It is unknown how the activation of sensory afferent fibers relates to the magnitude of LAI. This study investigated the relationship between LAI and the sensory nerve action potentials (SNAP) from the median nerve (MN) and the digital nerves (DN) of the second digit. LAI was obtained by delivering nerve stimulation 200 ms before a TMS pulse delivered over the motor cortex. Experiment 1 assessed the magnitude of LAI following stimulation of the contralateral MN or DN using nerve stimulus intensities relative to the maximum SNAP (SNAP max ) of that nerve and two TMS intensities (0.5- and 1-mV MEP). Results indicate that MN LAI is maximal at ~50% SNAP max , when presumably all sensory afferents are recruited for TMS of 0.5-mV MEP. For DN, LAI appears at ~50% SNAP max and does not increase with further recruitment of sensory afferents. Experiment 2 investigated the magnitude of LAI following ipsilateral nerve stimulation at intensities relative to SNAP max Results show minimal LAI evoked by ipsilateral MN and no LAI following ipsilateral DN stimulation. Implications for future studies investigating LAI include adjusting nerve stimulation to 50% SNAP max to obtain maximal LAI. Additionally, MN LAI can be used as a marker for neurological disease or injury by using a nerve stimulation intensity that can evoke a depth of LAI capable of increasing or decreasing. NEW & NOTEWORTHY This is the first investigation of the relationship between long-latency afferent inhibition (LAI) and the sensory afferent volley. Differences exist between median and digital nerve LAI. For the median nerve, LAI increases until all sensory fibers are presumably recruited. In contrast, digital nerve LAI does not increase with the recruitment of additional sensory fibers but

  11. Brainstem tumors: Current management and future directions

    Directory of Open Access Journals (Sweden)

    Pablo F Recinos

    2012-01-01

    Full Text Available Tumors arising in the brainstem comprise 10-20% of all pediatric central nervous system (CNS tumors and account for a small percentage in adults. The prognosis for these tumors was considered uniformly poor prior to the era of modern neuroimaging and the location was fraught with disaster being considered a ′no man′s land′ for neurosurgeons. Following the introduction of advanced imaging modalities and neurophysiological monitoring, striking progress has occurred in the management of these lesions. Brainstem tumors are presently classified based on their anatomic location, focality, and histopathology. This article reviews the current classification of brainstem tumors, current management options, and future directions in the treatment for these rare tumors.

  12. Is enhanced MRI helpful in brainstem infarction?

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. M.; Shin, G. H.; Choi, W. S. [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1994-12-15

    To determine the role of MR contrast enhancement in evaluating time course of brainstem infarction. MR imaging with IV administration of gadopentetate dimeglumine was retrospectively reviewed in 43 patients with clinically and radiologically documented brainstem infarctions. The pattern of infarction was classified into spotty and patchy. Presence of parenchymal enhancement in infarction was evaluated. By location, there were 34 pontine, 3 midbrain, 6 medullary infarctions. The age of the infarctions ranged from 1 day to 9 months, with 5 patients scanned within 3 days and 10 scanned within 2 weeks of clinical ictus. Abnormalities on T2-weighted images were encountered in every case, with spotty pattern in 14 cases and patchy pattern in 29 cases. Parenchymal contrast enhancement was seen in 9 cases(20%), primarily occurring between days 8 and 20. MR contrast enhancement in brainstem infarction was infrequent that it may not be useful in the estimation of the age of infarction.

  13. Giant tubercular brainstem abscess: A case report

    Directory of Open Access Journals (Sweden)

    Pragati Chigurupati

    2014-01-01

    Full Text Available Tubercular brain abscesses are uncommon and tubercular brainstem abscesses are rarely reported. Most of these cases occur in immunocompromised patients. We report a case of giant brainstem abscess in a 5-year-old human immunodeficiency virus-seronegative female child who presented with complaints of headache, diplopia and unsteadiness of gait since 6 months. Diagnosis was made by a magnetic resonance imaging scan of brain. The patient demonstrated a remarkable clinical recovery after microsurgery combined with a course of antituberculous therapy. Microbiological and histological findings confirmed the diagnosis of a tuberculous abscess.

  14. Bayesian segmentation of brainstem structures in MRI

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Van Leemput, Koen; Bhatt, Priyanka

    2015-01-01

    the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy...

  15. Neuromyelitis Optica Lesion Mimicking Brainstem Glioma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available A 12-year-old girl who presented with weakness of the left extremities and right sided sixth cranial nerve palsy had neuromyelitis optica (NMO mistaken for brainstem glioma on MRI, in a report from Brain Research Institute, Yonsei University College of Medicine,Seoul, Republic of KoreaNeuromyelitis Optica, Optic-Spinal Syndrome, Spectroscopy.

  16. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Light and electron microscopy of contacts between primary afferent fibres and neurones with axons ascending the dorsal columns of the feline spinal cord.

    Science.gov (United States)

    Maxwell, D J; Koerber, H R; Bannatyne, B A

    1985-10-01

    In addition to primary afferent fibres, the dorsal columns of the cat spinal cord contain ascending second-order axons which project to the dorsal column nuclei. The aim of the present study was to obtain morphological evidence that certain primary afferent axons form monosynaptic contacts with cells of origin of this postsynaptic dorsal column pathway. In ten adult cats, neurones with axons ascending the dorsal columns were retrogradely labelled with horseradish peroxidase using a pellet implantation method in the thoracic dorsal columns. In the lumbosacral regions of the same animals, primary afferent fibres were labelled intra-axonally with ionophoretic application of horseradish peroxidase. Tissue containing labelled axons was prepared for light and combined light and electron microscopy. Ultrastructural examination demonstrated that slowly adapting (Type I), hair follicle, Pacinian corpuscle and group Ia muscle spindle afferents formed monosynaptic contacts with labelled cells and light microscopical analysis suggested that they also received monosynaptic input from rapidly adapting (Krause) afferents. This evidence suggests that sensory information from large-diameter cutaneous and muscle spindle afferent fibres is conveyed disynaptically via the postsynaptic dorsal column pathway to the dorsal column nuclei. Some of the input to this pathway is probably modified in the spinal cord as the majority of primary afferent boutons forming monosynaptic contacts were postsynaptic to other axon terminals. The postsynaptic dorsal column system appears to constitute a major somatosensory pathway in the cat.

  18. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates.

    Science.gov (United States)

    Sessle, B J

    2000-01-01

    This paper reviews the recent advances in knowledge of brainstem mechanisms related to craniofacial pain. It also draws attention to their clinical implications, and concludes with a brief overview and suggestions for future research directions. It first describes the general organizational features of the trigeminal brainstem sensory nuclear complex (VBSNC), including its input and output properties and intrinsic characteristics that are commensurate with its strategic role as the major brainstem relay of many types of somatosensory information derived from the face and mouth. The VBSNC plays a crucial role in craniofacial nociceptive transmission, as evidenced by clinical, behavioral, morphological, and electrophysiological data that have been especially derived from studies of the relay of cutaneous nociceptive afferent inputs through the subnucleus caudalis of the VBSNC. The recent literature, however, indicates that some fundamental differences exist in the processing of cutaneous vs. other craniofacial nociceptive inputs to the VBSNC, and that rostral components of the VBSNC may also play important roles in some of these processes. Modulatory mechanisms are also highlighted, including the neurochemical substrate by which nociceptive transmission in the VBSNC can be modulated. In addition, the long-term consequences of peripheral injury and inflammation and, in particular, the neuroplastic changes that can be induced in the VBSNC are emphasized in view of the likely role that central sensitization, as well as peripheral sensitization, can play in acute and chronic pain. The recent findings also provide new insights into craniofacial pain behavior and are particularly relevant to many approaches currently in use for the management of pain and to the development of new diagnostic and therapeutic procedures aimed at manipulating peripheral inputs and central processes underlying nociceptive transmission and its control within the VBSNC.

  19. Chicken (Gallus domesticus) inner ear afferents

    Science.gov (United States)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  20. Lectin Ulex europaeus agglutinin I specifically labels a subset of primary afferent fibers which project selectively to the superficial dorsal horn of the spinal cord.

    Science.gov (United States)

    Mori, K

    1986-02-19

    To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.

  1. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  2. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  3. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  4. Anodal Direct Current Stimulation of the Cerebellum Reduces Cerebellar Brain Inhibition but Does Not Influence Afferent Input from the Hand or Face in Healthy Adults.

    Science.gov (United States)

    Doeltgen, Sebastian H; Young, Jessica; Bradnam, Lynley V

    2016-08-01

    The cerebellum controls descending motor commands by outputs to primary motor cortex (M1) and the brainstem in response to sensory feedback. The cerebellum may also modulate afferent input en route to M1 and the brainstem. The objective of this study is to determine if anodal transcranial direct current stimulation (tDCS) to the cerebellum influences cerebellar brain inhibition (CBI), short afferent inhibition (SAI) and trigeminal reflexes (TRs) in healthy adults. Data from two studies evaluating effects of cerebellar anodal and sham tDCS are presented. The first study used a twin coil transcranial magnetic stimulation (TMS) protocol to investigate CBI and combined TMS and cutaneous stimulation of the digit to assess SAI. The second study evaluated effects on trigemino-cervical and trigemino-masseter reflexes using peripheral nerve stimulation of the face. Fourteen right-handed healthy adults participated in experiment 1. CBI was observed at baseline and was reduced by anodal cerebellar DCS only (P < 0.01). There was SAI at interstimulus intervals of 25 and 30 ms at baseline (both P < 0.0001), but cerebellar tDCS had no effect. Thirteen right-handed healthy adults participated in experiment 2. Inhibitory reflexes were evoked in the ipsilateral masseter and sternocleidomastoid muscles. There was no effect of cerebellar DCS on either reflex. Anodal DCS reduced CBI but did not change SAI or TRs in healthy adults. These results require confirmation in individuals with neurological impairment.

  5. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    Science.gov (United States)

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  6. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura.

    Science.gov (United States)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E; Younis, Samaira; Wolfram, Frauke; Cramer, Stig P; Larsson, Henrik B W; Ashina, Messoud

    2017-06-01

    See Moskowitz (doi:10.1093/brain/awx099) for a scientific commentary on this article.The migraine aura is characterized by transient focal cortical disturbances causing dramatic neurological symptoms that are usually followed by migraine headache. It is currently not understood how the aura symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas of the anterior, middle and posterior circulation during spontaneous attacks of migraine with aura. Patients reported to our institution to undergo magnetic resonance imaging during the headache phase after presenting with typical visual aura. Nineteen patients were scanned during attacks and on an attack-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability in any of the investigated regions. There was no correlation between blood-brain barrier permeability, brain perfusion, and time from symptom onset to examination or pain intensity. Our findings demonstrate hyperperfusion in brainstem during the headache phase of migraine with aura, while the blood-brain barrier remains intact during attacks of migraine with aura. These data thus contradict the preclinical hypothesis of cortical spreading depression-induced blood-brain barrier

  7. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    to norepinephrine, angiotensin II (ANG II), and potassium were measured after chloride depletion and compared with controls. Chloride depletion did not change arteriolar diameters, but the response to norepinephrine was markedly reduced when chloride was substituted with gluconate (n = 6) or isethionate (n = 6......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses...

  8. Magnetic resonance imaging in the evaluation of the brainstem

    International Nuclear Information System (INIS)

    Han, J.S.; Bonstelle, C.T.; Kaufman, B.; Benson, J.E.; Alfidi, R.J.; Clampitt, M.; Van Dyke, C.; Huss, R.G.

    1984-01-01

    Magnetic resonance (MR) images of the brainstem region from 100 normal or asymptomatic individuals were reviewed in addition to those of 17 patients with intra-axial brainstem lesions and 15 patients with extra-axial masses around the brainstem. MR was able to demonstrate consistently the normal anatomy of the brainstem and adjacent cisterns, though the distinction between gray and white matter was seldom possible with the present technology. Masses in and around the brainstem were all accurately identified on MR and its sensitivity was superior to that of x-ray computed tomography (CT). These study results show that despite its technical limitations, MR is presently the examination of choice for the evaluation of brainstem abnormalities and eventually it will undoubtedly replace metrizamide CT cisternography

  9. Thyroid hormone is required for the pruning of afferent type II spiral ganglion neurons in the mouse cochlea

    Science.gov (United States)

    Sundaresan, Srividya; Balasubbu, Suganthalakshmi; Mustapha, Mirna

    2015-01-01

    Afferent connections to the sensory inner and outer hair cells in the cochlea refine and functionally mature during the thyroid hormone (TH)- critical period of inner ear development that occurs perinatally in rodents. In this study, we investigated the effects of hypothyroidism on afferent type II innervation to outer hair cells (OHCs) using the Snell dwarf mouse (Pit1dw). Using a transgenic approach to specifically label type II spiral ganglion neurons, we found that a lack of TH causes persistence of excess type II SGN connections to the OHCs, as well as continued expression of the hair cell functional marker, otoferlin, in the OHCs beyond the maturation period. We also observed a concurrent delay in efferent attachment to the OHCs. Supplementing with TH during the early postnatal period from postnatal day (P) 3 to P4 reversed the defect in type II SGN pruning but did not alter otoferlin expression. Our results show that hypothyroidism causes a defect in the large-scale pruning of afferent type II spiral ganglion neurons in the cochlea, and a delay in efferent attachment and the maturation of otoferlin expression. Our data suggest that the state of maturation of hair cells, as determined by otoferlin expression, may not regulate the pruning of their afferent innervation. PMID:26592716

  10. Estimation of the number of angiotensin II AT1 receptors in rat kidney afferent and efferent arterioles

    DEFF Research Database (Denmark)

    Razga, Zsolt; Nyengaard, Jens Randel

    2007-01-01

    of angiotensin II AT1 receptors along the length of the arterioles and per arteriole, we combined immunoelectron microscopy with stereology. RESULTS: The number of AT1 receptor molecules was significantly lower in the renin-positive smooth muscle cells (SMCs) than in the renin-negative SMCs of the afferent...

  11. [Acute pancreatitis and afferent loop syndrome. Case report].

    Science.gov (United States)

    Barajas-Fregoso, Elpidio Manuel; Romero-Hernández, Teodoro; Macías-Amezcua, Michel Dassaejv

    2013-01-01

    The afferent syndrome loop is a mechanic obstruction of the afferent limb before a Billroth II or Roux-Y reconstruction, secondary in most of case to distal or subtotal gastrectomy. Clinical case: Male 76 years old, with antecedent of cholecystectomy, gastric adenocarcinoma six years ago, with subtotal gastrectomy and Roux-Y reconstruction. Beginning a several abdominal pain, nausea and vomiting, abdominal distension, without peritoneal irritation sings. Amylase 1246 U/L, lipase 3381 U/L. Computed Tomography with thickness wall and dilatation of afferent loop, pancreas with diffuse enlargement diagnostic of acute pancreatitis secondary an afferent loop syndrome. The afferent loop syndrome is presented in 0.3%-1% in all cases with Billroth II reconstruction, with a mortality of up to 57%, the obstruction lead accumulation of bile, pancreatic and intestinal secretions, increasing the pressure and resulting in afferent limb, bile conduct and Wirsung conduct dilatation, triggering an inflammatory response that culminates in pancreatic inflammation. The severity of the presentation is related to the degree and duration of the blockage.

  12. Afferent loop syndrome: Role of sonography and CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Ho; Lim, Jae Hoon; Ko, Young Tae [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1992-03-15

    Afferent loop syndrome(ALS) is caused by obstruction of the afferent loop after subtotal gastrectomy with Billroth II gastrojejunostomy. Prompt diagnosis of ALS is important as perforation of the loop occurs. The aim of study is to ascertain the sonography and CT to diagnose ALS. We describe the radiologic findings in ten patients with ALS. The cause of ALS, established at surgery, included cancer recurrence (n=4), internal hernia (n=4), marginal ulcer (n=1), and development of cancer at the anastomosis site (n=1). Abdominal X-ray and sonography were performed in all cases, upper GI series in five cases and computed tomography in two cases. The dilated afferent loop was detected in only two cases out often patients in retrospective review of abdominal X-ray. ALS with recurrence of cancer was diagnosed in three cases by upper GI series. Of the cases that had sonography, the afferent loop was seen in the upper abdomen crossing transversely over the midline in all ten patients. The cause of ALS were predicated on the basis of the sonograms in three of the five patients. In two cases of computed tomography, the dilated afferent loop and recurrent cancer at the remnant stomach were seen.Our experience suggests that the diagnosis of afferent syndrome can be made on the basis of the typical anatomic location and shape of the dilated bowel loop in both sonography and computed tomography.

  13. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    Science.gov (United States)

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral

  14. Physiological properties of afferents to the rat cerebellum during normal development and after postnatal x irradiation

    International Nuclear Information System (INIS)

    Puro, D.G.

    1975-01-01

    The consequences of an altered cerebellar cortical development on afferent transmission and terminal organization were analyzed in adult rats which had received x irradiation to the cerebellum postnatally. Rats, anesthetized with 0.5 percent halothane, were studied in various ages from day 3 to adult. The ascending mossy and climbing fiber systems were activated by electrical stimulation of the limbs with needle electrodes. Stimulation of the motor cortex activated the descending climbing fiber pathways. Extracellular responses from cerebellar Purkinje cells were observed on an oscilloscope as poststimulus time histograms were constructed ''on-line''. Conclusions and assertions include: (1) Synaptogenesis between incoming afferent fibers and target neurons takes place early in cerebellar cortical development. (2) Mossy fiber transmission is mature before the bulk of cerebellar synaptogenesis occurs. (3) The ascending and descending components of the climbing fiber system mature, with respect to latency, in synchrony. (4) The terminal synaptic organization has little effect on the development of transmission characteristics in these afferent systems. (5) One possible mechanism by which an adult neural structure can have an abnormal synaptic organization is to maintain immature synaptic relationships due to the neonatal loss of interneurons

  15. Developmental study of vitamin C distribution in children's brainstems by immunohistochemistry.

    Science.gov (United States)

    Coveñas, R; González-Fuentes, J; Rivas-Infante, E; Lagartos-Donate, M J; Mangas, A; Geffard, M; Arroyo-Jiménez, M M; Cebada-Sánchez, S; Insausti, R; Marcos, P

    2015-09-01

    Vitamin C (Vit C) is an important antioxidant, exerts powerful neuroprotective brain effects and plays a role in neuronal development and maturation. Vit C is present in brain tissue at higher concentrations than in other organs, but its detailed distribution in brain is unknown. Immunohistochemical detection of this vitamin has been performed by using a highly specific antibody against Vit C. The aim of the present work was to analyze the distribution of Vit C in children's brainstems during postnatal development, comparing two groups of ages: younger and older than one year of life. In general, the same areas showing neurons with Vit C in young cases are also immunostained at older ages. The distribution of neurons containing Vit C was broader in the brainstems of older children, suggesting that brainstem neurons maintain or even increase their ability to retain Vit C along the life span. Immunohistochemical labeling revealed only cell bodies containing this vitamin, and no immunoreactive fibers were observed. The distribution pattern of Vit C in children's brainstems suggests a possible role of Vit C in brain homeostatic regulation. In addition, the constant presence of Vit C in neurons of locus coeruleus supports the important role of Vit C in noradrenaline synthesis, which seemed to be maintained along postnatal development. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Normal development of brainstem in childhood. Measurement of the area on mid-sagittal MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kutomi, Kimiko [Teikyo Univ., Tokyo (Japan). Faculty of Medicine

    2005-05-01

    Developmental abnormality of brainstem is shown in pediatric patients with mental retardation, autism, periventricular leukomalacia, neurodegenerative disease, and so on. Our purpose here is to clarify the normal developmental pattern of the brainstem. We measured the area of tectum, midbrain tegmentum, pons, basis pontis and pontine tegmentum on mid-sagittal MR images in 111 children (newborn to 20 year old). Different growth patterns were shown in all parts of the brainstem. Tectum showed a subtle increase in area from the newborn to adult period, while midbrain tegmentum and pontine tegmenturn showed a mild and gradual increase in area. Pons and pontine tegmentum showed a rapid and prominent increase in area from newborn to infant period and gradual increase in area until the adult period. These different growth patterns seemed to be consistent with differences in the myelination cycles of the neuronal fibers, maturation of the nuclei and proliferation of glial cells in each part of the brainstem. Mid-sagittal MR imaging of the head is accurate and reproducible and is used conveniently in routine head MR study, making it very useful for the diagnosis of many central nervous diseases and anomalies. We believe that this new milestone provided in this study will be helpful in distinguishing normal children from those that have neurodegenerative disorders. (author)

  17. Normal development of brainstem in childhood. Measurement of the area on mid-sagittal MR imaging

    International Nuclear Information System (INIS)

    Kutomi, Kimiko

    2005-01-01

    Developmental abnormality of brainstem is shown in pediatric patients with mental retardation, autism, periventricular leukomalacia, neurodegenerative disease, and so on. Our purpose here is to clarify the normal developmental pattern of the brainstem. We measured the area of tectum, midbrain tegmentum, pons, basis pontis and pontine tegmentum on mid-sagittal MR images in 111 children (newborn to 20 year old). Different growth patterns were shown in all parts of the brainstem. Tectum showed a subtle increase in area from the newborn to adult period, while midbrain tegmentum and pontine tegmenturn showed a mild and gradual increase in area. Pons and pontine tegmentum showed a rapid and prominent increase in area from newborn to infant period and gradual increase in area until the adult period. These different growth patterns seemed to be consistent with differences in the myelination cycles of the neuronal fibers, maturation of the nuclei and proliferation of glial cells in each part of the brainstem. Mid-sagittal MR imaging of the head is accurate and reproducible and is used conveniently in routine head MR study, making it very useful for the diagnosis of many central nervous diseases and anomalies. We believe that this new milestone provided in this study will be helpful in distinguishing normal children from those that have neurodegenerative disorders. (author)

  18. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Liebsch, N.J.; O'Farrel, D.; Finkelstein, D.; Efird, J.; Munzenrider, J.E.

    1997-01-01

    Purpose: The aim of this study was to analyze the long-term incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Methods and Materials: Between 1974 and 1995, 367 patients with chordomas (n = 195) and chondrosarcomas (n = 172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. Following 3D treatment planning with delineation of target volumes and critical nontarget structures dose distributions and dose-volume histograms were calculated. Radiotherapy was given an 1.8 Gy or CGE (=Cobalt Gray Equivalent) dose per fraction, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Results: Follow-up time ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem toxicity was observed in 17 of 367 patients attributable to treatment, resulting in death of three patients. Actuarial rates of 5 and 10-year high-grade toxicity-free survival were 94 and 88%, respectively. Increased risk of brainstem toxicity was significantly associated with maximum dose to brainstem, volume of brainstem receiving ≥50 CGE, ≥55 CGE, and ≥60 CGE, number of surgical procedures, and prevalence of diabetes or high blood pressure. Multivariate analysis identified three independent factors as important prognosticators: number of surgical procedures (p < 0.001), volume of the brainstem receiving 60 CGE (p < 0.001), and prevalence of diabetes (p < 0.01). Conclusions: Tolerance of brainstem to fractionated radiotherapy appears to be a steep function of tissue volume included in high dose regions rather than the maximum dose of brainstem alone. In addition, presence of predisposing factors as well as extent of surgical manipulation can significantly lower brainstem tolerance in the individual patient

  19. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area – an anterograde tract-tracing study

    Directory of Open Access Journals (Sweden)

    Rege Sugárka Papp

    2014-05-01

    Full Text Available The projections from the dorsolateral hypothalamic area (DLH to the lower brainstem have been investigated by using biotinylated dextran amine (BDA, an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area, and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington’s and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline and 9 serotonin cell groups received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.

  20. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  1. Brainstem auditory evoked potentials in horses

    Directory of Open Access Journals (Sweden)

    Juliana Almeida Nogueira da Gama

    2016-04-01

    Full Text Available ABSTRACT: The brainstem auditory evoked potential (BAEP evaluates the integrity of the auditory pathways to the brainstem. The aim of this study was to evoke BAEPs in 21 clinically normal horses. The animals were sedated with detomidine hydrochloride (0.013mg.kg-1 BW. Earphones were inserted and rarefaction clicks at 90 dB and noise masking at 40 dB were used. After performing the test, the latencies of waves (I, II, III, IV, and V and interpeaks(I-III, III-V, and I-V were identified. The mean latencies of the waves were as follows: wave I, 2.4 ms; wave II, 2.24 ms; wave III, 3.61ms; wave IV, 4.61ms; and wave V, 5.49ms. The mean latencies of the interpeaks were as follows: I-III, 1.37ms; III-V, 1.88ms; and I-V, 3.26ms. This is the first study using BAEPs in horses in Brazil, and the observed latencies will be used as normative data for the interpretation of tests performed on horses with changes related to auditory system or neurologic abnormalities.

  2. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  3. Clinical Approach to Supranuclear Brainstem Saccadic Gaze Palsies

    Directory of Open Access Journals (Sweden)

    Alexandra Lloyd-Smith Sequeira

    2017-08-01

    Full Text Available Failure of brainstem supranuclear centers for saccadic eye movements results in the clinical presence of a brainstem-mediated supranuclear saccadic gaze palsy (SGP, which is manifested as slowing of saccades with or without range of motion limitation of eye movements and as loss of quick phases of optokinetic nystagmus. Limitation in the range of motion of eye movements is typically worse with saccades than with smooth pursuit and is overcome with vestibular–ocular reflexive eye movements. The differential diagnosis of SGPs is broad, although acute-onset SGP is most often from brainstem infarction and chronic vertical SGP is most commonly caused by the neurodegenerative condition progressive supranuclear palsy. In this review, we discuss the brainstem anatomy and physiology of the brainstem saccade-generating network; we discuss the clinical features of SGPs, with an emphasis on insights from quantitative ocular motor recordings; and we consider the broad differential diagnosis of SGPs.

  4. MRI findings of multiple sclerosis involving the brainstem

    International Nuclear Information System (INIS)

    Park, Jeong Hoon; Jeong, Hae Woong; Kim, Hyun Jin; Cho, Jae Kwoeng; Kim, Chang Soo

    2001-01-01

    To describe MRI findings of multiple sclerosis involving the brainstem. Among 35 cases of clinically definite multiple sclerosis, the authors retrospectively analysed 20 in which the brainstem was involved. MR images were analysed with regard to involvement sites in the brainstem or other locations, signal intensity, multiplicity, shape, enhancement pattern, and contiguity of brainstem lesions with cisternal or ventricular CSF space. The brainstem was the only site of involvement in five cases (25%), while simultaneous involvement of the brainstem and other sites was observed in 15 cases (75%). No case involved only the midbrain or medulla oblongata, and simultaneous involvement of the midbrain, pons and medulla oblongata was noted in 12 cases (60%). The most frequently involved region of the brainstem was the medulla oblongata (n=13; 90%), followed by the pons (n=17; 85%) and the midbrain (n=16; 80%). Compared with normal white matter, brainstem lesions showed low signal intensity on T1 weighted images, and high signal intensity on T2 weighted, proton density weighted, and FLAIR images. In 17 cases (85%), multiple intensity was observed, and the shape of lesions varied: oval, round, elliptical, patchy, crescentic, confluent or amorphous were seen on axial MR images, and in 14 cases (82%), coronal or sagittal scanning showed that lesions were long and tubular. Contiguity between brainstem lesions and cisternal or ventricular CSF space was seen in all cases (100%) involving midbrain (16/16) and medulla oblongata (18/18) and in 15 of 17 (88%) involving the pons. Contrast enhancement was apparent in 7 of 12 cases (58%). In the brainstem, MRI demonstrated partial or total contiguity between lesions and cisternal or ventricular CSF space, and coronal or sagittal images showed that lesions were long and tubuler

  5. Intracranial neurenteric cyst traversing the brainstem

    Directory of Open Access Journals (Sweden)

    Jasmit Singh

    2015-01-01

    Full Text Available Neurenteric cysts (NECs, also called enterogenous cysts, are rare benign endodermal lesions of the central nervous system that probably result from separation failure of the notochord and upper gastrointestinal tract. Most frequently they are found in the lower cervical spine or the upper thoracic spine. Intracranial occurrence is rare and mostly confined to infratentorial compartment, in prepontine region [51%]. Other common locations are fourth ventricle and cerebellopontine angle. There are few reports of NEC in medulla or the cerebellum. Because of the rarity of the disease and common radiological findings, they are misinterpreted as arachnoid or simple cysts until the histopathological confirmation, unless suspected preoperatively. We herein report a rare yet interesting case of intracranial NEC traversing across the brainstem.

  6. Modeling Parkinson’s Disease Falls Associated With Brainstem Cholinergic Systems Decline

    OpenAIRE

    Kucinski, Aaron; Sarter, Martin

    2015-01-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson’s disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from t...

  7. Expression of phosphorylated cAMP response element binding protein (p-CREB) in bladder afferent pathways in VIP-/- mice with cyclophosphamide (CYP)-induced cystitis

    DEFF Research Database (Denmark)

    Jensen, Dorthe G; Studeny, Simon; May, Victor

    2008-01-01

    The expression of phosphorylated cAMP response element binding protein (p-CREB) in dorsal root ganglia (DRG) with and without cyclophosphamide (CYP)-induced cystitis (150 mg/kg, i.p; 48 h) was determined in VIP(-/-) and wild-type (WT) mice. p-CREB immunoreactivity (IR) was determined in bladder...... (Fast blue) afferent cells. Nerve growth factor (NGF) bladder content was determined by enzyme-linked immunosorbent assays. Basal expression of p-CREB-IR in DRG of VIP(-/-) mice was (p DRG compared to WT mice. CYP treatment in WT mice increased (p ...-CREB-IR in L1, L2, L5-S1 DRG. CYP treatment in VIP(-/-) mice (p DRG compared to WT with CYP. In WT mice, bladder afferent cells (20-38%) in DRG expressed p-CREB-IR under basal conditions. With CYP, p-CREB-IR increased in bladder afferent cells (60...

  8. Combined laryngeal inflammation and trauma mediate long-lasting immunoreactivity response in the brainstem sensory nuclei in the rat

    Directory of Open Access Journals (Sweden)

    Kristina eSimonyan

    2012-11-01

    Full Text Available Somatosensory feedback from the larynx plays a critical role in regulation of normal upper airway functions, such as breathing, deglutition and voice production, while altered laryngeal sensory feedback is known to elicit a variety of pathological reflex responses, including persistent coughing, dysphonia and laryngospasm. Despite its clinical impact, the central mechanisms underlying the development of pathological laryngeal responses remain poorly understood. We examined the effects of persistent vocal fold (VF inflammation and trauma, as frequent causes of long-lasting modulation of laryngeal sensory feedback, on brainstem immunoreactivity in the rat. Combined VF inflammation and trauma were induced by injection of lipopolysaccharide (LPS solution and compared to VF trauma alone from injection of vehicle solution and to controls without any VF manipulations. Using a c-fos marker, we found significantly increased Fos-like immunoreactivity (FLI in the bilateral intermediate/parvicellular reticular formation (IRF/PCRF with a trend in the left solitary tract nucleus (NTS only in animals with LPS-induced VF inflammation and trauma. Further, FLI in the right NTS was significantly correlated with the severity of LPS-induced VF changes. However, increased brainstem FLI response was not associated with FLI changes in the first-order neurons of the laryngeal afferents located in the nodose and jugular ganglia in either group. Our data indicate that complex VF alterations (i.e., inflammation/trauma vs. trauma alone may cause prolonged excitability of the brainstem nuclei receiving a direct sensory input from the larynx, which, in turn, may lead to (malplastic changes within the laryngeal central sensory control.

  9. A brainstem variant of reversible posterior leukoencephalopathy syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, H.; Tomimoto, H.; Terada, K. [Kyoto University, Department of Neurology, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Miki, Y.; Yamamoto, A. [Kyoto University, Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Satoi, H.; Kanda, M. [Ijinkai Takeda General Hospital, Department of Neurology, Fushimi-ku, Kyoto (Japan); Fukuyama, H. [Kyoto University, Human Brain Research Center, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan)

    2005-09-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is caused by various heterogeneous factors, the commonest being hypertension, followed by nonhypertensive causes such as eclampsia, renal diseases and immunosuppressive therapy. Patients with RPLS exhibit bilateral white and gray matter abnormalities in the posterior aspects of the cerebral hemispheres. However, this syndrome may affect the brainstem predominantly, and these cases are designated as hypertensive brainstem encephalopathy. We present here two patients with reversible brainstem encephalopathy: one with hypertension and the other without hypertension. These patients presented with swelling and diffuse hyperintensities of the brainstem in fluid-attenuated inversion-recovery (FLAIR) and T2-weighted MRI, but with relatively mild clinical symptoms. They recovered without major neurological deficits, but had residual lacunar lesions in the pons. Reversible brainstem encephalopathy with characteristic MRI features was found in both hypertensive and nonhypertensive patients. These patients were diagnosed with a brainstem variant of RPLS, which is potentially fully reversible after an adequate treatment, and therefore should be carefully differentiated from other brainstem disease conditions. (orig.)

  10. A brainstem variant of reversible posterior leukoencephalopathy syndrome

    International Nuclear Information System (INIS)

    Kitaguchi, H.; Tomimoto, H.; Terada, K.; Miki, Y.; Yamamoto, A.; Satoi, H.; Kanda, M.; Fukuyama, H.

    2005-01-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is caused by various heterogeneous factors, the commonest being hypertension, followed by nonhypertensive causes such as eclampsia, renal diseases and immunosuppressive therapy. Patients with RPLS exhibit bilateral white and gray matter abnormalities in the posterior aspects of the cerebral hemispheres. However, this syndrome may affect the brainstem predominantly, and these cases are designated as hypertensive brainstem encephalopathy. We present here two patients with reversible brainstem encephalopathy: one with hypertension and the other without hypertension. These patients presented with swelling and diffuse hyperintensities of the brainstem in fluid-attenuated inversion-recovery (FLAIR) and T2-weighted MRI, but with relatively mild clinical symptoms. They recovered without major neurological deficits, but had residual lacunar lesions in the pons. Reversible brainstem encephalopathy with characteristic MRI features was found in both hypertensive and nonhypertensive patients. These patients were diagnosed with a brainstem variant of RPLS, which is potentially fully reversible after an adequate treatment, and therefore should be carefully differentiated from other brainstem disease conditions. (orig.)

  11. Proposed Toxic and Hypoxic Impairment of a Brainstem Locus in Autism

    Directory of Open Access Journals (Sweden)

    Woody R. McGinnis

    2013-12-01

    Full Text Available Electrophysiological findings implicate site-specific impairment of the nucleus tractus solitarius (NTS in autism. This invites hypothetical consideration of a large role for this small brainstem structure as the basis for seemingly disjointed behavioral and somatic features of autism. The NTS is the brain’s point of entry for visceral afference, its relay for vagal reflexes, and its integration center for autonomic control of circulatory, immunological, gastrointestinal, and laryngeal function. The NTS facilitates normal cerebrovascular perfusion, and is the seminal point for an ascending noradrenergic system that modulates many complex behaviors. Microvascular configuration predisposes the NTS to focal hypoxia. A subregion—the “pNTS”—permits exposure to all blood-borne neurotoxins, including those that do not readily transit the blood-brain barrier. Impairment of acetylcholinesterase (mercury and cadmium cations, nitrates/nitrites, organophosphates, monosodium glutamate, competition for hemoglobin (carbon monoxide, nitrates/nitrites, and higher blood viscosity (net systemic oxidative stress are suggested to potentiate microcirculatory insufficiency of the NTS, and thus autism.

  12. Arterial territories of human brain: brainstem and cerebellum

    International Nuclear Information System (INIS)

    Tatu, L.; Moulin, T.; Bogousslavsky, J.; Duvernoy, H.

    1997-01-01

    The development of neuroimaging has allowed clinicians to improve clinico-anatomic correlations in patients with strokes. Brainstem and cerebellum structures are well delineated on MRI, but there is a lack of standardization in their arterial supply. We present a system of 12 brainstem and cerebellum axial sections, depicting the dominant arterial territories and the most important anatomic structures. These sections may be used as a practical tool to determine arterial territories on MRI, and may help establish consistent clinico-anatomic correlations in patients with brainstem and cerebellar ischemic strokes. (authors)

  13. Cellular mechanisms for presynaptic inhibition of sensory afferents

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; delgado-lezama, rodolfo; Christensen, Rasmus Kordt

    It is well established that presynaptic inhibition of primary afferents involves the activation of GABAA receptors located on presynaptic terminals. However, the source of GABA remains unknown. In an integrated preparation of the spinal cord of the adult turtle, we evoked dorsal root potentials...

  14. Afferent projections to the pontine micturition center in the cat

    NARCIS (Netherlands)

    Kuipers, R; Mouton, LJ; Holstege, G; Kuiper, Rutger

    2006-01-01

    The pontine micturition center (PMC) or Barrington's nucleus controls micturition by way of its descending projections to the sacral spinal cord. However, little is known about the afferents to the PMC that control its function and may be responsible for dysfunction in patients with

  15. Measurement of the relative afferent pupillary defect in retinal detachment.

    Science.gov (United States)

    Bovino, J A; Burton, T C

    1980-07-01

    A swinging flashlight test and calibrated neutral density filters were used to quantitate the depth of relative afferent pupillary defects in ten patients with retinal detachment. Postoperatively, the pupillary responses returned to normal in seven of nine patients with anatomically successful surgery.

  16. Central projections and entries of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R

    1996-03-25

    The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.

  17. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Axonal sprouting of a brainstem-spinal pathway after estrogen administration in the adult female rhesus monkey

    NARCIS (Netherlands)

    Vanderhorst, VGJM; Terasawa, E; Ralston, HJ

    2002-01-01

    The nucleus retroambiguus (NRA) is located in the caudal medulla oblongata and contains premotor neurons that project to motoneuronal cell groups in the brainstem and spinal cord. NRA projections to the lumbosacral cord are species specific and might be involved in mating behavior. In the female

  19. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  20. Lung inflammation induces IL-1β expression in hypoglossal neurons in rat brainstem

    Science.gov (United States)

    Jafri, Anjum; Belkadi, Abdelmadjid; Zaidi, Syed I. A.; Getsy, Paulina; Wilson, Christopher G.; Martin, Richard J.

    2013-01-01

    Perinatal inflammation is associated with respiratory morbidity. Immune modulation of brainstem respiratory control centers may provide a link for this pathobiology. We exposed 11-day old rats to intratracheal lipopolysaccharide (LPS, 0.5 µg/g) to test the hypothesis that intrapulmonary inflammation increases expression of the proinflammatory cytokine IL-1β within respiratory-related brainstem regions. Intratracheal LPS resulted in a 32% increase in IL-1β protein expression in the medulla oblongata. In situ hybridization showed increased intensity of IL-1β mRNA but no change in neuronal numbers. Co-localization experiments showed that hypoglossal neurons express IL-1β mRNA and immunostaining showed a 43% increase in IL-1β protein-expressing cells after LPS exposure. LPS treatment also significantly increased microglial cell numbers though they did not express IL-1β mRNA. LPS-induced brainstem expression of neuronal IL-1β mRNA and protein may have implications for our understanding of the vulnerability of neonatal respiratory control in response to a peripheral pro-inflammatory stimulus. PMID:23648475

  1. Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline.

    Science.gov (United States)

    Kucinski, Aaron; Sarter, Martin

    2015-04-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson's disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  2. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    Science.gov (United States)

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC−/− mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a−/− muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2−/− mice showed diminished potentiation by zinc, and currents from ASIC3−/− mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.—Gautam, M., Benson, C. J. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. PMID:23109675

  3. Enterovirus 71 Brainstem Encephalitis and Cognitive and Motor Deficits

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-12-01

    Full Text Available Follow-up studies were conducted in 63 previously healthy children with enterovirus 71 brainstem encephalitis (49 stage II, 7 stage Ilia, and 7 stage Illb at National Cheng Kung University Hospital, Tainan, Taiwan.

  4. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    International Nuclear Information System (INIS)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S.

    2006-01-01

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  5. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan)

    2006-03-15

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  6. Challenge-driven attention: interacting frontal and brainstem systems

    Directory of Open Access Journals (Sweden)

    Rajeev D S Raizada

    2008-03-01

    Full Text Available The world is an unpredictable place, presenting challenges that fl uctuate from moment to moment. However, the neural systems for responding to such challenges are far from fully understood. Using fMRI, we studied an audiovisual task in which the trials' diffi culty and onset times varied unpredictably. Two regions were found to increase their activation for challenging trials, with their activities strongly correlated: right frontal cortex and the brainstem. The frontal area matched regions found in previous human studies of cognitive control, and activated in a graded manner with increasing task diffi culty. The brainstem responded only to the most diffi cult trials, showing a phasic activity pattern paralleling locus coeruleus recordings in monkeys. These results reveal a bridge between animal and human studies, and suggest interacting roles for the brainstem and right frontal cortex: the brainstem may signal that an attentional challenge is occurring, while right frontal cortex allocates cognitive resources in response.

  7. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Directory of Open Access Journals (Sweden)

    Holzer Peter

    2009-06-01

    Full Text Available Abstract Background Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Methods Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg or cimetidine (10 mg/kg, and 30 min later their stomachs were exposed to exogenous HCl (0.25 M. During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Results Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. Conclusion These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect

  8. Brainstem neurons survive the identical ischemic stress that kills higher neurons: insight to the persistent vegetative state.

    Directory of Open Access Journals (Sweden)

    C Devin Brisson

    Full Text Available Global ischemia caused by heart attack, pulmonary failure, near-drowning or traumatic brain injury often damages the higher brain but not the brainstem, leading to a 'persistent vegetative state' where the patient is awake but not aware. Approximately 30,000 U.S. patients are held captive in this condition but not a single research study has addressed how the lower brain is preferentially protected in these people. In the higher brain, ischemia elicits a profound anoxic depolarization (AD causing neuronal dysfunction and vasoconstriction within minutes. Might brainstem nuclei generate less damaging AD and so be more resilient? Here we compared resistance to acute injury induced from simulated ischemia by 'higher' hippocampal and striatal neurons versus brainstem neurons in live slices from rat and mouse. Light transmittance (LT imaging in response to 10 minutes of oxygen/glucose deprivation (OGD revealed immediate and acutely damaging AD propagating through gray matter of neocortex, hippocampus, striatum, thalamus and cerebellar cortex. In adjacent brainstem nuclei, OGD-evoked AD caused little tissue injury. Whole-cell patch recordings from hippocampal and striatal neurons under OGD revealed sudden membrane potential loss that did not recover. In contrast brainstem neurons from locus ceruleus and mesencephalic nucleus as well as from sensory and motor nuclei only slowly depolarized and then repolarized post-OGD. Two-photon microscopy confirmed non-recoverable swelling and dendritic beading of hippocampal neurons during OGD, while mesencephalic neurons in midbrain appeared uninjured. All of the above responses were mimicked by bath exposure to 100 µM ouabain which inhibits the Na+/K+ pump or to 1-10 nM palytoxin which converts the pump into an open cationic channel. Therefore during ischemia the Na+/K+ pump of higher neurons fails quickly and extensively compared to naturally resilient hypothalamic and brainstem neurons. The selective survival

  9. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis

    DEFF Research Database (Denmark)

    Roos, Ewa M.; Herzog, Walter; Block, Joel A

    2011-01-01

    Lower-extremity muscle strength and afferent sensory dysfunction, such as reduced proprioceptive acuity, are potentially modifiable putative risk factors for knee osteoarthritis (OA). Findings from current studies suggest that muscle weakness is a predictor of knee OA onset, while there is confli...... with previous knee injuries) are easily identified, and may benefit from exercise interventions to prevent or delay OA onset....... there is conflicting evidence regarding the role of muscle weakness in OA progression. In contrast, the literature suggests a role for afferent sensory dysfunction in OA progression but not necessarily in OA onset. The few pilot exercise studies performed in patients who are at risk of incident OA indicate...... a possibility for achieving preventive structure or load modifications. In contrast, large randomized controlled trials of patients with established OA have failed to demonstrate beneficial effects of strengthening exercises. Subgroups of individuals who are at increased risk of knee OA (such as those...

  10. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    -Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... antagonist diltiazem (10(-6) mol/L) abolished K+-induced contractions. Bicarbonate did not modify the sensitivity to chloride. Norepinephrine (10(-6) mol/L) induced full contraction in depolarized vessels even in the absence of chloride. Iodide and nitrate were substituted for chloride with no inhibitory...

  11. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    OpenAIRE

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitu...

  12. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Munzenrider, J.E.; Liebsch, N.J.; O'Farrell, D.; Efird, J.; Daly, W.; Suit, H.D.

    1996-01-01

    Purpose/Objective: Brainstem tolerance to inhomogenous radiation doses applied by modern conformal radiotherapy has not yet been examined. The aim of this study was to analyse the incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Materials and Methods: Between 1974 and 1995, 367 patients with chordomas (n=195) and chondrosarcomas (n=172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. All patients had previously undergone biopsy, subtotal or total tumor removal. 104 patients had two or more surgical procedures before radiotherapy. Following 3D treatment planning with delineation of target volumes and critical non-target structures, dose distributions and dose volume histograms were calculated [at the time of treatment delivery]. Radiotherapy was given once a day, 1.8 Gy or CGE (Cobalt Gy Equivalent: Proton Gy X 1.1) per fraction, 5 fractions per week, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Dose distributions were developed to limit dose to brainstem surface and center; current plans limit dose to surface and center to ≤64 CGE and ≤53 CGE, respectively. Brainstem toxicity was scored according to the RTOG grading system. Results: Follow-up ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem symptoms, attributable to the treatment, developed in 17 of 282 patients with local tumor control (6.0%), resulting in death of three patients. The mean time to onset of symptoms was 17 months (range: 4.5 to 177 months). These symptoms appeared in 89.5% within 3 years. Grading of the brainstem toxicity is listed in table 1. Actuarial rates of 5 and 10 year toxicity free survival were 87% and 82% respectively. Increased risk of brainstem toxicity was significantly associated with maximum brainstem dose

  13. Afferent activity to necklace glomeruli is dependent on external stimuli

    Directory of Open Access Journals (Sweden)

    Munger Steven D

    2009-03-01

    Full Text Available Abstract Background The main olfactory epithelium (MOE is a complex organ containing several functionally distinct subpopulations of sensory neurons. One such subpopulation is distinguished by its expression of the guanylyl cyclase GC-D. The axons of GC-D-expressing (GC-D+ neurons innervate 9–15 "necklace" glomeruli encircling the caudal main olfactory bulb (MOB. Chemosensory stimuli for GC-D+ neurons include two natriuretic peptides, uroguanylin and guanylin, and CO2. However, the biologically-relevant source of these chemostimuli is unclear: uroguanylin is both excreted in urine, a rich source of olfactory stimuli for rodents, and expressed in human nasal epithelium; CO2 is present in both inspired and expired air. Findings To determine whether the principal source of chemostimuli for GC-D+ neurons is external or internal to the nose, we assessed the consequences of removing external chemostimuli for afferent activity to the necklace glomeruli. To do so, we performed unilateral naris occlusions in Gucy2d-Mapt-lacZ +/- mice [which express a β-galactosidase (β-gal reporter specifically in GC-D+ neurons] followed by immunohistochemistry for β-gal and a glomerular marker of afferent activity, tyrosine hydroxylase (TH. We observed a dramatic decrease in TH immunostaining, consistent with reduced or absent afferent activity, in both necklace and non-necklace glomeruli ipsilateral to the occluded naris. Conclusion Like other MOB glomeruli, necklace glomeruli exhibit a large decrease in afferent activity upon removal of external stimuli. Thus, we conclude that activity in GC-D+ neurons, which specifically innervate necklace glomeruli, is not dependent on internal stimuli. Instead, GC-D+ neurons, like other OSNs in the MOE, primarily sense the external world.

  14. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  15. The visceromotor and somatic afferent nerves of the penis.

    Science.gov (United States)

    Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas

    2015-05-01

    Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.

  16. On the nature of the afferent fibers of oculomotor nerve.

    Science.gov (United States)

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.

  17. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  18. Afferent connections of nervus facialis and nervus glossopharyngeus in the pigeon (Columba livia) and their role in feeding behavior.

    Science.gov (United States)

    Dubbeldam, J L

    1984-01-01

    The afferent connections of the facial nerve and glossopharyngeal nerve in the pigeon have been studied with the Fink-Heimer I method after ganglion lesions. The nucleus ventrolateralis anterior of the solitary complex and an indistinct cell group S VII medial to the nucleus interpolaris of the descending trigeminal tract are the terminal fields for facial afferents. The n. ventrolateralis anterior also receives an important projection from the distal glossopharyngeal ganglion. Other projection areas of this ganglion are the n. presulcalis , n. centralis anterior, n. intermedius anterior and the parasolitary nucleus. Both ganglia have only ipsilateral projections. A lesion in the jugular ganglion complex causes degeneration throughout the ipsilateral solitary complex, in the contralateral n. commissuralis and n. centralis posterior and in the n. cuneatus externus. The lack of a substantial contribution to the trigeminal system is ascribed to the absence of mechanoreceptors in the tongue. The implications for the organization of neuronal pathways related to the feeding behavior are discussed.

  19. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  20. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    Directory of Open Access Journals (Sweden)

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  1. Magnetic resonance imaging in brain-stem tumors

    International Nuclear Information System (INIS)

    Nomura, Mikio; Saito, Hisazumi; Akino, Minoru; Abe, Hiroshi.

    1988-01-01

    Four patients with brain-stem tumors underwent magnetic resonance imaging (MRI) before and after radiotherapy. The brain-stem tumors were seen as a low signal intensity on T1-weighted images and as a high signal intensity on T2-weighted images. A tumor and its anatomic involvement were more clearly visualized on MRI than on cuncurrently performed CT. Changes in tumor before and after radiotherapy could be determined by measuring the diameter of tumor on sagittal and coronal images. This allowed quantitative evaluation of the reduction of tumor in association with improvement of symptoms. The mean T1 value in the central part of tumors was shortened in all patients after radiotherapy. The results indicate that MRI may assist in determining the effect of radiotherapy for brain-stem tumors. (Namekawa, K)

  2. Clinical and radiological features of hypertensive brainstem encephalopathy

    Directory of Open Access Journals (Sweden)

    Xiao-qiu LI

    2015-07-01

    Full Text Available Objective To discuss the diagnosis and treatment of hypertensive brainstem encephalopathy. Methods  The clinical and imaging data of 3 cases of hypertensive brainstem encephalopathy were summarized and analyzed for the purpose of improving the acumen in diagnosis and treatment. Results All the 3 patients showed relatively mild clinical symptoms, and they were misdiagnosed in different degrees during the treatment, but their clinical symptoms were improved by rapid and effective antihypertensive therapy. Cerebral CT and MRI scans revealed extensive abnormal signals in brain stem, with or without supratentorial lesions and brain stem hemorrhage. The lesions as revealed by imaging were improved significantly after treatment. Conclusions Clinical-radiographic dissociation is the classic feature of hypertensive brainstem encephalopathy. The clinical symptoms and lesions as shown by imaging could be improved after active treatment. DOI: 10.11855/j.issn.0577-7402.2015.06.03

  3. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity

    OpenAIRE

    Feng, Bin; La, Jun-ho; Schwartz, Erica S.; Tanaka, Takahiro; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Afferent input contributes significantly to the pain and colorectal hypersensitivity that characterize irritable bowel syndrome. In the present study, we investigated the contributions of mechanically sensitive and mechanically insensitive afferents (MIAs; or silent afferents) to colorectal hypersensitivity. The visceromotor response to colorectal distension (CRD; 15–60 mmHg) was recorded in mice before and for weeks after intracolonic treatment with zymosan or saline. After CRD tests, the di...

  4. Afferent nerves regulating the cough reflex: Mechanisms and Mediators of Cough in Disease

    Science.gov (United States)

    Canning, Brendan J.

    2010-01-01

    Bronchopulmonary C-fibers and acid-sensitive, capsaicin-insensitive mechanoreceptors innervating the larynx, trachea and large bronchi regulate the cough reflex. These vagal afferent nerves may interact centrally with sensory input arising from afferent nerves innervating the intrapulmonary airways or even extrapulmonary afferents such as those innervating the nasal mucosa and esophagus to produce chronic cough or enhanced cough responsiveness. The mechanisms of cough initiation in health and in disease are briefly described. PMID:20172253

  5. The modulation of visceral functions by somatic afferent activity.

    Science.gov (United States)

    Sato, A; Schmidt, R F

    1987-01-01

    We began by briefly reviewing the historical background of neurophysiological studies of the somato-autonomic reflexes and then discussed recent studies on somatic-visceral reflexes in combination with autonomic efferent nerve activity and effector organ responses. Most of the studies that have advanced our knowledge in this area have been carried out on anesthetized animals, thus eliminating emotional factors. We would like to emphasize again that the functions of many, or perhaps all visceral organs can be modulated by somato-sympathetic or somato-parasympathetic reflex activity induced by a appropriate somatic afferent stimulation in anesthetized animals. As mentioned previously, some autonomic nervous outflow, e.g. the adrenal sympathetic nerve activity, is involved in the control of hormonal secretion. John F. Fulton wrote in his famous textbook "Physiology of the Nervous System" (1949) that the posterior pituitary neurosecretion system (i.e. for oxytocin and vasopressin) could be considered a part of the parasympathetic nervous system. In the study of body homeostasis and environmental adaptation it would seem very important to further analyze the contribution of somatic afferent input to the autonomic nervous and hormonal regulation of visceral organ activity. Also, some immunological functions have been found to be influenced by autonomic nerves or hormones (e.g. adrenal cortical hormone and catecholamines). Finally, we must take into account, as we have briefly discussed, that visceral functions can be modulated by somatic afferent input via various degrees of integration of autonomic nerves, hormones, and immunological processes. We trust that such research will be expanded to higher species of mammals, and that ultimately this knowledge of somato-visceral reflexes obtained in the physiological laboratory will become clinically useful in influencing visceral functions.

  6. Effects of periodontal afferent inputs on corticomotor excitability in humans

    DEFF Research Database (Denmark)

    Zhang, Y; Boudreau, S; Wang, M

    2010-01-01

    for the first dorsal interosseous (FDI) as an internal control. Burning pain intensity and mechanical sensitivity ratings to a von Frey filament applied to the application site were recorded on an electronic visual analogue scale (VAS). All subjects reported a decreased mechanical sensitivity (anova: P = 0......-injection for the LA (anovas: P > 0.22) or capsaicin (anovas: P > 0.16) sessions. These findings suggest that a transient loss or perturbation in periodontal afferent input to the brain from a single incisor is insufficient to cause changes in corticomotor excitability of the face MI, as measured by TMS in humans....

  7. MR features of a case of afferent loop syndrome presenting as obstructive jaundice

    International Nuclear Information System (INIS)

    Chevallier, P.; Souci, J.; Oddo, F.; Diaine, B.; Padovani, B.; Gueyffier, C.

    2001-01-01

    The afferent loop syndrome corresponds to an acute or chronic obstruction of the afferent loop following a partial gastrectomy with Billroth II gastro-jejunal anastomosis. We describe the case of a 77-year-old man with history of partial gastrectomy for peptic ulcer disease performed 31 years ago and currently admitted for jaundice and poor general status. MR imaging showed dilatation of biliary and pancreatic ducts and showed a soft tissue mass between the afferent loop and the residual stomach. Endoscopy showed complete obstruction of the afferent loop by a biopsy-proven adenocarcinoma. The patient died of sepsis shortly after endoscopy of septicemia. (authors)

  8. Erythropoietin and its receptors in the brainstem of adults with fatal falciparum malaria

    Directory of Open Access Journals (Sweden)

    White Nicholas J

    2009-11-01

    Full Text Available Abstract Background Facilitation of endogenous neuroprotective pathways, such as the erythropoietin (Epo pathway, has been proposed as adjuvant treatment strategies in cerebral malaria. Whether different endogenous protein expression levels of Epo or differences in the abundance of its receptor components could account for the extent of structural neuropathological changes or neurological complications in adults with severe malaria was investigated. Methods High sensitivity immunohistochemistry was used to assess the frequency, distribution and concordance of Epo and components of its homodimeric and heteromeric receptors, Epo receptor and CD131, within the brainstem of adults who died of severe malaria. The following relationships with Epo and its receptor components were also defined: (i sequestration and indicators of hypoxia; (ii vascular damage in the form of plasma protein leakage and haemorrhage; (iii clinical complications and neuropathological features of severe malaria disease. Brainstems of patients dying in the UK from unrelated non-infectious causes were examined for comparison. Results The incidence of endogenous Epo in parenchymal brain cells did not greatly differ between severe malaria and non-neurological UK controls at the time of death. However, EpoR and CD131 labelling of neurons was greater in severe malaria compared with non-neurological controls (P = .009. EpoR labelling of vessels was positively correlated with admission peripheral parasite count (P = .01 and cerebral sequestration (P P = .001. There were no significant correlations with indicators of vascular damage, neuronal chromatolysis, axonal swelling or vital organ failure. Conclusion Cells within the brainstem of severe malaria patients showed protein expression of Epo and its receptor components. However, the incidence of endogeneous expression did not reflect protection from vascular or neuronal injury, and/or clinical manifestations, such as coma. These

  9. Stance disturbance in multiple sclerosis: brainstem lesions and posturographic assessment

    Directory of Open Access Journals (Sweden)

    Peter Schalek

    2012-01-01

    Full Text Available

    Background. Balance disorders are commonly evidenced during the course of multiple sclerosis (MS. The aim of this study is to report characteristics of MS patient stance control disorders, measured by means of posturography and related to the brainstem lesions.

    Methods. Thirty-eight patients affected by MS, mildly to moderately disable according to Kurtzke’s Expanded Disability Status Scale, underwent a complete clinical neurological and vestibular evaluation and brain MRI scanning. All patients were then tested on a static posturography platform (Tetrax, Israel in four conditions: eyes open and closed standing on a firm surface and on a foam pad.

    Results. Clinical and/or MRI evidence of brainstem involvement was observed in 55.3 % of patients. When brainstem lesion was detected, Fourier analysis showed a typical pattern characterized by inversion of the  0- 0.1 Hz and  0.1 - 0.25 Hz. frequency bands.

    Conclusions. MS leads to pervasive postural disturbances in the majority of subjects, including the visuo-vestibular loops and proprioception involving vestibulo-spinal pathways in at least 55.3 % of patients. Our results may also suggest the presence of Fourier inversion in patients with brainstem lesions.


  10. Age-Related Changes in Binaural Interaction at Brainstem Level.

    Science.gov (United States)

    Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Beynon, Andy J; Dhooge, Ingeborg J M

    2016-01-01

    Age-related hearing loss hampers the ability to understand speech in adverse listening conditions. This is attributed to a complex interaction of changes in the peripheral and central auditory system. One aspect that may deteriorate across the lifespan is binaural interaction. The present study investigates binaural interaction at the level of the auditory brainstem. It is hypothesized that brainstem binaural interaction deteriorates with advancing age. Forty-two subjects of various age participated in the study. Auditory brainstem responses (ABRs) were recorded using clicks and 500 Hz tone-bursts. ABRs were elicited by monaural right, monaural left, and binaural stimulation. Binaural interaction was investigated in two ways. First, grand averages of the binaural interaction component were computed for each age group. Second, wave V characteristics of the binaural ABR were compared with those of the summed left and right ABRs. Binaural interaction in the click ABR was demonstrated by shorter latencies and smaller amplitudes in the binaural compared with the summed monaural responses. For 500 Hz tone-burst ABR, no latency differences were found. However, amplitudes were significantly smaller in the binaural than summed monaural condition. An age-effect was found for 500 Hz tone-burst, but not for click ABR. Brainstem binaural interaction seems to decline with age. Interestingly, these changes seem to be stimulus-dependent.

  11. Intraparenchymal papillary meningioma of brainstem: case report and literature review

    Directory of Open Access Journals (Sweden)

    Jiang Xiao-Bing

    2012-01-01

    Full Text Available Abstract Both intraparenchymal papillary meningioma and papillary meningioma with cyst formation of brainstem have never been reported. The authors present an extremely rare case of patient with intraparenchymal papillary meningioma of brainstem. A 23-year-old Chinese male presented with a 4-month history of progressive left upper limb and facial nerve palsy. Magnetic resonance imaging revealed a cystic-solid, heterogeneously enhancing mass in pons and right cerebral peduncle with no dural attachment. The tumor was totally removed via subtemporal approach. During surgery, the lesion was found to be completely intraparenchymal. Histological and immunohistochemical examinations were compatible with the diagnosis of papillary meningioma. The lesion recurred nine months after primary surgery, a second surgery followed by radiotherapy was performed. Till to now (nearly 2 years after the treatment, the patient is tumor free survival. Intraparenchymal meningioma of brainstem with cystic formation is very rare, however, it should be considered as a differential diagnosis of a brainstem neoplasm. The present case strongly recommended that postoperative radiotherapy was essential for the patients with papillary meningiomas.

  12. Interactions between visceral afferent signaling and stimulus processing

    Directory of Open Access Journals (Sweden)

    Hugo D Critchley

    2015-08-01

    Full Text Available Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed.

  13. Cross-Modal Calibration of Vestibular Afference for Human Balance.

    Directory of Open Access Journals (Sweden)

    Martin E Héroux

    Full Text Available To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8 stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.

  14. Proton spectroscopy in the narcoleptic syndrome. Is there evidence of a brainstem lesion?

    Science.gov (United States)

    Ellis, C M; Simmons, A; Lemmens, G; Williams, S C; Parkes, J D

    1998-02-01

    There is controversy regarding the relationship of structural or biochemical brainstem lesions to "idiopathic" narcolepsy. Most cases of the narcoleptic syndrome are considered to be idiopathic because no structural lesion is detectable, although some cases of secondary narcolepsy are known to be associated with no structural brainstem lesions. Using proton spectroscopy, we determined levels of ventral pontine metabolite pools in 12 normal subjects and 12 subjects with idiopathic narcolepsy. REM sleep is generated in ventral pontine areas. Proton spectroscopy was used to study levels of N-acetyl aspartate (NAA) as a marker of cell mass, creatine and phosphocreatine (Cr + PCr), and choline (Cho). The intensity of the peaks, as determined by the area under the peak (AUP), was measured. The AUP correlates with the quantity of chemical present. In this study, the ratios of NAA to Cr + PCr were similar in normal subjects and in narcoleptic subjects with idiopathic narcolepsy. No differences in measured metabolic ratio were observed in subjects who slept during the scan procedure compared with those who remained awake. Subjects with "symptomatic" narcolepsy accompanied by an obvious structural brain lesion were not studied. Proton spectroscopy of the brain initiates a new kind of neurochemistry, allowing the noninvasive study of metabolic pools in the living human brain without the use of any kind of tracer or radioactive molecule. In this study, there was no evidence of cell loss in the ventral pontine areas of subjects with the narcoleptic syndrome.

  15. Axo-somatic synapses in the normal and X-irradiated dendate gyrus; factors affecting the density of afferent innervation

    International Nuclear Information System (INIS)

    Lee, K.S.; Gerbrandt, L.; Lynch, G.

    1982-01-01

    The density of synaptic input to the somata of dentate gyrus granule cells was examined utilizing quantitative electron microscopic techniques. In control (non-irradiated) material, greater numbers of axo-somatic synapses were observed in the superficial, earlier-generated cells as compared to the deep, later-generated cells. We further studied the X-irradiated dentate gyrus, in which the majority of granule cells were destroyed during postnatal genesis. The surviving cells displayed a density of innervation on their somata which exceeded that observed in either layer of the control material. These data are discussed in terms of the possible contribution of afferent-target cell interactions to the regulation of the density of synaptic innervation. (Auth.)

  16. Axo-somatic synapses in the normal and X-irradiated dendate gyrus; factors affecting the density of afferent innervation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K S [Max-Planck-Institut fuer Psychiatrie, Muenchen (Germany, F.R.); Gerbrandt, L [Neuroscience Research Program, Boston, MA (USA); Lynch, G [California Univ., Irvine (USA)

    1982-10-07

    The density of synaptic input to the somata of dentate gyrus granule cells was examined utilizing quantitative electron microscopic techniques. In control (non-irradiated) material, greater numbers of axo-somatic synapses were observed in the superficial, earlier-generated cells as compared to the deep, later-generated cells. We further studied the X-irradiated dentate gyrus, in which the majority of granule cells were destroyed during postnatal genesis. The surviving cells displayed a density of innervation on their somata which exceeded that observed in either layer of the control material. These data are discussed in terms of the possible contribution of afferent-target cell interactions to the regulation of the density of synaptic innervation.

  17. Development of fusimotor innervation correlates with group Ia afferents but is independent of neurotrophin-3

    NARCIS (Netherlands)

    Ringstedt, T; Copray, S; Walro, J; Kucera, J

    1998-01-01

    Fusimotor neurons, group Ia afferents and muscle spindles are absent in mutant mice lacking the gene for neurotrophin-3 (NT3). To partition the effect of Ia afferent or spindle absence from that of NT3 deprivation on fusimotor neuron development, we examined the fusimotor system in a mutant mouse

  18. Tuning of spinal networks to frequency components of spike trains in individual afferents.

    Science.gov (United States)

    Koerber, H R; Seymour, A W; Mendell, L M

    1991-10-01

    Cord dorsum potentials (CDPs) evoked by primary afferent fiber stimulation reflect the response of postsynaptic dorsal horn neurons. The properties of these CDPs have been shown to vary in accordance with the type of primary afferent fiber stimulated. The purpose of the present study was to determine the relationships between frequency modulation of the afferent input trains, the amplitude modulation of the evoked CDPs, and the type of primary afferent stimulated. The somata of individual primary afferent fibers were impaled in the L7 dorsal root ganglion of alpha-chloralose-anesthetized cats. Action potentials (APs) were evoked in single identified afferents via the intracellular microelectrode while simultaneously recording the response of dorsal horn neurons as CDPs, or activity of individual target interneurons recorded extracellularly or intracellularly. APs were evoked in afferents using temporal patterns identical to the responses of selected afferents to natural stimulation of their receptive fields. Two such physiologically realistic trains, one recorded from a hair follicle and the other from a slowly adapting type 1 receptor, were chosen as standard test trains. Modulation of CDP amplitude in response to this frequency-modulated afferent activity varied according to the type of peripheral mechanoreceptor innervated. Dorsal horn networks driven by A beta afferents innervating hair follicles, rapidly adapting pad (Krause end bulb), and field receptors seemed "tuned" to amplify the onset of activity in single afferents. Networks driven by afferents innervating down hair follicles and pacinian corpuscles required more high-frequency activity to elicit their peak response. Dorsal horn networks driven by afferents innervating slowly adapting receptors including high-threshold mechanoreceptors exhibited some sensitivity to the instantaneous frequency, but in general they reproduced the activity in the afferent fiber much more faithfully. Responses of

  19. Diffusion tensor imaging of the brainstem in children with achondroplasia.

    Science.gov (United States)

    Bosemani, Thangamadhan; Orman, Gunes; Carson, Kathryn A; Meoded, Avner; Huisman, Thierry A G M; Poretti, Andrea

    2014-11-01

    The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial, and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo-15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo-14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In

  20. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent

  1. Mosaic Evolution of Brainstem Motor Nuclei in Catarrhine Primates

    Directory of Open Access Journals (Sweden)

    Seth D. Dobson

    2011-01-01

    Full Text Available Facial motor nucleus volume coevolves with both social group size and primary visual cortex volume in catarrhine primates as part of a specialized neuroethological system for communication using facial expressions. Here, we examine whether facial nucleus volume also coevolves with functionally unrelated brainstem motor nuclei (trigeminal motor and hypoglossal due to developmental constraints. Using phylogenetically informed multiple regression analyses of previously published brain component data, we demonstrate that facial nucleus volume is not correlated with the volume of other motor nuclei after controlling for medulla volume. Our results show that brainstem motor nuclei can evolve independently of other developmentally linked structures in association with specific behavioral ecological conditions. This finding provides additional support for the mosaic view of brain evolution.

  2. Automatic hearing loss detection system based on auditory brainstem response

    International Nuclear Information System (INIS)

    Aldonate, J; Mercuri, C; Reta, J; Biurrun, J; Bonell, C; Gentiletti, G; Escobar, S; Acevedo, R

    2007-01-01

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory

  3. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    Science.gov (United States)

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Immunohistochemical Mapping of TRK-Fused Gene Products in the Rat Brainstem

    International Nuclear Information System (INIS)

    Takeuchi, Shigeko; Masuda, Chiaki; Maebayashi, Hisae; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It was since reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. As shown in the accompanying paper, we produced an antibody to rat TFG and used it to localize TFG to selected neurons in specific regions. In the present study, we mapped the TFG-positive neurons in the brainstem, cerebellum, and spinal cord of rats. In the brainstem, neurons intensely positive for TFG were distributed in the raphe nuclei, the gigantocellular reticular nucleus, the reticulotegmental nucleus of the pons, and some cranial nerve nuclei such as the trigeminal nuclei, the vestibulocochlear nuclei, and the dorsal motor nucleus of the vagus. Purkinje cells in the cerebellum and motor neurons in the spinal anterior horn were also positive for TFG. These results provide fundamental data for studying the functions of TFG in the brain

  5. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  6. Comprehensive evaluation of a child with an auditory brainstem implant.

    Science.gov (United States)

    Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P

    2008-02-01

    We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.

  7. Anorexia‐cachexia syndrome in hepatoma tumour‐bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC‐1/GDF15

    Science.gov (United States)

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N.; Langhans, Wolfgang; Lutz, Thomas A.; Blomqvist, Anders

    2016-01-01

    Abstract Background The cancer‐anorexia‐cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour‐derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour‐derived macrophage inhibitory cytokine‐1 (MIC‐1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC‐1 in mice. Methods Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC‐1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. Results In tumour‐bearing sham‐operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer‐induced anorexia or body weight loss. Tumour‐bearing rats had substantially increased MIC‐1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. Conclusions These findings demonstrate the importance of the AP in the mediation of cancer‐dependent anorexia and body weight loss and support a pathological role of MIC‐1 as a tumour‐derived factor mediating CACS, possibly via an AP

  8. Anorexia-cachexia syndrome in hepatoma tumour-bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC-1/GDF15.

    Science.gov (United States)

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N; Langhans, Wolfgang; Lutz, Thomas A; Blomqvist, Anders; Riediger, Thomas

    2017-06-01

    The cancer-anorexia-cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour-derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour-derived macrophage inhibitory cytokine-1 (MIC-1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC-1 in mice. Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC-1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. In tumour-bearing sham-operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer-induced anorexia or body weight loss. Tumour-bearing rats had substantially increased MIC-1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. These findings demonstrate the importance of the AP in the mediation of cancer-dependent anorexia and body weight loss and support a pathological role of MIC-1 as a tumour-derived factor mediating CACS, possibly via an AP-dependent action. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  9. Progressive supranuclear palsy: neuronal and glial cytoskeletal pathology in the higher order processing autonomic nuclei of the lower brainstem.

    Science.gov (United States)

    Rüb, U; Del Tredici, K; Schultz, C; de Vos, R A I; Jansen Steur, E N H; Arai, K; Braak, H

    2002-02-01

    The medial and lateral parabrachial nuclei (MPB, LPB), the gigantocellular reticular nucleus (GI), the raphes magnus (RMG) and raphes obscurus nuclei (ROB), as well as the intermediate reticular zone (IRZ) represent pivotal subordinate brainstem centres, all of which control autonomic functions. In this study, we investigated the occurrence and severity of the neuronal and glial cytoskeletal pathology in these six brainstem nuclei from 17 individuals with clinically diagnosed and neuropathologically confirmed progressive supranuclear palsy (PSP). The association between the severity of the pathology and the duration of the disease was investigated by means of correlation analysis. The brainstem nuclei in all of the PSP cases were affected by the neuronal cytoskeletal pathology, with the IRZ and GI regularly showing severe involvement, the MPB, RMG, and ROB marked involvement, and the LPB mild involvement. In the six nuclear greys studied, glial cells undergo alterations of their cytoskeleton on an irregular basis, whereby diseased oligodendrocytes predominantly presented as coiled bodies and affected astrocytes as thorn-shaped astrocytes. In all six nuclei, the severity of the neuronal or glial cytoskeletal pathology showed no correlation with the duration of PSP. In view of their functional role, the neuronal pathology in the nuclei studied offers a possible explanation for the autonomic dysfunctions that eventually develop in the course of PSP.

  10. Stimulation of renal afferent fibers leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata.

    Science.gov (United States)

    Nishi, Erika E; Martins, Beatriz S; Milanez, Maycon I O; Lopes, Nathalia R; de Melo, Jose F; Pontes, Roberto B; Girardi, Adriana C; Campos, Ruy R; Bergamaschi, Cássia T

    2017-05-01

    Presympathetic neurons in the rostral ventrolateral medulla (RVLM) including the adrenergic cell groups play a major role in the modulation of several reflexes required for the control of sympathetic vasomotor tone and blood pressure (BP). Moreover, sympathetic vasomotor drive to the kidneys influence natriuresis and diuresis by inhibiting the cAMP/PKA pathway and redistributing the Na + /H + exchanger isoform 3 (NHE3) to the body of the microvilli in the proximal tubules. In this study we aimed to evaluate the effects of renal afferents stimulation on (1) the neurochemical phenotype of Fos expressing neurons in the medulla oblongata and (2) the level of abundance and phosphorylation of NHE3 in the renal cortex. We found that electrical stimulation of renal afferents increased heart rate and BP transiently and caused activation of tyrosine hydroxylase (TH)-containing neurons in the RVLM and non-TH neurons in the NTS. Additionally, activation of the inhibitory renorenal reflex over a 30-min period resulted in increased natriuresis and diuresis associated with increased phosphorylation of NHE3 at serine 552, a surrogate for reduced activity of this exchanger, in the contralateral kidney. This effect was not dependent of BP changes considering that no effects on natriuresis or diuresis were found in the ipsilateral-stimulated kidney. Therefore, our data show that renal afferents leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata. When renorenal reflex is induced, NHE3 exchanger activity appears to be decreased, resulting in decreased sodium and water reabsorption in the contralateral kidney. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fine structural survey of the intermediate subnucleus of the nucleus tractus solitarii and its glossopharyngeal afferent terminals.

    Science.gov (United States)

    Hayakawa, Tetsu; Maeda, Seishi; Tanaka, Koichi; Seki, Makoto

    2005-10-01

    The intermediate subnucleus of the nucleus tractus solitarii (imNTS) receives somatosensory inputs from the soft palate and pharynx, and projects onto the nucleus ambiguus, thus serving as a relay nucleus for swallowing. The ultrastructure and synaptology of the rat imNTS, and its glossopharyngeal afferent terminals, have been examined with cholera toxin-conjugated horseradish peroxidase (CT-HRP) as an anterograde tracer. The imNTS contained oval or ellipsoid-shaped, small to medium-sized neurons (18.2 x 11.4 microm) with little cytoplasm, few cell organelles and an irregularly shaped nucleus. The cytoplasm often contained one or two nucleolus-like stigmoid bodies. The average number of axosomatic terminals was 1.8 per profile. About 83% of them contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), while about 17% contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). The neuropil contained small or large axodendritic terminals, and about 92% of them were Gray's type I. When CT-HRP was injected into the nodose ganglion, many labeled terminals were found in the imNTS. All anterogradely labeled terminals contacted dendrites but not somata. The labeled terminals were usually large (2.69+/-0.09 mum) and exclusively of Gray's type I. They often contacted more than two dendrites, were covered with glial processes, and formed synaptic glomeruli. A small unlabeled terminal occasionally made an asymmetric synaptic contact with a large labeled terminal. The large glossopharyngeal afferent terminals and the neurons containing stigmoid bodies characterized the imNTS neurons that received pharyngeal afferents.

  12. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability

    OpenAIRE

    Wan, Ruiqian; Weigand, Letitia A.; Bateman, Ryan; Griffioen, Kathleen; Mendelowitz, David; Mattson, Mark P.

    2014-01-01

    Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Mice with a BDNF haplo...

  13. Intrinsic brainstem schwannoma – A rare clinical entity and a histological enigma

    Directory of Open Access Journals (Sweden)

    Anil Kumar Sharma

    2016-01-01

    Full Text Available Intraparenchymal schwannomas arising in the brainstem are very rare, and only eight cases have been reported in literature till now. We report an intraparenchymal brainstem schwannoma presenting with the classical clinical presentation of an intrinsic brainstem lesion, and discuss its clinicoradiological characteristics and histological origins. We highlight the importance of an intraoperative frozen section diagnosis in such cases. Intraoperative tissue diagnosis significantly may alter the surgical strategy, which should be aimed at near total intracapsular decompression of the schwannoma.

  14. Computed tomographic features of afferent loop syndrome: pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Zissin, R. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Hertz, M. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Paran, H. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Surgery ' A' , Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Osadchy, A. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Gayer, G. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Assaf Harofe Medical Center, Zrifin, Sackler Faculty of Medicine, Tel Aviv (Israel)

    2005-04-15

    This pictorial essay reviews the computed tomography (CT) findings of afferent loop syndrome (ALS) in various pathological conditions to demonstrate the contribution of a common imaging modality-that is, abdominal CT, used nowadays for various abdominal complaints-to the diagnosis of ALS. ALS is caused by obstruction of the duodenum and jejunum proximal to a gastrojejunostomy anastomosis. It is a rare complication after Billroth II subtotal gastrectomy and even more rare after total or subtotal gastrectomy with Roux-en-Y reconstruction. Although currently advanced medical treatment and endoscopic interventions have dramatically decreased the necessity of surgery for peptic ulcer disease, ALS may appear years after previously common operations. Alternatively, the use of surgical resection for early gastric cancer nowadays leads to an increasing rate of malignancy-related ALS. Clinically, ALS may be difficult to diagnose as its presentation may be vague and nonspecific, but it has a characteristic appearance on CT. Clinicians and radiologists should therefore be familiar with this rare complication. Prompt recognition and correct diagnosis of this syndrome and its probable etiology are important as a guide for treatment. This review illustrates the CT features of ALS in various conditions. (author)

  15. Spinal cord stimulation paresthesia and activity of primary afferents.

    Science.gov (United States)

    North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay

    2012-10-01

    A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.

  16. MuSC is involved in regulating axonal fasciculation of mouse primary vestibular afferents.

    Science.gov (United States)

    Kawauchi, Daisuke; Kobayashi, Hiroaki; Sekine-Aizawa, Yoko; Fujita, Shinobu C; Murakami, Fujio

    2003-10-01

    Regulation of axonal fasciculation plays an important role in the precise patterning of neural circuits. Selective fasciculation contributes to the sorting of different types of axons and prevents the misrouting of axons. However, axons must defasciculate once they reach the target area. To study the regulation of fasciculation, we focused on the primary vestibulo-cerebellar afferents (PVAs), which show a dramatic change from fasciculated axon bundles to defasciculated individual axons at their target region, the cerebellar primordium. To understand how fasciculation and defasciculation are regulated in this system, we investigated the roles of murine SC1-related protein (MuSC), a molecule belonging to the immunoglobulin superfamily. We show: (i) by comparing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) labelling and anti-MuSC immunohistochemistry, that downregulation of MuSC in PVAs during development is concomitant with the defasciculation of PVA axons; (ii) in a binding assay with cells expressing MuSC, that MuSC has cell-adhesive activity via a homophilic binding mechanism, and this activity is increased by multimerization; and (iii) that MuSC also displays neurite outgrowth-promoting activity in vestibular ganglion cultures. These findings suggest that MuSC is involved in axonal fasciculation and its downregulation may help to initiate the defasciculation of PVAs.

  17. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum

    OpenAIRE

    Feng, Bin; Brumovsky, Pablo R.; Gebhart, Gerald F.

    2010-01-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding charac...

  18. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just

  19. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke

    DEFF Research Database (Denmark)

    Mazzaro, Nazarena; Nielsen, Jørgen Feldbæk; Grey, Michael James

    2007-01-01

    We investigated the contribution of afferent feedback to the soleus (SOL) muscle activity during the stance phase of walking in patients with spastic stroke. A total of 24 patients with hemiparetic spastic stroke and age-matched healthy volunteers participated in the study. A robotic actuator...... by the Ashworth score. These results indicate that although the stretch reflex response is facilitated during spastic gait, the contribution of afferent feedback to the ongoing locomotor SOL activity is depressed in patients with spastic stroke....

  20. Herpes simplex encephalitis with thalamic, brainstem and cerebellar involvement.

    Science.gov (United States)

    Garg, Meenal; Kulkarni, Shilpa; Udwadia Hegde, Anaita

    2018-04-01

    Herpes simplex virus encephalitis is a common and treatable cause of acute encephalitis in all age groups. Certain radiological features such as temporal parenchymal involvement facilitate the diagnosis. The use of herpes simplex virus polymerase chain reaction has expanded the clinical and imaging spectrum. We report the case of a young patient who presented with a movement disorder and predominant involvement of thalami, brainstem and cerebellum on magnetic resonance imaging, and was diagnosed with herpes simplex virus encephalitis. Differentiation from Japanese encephalitis may be difficult in these patients, especially in endemic areas, and may necessitate the use of relevant investigations in all patients.

  1. Descending Command Neurons in the Brainstem that Halt Locomotion

    DEFF Research Database (Denmark)

    Bouvier, Julien; Caggiano, Vittorio; Leiras, Roberto

    2015-01-01

    identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons. We find that those neurons constitute a major excitatory pathway to locomotor areas of the ventral spinal cord....... Selective activation of V2a neurons of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a "stop neurons" represent a glutamatergic...

  2. Brainstem and limbic encephalitis with paraneoplastic neuromyelitis optica.

    Science.gov (United States)

    Moussawi, Khaled; Lin, David J; Matiello, Marcelo; Chew, Sheena; Morganstern, Daniel; Vaitkevicius, Henrikas

    2016-01-01

    The spectrum of disorders associated with anti-neuromyelitis optica (NMO) antibody is being extended to include infrequent instances associated with cancer. We describe a patient with brainstem and limbic encephalitis from NMO-immunoglobulin G in serum and cerebrospinal fluid in the context of newly diagnosed breast cancer. The neurological features markedly improved with excision of her breast cancer and immune suppressive therapy. This case further broadens the NMO spectrum disorders (NMOSD) by an association between NMOSD and cancer and raises the question of coincidental occurrence and the appropriate circumstances to search for a tumor in certain instances of NMO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Age-related changes of neurochemically different subpopulations of cardiac spinal afferent neurons in rats.

    Science.gov (United States)

    Guić, Maja Marinović; Runtić, Branka; Košta, Vana; Aljinović, Jure; Grković, Ivica

    2013-08-01

    This study investigated the effect of aging on cardiac spinal afferent neurons in the rat. A patch loaded with retrograde tracer Fast Blue (FB) was applied to all chambers of the rat heart. Morphological and neurochemical characteristics of labeled cardiac spinal afferent neurons were assessed in young (2 months) and old (2 years) rats using markers for likely unmyelinated (isolectin B4; IB4) and myelinated (neurofilament 200; N52) neurons. The number of cardiac spinal afferent neurons decreased in senescence to 15% of that found in young rats (1604 vs. 248). The size of neuronal soma as well as proportion of IB4+ neurons increased significantly, whereas the proportion of N52+ neurons decreased significantly in senescence. Unlike somatic spinal afferents, neurochemically different populations of cardiac spinal afferent neurons experience morphological and neurochemical changes related to aging. A major decrease in total number of cardiac spinal afferent neurons occurs in senescence. The proportion of N52+ neurons decreased in senescence, but it seems that nociceptive innervation is preserved due to increased proportion and size of IB4+ unmyelinated neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The role of the renal afferent and efferent nerve fibres in heart failure

    Directory of Open Access Journals (Sweden)

    Lindsea C Booth

    2015-10-01

    Full Text Available Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibres. In heart failure (HF there is an increase in renal sympathetic nerve activity, which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibres, afferent renal nerve fibres, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.

  5. The role of the renal afferent and efferent nerve fibers in heart failure

    Science.gov (United States)

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  6. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    Science.gov (United States)

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  7. Afferent neuronal control of type-I gonadotropin releasing hormone (GnRH neurons in the human

    Directory of Open Access Journals (Sweden)

    Erik eHrabovszky

    2013-09-01

    Full Text Available Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational- and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and neurokinin B systems.

  8. Afferent Connections to the Rostrolateral Part of the Periaqueductal Gray: A Critical Region Influencing the Motivation Drive to Hunt and Forage

    Directory of Open Access Journals (Sweden)

    Sandra Regina Mota-Ortiz

    2009-01-01

    Full Text Available Previous studies have shown that a particular site in the periaqueductal gray (PAG, the rostrolateral PAG, influences the motivation drive to forage or hunt. To have a deeper understanding on the putative paths involved in the decision-making process between foraging, hunting, and other behavioral responses, in the present investigation, we carried out a systematic analysis of the neural inputs to the rostrolateral PAG (rlPAG, using Fluorogold as a retrograde tracer. According to the present findings, the rlPAG appears to be importantly driven by medial prefrontal cortical areas involved in controlling attention-related and decision-making processes. Moreover, the rlPAG also receives a wealth of information from different amygdalar, hypothalamic, and brainstem sites related to feeding, drinking, or hunting behavioral responses. Therefore, this unique combination of afferent connections puts the rlPAG in a privileged position to influence the motivation drive to choose whether hunting and foraging would be the most appropriate adaptive responses.

  9. Brain-stem evoked potentials and noise effects in seagulls.

    Science.gov (United States)

    Counter, S A

    1985-01-01

    Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.

  10. Clinical analysis of the outcome of patients with brainstem hemorrhage

    International Nuclear Information System (INIS)

    Arimoto, Hirohiko; Takasato, Yoshio; Masaoka, Hiroyuki

    2008-01-01

    To identify prognostic factors in patients with brainstem hemorrhage, we analyzed their clinical symptoms and laboratory data on admission to our hospital. In 70 patients with brainstem hemorrhage (51 men and 19 women aged 29-93, with a mean of 59 gears) who had been admitted to our hospital from 1995 to 2000, we statistically evaluated the association of the outcome with their age and clinical symptoms on admission, blood glucose levels and white blood counts within 6 hours of admission, and the volume and extent of hematoma, concomitant hydrocephalus, and intraventricular perforation on admission CT scans. The mortality tended to be higher, but not significantly (P=0.07), in patients aged 70 years or older (83%) than in those aged less than 70 years (55%). Quadriplegia or decerebrate rigidity (P 2 or higher (P<0.01) on admission were significantly correlated with the prognosis. Hematoma volumes of 6 ml or larger on CT scans were most strongly correlated with the prognosis (P<0.001). Central hematoma and hematoma with extension to the midbrain, thalamus, or medulla oblongata (P<0.05), as well as hemorrhage complicated by hydrocephalus or intraventricular perforation (P<0.01), were correlated with the prognosis. (author)

  11. Brainstem encephalitis and acute polyneuropathy associated with hepatitis E infection.

    Science.gov (United States)

    Salim, Omar Jabbar; Davidson, Amy; Li, Kathy; Leach, John Paul; Heath, Craig

    2017-09-11

    A 59-year-old man presented with feverish illness. His Glasgow Coma Scale was 15, had reduced visual acuity in the left eye with partial left ptosis and mild left hemiparesis with an extensor left plantar. Over 48 hours, he accrued multiple cranial nerves palsies and progressed to a flaccid paralysis necessitating admission to an intensive care unit.Cerebrospinal fluid (CSF) study showed 20 lymphocytes and raised protein. Viral and bacterial PCRs were negative. Samples for Lyme, blood-borne viruses, syphilis and autoantibodies were also negative. MRI brain showed T2 abnormalities within the brainstem. Nerve conduction studies revealed an acute motor and sensory axonal neuropathy pattern of Guillian Barre Syndrome (GBS). The patient was treated for both infective and inflammatory causes of brainstem encephalitis and GBS.Retrospective studies confirmed the presence of hepatitis E virus (HEV) RNA in CSF and serum studies showed positive HEV IgG and IgM prior to intravenous infusion. After 3 months of intensive rehabilitation, the patient was discharged home walking with a frame. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  13. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Directory of Open Access Journals (Sweden)

    Rongfeng Hu

    2016-10-01

    Full Text Available The basal forebrain cholinergic system (BFCS robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum (LS, central amygdala (CeA, paraventricular nucleus of hypothalamus (PVH, dorsal raphe (DRN and parabrachial nucleus (PBN. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal-hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function.

  14. Asymmetric Macular Structural Damage Is Associated With Relative Afferent Pupillary Defects in Patients With Glaucoma

    Science.gov (United States)

    Gracitelli, Carolina P. B.; Tatham, Andrew J.; Zangwill, Linda M.; Weinreb, Robert N.; Abe, Ricardo Y.; Diniz-Filho, Alberto; Paranhos, Augusto; Baig, Saif; Medeiros, Felipe A.

    2016-01-01

    Purpose We examined the relationship between relative afferent pupillary defects (RAPDs) and macular structural damage measured by macular thickness and macular ganglion cell-inner plexiform layer (mGCIPL) thickness in patients with glaucoma. Methods A cross-sectional study was done of 106 glaucoma patients and 85 healthy individuals from the Diagnostic Innovations in Glaucoma Study. All subjects underwent standard automated perimetry (SAP) and optic nerve and macular imaging using Cirrus Spectral Domain Optical Coherence Tomography (SDOCT). Glaucoma was defined as repeatable abnormal SAP or progressive glaucomatous changes on stereo photographs. Pupil responses were assessed using an automated pupillometer, which records the magnitude of RAPD (RAPD score), with additional RAPD scores recorded for each of a series of colored stimuli (blue, red, green, and yellow). The relationship between RAPD score and intereye differences (right minus left eye) in circumpapillary retinal nerve fiber layer (cpRNFL) thickness, mGCIPL, macular thickness, and SAP mean deviation (MD), was examined using linear regression. Results There was fair correlation between RAPD score and asymmetric macular structural damage measured by intereye difference in mGCIPL thickness (R2 = 0.285, P glaucoma. PMID:27064394

  15. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular

  16. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine

    Directory of Open Access Journals (Sweden)

    Zhao J

    2017-12-01

    Full Text Available Jingbo Zhao,1 Jian Yang,1 Donghua Liao,1 Hans Gregersen2 1Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 2Giome Center, Department of Surgery, Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong Background: Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective: We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design: Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR, and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results: Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05. The stress relaxed less in the diabetic intestinal segment (P<0.05. Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion: Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. Keywords: afferents, spike rate, stress–strain, creep

  17. Acute cholangitis due to afferent loop syndrome after a Whipple procedure: a case report.

    Science.gov (United States)

    Spiliotis, John; Karnabatidis, Demetrios; Vaxevanidou, Archodoula; Datsis, Anastasios C; Rogdakis, Athanasios; Zacharis, Georgios; Siamblis, Demetrios

    2009-08-25

    Patients with resection of stomach and especially with Billroth II reconstruction (gastro jejunal anastomosis), are more likely to develop afferent loop syndrome which is a rare complication. When the afferent part is obstructed, biliary and pancreatic secretions accumulate and cause the distention of this part. In the case of a complete obstruction (rare), there is a high risk developing necrosis and perforation. This complication has been reported once in the literature. A 54-year-old Greek male had undergone a pancreato-duodenectomy (Whipple procedure) one year earlier due to a pancreatic adenocarcinoma. Approximately 10 months after the initial operation, the patient started having episodes of cholangitis (fever, jaundice) and abdominal pain. This condition progressively worsened and the suspicion of local recurrence or stenosis of the biliary-jejunal anastomosis was discussed. A few days before his admission the patient developed signs of septic cholangitis. Our case demonstrates a rare complication with serious clinical manifestation of the afferent loop syndrome. This advanced form of afferent loop syndrome led to the development of huge enterobiliary reflux, which had a serious clinical manifestation as cholangitis and systemic sepsis, due to bacterial overgrowth, which usually present in the afferent loop. The diagnosis is difficult and the interventional radiology gives all the details to support the therapeutic decision making. A variety of factors can contribute to its development including adhesions, kinking and angulation of the loop, stenosis of gastro-jejunal anastomosis and internal herniation. In order to decompress the afferent loop dilatation due to adhesions, a lateral-lateral jejunal anastomosis was performed between the afferent loop and a small bowel loop.

  18. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.

    Science.gov (United States)

    Peters, James H; Gallaher, Zachary R; Ryu, Vitaly; Czaja, Krzysztof

    2013-10-15

    Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery. Copyright © 2013 Wiley Periodicals, Inc.

  19. The spatiotemporal relationships between chondroitin sulfate proteoglycans and terminations of calcitonin gene related peptide and parvalbumin immunoreactive afferents in the spinal cord of mouse embryos.

    Science.gov (United States)

    Wang, Liqing; Yu, Chao; Wang, Jun; Zhao, Hui; Chan, Sun-On

    2017-08-10

    Chondroitin sulfate (CS) proteoglycans (PGs) are a family of complex molecules in the extracellular matrix and cell surface that regulate axon growth and guidance during development of the central nervous system. In this study, the expression of CSPGs was investigated in the mouse spinal cord at late embryonic and neonatal stages using CS-56 antibody. CS immunoreactivity was observed abundantly in ventral regions of spinal cord of embryonic day (E) 15 embryos. At E16 to E18, CS expression spread dorsally, but never reached the superficial layers of the dorsal horn. This pattern was maintained until postnatal day 4, the latest stage examined. Antibodies against calcitonin gene related peptide (CGRP) and parvalbumin (PV) were employed to label primary afferents from nociceptors and proprioceptors, respectively. CGRP-immunoreactive fibers terminated in the superficial regions of the dorsal horn where CSPGs were weakly expressed, whereas PV-immunoreactive fibers were found in CSPG-rich regions in the ventral horn. Therefore, we conclude that CS expression is spatiotemporally regulated in the spinal cord, which correlates to the termination of sensory afferents. This pattern suggests a role of CSPGs on patterning afferents in the spinal cord, probably through a differential response of axons to these growth inhibitory molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    Comi, G.; Martinelli, V.; Medaglini, S.; Locatelli, T.; Magnani, G.; Poggi, A.; Triulzi, F.

    1988-01-01

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  1. Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons.

    Directory of Open Access Journals (Sweden)

    Ramón A Piñol

    Full Text Available Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2 expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV. We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs, neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection.

  2. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jer-Yuan; Crawley, Suzanne; Chen, Michael; Ayupova, Dina A.; Lindhout, Darrin A.; Higbee, Jared; Kutach, Alan; Joo, William; Gao, Zhengyu; Fu, Diana; To, Carmen; Mondal, Kalyani; Li, Betty; Kekatpure, Avantika; Wang, Marilyn; Laird, Teresa; Horner, Geoffrey; Chan, Jackie; McEntee, Michele; Lopez, Manuel; Lakshminarasimhan, Damodharan; White, Andre; Wang, Sheng-Ping; Yao, Jun; Yie, Junming; Matern, Hugo; Solloway, Mark; Haldankar, Raj; Parsons, Thomas; Tang, Jie; Shen, Wenyan D.; Alice Chen, Yu; Tian, Hui; Allan, Bernard B.

    2017-09-27

    Under homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure1,2. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand3. Recent studies have identified brain areas outside the hypothalamus that are activated under these ‘non-homeostatic’ conditions4,5,6, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive. Here we identify glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as a brainstem-restricted receptor for growth and differentiation factor 15 (GDF15). GDF15 regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses; we show that Gfral knockout mice are hyperphagic under stressed conditions and are resistant to chemotherapy-induced anorexia and body weight loss. GDF15 activates GFRAL-expressing neurons localized exclusively in the area postrema and nucleus tractus solitarius of the mouse brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which constitute part of the ‘emergency circuit’ that shapes feeding responses to stressful conditions7. GDF15 levels increase in response to tissue stress and injury, and elevated levels are associated with body weight loss in numerous chronic human diseases8,9. By isolating GFRAL as the receptor for GDF15-induced anorexia and weight loss, we identify a mechanistic basis for the non-homeostatic regulation of neural circuitry by a peripheral signal associated with tissue damage and stress. These findings provide opportunities to develop therapeutic agents for the treatment of disorders with altered energy demand.

  3. Visualization of Oxytocin Release that Mediates Paired Pulse Facilitation in Hypothalamic Pathways to Brainstem Autonomic Neurons

    Science.gov (United States)

    Piñol, Ramón A.; Jameson, Heather; Popratiloff, Anastas; Lee, Norman H.; Mendelowitz, David

    2014-01-01

    Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2) expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV). We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs), neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection. PMID:25379676

  4. The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention.

    Science.gov (United States)

    Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias

    2017-10-10

    Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.

  5. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  6. Inhibition of micturition reflex by activation of somatic afferents in posterior femoral cutaneous nerve.

    Science.gov (United States)

    Tai, Changfeng; Shen, Bing; Mally, Abhijith D; Zhang, Fan; Zhao, Shouguo; Wang, Jicheng; Roppolo, James R; de Groat, William C

    2012-10-01

    This study determined if activation of somatic afferents in posterior femoral cutaneous nerve (PFCN) could modulate the micturition reflex recorded under isovolumetric conditions in α-chloralose anaesthetized cats. PFCN stimulation inhibited reflex bladder activity and significantly (P acid (AA). The optimal frequency for PFCN stimulation-induced bladder inhibition was between 3 and 10 Hz, and a minimal stimulation intensity of half of the threshold for inducing anal twitching was required. Bilateral pudendal nerve transection eliminated PFCN stimulation-induced anal twitching but did not change the stimulation-induced bladder inhibition, excluding the involvement of pudendal afferent or efferent axons in PFCN afferent inhibition.Mechanical or electrical stimulation on the skin surface in the PFCN dermatome also inhibited bladder activity. Prolonged (2 × 30 min) PFCN stimulation induced a post-stimulation inhibition that persists for at least 2 h. This study revealed a new cutaneous-bladder reflex activated by PFCN afferents. Although the mechanisms and physiological functions of this cutaneous-bladder reflex need to be further studied, our data raise the possibility that stimulation of PFCN afferents might be useful clinically for the treatment of overactive bladder symptoms.

  7. Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles?

    Science.gov (United States)

    Caron, Guillaume; Decherchi, Patrick; Marqueste, Tanguy

    2015-09-01

    This study was designed to investigate the metabosensitive afferent response evoked by electrically induced fatigue (EIF), lactic acid (LA) and potassium chloride (KCl) in three muscle types. We recorded the activity of groups III-IV afferents originating from soleus, gastrocnemius and tibialis anterior muscles. Our data showed a same pattern of response in the three muscles after chemical injections, i.e., a bell curve with maximal discharge rate at 1 mM for LA injections and a linear relationship between KCl concentrations and the afferent discharge rate. Furthermore, a stronger response was recorded after EIF in the gastrocnemius muscle compared to the two other muscles. The change in afferent discharge after 1 mM LA injection was higher for the gastrocnemius muscle compared to the response obtained with the corresponding concentration applied in the two other muscles, whereas changes to KCl injections did not dramatically differ between the three muscles. We conclude that anatomical (mass, phenotype, vascularization, receptor and afferent density…) and functional (flexor vs. extensor) differences between muscles could explain the amplitude of these responses.

  8. The auditory brainstem response in two lizard species

    DEFF Research Database (Denmark)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong

    2010-01-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal...... animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform......). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than...

  9. Interplay between mast cells, enterochromaffin cells, and sensory signaling in the aging human bowel.

    Science.gov (United States)

    Yu, Y; Daly, D M; Adam, I J; Kitsanta, P; Hill, C J; Wild, J; Shorthouse, A; Grundy, D; Jiang, W

    2016-10-01

    Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration. © 2016 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  10. Structure of the afferent terminals in terminal ganglion of a cricket and persistent homology.

    Directory of Open Access Journals (Sweden)

    Jacob Brown

    Full Text Available We use topological data analysis to investigate the three dimensional spatial structure of the locus of afferent neuron terminals in crickets Acheta domesticus. Each afferent neuron innervates a filiform hair positioned on a cercus: a protruding appendage at the rear of the animal. The hairs transduce air motion to the neuron signal that is used by a cricket to respond to the environment. We stratify the hairs (and the corresponding afferent terminals into classes depending on hair length, along with position. Our analysis uncovers significant structure in the relative position of these terminal classes and suggests the functional relevance of this structure. Our method is very robust to the presence of significant experimental and developmental noise. It can be used to analyze a wide range of other point cloud data sets.

  11. A Clinical Research Study of Cognitive Dysfunction and Affective Impairment after Isolated Brainstem Stroke

    Directory of Open Access Journals (Sweden)

    Xiujuan Fu

    2017-12-01

    Full Text Available Although the function of the cerebellum in neurocognition has been well-documented, the similar role of the brainstem has yet to be fully elucidated. This clinical research study aimed to combine data relating to neuropsychological assessments and P300 to explore cognitive dysfunction and affective impairment following brainstem stroke. Thirty-four patients with isolated brainstem stroke and twenty-six healthy controls were recruited; for each patient, we collated data pertaining to the P300, Addenbrooke's Cognitive Examination III (ACE-III, Montreal Cognitive Assessment Chinese version (MoCA, trail-making test (TMT, Symbol Digit Modalities Test (SDMT, Wechsler Adult Intelligence Scale-Digit Spans (DS, Stroop test, Self Rating Depression Scale (SDS, and Self Rating Anxiety Scale (SAS. Significance was analyzed using an independent T-test or the Mann-Whitney U-test. Correlation was analyzed using Pearson's correlation analysis or Spearman's correlation analysis. Collectively, data revealed that brainstem stroke caused mild cognitive impairment (MCI, and that visuospatial, attention, linguistic, and emotional disturbances may occur after isolated brainstem stroke. Cognitive decline was linked to P300 latency, ACE-III, and MoCA; P300 latency was correlated with ACE-III. Patients with right brainstem lesions were more likely to suffer memory decline. The present study provides initial data relating to the role of the brainstem in neurocognition, and will be useful for further understanding of vascular cognitive and affective impairment.

  12. A Clinical Research Study of Cognitive Dysfunction and Affective Impairment after Isolated Brainstem Stroke

    Science.gov (United States)

    Fu, Xiujuan; Lu, Zuneng; Wang, Yan; Huang, Lifang; Wang, Xi; Zhang, Hong; Xiao, Zheman

    2017-01-01

    Although the function of the cerebellum in neurocognition has been well-documented, the similar role of the brainstem has yet to be fully elucidated. This clinical research study aimed to combine data relating to neuropsychological assessments and P300 to explore cognitive dysfunction and affective impairment following brainstem stroke. Thirty-four patients with isolated brainstem stroke and twenty-six healthy controls were recruited; for each patient, we collated data pertaining to the P300, Addenbrooke's Cognitive Examination III (ACE-III), Montreal Cognitive Assessment Chinese version (MoCA), trail-making test (TMT), Symbol Digit Modalities Test (SDMT), Wechsler Adult Intelligence Scale-Digit Spans (DS), Stroop test, Self Rating Depression Scale (SDS), and Self Rating Anxiety Scale (SAS). Significance was analyzed using an independent T-test or the Mann-Whitney U-test. Correlation was analyzed using Pearson's correlation analysis or Spearman's correlation analysis. Collectively, data revealed that brainstem stroke caused mild cognitive impairment (MCI), and that visuospatial, attention, linguistic, and emotional disturbances may occur after isolated brainstem stroke. Cognitive decline was linked to P300 latency, ACE-III, and MoCA; P300 latency was correlated with ACE-III. Patients with right brainstem lesions were more likely to suffer memory decline. The present study provides initial data relating to the role of the brainstem in neurocognition, and will be useful for further understanding of vascular cognitive and affective impairment. PMID:29311895

  13. Correlation between auditory brainstem recordings and morphology as seen through the scanning electron microscope

    International Nuclear Information System (INIS)

    Hultcrantz, M.

    1988-01-01

    Pregnant CBA/CBA mice were exposed to 0.5, 1 and 2 Grey (Gy), (1 Gy = 100 rad) in single doses with whole body gamma-irradiation on the 12th, 13th and 16th gestational days, respectively. The animals were tested at an age of one month for vestibular and cochlear function. Thereafter the inner ears were analyzed with scanning electron microscopy. A morphological analysis with cytocochleograms was performed. Morphological changes in the vestibular part showed gross malformations in the cristae ampullares. Hair cells of type I seemed to be more severely changed than hair cells type II. The macula utriculi also showed malformations of the otoconia. All these changes were more pronounced when the irradiation was given early during pregnancy and with the highest doses used, except the otoconia which were more injured when irradiated day 16 of gestation. No disturbances of the equilibrium reflexes were noted. In the cochlea a dose-dependent, time-related damage pattern was demonstrated with pathological changes of outer (OHC) and inner (IHC) hair cells. When tested electrophysiologically for auditory function with auditory brainstem recordings (ABR), elevated thresholds were revealed different in shape depending on when during pregnancy irradiation took place. A good correlation existed between the morphological changes as seen in the cytocochleograms and the functional changes documented with the ABR

  14. Correlation between auditory brainstem recordings and morphology as seen through the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hultcrantz, M.

    1988-09-01

    Pregnant CBA/CBA mice were exposed to 0.5, 1 and 2 Grey (Gy), (1 Gy = 100 rad) in single doses with whole body gamma-irradiation on the 12th, 13th and 16th gestational days, respectively. The animals were tested at an age of one month for vestibular and cochlear function. Thereafter the inner ears were analyzed with scanning electron microscopy. A morphological analysis with cytocochleograms was performed. Morphological changes in the vestibular part showed gross malformations in the cristae ampullares. Hair cells of type I seemed to be more severely changed than hair cells type II. The macula utriculi also showed malformations of the otoconia. All these changes were more pronounced when the irradiation was given early during pregnancy and with the highest doses used, except the otoconia which were more injured when irradiated day 16 of gestation. No disturbances of the equilibrium reflexes were noted. In the cochlea a dose-dependent, time-related damage pattern was demonstrated with pathological changes of outer (OHC) and inner (IHC) hair cells. When tested electrophysiologically for auditory function with auditory brainstem recordings (ABR), elevated thresholds were revealed different in shape depending on when during pregnancy irradiation took place. A good correlation existed between the morphological changes as seen in the cytocochleograms and the functional changes documented with the ABR.

  15. Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Rowe, Michael H; Neiman, Alexander B

    2012-01-24

    We have used sinusoidal and band-limited Gaussian noise stimuli along with information measures to characterize the linear and non-linear responses of morpho-physiologically identified posterior canal (PC) afferents and to examine the relationship between mutual information rate and other physiological parameters. Our major findings are: 1) spike generation in most PC afferents is effectively a stochastic renewal process, and spontaneous discharges are fully characterized by their first order statistics; 2) a regular discharge, as measured by normalized coefficient of variation (cv*), reduces intrinsic noise in afferent discharges at frequencies below the mean firing rate; 3) coherence and mutual information rates, calculated from responses to band-limited Gaussian noise, are jointly determined by gain and intrinsic noise (discharge regularity), the two major determinants of signal to noise ratio in the afferent response; 4) measures of optimal non-linear encoding were only moderately greater than optimal linear encoding, indicating that linear stimulus encoding is limited primarily by internal noise rather than by non-linearities; and 5) a leaky integrate and fire model reproduces these results and supports the suggestion that the combination of high discharge regularity and high discharge rates serves to extend the linear encoding range of afferents to higher frequencies. These results provide a framework for future assessments of afferent encoding of signals generated during natural head movements and for comparison with coding strategies used by other sensory systems. This article is part of a Special Issue entitled: Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  17. Distinct projection targets define subpopulations of mouse brainstem vagal neurons that express the autism-associated MET receptor tyrosine kinase.

    Science.gov (United States)

    Kamitakahara, Anna; Wu, Hsiao-Huei; Levitt, Pat

    2017-12-15

    Detailed anatomical tracing and mapping of the viscerotopic organization of the vagal motor nuclei has provided insight into autonomic function in health and disease. To further define specific cellular identities, we paired information based on visceral connectivity with a cell-type specific marker of a subpopulation of neurons in the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (nAmb) that express the autism-associated MET receptor tyrosine kinase. As gastrointestinal disturbances are common in children with autism spectrum disorder (ASD), we sought to define the relationship between MET-expressing (MET+) neurons in the DMV and nAmb, and the gastrointestinal tract. Using wholemount tissue staining and clearing, or retrograde tracing in a MET EGFP transgenic mouse, we identify three novel subpopulations of EGFP+ vagal brainstem neurons: (a) EGFP+ neurons in the nAmb projecting to the esophagus or laryngeal muscles, (b) EGFP+ neurons in the medial DMV projecting to the stomach, and (b) EGFP+ neurons in the lateral DMV projecting to the cecum and/or proximal colon. Expression of the MET ligand, hepatocyte growth factor (HGF), by tissues innervated by vagal motor neurons during fetal development reveal potential sites of HGF-MET interaction. Furthermore, similar cellular expression patterns of MET in the brainstem of both the mouse and nonhuman primate suggests that MET expression at these sites is evolutionarily conserved. Together, the data suggest that MET+ neurons in the brainstem vagal motor nuclei are anatomically positioned to regulate distinct portions of the gastrointestinal tract, with implications for the pathophysiology of gastrointestinal comorbidities of ASD. © 2017 Wiley Periodicals, Inc.

  18. Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.

    Science.gov (United States)

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F

    1987-12-01

    Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.

  19. Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6

    Directory of Open Access Journals (Sweden)

    Yan Jin

    2012-01-01

    Full Text Available Abstract Background Migraine headache is one of the most common neurological disorders, but the pathophysiology contributing to migraine is poorly understood. Intracranial interleukin-6 (IL-6 levels have been shown to be elevated during migraine attacks, suggesting that this cytokine may facilitate pain signaling from the meninges and contribute to the development of headache. Methods Cutaneous allodynia was measured in rats following stimulation of the dura with IL-6 alone or in combination with the MEK inhibitor, U0126. The number of action potentials and latency to the first action potential peak in response to a ramp current stimulus as well as current threshold were measured in retrogradely-labeled dural afferents using patch-clamp electrophysiology. These recordings were performed in the presence of IL-6 alone or in combination with U0126. Association between ERK1 and Nav1.7 following IL-6 treatment was also measured by co-immunoprecipitation. Results Here we report that in awake animals, direct application of IL-6 to the dura produced dose-dependent facial and hindpaw allodynia. The MEK inhibitor U0126 blocked IL-6-induced allodynia indicating that IL-6 produced this behavioral effect through the MAP kinase pathway. In trigeminal neurons retrogradely labeled from the dura, IL-6 application decreased the current threshold for action potential firing. In response to a ramp current stimulus, cells treated with IL-6 showed an increase in the numbers of action potentials and a decrease in latency to the first spike, an effect consistent with phosphorylation of the sodium channel Nav1.7. Pretreatment with U0126 reversed hyperexcitability following IL-6 treatment. Moreover, co-immunoprecipitation experiments demonstrated an increased association between ERK1 and Nav1.7 following IL-6 treatment. Conclusions Our results indicate that IL-6 enhances the excitability of dural afferents likely via ERK-mediated modulation of Nav1.7 and these responses

  20. Linear accelerator-based stereotactic radiosurgery for brainstem metastases: the Dana-Farber/Brigham and Women's Cancer Center experience.

    Science.gov (United States)

    Kelly, Paul J; Lin, Yijie Brittany; Yu, Alvin Y C; Ropper, Alexander E; Nguyen, Paul L; Marcus, Karen J; Hacker, Fred L; Weiss, Stephanie E

    2011-09-01

    To review the safety and efficacy of linear accelerator-based stereotactic radiosurgery (SRS) for brainstem metastases. We reviewed all patients with brain metastases treated with SRS at DF/BWCC from 2001 to 2009 to identify patients who had SRS to a single brainstem metastasis. Overall survival and freedom-from-local failure rates were calculated from the date of SRS using the Kaplan-Meier method. Prognostic factors were evaluated using the log-rank test and Cox proportional hazards model. A total of 24 consecutive patients with brainstem metastases had SRS. At the time of SRS, 21/24 had metastatic lesions elsewhere within the brain. 23/24 had undergone prior WBRT. Primary diagnoses included eight NSCLC, eight breast cancer, three melanoma, three renal cell carcinoma and two others. Median dose was 13 Gy (range, 8-16). One patient had fractionated SRS 5 Gy ×5. Median target volume was 0.2 cc (range, 0.02-2.39). The median age was 57 years (range, 42-92). Follow-up information was available in 22/24 cases. At the time of analysis, 18/22 patients (82%) had died. The median overall survival time was 5.3 months (range, 0.8-21.1 months). The only prognostic factor that trended toward statistical significance for overall survival was the absence of synchronous brain metastasis at the time of SRS; 1-year overall survival was 31% with versus 67% without synchronous brain metastasis (log rank P = 0.11). Non-significant factors included primary tumor histology and status of extracranial disease (progressing vs. stable/absent). Local failure occurred in 4/22 cases (18%). Actuarial freedom from local failure for all cases was 78.6% at 1 year. RTOG grade 3 toxicities were recorded in two patients (ataxia, confusion). Linac-based SRS for small volume brainstem metastases using a median dose of 13 Gy is associated with acceptable local control and low morbidity.

  1. Key Brainstem Structures Activated during Hypoxic Exposure in One-day-old Mice Highlight Characteristics for Modeling Breathing Network in Premature Infants

    Science.gov (United States)

    Joubert, Fanny; Loiseau, Camille; Perrin-Terrin, Anne-Sophie; Cayetanot, Florence; Frugière, Alain; Voituron, Nicolas; Bodineau, Laurence

    2016-01-01

    We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral, and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas ~45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labeled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labeled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labeled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by (i) the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, (ii) the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and (iii) the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modeling the breathing network of premature infants. PMID:28018238

  2. Key brainstem structures activated during hypoxic exposure in one-day-old mice highlight characteristics for modelling breathing network in premature infants

    Directory of Open Access Journals (Sweden)

    Fanny JOUBERT

    2016-12-01

    Full Text Available We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas approximately 45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labelled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labelled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labelled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by i the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, ii the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and iii the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modelling the breathing network of premature infants.

  3. Brainstem neurons projecting to the rostral ventral respiratory group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin

    DEFF Research Database (Denmark)

    Zheng, Y; Riche, D; Rekling, J C

    1998-01-01

    retrogradely brainstem neurons reciprocally connected to a population of inspiratory neurons in the rat rVRG. The procedure excited rVRG neurons in multi-unit recordings and led to a Golgi-like labelling of distant cells presumably excited by efferents from the rVRG. Injection of biocytin without NMDA did......Groups of neurons in the medulla and pons are essential for the rhythm generation, pattern formation and modulation of respiration. The rostral Ventral Respiratory Group (rVRG) is thought to be a crucial area for rhythm generation. Here we co-applied biocytin and NMDA in the rVRG to label...... not label neurons in distant structures. Several brainstem ipsi- and contralateral structures were found to project to the rVRG, but three major respiratory-related structures, the nucleus of the solitary tract (NTS), the parabrachialis medialis and Kölliker-Fuse nuclei (PB/KF) and the caudal VRG, which...

  4. Deletion of beta-2-microglobulin ameliorates spinal cord lesion load and promotes recovery of brainstem NAA levels in a murine model of multiple sclerosis.

    Science.gov (United States)

    Denic, Aleksandar; Pirko, Istvan; Wootla, Bharath; Bieber, Allan; Macura, Slobodan; Rodriguez, Moses

    2012-09-01

    We used genetic deletion of β2-microglobulin to study the influence of CD8(+) T cells on spinal cord demyelination, remyelination, axonal loss and brainstem N-acetyl aspartate levels during the acute and chronic phases of Theiler's murine encephalomyelitis virus (TMEV) infection. We used β2m(-/-) and β2m(+/+) B10.Q mice (of H-2(q) background) normally susceptible to TMEV-induced demyelination. Over the disease course, β2m(+/+) mice had increasing levels of demyelination and minimal late-onset remyelination. In contrast, β2m(-/-) mice had steady levels of demyelination from 45-390 dpi and remyelination was extensive and more complete. Early in the disease, brainstem NAA levels drop in both strains, but accordingly with remyelination and axonal preservation, NAA recover in β2m(-/-) mice despite equivalent brainstem pathology. At 270 dpi, β2m(+/+) mice had significantly fewer spinal cord axons than β2m(-/-) mice (up to 28% less). In addition, β2m(+/+) mice lost axons of all calibers, whereas β2m(-/-) mice had a modest loss of only medium- and large-caliber axons. This study further supports the hypothesis that CD8(+) T cells are involved in demyelination, and axonal loss following Theiler's virus-induced demyelination. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  5. Binaural interaction in the auditory brainstem response: a normative study.

    Science.gov (United States)

    Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Battmer, Rolf-Dieter; Dhooge, Ingeborg J M

    2015-04-01

    Binaural interaction can be investigated using auditory evoked potentials. A binaural interaction component can be derived from the auditory brainstem response (ABR-BIC) and is considered evidence for binaural interaction at the level of the brainstem. Although click ABR-BIC has been investigated thoroughly, data on 500 Hz tone-burst (TB) ABR-BICs are scarce. In this study, characteristics of click and 500 Hz TB ABR-BICs are described. Furthermore, reliability of both click and 500 Hz TB ABR-BIC are investigated. Eighteen normal hearing young adults (eight women, ten men) were included. ABRs were recorded in response to clicks and 500 Hz TBs. ABR-BICs were derived by subtracting the binaural response from the sum of the monaural responses measured in opposite ears. Good inter-rater reliability is obtained for both click and 500 Hz TB ABR-BICs. The most reliable peak in click ABR-BIC occurs at a mean latency of 6.06 ms (SD 0.354 ms). Reliable 500 Hz TB ABR-BIC are obtained with a mean latency of 9.47 ms (SD 0.678 ms). Amplitudes are larger for 500 Hz TB ABR-BIC than for clicks. The most reliable peak in click ABR-BIC occurs at the downslope of wave V. Five hundred Hertz TB ABR-BIC is characterized by a broad positivity occurring at the level of wave V. The ABR-BIC is a useful technique to investigate binaural interaction in certain populations. Examples are bilateral hearing aid users, bilateral cochlear implant users and bimodal listeners. The latter refers to the combination of unilateral cochlear implantation and contralateral residual hearing. The majority of these patients have residual hearing in the low frequencies. The current study suggests that 500 Hz TB ABR-BIC may be a suitable technique to assess binaural interaction in this specific population of cochlear implant users. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y

    DEFF Research Database (Denmark)

    Ledri, Marco; Sørensen, Andreas Toft; Erdelyi, Ferenc

    2011-01-01

    Cholecystokinin (CCK)-expressing basket cells encompass a subclass of inhibitory GABAergic interneurons that regulate memory-forming oscillatory network activity of the hippocampal formation in accordance to the emotional and motivational state of the animal, conveyed onto these cells by respective...... are modulated by neuropeptide Y (NPY), one of the major local neuropeptides that strongly inhibits hippocampal excitability and has significant effect on its memory function. Here, using GAD65-GFP transgenic mice for prospective identification of CCK basket cells and whole-cell patch-clamp recordings, we show...

  7. Leucoencephalopathy with brainstem and spinal cord involvement and high lactate: quantitative magnetic resonance imaging

    NARCIS (Netherlands)

    Steenweg, M.E.; Pouwels, P.J.W.; Wolf, N.I.; van Wieringen, W.N.; Barkhof, F.; van der Knaap, M.S.

    2011-01-01

    Leucoencephalopathy with brainstem and spinal cord involvement and elevated lactate is a white matter disorder caused by DARS2 mutations. The pathology is unknown. We observed striking discrepancies between improvement on longitudinal conventional magnetic resonance images and clinical deterioration

  8. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    Science.gov (United States)

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Afferent loop syndrome - a case report; Sindrome da alca aferente - relato de um caso

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Ana Karina Nascimento; Pinheiro, Marco Antonio Lopes; Galvao, Cristine Norwig [Fundacao Pio XII - Hospital do Cancer de Barretos, SP (Brazil)

    2000-02-01

    The afferent loop syndrome occurs in patients with previous gastric surgery for tumor, when there is anastomotic edema, use of inappropriate reconstruction technique for gastro jejunostomy or recurrent gastric cancer. Complaints such jaundice, intermittent abdominal distension associated with pain, and vomiting should be investigated in order to rule out this syndrome. (author)

  10. Na+-independent, nifedipine-resistant rat afferent arteriolar Ca2+ responses to noradrenaline

    DEFF Research Database (Denmark)

    Salomonsson, Max; Braunstein, Thomas Hartig; von Holstein-Rathlou, Niels-Henrik

    2010-01-01

    Abstract Aim: In rat afferent arterioles we investigated the role of Na(+) entry in noradrenaline (NA)-induced depolarization and voltage-dependent Ca(2+) entry together with the importance of the transient receptor potential channel (TRPC) subfamily for non-voltage-dependent Ca(2+) entry. Methods...

  11. Afferent and Efferent Connections of the Optic Tectum in the Carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Luiten, P.G.M.

    1981-01-01

    The afferent and efferent connections of the tectum opticum in the carp (Cyprinus carpio L.) were studied with the HRP method. Following iontophoretic peroxidase injections in several parts of the rectum anterograde transport of the enzyme revealed tectal projections to the lateral geniculate

  12. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice

    DEFF Research Database (Denmark)

    Oppermann, Mona; Hansen, Pernille B; Castrop, Hayo

    2007-01-01

    Loop diuretics like furosemide have been shown to cause renal vasodilatation in dogs and humans, an effect thought to result from both a direct vascular dilator effect and from inhibition of tubuloglomerular feedback. In isolated perfused afferent arterioles preconstricted with angiotensin II or ...

  13. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  14. Combined CMV- and HSV-1 brainstem encephalitis restricted to medulla oblongata.

    Science.gov (United States)

    Katchanov, J; Branding, G; Stocker, H

    2014-04-15

    We report a very rare case of a combined CMV- and HSV-1 isolated brainstem encephalitis restricted to medulla oblongata in a patient with advanced HIV disease. Neither limbic nor general ventricular involvement was detected on neuroimaging. The case highlights the importance of testing for HSV-1 and CMV in HIV-infected patients presenting with an isolated brainstem syndrome. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    OpenAIRE

    Renata Mota Mamede de Carvallo; Carla Gentile Matas; Isabela de Souza Jardim

    2008-01-01

    Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU), as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem...

  16. Prodominant hypertensive brainstem encephalopathy with supratentorial involvement: Case report and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hee; Park, Sung Tae; Lim, Hyun Kyung [Dept. of Radiology, Soonchunhyang University Hospital, Soonchunhyang University School of Medicine, Seoul (Korea, Republic of); Kim, Sung Tae; Cha, Ji Hoon [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Hypertensive encephalopathy typically presents with bilateral parietooccipital vasogenic edema. Brainstem and cerebellar edema are uncommon in association with typical supratentorial changes. We experienced three cases of atypical hypertensive encephalopathy involving brainstem and cerebellum as well as cerebral white matter, which showed characteristic alternating linear bright and low signals in the pons, the so-called 'stripe sign'. We report these cases here with a brief literature review.

  17. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  18. Auditory Brainstem Responses and EMFs Generated by Mobile Phones.

    Science.gov (United States)

    Khullar, Shilpa; Sood, Archana; Sood, Sanjay

    2013-12-01

    There has been a manifold increase in the number of mobile phone users throughout the world with the current number of users exceeding 2 billion. However this advancement in technology like many others is accompanied by a progressive increase in the frequency and intensity of electromagnetic waves without consideration of the health consequences. The aim of our study was to advance our understanding of the potential adverse effects of GSM mobile phones on auditory brainstem responses (ABRs). 60 subjects were selected for the study and divided into three groups of 20 each based on their usage of mobile phones. Their ABRs were recorded and analysed for latency of waves I-V as well as interpeak latencies I-III, I-V and III-V (in ms). Results revealed no significant difference in the ABR parameters between group A (control group) and group B (subjects using mobile phones for maximum 30 min/day for 5 years). However the latency of waves was significantly prolonged in group C (subjects using mobile phones for 10 years for a maximum of 30 min/day) as compared to the control group. Based on our findings we concluded that long term exposure to mobile phones may affect conduction in the peripheral portion of the auditory pathway. However more research needs to be done to study the long term effects of mobile phones particularly of newer technologies like smart phones and 3G.

  19. The auditory brainstem response in two lizard species.

    Science.gov (United States)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong; Carr, Catherine; Dooling, Robert J

    2010-08-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform in response to click stimulation showed one prominent and several smaller peaks occurring within 10 ms of the stimulus onset. ABRs to brief tone bursts revealed that geckos and anoles were most sensitive between 1.6-2 kHz and had similar hearing sensitivity up to about 5 kHz (thresholds typically 20-50 dB SPL). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than in most bird species.

  20. CT findings of traumatic primary brain-stem injury

    International Nuclear Information System (INIS)

    Hosaka, Yasuaki; Hatashita, Shizuo; Bandou, Kuniaki; Ueki, Yasuyuki; Abe, Kouzou; Koga, Nobunori; Sugimura, Jun; Sakakibara, Tokiwa; Takagi, Suguru

    1984-01-01

    A series of 27 consecutive patients with traumatic primary brain stem injuries was studied. They were diagnosed by means of clinical signs, neurological examination, and computerized tomography (CT). The CT findings of the brain-stem lesions were classified into 4 types: Type H, spotty, high-density; Type H and L, high- and low-densities; Type L, low-density; Type I, isodensity. The Glasgow coma scale (GCS), neurological findings on admission, CT findings (findings in the brain stem, obliteration of perimesencephalic cistern (PMC), and other findings), and the Glasgow outcome scale (GOS) were examined. In the 9 cases of Type H, there was a correlation between the GCS and the GOS, and the spotty, high-density lesions were localized mainly in the dorsal and/or ventral midbrain parenchyma, but these lesions did not show focal signs and symptoms. Without an obliteration of the PMC, Type-H patients did not always have a bad outcome. In the 4 cases of Type H and L, the 2 cases of Type L, and the 12 cases of Type I, there was an obliteration of the PMC. All of the these cases had a bad outcome (1 case of moderate disability, 3 cases of severe disability, and 14 cases of death). The mechanism producing a spotty, high-density area was discussed. The weaker impact (than the other types) and individual anatomical differences weresupposed to make for a spotty, high-density are in the brain stem. (author)

  1. Brainstem Auditory Evoked Potentials in Patients with Subarachnoid Haemorrhage

    Directory of Open Access Journals (Sweden)

    Mikhail Matveev

    2009-10-01

    Full Text Available Objective. The aim of the present study is to typify BAEPs configurations of patients with different location of lesions caused by subarachnoid haemorrhage (SAH and the ensuing complications, in view of assessing the auditory-brainstem system disturbance.Methods. The typization was performed by comparing BAEPs with standard patterns from two sets of types of BAEPs by ipsilateral and binaural stimulation and by cross-stimulation.Results. 94 BAEPs were used for collection of normal referential values: for the absolute latencies and the absolute amplitudes of waves I, II, III, IV and V; for inter-peak latencies I-III, II-III, III-V, I-V and II-V; for amplitude ratios I/V and III/V. 146 BAEPs of patients with mild SAH and 55 from patients with severe SAH, were typified. In 5 types of BAEPs out of a total of 11, the percentage of the potentials in patients with mild SAH and severe SAH differed significantly (p<0.01.Conclusions. The use of sets of types of BAEPs by ipsilateral, binaural and cross-stimulation correctly classifies the potentials in patients with mild and severe SAH.

  2. A comparison of auditory brainstem responses across diving bird species

    Science.gov (United States)

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  3. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    Science.gov (United States)

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  4. Analysis of diffuse brain injury with primary brainstem lesion on MRI

    International Nuclear Information System (INIS)

    Shibata, Masayoshi; Matsumae, Mitsunori; Shimoda, Masami; Ishizaka, Hideo; Shiramizu, Hideki; Morita, Seiji; Tsugane, Ryuichi

    2003-01-01

    It has been reported that diffuse brain injury patients with primary brainstem lesions have a poor prognosis. Predicting the existence of brainstem injury at hospital arrival is problematic in actual clinical practice. We conducted magnetic resonance imaging (MRI), to visualize brainstem lesions clearly, and retrospectively analyzed predictive factors of brainstem lesions by stepwise multiple logistic regression analysis of patient characteristics, neurological findings, laboratory data, and CT findings at arrival in each case. We compared 24 patients with brainstem lesion and 60 without using MRI obtained less than 3 weeks after admission. Items investigated were blood pressure immediately after hospital arrival, arterial blood gas analysis, existence of abnormal respiration, blow direction, Glasgow coma scale (GCS), light reflex, oculocephalic reflex, corneal reflex, intracranial pressure, jugular venous oxygen saturation, and CT findings such as existence of subarachnoid hemorrhage at the suprasellar cistern, perimesencephalic cistern and convexity, lesions on the thalamus and basal ganglia, gliding contusion, intraventricular hemorrhage and Traumatic Coma Data Bank classification. Independent predictive factors of primary brainstem lesion included impaired light reflex (odds ratio: 2.269), subarachnoid hemorrhage at convexity (odds ratio: 3.592) and suprasellar cistern (odds ratio: 2.458), and Traumatic Coma Data Bank group III (odds ratio: 11.062). (author)

  5. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Renata Mota Mamede de Carvallo

    2008-09-01

    Full Text Available Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU, as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests could be applied to all babies. The “pass” result for the group of babies from the nursery was 94.7% using Transient Evoked Otoacoustic Emissions and 96% using Automatic Auditory Brainstem Response. The newborn intensive care unit group obtained 87.1% on Transient Evoked Otoacoustic Emissions and 80% on the Automatic Auditory Brainstem Response, and there was no statistical difference between the procedures when the groups were evaluated individually. However, comparing the groups, Transient Evoked Otoacoustic Emissions were presented in 94.7% of the nursery babies and in 87.1% in the group from the newborn intensive care unit. Considering the Automatic Auditory Brainstem Response, we found 96 and 87%, respectively. Cconclusions: Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response had similar “pass” and “fail” results when the procedures were applied to neonates from the regular nursery, and the combined tests were more precise to detect hearing impairment in the newborn intensive care unit babies.

  6. A clinical study of brainstem infarction identified on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-04-01

    We conducted a clinical study of 155 cases that were confirmed to have brainstem infarctions on MRI (T[sub 1]-weighted image showed a low signal and T[sub 2]-weighted image showed a high signal, measuring in excess of 2 x 2 mm). The majority of the brainstem infarction was located in the pontine base in 132 cases (85.2%). Of these, 19 cases had double lesions including infarctions in the pontine base. Second infarctions frequently occurred in the cerebral peduncle or medical medulla oblongata, unilateral to the pontine infarctions. In addition to 98 symptomatic cases, there were 57 cases of 'asymptomatic' brainstem infarction. They comprised 24 cases accompanying other symptomatic cerebrovascular diseases in the supratentorium and 33 cases of transient subjective complaints such as headache or vertigo-dizziness. Complication by supratentorial infarctions was significantly frequent in cases of brainstem infarction (p<0.001), 122 of 155 cases (78.7%), especially in the pontine base (88.6%); while in the control cases (without brainstem infarction) only 65 of 221 cases (29.4%). These findings are considered to show the widespread progress of arteriosclerosis in brainstem infarction, especially in ones in the pontine base. (author).

  7. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    Science.gov (United States)

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  8. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  9. Vasoactive intestinal polypeptide excites medial pontine reticular formation neurons in the brainstem rapid eye movement sleep-induction zone

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Reiner, P B

    1999-01-01

    Although it has long been known that microinjection of the cholinergic agonist carbachol into the medial pontine reticular formation (mPRF) induces a state that resembles rapid eye movement (REM) sleep, it is likely that other transmitters contribute to mPRF regulation of behavioral states. A key...... candidate is the peptide vasoactive intestinal polypeptide (VIP), which innervates the mPRF and induces REM sleep when injected into this region of the brainstem. To begin understanding the cellular mechanisms underlying this phenomenon, we examined the effects of VIP on mPRF cells using whole-cell patch...... conclude that VIP excites mPRF neurons by activation of a sodium current. This effect is mediated at least in part by G-protein stimulation of adenylyl cyclase, cAMP, and protein kinase A. These data suggest that VIP may play a physiological role in REM induction by its actions on mPRF neurons....

  10. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep.

    Directory of Open Access Journals (Sweden)

    Christelle Anaclet

    2010-01-01

    Full Text Available Rapid eye movement sleep (REMS is characterized by activation of the cortical and hippocampal electroencephalogram (EEG and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw phasic activity during REMS. The trigeminal motor nucleus (Mo5, which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt, but also from the adjacent paramedian reticular area (PMnR. On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS.To test our hypothesis, we measured masseter electromyogram (EMG, neck muscle EMG, electrooculogram (EOG and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt, but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS.These results indicate that (1 premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2 separate brainstem neural circuits control postural and cranial muscle

  11. Synchronized Progression of Prestin Expression and Auditory Brainstem Response during Postnatal Development in Rats

    Directory of Open Access Journals (Sweden)

    Jianfeng Hang

    2016-01-01

    Full Text Available Prestin is the motor protein expressed in the cochlear outer hair cells (OHCs of mammalian inner ear. The electromotility of OHCs driven by prestin is responsible for the cochlear amplification which is required for normal hearing in adult animals. Postnatal expression of prestin and activity of OHCs may contribute to the maturation of hearing in rodents. However, the temporal and spatial expression of prestin in cochlea during the development is not well characterized. In the present study, we examined the expression and function of prestin from the OHCs in apical, middle, and basal turns of the cochleae of postnatal rats. Prestin first appeared at postnatal day 6 (P6 for basal turn, P7 in middle turn, and P9 for apical turn of cochlea. The expression level increased progressively over the next few days and by P14 reached the mature level for all three segments. By comparison with the time course of the development of auditory brainstem response for different frequencies, our data reveal that prestin expression synchronized with the hearing development. The present study suggests that the onset time of hearing may require the expression of prestin and is determined by the mature function of OHCs.

  12. Purinergic receptors are involved in tooth-pulp evoked nocifensive behavior and brainstem neuronal activity

    Directory of Open Access Journals (Sweden)

    Sessle Barry J

    2010-09-01

    Full Text Available Abstract Background To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK phosphorylation in trigeminal spinal subnucleus caudalis (Vc, trigeminal spinal subnucleus interpolaris (Vi, upper cervical spinal cord (C1/C2 and paratrigeminal nucleus (Pa5 neurons were analyzed in rats. Results Genioglossus (GG muscle activity was evoked by pulpal application of 100 mM α,β-meATP and was significantly larger than GG activity following vehicle (phosphate-buffered saline PBS application (p 1, P2X3 and, P2X2/3 antagonist. A large number of pERK-LI cells were expressed in the Vc, Vi/Vc, C1/C2 and Pa5 at 5 min following pulpal application of 100 mM α,β-meATP compared to PBS application to the pulp (p Conclusions The present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.

  13. Development of a Chirp Stimulus PC-Based Auditory Brainstem Response Audiometer

    Directory of Open Access Journals (Sweden)

    Ali AL-Afsaa

    2004-05-01

    Full Text Available Hearing losses during infancy and childhood have many negative future effects and impacts on the child life and productivity. The earlier detection of hearing losses, the earlier medical intervention and then the greater benefit of remediation will be. During this research a PC-based audiometer is designed and, currently, the audiometer prototype is in its final development steps. It is based on the auditory brainstem response (ABR method. Chirp stimuli instead of traditional click stimuli will be used to invoke the ABR signal. The stimulus is designed to synchronize the hair cells movement when it spreads out over the cochlea. In addition to the available hardware utilization (PC and PCI board, the efforts confined to design and implement a hardware prototype and to develop a software package that enables the system to behave as ABR audiometer. By using such a method and chirp stimulus, it is expected to be able to detect hearing impairment (sensorineural in the first few days of the life and conduct hearing test at low frequency of stimulus. Currently, the intended chirp stimulus has been successfully generated and the implemented module is able to amplify a signal (on the order of ABR signal to a recordable level. Moreover, a NI-DAQ data acquisition board has been chosen to implement the PC-prototype interface.

  14. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2016-12-17

    Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Astrocytes gate synaptic transmission from unmyelinated sensory afferents

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; Christensen, Rasmus Kordt; Delgado-Lezama, R.

    2015-01-01

    was increased by maternal TNFalpha knockout in a gene dosage-dependent manner. In the VZ of the dorsal cortex, both heterozygous and knockout foetuses showed decreased density of mitotic cells, with no effect of maternal genotype. Immature microglia were found sparsely populating the embryonic brain at E13.......5, with both heterozygous and knockout foetuses showing decreased numbers of microglia and an increase in the fraction of non-arborised (rounded) microglia. In the dorsal and medial SVZ, LPS caused a decrease in mitotic cell density. In the dorsal SVZ, density of proliferating cells was much lower in foetuses...... or indirectly have a profound effect on the development of the foetal brain independently of the ability of the foetus to produce TNFalpha....

  16. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex.

    Science.gov (United States)

    Okabe, Naohiko; Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu

    2017-01-01

    Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction.

  17. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  18. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  19. Experiences from Auditory Brainstem Implantation (ABIs) in four paediatric patients.

    Science.gov (United States)

    Lundin, Karin; Stillesjö, Fredrik; Nyberg, Gunnar; Rask-Andersen, Helge

    2016-01-01

    Indications for auditory brainstem implants (ABIs) have been widened from patients with neurofibromatosis type 2 (NF2) to paediatric patients with congenital cochlear malformations, cochlear nerve hypoplasia/aplasia, or cochlear ossification after meningitis. We present four ABI surgeries performed in children at Uppsala University Hospital in Sweden since 2009. Three children were implanted with implants from Cochlear Ltd. (Lane Cove, Australia) and one child with an implant from MedEl GMBH (Innsbruck, Austria). A boy with Goldenhar syndrome was implanted with a Cochlear Nucleus ABI24M at age 2 years (patient 1). Another boy with CHARGE syndrome was implanted with a Cochlear Nucleus ABI541 at age 2.5 years (patient 2). Another boy with post-ossification meningitis was implanted with a Cochlear Nucleus ABI24M at age 4 years (patient 3). A girl with cochlear aplasia was implanted with a MedEl Synchrony ABI at age 3 years (patient 4). In patients 1, 2, and 3, the trans-labyrinthine approach was used, and in patient 4 the retro-sigmoid approach was used. Three of the four children benefited from their ABIs and use it full time. Two of the full time users had categories of auditory performance (CAP) score of 4 at their last follow up visit (6 and 2.5 years postoperative) which means they can discriminate consistently any combination of two of Ling's sounds. One child has not been fully evaluated yet, but is a full time user and had CAP 2 (responds to speech sounds) after 3 months of ABI use. No severe side or unpleasant stimulation effects have been observed so far. There was one case of immediate electrode migration and one case of implant device failure after 6.5 years. ABI should be considered as an option in the rehabilitation of children with similar diagnoses.

  20. Brainstem auditory-evoked potential in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Mariana Isa Poci Palumbo

    2014-10-01

    Full Text Available Brainstem auditory-evoked potential (BAEP has been widely used for different purposes in veterinary practice and is commonly used to identify inherited deafness and presbycusis. In this study, 43 Boxer dogs were evaluated using the BAEP. Deafness was diagnosed in 3 dogs (2 bilateral and 1 unilateral allowing the remaining 40 Boxers to be included for normative data analysis including an evaluation on the influence of age on the BAEP. The animals were divided into 2 groups of 20 Boxers each based on age. The mean age was 4.54 years (range, 1-8 in group I, and 9.83 years (range, 8.5-12 in group II. The mean latency for I, III, and V waves were 1.14 (±0.07, 2.64 (±0.11, and 3.48 (±0.10 ms in group I, and 1.20 (±0.12, 2.73 (±0.15, and 3.58 (±0.22 ms in group II, respectively. The mean inter-peak latencies for the I-III, III-V and I-V intervals were 1.50 (±0.15, 0.84 (±0.15, and 2.34 (±0.11 ms in group I, and 1.53 (±0.16, 0.85 (±0.15, and 2.38 (±0.19 ms in group II, respectively. Latencies of waves I and III were significant different between group I and II. For the I-III, III-V and I-V intervals, no significant differences were observed between the 2 groups. As far as we know, this is the first normative study of BAEP obtained from Boxer dogs.

  1. Localization of the brainstem GABAergic neurons controlling paradoxical (REM sleep.

    Directory of Open Access Journals (Sweden)

    Emilie Sapin

    Full Text Available Paradoxical sleep (PS is a state characterized by cortical activation, rapid eye movements and muscle atonia. Fifty years after its discovery, the neuronal network responsible for the genesis of PS has been only partially identified. We recently proposed that GABAergic neurons would have a pivotal role in that network. To localize these GABAergic neurons, we combined immunohistochemical detection of Fos with non-radioactive in situ hybridization of GAD67 mRNA (GABA synthesis enzyme in control rats, rats deprived of PS for 72 h and rats allowed to recover after such deprivation. Here we show that GABAergic neurons gating PS (PS-off neurons are principally located in the ventrolateral periaqueductal gray (vlPAG and the dorsal part of the deep mesencephalic reticular nucleus immediately ventral to it (dDpMe. Furthermore, iontophoretic application of muscimol for 20 min in this area in head-restrained rats induced a strong and significant increase in PS quantities compared to saline. In addition, we found a large number of GABAergic PS-on neurons in the vlPAG/dDPMe region and the medullary reticular nuclei known to generate muscle atonia during PS. Finally, we showed that PS-on neurons triggering PS localized in the SLD are not GABAergic. Altogether, our results indicate that multiple populations of PS-on GABAergic neurons are distributed in the brainstem while only one population of PS-off GABAergic neurons localized in the vlPAG/dDpMe region exist. From these results, we propose a revised model for PS control in which GABAergic PS-on and PS-off neurons localized in the vlPAG/dDPMe region play leading roles.

  2. Percutaneous Transhepatic Duodenal Drainage as an Alternative Approach in Afferent Loop Obstruction with Secondary Obstructive Jaundice in Recurrent Gastric Cancer

    International Nuclear Information System (INIS)

    Yao, N.-S.; Wu, C.-W.; Tiu, Chui-Mei; Liu, Jacqueline M.; Whang-Peng, Jacqueline; Chen, L.-T.

    1998-01-01

    Two cases are reported of chronic, partial afferent loop obstruction with resultant obstructive jaundice in recurrent gastric cancer. The diagnosis was made by characteristic clinical presentations, abdominal computed tomography, and cholescintigraphy. Percutaneous transhepatic duodenal drainage (PTDD) provided effective palliation for both afferent loop obstruction and biliary stasis. We conclude that cholescintigraphy is of value in making the diagnosis of partial afferent loop obstruction and in differentiating the cause of obstructive jaundice in such patients, and PTDD provides palliation for those patients in whom surgical intervention is not feasible

  3. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant?

    Science.gov (United States)

    Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani

    2018-05-17

    Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  4. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  5. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats.

    Science.gov (United States)

    Cao, Bing; Zhang, Xu; Yan, Ni; Chen, Shengliang; Li, Ying

    2012-06-09

    Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes.In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK), which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change the nociceptive response (visceral pain

  6. A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus.

    Science.gov (United States)

    Haight, Joshua L; Fuller, Zachary L; Fraser, Kurt M; Flagel, Shelly B

    2017-01-06

    The paraventricular nucleus of the thalamus (PVT) has been implicated in behavioral responses to reward-associated cues. However, the precise role of the PVT in these behaviors has been difficult to ascertain since Pavlovian-conditioned cues can act as both predictive and incentive stimuli. The "sign-tracker/goal-tracker" rat model has allowed us to further elucidate the role of the PVT in cue-motivated behaviors, identifying this structure as a critical component of the neural circuitry underlying individual variation in the propensity to attribute incentive salience to reward cues. The current study assessed differences in the engagement of specific PVT afferents and efferents in response to presentation of a food-cue that had been attributed with only predictive value or with both predictive and incentive value. The retrograde tracer fluorogold (FG) was injected into the PVT or the nucleus accumbens (NAc) of rats, and cue-induced c-Fos in FG-labeled cells was quantified. Presentation of a predictive stimulus that had been attributed with incentive value elicited c-Fos in PVT afferents from the lateral hypothalamus, medial amygdala (MeA), and the prelimbic cortex (PrL), as well as posterior PVT efferents to the NAc. PVT afferents from the PrL also showed elevated c-Fos levels following presentation of a predictive stimulus alone. Thus, presentation of an incentive stimulus results in engagement of subcortical brain regions; supporting a role for the hypothalamic-thalamic-striatal axis, as well as the MeA, in mediating responses to incentive stimuli; whereas activity in the PrL to PVT pathway appears to play a role in processing the predictive qualities of reward-paired stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Peripheral axotomy of the rat mandibular trigeminal nerve leads to an increase in VIP and decrease of other primary afferent neuropeptides in the spinal trigeminal nucleus.

    Science.gov (United States)

    Atkinson, M E; Shehab, S A

    1986-12-01

    In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.

  8. Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg.

    Science.gov (United States)

    Maskey, Dhiraj; Kim, Hyung Gun; Suh, Myung-Whan; Roh, Gu Seob; Kim, Myeung Ju

    2014-08-01

    The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region

  9. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M

    2009-01-01

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...... blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac...... system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia....

  10. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Nielsen, Jens Bo

    2008-01-01

    immobilized the left foot and ankle joint for 2 weeks in 12 able-bodied subjects. Disynaptic reciprocal inhibition of soleus (SOL) motoneurones and presynaptic control of SOL group Ia afferents was measured before and after the immobilization as well as following 2 weeks of recovery. Following immobilization...... maximal voluntary plantar- and dorsiflexion torque (MVC) was significantly reduced and the maximal SOL H-reflex amplitude increased with no changes in Mmax. Decreased presynaptic inhibition of the Ia afferents likely contributed to the increase of the H-reflex size, since we observed a significant...... decrease in the long-latency depression of the SOL H-reflex evoked by peroneal nerve stimulation (D2 inhibition) and an increase in the size of the monosynaptic Ia facilitation of the SOL H-reflex evoked by femoral nerve stimulation. These two measures provide independent evidence of changes in presynaptic...

  11. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    Science.gov (United States)

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-06

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. Copyright © 2014 the authors 0270-6474/14/3410765-05$15.00/0.

  12. Neonatal neurological disorders involving the brainstem: neurosonographic approaches through the squamous suture and the foramen magnum

    International Nuclear Information System (INIS)

    Tu, Yi-Fang; Chen, Cheng-Yu; Lin, Yuh-Jey; Chang, Ying-Chao; Huang, Chao-Ching

    2005-01-01

    Brainstem damage which often indicates a critical condition is usually underestimated by trans-anterior-fontanel neurosonography (NS) owing to the far-field limitations. Instead, NS alternately scanning through the squamous suture of the temporal bones and the foramen magnum could provide a better visualization of the brainstem structures. The NS characteristics of brainstem lesions caused by various neonatal neurological disorders, such as hypoxic-ischemic encephalopathy (HIE), metabolic encephalopathy, birth trauma and bacterial meningoencephalitis, can be depicted at the acute stage. An echogenic change in the midbrain was found in patients with HIE or metabolic encephalopathy. In addition to the echogenic change, bilateral transtentorial temporal lobe herniation distorting the contour of the midbrain was observed in a patient with group B streptococcus meningoencephalitis, whereas echogenic changes at the level of the pons and/or the medulla oblongata, mainly localized in the dorsal part, could be observed in newborns with severe HIE, maple syrup urine disease or birth trauma. In this pictorial assay, we demonstrate the feasibility of NS imaging in evaluating the entire brainstem structure of critically ill neonates in the near field and illustrate the characteristic features of brainstem involvement in various neonatal neurological disorders along with computed tomography or magnetic resonance imaging correlation. (orig.)

  13. Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia.

    Science.gov (United States)

    Lehmann, Alexandre; Skoe, Erika; Moreau, Patricia; Peretz, Isabelle; Kraus, Nina

    2015-07-01

    Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine-grained automatic processing of sounds is impoverished in amusia. Compared with matched non-musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants' behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Dyslexia risk gene relates to representation of sound in the auditory brainstem.

    Science.gov (United States)

    Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D

    2017-04-01

    Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Stereotactic Radiosurgery for Brainstem Metastases: An International Cooperative Study to Define Response and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Trifiletti, Daniel M., E-mail: daniel.trifiletti@gmail.com [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia (United States); Lee, Cheng-Chia [Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan (China); Kano, Hideyuki; Cohen, Jonathan [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Janopaul-Naylor, James; Alonso-Basanta, Michelle; Lee, John Y.K. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Simonova, Gabriela; Liscak, Roman [Department of Radiation and Stereotactic Neurosurgery, Na Homolce Hospital, Prague (Czech Republic); Wolf, Amparo; Kvint, Svetlana [Department of Neurosurgery, New York University Lagone Medical Center, New York, New York (United States); Grills, Inga S.; Johnson, Matthew [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Liu, Kang-Du; Lin, Chung-Jung [Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan (China); Mathieu, David; Héroux, France [Division of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec (Canada); Silva, Danilo; Sharma, Mayur [Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (United States); Cifarelli, Christopher P. [Departments of Neurosurgery and Radiation Oncology, West Virginia University, Morgantown, West Virginia (United States); and others

    2016-10-01

    Purpose: To pool data across multiple institutions internationally and report on the cumulative experience of brainstem stereotactic radiosurgery (SRS). Methods and Materials: Data on patients with brainstem metastases treated with SRS were collected through the International Gamma Knife Research Foundation. Clinical, radiographic, and dosimetric characteristics were compared for factors prognostic for local control (LC) and overall survival (OS) using univariate and multivariate analyses. Results: Of 547 patients with 596 brainstem metastases treated with SRS, treatment of 7.4% of tumors resulted in severe SRS-induced toxicity (grade ≥3, increased odds with increasing tumor volume, margin dose, and whole-brain irradiation). Local control at 12 months after SRS was 81.8% and was improved with increasing margin dose and maximum dose. Overall survival at 12 months after SRS was 32.7% and impacted by age, gender, number of metastases, tumor histology, and performance score. Conclusions: Our study provides additional evidence that SRS has become an option for patients with brainstem metastases, with an excellent benefit-to-risk ratio in the hands of experienced clinicians. Prior whole-brain irradiation increases the risk of severe toxicity in brainstem metastasis patients undergoing SRS.

  16. Neonatal neurological disorders involving the brainstem: neurosonographic approaches through the squamous suture and the foramen magnum

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yi-Fang [National Cheng Kung University Hospital, Department of Emergency Medicine, Tainan (Taiwan); Chen, Cheng-Yu [National Defense Medical Center, Department of Radiology, Taipei (Taiwan); Lin, Yuh-Jey [National Cheng Kung University Hospital, Department of Pediatrics, Tainan (Taiwan); Chang, Ying-Chao [Kaohsiung Chang Gung Children Hospital, Department of Pediatrics, Kaohsiung (Taiwan); Huang, Chao-Ching [National Cheng Kung University Hospital, Department of Pediatrics, Tainan (Taiwan); National Cheng Kung University Hospital, Department of Institute of Molecular Medicine, Tainan (Taiwan)

    2005-09-01

    Brainstem damage which often indicates a critical condition is usually underestimated by trans-anterior-fontanel neurosonography (NS) owing to the far-field limitations. Instead, NS alternately scanning through the squamous suture of the temporal bones and the foramen magnum could provide a better visualization of the brainstem structures. The NS characteristics of brainstem lesions caused by various neonatal neurological disorders, such as hypoxic-ischemic encephalopathy (HIE), metabolic encephalopathy, birth trauma and bacterial meningoencephalitis, can be depicted at the acute stage. An echogenic change in the midbrain was found in patients with HIE or metabolic encephalopathy. In addition to the echogenic change, bilateral transtentorial temporal lobe herniation distorting the contour of the midbrain was observed in a patient with group B streptococcus meningoencephalitis, whereas echogenic changes at the level of the pons and/or the medulla oblongata, mainly localized in the dorsal part, could be observed in newborns with severe HIE, maple syrup urine disease or birth trauma. In this pictorial assay, we demonstrate the feasibility of NS imaging in evaluating the entire brainstem structure of critically ill neonates in the near field and illustrate the characteristic features of brainstem involvement in various neonatal neurological disorders along with computed tomography or magnetic resonance imaging correlation. (orig.)

  17. Evidence for altered basal ganglia-brainstem connections in cervical dystonia.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    Full Text Available There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia.In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients.These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.

  18. Optimal technique of linear accelerator-based stereotactic radiosurgery for tumors adjacent to brainstem.

    Science.gov (United States)

    Chang, Chiou-Shiung; Hwang, Jing-Min; Tai, Po-An; Chang, You-Kang; Wang, Yu-Nong; Shih, Rompin; Chuang, Keh-Shih

    2016-01-01

    Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)-based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5 different lesion catalogs were collected, and the patients were divided into 2 distance groups-1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and linear accelerator is only 1 modality can to establish for SRS treatment. Based on statistical evidence retrospectively, we recommend VMAT as the optimal technique for delivering treatment to tumors adjacent to brainstem. Copyright © 2016 American Association of Medical Dosimetrists. All rights reserved.

  19. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation.

    Science.gov (United States)

    Wang, Jun Yi; Hessl, David; Hagerman, Randi J; Simon, Tony J; Tassone, Flora; Ferrer, Emilio; Rivera, Susan M

    2017-07-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder typically affecting male premutation carriers with 55-200 CGG trinucleotide repeat expansions in the FMR1 gene after age 50. The aim of this study was to examine whether cerebellar and brainstem changes emerge during development or aging in late life. We retrospectively analyzed magnetic resonance imaging scans from 322 males (age 8-81 years). Volume changes in the cerebellum and brainstem were contrasted with those in the ventricles and whole brain. Compared to the controls, premutation carriers without FXTAS showed significantly accelerated volume decrease in the cerebellum and whole brain, flatter inverted U-shaped trajectory of the brainstem, and larger ventricles. Compared to both older controls and premutation carriers without FXTAS, carriers with FXTAS exhibited significant volume decrease in the cerebellum and whole brain and accelerated volume decrease in the brainstem. We therefore conclude that cerebellar and brainstem volumes were likely affected during both development and progression of neurodegeneration in premutation carriers, suggesting that interventions may need to start early in adulthood to be most effective. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Primary afferent terminal sprouting after a cervical dorsal rootlet section in the macaque monkey.

    Science.gov (United States)

    Darian-Smith, Corinna

    2004-03-01

    We examined the role of primary afferent neurons in the somatosensory cortical "reactivation" that occurs after a localized cervical dorsal root lesion (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476-481). After section of the dorsal rootlets that enervate the macaque's thumb and index finger (segments C6-C8), the cortical representation of these digits was initially silenced but then re-emerged for these same digits over 2-4 postlesion months. Cortical reactivation was accompanied by the emergence of physiologically detectable input from these same digits within dorsal rootlets bordering the lesion site. We investigated whether central axonal sprouting of primary afferents spared by the rhizotomy could mediate this cortical reactivation. The cortical representation of the hand was mapped electrophysiologically 15-25 weeks after the dorsal rootlet section to define this reactivation. Cholera toxin subunit B conjugated to horseradish peroxidase was then injected into the thumb and index finger pads bilaterally to label the central terminals of any neurons that innervated these digits. Primary afferent terminal proliferation was assessed in the spinal dorsal horn and cuneate nucleus at 7 days and 15-25 postlesion weeks. Labeled terminal bouton distributions were reconstructed and the "lesion" and control sides compared within each monkey. Distributions were significantly larger on the side of the lesion in the dorsal horn and cuneate nucleus at 15-25 weeks after the dorsal rootlet section, than those mapped only 7 days postlesion. Our results provide direct evidence for localized sprouting of spared (uninjured) primary afferent terminals in the dorsal horn and cuneate nucleus after a restricted dorsal root injury. Copyright 2004 Wiley-Liss, Inc.

  1. Population coding of forelimb joint kinematics by peripheral afferents in monkeys.

    Directory of Open Access Journals (Sweden)

    Tatsuya Umeda

    Full Text Available Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates.

  2. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  3. Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Otero-García, Marcos; Martínez-García, Fernando; Lanuza, Enrique

    2016-03-01

    The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.

  4. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. Copyright © 2014 the American Physiological Society.

  5. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  6. The Renal Nerves in Chronic Heart Failure: Afferent and Efferent Mechanisms

    Directory of Open Access Journals (Sweden)

    Alicia Marie Schiller

    2015-08-01

    Full Text Available The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF. Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent

  7. Characterization of spinal afferent neurons projecting to different chambers of the rat heart.

    Science.gov (United States)

    Guić, Maja Marinović; Kosta, Vana; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-01-29

    The pattern of distribution of spinal afferent neurons (among dorsal root ganglia-DRGs) that project to anatomically and functionally different chambers of the rat heart, as well as their morphological and neurochemical characteristics were investigated. Retrograde tracing using a patch loaded with Fast blue (FB) was applied to all four chambers of the rat heart and labeled cardiac spinal afferents were characterized by using three neurochemical markers. The majority of cardiac projecting neurons were found from T1 to T4 DRGs, whereas the peak was at T2 DRG. There was no difference in the total number of FB-labeled neurons located in ipsilateral and contralateral DRGs regardless of the chambers marked with the patch. However, significantly more FB-labeled neurons projected to the ventricles compared to the atria (859 vs. 715). The proportion of isolectin B(4) binding in FB-labeled neurons was equal among all neurons projecting to different heart chambers (2.4%). Neurofilament 200 positivity was found in greater proportions in DRG neurons projecting to the left side of the heart, whereas calretinin-immunoreactivity was mostly represented in neurons projecting to the left atrium. Spinal afferent neurons projecting to different chambers of the rat heart exhibit a variety of neurochemical phenotypes depending on binding capacity for isolectin B(4) and immunoreactivity for neurofilament 200 and calretinin, and thus represent important baseline data for future studies. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Ablation of capsaicin sensitive afferent nerves impairs defence but not rapid repair of rat gastric mucosa.

    Science.gov (United States)

    Pabst, M A; Schöninkle, E; Holzer, P

    1993-07-01

    Capsaicin sensitive afferent neurones have previously been reported to play a part in gastric mucosal protection. The aim of this study was to investigate whether these nociceptive neurones strengthen mucosal defence against injury or promote rapid repair of the damaged mucosa, or both. This hypothesis was examined in anaesthetised rats whose stomachs were perfused with ethanol (25 or 50% in saline, wt/wt) for 30 minutes. The gastric mucosa was inspected 0 and 180 minutes after ethanol had been given at the macroscopic, light, and scanning electron microscopic level. Rapid repair of the ethanol injured gastric mucosa (reduction of deep injury, partial re-epithelialisation of the denuded surface) took place in rats anaesthetised with phenobarbital, but not in those anaesthetised with urethane. Afferent nerve ablation as a result of treating rats with a neurotoxic dose of capsaicin before the experiment significantly aggravated ethanol induced damage as shown by an increase in the area and depth of mucosal erosions. Rapid repair of the injured mucosa, however, as seen in rats anesthetised with phenobarbital 180 minutes after ethanol was given, was similar in capsaicin and vehicle pretreated animals. Ablation of capsaicin sensitive afferent neurones was verified by a depletion of calcitonin gene related peptide from the gastric corpus wall. These findings indicate that nociceptive neurones control mechanisms of defence against acute injury but are not required for rapid repair of injured mucosa.

  9. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    Science.gov (United States)

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  10. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  11. Decoding thalamic afferent input using microcircuit spiking activity.

    Science.gov (United States)

    Sederberg, Audrey J; Palmer, Stephanie E; MacLean, Jason N

    2015-04-01

    A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. Copyright © 2015 the American Physiological Society.

  12. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    OpenAIRE

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.; Gebhart, G. F.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined chann...

  13. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    Science.gov (United States)

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  14. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    Science.gov (United States)

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  15. Correlation of Acute and Late Brainstem Toxicities With Dose-Volume Data for Pediatric Patients With Posterior Fossa Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Ronica H., E-mail: rhazari@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Ganju, Rohit G.; Schreibmann, Edward [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Chen, Zhengjia; Zhang, Chao [Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, Georgia (United States); Jegadeesh, Naresh; Cassidy, Richard; Deng, Claudia; Eaton, Bree R.; Esiashvili, Natia [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States)

    2017-06-01

    Purpose: Radiation-induced brainstem toxicity after treatment of pediatric posterior fossa malignancies is incompletely understood, especially in the era of intensity modulated radiation therapy (IMRT). The rates of, and predictive factors for, brainstem toxicity after photon RT for posterior fossa tumors were examined. Methods and Materials: After institutional review board approval, 60 pediatric patients treated at our institution for nonmetastatic infratentorial ependymoma and medulloblastoma with IMRT were included in the present analysis. Dosimetric variables, including the mean and maximum dose to the brainstem, the dose to 10% to 90% of the brainstem (in 10% increments), and the volume of the brainstem receiving 40, 45, 50, and 55 Gy were recorded for each patient. Acute (onset within 3 months) and late (>3 months of RT completion) RT-induced brainstem toxicities with clinical and radiographic correlates were scored using Common Terminology Criteria for Adverse Events, version 4.0. Results: Patients aged 1.4 to 21.8 years underwent IMRT or volumetric arc therapy postoperatively to the posterior fossa or tumor bed. At a median clinical follow-up period of 2.8 years, 14 patients had developed symptomatic brainstem toxicity (crude incidence 23.3%). No correlation was found between the dosimetric variables examined and brainstem toxicity. Vascular injury or ischemia showed a strong trend toward predicting brainstem toxicity (P=.054). Patients with grade 3 to 5 brainstem toxicity had undergone treatment to significant volumes of the posterior fossa. Conclusion: The results of the present series demonstrate a low, but not negligible, risk of brainstem radiation necrosis for pediatric patients with posterior fossa malignancies treated with IMRT. No specific dose-volume correlations were identified; however, modern treatment volumes might help limit the incidence of severe toxicity. Additional work investigating inherent biologic sensitivity might also provide

  16. Differential distribution of voltage-gated channels in myelinated and unmyelinated baroreceptor afferents.

    Science.gov (United States)

    Schild, John H; Kunze, Diana L

    2012-12-24

    hallmark of myelinated baroreceptors. Interestingly, HCN2 and HCN4 expression levels are comparable in both fiber types. Collectively, such apportion of VGC constrains the neural coding of myelinated A-type baroreceptors to low threshold, high frequency, high fidelity discharge but with a limited capacity for neuromodulation of afferent bandwidth. Unmyelinated C-type baroreceptors require greater depolarizing forces for spike initiation and have a low frequency discharge profile that is often poorly correlated with the physiological stimulus. But the complement of VGC in C-type neurons provides far greater capacity for neuromodulation of cell excitability than can be obtained from A-type baroreceptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin B subunit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in primary afferent neurons innervating the rat urinary bladder.

    Science.gov (United States)

    Wang, H F; Shortland, P; Park, M J; Grant, G

    1998-11-01

    In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with

  18. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.

    Science.gov (United States)

    Goense, J B M; Ratnam, R

    2003-10-01

    An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.

  19. Cerebral and brainstem electrophysiologic activity during euthanasia with pentobarbital sodium in horses.

    Science.gov (United States)

    Aleman, M; Williams, D C; Guedes, A; Madigan, J E

    2015-01-01

    An overdose of pentobarbital sodium administered i.v. is the most commonly used method of euthanasia in veterinary medicine. Determining death after the infusion relies on the observation of physical variables. However, it is unknown when cortical electrical activity and brainstem function are lost in a sequence of events before death. To examine changes in the electrical activity of the cerebral cortex and brainstem during an overdose of pentobarbital sodium solution for euthanasia. Our testing hypothesis is that isoelectric pattern of the brain in support of brain death occurs before absence of electrocardiogram (ECG) activity. Fifteen horses requiring euthanasia. Prospective observational study. Horses with neurologic, orthopedic, and cardiac illnesses were selected and instrumented for recording of electroencephalogram, electrooculogram, brainstem auditory evoked response (BAER), and ECG. Physical and neurologic (brainstem reflexes) variables were monitored. Loss of cortical electrical activity occurred during or within 52 seconds after the infusion of euthanasia solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of the BAER happened subsequently. Despite undetectable heart sounds, palpable arterial pulse, and mean arterial pressure, recordable ECG was the last variable to be lost after the infusion (5.5-16 minutes after end of the infusion). Overdose of pentobarbital sodium solution administered i.v. is an effective, fast, and humane method of euthanasia. Brain death occurs within 73-261 seconds of the infusion. Although absence of ECG activity takes longer to occur, brain death has already occurred. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus.

    Science.gov (United States)

    Dieterich, Marianne; Kirsch, V; Brandt, T

    2017-10-01

    MRI diffusion tensor imaging tractography was performed on the bilateral vestibular brainstem pathways, which run from the vestibular nuclei via the paramedian and posterolateral thalamic subnuclei to the parieto-insular vestibular cortex. Twenty-one right-handed healthy subjects participated. Quantitative analysis revealed a rope-ladder-like system of vestibular pathways in the brainstem with crossings at pontine and mesencephalic levels. Three structural types of right-left fiber distributions could be delineated: (1) evenly distributed pathways at the lower pontine level from the vestibular nuclei to the pontine crossing, (2) a moderate, pontomesencephalic right-sided lateralization between the pontine and mesencephalic crossings, and (3) a further increase of the right-sided lateralization above the mesencephalic crossing leading to the thalamic vestibular subnuclei. The increasing lateralization along the brainstem was the result of an asymmetric number of pontine and mesencephalic crossing fibers which was higher for left-to-right crossings. The dominance of the right vestibular meso-diencephalic circuitry in right-handers corresponds to the right-hemispheric dominance of the vestibular cortical network. The structural asymmetry apparent in the upper brainstem might be interpreted in relation to the different functions of the vestibular system depending on their anatomical level: a symmetrical sensorimotor reflex control of eye, head, and body mediated by the lower brainstem; a lateralized right-sided upper brainstem-thalamic function as part of the dominant right-sided cortical/subcortical vestibular system that enables a global percept of body motion and orientation in space.

  1. Interictal dysfunction of a brainstem descending modulatory center in migraine patients.

    Directory of Open Access Journals (Sweden)

    Eric A Moulton

    Full Text Available The brainstem contains descending circuitry that can modulate nociceptive processing (neural signals associated with pain in the dorsal horn of the spinal cord and the medullary dorsal horn. In migraineurs, abnormal brainstem function during attacks suggest that dysfunction of descending modulation may facilitate migraine attacks, either by reducing descending inhibition or increasing facilitation. To determine whether a brainstem dysfunction could play a role in facilitating migraine attacks, we measured brainstem function in migraineurs when they were not having an attack (i.e. the interictal phase.Using fMRI (functional magnetic resonance imaging, we mapped brainstem activity to heat stimuli in 12 episodic migraine patients during the interictal phase. Separate scans were collected to measure responses to 41 degrees C and noxious heat (pain threshold+1 degrees C. Stimuli were either applied to the forehead on the affected side (as reported during an attack or the dorsum of the hand. This was repeated in 12 age-gender-matched control subjects, and the side tested corresponded to that in the matched migraine patients. Nucleus cuneiformis (NCF, a component of brainstem pain modulatory circuits, appears to be hypofunctional in migraineurs. 3 out of the 4 thermal stimulus conditions showed significantly greater NCF activation in control subjects than the migraine patients.Altered descending modulation has been postulated to contribute to migraine, leading to loss of inhibition or enhanced facilitation resulting in hyperexcitability of trigeminovascular neurons. NCF function could potentially serve as a diagnostic measure in migraine patients, even when not experiencing an attack. This has important implications for the evaluation of therapies for migraine.

  2. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    Science.gov (United States)

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (Pconcussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  3. The absence of later wave components in auditory brainstem responses as an initial manifestation of type 2 Gaucher disease.

    Science.gov (United States)

    Okubo, Yusuke; Goto, Masahiro; Sakakibara, Hiroshi; Terakawa, Toshiro; Kaneko, Takashi; Miyama, Sahoko

    2014-12-01

    Type 2 Gaucher disease is the most severe neuronopathic form of Gaucher disease and is characterized by severe neurodegeneration with brainstem involvement and organ failure. Prediction or diagnosis of type 2 Gaucher disease before the development of neurological complications is difficult. A 5-month-old female infant presented with deafness without other neurological abnormalities. Auditory brainstem response analysis revealed the absence of later wave components. Two months later, muscular rigidity became evident, followed by the development of opisthotonus and strabismus. Rapid progression of splenomegaly led to the diagnosis of type 2 Gaucher disease. Abnormal auditory brainstem response findings may already exist before the development of severe brainstem abnormalities such as muscular rigidity and opisthotonus in type 2 Gaucher disease. When patients present with deafness and absent later wave components on auditory brainstem response, type 2 Gaucher disease should be included in the differential diagnosis even in the absence of other neurological abnormalities. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem...... and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial...... synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity...

  5. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Science.gov (United States)

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  6. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    Directory of Open Access Journals (Sweden)

    Axel J. Fenwick

    2014-01-01

    Full Text Available Cranial visceral afferents contained within the solitary tract (ST contact second-order neurons in the nucleus of the solitary tract (NTS and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33˚ - 37˚C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  7. Effect of neonatal capsaicin treatment on neural activity in the medullary dorsal horn of neonatal rats evoked by electrical stimulation to the trigeminal afferents: an optical, electrophysiological, and quantitative study.

    Science.gov (United States)

    Takuma, S

    2001-07-06

    To elucidate which glutamate receptors, NMDA or non-NMDA, have the main role in synaptic transmission via unmyelinated afferents in the trigeminal subnucleus caudalis (the medullary dorsal horn), and to examine the early functional effects of neonatal capsaicin treatment to the subnucleus caudalis, optical recording, field potential recording, and quantitative study using electron micrographs were employed. A medulla oblongata isolated from a rat 5--7 days old was sectioned horizontally 400-microm thick or parasagittally and stained with a voltage-sensitive dye, RH482 or RH795. Single-pulse stimulation with high intensity to the trigeminal afferents evoked optical responses mainly in the subnucleus caudalis. The optical signals were composed of two phases, a fast component followed by a long-lasting component. The spatiotemporal properties of the optical signals were well correlated to those of the field potentials recorded simultaneously. The fast component was eliminated by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 10 microM), while the long-lasting component was not. The latter increased in amplitude under a condition of low Mg(2+) but was significantly reduced by DL-2-amino-5-phosphonovaleric acid (AP5; 30 microM). Neonatal capsaicin treatment also reduced the long-lasting component markedly. In addition, the decreases in the ratio of unmyelinated axons to myelinated axons and in the ratio of unmyelinated axons to Schwann cell subunits of trigeminal nerve roots both showed significant differences (P<0.05, Student's t-test) between the control group and the neonatal capsaicin treatment group. This line of evidence indirectly suggests that synaptic transmission via unmyelinated afferents in the subnucleus caudalis is mediated substantially by NMDA glutamate receptors and documented that neonatal capsaicin treatment induced a functional alteration of the neural transmission in the subnucleus caudalis as well as a morphological alteration of primary afferents

  8. Brainstem response audiometry in the determination of low-frequency hearing loss : a study of various methods for frequency-specific ABR-threshold assessment

    NARCIS (Netherlands)

    E.A.G.J. Conijn

    1992-01-01

    textabstractBrainstem Electric Response Audiometry (BERA) is a method to visualize some of the electric activity generated in the auditory nerve and the brainstem during the processing of sound. The amplitude of the Auditory Brainstem Response (ABR) is very small (0.05-0.5 flV). The potentials

  9. Stereotactic radiosurgery for brainstem metastases: Survival, tumor control, and patient outcomes

    International Nuclear Information System (INIS)

    Hussain, Aamir; Brown, Paul D.; Stafford, Scott L.; Pollock, Bruce E.

    2007-01-01

    Purpose: Patients with brainstem metastases have limited treatment options. In this study, we reviewed outcomes after stereotactic radiosurgery (SRS) in the management of patients with brainstem metastases. Methods and Materials: Records were reviewed of 22 consecutive patients presenting with brainstem metastases who underwent SRS. The most frequent primary malignancy was the lung (n = 11), followed by breast (n = 3) and kidney (n = 2). Three patients (14%) also underwent whole-brain radiation therapy (WBRT). The median tumor volume was 0.9 mL (range, 0.1-3.3 mL); the median tumor margin dose was 16 Gy (range, 14-23 Gy). Results: Median survival time after SRS was 8.5 months. Although local tumor control was achieved in all patients with imaging follow-up (n = 19), 5 patients died from development and progression of new brain metastases. Two patients (9%) had symptom improvement after SRS, whereas 1 patient (5%) developed a new hemiparesis after SRS. Conclusions: Radiosurgery is safe and provides a high local tumor control rate for patients with small brainstem metastases. Patients with limited systemic disease and good performance status should be strongly considered for SRS

  10. Stereotactic radiosurgery for deep intracranial arteriovenous malformations, part 1: Brainstem arteriovenous malformations.

    Science.gov (United States)

    Cohen-Inbar, Or; Ding, Dale; Chen, Ching-Jen; Sheehan, Jason P

    2016-02-01

    The management of brainstem arteriovenous malformations (AVM) are one of the greatest challenges encountered by neurosurgeons. Brainstem AVM have a higher risk of hemorrhage compared to AVM in other locations, and rupture of these lesions commonly results in devastating neurological morbidity and mortality. The potential morbidity associated with currently available treatment modalities further compounds the complexity of decision making for affected patients. Stereotactic radiosurgery (SRS) has an important role in the management of brainstem AVM. SRS offers acceptable obliteration rates with lower risks of hemorrhage occurring during the latency period. Complex nidal architecture requires a multi-disciplinary treatment approach. Nidi partly involving subpial/epipial regions of the dorsal midbrain or cerebellopontine angle should be considered for a combination of endovascular embolization, micro-surgical resection and SRS. Considering the fact that incompletely obliterated lesions (even when reduced in size) could still cause lethal hemorrhages, additional treatment, including repeat SRS and surgical resection should be considered when complete obliteration is not achieved by first SRS. Patients with brainstem AVM require continued clinical and radiological observation and follow-up after SRS, well after angiographic obliteration has been confirmed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Investigation of auditory brainstem function in elderly diabetic patients with presbycusis.

    Science.gov (United States)

    Kovacií, Jelena; Lajtman, Zoran; Ozegović, Ivan; Knezević, Predrag; Carić, Tomislav; Vlasić, Ana

    2009-01-01

    We performed brainstem auditory evoked potential (BAEP) examinations in 100 patients older than 60 years and having type I diabetes mellitus and presbycusis. The aim of our investigation was to compare the BAEP results of this group with those of healthy controls with presbycusis and to look for possible correlations between alteration of the auditory brainstem function and the aging of elderly diabetic patients. Absolute and interpeak latencies of all waves were prolonged significantly in the study group of diabetic patients. The amplitudes of all waves I through V were diminished in the study group as compared to those in the control group, with statistical significance present for all waves. Analysis of the latencies (waves I, II, I, and V), interpeak latencies (I-V), and amplitudes (I, II, III, and V) of BAEP revealed a significant difference between those of diabetics and those of healthy elderly controls with presbycusis. These data support a hypothesis that there is a brainstem neuropathy in diabetes mellitus that can be assessed with auditory brainstem response testing even in the group of elderly patients with sensorineural hearing loss.

  12. Effects of brainstem lesions on the masseter inhibitory reflex. Functional mechanisms of reflex pathways

    NARCIS (Netherlands)

    Ongerboer de Visser, B. W.; Cruccu, G.; Manfredi, M.; Koelman, J. H.

    1990-01-01

    The masseter inhibitory reflex (MIR) was investigated in 16 patients with localized brainstem lesions involving the trigeminal system. The MIR consists of two phases of EMG silence (S1 and S2) evoked by stimulation of the mental nerve during maximal clenching of the teeth. The extent of the lesions

  13. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance

    Science.gov (United States)

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2013-01-01

    Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…

  14. Speech-evoked brainstem frequency-following responses during verbal transformations due to word repetition.

    Science.gov (United States)

    Galbraith, G C; Jhaveri, S P; Kuo, J

    1997-01-01

    Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.

  15. The human premotor oculomotor brainstem system - can it help to understand oculomotor symptoms in Huntington's disease?

    NARCIS (Netherlands)

    Rueb, U.; Heinsen, H.; Brunt, E. R.; Landwehrmeyer, B.; Den Dunnen, W. F. A.; Gierga, K.; Deller, T.

    Recent progress in oculomotor research has enabled new insights into the functional neuroanatomy of the human premotor oculomotor brainstem network. In the present review, we provide an overview of its functional neuroanatomy and summarize the broad range of oculomotor dysfunctions that may occur in

  16. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials.

    Science.gov (United States)

    Bidelman, Gavin M

    2015-02-15

    Simultaneous recording of brainstem and cortical event-related brain potentials (ERPs) may offer a valuable tool for understanding the early neural transcription of behaviorally relevant sounds and the hierarchy of signal processing operating at multiple levels of the auditory system. To date, dual recordings have been challenged by technological and physiological limitations including different optimal parameters necessary to elicit each class of ERP (e.g., differential adaptation/habitation effects and number of trials to obtain adequate response signal-to-noise ratio). We investigated a new stimulus paradigm for concurrent recording of the auditory brainstem frequency-following response (FFR) and cortical ERPs. The paradigm is "optimal" in that it uses a clustered stimulus presentation and variable interstimulus interval (ISI) to (i) achieve the most ideal acquisition parameters for eliciting subcortical and cortical responses, (ii) obtain an adequate number of trials to detect each class of response, and (iii) minimize neural adaptation/habituation effects. Comparison between clustered and traditional (fixed, slow ISI) stimulus paradigms revealed minimal change in amplitude or latencies of either the brainstem FFR or cortical ERP. The clustered paradigm offered over a 3× increase in recording efficiency compared to conventional (fixed ISI presentation) and thus, a more rapid protocol for obtaining dual brainstem-cortical recordings in individual listeners. We infer that faster recording of subcortical and cortical potentials might allow more complete and sensitive testing of neurophysiological function and aid in the differential assessment of auditory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Patrick Grabher

    2017-01-01

    Conclusion: Neurodegeneration, indicated by volume loss and myelin reductions, is evident in major brainstem pathways and nuclei following traumatic SCI; the magnitude of these changes relating to clinical impairment. Thus, quantitative MRI protocols offer new targets, which may be used as neuroimaging biomarkers in treatment trials.

  18. Identification of clinical target areas in the brainstem of prion‐infected mice

    Science.gov (United States)

    Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian

    2015-01-01

    Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251

  19. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...

  20. Boxing sparring complicated by an acute subdural haematoma and brainstem haemorrhage.

    Science.gov (United States)

    Hart, Michael G; Trivedi, Rikin A; Hutchinson, Peter J

    2012-10-01

    A professional boxer developed an acute subdural haematoma after boxing sparring. Despite timely surgical decompression, he had a poor overall outcome predominantly from a delayed brainstem haematoma. Magnetic resonance imaging (MRI) was used to elucidate the pathophysiology of the patients' injury and clinical condition.

  1. Evidence of the Primary Afferent Tracts Undergoing Neurodegeneration in Horses With Equine Degenerative Myeloencephalopathy Based on Calretinin Immunohistochemical Localization.

    Science.gov (United States)

    Finno, C J; Valberg, S J; Shivers, J; D'Almeida, E; Armién, A G

    2016-01-01

    Equine degenerative myeloencephalopathy (EDM) is characterized by a symmetric general proprioceptive ataxia in young horses, and is likely underdiagnosed for 2 reasons: first, clinical signs overlap those of cervical vertebral compressive myelopathy; second, histologic lesions--including axonal spheroids in specific tracts of the somatosensory and motor systems--may be subtle. The purpose of this study was (1) to utilize immunohistochemical (IHC) markers to trace axons in the spinocuneocerebellar, dorsal column-medial lemniscal, and dorsospinocerebellar tracts in healthy horses and (2) to determine the IHC staining characteristics of the neurons and degenerated axons along the somatosensory tracts in EDM-affected horses. Examination of brain, spinal cord, and nerves was performed on 2 age-matched control horses, 3 EDM-affected horses, and 2 age-matched disease-control horses via IHC for calbindin, vesicular glutamate transporter 2, parvalbumin, calretinin, glutamic acid decarboxylase, and glial fibrillary acidic protein. Primary afferent axons of the spinocuneocerebellar, dorsal column-medial lemniscal, and dorsospinocerebellar tracts were successfully traced with calretinin. Calretinin-positive cell bodies were identified in a subset of neurons in the dorsal root ganglia, suggesting that calretinin IHC could be used to trace axonal projections from these cell bodies. Calretinin-immunoreactive spheroids were present in EDM-affected horses within the nuclei cuneatus medialis, cuneatus lateralis, and thoracicus. Neurons within those nuclei were calretinin negative. Cell bodies of degenerated axons in EDM-affected horses are likely located in the dorsal root ganglia. These findings support the role of sensory axonal degeneration in the pathogenesis of EDM and provide a method to highlight tracts with axonal spheroids to aid in the diagnosis of this neurodegenerative disease. © The Author(s) 2015.

  2. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    Science.gov (United States)

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    selective hair cell lesion. Because these afferent neurons carry sound information from the cochlea to the auditory brainstem, their survival is a key determinant of the success of cochlear prosthetics. Our data suggest that fractalkine signaling in the cochlea is neuroprotective, and reveal a previously uncharacterized interaction between cells of the cochlea and the innate immune system. Copyright © 2015 the authors 0270-6474/15/3515050-12$15.00/0.

  3. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Yong Seek; Park, Cheung-Seog [Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Jin, Young-Ho, E-mail: jinyh@khu.ac.kr [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  4. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    or without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] and DIDS were not additive. In the absence of chloride, basal renin release was suppressed and the stimulatory effect of DIDS was abolished. The DIDS-induced enhancement of renin release was not dependent on bicarbonate....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...

  5. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    of calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas...... was abolished by IAA-94. Furthermore, the vasoconstriction caused by adenosine was significantly inhibited by 5 microM nifedipine (control 8.3 +/- 0.2 microM, ado 3.6 +/- 0.6 microM, ado + nifedipine 6.8 +/- 0.2 microM) suggesting involvement of voltage-dependent calcium channels. CONCLUSION: We conclude...

  6. Intermittent hypercapnic hypoxia effects on the nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem.

    Science.gov (United States)

    Vivekanandarajah, Arunnjah; Aishah, Atqiya; Waters, Karen A; Machaalani, Rita

    2017-05-01

    This study investigated the effects of acute (1 day) vs repeated (4 days) exposure to intermittent hypercapnic hypoxia (IHH) on the immunohistochemical expression of α2, α3, α5, α7, α9 and β2 nicotinic acetylcholine receptor (nAChR) subunits in the developing piglet hippocampus and brainstem medulla, and how prior nicotine exposure alters the response to acute IHH. Five piglet groups included: 1day IHH (1D IHH, n=9), 4days IHH (4D IHH, n=8), controls exposed only to air cycles for 1day (1D Air, n=6) or 4days (4D Air, n=5), and pre-exposed to nicotine for 13days prior to 1day IHH (Nic+1D IHH, n=7). The exposure period alternated 6min of HH (8%O 2 , 7%CO 2 , balance N 2 ) and 6min of air over 48min, while controls were switched from air-to-air. Results showed that: 1. repeated IHH induces more changes in nAChR subunit expression than acute IHH in both the hippocampus and brainstem medulla, 2. In the hippocampus, α2 and β2 changed the most (increased) following IHH and the CA3, CA2 and DG were mostly affected. In the brainstem medulla, α2, α5, α9 and β2 were changed (decreased) in most nuclei with the hypoglossal and nucleus of the solitary tract being mostly affected. 3. Pre-exposure to nicotine enhanced the changes in the hippocampus but dampened those in the brainstem medulla. These findings indicate that the nAChRs (predominantly with the α2/β2 complex) are affected by IHH in critical hippocampal and brainstem nuclei during early brain development, and that pre-exposure to nicotine alters the pattern of susceptibility to IHH. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Characterising Ageing in the Human Brainstem Using Quantitative Multimodal MRI Analysis

    Directory of Open Access Journals (Sweden)

    Christian eLambert

    2013-08-01

    Full Text Available Ageing is ubiquitous to the human condition. The MRI correlates of healthy ageing have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI and DTI. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analysing this region. By utilising a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of ageing within the human brainstem in vivo. Using quantitative MRI (qMRI, tensor based morphometry (TBM and voxel based quantification (VBQ, the volumetric and quantitative changes across healthy adults between 19-75 years were characterised. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetisation transfer (MT and increase in proton density (PD, accounting for the previously described midbrain shrinkage. Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterised, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterised by early, pre-clinical involvement of the brainstem, such as Parkinson’s and Alzheimer’s diseases.

  8. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Science.gov (United States)

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as

  9. Four cases with localized brain-stem lesion on CT scan following closed head injury

    International Nuclear Information System (INIS)

    Saeki, Naokatsu; Odaki, Masaru; Oka, Nobuo; Takase, Manabu; Ono, Junichi.

    1981-01-01

    Cases of primary brain-stem injury following closed head injury, verified by a CT scan, have been increasingly reported. However, most of them have other intracranial lesions in addition to the brain stem, resulting in a poor outcome. The CT scan of 200 cases with severe head injury-Araki's classification of types 3 and 4 - were analysed. Four cases out of them had localized brain-stem lesion without any other significant intracranial injury on a CT scan at the acute stage and had a better outcome than had previously been reported. In this analysis, these 4 cases were studied, and the CT findings, prognosis, and pathogenesis of the localized brain-stem injury were discussed. Follow-up CT of three cases, and taken one month or more later, showed diffuse cortical atrophy. This may indicate the presence of diffuse cerebral injury which could not be seen on CT scans at the acute stage. This atrophic change may also be related with the mechanism of posttraumatic conscious impairment and posttraumatic neurological deficits, such as mental symptoms and impairment of the higher cortical function. Shearing injury is a probable pathogenesis for this diffuse cortical injury. On the other hand, one case did not have any cortical atrophy on a follow-up CT scan. Therefore, this is a case with a localized primary brain-stem injury. Coup injury against the brain stem by a tentorial margin in a case with a small tentorial opening is a possible mechanism producing the localized brain-stem injury. (J.P.N.)

  10. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Erika Matsumura

    Full Text Available Abstract Introduction Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. Objective To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. Methods The sample consisted of 38 adult males, mean age of 35.8 (±7.2, divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n = 10, mild obstructive sleep apnea (n = 11 moderate obstructive sleep apnea (n = 8 and severe obstructive sleep apnea (n = 9. All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. Results There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p = 0.03. There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p = 0.01. Conclusion The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem

  11. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging.

    Science.gov (United States)

    Zhang, Bei; Seifert, Alan C; Kim, Joo-Won; Borrello, Joseph; Xu, Junqian

    2017-10-01

    Increased signal-to-noise ratio and blood oxygenation level-dependent sensitivity at 7 Tesla (T) have the potential to enable high-resolution imaging of the human cervical spinal cord and brainstem. We propose a new two-panel radiofrequency coil design for these regions to fully exploit the advantages of ultra-high field. A two-panel array, containing four transmit/receive and 18 receive-only elements fully encircling the head and neck, was constructed following simulations demonstrating the B1+ and specific absorption rate (SAR) benefits of two-panel over one-panel arrays. This array was compared with a previously reported posterior-only array and tested for safety using a phantom. Its anatomical, functional, and diffusion MRI performance was demonstrated in vivo. The two-panel array produced more uniform B1+ across the brainstem and cervical spinal cord without compromising SAR, and achieved 70% greater receive sensitivity than the posterior-only array. The two-panel design enabled acceleration of R = 2 × 2 in two dimensions or R = 3 in a single dimension. High quality in vivo anatomical, functional, and diffusion images of the human cervical spinal cord and brainstem were acquired. We have designed and constructed a wrap-around coil array with excellent performance for cervical spinal cord and brainstem MRI at 7T, which enables simultaneous human cervical spinal cord and brainstem functional MRI. Magn Reson Med 78:1623-1634, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Macrovascular Decompression of the Brainstem and Cranial Nerves: Evolution of an Anteromedial Vertebrobasilar Artery Transposition Technique.

    Science.gov (United States)

    Choudhri, Omar; Connolly, Ian D; Lawton, Michael T

    2017-08-01

    Tortuous and dolichoectatic vertebrobasilar arteries can impinge on the brainstem and cranial nerves to cause compression syndromes. Transposition techniques are often required to decompress the brainstem with dolichoectatic pathology. We describe our evolution of an anteromedial transposition technique and its efficacy in decompressing the brainstem and relieving symptoms. To present the anteromedial vertebrobasilar artery transposition technique for macrovascular decompression of the brainstem and cranial nerves. All patients who underwent vertebrobasilar artery transposition were identified from the prospectively maintained database of the Vascular Neurosurgery service, and their medical records were reviewed retrospectively. The extent of arterial displacement was measured pre- and postoperatively on imaging. Vertebrobasilar arterial transposition and macrovascular decompression was performed in 12 patients. Evolution in technique was characterized by gradual preference for the far-lateral approach, use of a sling technique with muslin wrap, and an anteromedial direction of pull on the vertebrobasilar artery with clip-assisted tethering to the clival dura. With this technique, mean lateral displacement decreased from 6.6 mm in the first half of the series to 3.8 mm in the last half of the series, and mean anterior displacement increased from 0.8 to 2.5 mm, with corresponding increases in satisfaction and relief of symptoms. Compressive dolichoectatic pathology directed laterally into cranial nerves and posteriorly into the brainstem can be corrected with anteromedial transposition towards the clivus. Our technique accomplishes this anteromedial transposition from an inferolateral surgical approach through the vagoaccessory triangle, with sling fixation to clival dura using aneurysm clips. Copyright © 2017 by the Congress of Neurological Surgeons

  13. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea.

    Science.gov (United States)

    Matsumura, Erika; Matas, Carla Gentile; Magliaro, Fernanda Cristina Leite; Pedreño, Raquel Meirelles; Lorenzi-Filho, Geraldo; Sanches, Seisse Gabriela Gandolfi; Carvallo, Renata Mota Mamede

    2016-11-25

    Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. The sample consisted of 38 adult males, mean age of 35.8 (±7.2), divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n=10), mild obstructive sleep apnea (n=11) moderate obstructive sleep apnea (n=8) and severe obstructive sleep apnea (n=9). All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p=0.03). There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p=0.01). The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem Auditory Evoked Response. Copyright © 2016 Associação Brasileira de

  14. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  15. Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Berezova, Inna V; Dygalo, Nikolay N

    2012-01-01

    Mechanisms underlying stress-induced depression and antidepressant drug action were shown to involve alterations in serotonergic (5-HT) neurotransmission and expression of genes coding for proteins associated with neurotrophic signaling pathways and cell-survival in the hippocampus and cortex. Expression of these genes in the brainstem containing 5-HT neurons may also be related to vulnerability or resilience to stress-related psychopathology. Here we investigated 5-HT markers and expression of genes for Brain-Derived Neurotrophic Factor (BDNF) and apoptotic proteins in the brainstem in relation to swim stress-induced behavioral despair. We found that anti-apoptotic Bcl-xL gene is sensitive to stress during the course of fluoxetine administration. Responsiveness of this gene to stress appeared concomitantly with an antidepressant-like effect of fluoxetine in the forced swim test. Bcl-xL transcript levels showed negative correlations with duration of immobility in the test and 5-HT turnover in the brainstem. In contrast, BDNF and pro-apoptotic protein Bax mRNA levels were unchanged by either fluoxetine or stress, suggesting specificity of Bcl-xL gene responses to these treatments. We also found that the levels of mRNAs for tryptophan hydroxylase-2 (TPH2) and 5-HT transporter (5-HTT) were significantly down-regulated following prolonged treatment with fluoxetine, but were not affected by stress. Unlike TPH2 and 5-HTT, 5-HT1A receptor mRNA levels were not altered by fluoxetine but significantly increased in response to swim stress. These data show that long-term fluoxetine treatment leads to changes in 5-HT and Bcl-xL responses to stress associated with antidepressant-like effects of the drug. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  17. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  18. Liver afferents contribute to water drinking-induced sympathetic activation in human subjects: a clinical trial.

    Directory of Open Access Journals (Sweden)

    Marcus May

    Full Text Available Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups after 30-40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects.ClinicalTrials.gov NCT01237431.

  19. Stability of Kinesthetic Perception in Efferent-Afferent Spaces: The Concept of Iso-perceptual Manifold.

    Science.gov (United States)

    Latash, Mark L

    2018-02-21

    The main goal of this paper is to introduce the concept of iso-perceptual manifold for perception of body configuration and related variables (kinesthetic perception) and to discuss its relation to the equilibrium-point hypothesis and the concepts of reference coordinate and uncontrolled manifold. Hierarchical control of action is postulated with abundant transformations between sets of spatial reference coordinates for salient effectors at different levels. Iso-perceptual manifold is defined in the combined space of afferent and efferent variables as the subspace corresponding to a stable percept. Examples of motion along an iso-perceptual manifold (perceptually equivalent motion) are considered during various natural actions. Some combinations of afferent and efferent signals, in particular those implying a violation of body's integrity, give rise to variable percepts by artificial projection onto iso-perceptual manifolds. This framework is used to interpret unusual features of vibration-induced kinesthetic illusions and to predict new illusions not yet reported in the literature. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick M.; Blaha, Cheryl; Kunselman, Allen R.

    2012-01-01

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects. PMID:22707559

  1. Meningeal norepinephrine produces headache behaviors in rats via actions both on dural afferents and fibroblasts.

    Science.gov (United States)

    Wei, Xiaomei; Yan, Jin; Tillu, Dipti; Asiedu, Marina; Weinstein, Nicole; Melemedjian, Ohannes; Price, Theodore; Dussor, Gregory

    2015-10-01

    Stress is commonly reported to contribute to migraine although mechanisms by which this may occur are not fully known. The purpose of these studies was to examine whether norepinephrine (NE), the primary sympathetic efferent transmitter, acts on processes in the meninges that may contribute to the pain of migraine. NE was applied to rat dura using a behavioral model of headache. Primary cultures of rat trigeminal ganglia retrogradely labeled from the dura mater and of rat dural fibroblasts were prepared. Patch-clamp electrophysiology, Western blot, and ELISA were performed to examine the effects of NE. Conditioned media from NE-treated fibroblast cultures was applied to the dura using the behavioral headache model. Dural injection both of NE and media from NE-stimulated fibroblasts caused cutaneous facial and hindpaw allodynia in awake rats. NE application to cultured dural afferents increased action potential firing in response to current injections. Application of NE to dural fibroblasts increased phosphorylation of ERK and caused the release of interleukin-6 (IL-6). These data demonstrate that NE can contribute to pro-nociceptive signaling from the meninges via actions on dural afferents and dural fibroblasts. Together, these actions of NE may contribute to the headache phase of migraine. © International Headache Society 2015.

  2. Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    Science.gov (United States)

    May, Marcus; Gueler, Faikah; Barg-Hock, Hannelore; Heiringhoff, Karl-Heinz; Engeli, Stefan; Heusser, Karsten; Diedrich, André; Brandt, André; Strassburg, Christian P.; Tank, Jens; Sweep, Fred C. G. J.; Jordan, Jens

    2011-01-01

    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (pwater drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. Trial Registration ClinicalTrials.gov NCT01237431 PMID:22016786

  3. Afferent Loop Syndrome after Roux-en-Y Total Gastrectomy Caused by Volvulus of the Roux-Limb

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2016-01-01

    Full Text Available Afferent loop syndrome is a rare complication of gastric surgery. An obstruction of the afferent limb can present in various ways. A 73-year-old man presented with one day of persistent abdominal pain, gradually radiating to the back. He had a history of total gastrectomy with a Roux-en-Y reconstruction. Abdominal computed tomography scan revealed dilation of the duodenum and small intestine in the left upper quadrant. Exploratory laparotomy showed volvulus of the biliopancreatic limb that caused afferent loop syndrome. In this patient, the 50 cm long limb was the cause of volvulus. It is important to fashion a Roux-limb of appropriate length to prevent this complication.

  4. Optimal technique of linear accelerator–based stereotactic radiosurgery for tumors adjacent to brainstem

    International Nuclear Information System (INIS)

    Chang, Chiou-Shiung; Hwang, Jing-Min; Tai, Po-An; Chang, You-Kang; Wang, Yu-Nong; Shih, Rompin; Chuang, Keh-Shih

    2016-01-01

    Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)–based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5 different lesion catalogs were collected, and the patients were divided into 2 distance groups—1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5 cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and < 1 cm. Comparison was then made among the following 3 types of LINAC-based radiosurgery: dynamic conformal arcs (DCA), intensity-modulated radiosurgery (IMRS), and volumetric modulated arc radiotherapy (VMAT). All techniques included multiple noncoplanar beams or arcs with or without intensity-modulated delivery. The volume of gross tumor volume (GTV) ranged from 0.2 cm 3 to 21.9 cm 3 . Regarding the dose homogeneity index (HI ICRU ) and conformity index (CI ICRU ) were without significant difference between techniques statistically. However, the average CI ICRU = 1.09 ± 0.56 achieved by VMAT was the best of the 3 techniques. Moreover, notable improvement in gradient index (GI) was observed when VMAT was used (0.74 ± 0.13), and this result was significantly better than those achieved by the 2 other techniques (p < 0.05). For V 4 Gy of brainstem, both VMAT (2.5%) and IMRS (2.7%) were significantly lower than DCA (4.9%), both at the p < 0.05 level. Regarding V 2 Gy of normal brain, VMAT plans had attained 6.4 ± 5%; this was significantly better

  5. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Ladouceur, Michel; Andersen, Jacob B.

    2001-01-01

    1. The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. 2. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h(-1) with the left ankle...... = 0.007), whereas the short latency component was unchanged (P = 0.653). 7. An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. 8. Our results support...

  6. Neurodegenerative changes in the brainstem and olfactory bulb in people older than 50 years old: a descriptive study

    Directory of Open Access Journals (Sweden)

    Francine Hehn de Oliveira

    2015-07-01

    Full Text Available With the increase in life expectancy in Brazil, concerns have grown about the most prevalent diseases in elderly people. Among these diseases are neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. Protein deposits related to the development of these diseases can pre-date the symptomatic phases by years. The tau protein is particularly interesting: it might be found in the brainstem and olfactory bulb long before it reaches the limbic cortex, at which point symptoms occur. Of the 14 brains collected in this study, the tau protein was found in the brainstems of 10 (71.42% and in olfactory bulbs of 3 out 11. Of the 7 individuals who had a final diagnosis of Alzheimer’s disease (AD, 6 presented tau deposits in some region of the brainstem. Our data support the idea of the presence of tau protein in the brainstem and olfactory bulb in the earliest stages of AD.

  7. Abnormal Auditory Brainstem Response (ABR Findings in a Near-Normal Hearing Child with Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Bahram Jalaei

    2017-01-01

    Full Text Available Introduction: Noonan syndrome (NS is a heterogeneous genetic disease that affects many parts of the body. It was named after Dr. Jacqueline Anne Noonan, a paediatric cardiologist.Case Report: We report audiological tests and auditory brainstem response (ABR findings in a 5-year old Malay boy with NS. Despite showing the marked signs of NS, the child could only produce a few meaningful words. Audiological tests found him to have bilateral mild conductive hearing loss at low frequencies. In ABR testing, despite having good waveform morphology, the results were atypical. Absolute latency of wave V was normal but interpeak latencies of wave’s I-V, I-II, II-III were prolonged. Interestingly, interpeak latency of waves III-V was abnormally shorter.Conclusion:Abnormal ABR results are possibly due to abnormal anatomical condition of brainstem and might contribute to speech delay.

  8. Effect of Infant Prematurity on Auditory Brainstem Response at Preschool Age

    Directory of Open Access Journals (Sweden)

    Sara Hasani

    2013-03-01

    Full Text Available Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age.   Materials and Methods: An auditory brainstem response (ABR test was performed with low rates of stimuli in 60 children aged 4 to 6 years. Thirty subjects had been born following a very preterm labor or late-preterm labor and 30 control subjects had been born following a full-term labor.   Results: Significant differences in the ABR test result were observed in terms of the inter-peak intervals of the I–III and III–V waves, and the absolute latency of the III wave (P

  9. Endovascular treatment of brain-stem arteriovenous malformations: safety and efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.M.; Wang, Y.H.; Chen, Y.F.; Huang, K.M. [Department of Medical Imaging, National Taiwan University Hospital, 7 Chung-Shan South Road, 10016, Taipei (Taiwan); Tu, Y.K. [Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, 1001, Taipei (Taiwan)

    2003-09-01

    Our purpose was to evaluate the safety and efficacy of endovascular treatment of brain-stem arteriovenous malformations (AVMs), reviewing six cases managed in the last 5 years. There were four patients who presented with bleeding, one with a progressive neurological deficit and one with obstructive hydrocephalus. Of the six patients, one showed 100%, one 90%, two 75% and two about 50% angiographic obliteration of the AVM after embolisation; the volume decreased about 75% on average. Five patients had a good outcome and one an acceptable outcome, with a mild postprocedure neurological deficit; none had further bleeding during midterm follow-up. Endovascular management of a brain-stem AVM may be an alternative to treatment such as radiosurgery and microsurgery in selected cases. It may be not as risky as previously thought. Embolisation can reduce the size of the AVM and possibly make it more treatable by radiosurgery and decrease the possibility of radiation injury. (orig.)

  10. Sequential change in MRI in two cases with small brainstem infarctions

    International Nuclear Information System (INIS)

    Masuda, Ryoichi; Fukuda, Osamu; Endoh, Shunro; Takaku, Akira; Suzuki, Takashi; Satoh, Shuji

    1987-01-01

    Magnetic resonance imaging (MRI) has been found to be very useful for the diagnosis of a small brainstem infarction. However, most reported cases have shown the changes at only the chronic stage. In this report, sequential changes in the MRI in two cases with small brainstem infarctions are presented. In Case 1, a 67-year-old man with a pure sensory stroke on the right side, a small infarcted area was observed at the left medial side of the pontomedullary junction on MRI. In Case 2, a 62-year-old man with a pure motor hemiparesis of the left side, MRI revealed a small infarcted area on the right ventral of the middle pons. The initial changes were confirmed 5 days (Case 1) and 18 hours (Case 2) after the onset of the completed stroke. No abnormal findings could be found in the computed tomography in either case. (author)

  11. Hypertensive brainstem encephalopathy involving deep supratentorial regions: does only blood pressure matter?

    Directory of Open Access Journals (Sweden)

    Jong-Ho Park

    2010-04-01

    Full Text Available We report on a 42-year-old female patient who presented with high arterial blood pressure of 245/150 mmHg and hypertensive brainstem encephalopathy that involved the brainstem and extensive supratentorial deep gray and white matter. The lesions were nearly completely resolved several days after stabilization of the arterial blood pressure. Normal diffusion-weighted imaging findings and high apparent diffusion coefficient values suggested that the main pathomechanism was vasogenic edema owing to severe hypertension. On the basis of a literature review, the absolute value of blood pressure or whether the patient can control his/her blood pressure seems not to be associated with the degree of the lesions evident on magnetic resonance imaging. It remains to be determined if the acceleration rate and the duration of elevated arterial blood pressure might play a key role in the development of the hypertensive encephalopathy pattern.

  12. Chewing-induced hypertension in afferent baroreflex failure: a sympathetic response?

    Science.gov (United States)

    Fuente Mora, Cristina; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio

    2015-11-01

    What is the central question of this study? Our goal was to understand the autonomic responses to eating in patients with congenital afferent baroreflex failure, by documenting changes in blood pressure and heart rate with chewing, swallowing and stomach distension. What is the main finding and its importance? Patients born with lesions in the afferent baroreceptor pathways have an exaggerated pressor response to food intake. This appears to be a sympathetically mediated response, triggered by chewing, that occurs independently of swallowing or distension of the stomach. The chewing-induced pressor response may be useful as a counter-manoeuvre to prevent orthostatic hypotension in these patients. Familial dysautonomia (FD) is a rare genetic disease with extremely labile blood pressure resulting from baroreflex deafferentation. Patients have marked surges in sympathetic activity, frequently surrounding meals. We conducted an observational study to document the autonomic responses to eating in patients with FD and to determine whether sympathetic activation was caused by chewing, swallowing or stomach distension. Blood pressure and R-R intervals were measured continuously while chewing gum (n = 15), eating (n = 20) and distending the stomach by percutaneous endoscopic gastrostomy tube feeding (n = 9). Responses were compared with those of normal control subjects (n = 10) and of patients with efferent autonomic failure (n = 10) who have chronically impaired sympathetic outflow. In patients with FD, eating was associated with a marked but transient pressor response (P Chewing gum evoked a similar increase in blood pressure that was higher in patients with FD than in control subjects (P = 0.0001), but was absent in patients with autonomic failure. In patients with FD, distending the stomach by percutaneous endoscopic gastrostomy tube feeding failed to elicit a pressor response. The results provide indirect evidence that chewing triggers sympathetic

  13. Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents.

    Science.gov (United States)

    Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J; Morgan, David E; Bledsoe, Amber D; Jessop, Jacob E; Amann, Markus; Richardson, Russell S

    2017-12-01

    The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation. Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (P-MRS). The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min·N). Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.

  14. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our

  15. Brainstem encoding of speech and musical stimuli in congenital amusia: Evidence from Cantonese speakers

    Directory of Open Access Journals (Sweden)

    Fang eLiu

    2015-01-01

    Full Text Available Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB, and two cello tones in quiet while their frequency-following responses (FFRs to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain.

  16. Brainstem encoding of speech and musical stimuli in congenital amusia: evidence from Cantonese speakers.

    Science.gov (United States)

    Liu, Fang; Maggu, Akshay R; Lau, Joseph C Y; Wong, Patrick C M

    2014-01-01

    Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain.

  17. Brainstem encoding of speech and musical stimuli in congenital amusia: evidence from Cantonese speakers

    Science.gov (United States)

    Liu, Fang; Maggu, Akshay R.; Lau, Joseph C. Y.; Wong, Patrick C. M.

    2015-01-01

    Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain. PMID:25646077

  18. Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex.

    Science.gov (United States)

    de Matos, Nuno M P; Hock, Andreas; Wyss, Michael; Ettlin, Dominik A; Brügger, Mike

    2017-11-15

    The trigeminal brainstem sensory nuclear complex is the first central relay structure mediating orofacial somatosensory and nociceptive perception. Animal studies suggest a substantial involvement of neurochemical alterations at such basal CNS levels in acute and chronic pain processing. Translating this animal based knowledge to humans is challenging. Human related examining of brainstem functions are challenged by MR related peculiarities as well as applicability aspects of experimentally standardized paradigms. Based on our experience with an MR compatible human orofacial pain model, the aims of the present study were twofold: 1) from a technical perspective, the evaluation of proton magnetic resonance spectroscopy at 3 T regarding measurement accuracy of neurochemical profiles in this small brainstem nuclear complex and 2) the examination of possible neurochemical alterations induced by an experimental orofacial pain model. Data from 13 healthy volunteers aged 19-46 years were analyzed and revealed high quality spectra with significant reductions in total N-acetylaspartate (N-acetylaspartate + N-acetylaspartylglutamate) (-3.7%, p = 0.009) and GABA (-10.88%, p = 0.041) during the pain condition. These results might reflect contributions of N-acetylaspartate and N-acetylaspartylglutamate in neuronal activity-dependent physiologic processes and/or excitatory neurotransmission, whereas changes in GABA might indicate towards a reduction in tonic GABAergic functioning during nociceptive signaling. Summarized, the present study indicates the applicability of 1 H-MRS to obtain neurochemical dynamics within the human trigeminal brainstem sensory nuclear complex. Further developments are needed to pave the way towards bridging important animal based knowledge with human research to understand the neurochemistry of orofacial nociception and pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Limbic encephalitis with antibodies to glutamic acid decarboxylase presenting with brainstem symptoms

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2015-01-01

    Full Text Available Limbic encephalitis (LE is a neurological syndrome that may present in association with cancer, infection, or as an isolate clinical condition often accompanying autoimmune disorders. LE associated with glutamic acid decarboxylase antibodies (anti-GAD is rare in children. Here, we characterized the clinical and laboratory features of a patient presenting with brainstem involvement with non-paraneoplastic LE associated with anti-GAD antibodies. In our patient, after plasma exchange, we determined a dramatic improvement of the neurological deficits.

  20. Somatotopic Arrangement and Location of the Corticospinal Tract in the Brainstem of the Human Brain

    OpenAIRE

    Jang, Sung Ho

    2011-01-01

    The corticospinal tract (CST) is the most important motor pathway in the human brain. Detailed knowledge of CST somatotopy is important in terms of rehabilitative management and invasive procedures for patients with brain injuries. In this study, I conducted a review of nine previous studies of the somatotopical location and arrangement at the brainstem in the human brain. The results of this review indicated that the hand and leg somatotopies of the CST are arranged medio-laterally in the mi...

  1. Retrospective analysis of 104 histologically proven adult brainstem gliomas: clinical symptoms, therapeutic approaches and prognostic factors

    International Nuclear Information System (INIS)

    Reithmeier, Thomas; Kuzeawu, Aanyo; Hentschel, Bettina; Loeffler, Markus; Trippel, Michael; Nikkhah, Guido

    2014-01-01

    Adult brainstem gliomas are rare primary brain tumors (<2% of gliomas). The goal of this study was to analyze clinical, prognostic and therapeutic factors in a large series of histologically proven brainstem gliomas. Between 1997 and 2007, 104 patients with a histologically proven brainstem glioma were retrospectively analyzed. Data about clinical course of disease, neuropathological findings and therapeutic approaches were analyzed. The median age at diagnosis was 41 years (range 18-89 years), median KPS before any operative procedure was 80 (range 20-100) and median survival for the whole cohort was 18.8 months. Histopathological examinations revealed 16 grade I, 31 grade II, 42 grade III and 14 grade IV gliomas. Grading was not possible in 1 patient. Therapeutic concepts differed according to the histopathology of the disease. Median overall survival for grade II tumors was 26.4 months, for grade III tumors 12.9 months and for grade IV tumors 9.8 months. On multivariate analysis the relative risk to die increased with a KPS ≤ 70 by factor 6.7, with grade III/IV gliomas by the factor 1.8 and for age ≥ 40 by the factor 1.7. External beam radiation reduced the risk to die by factor 0.4. Adult brainstem gliomas present with a wide variety of neurological symptoms and postoperative radiation remains the cornerstone of therapy with no proven benefit of adding chemotherapy. Low KPS, age ≥ 40 and higher tumor grade have a negative impact on overall survival

  2. Fine structure of primary afferent axon terminals projecting from rapidly adapting mechanoreceptors of the toe and foot pads of the cat.

    Science.gov (United States)

    Maxwell, D J; Bannatyne, B A; Fyffe, R E; Brown, A G

    1984-04-01

    Two Pacinian corpuscle afferents and two rapidly adapting afferents from Krause corpuscles were intra-axonally labelled with horseradish peroxidase in the lumbosacral enlargement of the cat's spinal cord. Tissue was prepared for combined light and electron microscopical analysis. Boutons from both classes of afferent had similar ultrastructural appearances. They both formed from one to three synaptic junctions with dendritic shafts and spines and received axo-axonic synapses. In addition, both categories of bouton were seen to be presynaptic to structures interpreted as vesicle-containing dendrites. It is concluded that both types of afferent fibre are subject to presynaptic control and that they synapse with dorsal horn neurones which are possibly interneurones involved in primary afferent depolarization and post-synaptic dorsal column neurones.

  3. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of lo...... of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem. J. Comp. Neurol. 520:17841799, 2012. (C) 2011 Wiley Periodicals, Inc...

  4. Selective plasticity of primary afferent innervation to the dorsal horn and autonomic nuclei following lumbosacral ventral root avulsion and reimplantation in long term studies.

    Science.gov (United States)

    Wu, Lisa; Wu, Jun; Chang, Huiyi H; Havton, Leif A

    2012-02-01

    Previous studies involving injuries to the nerves of the cauda equina and the conus medullaris have shown that lumbosacral ventral root avulsion in rat models results in denervation and dysfunction of the lower urinary tract, retrograde and progressive cell death of the axotomized motor and parasympathetic neurons, as well as the emergence of neuropathic pain. Root reimplantation has also been shown to ameliorate several of these responses, but experiments thus far have been limited to studying the effects of lesion and reimplantation local to the lumbosacral region. Here, we have expanded the region of investigation after lumbosacral ventral root avulsion and reimplantation to include the thoracolumbar sympathetic region of the spinal cord. Using a retrograde tracer injected into the major pelvic ganglion, we were able to define the levels of the spinal cord that contain sympathetic preganglionic neurons innervating the lower urinary tract. We have conducted studies on the effects of the lumbosacral ventral root avulsion and reimplantation models on the afferent innervation of the dorsal horn and autonomic nuclei at both thoracolumbar and lumbosacral levels through immunohistochemistry for the markers calcitonin gene-related peptide (CGRP) and vesicular glutamate transporter 1 (VGLUT1). Surprisingly, our experiments reveal a selective and significant decrease of CGRP-positive innervation in the dorsal horn at thoracolumbar levels that is partially restored with root reimplantation. However, no similar changes were detected at the lumbosacral levels despite the injury and repair targeting efferent neurons, and being performed at the lumbosacral levels. Despite the changes evident in the thoracolumbar dorsal horn, we find no changes in afferent innervation of the autonomic nuclei at either sympathetic or parasympathetic segmental levels by CGRP or VGLUT1. We conclude that even remote, efferent root injuries and repair procedures can have an effect on remote and non

  5. Effectiveness of interferon-[beta], ACNU, and radiation therapy in pediatric patients with brainstem glioma

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Toshihiko; Yoshida, Jun; Mizuno, Masaaki; Sugita, Kenichiro [Nagoya Univ. (Japan). Faculty of Medicine; Kito, Akira

    1992-12-01

    Sixteen pediatric patients with brainstem glioma were treated with a combination of interferon-[beta], 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl -3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU), and radiation therapy (IAR therapy). All patients received 1-1.5 million IU/day of interferon-[beta] intravenously for 1 week of each 6-week cycle. In addition, ACNU (2-3 mg/kg) was given on the 2nd day of each cycle. Conventional focal irradiation (1.5-2 Gy/day for 5 days to a total dosage of 40-60 Gy) was administered beginning on day 3. Patients underwent at least two 6-week cycles. Adverse effects included nausea, vomiting, and myelosuppression, but were mild and transient. Response to treatment was evaluated by the reduction in tumor size measured on postcontrast computed tomographic scans and magnetic resonance images. Responses occurred in 10 of 11 patients with the intrinsic type of brainstem glioma, including three complete and seven partial responses. Two of the five patients with exophytic type gliomas partially responded. The median survival was 15.7 months, a remarkable improvement over the natural course of this disease. These results indicate that IAR therapy is a useful primary treatment for pediatric patients with brainstem gliomas. (author).

  6. Awake craniotomy for assisting placement of auditory brainstem implant in NF2 patients.

    Science.gov (United States)

    Zhou, Qiangyi; Yang, Zhijun; Wang, Zhenmin; Wang, Bo; Wang, Xingchao; Zhao, Chi; Zhang, Shun; Wu, Tao; Li, Peng; Li, Shiwei; Zhao, Fu; Liu, Pinan

    2018-06-01

    Auditory brainstem implants (ABIs) may be the only opportunity for patients with NF2 to regain some sense of hearing sensation. However, only a very small number of individuals achieved open-set speech understanding and high sentence scores. Suboptimal placement of the ABI electrode array over the cochlear nucleus may be one of main factors for poor auditory performance. In the current study, we present a method of awake craniotomy to assist with ABI placement. Awake surgery and hearing test via the retrosigmoid approach were performed for vestibular schwannoma resections and auditory brainstem implantations in four patients with NF2. Auditory outcomes and complications were assessed postoperatively. Three of 4 patients who underwent awake craniotomy during ABI surgery received reproducible auditory sensations intraoperatively. Satisfactory numbers of effective electrodes, threshold levels and distinct pitches were achieved in the wake-up hearing test. In addition, relatively few electrodes produced non-auditory percepts. There was no serious complication attributable to the ABI or awake craniotomy. It is safe and well tolerated for neurofibromatosis type 2 (NF2) patients using awake craniotomy during auditory brainstem implantation. This method can potentially improve the localization accuracy of the cochlear nucleus during surgery.

  7. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  8. Impact of monaural frequency compression on binaural fusion at the brainstem level.

    Science.gov (United States)

    Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I

    2015-08-01

    A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.

  9. Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.

    Science.gov (United States)

    Galbraith, G C

    2001-06-01

    The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.

  10. Features of the brainstem and tentorial foramen relationship and their practical value

    Directory of Open Access Journals (Sweden)

    O. V. Redyakina

    2016-11-01

    Full Text Available Objective. Establish the morphological features and practical significance of the tentorial-stem relationship from the position of individual anatomical variability. Methods: head morphometry, macro and microscopic examination of the brainstem, morphometry of the brainstem and its departments, tentorial aperture morphometry, foramen magnum craniometry, manufacture of corrosion molds of the posterior cranial fossa, statistical processing of the results, computer-graphic modeling of the brainstem and surrounding formations. Results.  In the course of the study, the features of the individual variability of the tentorial foramen form were established, namely: shortened-expanded and oval-convex forms were defined in brachycephalic; in dolichocephalic - oblong-narrowed and elongated-conical. At the same time, a number of existing sizes and forms of the tentorial-stem spaces were noted. Among them, four main ones are described: front, side (right and left and rear. They have individual characteristics. Thus, in the brachycephalic we define lateral holes, due to the convexity of the tentorial margins. In dolichocephalic - front and back gaps, depending on the characteristics of their elongations. The obtained data are of great importance for the craniotopographic justification of the tentorial-stem wedges, which are formed with tumors which located here. In our opinion, tumors have the greatest possibility of passage through the left or right lateral intervals in people with a brachymorph form of the head, and through the anterior and posterior intervals - in people with meso- and dolichomorph forms of the head.

  11. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  12. Gastroesophageal Variceal Filling and Drainage Pathways: An Angiographic Description of Afferent and Efferent Venous Anatomic Patterns

    Directory of Open Access Journals (Sweden)

    Ron C Gaba

    2015-01-01

    Full Text Available Varices commonly occur in liver cirrhosis patients and are classified as esophageal (EV, gastroesophageal (GEV, or isolated gastric (IGV varices. These vessels may be supplied and drained by several different afferent and efferent pathways. A working knowledge of variceal anatomy is imperative for Interventional Radiologists performing transjugular intrahepatic portosystemic shunt and embolization/obliteration procedures. This pictorial essay characterizes the angiographic anatomy of varices in terms of type and frequency of venous filling and drainage, showing that different varices have distinct vascular anatomy. EVs typically show left gastric vein filling and “uphill” drainage, and GEVs and IGVs exhibit additional posterior/short gastric vein contribution and “downhill” outflow. An understanding of these variceal filling and drainage pathways can facilitate successful portal decompression and embolization/obliteration procedures.

  13. Effect of tyrosine kinase blockade on norepinephrine-induced cytosolic calcium response in rat afferent arterioles

    DEFF Research Database (Denmark)

    Salomonsson, Max; Arendshorst, William J

    2004-01-01

    We used genistein (Gen) and tyrphostin 23 (Tyr-23) to evaluate the importance of tyrosine phosphorylation in norepinephrine (NE)-induced changes in intracellular free calcium concentration ([Ca(2+)](i)) in rat afferent arterioles. [Ca(2+)](i) was measured in microdissected arterioles using...... ratiometric photometry of fura 2 fluorescence. The control [Ca(2+)](i) response to NE (1 microM) consisted of a rapid initial peak followed by a plateau phase sustained above baseline. Pretreatment with the tyrosine kinase inhibitor Tyr-23 (50 microM, 10 min) caused a slow 40% increase in baseline [Ca(2+)](i...... of nifedipine and Tyr-23 were not additive. Nifedipine had no inhibitory effect after Tyr-23 pretreatment, indicating Tyr-23 inhibition of Ca(2+) entry. Another tyrosine kinase inhibitor, Gen (5 and 50 microM), did not affect baseline [Ca(2+)](i). High-dose Gen inhibited the peak and plateau response to NE...

  14. NMClab, a model to assess the contributions of muscle visco-elasticity and afferent feedback to joint dynamics

    NARCIS (Netherlands)

    Schouten, Alfred Christiaan; Mugge, Winfred; van der Helm, F.C.T.

    2008-01-01

    The dynamic behavior of a neuromusculoskeletal system results from the complex mechanical interaction between muscle visco-elasticity resulting from (co-)contraction and afferent feedback from muscle spindles and Golgi tendon organs. As a result of the multiple interactions the individual effect of

  15. Bilateral sensory deprivation of trigeminal afferent fibers on corticomotor control of human tongue musculature: A preliminary study

    DEFF Research Database (Denmark)

    Kothari, Mohit; Baad-Hansen, Lene; Svensson, Peter

    2016-01-01

    Background: Transcranial magnetic stimulation (TMS) has demonstrated changes in motor evoked potentials (MEPs) in human limb muscles following modulation of sensory afferent inputs. Objective: The aim of the present study was to determine whether bilateral local anaesthesia (LA) of the lingual ne...

  16. Abdominal and internal intercostal motoneurones are strong synergists for expiration but are not synergists for Group I monosynaptic afferent inputs

    DEFF Research Database (Denmark)

    Ford, Tim W; Meehan, Claire Francesca; Kirkwood, Peter

    2014-01-01

    , 9 being in Group B Dist motoneurones. The complete absence of heteronymous monosynaptic Group I reflex excitation between muscles that are synergistically activated in expiration leads us to conclude that such connections from muscle spindle afferents of the thoracic nerves have little role...... in controlling expiratory movements but, where present, support other motor acts....

  17. Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Castrop, Hayo; Briggs, Josie

    2003-01-01

    -induced vasoconstriction was stable for up to 30 min and was most pronounced in the most distal part of the afferent arterioles. Adenosine did not cause vasoconstriction in arterioles from A1AR-/- mice. Pretreatment with pertussis toxin (PTX) (400 ng/ml) for 2 h blocked the vasoconstricting action of adenosine or N(6...

  18. Impact of Afferent Inputs on Purkinje Cell Spiking Patterns and Motor Coordination

    NARCIS (Netherlands)

    A.M. Badura (Aleksandra)

    2011-01-01

    textabstractThe brain is what makes us human. Feelings, memories, complex social interactions, language and movement – all of it originates in the brain. On average, the human brain contains approximately 50–100 billion neurons that communicate with each other through the vast network of 100 –

  19. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons.

    Science.gov (United States)

    Xu, Bo; Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2015-05-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure. Copyright © 2015 the American Physiological Society.

  20. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  1. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.

    Science.gov (United States)

    Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori

    2012-04-01

    To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation.

  2. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli.

    Science.gov (United States)

    Kim, Elmer K; Wellnitz, Scott A; Bourdon, Sarah M; Lumpkin, Ellen A; Gerling, Gregory J

    2012-07-23

    The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent recordings. Finally, the SAI afferent's characteristic response

  3. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates.

    Science.gov (United States)

    Zhao, Hui; Yin, Zhiyong; Li, Kui; Liao, Zhikang; Xiang, Hongyi; Zhu, Feng

    2016-01-21

    Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes disastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is available for the immature brain tissue at dynamic strain rates. We harvested brainstem tissue from immature pigs (about 4 weeks old, and at a developmental stage similar to that of human toddlers) as a byproduct from a local slaughter house and very carefully prepared the samples. Tensile tests were performed on specimens at dynamic strain rates of 2/s, 20/s, and 100/s using a biological material instrument. The constitutive models, Fung, Ogden, Gent, and exponential function, for immature brainstem tissue material property were developed for the recorded experimental data using OriginPro 8.0 software. The t test was performed for infinitesimal shear modules. The curves of stress-versus-stretch ratio were convex in shape, and inflection points were found in all the test groups at the strain of about 2.5%. The average Lagrange stress of the immature brainstem specimen at the 30% strain at the strain rates of 2, 20, and 100/s was 273±114, 515±107, and 1121±197 Pa, respectively. The adjusted R-Square (R2) of Fung, Ogden, Gent, and exponential model was 0.820≤R2≤0.933, 0.774≤R2≤0.940, 0.650≤R2≤0.922, and 0.852≤R2≤0.981, respectively. The infinitesimal shear modulus of the strain energy functions showed a significant association with the strain rate (pmaterial in dynamic tensile tests, and the tissue becomes stiffer with increased strain rate. The reported results may be useful in the study of brain injuries in children who sustain injuries in road traffic accidents. Further research in more detail should be performed in the future.

  4. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Directory of Open Access Journals (Sweden)

    Jun Yi Wang

    Full Text Available Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation to 0.978 (for SegAdapter-corrected segmentation for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large

  5. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    Science.gov (United States)

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e

  6. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    Science.gov (United States)

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  7. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

    Science.gov (United States)

    Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O

    1999-03-01

    1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.

  8. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience

  9. Afferent Neural Feedback Overrides the Modulating Effects of Arousal, Hypercapnia and Hypoxemia on Neonatal Cardio-respiratory Control.

    Science.gov (United States)

    Lumb, Kathleen J; Schneider, Jennifer M; Ibrahim, Thowfique; Rigaux, Anita; Hasan, Shabih U

    2018-04-20

    Evidence at whole animal, organ-system, and cellular and molecular levels suggests that afferent volume feedback is critical for establishment of adequate ventilation at birth. Due to the irreversible nature of vagal ablation studies to date, it was difficult to quantify the roles of afferent volume input, arousal and changes in blood gas tensions on neonatal respiratory control. During reversible perineural vagal block, profound apneas, and hypoxemia and hypercarbia were observed necessitating termination of perineural blockade. Respiratory depression and apneas were independent of the sleep states. We demonstrate that profound apneas and life-threatening respiratory failure in vagally denervated animals do not result from lack of arousal or hypoxemia. Change in sleep state and concomitant respiratory depression result from lack of afferent volume feedback, which appears to be critical for the maintenance of normal breathing patterns and adequate gas exchange during the early postnatal period. Afferent volume feedback plays a vital role in neonatal respiratory control. Mechanisms for the profound respiratory depression and life-threatening apneas observed in vagally denervated neonatal animals remain unclear. We investigated the roles of sleep states, hypoxic-hypercapnia and afferent volume feedback on respiratory depression using reversible perineural vagal block during early postnatal period. Seven lambs were instrumented during the first 48h of life to record/analyze sleep states, diaphragmatic electromyograph, arterial blood gas tensions, systemic arterial blood pressure and rectal temperature. Perineural cuffs were placed around the vagi to attain reversible blockade. Post-operatively, during the awake state, both vagi were blocked using 2% xylocaine for up to 30 minutes. Compared with baseline values, pHa, PaO 2 and SaO 2 decreased and PaCO 2 increased during perineural blockade (P Respiratory depression and apneas were independent of sleep states. This

  10. Diffuse and focal presentations of brainstem tumors in children: the images and the prognostic value

    International Nuclear Information System (INIS)

    Menor, F.; Canete, A.; Romero, M. J.; Trilles, L.; Carvajal, E.; Marti-Bonmati, L.

    2000-01-01

    To determine whether the presentation of brainstem tumors as diffuse or focal lesions showed any prognostic value in children. A retrospective review was carried out of the neuroradiological findings in 43 children with brainstem tumors, all of whom underwent computed tomography (CT) and 31 of whom underwent magnetic resonance (MR). The diffuse tumors (n=20) were all located in the pons, spreading to mesencephalon in 6 cases and to medulla oblongata in 1, and exhibiting exophytic growth, preferentially to the prepontine cistern. They presented homogeneous low attenuation in CT (90%) and decrease/increased signal intensity in T1/T2-weighted MR images (91.6%). Contrast uptake was observed in 20% of cases, with agreement between CT and MR. The patients showed a good initial response to treatment (70%), a high rate of relapse (80%) and a 5-year survival of 12%. The focal tumors were located in the pons (11 cases, spreading to the medulla oblongata in 2), mesencephalon (11 cases, 9 tectal and 2 peduncular) and medulla oblongata (1 case), and exhibited exophytic growth predominantly to the pontocerebellar junction and to the cerebellar peduncles. They showed a certain tendency toward heterogeneity (21.7%), toward isoattenuation in CT (47.8%) and isointensity in T1-weighted MR images (26.3%). CT showed a rate of tumor uptake of 26%, while the rate of contrast iptake was 58% MR. Fifty percent of these lesions responded well to therapy, with a recurrence rate of 28% and 4-year survival of 63%. Neuroimaging helps to define two basic patterns in brainstem tumors that play a role in prognosis. The diffuse tumor, which characteristically shows a good initial response to therapy, has a worse prognosis, probably reflecting its histological aggressiveness. (Author) 21 refs

  11. Cortical and brainstem plasticity in Tourette syndrome and obsessive-compulsive disorder.

    Science.gov (United States)

    Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Berardelli, Isabella; Roselli, Valentina; Pasquini, Massimo; Cardona, Francesco; Berardelli, Alfredo

    2014-10-01

    Gilles de la Tourette syndrome is characterized by motor/vocal tics commonly associated with psychiatric disorders, including obsessive-compulsive disorder. We investigated primary motor cortex and brainstem plasticity in Tourette patients, exposed and unexposed to chronic drug treatment, with and without psychiatric disturbances. We also investigated primary motor cortex and brainstem plasticity in obsessive-compulsive disorder. We studied 20 Tourette patients with and without psychiatric disturbances, 15 with obsessive-compulsive disorder, and 20 healthy subjects. All groups included drug-naïve patients. We conditioned the left primary motor cortex with intermittent/continuous theta-burst stimulation and recorded motor evoked potentials. We conditioned the supraorbital nerve with facilitatory/inhibitory high-frequency stimulation and recorded the blink reflex late response area. In healthy subjects, intermittent theta-burst increased and continuous theta-burst stimulation decreased motor evoked potentials. Differently, intermittent theta-burst failed to increase and continuous theta-burst stimulation failed to decrease motor evoked potentials in Tourette patients, with and without psychiatric disturbances. In obsessive-compulsive disorder, intermittent/continuous theta-burst stimulation elicited normal responses. In healthy subjects and in subjects with obsessive-compulsive disorder, the blink reflex late response area increased after facilitatory high-frequency and decreased after inhibitory high-frequency stimulation. Conversely, in Tourette patients, with and without psychiatric disturbances, facilitatory/inhibitory high-frequency stimulation left the blink reflex late response area unchanged. Theta-burst and high-frequency stimulation elicited similar responses in drug-naïve and chronically treated patients. Tourette patients have reduced plasticity regardless of psychiatric disturbances. These findings suggest that abnormal plasticity contributes to the

  12. DESCRIPTION OF BRAINSTEM AUDITORY EVOKED RESPONSES (AIR AND BONE CONDUCTION IN CHILDREN WITH NORMAL HEARING

    Directory of Open Access Journals (Sweden)

    A. V. Pashkov

    2014-01-01

    Full Text Available Diagnosis of hearing level in small children with conductive hearing loss associated with congenital craniofacial abnormalities, particularly with agenesis of external ear and external auditory meatus is a pressing issue. Conventional methods of assessing hearing in the first years of life, i. e. registration of brainstem auditory evoked responses to acoustic stimuli in the event of air conduction, does not give an indication of the auditory analyzer’s condition due to potential conductive hearing loss in these patients. This study was aimed at assessing potential of diagnosing the auditory analyzer’s function with registering brainstem auditory evoked responses (BAERs to acoustic stimuli transmitted by means of a bone vibrator. The study involved 17 children aged 3–10 years with normal hearing. We compared parameters of registering brainstem auditory evoked responses (peak V depending on the type of stimulus transmission (air/bone in children with normal hearing. The data on thresholds of the BAERs registered to acoustic stimuli in the event of air and bone conduction obtained in this study are comparable; hearing thresholds in the event of acoustic stimulation by means of a bone vibrator correlates with the results of the BAERs registered to the stimuli transmitted by means of air conduction earphones (r = 0.9. High correlation of thresholds of BAERs to the stimuli transmitted by means of a bone vibrator with thresholds of BAERs registered when air conduction earphones were used helps to assess auditory analyzer’s condition in patients with any form of conductive hearing loss.  

  13. Sensitization of trigeminal brainstem pathways in a model for tear deficient dry eye.

    Science.gov (United States)

    Rahman, Mostafeezur; Okamoto, Keiichiro; Thompson, Randall; Katagiri, Ayano; Bereiter, David A

    2015-05-01

    Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. Ocular-responsive neurons were recorded at the interpolaris/caudalis transition (Vi/Vc) and Vc/upper cervical cord (Vc/C1) regions under isoflurane, whereas OOemg activity was recorded under urethane. Spontaneous tear volume was reduced by ∼50% at 14 days after exorbital gland removal. Hypertonic saline-evoked eye blink behavior in awake rats was enhanced throughout the 14 days after surgery. Saline-evoked neural activity at the Vi/Vc transition and in superficial and deep laminae at the Vc/C1 region was greatly enhanced in DE rats. Neurons from DE rats classified as wide dynamic range displayed enlarged convergent periorbital receptive fields consistent with central sensitization. Saline-evoked OOemg activity was markedly enhanced in DE rats compared with controls. Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline-evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation.

  14. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    Science.gov (United States)

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    1998-08-01

    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.

  15. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    Science.gov (United States)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  16. C-tactile afferent stimulating touch carries a positive affective value.

    Science.gov (United States)

    Pawling, Ralph; Cannon, Peter R; McGlone, Francis P; Walker, Susannah C

    2017-01-01

    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major-smile muscle, positive affect & corrugator supercilii-frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli

  17. C-tactile afferent stimulating touch carries a positive affective value.

    Directory of Open Access Journals (Sweden)

    Ralph Pawling

    Full Text Available The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs, which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography and autonomic arousal (heart rate to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major-smile muscle, positive affect & corrugator supercilii-frown muscle, negative affect while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec, on two skin sites (CT innervated forearm & non-CT innervated palm. On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all

  18. Enterovirus 71 can directly infect the brainstem via cranial nerves and infection can be ameliorated by passive immunization.

    Science.gov (United States)

    Tan, Soon Hao; Ong, Kien Chai; Wong, Kum Thong

    2014-11-01

    Enterovirus 71 (EV71)-associated hand, foot, and mouth disease may be complicated by encephalomyelitis. We investigated EV71 brainstem infection and whether this infection could be ameliorated by passive immunization in a mouse model. Enterovirus 71 was injected into unilateral jaw/facial muscles of 2-week-old mice, and hyperimmune sera were given before or after infection. Harvested tissues were studied by light microscopy, immunohistochemistry, in situ hybridization, and viral titration. In unimmunized mice, viral antigen and RNA were detected within 24 hours after infection only in ipsilateral cranial nerves, motor trigeminal nucleus, reticular formation, and facial nucleus; viral titers were significantly higher in the brainstem than in the spinal cord samples. Mice given preinfection hyperimmune serum showed a marked reduction of ipsilateral viral antigen/RNA and viral titers in the brainstem in a dose-dependent manner. With optimum hyperimmune serum given after infection, brainstem infection was significantly reduced in a time-dependent manner. A delay in disease onset and a reduction of disease severity and mortality were also observed. Thus, EV71 can directly infect the brainstem, including the medulla, via cranial nerves, most likely by retrograde axonal transport. This may explain the sudden cardiorespiratory collapse in human patients with fatal encephalomyelitis. Moreover, our results suggest that passive immunization may still benefit EV71-infected patients who have neurologic complications.

  19. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P

    2017-02-01

    It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    International Nuclear Information System (INIS)

    Nightingale, S.; Schofield, I.S.; Dawes, P.J.D.K.

    1984-01-01

    Visual, cortical somatosensory and brainstem auditory evoked potentials were recorded before incidental irradiation of the rhombencephalon during radiotherapy in and around the middle ear, and at 11 weeks and eight months after completion of treatment. No patient experienced neurological symptoms during this period. No consistent changes in evoked potentials were found. The failure to demonstrate subclinical radiation-induced demyelination suggests either that the syndrome of early-delayed radiation rhombencephalopathy occurs in an idiosyncratic manner, or that any subclinical lesions are not detectable by serial evoked potential recordings. (author)

  1. Exploding Head Syndrome as Aura of Migraine with Brainstem Aura: A Case Report.

    Science.gov (United States)

    Rossi, Fabian H; Gonzalez, Elizabeth; Rossi, Elisa Marie; Tsakadze, Nina

    2018-01-01

    This article reports a case of exploding head syndrome (EHS) as an aura of migraine with brainstem aura (MBA). A middle-aged man presented with intermittent episodes of a brief sensation of explosion in the head, visual flashing, vertigo, hearing loss, tinnitus, confusion, ataxia, dysarthria, and bilateral visual impairment followed by migraine headache. The condition was diagnosed as MBA. Explosive head sensation, sensory phenomena, and headaches improved over time with nortriptyline. This case shows that EHS can present as a primary aura symptom in patients with MBA.

  2. A rare case of acute poster ior reversible encephalopathy syndrome involving brainstem in a child

    Directory of Open Access Journals (Sweden)

    Olfa Chakroun-Walha

    2016-11-01

    Full Text Available Posterior reversible encephalopathy syndrome (PRES is a rare entity involving brainstem in very rare reported cases. We describe here the case of a boy who presented to the emergency department for headaches and strabismus. Diagnosis of PRES was retained by magnetic resonance imaging. The causes were blood pressure urgency and renal failure. Location of lesions was very rarely reported in literature and neurological troubles were persistent. Emergency physicians should evocate PRES each time there is a clinical context associated with neurological troubles by a normal brain CT scan. Early diagnosis is very important to treat its causes and improve prognosis.

  3. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    Energy Technology Data Exchange (ETDEWEB)

    Nightingale, S. (Royal Victoria Infirmary, Newcastle upon Tyne (UK)); Schofield, I.S.; Dawes, P.J.D.K. (Newcastle upon Tyne Univ. (UK). Newcastle General Hospital)

    1984-01-01

    Visual, cortical somatosensory and brainstem auditory evoked potentials were recorded before incidental irradiation of the rhombencephalon during radiotherapy in and around the middle ear, and at 11 weeks and eight months after completion of treatment. No patient experienced neurological symptoms during this period. No consistent changes in evoked potentials were found. The failure to demonstrate subclinical radiation-induced demyelination suggests either that the syndrome of early-delayed radiation rhombencephalopathy occurs in an idiosyncratic manner, or that any subclinical lesions are not detectable by serial evoked potential recordings.

  4. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    Science.gov (United States)

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  5. Brainstem neurons projecting to the rostral ventral respiratory group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin

    DEFF Research Database (Denmark)

    Zheng, Y; Riche, D; Rekling, J C

    1998-01-01

    retrogradely brainstem neurons reciprocally connected to a population of inspiratory neurons in the rat rVRG. The procedure excited rVRG neurons in multi-unit recordings and led to a Golgi-like labelling of distant cells presumably excited by efferents from the rVRG. Injection of biocytin without NMDA did...... dendrites of labelled neurons, suggesting monosynaptic connections between the rVRG and these nuclei.......Groups of neurons in the medulla and pons are essential for the rhythm generation, pattern formation and modulation of respiration. The rostral Ventral Respiratory Group (rVRG) is thought to be a crucial area for rhythm generation. Here we co-applied biocytin and NMDA in the rVRG to label...

  6. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Voigt, Michael; Stevenson, Andrew James Thomas

    2017-01-01

    : 8-35 mAmp) or a passive ankle movement (amplitude and velocity matched to a normal gait cycle) was applied such that the first afferent inflow would coincide with the PN of the MRCP. The change in the output of the primary motor cortex (M1) was quantified by applying single transcranial magnetic...... compared these two interventions (BCIFES and BCIpassive) where the afferent input was timed to arrive at the motor cortex during the PN of the MRCP. Twelve healthy participants attended two experimental sessions. They were asked to perform 30 dorsiflexion movements timed to a cue while continuous...... stimuli to the area of M1 controlling the tibialis anterior (TA) muscle and measuring the motor evoked potential (MEP). Spinal changes were assessed pre and post by eliciting the TA stretch reflex. Both BCIFES and BCIpassive led to significant increases in the excitability of the cortical projections...

  7. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans

    DEFF Research Database (Denmark)

    Perez, Monica A.; Lungholt, Bjarke K.S.; Nielsen, Jens Bo

    2005-01-01

    Sensory information continuously converges on the spinal cord during a variety of motor behaviours. Here, we examined presynaptic control of group Ia afferents in relation to acquisition of a novel motor skill. We tested whether repetition of two motor tasks with different degrees of difficulty......, a novel visuo-motor task involving the ankle muscles, and a control task involving simple voluntary ankle movements, would induce changes in the size of the soleus H-reflex. The slope of the H-reflex recruitment curve and the H-max/M-max ratio were depressed after repetition of the visuo-motor skill task...... of the monosynaptic Ia facilitation of the soleus H-reflex evoked by femoral nerve stimulation. The D1 inhibition was increased and the femoral nerve facilitation was decreased following the visuo-motor skill task, suggesting an increase in presynaptic inhibition of Ia afferents. No changes were observed...

  8. In vivo analysis of the role of metabotropic glutamate receptors in the afferent regulation of chick cochlear nucleus neurons.

    Science.gov (United States)

    Carzoli, Kathryn L; Hyson, Richard L

    2011-02-01

    Cochlea removal results in the death of approximately 20-30% of neurons in the chick nucleus magnocellularis (NM). One early event in NM neuronal degradation is the disruption of their ribosomes. This can be visualized in the first few hours following cochlea removal using Y10B, an antibody that recognizes ribosomal RNA. Previous studies using a brain slice preparation suggest that maintenance of ribosomal integrity in NM neurons requires metabotropic glutamate receptor (mGluR) activation. Isolating the brain slice in vitro, however, may eliminate other potential sources of trophic support and only allows for evaluation of the early changes that occur in NM neurons following deafferentation. Consequently, it is not known if mGluR activation is truly required for the maintenance of NM neurons in the intact system. The current experiments evaluated the importance of mGluRs in vivo. The effects of short-term receptor blockade were assessed through Y10B labeling and the effects of long-term blockade were assessed through stereological counting of NM neurons in Nissl-stained tissue. mGluR antagonists or vehicle were administered intracerebroventricularly following unilateral cochlea removal. Vehicle-treated subjects replicated the previously reported effects of cochlea removal, showing lighter Y10B labeling and fewer Nissl-stained NM neurons on the deafened side of the brain. Blockade of mGluRs prevented the rapid activity-dependent difference in Y10B labeling, and in some cases, had the reverse effect, yielding lighter labeling of NM neurons on the intact side of the brain. Similarly, mGluR blockade over longer survival periods resulted in a reduction in number of cells on both intact and deafferented sides of the brain, and in some cases, yielded a reverse effect of fewer neurons on the intact side versus deafened side. These data are consistent with in vitro findings and suggest that mGluR activation plays a vital role in the afferent maintenance of NM neurons

  9. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol.

    Science.gov (United States)

    Plevkova, J; Kollarik, M; Poliacek, I; Brozmanova, M; Surdenikova, L; Tatar, M; Mori, N; Canning, B J

    2013-07-15

    The cold-sensitive cation channel TRPM8 is a target for menthol, which is used routinely as a cough suppressant and as an additive to tobacco and food products. Given that cold temperatures and menthol activate neurons through gating of TRPM8, it is unclear how menthol actively suppresses cough. In this study we describe the antitussive effects of (-)-menthol in conscious and anesthetized guinea pigs. In anesthetized guinea pigs, cough evoked by citric acid applied topically to the tracheal mucosa was suppressed by menthol only when it was selectively administered as vapors to the upper airways. Menthol applied topically to the tracheal mucosa prior to and during citric acid application or administered continuously as vapors or as an aerosol to the lower airways was without effect on cough. These actions of upper airway menthol treatment were mimicked by cold air delivered to the upper airways but not by (+)-menthol, the inactive isomer of menthol, or by the TRPM8/TRPA1 agonist icilin administered directly to the trachea. Subsequent molecular analyses confirmed the expression of TRPM8 in a subset of nasal trigeminal afferent neurons that do not coincidently express TRPA1 or TRPV1. We conclude that menthol suppresses cough evoked in the lower airways primarily through a reflex initiated from the nose.

  10. The role in masseter muscle activities of functionally elicited periodontal afferents from abutment teeth under overdentures.

    Science.gov (United States)

    Mushimoto, E

    1981-09-01

    Five overdenture wearers with a small number of remaining natural teeth were selected to evaluate the effect of the afferent input from periodontal mechanoreceptors on masseter activity in man. As a control, a full denture wearer was included. The subjects were instructed to chew a piece of gum, and/or tap their teeth. Surface EmG from the bilateral masseter muscles were recorded and analysed. When functional pressure was applied, during chewing, to the abutment teeth as well as to mucosa through the denture base, masseter activities were encouraged. Following application of anaesthesia to the periodontal membrane of the abutments, masseter activities were reduced. The duration of the silent period (SP) appearing in the EMG burst following tooth tapping was significantly increased with root support compared to mucosal support only. With topical anaesthesia of the periodontal tissues, SP duration decreased significantly. In conclusion, it has become apparent that the pressure sensibility of abutment teeth bearing functional pressure under an overdenture base is capable of facilitating masseter activity, as one of the sources of oral sensory input during mastication.

  11. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  12. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    Science.gov (United States)

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Afferent Pathway-Mediated Effect of α1 Adrenergic Antagonist, Tamsulosin, on the Neurogenic Bladder After Spinal Cord Injury.

    Science.gov (United States)

    Han, Jin-Hee; Kim, Sung-Eun; Ko, Il-Gyu; Kim, Jayoung; Kim, Khae Hawn

    2017-09-01

    The functions of the lower urinary tract (LUT), such as voiding and storing urine, are dependent on complex central neural networks located in the brain, spinal cord, and peripheral ganglia. Thus, the functions of the LUT are susceptible to various neurologic disorders including spinal cord injury (SCI). SCI at the cervical or thoracic levels disrupts voluntary control of voiding and the normal reflex pathways coordinating bladder and sphincter functions. In this context, it is noteworthy that α1-adrenoceptor blockers have been reported to relieve voiding symptoms and storage symptoms in elderly men with benign prostatic hyperplasia (BPH). Tamsulosin, an α1-adrenoceptor blocker, is also considered the most effective regimen for patients with LUT symptoms such as BPH and overactive bladder (OAB). In the present study, the effects of tamsulosin on the expression of c-Fos, nerve growth factor (NGF), and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the afferent micturition areas, including the pontine micturition center (PMC), the ventrolateral periaqueductal gray matter (vlPAG), and the spinal cord (L5), of rats with an SCI were investigated. SCI was found to remarkably upregulate the expression of c-Fos, NGF, and NADPH-d in the afferent pathway of micturition, the dorsal horn of L5, the vlPAG, and the PMC, resulting in the symptoms of OAB. In contrast, tamsulosin treatment significantly suppressed these neural activities and the production of nitric oxide in the afferent pathways of micturition, and consequently, attenuated the symptoms of OAB. Based on these results, tamsulosin, an α1-adrenoceptor antagonist, could be used to attenuate bladder dysfunction following SCI. However, further studies are needed to elucidate the exact mechanism and effects of tamsulosin on the afferent pathways of micturition.

  14. CAUDAL MEDULLARY PATHWAYS TO LUMBOSACRAL MOTONEURONAL CELL GROUPS IN THE CAT - EVIDENCE FOR DIRECT PROJECTIONS POSSIBLY REPRESENTING THE FINAL COMMON PATHWAY FOR LORDOSIS

    NARCIS (Netherlands)

    VANDERHORST, VGJM; HOLSTEGE, G

    1995-01-01

    The nucleus retroambiguus (NRA) projects to distinct brainstem and cervical and thoracic cord motoneuronal cell groups. The present paper describes NRA projections to distinct motoneuronal cell groups in the lumbar enlargement. Lumbosacral injections of wheat germ agglutinin-horseradish peroxidase

  15. Caudal Medullary Pathways To Lumbosacral Motoneuronal Cell Groups In The Cat; Evidence For Direct Projections Possibly Representing The Final Common Pathway For Lordosis.

    NARCIS (Netherlands)

    VanderHorst, Veronique G.J.M.; Holstege, Gert

    1995-01-01

    The nucleus retroambiguus (NRA) projects to distinct brainstem and cervical and thoracic cord motoneuronal cell groups. The present paper describes NRA projections to distinct motoneuronal cell groups in the lumbar enlargement. Lumbosacral injections of wheat germ agglutinin-horseradish peroxidase

  16. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    Science.gov (United States)

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  17. Effects of adding Braun jejunojejunostomy to standard Whipple procedure on reduction of afferent loop syndrome - a randomized clinical trial.

    Science.gov (United States)

    Kakaei, Farzad; Beheshtirouy, Samad; Nejatollahi, Seyed Moahammad Reza; Rashidi, Iqbal; Asvadi, Touraj; Habibzadeh, Afshin; Oliaei-Motlagh, Mohammad

    2015-12-01

    Whipple surgery (pancreaticodeudenectomy) has a high complication rate. We aimed to evaluate whether adding Braun jejunojejunostomy (side-to-side anastomosis of afferent and efferent loops distal to the gastrojejunostomy site) to a standard Whipple procedure would reduce postoperative complications. We conducted a randomized clinical trial comparing patients who underwent standard Whipple surgery (standard group) and patients who underwent standard Whipple surgery with Braun jejunojejunostomy (Braun group). Patients were followed for 1 month after the procedure and postoperative complications were recorded. Our study included 30 patients: 15 in the Braun and 15 in the standard group. In the Braun group, 4 (26.7%) patients experienced 6 complications, whereas in the standard group, 7 (46.7%) patients experienced 11 complications (p = 0.14). Complications in the Braun group were gastrointestinal bleeding and wound infection (n = 1 each) and delayed gastric emptying and pulmonary infection (n = 2 each). Complications in the standard group were death, pancreatic anastomosis leak and biliary anastomosis leak (n = 1 each); gastrointestinal bleeding (n = 2); and afferent loop syndrome and delayed gastric emptying (n = 3 each). There was no significant difference between groups in the subtypes of complications. Our results showed that adding Braun jejunojejunostomy to standard Whipple procedure was associated with lower rates of afferent loop syndrome and delayed gastric emptying. However, more studies are needed to define the role of Braun jejunojejunostomy in this regard. IRCT2014020316473N1 (www.irct.ir).

  18. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea.

    Science.gov (United States)

    Cerritelli, Serena; Hirschberg, Stefan; Hill, Rob; Balthasar, Nina; Pickering, Anthony E

    2016-01-01

    Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, pneurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control.

  19. Large central lesions compressing the hypothalamus and brainstem. Operative approaches and combination treatment with radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hiroshi K.; Negishi, Masatoshi; Kohga, Hideaki; Hirato, Masafumi; Ohye, Chihiro [Gunma Univ., Maebashi (Japan). School of Medicine; Shibazaki, Tohru

    1998-09-01

    A major aim of minimally invasive neurosurgery is to preserve function in the brain and cranial nerves. Based on previous results of radiosurgery for central lesions (19 craniopharyngiomas, 46 pituitary adenomas, 9 meningeal tumors), combined micro- and/or radiosurgery was applied for large lesions compressing the hypothalamus and/or brainstem. A basal interhemispheric approach via superomedial orbitotomy or a transcallosal-transforaminal approach was used for these large tumors. Tumors left behind in the hypothalamus or cavernous sinus were treated with radiosurgery using a gamma unit. Preoperative hypothalamo-pituitary functions were preserved in most of these patients. Radiosurgical results were evaluated in patients followed for more than 2 years after treatment. All 9 craniopharyngiomas decreased in size after radiosurgery, although a second treatment was required in 4 patients. All 20 pituitary adenomas were stable or decreased in size and 5 of 7 functioning adenomas showed normalized values of hormones in the serum. All 3 meningeal tumors were stable or decreased in size after treatment. No cavernous sinus symptoms developed after radiosurgery. We conclude that combined micro- and radio-neurosurgery is an effective and less invasive treatment for large central lesions compressing the hypothalamus and brainstem. (author)

  20. Inflammatory lesions of the brainstem and the cerebellopontine angle; Entzuendungen des Hirnstamms und des Kleinhirnbrueckenwinkels

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.; Jaeger, L. [Klinikum Grosshadern der Ludwig-Maximilians-Universitaet Muenchen (Germany). Institut fuer Klinische Radiologie

    2006-03-15

    Inflammatory lesions of the brainstem and the cerebellopontine angle are often critical for the patient, because crucial neuronal and vascular structures are found in this region. The patient's prognosis mainly depends on rapid identification of the inflammation site and the radiological evaluation of the inflammation pathogenesis to develop therapeutic strategies. Therefore, cross-sectional imaging is complementary to laboratory and CSF analysis as well as biopsies. This article gives a survey of inflammatory lesions of the brainstem and the cerebellopontine angle. (orig.) [German] Entzuendliche Erkrankungen des Hirnstamms und Kleinhirnbrueckenwinkels stellen nicht selten eine kritische Situation fuer den Patienten dar, da in diesen Regionen wichtige neuronale Strukturen und Gefaesse verlaufen. Die Prognose und das weitere therapeutische Vorgehen haengen entscheidend von einer schnellen Diagnose der Entzuendungslokalisation sowie einer bildmorphologischen Einordnung der Entzuendungspathogenese ab. Folglich ergaenzt die Schnittbildgebung entscheidend die Liquoranalyse, die Biopsie und die Laboruntersuchungen. In diesem Artikel soll eine Uebersicht ueber die verschiedenen entzuendlichen Veraenderungen des Hirnstamms und Kleinhirnbrueckenwinkels gegeben werden. (orig.)

  1. Speech-evoked auditory brainstem responses in children with hearing loss.

    Science.gov (United States)

    Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine

    2017-08-01

    The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of edaravone on acute brainstem-cerebellar infarction with vertigo and sudden hearing loss.

    Science.gov (United States)

    Inoue, Yuta; Yabe, Takao; Okada, Kazunari; Nakamura, Yuka

    2014-06-01

    We report 2 cases with acute brainstem and brainstem-cerebellar infarction showed improvement of their signs and symptoms after administration of edaravone. Case 1, a 74-year-old woman who experienced sudden vertigo, also had dysarthria and left hemiplegia. Magnetic resonance imaging (MRI) showed an abnormal region in the right ventrolateral medulla oblongata. The patient's vertigo and hemiplegia improved completely after treatment. Case 2, a 50-year-old man who experienced sudden vertigo and sensorineural hearing loss (SNHL), developed dysarthria after admission. MRI revealed acute infarction in the right cerebellar hemisphere. Magnetic resonance angiography revealed dissection of the basilar artery and occlusion of the right anterior inferior cerebellar artery. The patient's vertigo and hearing remarkably improved. We have described 2 patients whose early symptoms were vertigo and sudden SNHL, but who were later shown to have ischemic lesions of the central nervous system. Edaravone is neuroprotective drug with free radical-scavenging actions. Free radicals in the ear are responsible for ischemic damage. Edaravone, a free radical scavenger, may be useful in the treatment of vertigo and SNHL. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Brainstem GLP-1 signalling contributes to cancer anorexia-cachexia syndrome in the rat.

    Science.gov (United States)

    Borner, Tito; Liberini, Claudia G; Lutz, Thomas A; Riediger, Thomas

    2018-03-15

    The cancer anorexia-cachexia syndrome (CACS) is a frequent and severe condition in cancer patients. Currently, no pharmacological treatment is approved for the therapy of CACS. Centrally, glucagon-like peptide-1 (GLP-1) is expressed in the nucleus tractus solitarii (NTS) and is implicated in malaise, nausea and food aversion. The NTS is reciprocally connected to brain sites implicated in the control of energy balance including the area postrema (AP), which mediates CACS in certain tumour models. Given the role of GLP-1 as a mediator of anorexia under acute sickness conditions, we hypothesized that brainstem GLP-1 signalling might play a role in the mediation of CACS. Using hepatoma tumour-bearing (TB) rats, we first tested whether the chronic delivery of the GLP-1R antagonist exendin-9 (Ex-9) into the fourth ventricle attenuates CACS. Second, we investigated whether a genetic knockdown of GLP-1 expression in the NTS ameliorates CACS. Ex-9 attenuated anorexia, body weight loss, muscle and fat depletion compared to TB controls. Similarly, TB animals with a knockdown of GLP-1 expression in the NTS had higher food intake, reduced body weight loss, and higher lean and fat mass compared to TB controls. Our study identifies brainstem GLP-1 as crucial mediator of CACS in hepatoma TB rats. The GLP-1R represents a promising target against CACS and possibly other forms of disease-related anorexia/cachexia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Large central lesions compressing the hypothalamus and brainstem. Operative approaches and combination treatment with radiosurgery

    International Nuclear Information System (INIS)

    Inoue, Hiroshi K.; Negishi, Masatoshi; Kohga, Hideaki; Hirato, Masafumi; Ohye, Chihiro; Shibazaki, Tohru

    1998-01-01

    A major aim of minimally invasive neurosurgery is to preserve function in the brain and cranial nerves. Based on previous results of radiosurgery for central lesions (19 craniopharyngiomas, 46 pituitary adenomas, 9 meningeal tumors), combined micro- and/or radiosurgery was applied for large lesions compressing the hypothalamus and/or brainstem. A basal interhemispheric approach via superomedial orbitotomy or a transcallosal-transforaminal approach was used for these large tumors. Tumors left behind in the hypothalamus or cavernous sinus were treated with radiosurgery using a gamma unit. Preoperative hypothalamo-pituitary functions were preserved in most of these patients. Radiosurgical results were evaluated in patients followed for more than 2 years after treatment. All 9 craniopharyngiomas decreased in size after radiosurgery, although a second treatment was required in 4 patients. All 20 pituitary adenomas were stable or decreased in size and 5 of 7 functioning adenomas showed normalized values of hormones in the serum. All 3 meningeal tumors were stable or decreased in size after treatment. No cavernous sinus symptoms developed after radiosurgery. We conclude that combined micro- and radio-neurosurgery is an effective and less invasive treatment for large central lesions compressing the hypothalamus and brainstem. (author)

  5. Brainstem auditory evoked potentials in healthy cats recorded with surface electrodes

    Directory of Open Access Journals (Sweden)

    Mihai Musteata

    2013-01-01

    Full Text Available The aim of this study was to evaluate the brainstem auditory evoked potentials of seven healthy cats, using surface electrodes. Latencies of waves I, III and V, and intervals I–III, I–V and III–V were recorded. Monaural and binaural stimulation of the cats were done with sounds ranging between 40 and 90 decibel Sound Pressure Level. All latencies were lower than those described in previous studies, where needle electrodes were used. In the case of binaural stimulation, latencies of waves III and V were greater compared to those obtained for monaural stimulation (P P > 0.05. Regardless of the sound intensity, the interwave latency was constant (P > 0.05. Interestingly, no differences were noticed for latencies of waves III and V when sound intensity was higher than 80dB SPL. This study completes the knowledge in the field of electrophysiology and shows that the brainstem auditory evoked potentials in cats using surface electrodes is a viable method to record the transmission of auditory information. That can be faithfully used in clinical practice, when small changes of latency values may be an objective factor in health status evaluation.

  6. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    Science.gov (United States)

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  7. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Johan Källstrand

    2010-05-01

    Full Text Available Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD. In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs elicited by forward masking in adults diagnosed with Asperger syndrome (AS. Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16, schizophrenic patients (n = 16 and attention deficit hyperactivity disorder patients (n = 16, respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005, which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases.Keywords: asperger syndrome, auditory brainstem response, forward masking, psychoacoustics

  8. Correlation of augmented startle reflex with brainstem electrophysiological responses in Tay-Sachs disease.

    Science.gov (United States)

    Nakamura, Sadao; Saito, Yoshiaki; Ishiyama, Akihiko; Sugai, Kenji; Iso, Takashi; Inagaki, Masumi; Sasaki, Masayuki

    2015-01-01

    To clarify the evolution of an augmented startle reflex in Tay-Sachs disease and compare the temporal relationship between this reflex and brainstem evoked potentials. Clinical and electrophysiological data from 3 patients with Tay-Sachs disease were retrospectively collected. The augmented startle reflex appeared between the age of 3 and 17 months and disappeared between the age of 4 and 6 years. Analysis of brainstem auditory evoked potentials revealed that poor segregation of peak I, but not peak III, coincided with the disappearance of the augmented startle reflex. A blink reflex with markedly high amplitude was observed in a patient with an augmented startle reflex. The correlation between the augmented startle reflex and the preservation of peak I but not peak III supports the theory that the superior olivary nucleus is dispensable for this reflex. The blink reflex with high amplitudes may represent augmented excitability of reticular formation at the pontine tegmentum in Tay-Sachs disease, where the pattern generators for the augmented startle and blink reflexes may functionally overlap. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Study of automated segmentation of the cerebellum and brainstem on brain MR images

    International Nuclear Information System (INIS)

    Hayashi, Norio; Matsuura, Yukihiro; Sanada, Shigeru; Suzuki, Masayuki

    2005-01-01

    MR imaging is an important method for diagnosing abnormalities of the brain. This paper presents an automated method to segment the cerebellum and brainstem for brain MR images. MR images were obtained from 10 normal subjects (male 4, female 6; 22-75 years old, average 31.0 years) and 15 patients with brain atrophy (male 3, female 12; 62-85 years of age, average 76.0 years). The automated method consisted of the following four steps: segmentation of the brain on original images, detection of an upper plane of the cerebellum using the Hough transform, correction of the plane using three-dimensional (3D) information, and segmentation of the cerebellum and brainstem using the plane. The results indicated that the regions obtained by the automated method were visually similar to those obtained by a manual method. The average rates of coincidence between the automated method and manual method were 83.0±9.0% in normal subjects and 86.4±3.6% in patients. (author)

  10. Optimization behavior of brainstem respiratory neurons. A cerebral neural network model.

    Science.gov (United States)

    Poon, C S

    1991-01-01

    A recent model of respiratory control suggested that the steady-state respiratory responses to CO2 and exercise may be governed by an optimal control law in the brainstem respiratory neurons. It was not certain, however, whether such complex optimization behavior could be accomplished by a realistic biological neural network. To test this hypothesis, we developed a hybrid computer-neural model in which the dynamics of the lung, brain and other tissue compartments were simulated on a digital computer. Mimicking the "controller" was a human subject who pedalled on a bicycle with varying speed (analog of ventilatory output) with a view to minimize an analog signal of the total cost of breathing (chemical and mechanical) which was computed interactively and displayed on an oscilloscope. In this manner, the visuomotor cortex served as a proxy (homolog) of the brainstem respiratory neurons in the model. Results in 4 subjects showed a linear steady-state ventilatory CO2 response to arterial PCO2 during simulated CO2 inhalation and a nearly isocapnic steady-state response during simulated exercise. Thus, neural optimization is a plausible mechanism for respiratory control during exercise and can be achieved by a neural network with cognitive computational ability without the need for an exercise stimulus.

  11. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  12. MRI findings of the brainstem of the neuro-Behcet syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Naoto; Tashiro, Kunio; Yamada, Takayoshi; Ito, Kazunori; Honma, Sanae; Doi, Shizuki; Moriwaka, Fumio

    1987-10-01

    We reported three cases of neuro-Behcet's syndrome which showed brainstem lesions on MRI compatible with the clinical symptoms. In Case 1, MRI showed a large, abnormal signal-intensity area in the pons and small, abnormal signal-intensity areas at the right cerebral peduncle, the bilateral basal ganglia, and the left thalamus. These lesions disappeared on MRI, in accordance with the remission of clinical symptoms. On the other hand, CT showed no positive findings. In Case 2, an abnormal signal-intensity area was disclosed at the left cerebral peduncle on MRI. This lesion was also identified on the CT scan. In Case 3, an abnormal signal-intensity area was present in the pons on MRI. In this case, CT showed no positive findings. In Cases 2 and 3, these lesions seemed to represent inflammatory or necrotic areas attributable to vasculitis;however, the extensive brainstem lesion seen on the MRI of Case 1 was a quite unique finding, for which no exact pathophysiological explanation is possible at the present time.

  13. Association of nicotinic acetylcholine receptors with central respiratory control in isolated brainstem-spinal cord preparation of neonatal rats

    Directory of Open Access Journals (Sweden)

    EIKI HATORI

    2006-01-01

    Full Text Available Nicotine exposure is a risk factor in several breathing disorders Nicotinic acetylcholine receptors (nAChRs exist in the ventrolateral medulla, an important site for respiratory control. We examined the effects of nicotinic acetylcholine neurotransmission on central respiratory control by addition of a nAChR agonist or one of various antagonists into superfusion medium in the isolated brainstem-spinal cord from neonatal rats. Ventral C4 neuronal activity was monitored as central respiratory output, and activities of respiratory neurons in the ventrolateral medulla were recorded in whole-cell configuration. RJR-2403 (0.1-10mM, alpha4beta2 nAChR agonist induced dose-dependent increases in respiratory frequency. Non-selective nAChR antagonist mecamylamine (0.1-100mM, alpha4beta2 antagonist dihydro-beta-erythroidine (0.1-100mM, alpha7 antagonist methyllycaconitine (0.1-100mM, and a-bungarotoxin (0.01-10mM all induced dose-dependent reductions in C4 respiratory rate. We next examined effects of 20mM dihydro-beta-erythroidine and 20mM methyllycaconitine on respiratory neurons. Dihydro-beta-erythroidine induces hyperpolarization and decreases intraburst firing frequency of inspiratory and preinspiratory neurons. In contrast, methyllycaconitine has no effect on the membrane potential of inspiratory neurons, but does decrease their intraburst firing frequency while inducing hyperpolarization and decreasing intraburst firing frequency in preinspiratory neurons. These findings indicate that alpha4beta2 nAChR is involved in both inspiratory and preinspiratory neurons, whereas alpha7 nAChR functions only in preinspiratory neurons to modulate C4 respiratory rate

  14. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    Kristi A Kohlmeier

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  15. The relationship of age, gender, and IQ with the brainstem and thalamus in healthy children and adolescents: a magnetic resonance imaging volumetric study.

    Science.gov (United States)

    Xie, Yuhuan; Chen, Yian Ann; De Bellis, Michael D

    2012-03-01

    In healthy children, there is a paucity of information on the growth of the brainstem and thalamus measured anatomically magnetic resonance imaging. The relations of age, gender, and age by gender with brainstem and thalamus volumes were analyzed from magnetic resonance brain images of 122 healthy children and adolescents (62 males, 60 females; ages 4 to 17). Results showed that age is a significant predictor of brainstem and thalamus volumes. The volume of the brainstem increases with age, while thalamus volume declines with age. The volume of the right thalamus is significantly larger than that of the left in both genders, with greater rightward asymmetry and greater thalamus to grey matter ratio in females. Males have larger brainstems, but these differences are not significant when covarying for cerebral volume. Larger thalami were associated with higher Verbal IQ. These normative pediatric data are of value to researchers who study these regions in neurodevelopmental disorders.

  16. Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.

    Science.gov (United States)

    Grande, G; Cafarelli, E

    2003-06-01

    Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.

  17. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    Science.gov (United States)

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Microstimulation of the lumbar DRG recruits primary afferent neurons in localized regions of lower limb.

    Science.gov (United States)

    Ayers, Christopher A; Fisher, Lee E; Gaunt, Robert A; Weber, Douglas J

    2016-07-01

    Patterned microstimulation of the dorsal root ganglion (DRG) has been proposed as a method for delivering tactile and proprioceptive feedback to amputees. Previous studies demonstrated that large- and medium-diameter afferent neurons could be recruited separately, even several months after implantation. However, those studies did not examine the anatomical localization of sensory fibers recruited by microstimulation in the DRG. Achieving precise recruitment with respect to both modality and receptive field locations will likely be crucial to create a viable sensory neuroprosthesis. In this study, penetrating microelectrode arrays were implanted in the L5, L6, and L7 DRG of four isoflurane-anesthetized cats instrumented with nerve cuff electrodes around the proximal and distal branches of the sciatic and femoral nerves. A binary search was used to find the recruitment threshold for evoking a response in each nerve cuff. The selectivity of DRG stimulation was characterized by the ability to recruit individual distal branches to the exclusion of all others at threshold; 84.7% (n = 201) of the stimulation electrodes recruited a single nerve branch, with 9 of the 15 instrumented nerves recruited selectively. The median stimulation threshold was 0.68 nC/phase, and the median dynamic range (increase in charge while stimulation remained selective) was 0.36 nC/phase. These results demonstrate the ability of DRG microstimulation to achieve selective recruitment of the major nerve branches of the hindlimb, suggesting that this approach could be used to drive sensory input from localized regions of the limb. This sensory input might be useful for restoring tactile and proprioceptive feedback to a lower-limb amputee. Copyright © 2016 the American Physiological Society.

  19. Brainstem auditory responses to resolved and unresolved harmonics of a synthetic vowel in quiet and noise.

    Science.gov (United States)

    Laroche, Marilyn; Dajani, Hilmi R; Prévost, François; Marcoux, André M

    2013-01-01

    This study investigated speech auditory brainstem responses (speech ABR) with variants of a synthetic vowel in quiet and in background noise. Its objectives were to study the noise robustness of the brainstem response at the fundamental frequency F0 and at the first formant F1, evaluate how the resolved/unresolved harmonics regions in speech contribute to the response at F0, and investigate the origin of the response at F0 to resolved and unresolved harmonics in speech. In total, 18 normal-hearing subjects (11 women, aged 18-33 years) participated in this study. Speech ABRs were recorded using variants of a 300 msec formant-synthesized /a/ vowel in quiet and in white noise. The first experiment employed three variants containing the first three formants F1 to F3, F1 only, and F2 and F3 only with relative formant levels following those reported in the literature. The second experiment employed three variants containing F1 only, F2 only, and F3 only, with the formants equalized to the same level and the signal-to-noise ratio (SNR) maintained at -5 dB. Overall response latency was estimated, and the amplitude and local SNR of the envelope following response at F0 and of the frequency following response at F1 were compared for the different stimulus variants in quiet and in noise. The response at F0 was more robust to noise than that at F1. There were no statistically significant differences in the response at F0 caused by the three stimulus variants in both experiments in quiet. However, the response at F0 with the variant dominated by resolved harmonics was more robust to noise than the response at F0 with the stimulus variants dominated by unresolved harmonics. The latencies of the responses in all cases were very similar in quiet, but the responses at F0 due to resolved and unresolved harmonics combined nonlinearly when both were present in the stimulus. Speech ABR has been suggested as a marker of central auditory processing. The results of this study support

  20. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    Directory of Open Access Journals (Sweden)

    Leeman Jonathan E

    2012-07-01

    Full Text Available Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SRT/SRS of brainstem metastases. Methods We retrospectively reviewed 38 tumors in 36 patients treated with SRT/SRS between February 2003 and December 2011. Treatment was delivered with the Cyberknife™ or Trilogy™ radiosurgical systems. The median age of patients was 62 (range: 28–89. Primary pathologies included 14 lung, 7 breast, 4 colon and 11 others. Sixteen patients (44% had received whole brain radiation therapy (WBRT prior to SRT/SRS; ten had received prior SRT/SRS at a different site (28%. The median tumor volume was 0.94 cm3 (range: 0.01-4.2 with a median prescription dose of 17 Gy (range: 12–24 delivered in 1–5 fractions. Results Median follow-up for the cohort was 3.2 months (range: 0.4-20.6. Nineteen patients (52% had an MRI follow-up available for review. Of these, one patient experienced local failure corresponding to an actuarial 6-month local control of 93%. Fifteen of the patients with available follow-up imaging (79% experienced intracranial failure outside of the treatment volume. The median time to distant intracranial failure was 2.1 months. Six of the 15 patients with distant intracranial failure (40% had received previous WBRT. The actuarial overall survival rates at 6- and 12-months were 27% and 8%, respectively. Predictors of survival included Graded Prognostic Assessment (GPA score, greater number of treatment fractions, and higher prescription dose. Three patients experienced acute treatment-related toxicity consisting of

  1. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T

    International Nuclear Information System (INIS)

    Habas, Christophe; Cabanis, Emmanuel A.

    2007-01-01

    The aims of this study were: (1) to test whether higher spatial resolution diffusion tensor images and a higher field strength (3 T) enable a more accurate delineation of the anatomical tract within the brainstem, and, in particular, (2) to try to distinguish the different components of the corticopontocerebellar paths in terms of their cortical origins. The main tracts of the brainstem of four volunteers were studied at 3 T using a probabilistic diffusion tensor imaging (DTI) axonal tracking. The resulting tractograms enabled anatomical well-delineated structures to be identified on the diffusion tensor coloured images. We tracked corticopontine, corticospinal, central tegmental, inferior and superior cerebellopeduncular, transverse, medial lemniscal and, possibly, longitudinal medial fibres. Moreover, DTI tracking allowed a broad delineation of the corticopontocerebellar paths. Diffusion tensor coloured images allow a rapid and reliable access to the white matter broad parcellation of the brainstem and of the cerebellum, which can be completed by fibre tracking. However, a more accurate and exhaustive depiction of the anatomical connectivity within the brainstem requires the application of more sophisticated techniques and tractography algorithms, such as diffusion spectrum imaging. (orig.)

  2. Thresholds of Tone Burst Auditory Brainstem Responses for Infants and Young Children with Normal Hearing in Taiwan

    Directory of Open Access Journals (Sweden)

    Chung-Yi Lee

    2007-10-01

    Conclusion: Based on the published research and our study, we suggest setting the normal criterion levels for infants and young children in Taiwan of the tone burst auditory brainstem response to air-conducted tones as 30 dB nHL for 500 and 1000 Hz, and 25 dB nHL for 2000 and 4000 Hz.

  3. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    International Nuclear Information System (INIS)

    Fobe, Lisete Pessoa de Oliveira

    1999-01-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  4. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Fobe, Lisete Pessoa de Oliveira [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina]. E-mail: lispessoa@yahoo.com

    1999-12-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  5. Comparison between chloral hydrate and propofol-ketamine as sedation regimens for pediatric auditory brainstem response testing.

    Science.gov (United States)

    Abulebda, Kamal; Patel, Vinit J; Ahmed, Sheikh S; Tori, Alvaro J; Lutfi, Riad; Abu-Sultaneh, Samer

    2017-10-28

    The use of diagnostic auditory brainstem response testing under sedation is currently the "gold standard" in infants and young children who are not developmentally capable of completing the test. The aim of the study is to compare a propofol-ketamine regimen to an oral chloral hydrate regimen for sedating children undergoing auditory brainstem response testing. Patients between 4 months and 6 years who required sedation for auditory brainstem response testing were included in this retrospective study. Drugs doses, adverse effects, sedation times, and the effectiveness of the sedative regimens were reviewed. 73 patients underwent oral chloral hydrate sedation, while 117 received propofol-ketamine sedation. 12% of the patients in the chloral hydrate group failed to achieve desired sedation level. The average procedure, recovery and total nursing times were significantly lower in the propofol-ketamine group. Propofol-ketamine group experienced higher incidence of transient hypoxemia. Both sedation regimens can be successfully used for sedating children undergoing auditory brainstem response testing. While deep sedation using propofol-ketamine regimen offers more efficiency than moderate sedation using chloral hydrate, it does carry a higher incidence of transient hypoxemia, which warrants the use of a highly skilled team trained in pediatric cardio-respiratory monitoring and airway management. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  6. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Christophe; Cabanis, Emmanuel A. [UPMC Paris 6, Service de NeuroImagerie, Hopital des Quinze-Vingts, Paris (France)

    2007-10-15

    The aims of this study were: (1) to test whether higher spatial resolution diffusion tensor images and a higher field strength (3 T) enable a more accurate delineation of the anatomical tract within the brainstem, and, in particular, (2) to try to distinguish the different components of the corticopontocerebellar paths in terms of their cortical origins. The main tracts of the brainstem of four volunteers were studied at 3 T using a probabilistic diffusion tensor imaging (DTI) axonal tracking. The resulting tractograms enabled anatomical well-delineated structures to be identified on the diffusion tensor coloured images. We tracked corticopontine, corticospinal, central tegmental, inferior and superior cerebellopeduncular, transverse, medial lemniscal and, possibly, longitudinal medial fibres. Moreover, DTI tracking allowed a broad delineation of the corticopontocerebellar paths. Diffusion tensor coloured images allow a rapid and reliable access to the white matter broad parcellation of the brainstem and of the cerebellum, which can be completed by fibre tracking. However, a more accurate and exhaustive depiction of the anatomical connectivity within the brainstem requires the application of more sophisticated techniques and tractography algorithms, such as diffusion spectrum imaging. (orig.)

  7. The analgesic agent tapentadol inhibits calcitonin gene-related peptide release from isolated rat brainstem via a serotonergic mechanism.

    Science.gov (United States)

    Greco, Maria Cristina; Navarra, Pierluigi; Tringali, Giuseppe

    2016-01-15

    In this study we tested the hypothesis that tapentadol inhibits GGRP release from the rat brainstem through a mechanism mediated by the inhibition of NA reuptake; as a second alternative hypothesis, we investigated whether tapentadol inhibits GGRP release via the inhibition of 5-HT reuptake. Rat brainstems were explanted and incubated in short-term experiments. CGRP released in the incubation medium was taken as a marker of CGRP release from the central terminals of trigeminal neurons within the brainstem. CGRP levels were measured by radioimmunoassay under basal conditions or in the presence of tapentadol; NA, 5-HT, clonidine, yohimbine and ondansetron were used as pharmacological tools to investigate the action mechanism of tapentadol. The α2-antagonist yohimbine failed to counteract the effects of tapentadol. Moreover, neither NA nor the α2-agonist clonidine per se inhibited K(+)-stimulated CGRP release, thereby indicating that the effects of tapentadol