WorldWideScience

Sample records for brain tumors treatment

  1. Bleomycin treatment of brain tumors: an evaluation

    DEFF Research Database (Denmark)

    Linnert, Mette; Gehl, Julie

    2009-01-01

    Bleomycin has been used in the treatment of brain tumors for over 30 years. Currently, we are evaluating electrochemotherapy (the use of electric pulses to enhance uptake of bleomycin) for patients with secondary brain tumors. We, therefore, reviewed the literature with specific reference...... to the tolerability and toxicity of bleomycin. Using the keywords 'brain' and 'bleomycin', a database search without date restriction was performed and over 500 articles were found. Twenty-five articles were used for this study based on relevance determined by: (i) clinical studies, (ii) use of bleomycin, and (iii......) direct injection into brain tissue or cysts. There were two main indications for the use of bleomycin directly into the brain: (i) cystic tumors in the form of craniopharyngiomas and (ii) solid brain tumors such as glioblastomas and astrocytomas. The most frequent adverse effects reported were transient...

  2. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... navigate their brain tumor diagnosis. WATCH AND SHARE Brain tumors and their treatment can be deadly so ... Pediatric Central Nervous System Cancers Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  3. Convection-enhanced delivery for the treatment of brain tumors

    Science.gov (United States)

    Debinski, Waldemar; Tatter, Stephen B

    2013-01-01

    The brain is highly accessible for nutrients and oxygen, however delivery of drugs to malignant brain tumors is a very challenging task. Convection-enhanced delivery (CED) has been designed to overcome some of the difficulties so that pharmacological agents that would not normally cross the BBB can be used for treatment. Drugs are delivered through one to several catheters placed stereotactically directly within the tumor mass or around the tumor or the resection cavity. Several classes of drugs are amenable to this technology including standard chemotherapeutics or novel experimental targeted drugs. The first Phase III trial for CED-delivered, molecularly targeted cytotoxin in the treatment of recurrent glioblastoma multiforme has been accomplished and demonstrated objective clinical efficacy. The lessons learned from more than a decade of attempts at exploiting CED for brain cancer treatment weigh critically for its future clinical applications. The main issues center around the type of catheters used, number of catheters and their exact placement; pharmacological formulation of drugs, prescreening patients undergoing treatment and monitoring the distribution of drugs in tumors and the tumor-infiltrated brain. It is expected that optimizing CED will make this technology a permanent addition to clinical management of brain malignancies. PMID:19831841

  4. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  5. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  6. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Neil V. Klinger

    2016-01-01

    Full Text Available Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin’s ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  7. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    El Majdoub, Faycal; Neudorfer, Clemens; Maarouf, Mohammad [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Blau, Tobias; Deckert, Martina [University Hospital of Cologne, Department of Neuropathology, Cologne (Germany); Hellmich, Martin [University Hospital of Cologne, Institute of Statistics, Informatics and Epidemiology, Cologne (Germany); Buehrle, Christian [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2015-12-15

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using {sup 125}iodine seeds ({sup 125}I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with {sup 125}I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.) [German] Die Behandlung oligodendroglialer Hirntumoren durch die interstitielle Brachytherapie

  8. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  9. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  10. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  11. Brain tumor (image)

    Science.gov (United States)

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  12. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Needs a Kidney Transplant Vision Facts and Myths Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  13. Brain Tumor Diagnosis

    Science.gov (United States)

    ... Young Adult Guidelines For brain tumor information and support Call: 800-886-ABTA (2282) or Complete our contact form Brain Tumor Information Brain Anatomy Brain Tumor Symptoms Diagnosis Newly Diagnosed Neurological Exam ...

  14. Brain Tumor Symptoms

    Science.gov (United States)

    ... Young Adult Guidelines For brain tumor information and support Call: 800-886-ABTA (2282) or Complete our contact form Brain Tumor Information Brain Anatomy Brain Tumor Symptoms Headaches Seizures Memory Depression Mood ...

  15. Drugs Approved for Brain Tumors

    Science.gov (United States)

    ... Ask about Your Treatment Research Drugs Approved for Brain Tumors This page lists cancer drugs approved by the ... that are not listed here. Drugs Approved for Brain Tumors Afinitor (Everolimus) Afinitor Disperz (Everolimus) Avastin (Bevacizumab) Becenum ( ...

  16. Epilepsy and brain tumors

    Science.gov (United States)

    ENGLOT, DARIO J.; CHANG, EDWARD F.; VECHT, CHARLES J.

    2016-01-01

    Seizures are common in patients with brain tumors, and epilepsy can significantly impact patient quality of life. Therefore, a thorough understanding of rates and predictors of seizures, and the likelihood of seizure freedom after resection, is critical in the treatment of brain tumors. Among all tumor types, seizures are most common with glioneuronal tumors (70–80%), particularly in patients with frontotemporal or insular lesions. Seizures are also common in individuals with glioma, with the highest rates of epilepsy (60–75%) observed in patients with low-grade gliomas located in superficial cortical or insular regions. Approximately 20–50% of patients with meningioma and 20–35% of those with brain metastases also suffer from seizures. After tumor resection, approximately 60–90% are rendered seizure-free, with most favorable seizure outcomes seen in individuals with glioneuronal tumors. Gross total resection, earlier surgical therapy, and a lack of generalized seizures are common predictors of a favorable seizure outcome. With regard to anticonvulsant medication selection, evidence-based guidelines for the treatment of focal epilepsy should be followed, and individual patient factors should also be considered, including patient age, sex, organ dysfunction, comorbidity, or cotherapy. As concomitant chemotherapy commonly forms an essential part of glioma treatment, enzyme-inducing anticonvulsants should be avoided when possible. Seizure freedom is the ultimate goal in the treatment of brain tumor patients with epilepsy, given the adverse effects of seizures on quality of life. PMID:26948360

  17. Metabolic Reprogramming in Brain Tumors.

    Science.gov (United States)

    Venneti, Sriram; Thompson, Craig B

    2017-01-24

    Next-generation sequencing has substantially enhanced our understanding of the genetics of primary brain tumors by uncovering several novel driver genetic alterations. How many of these genetic modifications contribute to the pathogenesis of brain tumors is not well understood. An exciting paradigm emerging in cancer biology is that oncogenes actively reprogram cellular metabolism to enable tumors to survive and proliferate. We discuss how some of these genetic alterations in brain tumors rewire metabolism. Furthermore, metabolic alterations directly impact epigenetics well beyond classical mechanisms of tumor pathogenesis. Metabolic reprogramming in brain tumors is also influenced by the tumor microenvironment contributing to drug resistance and tumor recurrence. Altered cancer metabolism can be leveraged to noninvasively image brain tumors, which facilitates improved diagnosis and the evaluation of treatment effectiveness. Many of these aspects of altered metabolism provide novel therapeutic opportunities to effectively treat primary brain tumors.

  18. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  19. Brain tumor delineation based on CT and MR imaging. Implications for radiotherapy treatment planning

    NARCIS (Netherlands)

    Heesters, M A; Wijrdeman, H K; Struikmans, H; Witkamp, T; Moerland, M A

    1993-01-01

    This paper deals with the impact MRI may have on radiotherapy treatment planning of brain tumors. The authors analyzed differences in size and position of treatment fields as indicated by three observers (two radiotherapists and one neuroradiologist) using CT or MR based radiotherapy planning

  20. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models.

    Directory of Open Access Journals (Sweden)

    Jinwei Hu

    2010-04-01

    Full Text Available Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB, significantly limiting drug use in brain cancer treatment.We examined the effect of phosphodiesterase 5 (PDE5 inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [(14C]dextran and trastuzumab (Herceptin, a humanized monoclonal antibody against HER2/neu by cultured mouse brain endothelial cells (MBEC. The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [(14C]dextran (2.6-fold increase and to Herceptin (2-fold increase. Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p0.05.These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.

  1. Epilepsy-related brain tumors.

    Science.gov (United States)

    Ertürk Çetin, Özdem; İşler, Cihan; Uzan, Mustafa; Özkara, Çiğdem

    2017-01-01

    Seizures are among the most common presentations of brain tumors. Several tumor types can cause seizures in varying rates; neuroglial tumors and the gliomas are the most common ones. Brain tumors are the second most common cause of focal intractable epilepsy in epilepsy surgery series, with the highest frequency being dysembryoplastic neuroepithelial tumors and gangliogliomas. Seizure management is an important part of the treatment of patients with brain tumors. This review discusses clinical features and management of seizures in patients with brain tumors, including, neuroglial tumors, gliomas, meningioma and metastases; with the help of recent literature data. Tumor-related seizures are focal seizures with or without secondary generalization. Seizures may occur either as initial symptom or during the course of the disease. Brain tumors related epilepsy tends to be resistant to antiepileptic drugs and treatment of tumor is main step also for the seizure treatment. Early surgery and extent of the tumor removal are important factors for achieving seizure freedom particularly in neuroglial tumors and low grade gliomas. During selection of the appropriate antiepileptic drug, the general approach to partial epilepsies can be followed. There are several factors influencing epileptogenesis in brain tumor-related epilepsy which also explains clinical heterogeneity of epilepsy among tumor types. Identification of molecular markers may guide future therapeutic approaches and further studies are needed to prove antitumor effects of different antiepileptic drugs. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  2. Epidemiological features of brain tumors

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2013-01-01

    Full Text Available Brain tumors account for 1.4% of all cancers and 2.4% of all cancer-related deaths. The incidence of brain tumors varies and it is higher in developed countries of Western Europe, North America, Australia and New Zealand. In Serbia, according to data from 2009, malignant brain tumors account for 2. 2 of all tumors, and from all cancer­related deaths, 3.2% is caused by malignant brain tumors. According to recent statistical reports, an overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 persons/year. The most common benign brain tumor in adults is meningioma, which is most present in women, and the most common malignant tumor is glioblastoma, which is most present in adult men. Due to high mortality, especially in patients diagnosed with glioblastoma and significant brain tumor morbidity, there is a constant interest in understanding its etiology in order to possibly prevent tumor occurrence in future and enable more efficient treatment strategies for this fatal brain disease. Despite the continuously growing number of epidemiological studies on possible factors of tumor incidence, the etiology remains unclear. The only established environmental risk factor of gliomas is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor of brain tumor development. However, studies have been inconsistent and inconclusive, so more definite results are still expected.

  3. Drug and cell encapsulation : Alternative delivery options for the treatment of malignant brain tumors

    NARCIS (Netherlands)

    Bhujbal, Swapnil V.; de Vos, Paul; Niclou, Simone P.

    2014-01-01

    Malignant brain tumors including glioblastoma are incurable cancers. Over the last years a number of promising novel treatment approaches have been investigated including the application of inhibitors of receptor tyrosine kinases and downstream targets, immune-based therapies and anti-angiogenic

  4. Children's Brain Tumor Foundation

    Science.gov (United States)

    ... 2 Family Donate Volunteer Justin's Hope Fund Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  5. Metastatic brain tumor

    Science.gov (United States)

    ... JavaScript. A metastatic brain tumor is cancer that started in another part of the body ... of cancer rarely spread to the brain, such as colon cancer and prostate cancer. In other rare cases, a tumor can ...

  6. Myxoma virus combined with rapamycin treatment enhances adoptive T cell therapy for murine melanoma brain tumors.

    Science.gov (United States)

    Thomas, Diana L; Doty, Rosalinda; Tosic, Vesna; Liu, Jia; Kranz, David M; McFadden, Grant; Macneill, Amy L; Roy, Edward J

    2011-10-01

    Adoptive transfer of tumor-specific T cells has shown some success for treating metastatic melanoma. We evaluated a novel strategy to improve adoptive therapy by administering both T cells and oncolytic myxoma virus to mice with syngeneic B16.SIY melanoma brain tumors. Adoptive transfer of activated CD8(+) 2C T cells that recognize SIY peptide doubled survival time, but SIY-negative tumors recurred. Myxoma virus killed B16.SIY cells in vitro, and intratumoral injection of virus led to selective and transient infection of the tumor. Virus treatment recruited innate immune cells to the tumor and induced IFNβ production in the brain, resulting in limited oncolytic effects in vivo. To counter this, we evaluated the safety and efficacy of co-administering 2C T cells, myxoma virus, and either rapamycin or neutralizing antibodies against IFNβ. Mice that received either triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Importantly, rapamycin treatment did not impair T cell-mediated tumor destruction, supporting the feasibility of combining adoptive immunotherapy and rapamycin-enhanced virotherapy. Myxoma virus may be a useful vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.

  7. Tumor Types: Understanding Brain Tumors

    Science.gov (United States)

    ... to reveal the vast diversity of genetic and epigenetic alterations that exist between brain tumors. This biological ... social workers, psychologists, and nurses. A supportive family environment is also helpful. Surgery GBM’s capacity to wildly ...

  8. Covalent nano delivery systems for selective imaging and treatment of brain tumors.

    Science.gov (United States)

    Ljubimova, Julia Y; Sun, Tao; Mashouf, Leila; Ljubimov, Alexander V; Israel, Liron L; Ljubimov, Vladimir A; Falahatian, Vida; Holler, Eggehard

    2017-04-01

    Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Efficacy and toxicity in brain tumor treatment - quantitative Measurements using advanced MRI

    DEFF Research Database (Denmark)

    Ravn, Søren

    2016-01-01

    From the clinical introduction in the 1980s, MRI has grown to become an indispensable brain imaging modality, mainly due to its excellent ability to visualize soft tissues. Morphologically, T1- and T2-weighted brain tumor MRI have been part of routine diagnostic radiology for more than two decades...... was to explore how different advanced MRI techniques could contribute to a higher degree of individualized treatment of brain tumor patients. The thesis is based on three studies in which advanced MRI is used to evaluate the possible role of fMRI in presurgical planning, Diffusion Tensor Imaging (DTI...... and are now being used for presurgical and radiation therapy (RT) planning. More advanced MRI sequences have gained attention. Sequences such as diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and functional magnetic resonance imaging (fMRI) have entered the clinical world concurrently...

  10. Non-invasive focused ultrasound-based synergistic treatment of brain tumors

    Directory of Open Access Journals (Sweden)

    Ya-Jui Lin

    2016-09-01

    The success of FUS BBB disruption in delivering a variety of therapeutic molecules into brain tumors has recently been demonstrated in an animal model. In this paper the authors review a number of critical studies that have demonstrated successful outcomes, including enhancement of the delivery of traditional clinically used chemotherapeutic agents or application of novel nanocarrier designs for actively transporting drugs, or extending drug half-lives to significantly improve treatment efficacy in preclinical animal models.

  11. Integration of chemotherapy into current treatment strategies for brain metastases from solid tumors

    Directory of Open Access Journals (Sweden)

    Thamm Reinhard

    2006-06-01

    Full Text Available Abstract Patients with brain metastases represent a heterogeneous group where selection of the most appropriate treatment depends on many patient- and disease-related factors. Eventually, a considerable proportion of patients are treated with palliative approaches such as whole-brain radiotherapy. Whole-brain radiotherapy in combination with chemotherapy has recently gained increasing attention and is hoped to augment the palliative effect of whole-brain radiotherapy alone and to extend survival in certain subsets of patients with controlled extracranial disease and good performance status. The randomized trials of whole-brain radiotherapy vs. whole-brain radiotherapy plus chemotherapy suggest that this concept deserves further study, although they failed to improve survival. However, survival might not be the most relevant endpoint in a condition, where most patients die from extracranial progression. Sometimes, the question arises whether patients with newly detected brain metastases and the indication for systemic treatment of extracranial disease can undergo standard systemic chemotherapy with the option of deferred rather than immediate radiotherapy to the brain. The literature contains numerous small reports on this issue, mainly in malignant melanoma, breast cancer, lung cancer and ovarian cancer, but very few sufficiently powered randomized trials. With chemotherapy alone, response rates were mostly in the order of 20–40%. The choice of chemotherapy regimen is often complicated by previous systemic treatment and takes into account the activity of the drugs in extracranial metastatic disease. Because the blood-brain barrier is partially disrupted in most macroscopic metastases, systemically administered agents can gain access to such tumor sites. Our systematic literature review suggests that both chemotherapy and radiochemotherapy for newly diagnosed brain metastases need further critical evaluation before standard clinical

  12. Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Cindy Leten

    2016-01-01

    Full Text Available Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683 in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI and magnetic resonance imaging (MRI. Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1 outliers can be detected earlier, (2 GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3 a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.

  13. SU-E-T-471: Improvement of Gamma Knife Treatment Planning Through Tumor Control Probability for Metastatic Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z [East Carolina University, Greenville, NC (United States); Feng, Y [East Carolina Univ, Rockville, MD (United States); Lo, S [Case Western Reserve University, Cleveland, OH (United States); Grecula, J [Ohio State University, Columbus, OH (United States); Mayr, N; Yuh, W [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: The dose–volume histogram (DVH) has been normally accepted as a tool for treatment plan evaluation. However, spatial information is lacking in DVH. As a supplement to the DVH in three-dimensional treatment planning, the differential DVH (DDVH) provides the spatial variation, the size and magnitude of the different dose regions within a region of interest, which can be incorporated into tumor control probability model. This study was to provide a method in evaluating and improving Gamma Knife treatment planning. Methods: 10 patients with brain metastases from different primary tumors including melanoma (#1,#4,#5, #10), breast cancer (#2), prostate cancer (#3) and lung cancer (#6–9) were analyzed. By using Leksell GammaPlan software, two plans were prepared for each patient. Special attention was given to the DDVHs that were different for different plans and were used for a comparison between two plans. Dose distribution inside target and tumor control probability (TCP) based on DDVH were calculated, where cell density and radiobiological parameters were adopted from literature. The plans were compared based on DVH, DDVH and TCP. Results: Using DVH, the coverage and selectivity were the same between plans for 10 patients. DDVH were different between two plans for each patient. The paired t-test showed no significant difference in TCP between the two plans. For brain metastases from melanoma (#1, #4–5), breast cancer (#2) and lung cancer (#6–8), the difference in TCP was less than 5%. But the difference in TCP was about 6.5% for patient #3 with the metastasis from prostate cancer, 10.1% and 178.7% for two patients (#9–10) with metastasis from lung cancer. Conclusion: Although DVH provides average dose–volume information, DDVH provides differential dose– volume information with respect to different regions inside the tumor. TCP provides radiobiological information and adds additional information on improving treatment planning as well as adaptive

  14. Assessment of accessibility to the diagnosis and treatment of brain tumors in Argentina: Preliminary results.

    Science.gov (United States)

    Rabadán, Alejandra T; Hernandez, Diego; Vazquez, Néstor; Torino, Rafael; Marcelo, Blanco V

    2017-01-01

    As far as public health is concerned, brain tumors burden is significant despite their low incidence, because they comprise high direct costs (specific diagnostic resources, high complexity treatments, and rehabilitation) and high-unforeseen costs (labor leave, family, and social issues). Although the Argentine's Health System is supposed to provide healthcare to all the population, it would not guarantee equity of access for brain tumors treatment. In order to analyze this hypothesis we decided to carry out a survey to obtain data on access, availability and resources for tumor management in Argentina. An online questionnaire with eight dimensions and 29 queries was conducted addressing all professionals involved in tumor management. Two variables were generated: (1) type of medical center according to their financial support, and (2) the geographic region (GeoR). Analysis of association between these variables and the accessibility to different resources was performed with Chi-square and Fisher's exact test. Multivariate analyses through multiple logistic regression models were also tested. One hundred and fourteen surveys were collected from 56 state-managed centers and 55 private/trade-union managed centers. Responders came from 15 provinces grouped into integrated GeoR. Results and analysis of each dimension were reported. The data obtained provides information about the accessibility to brain tumors treatment, exposing the unequal distribution of human and technologic resources in Argentina. This problem exceeds the limits of public health to become a bioethical problem. We think these results could be essentially associated to our health system fragmented structure, and the large geographical extension of our country. Finally, we believe that collaboration of professional associations working together with public and private sector authorities responsible for financial resources and logistic should bring a principle of solution.

  15. Factors related to the local treatment failure of γ knife surgery for metastatic brain tumors.

    Science.gov (United States)

    Woo, Hyun Jin; Hwang, Sung Kyoo; Park, Seong Hyun; Hwang, Jeong Hyun; Hamm, In Suk

    2010-11-01

    Radiosurgery (RS) is regarded as a standard therapy for metastatic brain tumors, but local failure requiring repeated therapy for the same lesion remains an unsolved problem. The authors analyzed outcomes of gamma knife surgery (GKS) for metastatic lesions to identify factors of local treatment failure. The hospital records of 103 patients with a metastatic brain tumor and monitored for more than 6 months were analyzed. Lesion response to RS was analyzed in 77 patients with available gamma plan data. Local treatment failure was defined as lesion regrowth or repeat GKS within 6 months. In cases with multiple lesions, largest masses were evaluated. Primary sites, metastatic location, Karnofsky scale, tumor size, number of metastatic lesions, and various radiosurgical prescription parameters, namely, Paddick's conformity index (CI), Radiation Therapy Oncology Group (RTOG)-CI, and gradient index, were analyzed. Of the 103 study subjects, 58 were male and 45 were female. Primary sites were lung (n = 58), breast (n = 12), colon (n = 6), kidney (n = 7), rectum (n = 6), and others (n = 14). Median survival duration from the diagnosis of brain metastasis was 25 months. Local treatment failure occurred in 14 of 77 the patients (77 lesions) with available gamma plan data. A lung cancer primary site was found to have a lower GKS failure rate than a breast or a renal site (p < 0.05). Lesions with a high Paddicks' CI or a low RTOG-CI had a higher rate of treatment failure (p < 0.05). Multivariate analysis revealed that primary tumor site and Paddick's CI were related to treatment failure (p < 0.05). Brain metastases from renal and breast cancers had higher rates of local GKS treatment failure than those from lung cancer. Furthermore, high Paddick's CI revealed higher rate of local recurrence, and was not contributory to prevent local treatment failure. However, the enlargement of the diameter of the tumor after RS in the early follow

  16. Brain Tumor Surgery

    Science.gov (United States)

    ... tumor surgery include: Seizures Weakness Balance/coordination difficulties Memory or cognitive problems Spinal fluid leakage Meningitis Brain swelling Stroke Excess fluid in the brain Coma Death Recovery Time Recovery time depends on: The procedure performed. ...

  17. Brain tumor survivors speak out.

    Science.gov (United States)

    Carlson-Green, Bonnie

    2009-01-01

    Although progress has been made in the treatment of childhood brain tumors,work remains to understand the complexities of disease, treatment, and contextual factors that underlie individual differences in outcome. A combination of both an idiographic approach (incorporating observations made by adult survivors of childhood brain tumors) and a nomothetic approach (reviewing the literature for brain tumor survivors as well as childhood cancer survivors) is presented. Six areas of concern are reviewed from both an idiographic and nomothetic perspective, including social/emotional adjustment, insurance, neurocognitive late effects, sexuality and relationships, employment, and where survivors accessed information about their disease and treatment and possible late effects. Guidelines to assist health care professionals working with childhood brain tumor survivors are offered with the goal of improving psychosocial and neurocognitive outcomes in this population.

  18. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment.

    Science.gov (United States)

    van Tellingen, O; Yetkin-Arik, B; de Gooijer, M C; Wesseling, P; Wurdinger, T; de Vries, H E

    2015-03-01

    Gliomas are the most common primary brain tumors. Particularly in adult patients, the vast majority of gliomas belongs to the heterogeneous group of diffuse gliomas, i.e. glial tumors characterized by diffuse infiltrative growth in the preexistent brain tissue. Unfortunately, glioblastoma, the most aggressive (WHO grade IV) diffuse glioma is also by far the most frequent one. After standard treatment, the 2-year overall survival of glioblastoma patients is approximately only 25%. Advanced knowledge in the molecular pathology underlying malignant transformation has offered new handles and better treatments for several cancer types. Unfortunately, glioblastoma multiforme (GBM) patients have not yet profited as although numerous experimental drugs have been tested in clinical trials, all failed miserably. This grim prognosis for GBM is at least partly due to the lack of successful drug delivery across the blood-brain tumor barrier (BBTB). The human brain comprises over 100 billion capillaries with a total length of 400 miles, a total surface area of 20 m(2) and a median inter-capillary distance of about 50 μm, making it the best perfused organ in the body. The BBTB encompasses existing and newly formed blood vessels that contribute to the delivery of nutrients and oxygen to the tumor and facilitate glioma cell migration to other parts of the brain. The high metabolic demands of high-grade glioma create hypoxic areas that trigger increased expression of VEGF and angiogenesis, leading to the formation of abnormal vessels and a dysfunctional BBTB. Even though the BBTB is considered 'leaky' in the core part of glioblastomas, in large parts of glioblastomas and, even more so, in lower grade diffuse gliomas the BBTB more closely resembles the intact blood-brain barrier (BBB) and prevents efficient passage of cancer therapeutics, including small molecules and antibodies. Thus, many drugs can still be blocked from reaching the many infiltrative glioblastoma cells that

  19. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment

    NARCIS (Netherlands)

    Tellingen, O. van; Yetkin-Arik, B.; Gooijer, M.C. de; Wesseling, P.; Wurdinger, T.; Vries, H.E. de

    2015-01-01

    Gliomas are the most common primary brain tumors. Particularly in adult patients, the vast majority of gliomas belongs to the heterogeneous group of diffuse gliomas, i.e. glial tumors characterized by diffuse infiltrative growth in the preexistent brain tissue. Unfortunately, glioblastoma, the most

  20. Current and future strategies for the treatment of malignant brain tumors.

    Science.gov (United States)

    Castro, M G; Cowen, R; Williamson, I K; David, A; Jimenez-Dalmaroni, M J; Yuan, X; Bigliari, A; Williams, J C; Hu, J; Lowenstein, P R

    2003-04-01

    Glioblastoma (GB) is the most common subtype of primary brain tumor in adults. These tumors are highly invasive, very aggressive, and often infiltrate critical neurological areas within the brain. The mean survival time after diagnosis of GB has remained unchanged during the last few decades, in spite of advances in surgical techniques, radiotherapy, and also chemotherapy; patients' survival ranges from 9 to 12 months after initial diagnosis. In the same time frame, with our increasing understanding and knowledge of the physiopathology of several cancers, meaningful advances have been made in the treatment and control of several cancers, such as breast, prostate, and hematopoietic malignancies. Although a number of the genetic lesions present in GB have been elucidated and our understanding of the progressions of this cancer has increased dramatically over the last few years, it has not yet been possible to harness this information towards developing effective cures. In this review, we will focus on the classical ways in which GB is currently being treated, and will introduce a novel therapeutic modality, i.e., gene therapy, which we believe will be used in combination with classical treatment strategies to prolong the life-span of patients and to ultimately be able to control and/or cure these brain tumors. We will discuss the use of several vector systems that are needed to introduce the therapeutic genes within either the tumor mass, if these are not resectable, or the tumor bed, after successful tumor resection. We also discuss different therapeutic modalities that could be exploited using gene therapy, i.e., conditional cytotoxic approach, direct cytotoxicity, immunotherapy, inhibition of angiogenesis, and the use of pro-apoptotic genes. The advantages and disadvantages of each of the current vector systems available to transfer genes into the CNS are also discussed. With the advances in molecular techniques, both towards the elucidation of the physiopathology

  1. Intranasal Delivery of Camptothecin-Loaded Tat-Modified Nanomicells for Treatment of Intracranial Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yuuki Takashima

    2012-10-01

    Full Text Available The blood-brain barrier is a substantial obstacle for delivering anticancer agents to brain tumors, and new strategies for bypassing it are sorely needed for brain tumor therapy. Intranasal delivery provides a practical, noninvasive method for delivering therapeutic agents to the brain. Intranasal application of nano-sized micelles that have been modified with Tat peptide facilitates brain delivery of fluorescent model materials. In this study, we evaluated a nose-to-brain delivery system for brain tumor therapy. We nasally administered the anti-tumor drug camptothecin (CPT in solution and in methoxy poly(ethylene glycol (MPEG/poly(e-caprolactone (PCL amphiphilic block copolymers (MPEG-PCL and cell penetrating peptide, Tat analog-modified MPEG-PCL (MPEG-PCL-Tat MPEG-PCL-Tat to rats bearing intracranial glioma tumors and quantified the cytotoxicity against glioma cells, and the therapeutic effects. CPT-loaded MPEG-PCL-Tat micelles showed higher cytotoxicity than CPT-loaded MPEG-PCL. CPT-free MPEG-PCL-Tat didn’t show any cytotoxicity, even at high concentrations (2 mmol/mL. CPT-loaded MPEG-PCL-Tat micelles significantly prolonged the median survival of rats. These results indicate that intranasal delivery of anti-cancer drugs with cell penetrating peptide-modified nanomicelles might be an effective therapy for brain tumors.

  2. Brain Tumors and Fatigue

    Science.gov (United States)

    ... can help calm the mind. Meditation, guided imagery, music therapy, and yoga are just a few worth investigating. Home Donor and Privacy Policies Find Resources Disclaimer Donate Subscribe Login American Brain Tumor Association 8550 W. Bryn Mawr Ave. Ste ...

  3. Brain Tumors - Multiple Languages

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Brain Tumors URL of this page: https://medlineplus.gov/languages/braintumors.html Other topics A-Z Expand Section ...

  4. The role of Intravenous Levetiracetam in Treatment of Seizures in Brain Tumor Patients

    Directory of Open Access Journals (Sweden)

    Ekokobe eFonkem

    2013-10-01

    Full Text Available Levetiracetam, tradename Keppra, is a new second generation antiepileptic drug that is being used increasingly in brain tumor patients. In patients suffering with brain tumors, seizures are one of the leading neurologic complications seen in more than 30% of patients. Levetiracetam is a pyrollidine-derivative drug, which has a unique mechanism of action. Unlike other antiepileptic drugs, Levetiracetam is proposed to bind to a synaptic vesicle protein inhibiting calcium release. Brain tumor patients are frequently on chemotherapy or other drugs that induce cytochrome P450, causing significant drug interactions. However, levetiracetam does not induce the P450 system and does not exhibit any relevant drug interactions. Intravenous delivery is as bioavailable as the oral medication allowing it to be used in emergency situations. Levetiracetam is an attractive option for brain tumor patients suffering from seizures, but also can be used prophylactically in patients with brain tumors or patients undergoing neurological surgery. Emerging studies have also demonstrated that levetiracetam can increase the sensitivity of Glioblastoma tumors to the chemotherapy drug Temozolomide. Levetiracetam is a safe alternative to conventional Antiepileptic drugs and an emerging tool for brain tumor patients combating seizures.

  5. Enhanced therapeutic agent delivery through magnetic resonance imaging-monitored focused ultrasound blood-brain barrier disruption for brain tumor treatment: an overview of the current preclinical status.

    Science.gov (United States)

    Liu, Hao-Li; Yang, Hung-Wei; Hua, Mu-Yi; Wei, Kuo-Chen

    2012-01-01

    Malignant glioma is a severe primary CNS cancer with a high recurrence and mortality rate. The current strategy of surgical debulking combined with radiation therapy or chemotherapy does not provide good prognosis, tumor progression control, or improved patient survival. The blood-brain barrier (BBB) acts as a major obstacle to chemotherapeutic treatment of brain tumors by severely restricting drug delivery into the brain. Because of their high toxicity, chemotherapeutic drugs cannot be administered at sufficient concentrations by conventional delivery methods to significantly improve long-term survival of patients with brain tumors. Temporal disruption of the BBB by microbubble-enhanced focused ultrasound (FUS) exposure can increase CNS-blood permeability, providing a promising new direction to increase the concentration of therapeutic agents in the brain tumor and improve disease control. Under the guidance and monitoring of MR imaging, a brain drug-delivery platform can be developed to control and monitor therapeutic agent distribution and kinetics. The success of FUS BBB disruption in delivering a variety of therapeutic molecules into brain tumors has recently been demonstrated in an animal model. In this paper the authors review a number of critical studies that have demonstrated successful outcomes, including enhancement of the delivery of traditional clinically used chemotherapeutic agents or application of novel nanocarrier designs for actively transporting drugs or extending drug half-lives to significantly improve treatment efficacy in preclinical animal models.

  6. Preclinical validation of electrochemotherapy as an effective treatment for brain tumors

    DEFF Research Database (Denmark)

    Agerholm-Larsen, Birgit; Iversen, Helle K; Ibsen, Per

    2011-01-01

    treatment. Bleomycin was injected intracranially into male rats inoculated with rat glia-derived tumor cells 2 weeks before the application of the electrical field (32 pulses, 100 V, 0.1 ms, and 1 Hz). In this model, where presence of tumor was confirmed by magnetic resonance imaging (MRI) before treatment...

  7. [Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors].

    Science.gov (United States)

    Kanygin, V V; Kichigin, A I; Gubanova, N V; Taskaev, S Yu

    2015-01-01

    Boron neutron capture therapy (BNCT) that is of the highest attractiveness due to its selective action directly on malignant tumor cells is a promising approach to treating cancers. Clinical interest in BNCT focuses in neuro-oncology on therapy for gliomas, glioblastoma in particular, and BNCT may be used in brain metastatic involvement. This needs an epithermal neutron source that complies with the requirements for BNCT, as well as a 10B-containing agent that will selectively accumulate in tumor tissue. The introduction of BNCT into clinical practice to treat patients with glial tumors will be able to enhance therapeutic efficiency.

  8. Adding chemo after radiation treatment improves survival for adults with a type of brain tumor

    Science.gov (United States)

    Adults with low-grade gliomas, a form of brain tumor, who received chemotherapy following completion of radiation therapy lived longer than patients who received radiation therapy alone, according to long-term follow-up results from a NIH-supported random

  9. [Markers of brain tumors].

    Science.gov (United States)

    Fumagalli, R; Pezzotta, S; Bernini, F; Racagni, G

    1984-05-19

    Biological markers of tumors are compounds or enzymatic activities measurable in body fluids. Their presence or concentration must be linked to tumoral growth. The markers of the central nervous system tumors are detected in CSF. Alpha-feto-protein, carcinoembryonic antigen, human chorionic gonadotropin, adenohypophyseal peptide hormones, enzymes, etc., have found some application in the early diagnosis of leptomeningeal metastasis. Other applications involve the early detection and recurrency of primary brain tumors, as well as the evaluation of efficacy of their therapy. The tests based on the CSF content of desmosterol and polyamines have been studied extensively. Their rationale is discussed and specificity, sensitivity, efficiency and predictive value are considered. Experimental results concerning a new possible biochemical marker, based on CSF concentration of cyclic adenosine monophosphate, are reported.

  10. Critical appraisal of temozolomide formulations in the treatment of primary brain tumors: patient considerations

    Directory of Open Access Journals (Sweden)

    Margarita García

    2009-10-01

    Full Text Available Margarita García,1 Ana Clopés,2 Jordi Bruna,3 María Martínez,4 Eduard Fort,2 Miguel Gil51Clinical Research Unit, Institut Català d’Oncologia-IDIBeLL, L’Hospitalet, Barcelona, Spain; 2Pharmacy Department, Institut Català d’Oncologia-IDIBeLL, L’Hospitalet, Barcelona, Spain; 3Neurology Department and Neuro-Oncology Unit, Hospital Universitario de Bellvitge-IDIBeLL, L’Hospitalet, Barcelona, Spain; 4Oncology Department, Hospital del Mar, Barcelona, Spain; 5Oncology Department and Neuro-Oncology Unit, Institut Català d’Oncologia-IDIBeLL, L’Hospitalet, Barcelona, SpainAbstract: Chemotherapy is assuming an increasingly important role in the treatment of malignant gliomas, of which temozolomide (TMZ is a key part. TMZ belongs to a class of second-generation imidazotetrazinone prodrugs that exhibit linear pharmacokinetics and do not require hepatic metabolism for activation to the active metabolite. New intravenous (iv TMZ formulations have recently been approved based on studies of bioequivalence between iv and oral TMZ. The efficacy of TMZ was initially evaluated in patients with recurrent disease but phase II and III trials in newly diagnosed gliomas are available. The results of a large phase III trial that compared RT alone vs RT concomitant with oral TMZ created a new standard of adjuvant treatment. Efficacy data for iv TMZ on which its approval was based are those extrapolated from clinical trials with oral TMZ. No comparative data are available on the differences in tolerability and patient satisfaction between oral and iv formulations of TMZ, or for quality of life. New oral formulations could encourage the adherence of patients to treatment. Although patients presumably would prefer oral treatment, iv formulations may be an alternative in noncompliant patients or patients for whom good adherence could not be expected.Keywords: temozolomide, brain tumors, new formulations, patient considerations, chemotherapy, glioblastoma 

  11. Olanzapine and Betamethasone Are Effective for the Treatment of Nausea and Vomiting due to Metastatic Brain Tumors of Rectal Cancer

    Directory of Open Access Journals (Sweden)

    M. Suzuki

    2014-01-01

    Full Text Available Brain lesions originating from metastasis of colorectal cancer represent 3-5% of all brain metastases and are relatively rare. Of all distant metastases of colorectal cancer, those to the liver are detected in 22-29% of cases, while those to the lungs are detected in 8-18% of cases. In contrast, brain metastasis is quite rare, with a reported incidence ranging from 0.4 to 1.8%. Treatments for metastatic brain tumors include surgery, radiotherapy, chemotherapy and supportive care with steroids, etc. Untreated patients exhibit a median survival of only approximately 1 month. The choice of treatment for brain metastasis depends on the number of lesions, the patient's general condition, nerve findings and presence of other metastatic lesions. We herein report the case of a 78-year-old male who presented with brain metastases originating from rectal carcinoma. He suffered from nausea, vomiting, anorexia and vertigo during body movement. He received antiemetics, glycerol and whole brain radiation therapy; however, these treatments proved ineffective. Olanzapine therapy was started at a dose of 1.25 mg every night. The persistent nausea disappeared the next day, and the frequency of vomiting subsequently decreased. The patient was able to consume solid food. Olanzapine is an antipsychotic that has recently been used as palliative therapy for refractory nausea and vomiting in patients receiving chemotherapy. We consider that olanzapine was helpful as a means of supportive care for the treatment of nausea and vomiting due to brain metastasis.

  12. Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors.

    Directory of Open Access Journals (Sweden)

    Elizabeth Harford-Wright

    Full Text Available The neuropeptide substance P (SP has been implicated in the disruption of the blood-brain barrier (BBB and development of cerebral edema in acute brain injury. Cerebral edema accumulates rapidly around brain tumors and has been linked to several tumor-associated deficits. Currently, the standard treatment for peritumoral edema is the corticosteroid dexamethasone, prolonged use of which is associated with a number of deleterious side effects. As SP is reported to increase in many cancer types, this study examined whether SP plays a role in the genesis of brain peritumoral edema. A-375 human melanoma cells were injected into the right striatum of male Balb/c nude mice to induce brain tumor growth, with culture medium injected in animals serving as controls. At 2, 3 or 4 weeks following tumor cell inoculation, non-treated animals were perfusion fixed for immunohistochemical detection of Albumin, SP and NK1 receptor. A further subgroup of animals was treated with a daily injection of the NK1 antagonist Emend (3 mg/kg, dexamethasone (8 mg/kg or saline vehicle at 3 weeks post-inoculation. Animals were sacrificed a week later to determine BBB permeability using Evan's Blue and brain water content. Non-treated animals demonstrated a significant increase in albumin, SP and NK1 receptor immunoreactivity in the peritumoral area as well as increased perivascular staining in the surrounding brain tissue. Brain water content and BBB permeability was significantly increased in tumor-inoculated animals when compared to controls (p<0.05. Treatment with Emend and dexamethasone reduced BBB permeability and brain water content when compared to vehicle-treated tumor-inoculated mice. The increase in peritumoral staining for both SP and the NK1 receptor, coupled with the reduction in brain water content and BBB permeability seen following treatment with the NK1 antagonist Emend, suggests that SP plays a role in the genesis of peritumoral edema, and thus warrants

  13. Pathologic Characteristics and Treatment Outcome of Patients with Malignant Brain Tumors: A Single Institutional Experience from Iran

    Directory of Open Access Journals (Sweden)

    Abdolazim Sedighi Pashaki

    2014-03-01

    Full Text Available Background: Central nervous system tumors account for 2%-5% of all malignancies in humans. These tumors account for 2% of all pediatric cancers. The worldwide incidence of primary central nervous system tumors is estimated at 3.9 (males and 3.2 (females per 100000 person-years. The incidence of brain tumor cases has been reported as 3.67% of all malignancies and 4% of all cancer mortalities in Iran. The five most common histological types of brain tumor in Iran according to different case studies are; meningioma, astrocytoma, glioblastoma, pituitary adenoma and ependymoma. The aim of this study is to determine the histopathological pattern and characteristics of patients with brain tumors who have referred to the Mahdieh Radiotherapy Department, Hamadan, Iran. Methods: This descriptive, retrospective study was performed at the Mahdieh Radiotherapy Department, between 2005 and 2012. We included 220 patients who referred to the Radiotherapy Department with diagnoses of primary brain tumor in this study. Results: Between 2005 and 2012, we treated 220 new cases of primary brain tumor at Mahdieh Radiotherapy Department. The mean age at diagnosis was 39.95±15.48 years with a median age of 39 years. Patients' ages ranged from 4 to 75 years. Among the 220 patients, 138 were male and 82 were female with a male to female ratio of 1.68. For most tumors there was a male predominance, with the exception of meningioma (M/F: 0.23, ependymoma (M/F: 1 and pituitary adenoma (M/F: 0.6. Astrocytomas, glioblastomas, high grade meningiomas and oligodendrogliomas were the four most common pathologies treated in this department. The best treatment results were achieved in patients with astrocytomas. Conclusion: The present study is a retrospective radiotherapy centre-based study designed in a pioneer radiotherapy centre in Western Iran, not a prospective population study. These data have provided a baseline for further epidemiological studies. Our encouraging results

  14. Health-related quality of life and emotional problems in children surviving brain tumor treatment : A descriptive study of 2 cohorts

    NARCIS (Netherlands)

    Dessens, Arianne B.; van Herwerden, Michael C.; Aarsen, Femke K.; Birnie, Erwin; Catsman-Berrevoets, Coriene E.

    2016-01-01

    The survival of childhood brain tumors has improved in the past 30years, but acquired brain injury due to damage caused by tumor invasion and side effects of different treatment modalities frequently occurs. This study focused on residual impairments, health-related quality of life (HRQoL), and

  15. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch s...

  16. Pulmonary Function After Treatment for Embryonal Brain Tumors on SJMB03 That Included Craniospinal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel M., E-mail: daniel.green@stjude.org [Department of Epidemiology and Cancer Control, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Billups, Catherine A. [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Stokes, Dennis C. [Department of Pediatrics, University of Tennessee School of Medicine, Memphis, Tennessee (United States); Broniscer, Alberto [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Bartels, Ute [Department of Haematology and Oncology, The Hospital for Sick Children, Toronto, Ontario (Canada); Chintagumpala, Murali [Department of Pediatric Medicine, Texas Children' s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas (United States); Hassall, Timothy E. [Department of Haematology and Oncology, Royal Children' s Hospital, Brisbane (Australia); Gururangan, Sridharan [Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (United States); McCowage, Geoffrey B. [Department of Pediatrics, Children' s Hospital at Westmead, Sydney (Australia); Heath, John A. [Children' s Cancer Center, Royal Children' s Hospital Melbourne, Melbourne (Australia); Cohn, Richard J. [Department of Clinical Oncology, Sydney Children' s Hospital, Sydney (Australia); Fisher, Michael J. [Department of Pediatrics, Children' s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States); Srinivasan, Ashok [Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Robinson, Giles W.; Gajjar, Amar [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2015-09-01

    Purpose: The treatment of children with embryonal brain tumors (EBT) includes craniospinal irradiation (CSI). There are limited data regarding the effect of CSI on pulmonary function. Methods: Protocol SJMB03 enrolled patients 3 to 21 years of age with EBT. Pulmonary function tests (PFTs) (forced expiratory volume in 1 second [FEV{sub 1}] and forced vital capacity [FVC] by spirometry, total lung capacity [TLC] by nitrogen washout or plethysmography, and diffusing capacity of the lung for carbon monoxide corrected for hemoglobin [DLCO{sub corr}]) were obtained. Differences between PFTs obtained immediately after the completion of CSI and 24 or 60 months after the completion of treatment (ACT) were compared using exact Wilcoxon signed-rank tests and repeated-measures models. Results: Between June 24, 2003, and March 1, 2010, 303 eligible patients (spine dose: ≤2345 cGy, 201; >2345 cGy, 102; proton beam, 20) were enrolled, 260 of whom had at least 1 PFT. The median age at diagnosis was 8.9 years (range, 3.1-20.4 years). The median thoracic spinal radiation dose was 23.4 Gy (interquartile range [IQR], 23.4-36.0 Gy). The median cyclophosphamide dose was 16.0 g/m{sup 2} (IQR, 15.7-16.0 g/m{sup 2}). At 24 and 60 months ACT, DLCO{sub corr} was <75% predicted in 23% (27/118) and 25% (21/84) of patients, FEV{sub 1} was <80% predicted in 20% (34/170) and 29% (32/109) of patients, FVC was <80% predicted in 27% (46/172) and 28% (30/108) of patients, and TLC was <75% predicted in 9% (13/138) and 11% (10/92) of patients. DLCO{sub corr} was significantly decreased 24 months ACT (median difference [MD] in % predicted, 3.00%; P=.028) and 60 months ACT (MD in % predicted, 6.00%; P=.033) compared with the end of radiation therapy. These significant decreases in DLCO{sub corr} were also observed in repeated-measures models (P=.011 and P=.032 at 24 and 60 months ACT, respectively). Conclusions: A significant minority of EBT survivors experience PFT deficits after CSI

  17. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...... and medulloblastoma. In this chapter we will cover the present findings of Notch signaling in human glioma and medulloblastoma and try to create an overall picture of its relevance in the pathogenesis of these tumors....

  18. Pathological classification of brain tumors.

    Science.gov (United States)

    Pollo, B

    2012-04-01

    The tumors of the central nervous system are classified according to the last international classification published by World Health Organization. The Classification of Tumors of the Central Nervous System was done on 2007, based on morphological features, growth pattern and molecular profile of neoplastic cells, defining malignancy grade. The neuropathological diagnosis and the grading of each histotype are based on identification of histopathological criteria and immunohistochemical data. The histopathology, also consisting of findings with prognostic or predictive relevance, plays a critical role in the diagnosis and treatment of brain tumors. The recent progresses on radiological, pathological, immunohistochemical, molecular and genetic diagnosis improved the characterization of brain tumors. Molecular and genetic profiles may identify different tumor subtypes varying in biological and clinical behavior. To investigate new therapeutic approaches is important to study the molecular pathways that lead the processes of proliferation, invasion, angiogenesis, anaplastic transformation. Different molecular biomarkers were identified by genetic studies and some of these are used in neuro-oncology for the evaluation of glioma patients, in particular combined deletions of the chromosome arms 1p and 19q in oligodendroglial tumors, methylation status of the O-6 methylguanine- DNA methyltransferase gene promoter and alterations in the epidermal growth factor receptor pathway in adult malignant gliomas, isocitrate dehydrogenase 1 (IDH1) and IDH2 gene mutations in diffuse gliomas, as well as BRAF status in pilocytic astrocytomas. The prognostic evaluation and the therapeutic strategies for patients depend on synthesis of clinical, pathological and biological data: histological diagnosis, malignancy grade, gene-molecular profile, radiological pictures, surgical resection and clinical findings (age, tumor location, "performance status").

  19. Cerebral Blood Flow Changes in Glioblastoma Patients Undergoing Bevacizumab Treatment Are Seen in Both Tumor and Normal Brain.

    Science.gov (United States)

    Andre, Jalal B; Nagpal, Seema; Hippe, Daniel S; Ravanpay, Ali C; Schmiedeskamp, Heiko; Bammer, Roland; Palagallo, Gerald J; Recht, Lawrence; Zaharchuk, Greg

    2015-04-01

    Bevacizumab (BEV) is increasingly used to treat recurrent glioblastoma (GBM) with some reported improvement in neurocognitive function despite potential neurotoxicities. We examined the effects of BEV on cerebral blood flow (CBF) within recurrent GBM tumor and in the contralateral middle cerebral artery (MCA) territory.Post-chemoradiation patients with histologically confirmed GBM were treated with BEV and underwent routine, serial tumor imaging with additional pseudocontinuous arterial spin labeling (pcASL) following informed consent. Circular regions-of-interest were placed on pcASL images directly over the recurrent tumor and in the contralateral MCA territory. CBF changes before and during BEV treatment were evaluated in tumor and normal tissue. Linear mixed models were used to assess statistical significance.Fifty-three pcASL studies in 18 patients were acquired. Evaluation yielded lower mean tumoral CBF during BEV treatment compared with pre-treatment (45 ± 27 vs. 65 ± 27 ml/100 g/min, p = 0.002), and in the contralateral MCA territory during, compared with pre-BEV treatment (35 ± 8.4 vs. 41 ± 8.4 ml/100 g/min, p = 0.03). The decrease in mean CBF tended to be greater in the tumoral region than in the contralateral MCA, though the difference did not reach statistical significance (31% vs. 13%; p = 0.082). BEV administration results in statistically significant global CBF decrease with a potentially preferential decrease in tumor perfusion compared with normal brain tissue. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Segmenting Brain Tumors with Symmetry

    OpenAIRE

    Zhang, Hejia; Zhu, Xia; Willke, Theodore L.

    2017-01-01

    We explore encoding brain symmetry into a neural network for a brain tumor segmentation task. A healthy human brain is symmetric at a high level of abstraction, and the high-level asymmetric parts are more likely to be tumor regions. Paying more attention to asymmetries has the potential to boost the performance in brain tumor segmentation. We propose a method to encode brain symmetry into existing neural networks and apply the method to a state-of-the-art neural network for medical imaging s...

  1. Dosimetric comparative analysis between 10 MV Megavoltage unidirectional beam and boron neutron capture therapy for brain tumors treatment

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia F.; Campos, Tarcisio P.R., E-mail: samiabrandao@gmail.com, E-mail: campos@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares. Departamento de Engenharia Nuclear

    2011-07-01

    This paper present a comparative dosimetric analysis between boron neutron capture therapy and 10 MV megavoltage employed in brain tumor treatments, limited to a unidirectional beam. A computational phantom of a human head was developed to be used in computational simulations of the two protocols, conducted in MCNP5 code. This phantom represents several head's structures, mainly, the central nervous system and a tumor that represents a Glioblastoma Multiform - one of the most malignant and aggressive brain tumors. Absorbed and biological weighted dose rates and neutron fluency in the computational phantom were evaluated from the MCNP5 code. The biologically weighted dose rate to 10 MV megavoltage beam presented no specificity in deposited dose in tumor. The average total biologically weighted dose rate in tumor was 9.93E-04 RBE.Gy.h{sup -1}/Mp.s{sup -1} while in healthy tissue it was 8.67E-04 RBE.Gy.h{sup -1}/Mp.s{sup -}1. On the BNCT simulations the boron concentration was particularly relevant since the largest dose deposition happened in borate tissues. The average total biologically weighted dose rate in tumor was 3.66E-02 RBE.Gy.h{sup -1}/Mp.s{sup -1} while in healthy tissue it was 1.39E-03 RBE.Gy.h{sup -1}/Mp.s{sup -1}. In comparison to the 10 MV megavoltage beam, BNCT showed clearly a largest dose deposition in the tumor, on average, 37 times larger than in the megavoltage beam, while in healthy tissue that average was only 1,6 time larger in BNCT. (author)

  2. Addition of IFN-{alpha}to treatment of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Jereb, B. [Clinical Center, Ljubljana (Slovenia). Inst. of Oncology; Petric-Grabnar, G. [Clinical Center, Ljubljana (Slovenia). Inst. of Oncology; Klun, B. [Clinical Center, Ljubljana (Slovenia). Clinic of Neurosurgery; Lamovec, J. [Clinical Center, Ljubljana (Slovenia). Inst. of Oncology; Skrbec, M. [Clinical Center, Ljubljana (Slovenia). Inst. of Radiology; Soos, E. [Inst. of Immunology, Zagreb (Croatia)

    1994-12-31

    Despite many attempts to improve the survival after surgery of patients with malignant astrocytoma the prognosis is poor. We have used natural IFN-{alpha} in 16 patients with malignant astrocytoma treated between 1987 and 1990; 6 for recurrent tumors. Radiation therapy was given in 2 Gy fractions daily to a total dose of 50 Gy in the tumor area, 5 fractions per week and IFN twice per week, cisplatinum 60 mg/m{sup 2} i.v. every second week and vincristine 2 mg every week in 12-h i.v. infusions. Eight patients were reoperated when clinical deterioration suggested recurrent tumor; histological examination showed no residual tumor in 7 of them. Of these 8 patients 3 are alive and well, 2 of them after more than 5 years. The study suggests that malignant astrocytoma can be successfully eradicated with surgery, irradiation, IFN-{alpha} and chemotherapy. The treatment had, however, unacceptably high neurotoxicity. Earlier removal of the tumor necrosis, before clinical deterioration, could possibly diminish the high complication rate and consequently improve survival. (orig.).

  3. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  4. Comparing Intelligence Quotient Change After Treatment With Proton Versus Photon Radiation Therapy for Pediatric Brain Tumors.

    Science.gov (United States)

    Kahalley, Lisa S; Ris, M Douglas; Grosshans, David R; Okcu, M Fatih; Paulino, Arnold C; Chintagumpala, Murali; Moore, Bartlett D; Guffey, Danielle; Minard, Charles G; Stancel, Heather H; Mahajan, Anita

    2016-04-01

    Compared with photon radiation (XRT), proton beam radiation therapy (PBRT) reduces dose to normal tissues, which may lead to better neurocognitive outcomes. We compared change in intelligence quotient (IQ) over time in pediatric patients with brain tumors treated with PBRT versus XRT. IQ scores were available for 150 patients (60 had received XRT, 90 had received PBRT). Linear mixed models examined change in IQ over time since radiation therapy (RT) by RT group, controlling for demographic/clinical characteristics. Craniospinal and focal RT subgroups were also examined. In the PBRT group, no change in IQ over time was identified (P = .130), whereas in the XRT group, IQ declined by 1.1 points per year (P = .004). IQ slopes did not differ between groups (P = .509). IQ was lower in the XRT group (by 8.7 points) versus the PBRT group (P = .011). In the craniospinal subgroup, IQ remained stable in both the PBRT (P = .203) and XRT groups (P = .060), and IQ slopes did not differ (P = .890). IQ was lower in the XRT group (by 12.5 points) versus the PBRT group (P = .004). In the focal subgroup, IQ scores remained stable in the PBRT group (P = .401) but declined significantly in the XRT group by 1.57 points per year (P = .026). IQ slopes did not differ between groups (P = .342). PBRT was not associated with IQ decline or impairment, yet IQ slopes did not differ between the PBRT and XRT groups. It remains unclear if PBRT results in clinically meaningful cognitive sparing that significantly exceeds that of modern XRT protocols. Additional long-term data are needed to fully understand the neurocognitive impact of PBRT in survivors of pediatric brain tumors. © 2016 by American Society of Clinical Oncology.

  5. [Surgical treatment of tumor metastases in the lungs, brain or liver].

    Science.gov (United States)

    van den Berkmortel, F W P J; Ruers, Th J M; Bootsma, G P; Verhagen, A F T; de Mulder, P H M

    2003-05-10

    Metastases are generally an expression of widespread disease and therefore warrant systemic treatment. However, clinical observations have revealed that local surgical treatment might be beneficial in the case of organ-confined metastatic disease. Randomised studies have revealed that in the case of brain metastases, metastasectomy followed by radiotherapy, has a favourable outcome with respect to both the quality of life and overall survival. Retrospective non-randomised studies in selected patient groups show prolonged post-treatment survival in the case of both lung and liver metastasectomy. The most important prognostic factors for metastasectomy are: disease control elsewhere in the body, tumour species, the patient's general condition, and the possibility of a total resection of the metastasis. These factors form the basis of the separate decision-making process for each individual patient.

  6. [Surgical treatment of eloquent brain area tumors using neurophysiological mapping of the speech and motor areas and conduction tracts].

    Science.gov (United States)

    Zuev, A A; Korotchenko, E N; Ivanova, D S; Pedyash, N V; Teplykh, B A

    To evaluate the efficacy of intraoperative neurophysiological mapping in removing eloquent brain area tumors (EBATs). Sixty five EBAT patients underwent surgical treatment using intraoperative neurophysiological mapping at the Pirogov National Medical and Surgical Center in the period from 2014 to 2015. On primary neurological examination, 46 (71%) patients were detected with motor deficits of varying severity. Speech disorders were diagnosed in 17 (26%) patients. Sixteen patients with concomitant or isolated lesions of the speech centers underwent awake surgery using the asleep-awake-asleep protocol. Standard neurophysiological monitoring included transcranial stimulation as well as motor and, if necessary, speech mapping. The motor and speech areas were mapped with allowance for the preoperative planning data (obtained with a navigation station) synchronized with functional MRI. In this case, a broader representation of the motor and speech centers was revealed in 12 (19%) patients. During speech mapping, no speech disorders were detected in 7 patients; in 9 patients, stimulation of the cerebral cortex in the intended surgical area induced motor (3 patients), sensory (4), and amnesic (2) aphasia. In the total group, we identified 11 patients in whom the tumor was located near the internal capsule. Upon mapping of the conduction tracts in the internal capsule area, the stimulus strength during tumor resection was gradually decreased from 10 mA to 5 mA. Tumor resection was stopped when responses retained at a stimulus strength of 5 mA, which, when compared to the navigation data, corresponded to a distance of about 5 mm to the internal capsule. Completeness of tumor resection was evaluated (contrast-enhanced MRI) in all patients on the first postoperative day. According to the control MRI data, the tumor was resected totally in 60% of patients, subtotally in 24% of patients, and partially in 16% of patients. In the early postoperative period, the development or

  7. Radiation therapy combined with intracerebral administration of carboplatin for the treatment of brain tumors

    Science.gov (United States)

    2014-01-01

    Background In this study we determined if treatment combining radiation therapy (RT) with intracerebral (i.c.) administration of carboplatin to F98 glioma bearing rats could improve survival over that previously reported by us with a 15 Gy dose (5 Gy × 3) of 6 MV photons. Methods First, in order to reduce tumor interstitial pressure, a biodistribution study was carried out to determine if pretreatment with dexamethasone alone or in combination with mannitol and furosemide (DMF) would increase carboplatin uptake following convection enhanced delivery (CED). Next, therapy studies were carried out in rats that had received carboplatin either by CED over 30 min (20 μg) or by Alzet pumps over 7 d (84 μg), followed by RT using a LINAC to deliver either 20 Gy (5 Gy × 4) or 15 Gy (7.5 Gy × 2) dose at 6 or 24 hrs after drug administration. Finally, a study was carried out to determine if efficacy could be improved by decreasing the time interval between drug administration and RT. Results Tumor carboplatin values for D and DMF-treated rats were 9.4 ±4.4 and 12.4 ±3.2 μg/g, respectively, which were not significantly different (P = 0.14). The best survival data were obtained by combining pump delivery with 5 Gy × 4 of X-irradiation with a mean survival time (MST) of 107.7 d and a 43% cure rate vs. 83.6 d with CED vs. 30-35 d for RT alone and 24.6 d for untreated controls. Treatment-related mortality was observed when RT was initiated 6 h after CED of carboplatin and RT was started 7 d after tumor implantation. Dividing carboplatin into two 10 μg doses and RT into two 7.5 Gy fractions, administered 24 hrs later, yielded survival data (MST 82.1 d with a 25% cure rate) equivalent to that previously reported with 5 Gy × 3 and 20 μg of carboplatin. Conclusions Although the best survival data were obtained by pump delivery, CED was highly effective in combination with 20 Gy, or as previously reported, 15 Gy, and the latter would be preferable since it would produce less

  8. Prevalence, risk factors, and response to treatment for hypersomnia of central origin in survivors of childhood brain tumors.

    Science.gov (United States)

    Khan, Raja B; Merchant, Thomas E; Sadighi, Zsila S; Bello, Mercedes S; Lu, Zhaohua; Sykes, April; Wise, Merrill S; Crabtree, Valerie M; Zabrowski, Jennifer; Simmons, Andrea; Clark, Mary E; Mandrell, Belinda N

    2018-01-01

    Daytime sleepiness is recognized in childhood brain tumor survivors. Our objective was to determine prevalence, risk factors for PSG/MLST proven hypersomnia/narcolepsy, and response to stimulants in childhood brain tumor survivors. Standard PSG/MSLT criteria were used to diagnose hypersomnia/narcolepsy. Medical records of brain tumor survivors having undergone a PSG/MSLT were reviewed for the diagnostic code of hypersomnia/narcolepsy. Survivors with hypersomnia/narcolepsy were matched with 2-3 survivors without reported hypersomnia/narcolepsy by age at tumor diagnosis, gender, and time from tumor diagnosis. Between January 2000 to April 2015, 39 of the 2336 brain tumor patients treated at our institution were diagnosed with hypersomnia/narcolepsy for a prevalence rate of 1670/100,000. Hypersomnia/narcolepsy was diagnosed at a median of 6.1 years (range 0.4-13.2) from tumor diagnosis and 4.7 years (range - 1.5 to 10.4) from cranial radiation. Midline tumor location (OR 4.6, CI 1.7-12.2, p = 0.002) and anti-epilepsy drug (AED) use (OR 11, CI 2.4-54) correlated with hypersomnia/narcolepsy while radiation dose > 30 Gray trended towards significance (OR 1.8, CI 0.9-3.6); posterior fossa tumor location reduced the risk (OR 0.1, CI 0.04-0.5, p = 0.002). AED use also correlated with midline tumor location. Thirty-seven survivors were treated with stimulants and reported improved wakefulness and school performance [response rate CI 0.97 (0.86-0.99) and 0.83 (0.65-0.94)]. Prevalence of hypersomnia/narcolepsy among childhood brain tumor survivors was higher than the general population. Tumor location and radiation dose were possible risk factors, and stimulants were reported to be beneficial.

  9. A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at University of Tsukuba

    Energy Technology Data Exchange (ETDEWEB)

    Aiyama, H. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nakai, K., E-mail: knakai@Neurosurg-tsukuba.com [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyouku (Japan); Kumada, H. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Ishikawa, E. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Isobe, T. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)

    2011-12-15

    We have evaluated the efficacy and safety of boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor using a new protocol. One of the two patients enrolled in this trial is a man with recurrent glioblastoma and the other is a woman with anaplastic meningioma. Both are still alive and no severe adverse events have been observed. Our findings suggest that NCT will be safe as a palliative therapy for malignant brain tumors. - Highlights: Black-Right-Pointing-Pointer Boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor. Black-Right-Pointing-Pointer Two cases with recurrent glioblastoma and anaplastic meningioma. Black-Right-Pointing-Pointer No severe adverse events have been observed using BNCT. Black-Right-Pointing-Pointer BNCT has a possibility of a safe palliative therapy for malignant brain tumors.

  10. Craniotomy for supratentorial brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, Mads; Bundgaard, Helle; Cold, Georg Emil

    2004-01-01

    physiological data) predictive of brain swelling through the dural opening. As a secondary aim the authors attempted to define subdural ICP thresholds associated with brain swelling. METHODS: The study population consisted of 692 patients (mean age 50+/-15 years) scheduled for elective craniotomy...... for supratentorial brain tumors. Brain swelling through the dural opening was estimated according to a four-point scale. The patients were dichotomized as those without cerebral swelling (that is, brain below the dura mater [59 patients] or brain at the level of the dura mater [386 patients]) and those with cerebral...... swelling (that is, moderate brain swelling [205 patients] or pronounced brain swelling [42 patients]). Logistic regression analysis was used to identify subdural ICP (odds ratio [OR] 1.9, 95% confidence interval [CI] 1.72-2.1, p

  11. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  12. Design and optimization of neutron beam for the treatment of deep brain tumors by BNCT with Reducing damage to skin

    Directory of Open Access Journals (Sweden)

    Zahra Ahmadi Ganjeh

    2017-05-01

    Full Text Available Boron neutron capture therapy (BNCT is an effective method for treatment of deep seated brain tumors. This method consists of two stages: injection of boron compound in the patient body, and then irradiation of the region tumors with the neutron beam. It allows for delivery of high linear energy transfer (LET radiation (particles 4He and 7Li nuclei to tumors at the cellular level whilst avoiding unnecessary dose deposition to healthy tissue. The proper neutron energies for BNCT is 1eV–10keV, namely epithermal energy range. Neutrons can slow down to the thermal energies via passing through the different tissue before reaching the tumor. Neutrons with higher or lower energies and &gamma-radiation are extremely undesirable and should be avoided as much as possible of the spectrum. Therefore, a good spectrum shaping is an essential requirement for BNCT. The following neutron-producing charged particles reactions are considered mainly for use in accelerator based neutron capture therapy: 7Li(p,n7Be, 9Be(p,n9B, 9Be(d,n10B and 13C(d,n13N. The 7Li(p,n7Be reaction is excellent for producing neutron. Neutrons from this reaction have a relatively narrow energy spectrum which requires less moderation than those generated from other reactions. In this paper, we investigate the feasibility of using 7Li(p,n7Be reaction with irradiation of 2.5MeV-20mA proton beam for neutron production in order to treatment deep seated brain tumors. the serious drawback of this source is the low melting point of Li target (180 °C and its low thermal conductivity (84.7 W/m °k. To overcome this problem, a cooling system was optimized and a beam shaping assembly (BSA was proposed for decreasing of the flux of fast neutrons (E>10 keV. The proposed BSA based on 7Li(p,n7Be reaction contains: BeO as moderator, graphite as reflector, Cd as thermal neutron filter and BeO as collimator. Our results show 1.08×109 n/cm2s epithermal neutron flux at the beam port of the proposed BSA

  13. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...... signaling plays a fundamental role during development. Recent findings have shown that Notch signaling is dysregulated, and contributes to the malignant potential of these tumors. Growing evidence point towards an important role for cancer stem cells in the initiation and maintenance of glioma...... and medulloblastoma. In this chapter we will cover the present findings of Notch signaling in human glioma and medulloblastoma and try to create an overall picture of its relevance in the pathogenesis of these tumors....

  14. Monitoring Radiographic Brain Tumor Progression

    Directory of Open Access Journals (Sweden)

    John H. Sampson

    2011-03-01

    Full Text Available Determining radiographic progression in primary malignant brain tumors has posed a significant challenge to the neuroncology community. Glioblastoma multiforme (GBM, WHO Grade IV through its inherent heterogeneous enhancement, growth patterns, and irregular nature has been difficult to assess for progression. Our ability to detect tumor progression radiographically remains inadequate. Despite the advanced imaging techniques, detecting tumor progression continues to be a clinical challenge. Here we review the different criteria used to detect tumor progression, and highlight the inherent challenges with detection of progression.

  15. Pilot study of intratumoral injection of recombinant heat shock protein 70 in the treatment of malignant brain tumors in children

    Directory of Open Access Journals (Sweden)

    Shevtsov MA

    2014-06-01

    of recombinant Hsp70 in patients with cancer. Further randomized clinical trials are recommended to assess the optimum dose of the chaperone, the treatment schedule, and clinical efficacy. Keywords: heat shock protein 70, malignant brain tumors, immunotherapy, glioblastoma

  16. Brain Tumor Risk Factors

    Science.gov (United States)

    ... Professional Meetings Order Materials Clinical Trials Support Group Leader Training Adolescent and Young Adult Guidelines For brain ... nitrites), cigarette smoking, cell phone use, and residential power line exposure, for example—are true risk factors ...

  17. Brain tumors; Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Langen, K.J. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Biophysik; Stoffels, G. [Duesseldorf Univ. (Germany). C. und O. Vogt Inst. fuer Hirnforschung

    2007-09-15

    Magnetic Resonance Tomography (MRT) is the method of choice for the diagnostics of cerebral gliomas, but the differentiation of tumour tissue from unspecific tissue changes is limited. Positron emission tomography (PET) and Single-Photon-Emission-Computed Tomography (SPECT) may offer relevant additional information which allows for a more accurate diagnostics in unclear situations. Especially, radiolabeled amino acids offer a better delineation of cerebral gliomas which allows an improved guidance of biopsy, planning of surgery and radiation therapy. Furthermore, amino acid imaging appears to be useful to differentiate tumor recurrence from unspecific posttherapeutic tissue, to predict the prognosis especially in low grade gliomas and to monitor the metabolic response during tumor therapy. (orig.)

  18. Pediatric brain tumors; Kindliche Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Bodea, S. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany); Muehl-Benninghaus, R.

    2017-09-15

    Brain tumors differ between children and adults both in histology and localization. Malignant gliomas and meningiomas predominate in adults while medulloblastomas and low-grade astrocytomas are the most frequent brain tumors in children. More than one half (50-70%) of pediatric brain tumors have an infratentorial location but only approximately 30% in adults. Brain tumors can be recognized in sonography, cranial computed tomography (CCT) and magnetic resonance imaging (MRI) by their space-consuming character and by their divergent density and intensity in comparison to normal brain parenchyma. They can grow extrusively, even infiltrate the parenchyma or originate from it. Besides clinical symptoms and diagnostics this article describes the most common pediatric brain tumors, i.e. astrocytoma, medulloblastoma, brainstem glioma, craniopharyngioma, neurofibromatosis and ganglioglioma. The most important imaging criteria are outlined. (orig.) [German] Sowohl Histologie als auch Lokalisation von Hirntumoren unterscheiden sich bei Kindern und Erwachsenen. Waehrend maligne Gliome und Meningeome bei Erwachsenen vorherrschen, kommen bei Kindern ueberwiegend Medulloblastome und niedriggradige Astrozytome vor. Mehr als die Haelfte (50-70 %) aller kindlichen Hirntumoren sind infratentoriell lokalisiert, dagegen sind es bei Erwachsenen nur etwa 30 %. Im Ultraschall, in der kranialen CT (CCT) oder MRT koennen Hirntumoren durch ihren raumfordernden Charakter und ihrer zum normalen Parenchym abweichenden Dichte oder Signalintensitaet erkannt werden. Sie koennen verdraengend wachsen, z. T. auch das Parenchym infiltrieren oder von diesem ausgehen. Neben der klinischen Symptomatik und Diagnostik werden im vorliegenden Artikel die haeufigsten kindlichen Hirntumoren, das Astrozytom, Medulloblastom, Hirnstammgliom, Kraniopharyngeom, die Neurofibromatose und das Gangliogliom beschrieben. Die wichtigsten bildgebende Kriterien werden dargestellt. (orig.)

  19. WE-G-BRE-01: A High Power Nanotube X-Ray Microbeam Irradiator for Preclinical Brain Tumor Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chtcheprov, P; Inscoe, C; Zhang, L; Lu, J; Zhou, O [University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Chang, S [UNC School of Medicine, Chapel Hill, NC (United States); Sprenger, F; Laganis, P [Xinray Systems, Cedar Fork, NC (United States)

    2014-06-15

    Purpose: Microbeam radiation therapy (MRT) is a new type of cancer treatment undergoing studies at various synchrotron facilities. The principle of MRT is using arrays of microscopically small, low-energy X-radiation for the treatment of various radio-resistant, deep-seated tumors. Our motivation is to develop a compact and inexpensive image guided MRT irradiator to use in the research lab setting. After a successful initial demonstration, here we report a second generation carbon nanotube (CNT) cathode based MRT tube, capable of producing multiple microbeam lines with an anticipated dose rate of 11 Gy/min per line. Methods: The system uses multiple line CNT source arrays to generate multiple focal lines on the anode. The increase in dose-rate, compared to our first generation system, is achieved by increasing the operating voltage from 160 kVp to 225kVp, adding multiple simultaneous focal lines on the anode, and a more efficient cooling mechanism using a 6kW oil-cooled anode. Results: This work will present the design and development process, challenges and solutions to meeting operating specifications, and the final design of the tube and collimator, along with optimization and stabilization of its use. A detailed characterization of its capabilities will be included with a comprehensive measurement of its X-ray focal line dimensions, an evaluation of its collimator alignment and microbeam dimensions, and phantom-based quantification of its dosimetric output. Conclusion: The development of a second generation, compact, multiple line MRT device using carbon nanotube (CNT) cathode based X-ray technology and a novel oil cooled anode design is presented here. With this new source, we are capable of delivering a total microbeam radiation dose comparable to the low end of the synchrotron based MRT systems for small animal brain tumor models.

  20. [Operative treatment of primary brain tumors localised in motor zone with direct corticalis electrostimulation--series of 62 patients].

    Science.gov (United States)

    Tasić, Goran M; Nestorović, Branislav D; Milić, Ivan S; Nikolić, Igor M; Jovanović, Vladimir T; Bogosavljević, Vojislav; Janićijević, Aleksandar M; Radosavljević, Marina

    2011-01-01

    In spite of the progress made in diagnostic procedures and development of the operating rooms technology, considerable neurological deficit after operation of tumors localised in the brain motor zone commits one to direct intraoperative identification of the motor zone. By introducing direct electrocortical stimulation into the routine intraoperative application the primary goal has been achieved -reaching the maximum degree of radicalness of surgical resection while preserving motor centres in the cerebral cortex. We are hereby demonstrating a series of 60 patients operated for primary brain tumors localised in the area in the front and around the central sulcus. All operations have been performed under the general anesthetics. During the operations the method of direct electrostimulation (ES) was used for the purpose of identifying motor centres. Intraoperatively a level of subtotal resection was achieved in 22 cases, while radical resection was possible in 38 cases. Significantly higher level of radicalness of surgical resection of the low grade glioma tumor was confirmed statistically in relation to the group of patients with glioblastoma multiforme by applying the ES cortex (p brain glioma have statistically considerably higher KI value in relation to the KI values in the group of patients with glioblastoma multiforme (p 0 brain cortex is a safe, simple and precise method for identification of the brain motor zone which enables prevention of additional postoperative deficit and higher level of surgical radicalness.

  1. Carbonic anhydrase IX in oligodendroglial brain tumors

    Directory of Open Access Journals (Sweden)

    Pastorekova Silvia

    2008-01-01

    Full Text Available Abstract Background Carbonic anhydrase IX is a hypoxia-induced enzyme that has many biologically important functions, including its role in cell adhesion and invasion. Methods This study was set out to investigate the role of CA IX in a series of 86 oligodendroglial brain tumors (71 primary and 15 recurrent; 48 pure oligodendrogliomas and 40 mixed oligoastrocytomas. Results 80% of the tumors showed CA IX expression by immunohistochemistry. Tumors with moderate or strong CA IX expression had decreased level of cell proliferation compared to weak or no CA IX expression (median 2.9 vs. 5.8, p = 0.015. CA IX correlated with two antioxidative enzymes, manganese superoxide dismutase (MnSOD and regulatory gammaglutamylcysteine synthetase (GLCL-R: CA IX expression was significantly higher in MnSOD-positive tumors (p = 0.008 and decreased in GLCL-R-positive tumors (p = 0.044. In Cox multivariate analysis CA IX expression, patient age and histological component (pure oligodendroglioma vs. mixed oligoastrocytoma showed independent prognostic values (p = 0.009, p = 0.003 and p = 0.022, respectively, CA IX positivity predicting poorer outcome. Conclusion CA IX was proved to be an independent prognostic indicator in oligodendroglial brain tumors, and it also correlates reversely with cell proliferation. It may have a role in the biology of oligodendrogliomas, and most interestingly, as it is mainly expressed in tumor tissue, CA IX could serve as a target molecule for anticancer treatments.

  2. What You Need to Know about Brain Tumors

    Science.gov (United States)

    ... Publications Reports What You Need To Know About™ Brain Tumors This booklet is about tumors that begin in the brain. These tumors are called primary brain tumors. Cancer that spreads to the brain from another ...

  3. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    Science.gov (United States)

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  4. Brain Tumor Trials Collaborative | Center for Cancer Research

    Science.gov (United States)

    Brain Tumor Trials Collaborative In Pursuit of a Cure The mission of the BTTC is to develop and perform state-of-the-art clinical trials in a collaborative and collegial environment, advancing treatments for patients with brain tumors, merging good scientific method with concern for patient well-being and outcome.

  5. Anticonvulsant therapy in brain-tumor related epilepsy

    Directory of Open Access Journals (Sweden)

    Fröscher Walter

    2016-06-01

    Full Text Available Background. The lifetime risk of patients with brain tumors to have focal epileptic seizures is 10-100%; the risk depends on different histology. Specific guidelines for drug treatment of brain tumor-related seizures have not yet been established.

  6. Heterogeneous data fusion for brain tumor classification.

    Science.gov (United States)

    Metsis, Vangelis; Huang, Heng; Andronesi, Ovidiu C; Makedon, Fillia; Tzika, Aria

    2012-10-01

    Current research in biomedical informatics involves analysis of multiple heterogeneous data sets. This includes patient demographics, clinical and pathology data, treatment history, patient outcomes as well as gene expression, DNA sequences and other information sources such as gene ontology. Analysis of these data sets could lead to better disease diagnosis, prognosis, treatment and drug discovery. In this report, we present a novel machine learning framework for brain tumor classification based on heterogeneous data fusion of metabolic and molecular datasets, including state-of-the-art high-resolution magic angle spinning (HRMAS) proton (1H) magnetic resonance spectroscopy and gene transcriptome profiling, obtained from intact brain tumor biopsies. Our experimental results show that our novel framework outperforms any analysis using individual dataset.

  7. A New Treatment Paradigm: Neoadjuvant Radiosurgery Before Surgical Resection of Brain Metastases With Analysis of Local Tumor Recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Asher, Anthony L., E-mail: asher@cnsa.com [Department of Neurosurgery, Levine Cancer Institute and Carolinas Medical Center, Charlotte, North Carolina (United States); Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (United States); Burri, Stuart H. [Department of Radiation Oncology, Levine Cancer Institute and Carolinas Medical Center, Charlotte, North Carolina (United States); Wiggins, Walter F. [Wake Forest School of Medicine MD/PhD Program, Winston-Salem, North Carolina (United States); Kelly, Renee P. [Brain Tumor Fund for the Carolinas, Charlotte, North Carolina (United States); Boltes, Margaret O.; Mehrlich, Melissa [Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (United States); Norton, H. James [Department of Biostatistics, Carolinas Medical Center, Charlotte, North Carolina (United States); Fraser, Robert W. [Department of Radiation Oncology, Levine Cancer Institute and Carolinas Medical Center, Charlotte, North Carolina (United States)

    2014-03-15

    Purpose: Resected brain metastases (BM) require radiation therapy to reduce local recurrence. Whole brain radiation therapy (WBRT) reduces recurrence, but with potential toxicity. Postoperative stereotactic radiosurgery (SRS) is a strategy without prospective data and problematic target delineation. SRS delivered in the preoperative setting (neoadjuvant, or NaSRS) allows clear target definition and reduction of intraoperative dissemination of tumor cells. Methods and Materials: Our treatment of resectable BM with NaSRS was begun in 2005. Subsequently, a prospective trial of NaSRS was undertaken. A total of 47 consecutively treated patients (23 database and 24 prospective trial) with a total of 51 lesions were reviewed. No statistical difference was observed between the 2 cohorts, and they were combined for analysis. The median follow-up time was 12 months (range, 1-58 months), and the median age was 57. A median of 1 day elapsed between NaSRS and resection. The median diameter of lesions was 3.04 cm (range, 1.34-5.21 cm), and the median volume was 8.49 cc (range, 0.89-46.7 cc). A dose reduction strategy was used, with a median dose of 14 Gy (range, 11.6-18 Gy) prescribed to 80% isodose. Results: Kaplan-Meier overall survival was 77.8% and 60.0% at 6 and 12 months. Kaplan-Meier local control was 97.8%, 85.6%, and 71.8% at 6, 12, and 24 months, respectively. Five of 8 failures were proved pathologically without radiation necrosis. There were no perioperative adverse events. Ultimately, 14.8% of the patients were treated with WBRT. Local failure was more likely with lesions >10 cc (P=.01), >3.4 cm (P=.014), with a trend in surface lesions (P=.066) and eloquent areas (P=.052). Six of the 8 failures had an obvious dural attachment or proximity to draining veins. Conclusions: NaSRS can be performed safely and effectively with excellent results without documented radiation necrosis. Local control was excellent even in the setting of large (>3 cm) lesions. The strong

  8. Targeted toxins in brain tumor therapy.

    Science.gov (United States)

    Li, Yan Michael; Hall, Walter A

    2010-11-01

    Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.

  9. Health-related quality of life and emotional problems in children surviving brain tumor treatment: A descriptive study of 2 cohorts.

    Science.gov (United States)

    Dessens, Arianne B; van Herwerden, Michael C; Aarsen, Femke K; Birnie, Erwin; Catsman-Berrevoets, Coriene E

    2016-08-01

    The survival of childhood brain tumors has improved in the past 30 years, but acquired brain injury due to damage caused by tumor invasion and side effects of different treatment modalities frequently occurs. This study focused on residual impairments, health-related quality of life (HRQoL), and emotional and behavioral problems in 2 cohorts of survivors diagnosed and treated for various types of brain tumors. Survivors in the 2004 cohort visited the Erasmus Medical Centre for standardized follow-up between 2003 and 2004, and in the 2014 cohort, between 2012 and 2014. Data of neurologically impairments of all children were extracted from medical records. Parents and survivors filled out questionnaires on quality of life and emotional and behavioral problems. In both cohorts, approximately 55% of the survivors displayed neurologic impairments. In comparison with the healthy reference group, a reduced parent-reported quality of life was found on the Motor, Cognition, and Autonomy (Cohort 2004) scales. Comparison between the cohorts showed that parents in the 2004 cohort reported a higher HRQoL on the Motor and Cognitive functioning scales. In the 2014 cohort, children reported less negative emotions than healthy children. No increase in emotional or behavioral problems were reported by children in both cohorts, whereas parents reported problems in social functioning and isolation related to a delay in emotional development. Children surviving brain tumor treatment have a reduced quality of life. The authors therefore recommend regular screening of HRQoL and emotional and behavioral problems and referral to specific aftercare.

  10. Targeting Malignant Brain Tumors with Antibodies

    OpenAIRE

    Rok Razpotnik; Neža Novak; Vladka Čurin Šerbec; Uros Rajcevic

    2017-01-01

    Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain deli...

  11. A case of metastatic brain tumor causing multifocal cerebral embolism.

    Science.gov (United States)

    Kawaguchi, Takuya; Yamanouchi, Yasuo; Numa, Yoshihiro; Sakurai, Yasuo; Yamahara, Takahiro; Seno, Toshitaka; Shikata, Nobuaki; Asai, Akio; Kawamoto, Keiji

    2012-01-01

    The patient was a 72-year-old woman who had previously undergone treatment for femoral chondrosarcoma (histologically rated as myxofibrosarcoma). She suddenly developed left homonymous hemianopsia and was diagnosed with cerebral embolism. Because she had atrial fibrillation, we treated her for cardiogenic cerebral embolism. About 3 months later, however, she developed left hemiplegia, and head magnetic resonance imaging revealed multiple tumorous lesions affecting the previously detected infracted area and several new areas. We assumed that a tumor embolus had caused cerebral embolism, which resulted in growth of the tumor from the embolus and formation of a metastatic brain tumor. The metastatic foci formed from the tumor embolus were visualized by diagnostic imaging, and histological examination of the resected tumor confirmed that the brain tumor had occluded the brain vessel (tumorigenic cerebral embolism). No such case has been reported to date, and this case seems to be important.

  12. Targeting Malignant Brain Tumors with Antibodies.

    Science.gov (United States)

    Razpotnik, Rok; Novak, Neža; Čurin Šerbec, Vladka; Rajcevic, Uros

    2017-01-01

    Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood-brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs), and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv) with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A "Trojan horse" method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT). Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs) are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts), are making their way into glioma treatment as another type of cell-based therapy using the

  13. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  14. Gamma Knife Surgery for Metastatic Brain Tumors from Gynecologic Cancer.

    Science.gov (United States)

    Matsunaga, Shigeo; Shuto, Takashi; Sato, Mitsuru

    2016-05-01

    The incidences of metastatic brain tumors from gynecologic cancer have increased. The results of Gamma Knife surgery (GKS) for the treatment of patients with brain metastases from gynecologic cancer (ovarian, endometrial, and uterine cervical cancers) were retrospectively analyzed to identify the efficacy and prognostic factors for local tumor control and survival. The medical records were retrospectively reviewed of 70 patients with 306 tumors who underwent GKS for brain metastases from gynecologic cancer between January 1995 and December 2013 in our institution. The primary cancers were ovarian in 33 patients with 147 tumors and uterine in 37 patients with 159 tumors. Median tumor volume was 0.3 cm(3). Median marginal prescription dose was 20 Gy. The local tumor control rates were 96.4% at 6 months and 89.9% at 1 year. There was no statistically significant difference between ovarian and uterine cancers. Higher prescription dose and smaller tumor volume were significantly correlated with local tumor control. Median overall survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and solitary brain metastasis were significantly correlated with satisfactory overall survival. Median activities of daily living (ADL) preservation survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and higher Karnofsky Performance Status score were significantly correlated with better ADL preservation. GKS is effective for control of tumor progression in patients with brain metastases from gynecologic cancer, and may provide neurologic benefits and preservation of the quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease

    NARCIS (Netherlands)

    Leenstra, S.; Troost, D.; Das, P. K.; Claessen, N.; Becker, A. E.; Bosch, D. A.

    1993-01-01

    The endothelial cell marker PAL-E is not reactive to vessels in the normal brain. The present study concerns the PAL-E reactivity in brain tumors in contrast to normal brain and nonneoplastic brain disease. A total of 122 specimens were examined: brain tumors (n = 94), nonneoplastic brain disease (n

  16. Brain tumors in children; Hirntumoren beim Kind

    Energy Technology Data Exchange (ETDEWEB)

    Harting, I.; Seitz, A. [Universitaetsklinikum Heidelberg (Germany). Abt. Neuroradiologie

    2009-06-15

    Brain tumors are common in children; in Germany approximately 400 children are diagnosed every year. In the posterior fossa, cerebellar neoplasms outnumber brainstem gliomas. In contrast to their rarity in adults, brainstem gliomas are not uncommon in children. Supratentorial tumors can be subdivided by location into neoplasms of the cerebral hemispheres, suprasellar and pineal tumors. Astrocytoma is the most common pediatric brain tumor followed by medulloblastoma, ependymoma and craniopharyngeoma. The combination of imaging morphology, tumor localisation and patient age at manifestation form the basis of the neuroradiological differential diagnosis. (orig.)

  17. Distinctive responses of brain tumor cells to TLR2 ligands.

    Science.gov (United States)

    Yoon, Hee Jung; Jeon, Sae-Bom; Koh, Han Seok; Song, Jae-Young; Kim, Sang Soo; Kim, In-Hoo; Park, Eun Jung

    2015-05-01

    Malignant brain tumor mass contains significant numbers of infiltrating glial cells that may intimately interact with tumor cells and influence cancer treatments. Understanding of characteristic discrepancies between normal GLIA and tumor cells would, therefore, be valuable for improving anticancer therapeutics. Here, we report distinct differences in toll-like receptors (TLR)-2-mediated responses between normal glia and primary brain tumor cell lines. We found that tyrosine phosphorylation of STAT1 by TLR2 ligands and its downstream events did not occur in mouse, rat, or human brain tumor cell lines, but were markedly induced in normal primary microglia and astrocytes. Using TLR2-deficient, interferon (IFN)-γ-deficient, and IFNγ-receptor-1-deficient mice, we revealed that the impaired phosphorylation of STAT1 might be linked with defective TLR2 system in tumor cells, and that a TLR2-dependent pathway, not IFNγ-receptor machinery, might be critical for tyrosine STAT1 phosphorylation by TLR2 ligands. We also found that TLR2 and its heterodimeric partners, TLR1 and 6, on brain tumor cells failed to properly respond to TLR2 ligands, and representative TLR2-dependent cellular events, such as inflammatory responses and cell death, were not detected in brain tumor cells. Similar results were obtained in in vitro and in vivo experiments using orthotopic mouse and rat brain tumor models. Collectively, these results suggest that primary brain tumor cells may exhibit a distinctive dysfunction of TLR2-associated responses, resulting in abnormal signaling and cellular events. Careful targeting of this distinctive property could serve as the basis for effective therapeutic approaches against primary brain tumors. © 2015 Wiley Periodicals, Inc.

  18. Tumor Cells and Micro-environment in Brain Metastases

    Directory of Open Access Journals (Sweden)

    Wen ZHONG

    2016-09-01

    Full Text Available Improvements in survival and quality of life of patients with lung cancer had been achieved due to the progression of early diagnosis and precision medicine at recent years, however, until now, treatments targeted at lesions in central nervous system are far from satisfying, thus threatening livelihood of patients involved. After all, in the issue of prophylaxis and therapeutics of brain metastases, it is crucial to learn about the biological behavior of tumor cells in brain metastases and its mechanism underlying, and the hypothesis ”seed and soil”, that is, tumor cells would generate series of adaptive changes to fit in the new environment, is liable to help explain this process well. In this assay, we reviewed documents concerning tumor cells, brain micro-environments and their interactions in brain metastases, aiming to provide novel insight into the treatments of brain metastases.

  19. Long-term psychiatric outcomes in pediatric brain tumor survivors.

    Science.gov (United States)

    Shah, Sumedh Subodh; Dellarole, Anna; Peterson, Eric Cecala; Bregy, Amade; Komotar, Ricardo; Harvey, Philip D; Elhammady, Mohamed Samy

    2015-05-01

    The increased efficacy of cancer treatments has led to a greater survival rate of patients with pediatric brain cancers. Therefore, it is imperative to explore the long-term consequences of therapies employed to treat pediatric brain tumors. The goal of this study was to provide a review of literature regarding the downstream psychological and psychiatric consequences experienced by adult survivors of pediatric brain cancer as a result of treatment, tumor type, or tumor location. A PubMed MeSH search and additional online database searches were conducted to include pertinent studies that discussed psychological deficits in childhood brain cancer survivors. The studies included were subjected to data extraction to quantify relevant information for further analysis. A total of 17 papers with 5320 pediatric brain tumor patients were incorporated in our review. Mean age at diagnosis (8.13 ± 0.77 years), mean follow-up time (9.98 ± 3.05 years), and male-to-female ratios (1.08:1) were compiled from studies reporting this information. Incidences of depression (19 %), anxiety (20 %), suicidal ideation (10.9 %), schizophrenia and its related psychoses (9.8 %), and behavioral problem (28.7 %) were higher among pediatric brain cancer survivors than in the normal population. Craniospinal radiotherapy and/or surgery corresponded to an increased likelihood of developing adverse deficits. Astrocytomas or other glial tumors were linked to poorer outcomes. Physicians treating pediatric brain tumor patients should be aware of the possible consequences associated with treatment. Psychiatric monitoring is warranted in survivors of pediatric brain tumors, but further investigation is needed to elucidate late outcomes regarding tumor type and location.

  20. Brain tumor stem cell dancing

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2014-09-01

    Full Text Available Background. Issues regarding cancer stem cell (CSC movement are important in neurosphere biology as cell-cell or cell-environment interactions may have significant impacts on CSC differentiation and contribute to the heterogeneity of the neurosphere. Aims. Despite the growing body of literature data on the biology of brain tumor stem cells, floating CSC-derived neurospheres have been scarcely characterized from a morphological and ultrastructural point of view. Results. Here we report a morphological and ultrastructural characterization performed by live imaging and scanning electron microscopy. Glioblastoma multiforme (GBM CSC-derived neurospheres are heterogeneous and are constituted by cells, morphologically different, capable of forming highly dynamic structures. These dynamic structures are regulated by not serendipitous cell-cell interactions, and they synchronously pulsate following a cyclic course made of "fast" and "slow" alternate phases. Autocrine/paracrine non canonical Wnt signalling appears to be correlated with the association status of neurospheres. Conclusions. The results obtained suggest that GBM CSCs can behave both as independents cells and as "social" cells, highly interactive with other members of its species, giving rise to a sort of "multicellular organism".

  1. Impact of preexisting tumor necrosis on the efficacy of stereotactic radiosurgery in the treatment of brain metastases in women with breast cancer.

    Science.gov (United States)

    Xu, Zhiyuan; Marko, Nicholas F; Angelov, Lilyana; Barnett, Gene H; Chao, Samuel T; Vogelbaum, Michael A; Suh, John H; Weil, Robert J

    2012-03-01

    Breast cancer is the second most common source of brain metastasis. Stereotactic radiosurgery (SRS) can be an effective treatment for some patients with brain metastasis (BM). Necrosis is a common feature of many brain tumors, including BM; however, the influence of tumor necrosis on treatment efficacy of SRS in women with breast cancer metastatic to the brain is unknown. A cohort of 147 women with breast cancer and BM treated consecutively with SRS over 10 years were studied. Of these, 80 (54.4%) had necrosis identified on pretreatment magnetic resonance images and 67 (46.4%) did not. Survival times were computed using the Kaplan-Meier method. Log-rank tests were used to compare groups with respect to survival times, Cox proportional hazards regression models were used to perform univariate and multivariate analyses, and chi-square and Fisher exact tests were used to compare clinicopathologic covariates. Neurological survival (NS) and survival after SRS were decreased in BM patients with necrosis at the time of SRS compared with patients without necrosis by 32% and 27%, respectively (NS median survival, 25 vs 17 months [log-rank test, P = .006]; SRS median survival, 15 vs 11 months [log-rank test, P = .045]). On multivariate analysis, HER2 amplification status and necrosis influenced NS and SRS after adjusting for standard clinical features, including BM number, size, and volume as well as Karnofsky performance status. Neuroimaging evidence of necrosis at the time of SRS significantly diminished the efficacy of therapy and was a potent prognostic marker. Copyright © 2011 American Cancer Society.

  2. SU-E-T-01: (In)dependence of Plan Quality On Treatment Modalities and Target-To-Critical Structure Geometry for Brain Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, D; Shao, W; Low, D; Kupelian, P; Qi, S X [UCLA, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To evaluate and test the hypothesis that plan quality may be systematically affected by treatment delivery techniques and target-tocritical structure geometric relationship in radiotherapy for brain tumor. Methods: Thirty-four consecutive brain tumor patients treated between 2011–2014 were analyzed. Among this cohort, 10 were planned with 3DCRT, 11 with RadipArc, and 13 with helical IMRT on TomoTherapy. The selected dosimetric endpoints (i.e., PTV V100, maximum brainstem/chiasm/ optic nerve doses) were considered as a vector in a highdimensional space. A Pareto analysis was performed to identify the subset of Pareto-efficient plans.The geometric relationships, specifically the overlapping volume and centroid-of-mass distance between each critical structure to the PTV were extracted as potential geometric features. The classification-tree analyses were repeated using these geometric features with and without the treatment modality as an additional categorical predictor. In both scenarios, the dominant features to prognosticate the Pareto membership were identified and the tree structures to provide optimal inference were recorded. The classification performance was further analyzed to determine the role of treatment modality in affecting plan quality. Results: Seven Pareto-efficient plans were identified based on dosimetric endpoints (3 from 3DCRT, 3 from RapicArc, 1 from Tomo), which implies that the evaluated treatment modality may have a minor influence on plan quality. Classification trees with/without the treatment modality as a predictor both achieved accuracy of 88.2%: with 100% sensitivity and 87.1% specificity for the former, and 66.7% sensitivity and 96.0% specificity for the latter. The coincidence of accuracy from both analyses further indicates no-to-weak dependence of plan quality on treatment modality. Both analyses have identified the brainstem to PTV distance as the primary predictive feature for Pareto-efficiency. Conclusion: Pareto

  3. FDTD analysis of a noninvasive hyperthermia system for brain tumors.

    Science.gov (United States)

    Yacoob, Sulafa M; Hassan, Noha S

    2012-08-14

    Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  4. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  5. Ovarian Germ Cell Tumors Treatment

    Science.gov (United States)

    ... Fallopian Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key ...

  6. Stereotactic radiosurgery for patients with multiple brain metastases: a case-matched study comparing treatment results for patients with 2-9 versus 10 or more tumors.

    Science.gov (United States)

    Yamamoto, Masaaki; Kawabe, Takuya; Sato, Yasunori; Higuchi, Yoshinori; Nariai, Tadashi; Watanabe, Shinya; Kasuya, Hidetoshi

    2014-12-01

    Although stereotactic radiosurgery (SRS) alone is not a standard treatment for patients with 4-5 tumors or more, a recent trend has been for patients with 5 or more, or even 10 or more, tumors to undergo SRS alone. The aim of this study was to reappraise whether the treatment results for SRS alone for patients with 10 or more tumors differ from those for patients with 2-9 tumors. This was an institutional review board-approved, retrospective cohort study that gathered data from the Katsuta Hospital Mito GammaHouse prospectively accumulated database. Data were collected for 2553 patients who consecutively had undergone Gamma Knife SRS alone, without whole-brain radiotherapy (WBRT), for newly diagnosed (mostly) or recurrent (uncommonly) brain metastases during 1998-2011. Of these 2553 patients, 739 (28.9%) with a single tumor were excluded, leaving 1814 with multiple metastases in the study. These 1814 patients were divided into 2 groups: those with 2-9 tumors (Group A, 1254 patients) and those with 10 or more tumors (Group B, 560 patients). Because of considerable bias in pre-SRS clinical factors between groups A and B, a case-matched study, which used the propensity score matching method, was conducted for clinical factors (i.e., age, sex, primary tumor state, extracerebral metastases, Karnofsky Performance Status, neurological symptoms, prior procedures [surgery and WBRT], volume of the largest tumor, and peripheral doses). Ultimately, 720 patients (360 in each group) were selected. The standard Kaplan-Meier method was used to determine post-SRS survival times and post-SRS neurological death-free survival times. Competing risk analysis was applied to estimate cumulative incidence for local recurrence, repeat SRS for new lesions, neurological deterioration, and SRS-induced complications. Post-SRS median survival times did not differ significantly between the 2 groups (6.8 months for Group A vs 6.0 months for Group B; hazard ratio [HR] 1.133, 95% CI 0.974-1.319, p

  7. Critical Care Management of Cerebral Edema in Brain Tumors.

    Science.gov (United States)

    Esquenazi, Yoshua; Lo, Victor P; Lee, Kiwon

    2017-01-01

    Cerebral edema associated with brain tumors is extremely common and can occur in both primary and metastatic tumors. The edema surrounding brain tumors results from leakage of plasma across the vessel wall into the parenchyma secondary to disruption of the blood-brain barrier. The clinical signs of brain tumor edema depend on the location of the tumor as well as the extent of the edema, which often exceeds the mass effect induced by the tumor itself. Uncontrolled cerebral edema may result in increased intracranial pressure and acute herniation syndromes that can result in permanent neurological dysfunction and potentially fatal herniation. Treatment strategies for elevated intracranial pressure consist of general measures, medical interventions, and surgery. Alhough the definitive treatment for the edema may ultimately be surgical resection of the tumor, the impact of the critical care management cannot be underestimated and thus patients must be vigilantly monitored in the intensive care unit. In this review, we discuss the pathology, pathophysiology, and clinical features of patients presenting with cerebral edema. Imaging findings and treatment modalities used in the intensive care unit are also discussed. © The Author(s) 2015.

  8. Brain's tumor image processing using shearlet transform

    Science.gov (United States)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  9. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    OpenAIRE

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  10. Effect of Mirtazapine Treatment on Serum Levels of Brain-Derived Neurotrophic Factor and Tumor Necrosis Factor-α in Patients of Major Depressive Disorder with Severe Depression.

    Science.gov (United States)

    Gupta, Rachna; Gupta, Keshav; Tripathi, A K; Bhatia, M S; Gupta, Lalit K

    2016-01-01

    This study evaluated the clinical efficacy of mirtazapine and its effect on serum brain-derived neurotrophic factor (BDNF) and tumor necrosis factor-α (TNF-α) levels in patients of major-depressive disorder (MDD) with severe depression. Patients (aged 18-60) with MDD diagnosed by DSM-IV criteria, and Hamilton Rating Scale for Depression (HAM-D) score ≥25 were included (n = 30). Mirtazapine was given in the doses of 30 mg/day. All patients were followed up for 12 weeks for the evaluation of clinical efficacy, safety along with serum BDNF and TNF-α levels. HAM-D score at the start of treatment was 30.1 ± 1.92, which significantly (p depressed patients and treatment response is associated with an increase in serum BDNF and a decrease in serum TNF-α levels. © 2016 S. Karger AG, Basel.

  11. An Epigenetic Gateway to Brain Tumor Cell Identity

    Science.gov (United States)

    Mack, Stephen C.; Hubert, Christopher G.; Miller, Tyler E.; Taylor, Michael D.; Rich, Jeremy N.

    2017-01-01

    Precise targeting of genetic lesions alone has been insufficient to extend brain tumor patient survival. Brain cancer cells are diverse in their genetic, metabolic, and microenvironmental compositions, accounting for their phenotypic heterogeneity and disparate responses to therapy. These factors converge at the level of the epigenome, representing a unified node that can be disrupted by pharmacologic inhibition. Aberrant epigenomes define many childhood and adult brain cancers, as demonstrated by widespread changes to DNA methylation patterns, redistribution of histone marks, and disruption of chromatin structure. In this review, we describe the convergence of genetic, metabolic, and micro-environmental factors upon mechanisms of epigenetic deregulation in brain cancer. We discuss how aberrant epigenetic pathways identified in brain tumors affect cell identity, cell state, and neoplastic transformation, in addition to the potential to exploit these alterations as novel therapeutic strategies for the treatment of brain cancer. PMID:26713744

  12. Fluorescent Nanoparticle Uptake for Brain Tumor Visualization

    Directory of Open Access Journals (Sweden)

    Rachel Tréhin

    2006-04-01

    Full Text Available Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP tumors, mean overestimations of 2 and 24 µm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon and primary (Gli36 glioma brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.

  13. Brain tumor symptoms as antecedents to uncertainty: an integrative review.

    Science.gov (United States)

    Cahill, Jennifer; LoBiondo-Wood, Geri; Bergstrom, Nancy; Armstrong, Terri

    2012-06-01

    Uncertainty is a common experience within human cancer. For brain tumor patients, irregular symptom pattern and presentation may promote uncertainties about treatment response, prognosis, and life quality. We sought to identify the somatic symptom experience associated with primary and secondary brain tumors and the potential impact on illness-related uncertainty. An integrative literature search of Medline and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) was performed. Symptom data were excerpted into tables and reviewed critically against the broader uncertainty-focused oncology literature. Twenty-one studies investigated a diverse range of brain tumor symptoms that persist through the now-expanding, post-treatment survival. While symptoms such as fatigue were common, antecedents and patterns were poorly characterized and inconsistent between and within categories of tumor. Symptom investigation is an emerging and rapidly developing area of neuro-oncology. The extent to which symptoms are familiar, predictable, and understandable can mitigate uncertainty. The unstable nature of symptoms across the trajectory of a brain tumor may be a significant corollary to illness-related uncertainty. Because the majority of brain tumor patients cannot be cured of their cancer, understanding the symptom expanse and potential to promote uncertainty could inform alternative nursing strategies to reduce anxiety and distress, and to preserve life quality where cure is often unattainable. © 2012 Sigma Theta Tau International.

  14. [Local treatment of liver tumors

    DEFF Research Database (Denmark)

    Pless, T.K.; Skjoldbye, Bjørn Ole

    2008-01-01

    Local treatment of non-resectable liver tumors is common. This brief review describes the local treatment techniques used in Denmark. The techniques are evaluated according to the evidence in literature. The primary local treatment is Radiofrequency Ablation of both primary liver tumors and liver...

  15. Multiparametric MR assessment of pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tzika, A.A. [Department of Radiology, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States); NMR Surgical Laboratory, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, 51 Blossom Street, Boston, MA 02114 (United States); Astrakas, L.G.; Zarifi, M.K.; Petridou, N.; Young-Poussaint, T. [Department of Radiology, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States); Goumnerova, L.; Black, P.McL. [Department of Neurosurgery, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States); Zurakowski, D. [Department of Biostatistics, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States); Anthony, D.C. [Department of Pathology, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States)

    2003-01-01

    MR assessment of pediatric brain tumors has expanded to include physiologic information related to cellular metabolites, hemodynamic and diffusion parameters. The purpose of this study was to investigate the relationship between MR and proton MR spectroscopic imaging in children with primary brain tumors. Twenty-one patients (mean age 9 years) with histologically verified brain tumors underwent conventional MR imaging, hemodynamic MR imaging (HMRI) and proton MR spectroscopic imaging (MRSI). Fourteen patients also had diffusion-weighted MR imaging (DWMRI). Metabolic indices including choline-containing compounds (Cho), total creatine (tCr) and lipids/lactate (L) were derived by proton MRSI, relative cerebral blood volume (rCBV) by HMRI, and apparent tissue water diffusion coefficients (ADC) by DWMRI. Variables were examined by linear regression and correlation as well as by ANOVA. Cho (suggestive of tumor cellularity and proliferative activity) correlated positively with rCBV, while the relationship between Cho and ADC (suggestive of cellular density) was inverse (P<0.001). The relationship between rCBV and ADC was also inverse (P=0.004). Cho and lipids (suggestive of necrosis and/or apoptosis) were not significantly correlated (P=0.51). A positive relationship was found between lipids and ADC (P=0.002). The relationships between Cho, rCBV, ADC and lipids signify that tumor physiology is influenced by the tumor's physical and chemical environment. Normalized Cho and lipids distinguished high-grade from low-grade tumors (P<0.05). Multiparametric MR imaging using MRSI, HMRI and DWMRI enhances assessment of brain tumors in children and improves our understanding of tumor physiology while promising to distinguish higher- from lower-malignancy tumors, a distinction that is particularly clinically important among inoperable tumors. (orig.)

  16. [Brain tumor immunotherapy: Illusion or hope?

    Science.gov (United States)

    Migliorini, Denis; Dutoit, Valérie; Walker, Paul R; Dietrich, Pierre-Yves

    2017-05-01

    Immunotherapy has proven efficient for many tumors and is now part of standard of care in many indications. What is the picture for brain tumors? The recent development of anti-CTLA-4 and PD1 immune checkpoint inhibitors, which have the ability to restore T lymphocytes activity, has gathered enthusiasm and is now paving the way towards more complex models of immune system manipulation. These models include, among others, vaccination and adoptive T cell transfer technologies. Complementary to those strategies, molecules capable of reshaping the immune tumor microenvironment are currently being investigated in early phase trials. Indeed, the tumor bed is hostile to anti-tumor immune responses due to many escape mechanisms, and this is particularly true in the context of brain tumors, a master in eliciting immunosuppressive cells and molecules. The goal of this review is to describe the hopes and challenges of brain tumors immunotherapy and to propose an inventory of the current clinical research with specific focus on the therapies targeting the tumor microenvironment. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  17. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  18. Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT: early treatment results and study concepts

    Directory of Open Access Journals (Sweden)

    Rieken Stefan

    2012-03-01

    Full Text Available Abstract Background Particle irradiation was established at the University of Heidelberg 2 years ago. To date, more than 400 patients have been treated including patients with primary brain tumors. In malignant glioma (WHO IV patients, two clinical trials have been set up-one investigating the benefit of a carbon ion (18 GyE vs. a proton boost (10 GyE in addition to photon radiotherapy (50 Gy, the other one investigating reirradiation with escalating total dose schedules starting at 30 GyE. In atypical meningioma patients (WHO °II, a carbon ion boost of 18 GyE is applied to macroscopic tumor residues following previous photon irradiation with 50 Gy. This study was set up in order to investigate toxicity and response after proton and carbon ion therapy for gliomas and meningiomas. Methods 33 patients with gliomas (n = 26 and meningiomas (n = 7 were treated with carbon ion (n = 26 and proton (n = 7 radiotherapy. In 22 patients, particle irradiation was combined with photon therapy. Temozolomide-based chemotherapy was combined with particle therapy in 17 patients with gliomas. Particle therapy as reirradiation was conducted in 7 patients. Target volume definition was based upon CT, MRI and PET imaging. Response was assessed by MRI examinations, and progression was diagnosed according to the Macdonald criteria. Toxicity was classified according to CTCAE v4.0. Results Treatment was completed and tolerated well in all patients. Toxicity was moderate and included fatigue (24.2%, intermittent cranial nerve symptoms (6% and single episodes of seizures (6%. At first and second follow-up examinations, mean maximum tumor diameters had slightly decreased from 29.7 mm to 27.1 mm and 24.9 mm respectively. Nine glioma patients suffered from tumor relapse, among these 5 with infield relapses, causing death in 8 patients. There was no progression in any meningioma patient. Conclusions Particle radiotherapy is safe and feasible in patients with primary brain

  19. Novel strategies of Raman imaging for brain tumor research.

    Science.gov (United States)

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-10-17

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real-time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I 2930 /I 2845 at 2930 and 2845 cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that

  20. Treatment of metastatic brain lesion

    Directory of Open Access Journals (Sweden)

    A. M. Zaytsev

    2015-01-01

    Full Text Available Objective. Increasing survival in patients with secondary brain damage, and identifying the factors of favorable and adverse prognosis.Material and method. In P. A. Hertsen Moscow Oncology Research Institute from 2007 to 2013 there were treated 268 patients with brain metastases. The mean age was 55.8 years (from 24 to 81 years. Metastases of colorectal cancer identified in 7.8%, cases of lung cancer in 34%, melanoma 9.3 %, breast cancer in 26%, kidney cancer in 11%, with non-identified primary tumor in 4.5%, other tumors accounted for 6.7%. Solitary metastasis was diagnosed in 164 (61,19% patients, oligometastasis (2-3 - 72 (26,87% patients with polymetastasis (more than 3 – 32 (11,94% patients. In 106 (39,55% of patients with brain metastases it was the only manifestation of the generalization process. To control the radical removal of the tumor in 93 (34,7% patients we used the method of fluorescence navigation (FN with the drug Alasens. In 66 (24,6% patients intraoperatively was held a session of photodynamic therapy (PDT. In 212 (79,1% cases, the removal of metastasis performed totally, 55 (20,9% patients stated Subtotal removal.Results. The observation period for the patients ranged from 3 to 79 months. Survival median among the entire group of patients with metastatic brain lesion was 12 months. Overall survival was significantly dependent on RPA class, the volume of postoperative treatment, histological type of primary tumor, number of intracerebral metastases and the timing of the relapse-free period.Conclusions. Factors that affects the overall survival are the features of the histology of the primary lesion, multiplicity of metastatic lesions, RPA class and the synchronous nature of the metastasis. The median of overall survival of patients who did not receive after surgical treatment of a particular type of therapy was only 4 months. If to use the combined treatment (surgical treatment with the irradiation of the whole brain median

  1. Factors affecting the cerebral network in brain tumor patients.

    Science.gov (United States)

    Heimans, Jan J; Reijneveld, Jaap C

    2012-06-01

    Brain functions, including cognitive functions, are frequently disturbed in brain tumor patients. These disturbances may result from the tumor itself, but also from the treatment directed against the tumor. Surgery, radiotherapy and chemotherapy all may affect cerebral functioning, both in a positive as well as in a negative way. Apart from the anti-tumor treatment, glioma patients often receive glucocorticoids and anti-epileptic drugs, which both also have influence on brain functioning. The effect of a brain tumor on cerebral functioning is often more global than should be expected on the basis of the local character of the disease, and this is thought to be a consequence of disturbance of the cerebral network as a whole. Any network, whether it be a neural, a social or an electronic network, can be described in parameters assessing the topological characteristics of that particular network. Repeated assessment of neural network characteristics in brain tumor patients during their disease course enables study of the dynamics of neural networks and provides more insight into the plasticity of the diseased brain. Functional MRI, electroencephalography and especially magnetoencephalography are used to measure brain function and the signals that are being registered with these techniques can be analyzed with respect to network characteristics such as "synchronization" and "clustering". Evidence accumulates that loss of optimal neural network architecture negatively impacts complex cerebral functioning and also decreases the threshold to develop epileptic seizures. Future research should be focused on both plasticity of neural networks and the factors that have impact on that plasticity as well as the possible role of assessment of neural network characteristics in the determination of cerebral function during the disease course.

  2. Unusual radiological characteristics of teratoid/rhabdoid brain tumor ...

    African Journals Online (AJOL)

    We report a case of atypical teratoid rhabdoid brain tumor for 4 months old male child, who presented with unusual radiological findings, that can be confused with other brain tumors ,so we high light these unusual imaging features to aid in making correct diagnosis. Keywords: atypical teratoid–rhabdoid tumor, brain tumor, ...

  3. Adenoviral virotherapy for malignant brain tumors

    OpenAIRE

    Nandi, Suvobroto; Lesniak, Maciej S

    2009-01-01

    Glioblastoma multiforme (GBM) is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors (CAR) on surface of gliomas provides for inefficien...

  4. Within-brain classification for brain tumor segmentation.

    Science.gov (United States)

    Havaei, Mohammad; Larochelle, Hugo; Poulin, Philippe; Jodoin, Pierre-Marc

    2016-05-01

    In this paper, we investigate a framework for interactive brain tumor segmentation which, at its core, treats the problem of interactive brain tumor segmentation as a machine learning problem. This method has an advantage over typical machine learning methods for this task where generalization is made across brains. The problem with these methods is that they need to deal with intensity bias correction and other MRI-specific noise. In this paper, we avoid these issues by approaching the problem as one of within brain generalization. Specifically, we propose a semi-automatic method that segments a brain tumor by training and generalizing within that brain only, based on some minimum user interaction. We investigate how adding spatial feature coordinates (i.e., i, j, k) to the intensity features can significantly improve the performance of different classification methods such as SVM, kNN and random forests. This would only be possible within an interactive framework. We also investigate the use of a more appropriate kernel and the adaptation of hyper-parameters specifically for each brain. As a result of these experiments, we obtain an interactive method whose results reported on the MICCAI-BRATS 2013 dataset are the second most accurate compared to published methods, while using significantly less memory and processing power than most state-of-the-art methods.

  5. Recent technological advances in pediatric brain tumor surgery.

    Science.gov (United States)

    Zebian, Bassel; Vergani, Francesco; Lavrador, José Pedro; Mukherjee, Soumya; Kitchen, William John; Stagno, Vita; Chamilos, Christos; Pettorini, Benedetta; Mallucci, Conor

    2017-01-01

    X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.

  6. Timed performance weaknesses on computerized tasks in pediatric brain tumor survivors: A comparison with sibling controls

    NARCIS (Netherlands)

    Ruiter, M.A. de; Grootenhuis, M.A.; Mourik, R. van; Maurice-Stam, H.; Breteler, M.H.M.; Gidding, C.E.M.; Beek, L.R.; Granzen, B.; Vuurden, D.G. van; Schouten-van Meeteren, A.Y.N.; Oosterlaan, J.

    2017-01-01

    With more children surviving a brain tumor, insight into the late effects of the disease and treatment is of high importance. This study focused on profiling the neurocognitive functions that might be affected after treatment for a pediatric brain tumor, using a broad battery of computerized tests.

  7. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy

    Science.gov (United States)

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-01-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood–brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors. PMID:22390560

  8. Clinical evaluation of 3D/3D MRI-CBCT automatching on brain tumors for online patient setup verification - A step towards MRI-based treatment planning

    DEFF Research Database (Denmark)

    Buhl, S.K.; Duun-Christensen, Anne Katrine; Kristensen, B.H.

    2010-01-01

    undergoing postoperative radiotherapy for malignant brain tumors received a weekly CBCT. In total 18 scans was matched with both CT and MRI as reference. The CBCT scans were acquired using a Clinac iX 2300 linear accelerator (Varian Medical Systems) with an On-Board Imager (OBI). Results. For the phantom...

  9. Episodic Memory Impairments in Primary Brain Tumor Patients.

    Science.gov (United States)

    Durand, Thomas; Berzero, Giulia; Bompaire, Flavie; Hoffmann, Sabine; Léger, Isabelle; Jego, Virginie; Baruteau, Marie; Delgadillo, Daniel; Taillia, Hervé; Psimaras, Dimitri; Ricard, Damien

    2018-01-04

    Cognitive investigations in brain tumor patients have mostly explored episodic memory without differentiating between encoding, storage, and retrieval deficits. The aim of this study is to offer insight into the memory sub-processes affected in primary brain tumor patients and propose an appropriate assessment method. We retrospectively reviewed the clinical and memory assessments of 158 patients with primary brain tumors who had presented to our departments with cognitive complaints and were investigated using the Free and Cued Selective Reminding Test. Retrieval was the process of episodic memory most frequently affected, with deficits in this domain detected in 92% of patients with episodic memory impairments. Storage and encoding deficits were less prevalent, with impairments, respectively, detected in 41% and 23% of memory-impaired patients. The pattern of episodic memory impairment was similar across different tumor histologies and treatment modalities. Although all processes of episodic memory were found to be impaired, retrieval was by far the most widely affected function. A thorough assessment of all three components of episodic memory should be part of the regular neuropsychological evaluation in patients with primary brain tumors.

  10. Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context.

    Science.gov (United States)

    Dolz, Jose; Laprie, Anne; Ken, Soléakhéna; Leroy, Henri-Arthur; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien

    2016-01-01

    To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI). SVM is proposed to segment the brainstem on MRI in multicenter brain cancer context. A dataset composed by 14 adult brain MRI scans is used to evaluate its performance. In addition to spatial and probabilistic information, five different image intensity values (IIVs) configurations are evaluated as features to train the SVM classifier. Segmentation accuracy is evaluated by computing the Dice similarity coefficient (DSC), absolute volumes difference (AVD) and percentage volume difference between automatic and manual contours. Mean DSC for all proposed IIVs configurations ranged from 0.89 to 0.90. Mean AVD values were below 1.5 cm(3), where the value for best performing IIVs configuration was 0.85 cm(3), representing an absolute mean difference of 3.99% with respect to the manual segmented volumes. Results suggest consistent volume estimation and high spatial similarity with respect to expert delineations. The proposed approach outperformed presented methods to segment the brainstem, not only in volume similarity metrics, but also in segmentation time. Preliminary results showed that the approach might be promising for adoption in clinical use.

  11. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI

    Science.gov (United States)

    Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.

    2017-03-01

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  12. Surgical Treatment in Uveal Tumors

    Directory of Open Access Journals (Sweden)

    Kaan Gündüz

    2014-09-01

    Full Text Available Surgical treatment in uveal tumors can be done via iridectomy, partial lamellar sclerouvectomy (PLSU and endoresection. Iridectomy is done in iris tumors without angle and ciliary body involvement. PLSU is performed in tumors with ciliary body and choroidal involvement. For this operation, a partial thickness scleral flap is dissected, the intraocular tumor is excised, and the flap is sutured back in position. PLSU surgery is done in iridociliary and ciliary body tumors with less than 3 clock hours of iris and ciliary body involvement and in choroidal tumors with a base diameter less than 15 mm. However, it can be employed in any size tumor for biopsy purposes. Potential complications of PLSU surgery include vitreous hemorrhage, cataract, retinal detachment, and endophthalmitis. Endoresection is a technique whereby the intraocular tumor is excised using vitrectomy techniques. The rationale for performing endoresection is based on the fact that irradiated uveal melanomas may be associated with exudation and neovascular glaucoma and removing the dead tumor tissue may contribute to better visual outcome. There are some centers where endoresection is done without prior radiotherapy. Allegedly, avoidance of radiation retinopathy and papillopathy are the main advantages of using endoresection without prior radiotherapy. (Turk J Ophthalmol 2014; 44: Supplement 29-34

  13. Fetal microchimerism in human brain tumors.

    Science.gov (United States)

    Broestl, Lauren; Rubin, Joshua B; Dahiya, Sonika

    2017-09-18

    Sex differences in cancer incidence and survival, including central nervous system tumors, are well documented. Multiple mechanisms contribute to sex differences in health and disease. Recently, the presence of fetal-in-maternal microchimeric cells has been shown to have prognostic significance in breast and colorectal cancers. The frequency and potential role of these cells has not been investigated in brain tumors. We therefore selected two common primary adult brain tumors for this purpose: meningioma, which is sex hormone responsive and has a higher incidence in women, and glioblastoma, which is sex hormone independent and occurs more commonly in men. Quantitative PCR was used to detect the presence of male DNA in tumor samples from women with a positive history of male pregnancy and a diagnosis of either glioblastoma or meningioma. Fluorescence in situ hybridization for the X and Y chromosomes was used to verify the existence of intact male cells within tumor tissue. Fetal microchimerism was found in approximately 80% of glioblastoma cases and 50% of meningioma cases. No correlations were identified between the presence of microchimerism and commonly used clinical or molecular diagnostic features of disease. The impact of fetal microchimeric cells should be evaluated prospectively. © 2017 International Society of Neuropathology.

  14. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  15. Exposure to household painting and floor treatments, and parental occupational paint exposure and risk of childhood brain tumors: results from an Australian case-control study.

    Science.gov (United States)

    Greenop, Kathryn R; Peters, Susan; Fritschi, Lin; Glass, Deborah C; Ashton, Lesley J; Bailey, Helen D; Scott, Rodney J; Daubenton, John; de Klerk, Nicholas H; Armstrong, Bruce K; Milne, Elizabeth

    2014-03-01

    Childhood brain tumors (CBT) are the leading cause of cancer death in children, yet their etiology remains largely unknown. This study investigated whether household exposure to paints and floor treatments and parental occupational painting were associated with CBT risk in a population-based case-control study conducted between 2005 and 2010. Cases were identified through all ten Australian pediatric oncology centers, and controls via nationwide random-digit dialing, frequency matched to cases on age, sex, and state of residence. Data were obtained from parents in mailed questionnaires and telephone interviews. Information on domestic painting and floor treatments, and parental occupational exposure to paint, in key periods relating to the index pregnancy and childhood was obtained for 306 cases and 950 controls. Data were analyzed using unconditional logistic regression, adjusting for frequency matching variables and potential confounders. Overall, we found little evidence that parental, fetal, or childhood exposure to home painting or floor treatments was associated with risk of CBT. There was, though, some evidence of a positive association between childhood exposure to indoor painting and risk of high-grade glioma [odds ratio (OR) 3.31, 95 % confidence interval (CI) 1.29, 8.52] based on very small numbers. The OR for the association between CBT and paternal occupational exposure to paint any time before the pregnancy was 1.32 (95 % CI 0.90, 1.92), which is consistent with the results of other studies. Overall, we found little evidence of associations between household exposure to paint and the risk of CBT in any of the time periods investigated.

  16. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors.

    Science.gov (United States)

    Gholamin, Sharareh; Mitra, Siddhartha S; Feroze, Abdullah H; Liu, Jie; Kahn, Suzana A; Zhang, Michael; Esparza, Rogelio; Richard, Chase; Ramaswamy, Vijay; Remke, Marc; Volkmer, Anne K; Willingham, Stephen; Ponnuswami, Anitha; McCarty, Aaron; Lovelace, Patricia; Storm, Theresa A; Schubert, Simone; Hutter, Gregor; Narayanan, Cyndhavi; Chu, Pauline; Raabe, Eric H; Harsh, Griffith; Taylor, Michael D; Monje, Michelle; Cho, Yoon-Jae; Majeti, Ravi; Volkmer, Jens P; Fisher, Paul G; Grant, Gerald; Steinberg, Gary K; Vogel, Hannes; Edwards, Michael; Weissman, Irving L; Cheshier, Samuel H

    2017-03-15

    Morbidity and mortality associated with pediatric malignant primary brain tumors remain high in the absence of effective therapies. Macrophage-mediated phagocytosis of tumor cells via blockade of the anti-phagocytic CD47-SIRPα interaction using anti-CD47 antibodies has shown promise in preclinical xenografts of various human malignancies. We demonstrate the effect of a humanized anti-CD47 antibody, Hu5F9-G4, on five aggressive and etiologically distinct pediatric brain tumors: group 3 medulloblastoma (primary and metastatic), atypical teratoid rhabdoid tumor, primitive neuroectodermal tumor, pediatric glioblastoma, and diffuse intrinsic pontine glioma. Hu5F9-G4 demonstrated therapeutic efficacy in vitro and in vivo in patient-derived orthotopic xenograft models. Intraventricular administration of Hu5F9-G4 further enhanced its activity against disseminated medulloblastoma leptomeningeal disease. Notably, Hu5F9-G4 showed minimal activity against normal human neural cells in vitro and in vivo, a phenomenon reiterated in an immunocompetent allograft glioma model. Thus, Hu5F9-G4 is a potentially safe and effective therapeutic agent for managing multiple pediatric central nervous system malignancies. Copyright © 2017, American Association for the Advancement of Science.

  17. Rethinking Brain Cancer Therapy: Tumor Enzyme Activatable Theranostic Nanoparticles.

    Science.gov (United States)

    Daldrup-Link, Heike E

    2017-01-01

    This invited commentary discusses a recent article by Mohanty et al in Molecular Cancer Therapeutics about significant therapeutic efficacies of novel theranostic nanoparticles (TNPs) for the treatment of human brain cancers in mouse models. The TNPs were cleaved by enzymes in the tumor tissue, matrix metalloproteinase (MMP-14), which lead to release of a highly potent therapeutic drug, azademethylcolchicine. Data showed that the TNPs caused selective toxic effects in MMP-14-expressing glioblastoma and not normal brain. In addition, the iron oxide nanoparticle backbone enabled in vivo drug tracking with magnetic resonance imaging (MRI). This commentary discusses previous efforts of MMP-targeted therapeutics as well as opportunities for further refinements of tumor enzyme-activatable TNPs. If successfully translated to clinical applications, the TNPs might hold substantial potential to improving cytotoxic indexes and long-term outcomes of patients with brain cancer compared to standard therapy.

  18. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    Energy Technology Data Exchange (ETDEWEB)

    Aslian, Hossein [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of); Mahdavi, Seied Rabie [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Babapour Mofrad, Farshid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Astarakee, Mahdi, E-mail: M-Astarakee@Engineer.com [Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khaledi, Navid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Fadavi, Pedram [Department of Radiation Oncology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  19. Donepezil in Treating Young Patients With Primary Brain Tumors Previously Treated With Radiation Therapy to the Brain

    Science.gov (United States)

    2017-07-31

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Children; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment; Radiation Toxicity

  20. Adenoviral virotherapy for malignant brain tumors.

    Science.gov (United States)

    Nandi, Suvobroto; Lesniak, Maciej S

    2009-06-01

    Glioblastoma multiforme is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are overexpressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor-specific promoter elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review examines current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications.

  1. Contemporary treatment of renal tumors

    DEFF Research Database (Denmark)

    Nisen, Harry; Järvinen, Petrus; Fovaeus, Magnus

    2017-01-01

    Objective: The five Nordic countries comprise 25 million people, and have similar treatment traditions and healthcare systems. To take advantage of these similarities, a collaborative group (Nordic Renal Cancer Group, NORENCA) was founded in 2015. Materials and methods: A questionnaire of 17...... questions on renal tumor management and surgical education was designed and sent to 91 institutions performing renal tumor surgery in 2015. The response rate was 68% (62 hospitals), including 28 academic, 25 central and nine district hospitals. Hospital volume was defined as low (LVH: ..., black box or animal laboratory was possible in 48%, 74% and 21% of institutions, respectively. Conclusions: Despite some differences between countries, the data suggest an overall general common Nordic treatment attitude for renal tumors. Furthermore, the data demonstrate high adherence to international...

  2. Development of stereotactic mass spectrometry for brain tumor surgery.

    Science.gov (United States)

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  3. Subacute brain atrophy after radiation therapy for malignant brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Asai, A.; Matsutani, M.; Kohno, T.; Nakamura, O.; Tanaka, H.; Fujimaki, T.; Funada, N.; Matsuda, T.; Nagata, K.; Takakura, K.

    1989-05-15

    Brain atrophy with mental and neurologic deterioration developing a few months after radiation therapy in patients without residual or recurrent brain tumors has been recognized. Two illustrative case reports of this pathologic entity are presented. Six autopsy cases with this entity including the two cases were reviewed neurologically, radiographically, and histopathologically. All patients presented progressive disturbances of mental status and consciousness, akinesia, and tremor-like involuntary movement. Computerized tomography (CT) demonstrated marked enlargement of the ventricles, moderate widening of the cortical sulci, and a moderately attenuated CT number for the white matter in all six patients. Four of the six patients had CSF drainage (ventriculoperitoneal shunt or continuous lumbar drainage), however, none of them improved. Histologic examination demonstrated swelling and loss of the myelin sheath in the white matter in all patients, and reactive astrocytosis in three of the six patients. Neither prominent neuronal loss in the cerebral cortex or basal ganglia, nor axonal loss in the white matter was generally identified. The blood vessels of the cerebral cortex and white matter were normal. Ependymal layer and the surrounding brain tissue were normal in all patients. These findings suggested that this pathologic condition results from demyelination secondary to direct neurotoxic effect of irradiation. The authors' previous report was reviewed and the differential diagnoses, the risk factors for this pathologic entity, and the indication for radiation therapy in aged patients with a malignant brain tumor are discussed.

  4. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  5. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    Science.gov (United States)

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org. © The Author(s) 2013.

  6. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  7. Brain tumor mutations detected in cerebral spinal fluid.

    Science.gov (United States)

    Pan, Wenying; Gu, Wei; Nagpal, Seema; Gephart, Melanie Hayden; Quake, Stephen R

    2015-03-01

    Detecting tumor-derived cell-free DNA (cfDNA) in the blood of brain tumor patients is challenging, presumably owing to the blood-brain barrier. Cerebral spinal fluid (CSF) may serve as an alternative "liquid biopsy" of brain tumors by enabling measurement of circulating DNA within CSF to characterize tumor-specific mutations. Many aspects about the characteristics and detectability of tumor mutations in CSF remain undetermined. We used digital PCR and targeted amplicon sequencing to quantify tumor mutations in the cfDNA of CSF and plasma collected from 7 patients with solid brain tumors. Also, we applied cancer panel sequencing to globally characterize the somatic mutation profile from the CSF of 1 patient with suspected leptomeningeal disease. We detected tumor mutations in CSF samples from 6 of 7 patients with solid brain tumors. The concentration of the tumor mutant alleles varied widely between patients, from tumor biopsy. Tumor mutations were detectable in cfDNA from the CSF of patients with different primary and metastatic brain tumors. We designed 2 strategies to characterize tumor mutations in CSF for potential clinical diagnosis: the targeted detection of known driver mutations to monitor brain metastasis and the global characterization of genomic aberrations to direct personalized cancer care. © 2014 American Association for Clinical Chemistry.

  8. The efficiency of adjusted-da-chai-ling-tang in radiation-induced brain edema in patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Da-Tong Ju

    2015-01-01

    Full Text Available Background: Brain edema induced by radiotherapy is a common complication in patients with brain tumors, for which medical treatment is the treatment of choice. Adjusted-Da-Chai-Ling-Tang, a Chinese herbal formulation, has been confirmed to be protective against the radiation-induced edema. In this study, we investigated the efficiency of adjusted-Da-Chai-Ling-Tang in radiation-induced brain edema in patients with brain tumors. Materials and Methods: A total of 46 patients with brain tumors treated with radiotherapy alone or combined with surgery were enrolled. These patients were divided into two groups: The experimental group with adjusted-Da-Chai-Ling-Tang and the control group with conventional medical treatment. Clinical data including symptoms and serologic results were collected pretreatment and on the 4 th , 7 th and 10 th day posttreatment. Magnetic resonance imaging of the brain was performed to investigate changes in brain edema. Results: Clinical symptoms including headache, dizziness, nausea/vomiting and fatigue significantly improved in the experimental group (P < 0.05. No difference in serological results was observed. Brain edema was significantly reduced in the experimental group in magnetic resonance imaging (P < 0.05. Conclusion: Adjusted-Da-Chai-Ling-Tang is effective in the treatment of radiation-induced brain edema in patients with brain tumors. No obvious side effects were observed.

  9. Deep learning for brain tumor classification

    Science.gov (United States)

    Paul, Justin S.; Plassard, Andrew J.; Landman, Bennett A.; Fabbri, Daniel

    2017-03-01

    Recent research has shown that deep learning methods have performed well on supervised machine learning, image classification tasks. The purpose of this study is to apply deep learning methods to classify brain images with different tumor types: meningioma, glioma, and pituitary. A dataset was publicly released containing 3,064 T1-weighted contrast enhanced MRI (CE-MRI) brain images from 233 patients with either meningioma, glioma, or pituitary tumors split across axial, coronal, or sagittal planes. This research focuses on the 989 axial images from 191 patients in order to avoid confusing the neural networks with three different planes containing the same diagnosis. Two types of neural networks were used in classification: fully connected and convolutional neural networks. Within these two categories, further tests were computed via the augmentation of the original 512×512 axial images. Training neural networks over the axial data has proven to be accurate in its classifications with an average five-fold cross validation of 91.43% on the best trained neural network. This result demonstrates that a more general method (i.e. deep learning) can outperform specialized methods that require image dilation and ring-forming subregions on tumors.

  10. Radiotherapy, especially at young age, increases the risk for de novo brain tumors in patients treated for pituitary tumors

    NARCIS (Netherlands)

    Burman, Pia; Van Beek, André P.; Biller, Beverly M.K.; Camacho-Hubner, Cecilia; Mattsson, Anders F.

    Background: Excess mortality due to de novo malignant brain tumors was recently found in a national study of patients with hypopituitarism following treatment of pituitary tumors. Here, we examined a larger multi-national cohort to corroborate and extend this observation. Objective: To investigate

  11. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy.

    Science.gov (United States)

    Woolf, Eric C; Syed, Nelofer; Scheck, Adrienne C

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  12. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy

    Science.gov (United States)

    Woolf, Eric C.; Syed, Nelofer; Scheck, Adrienne C.

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma. PMID:27899882

  13. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy

    Directory of Open Access Journals (Sweden)

    Eric C. Woolf

    2016-11-01

    Full Text Available Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD. The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  14. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy

    DEFF Research Database (Denmark)

    Galldiks, Norbert; Law, Ian; Pope, Whitney B

    2017-01-01

    Routine diagnostics and treatment monitoring of brain tumors is usually based on contrast-enhanced MRI. However, the capacity of conventional MRI to differentiate tumor tissue from posttherapeutic effects following neurosurgical resection, chemoradiation, alkylating chemotherapy, radiosurgery, and......),O-(2-[18F]fluoroethyl)-l-tyrosine (FET) and 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (FDOPA) and summarizes investigations regarding monitoring of brain tumor therapy....

  15. Intraoperative MRI in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhri, Asim F. [Le Bonheur Children' s Hospital, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Siddiqui, Adeel [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Klimo, Paul; Boop, Frederick A. [University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States); St. Jude Children' s Hospital, Division of Neurosurgery, Department of Surgery, Memphis, TN (United States)

    2015-09-15

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  16. Improved Brain Tumor Classification by Sodium MR Imaging: Prediction of IDH Mutation Status and Tumor Progression.

    Science.gov (United States)

    Biller, A; Badde, S; Nagel, A; Neumann, J-O; Wick, W; Hertenstein, A; Bendszus, M; Sahm, F; Benkhedah, N; Kleesiek, J

    2016-01-01

    MR imaging in neuro-oncology is challenging due to inherent ambiguities in proton signal behavior. Sodium-MR imaging may substantially contribute to the characterization of tumors because it reflects the functional status of the sodium-potassium pump and sodium channels. Sodium-MR imaging data of patients with treatment-naïve glioma WHO grades I-IV (n = 34; mean age, 51.29 ± 17.77 years) were acquired by using a 7T MR system. For acquisition of sodium-MR images, we applied density-adapted 3D radial projection reconstruction pulse sequences. Proton-MR imaging data were acquired by using a 3T whole-body system. We demonstrated that the initial sodium signal of a treatment-naïve brain tumor is a significant predictor of isocitrate dehydrogenase (IDH) mutation status (P model confirmed the sodium signal of treatment-naïve brain tumors as a predictor of progression (P = .003). Compared with the molecular signature of IDH mutation status, information criteria of model comparison revealed that the sodium signal is even superior to IDH in progression prediction. In addition, sodium-MR imaging provides a new approach to noninvasive tumor classification. The sodium signal of contrast-enhancing tumor portions facilitates differentiation among most glioma types (P sodium-MR imaging may help to classify neoplasias at an early stage, to reduce invasive tissue characterization such as stereotactic biopsy specimens, and overall to promote improved and individualized patient management in neuro-oncology by novel imaging signatures of brain tumors. © 2016 by American Journal of Neuroradiology.

  17. Phosphorylethanolamine content of human brain tumors.

    Science.gov (United States)

    Kinoshita, Y; Yokota, A; Koga, Y

    1994-12-01

    Phosphorylethanolamine (PEA) is the major component of the phosphomonoester peak detected by phosphorus-31 magnetic resonance spectroscopy, but the absolute concentration has not been determined. This study measured the PEA concentration in biopsy specimens of brain tumors and lobectomized cerebral cortex using high-performance liquid chromatography. The concentration of PEA was 118.5 +/- 10.0 mumol/100 g wet wt in cortex, and was significantly higher in malignant gliomas, metastatic pulmonary adenocarcinoma, and neurinoma. The concentration of PEA was especially high in pituitary adenoma, malignant lymphoma, and medulloblastoma.

  18. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  19. Brain Metastasis from Gastrointestinal Stromal Tumor: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Hideaki Naoe

    2011-10-01

    Full Text Available Metastasis of gastrointestinal stromal tumor (GIST into the central nervous system is extremely rare. We report a patient with synchronous GIST and brain metastasis. At disease onset, there was left hemiplegia and ptosis of the right eyelids. Resection cytology of the brain tumor was reported as metastasis of GIST. After positron emission tomography examination, another tumor in the small bowel was discovered, which suggested a small bowel GIST associated with intracranial metastasis. Immunohistochemical analysis of the intestinal tumor specimen obtained by double balloon endoscopy showed a pattern similar to the brain tumor, with the tumors subsequently identified as intracranial metastases of jejunal GIST. After surgical resection of one brain tumor, the patient underwent whole brain radiation therapy followed by treatment with imatinib mesylate (Gleevec; Novartis Pharma, Basel, Switzerland. Mutational analysis of the original intestinal tumor revealed there were no gene alterations in KIT or PDGFRα. Since the results indicated the treatment had no apparent effect on either of the tumors, and because ileus developed due to an intestinal primary tumor, the patient underwent surgical resection of the intestinal lesion. However, the patient’s condition gradually worsen and she subsequently died 4 months after the initial treatment.

  20. Tumor markers for early diagnosis for brain metastasis of hepatocellular carcinoma: A case series and literature review for effective loco-regional treatment.

    Science.gov (United States)

    Kamimura, Kenya; Kobayashi, Yuji; Takahashi, Yoshifumi; Abe, Hiroyuki; Kumaki, Daisuke; Yokoo, Takeshi; Kamimura, Hiroteru; Sakai, Norihiro; Sakamaki, Akira; Abe, Satoshi; Takamura, Masaaki; Kawai, Hirokazu; Yamagiwa, Satoshi; Terai, Shuji

    2017-02-01

    Intrahepatic lesions of hepatocellular carcinoma (HCC) have been controlled by significant advances in treatment using loco-regional therapies, including, surgery, ablative therapy, catheter-based chemotherapy, and embolization. Consequently, the number of patients with extrahepatic metastatic lesions has increased. Their prognosis remains poor with approximately loco-regional treatment, including surgical resection and radiation therapy should be performed for better prognosis by preventing re-bleeding from the tumors.

  1. Fetal antigen 2 in primary and secondary brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, H Boje; Teisner, B; Schrøder, H D

    1991-01-01

    Immunohistochemical deposition and distribution of fetal antigen 2 (FA2) was examined in normal brain tissue and in primary and metastatic tumors of the brain. In normal brain tissue FA2 was exclusively found linearly around the vessels, along pia and in arachnoidea. A similar localization was seen...... in primary brain tumors except in gliosarcoma where FA2 was distributed diffusely in the sarcoma region and was absent in the glioma region. In metastatic carcinoma with tumor stroma a diffuse staining reaction was seen in the stroma and with a basement membrane (BM) like staining at the tumor cell....../stroma interface. Intracytoplasmic FA2 staining of the tumor cells was seen in areas without tumor stroma. In metastatic melanoma a BM like FA2 staining was seen around and between individual tumor cells. The staining patterns seen in the metastatic tumors were in accordance with that of the corresponding primary...

  2. Surviving a brain tumor in childhood: impact on family functioning in adolescence

    NARCIS (Netherlands)

    Beek, Laura; Schappin, Renske; Gooskens, Rob; Huisman, Jaap; Jongmans, Marian

    2015-01-01

    OBJECTIVE: To investigate family functioning in families with an adolescent survivor of a pediatric brain tumor. We explored whether adolescent, parent, disease and treatment factors, and demographic characteristics predicted family functioning. METHODS: In this cross-sectional study, 45 adolescent

  3. Surgical Treatment of Skin Tumors

    Directory of Open Access Journals (Sweden)

    Gonca

    2015-06-01

    Full Text Available When we mention about surgical treatment of any tumor residing on the skin independent of its benign or malignant nature, the first method we recall is excision. Elliptical excision is the mainstay of the dermatologic surgery. Each excision ends with a defect for which we are responsible to repair functionally and cosmetically. The diameter of the tumor we excised and the safety margin used for excision determine the diameter of the final defect. After achieving tumor free lateral and deep margins with the appropriate surgical method, we decide between the repair options of second intention healing, primary repair, flaps, full or split thickness grafts, considering the diameter and the anatomic localization of the defect, for the best functional and cosmetic result for that specific defect. This review overviews not only the most common dermatologic surgical methods, but also Mohs surgery which is a method rarely used in our country, although it is the treatment of choice for the treatment of high risk basal cell carcinoma (BCC and squamous cell carcinoma (SCC.

  4. Pineal calcification is associated with pediatric primary brain tumor.

    Science.gov (United States)

    Tuntapakul, Supinya; Kitkhuandee, Amnat; Kanpittaya, Jaturat; Johns, Jeffrey; Johns, Nutjaree Pratheepawanit

    2016-12-01

    Melatonin has been associated with various tumors, including brain tumor, and shown to inhibit growth of neuroblastoma cells and gliomas in animal models. Likewise, patients with glioblastoma receiving melatonin reported better survival than controls. Pineal calcification may lead to a decreased production of melatonin by calcified glands. This study assessed association between pineal calcification and primary brain tumor in pediatric/adolescent patients. Medical chart review was conducted in 181 patients brain computed tomography (CT) during 2008-2012. Pineal calcification was identified using brain CT scan by an experienced neurosurgeon. Primary brain tumor was confirmed by CT scan and histology, and association with pineal calcification was estimated using multiple logistic regression, adjusted for age and gender. Primary brain tumor was detected in 51 patients (mean age 9.0, standard deviation 4.0 years), with medulloblastoma being the most common (11 patients). Pineal calcification was detected in 12 patients (23.5%) with primary brain tumor, while only 11 patients (8.5%) without tumor had pineal calcification. Adjusted for patients' ages and genders, pineal calcification was associated with an increase in primary brain tumor of 2.82-fold (odds ratio 2.82; 95% confidence interval 1.12-7.08, P = 0.027). Pineal calcification appears to be associated with primary brain tumor. Further studies to explore this link are discussed and warranted. © 2016 John Wiley & Sons Australia, Ltd.

  5. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  7. Treatment of Brain Metastasis from Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Alexander [Department of Radiation Oncology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ 85724 (United States); Komaki, Ritsuko, E-mail: rkomaki@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States)

    2010-12-15

    Brain metastases are not only the most common intracranial neoplasm in adults but also very prevalent in patients with lung cancer. Patients have been grouped into different classes based on the presence of prognostic factors such as control of the primary tumor, functional performance status, age, and number of brain metastases. Patients with good prognosis may benefit from more aggressive treatment because of the potential for prolonged survival for some of them. In this review, we will comprehensively discuss the therapeutic options for treating brain metastases, which arise mostly from a lung cancer primary. In particular, we will focus on the patient selection for combined modality treatment of brain metastases, such as surgical resection or stereotactic radiosurgery (SRS) combined with whole brain irradiation; the use of radiosensitizers; and the neurocognitive deficits after whole brain irradiation with or without SRS. The benefit of prophylactic cranial irradiation (PCI) and its potentially associated neuro-toxicity for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) are also discussed, along with the combined treatment of intrathoracic primary disease and solitary brain metastasis. The roles of SRS to the surgical bed, fractionated stereotactic radiotherapy, WBRT with an integrated boost to the gross brain metastases, as well as combining WBRT with epidermal growth factor receptor (EGFR) inhibitors, are explored as well.

  8. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine.

    Science.gov (United States)

    Kim, Sang-Soo; Harford, Joe B; Pirollo, Kathleen F; Chang, Esther H

    2015-12-18

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood-brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Preclinical impact of bevacizumab on brain and tumor distribution of irinotecan and temozolomide.

    Science.gov (United States)

    Goldwirt, Lauriane; Beccaria, Kevin; Carpentier, Alexandre; Idbaih, Ahmed; Schmitt, Charlotte; Levasseur, Camille; Labussiere, Marianne; Milane, Aline; Farinotti, Robert; Fernandez, Christine

    2015-04-01

    Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Prognosis of GBM patients is poor with median overall survival around 15 months. Temozolomide is the chemotherapeutic agent used in the standard of care of newly diagnosed GBM patients relying on radiotherapy with concurrent chemotherapy followed by chemotherapy alone. Irinotecan has shown some efficacy in recurrent malignant gliomas. Bevacizumab has been combined with irinotecan in the treatment of recurrent GBM and with temozolomide in newly diagnosed GBM. As the efficacy of GBM treatments relies on their brain distribution through the blood brain barrier, the aim of the present preclinical work was to study, in in vivo models, the impact of bevacizumab on brain and tumor distribution of temozolomide and irinotecan. Our results show that bevacizumab pre-treatment was associated with a reduced temozolomide brain distribution in tumor-free mice. In tumor bearing mice, bevacizumab increased temozolomide tumor distribution, although not statistically significant. In both tumor-free and tumor-bearing mice, bevacizumab does not modify brain distribution of irinotecan and its metabolite SN-38. Bevacizumab impacts brain distribution of some anti-tumor drugs and potentially their efficacy in GBM. Further studies are warranted to investigate other therapeutic combination.

  10. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software.

    Science.gov (United States)

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-08-01

    Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.

  11. Clinical evaluation of 3D/3D MRI-CBCT automatching on brain tumors for online patient setup verification - A step towards MRI-based treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, Sune K.; Kristensen, Brian H.; Behrens, Claus F. (Dept. of Oncology, Copenhagen Univ. Hospital, DK-2730 Herlev (Denmark)), E-mail: sukrbu01@heh.regionh.dk; Duun-Christensen, Anne K. (Dept. of Informatics and Mathematical Modeling, Technical Univ. of Denmark, DK-2800 Kgs. Lyngby (Denmark))

    2010-10-15

    Background. Magnetic Resonance Imaging (MRI) is often used in modern day radiotherapy (RT) due to superior soft tissue contrast. However, treatment planning based solely on MRI is restricted due to e.g. the limitations of conducting online patient setup verification using MRI as reference. In this study 3D/3D MRI-Cone Beam CT (CBCT) automatching for online patient setup verification was investigated. Material and methods. Initially, a multi-modality phantom was constructed and used for a quantitative comparison of CT-CBCT and MRI-CBCT automatching. Following the phantom experiment three patients undergoing postoperative radiotherapy for malignant brain tumors received a weekly CBCT. In total 18 scans was matched with both CT and MRI as reference. The CBCT scans were acquired using a Clinac iX 2300 linear accelerator (Varian Medical Systems) with an On-Board Imager (OBI). Results. For the phantom experiment CT-CBCT and MRI-CBCT automatching resulted in similar results. A significant difference was observed only in the longitudinal direction where MRI-CBCT resulted in the best match (mean and standard deviations of 1.85+-2.68 mm for CT and -0.05+-2.55 mm for MRI). For the clinical experiment the absolute difference in couch shift coordinates acquired from MRI-CBCT and CT-CBCT automatching, were =2 mm in the vertical direction and =3 mm in the longitudinal and lateral directions. For yaw rotation differences up to 3.3 degrees were observed. Mean values and standard deviations were 0.8+-0.6 mm, 1.5+-1.2 mm and 1.2+-1.2 mm for the vertical, longitudinal and lateral directions, respectively and 1.95+-1.12 degrees for the rotation (n=17). Conclusion. It is feasible to use MRI as reference when conducting 3D/3D CBCT automatching for online patient setup verification. For both the phantom and clinical experiment MRI-CBCT performed similar to CT-CBCT automatching and significantly better in the longitudinal direction for the phantom experiment.

  12. Photodynamic therapy for implanted VX2 tumor in rabbit brains

    Science.gov (United States)

    Li, Fei; Feng, Hua; Lin, Jiangkai; Zhu, Gang; Chen, Zhi; Li, Cong-yan

    2005-07-01

    To evaluate the therapeutic effect and the safety of single photodynamic therapy (PDT) with hematoporphyrin derivative produced in China, 60 New Zealand adult rabbits with VX2 tumor implanted into the brain were divided randomly into non-PDT-group and PDT-group. 36 rabbits of the PDT-group were performed photodynamic therapy. The survival time, neurological deteriorations, intracranial pressure (ICP), histology, pathology, tumor volume and brain water content were measured. Other 12 rabbits were received hematoporphyrin derivative and light irradiation of the normal brain. The ICP, histology, pathology, and brain water content were measured. The result indicated that Simple PDT may elongate the average survival time of the rabbits with VX2 tumors significantly; kill tumor cells; cause transient brain edema and increase ICP, but it is safe to be used in treating brain tumor.

  13. Specific features of epilepsy in children with brain tumors

    Directory of Open Access Journals (Sweden)

    G. V. Kalmykova

    2015-01-01

    Full Text Available Objective: to study the specific features of epilepsy in children and adolescents with brain tumors and to define the optimal tactics of management and antiepileptic therapy after surgical treatment. Patients and methods. Sixty-one patients aged 5 months to 15 years were examined. All the patients were diagnosed as having a brain tumor found in the presence of symptomatic epilepsy. They were all followed up for 5 years postsurgery or during their lifetime (in case of death. Comprehensive examination encompassing the assessment of history data and concomitant complaints, brain magnetic resonance imaging, video-EEC monitoring, and the neurological status (the presence of cognitive impairments and eye ground changes was done in all the cases. The probability of epileptic seizures in the clinical presentation of the disease, their semiology, and frequency were studied. Results and discussion. Epileptic seizures were the major complaint in all the patients at the first visit to their doctor. The disease occurred with status epilepticus in 9% of the patients. Different types of generalized seizures were more common (53%; p≥0.05. The tumor was located above the tentorium of the cerebellum in most examinees (77% and beneath it in the others (23%; p≤0.05. The significant clinical sign of a brain tumor in the epileptic children is focal neurological symptoms (72% of the cases. MRI was performed in children who had no focal neurological symptoms in the late periods. There was cerebrospinal fluid hypertension in 51% of the patients (p≥0.05 and cognitive impairments in 33% (p<0.05. The maximum number (74% of children with psycho-speech disorders and cognitive impairments were registered in the age group of 7–15 years. Eye ground changes characteristic of intracranial hypertension were identified in 19 epileptic children; they occurred in 27 patients more than 1 year after the onset of seizures. The late (few months-to-14 years diagnosis of a brain

  14. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjae; Kim, Ho Sung [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  15. Emerging techniques in brain tumor imaging: What radiologists need to know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jae; Kim, Ho Sung [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2016-09-15

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  16. Significant predictors of patients' uncertainty in primary brain tumors.

    Science.gov (United States)

    Lin, Lin; Chien, Lung-Chang; Acquaye, Alvina A; Vera-Bolanos, Elizabeth; Gilbert, Mark R; Armstrong, Terri S

    2015-05-01

    Patients with primary brain tumors (PBT) face uncertainty related to prognosis, symptoms and treatment response and toxicity. Uncertainty is correlated to negative mood states and symptom severity and interference. This study identified predictors of uncertainty during different treatment stages (newly-diagnosed, on treatment, followed-up without active treatment). One hundred eighty six patients with PBT were accrued at various points in the illness trajectory. Data collection tools included: a clinical checklist/a demographic data sheet/the Mishel Uncertainty in Illness Scale-Brain Tumor Form. The structured additive regression model was used to identify significant demographic and clinical predictors of illness-related uncertainty. Participants were primarily white (80 %) males (53 %). They ranged in age from 19-80 (mean = 44.2 ± 12.6). Thirty-two of the 186 patients were newly-diagnosed, 64 were on treatment at the time of clinical visit with MRI evaluation, 21 were without MRI, and 69 were not on active treatment. Three subscales (ambiguity/inconsistency; unpredictability-disease prognoses; unpredictability-symptoms and other triggers) were different amongst the treatment groups (P uncertainty during active treatment was as high as in newly-diagnosed period. Other than treatment stages, change of employment status due to the illness was the most significant predictor of illness-related uncertainty. The illness trajectory of PBT remains ambiguous, complex, and unpredictable, leading to a high incidence of uncertainty. There was variation in the subscales of uncertainty depending on treatment status. Although patients who are newly diagnosed reported the highest scores on most of the subscales, patients on treatment felt more uncertain about unpredictability of symptoms than other groups. Due to the complexity and impact of the disease, associated symptoms, and interference with functional status, comprehensive assessment of patients is necessary throughout the

  17. Fractal analysis of tumoral lesions in brain.

    Science.gov (United States)

    Martín-Landrove, Miguel; Pereira, Demian; Caldeira, María E; Itriago, Salvador; Juliac, María

    2007-01-01

    In this work, it is proposed a method for supervised characterization and classification of tumoral lesions in brain, based on the analysis of irregularities at the lesion contour on T2-weighted MR images. After the choice of a specific image, a segmentation procedure with a threshold selected from the histogram of intensity levels is applied to isolate the lesion, the contour is detected through the application of a gradient operator followed by a conversion to a "time series" using a chain code procedure. The correlation dimension is calculated and analyzed to discriminate between normal or malignant structures. The results found showed that it is possible to detect a differentiation between benign (cysts) and malignant (gliomas) lesions suggesting the potential of this method as a diagnostic tool.

  18. 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.

    Science.gov (United States)

    Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin

    2012-07-01

    Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational

  19. •Primary brain tumors: Proton magnetic resonance spectroscopic analysis and histopathological correlation

    Directory of Open Access Journals (Sweden)

    Abdurrahim Dusak

    2014-06-01

    Full Text Available Objective: Recent advances in treatment of primary brain tumors have increased the interest in radiological imaging in respect to both the diagnosis of tumor and the evaluation of the efficiency of therapy. Conventional Magnetic Resonance (MR imaging is commonly used for diagnosis and follows up of the primary brain tumors, but it fails in grading of the tumors. MR spectroscopy permits in-vivo biochemical evaluation of brain lesions. Methods: Twenty three patients with histopathologic diagnosis of primary brain tumor and control group consisting of 23 healthy volunteers were investigated. In addition to conventional MR imaging of all patients were underwent point resolved spectroscopy (PRESS sequence via single voxel MR spectroscopy. Using MR spectroscopy, metabolites [N-acetyl aspartate (NAA, choline (Cho, myo-inositol (mI, lipid, lactate and alanine] and their ratio to creatine (Cr were measured quantitatively. Results: MR spectroscopic imaging of neuroglial primary brain tumors revealed that the NAA/Cr and mI/Cr ratios were decreased. In extra axial primary brain tumors, which consist of meningioma, NAA wasn’t detected, Cho/Cr ratio was remarkably increased, mI/Cr, lipid/Cr and lactate/Cr ratios were mildly increased. Alanine peak was detected only in meningioma. In high grade neuroglial tumors in proportion to low grade ones NAA/Cr and mI/Cr ratios were decreased, Cho/Cr, lipid/Cr and lactate/Cr ratios were remarkably increased. Conclusion: MR spectroscopy provides extra information in classification of primary brain tumors as intra-axial and extra-axial, and in grading of neuroglial primary brain tumors as high grade or low grade. It was concluded that using conventional MR imaging in cooperation with MR spectroscopy is beneficial in differential diagnosis and in grading of primary brain tumors. J Clin Exp Invest 2014; 5 (2: 233-241

  20. Pediatric Brain Tumors: Innovative Genomic Information Is Transforming the Diagnostic and Clinical Landscape.

    Science.gov (United States)

    Gajjar, Amar; Bowers, Daniel C; Karajannis, Matthias A; Leary, Sarah; Witt, Hendrik; Gottardo, Nicholas G

    2015-09-20

    Pediatric neuro-oncology has undergone an exciting and dramatic transformation during the past 5 years. This article summarizes data from collaborative group and institutional trials that have advanced the science of pediatric brain tumors and survival of patients with these tumors. Advanced genomic analysis of the entire spectrum of pediatric brain tumors has heralded an era in which stakeholders in the pediatric neuro-oncology community are being challenged to reconsider their current research and diagnostic and treatment strategies. The incorporation of this new information into the next-generation treatment protocols will unleash new challenges. This review succinctly summarizes the key advances in our understanding of the common pediatric brain tumors (ie, medulloblastoma, low- and high-grade gliomas, diffuse intrinsic pontine glioma, and ependymoma) and some selected rare tumors (ie, atypical teratoid/rhabdoid tumor and CNS primitive neuroectodermal tumor). The potential impact of this new information on future clinical protocols also is discussed. Cutting-edge genomics technologies and the information gained from such studies are facilitating the identification of molecularly defined subgroups within patients with particular pediatric brain tumors. The number of evaluable patients in each subgroup is small, particularly in the subgroups of rare diseases. Therefore, international collaboration will be crucial to draw meaningful conclusions about novel approaches to treating pediatric brain tumors. © 2015 by American Society of Clinical Oncology.

  1. Diagnosis and prognosis of brain tumors in clinical trials

    NARCIS (Netherlands)

    T.S. Gorlia (Thierry)

    2013-01-01

    textabstractAccording to the Central Brain Registry Of The United States (CBTRUS) statistical report (February 2012) the incidence rate of all primary non malignant and malignant brain and central nervous system tumors is 19.89 cases per 100.000 (11.58 for non-malignant tumors and 7.31 for malignant

  2. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

    Science.gov (United States)

    Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi

    2014-10-01

    Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.

  3. Interstitial brachytherapy with 192-IR in treatment of recurrent malignant primary brain tumors. Braquiterapia intersticial con iridio-192 en el tratamiento de recidivas de tumores cerebrales tras cirugia y radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Cardenes, R.; Martinez, R.; Victoria, C.; Nuez, L.; Clavo, B.; Sancedo, G. (Clinica Puerta de Hierro. Madrid (Spain))

    1994-01-01

    Seven patients with recurrent malignant primary brain tumors after surgery and radiation therapy were treated at the Clinica Puerta de Hierro (Madrid) by interstitial brachytherapy with 192-Ir sources. Implantations were performed using computerized tomography and dose prescription were determined following the Paris system rules for interstitial implants. The means dose deliberated was 50 to 65 Gy to the reference isodoses. At the last follow-up all patients except for one are alive and without evidence of progression of the disease. (Author) 35 refs.

  4. Brain Tumor Epidemiology - A Hub within Multidisciplinary Neuro-oncology. Report on the 15th Brain Tumor Epidemiology Consortium (BTEC) Annual Meeting, Vienna, 2014.

    Science.gov (United States)

    Woehrer, Adelheid; Lau, Ching C; Prayer, Daniela; Bauchet, Luc; Rosenfeld, Myrna; Capper, David; Fisher, Paul G; Kool, Marcel; Müller, Martin; Kros, Johan M; Kruchko, Carol; Wiemels, Joseph; Wrensch, Margaret; Danysh, Heather E; Zouaoui, Sonia; Heck, Julia E; Johnson, Kimberly J; Qi, Xiaoyang; O'Neill, Brian P; Afzal, Samina; Scheurer, Michael E; Bainbridge, Matthew N; Nousome, Darryl; Bahassi, El Mustapha; Hainfellner, Johannes A; Barnholtz-Sloan, Jill S

    2015-01-01

    The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 - 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year's meeting, which will be held at the Mayo Clinic at Rochester, MN, USA.

  5. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    Science.gov (United States)

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.

  6. Stimulated Raman scattering microscopy for rapid brain tumor histology

    Directory of Open Access Journals (Sweden)

    Yifan Yang

    2017-09-01

    Full Text Available Rapid histology of brain tissues with sufficient diagnostic information has the great potential to aid neurosurgeons during operations. Stimulated Raman Scattering (SRS microscopy is an emerging label-free imaging technique, with the intrinsic chemical resolutions to delineate brain tumors from normal tissues without the need of time-consuming tissue processing. Growing number of studies have shown SRS as a “virtual histology” tool for rapid diagnosis of various types of brain tumors. In this review, we focus on the basic principles and current developments of SRS microscopy, as well as its applications for brain tumor imaging.

  7. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  8. Neuropsychiatric presentations of pediatrics brain tumors: cases series

    Directory of Open Access Journals (Sweden)

    Khairkar Praveen

    2016-12-01

    Full Text Available Brain tumors constitute the second most common tumors in the pediatric age group after the leukemias. Symptoms and signs depend on growth rate of tumor, its location in the central nervous system, the extent of peri-tumoral vasogenic edema and the age of the child. Most common neuropsychiatric problems reported in children with brain tumor(s include adjustment problems, anxiety disorder, neurocognitive deficits and depressive disorder as reported by very few case reports and isolated observational data. To the best of our knowledge no similar data or reports are as yet published from India on the similar lines. We wish to report case series of neuropsychiatric presentations in different types of brain tumors observed at our rural tertiary care multi-speciality hospital.

  9. CARS and non-linear microscopy imaging of brain tumors

    Science.gov (United States)

    Galli, Roberta; Uckermann, Ortrud; Tamosaityte, Sandra; Geiger, Kathrin; Schackert, Gabriele; Steiner, Gerald; Koch, Edmund; Kirsch, Matthias

    2013-06-01

    Nonlinear optical microscopy offers a series of techniques that have the potential to be applied in vivo, for intraoperative identification of tumor border and in situ pathology. By addressing the different content of lipids that characterize the tumors with respect to the normal brain tissue, CARS microscopy enables to discern primary and secondary brain tumors from healthy tissue. A study performed in mouse models shows that the reduction of the CARS signal is a reliable quantity to identify brain tumors, irrespective from the tumor type. Moreover it enables to identify tumor borders and infiltrations at a cellular resolution. Integration of CARS with autogenous TPEF and SHG adds morphological and compositional details about the tissue. Examples of multimodal CARS imaging of different human tumor biopsies demonstrate the ability of the technique to retrieve information useful for histopathological diagnosis.

  10. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    Science.gov (United States)

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  11. Lassa-vesicular stomatitis chimeric virus safely destroys brain tumors.

    Science.gov (United States)

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N; Cepko, Connie; van den Pol, Anthony N

    2015-07-01

    High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We tested a series of

  12. Multifractal texture estimation for detection and segmentation of brain tumors.

    Science.gov (United States)

    Islam, Atiq; Reza, Syed M S; Iftekharuddin, Khan M

    2013-11-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available.

  13. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.

    Science.gov (United States)

    Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H

    2017-02-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 105  nepi /cm2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10-13  Gy-cm2 /φepi , and photon dose per epithermal was 2.4 × 10-13  Gy-cm2 /φepi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10-3  cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to irradiate in

  14. [NOVEL STRATEGY IN THE RADIOTHERAPY OF METASTATIC BRAIN TUMORS: SIMULTANEOUS WHOLE BRAIN RADIOTHERAPY AND INTEGRATED STEREOTACTIC RADIOSURGERY].

    Science.gov (United States)

    Kalincsák, Judit; László, Zoltán; Sebestyén, Zsolt; Kovács, Péter; Horváth, Zsolt; Dóczi, Tamás; Mangel László

    2015-11-30

    Treatment of central nervous system (CNS) tumors has always played an important role in development of radiotherapy techniques. Precise patient immobilisation, non-coplanar field arrangement, conformal treatment, arc therapy, radiosurgery, application of image fusion to radiation planning or re-irradiation were first introduced into clinical routine in the treatment of brain tumors. A modern multifunctional radiation instrument, Novalis TX has been installed at the University of Pécs two years ago. New methods, such as real time 3D image guided therapy, dynamic arc therapy and ultra-conformity offer further progress in treatment of CNS tumors. Whole brain irradiation and simultaneous fractionated stereotactic radiosurgery or integrated boost seem to be an optimal method in the treatment of not only soliter or oligo, but even a higher number (4-9) and not typically radiosensitive brain metastases. The new treatment strategy is illustrated by presentation of four case histories. Treatment protocol was completed in all cases. Treatment period of 1.5 to 3 weeks, and treatment time of only a few minutes were not stressful for the patients. A quite remarkable clinical improvement as to general condition of the patients was experienced in three cases. Follow-up images confirmed either remission or a stable disease. Simultaneous whole brain radiotherapy and integrated stereotactic radiosurgery is a reproducible, safe method that offers an effective irradiation with delivery of definitive dosage even in cases with radio-insensitive brain metastasis.

  15. Update in Treatment of Malignant Eyelid Tumor

    Directory of Open Access Journals (Sweden)

    Yasemin A. Katırcıoğlu

    2014-09-01

    Full Text Available Treatment of malignant eyelid tumors have different properties according to histological diagnosis, assessment of tumor margins and local or systemic spread. Chances of success in the treatment of malignant tumors of the eyelids are high only when the right procedures through which all tumor cells are eradicated with the condition that the role of protecton of ocular surface of the eyelids are functional. The aim of this review is to scrutinize the current treatment of malignant eyelid tumors. (Turk J Ophthalmol 2014; 44: Supplement 55-60

  16. The perivascular niche microenvironment in brain tumor progression

    Science.gov (United States)

    Charles, Nikki

    2010-01-01

    Glioblastoma, the most frequent and aggressive malignant brain tumor, has a very poor prognosis of approximately 1-year. The associated aggressive phenotype and therapeutic resistance of glioblastoma is postulated to be due to putative brain tumor stem-like cells (BTSC). The best hope for improved therapy lies in the ability to understand the molecular biology that controls BTSC behavior. The tumor vascular microenvironment of brain tumors has emerged as important regulators of BTSC behavior. Emerging data have identified the vascular microenvironment as home to a multitude of cell types engaged in various signaling that work collectively to foster a supportive environment for BTSCs. Characterization of the signaling pathways and intercellular communication between resident cell types in the microvascular niche of brain tumors is critical to the identification of potential BTSC-specific targets for therapy. PMID:20714216

  17. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    Science.gov (United States)

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  18. Brain tumor classification of microscopy images using deep residual learning

    Science.gov (United States)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  19. Sleep complaints in survivors of pediatric brain tumors.

    Science.gov (United States)

    Brimeyer, Chasity; Adams, Leah; Zhu, Liang; Srivastava, Deo Kumar; Wise, Merrill; Hudson, Melissa M; Crabtree, Valerie McLaughlin

    2016-01-01

    Pediatric brain tumor survivors have increased risk of sleep problems, particularly excessive daytime sleepiness (EDS). Few studies have examined sleep disturbances in this population. 153 children and adolescents ages 8-18 and their parents completed questionnaires (Modified Epworth Sleepiness Scale, Kosair Children's Hospital Sleep Questionnaire, Children's Report of Sleep Patterns, Children's Sleep Hygiene Scale) during clinic visits. Participants were at least 5 years from diagnosis and 2 years post-treatment. Group differences in age at diagnosis, body mass index, type of treatment received, and tumor location were examined. One-third of adolescents and one-fifth of children reported EDS. Children and parents had fair concordance (kappa coefficient = .64) in their report of EDS, while adolescents and parents had poor concordance (kappa coefficient = .37). Per parents, most children slept 8 to 9 h per night. Poor bedtime routines were reported for children, while adolescents endorsed poor sleep stability. Extended weekend sleep was reported across age groups. A BMI in the obese range was related to higher parent-reported EDS in children. Sleep-disordered breathing was associated with elevated BMI in adolescents. While survivors reported achieving recommended amounts of sleep each night, 20 to 30% reported EDS. Poor concordance among parent and adolescent report highlights the importance of obtaining self-report when assessing sleep concerns. Obesity is a modifiable factor in reducing symptoms of EDS in this population. Finally, the lack of association between EDS and brain tumor location, BMI, or treatment received was unexpected and warrants further investigation.

  20. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    Science.gov (United States)

    MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu

    2016-01-01

    Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On

  1. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model.

    Directory of Open Access Journals (Sweden)

    Jennifer A MacDiarmid

    Full Text Available Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers.EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT and magnetic resonance imaging (MRI. Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973. No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs.Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of

  2. Labeled Putrescine as a Probe in Brain Tumors

    Science.gov (United States)

    Volkow, Nora; Goldman, Stephen S.; Flamm, Eugene S.; Cravioto, Humberto; Wolf, Alfred P.; Brodie, Jonathan D.

    1983-08-01

    The polyamine metabolism of transplanted N-nitrosomethylurea-derived rat glioma was determined with radiolabeled putrescine used as a marker for malignancy. The uptake of putrescine in vivo was complete within 5 minutes and was specific for tumor tissue. The conversion of putrescine to spermine and other metabolites by the tumor was rapid, in contrast to the case for adjacent normal brain. These results suggest that putrescine labeled with carbon-11 may be used as a positron-emission tomographic tracer for the selective metabolic imaging of brain tumor and may be used in an appropriate model as a marker for tumor growth rate.

  3. Applications of nanotechnology to imaging and therapy of brain tumors.

    Science.gov (United States)

    Mohs, Aaron M; Provenzale, James M

    2010-08-01

    In the past decade, numerous advances in the understanding of brain tumor physiology, tumor imaging, and tumor therapy have been attained. In some cases, these advances have resulted from refinements of pre-existing technologies (eg, improvements of contrast-enhanced magnetic resonance imaging). In other instances, advances have resulted from development of novel technologies. The development of nanomedicine (ie, applications of nanotechnology to the field of medicine) is an example of the latter. In this review, the authors explain the principles that underlay nanoparticle design and function as well as the means by which nanoparticles can be used for imaging and therapy of brain tumors. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Preoperative functional mapping for rolandic brain tumor surgery.

    Science.gov (United States)

    Rizzo, Vincenzo; Terranova, Carmen; Conti, Alfredo; Germanò, Antonino; Alafaci, Concetta; Raffa, Giovanni; Girlanda, Paolo; Tomasello, Francesco; Quartarone, Angelo

    2014-11-07

    The resection of tumors within or close to eloquent motor areas is usually guided by the compromise between the maximal allowed resection and preservation of neurological functions. Navigated transcranial magnetic stimulation (nTMS) is an emerging technology that can be used for preoperative mapping of the motor cortex. We performed pre-surgical mapping by using nTMS in 17 patients with lesions in or close to the precentral gyrus. The study was conducted on consecutive patients scheduled for surgical treatment. nTMS allowed to exactly localize the motor cortex in 88.2% of cases. In 70.6% it provided the surgeon with new unexpected information about functional anatomy of the motor area, influencing the pre-operative planning. Moreover, in 29.4% these functional information had a clear impact on surgery, making necessary a change of surgical strategy to avoid damage to the motor cortex. Our results prove that nTMS has a large benefit in the treatment of rolandic brain tumors. It adds important information about spatial relationship between functional motor cortex and the tumor and reduces surgical-related post-operative motor deficits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Association rule mining based study for identification of clinical parameters akin to occurrence of brain tumor.

    Science.gov (United States)

    Sengupta, Dipankar; Sood, Meemansa; Vijayvargia, Poorvika; Hota, Sunil; Naik, Pradeep K

    2013-01-01

    Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis & treatment of disease from the clinical dataset is therefore increasingly becoming necessary. Aim of this study was to assess the applicability of knowledge discovery in brain tumor data warehouse, applying data mining techniques for investigation of clinical parameters that can be associated with occurrence of brain tumor. In this study, a brain tumor warehouse was developed comprising of clinical data for 550 patients. Apriori association rule algorithm was applied to discover associative rules among the clinical parameters. The rules discovered in the study suggests - high values of Creatinine, Blood Urea Nitrogen (BUN), SGOT & SGPT to be directly associated with tumor occurrence for patients in the primary stage with atleast 85% confidence and more than 50% support. A normalized regression model is proposed based on these parameters along with Haemoglobin content, Alkaline Phosphatase and Serum Bilirubin for prediction of occurrence of STATE (brain tumor) as 0 (absent) or 1 (present). The results indicate that the methodology followed will be of good value for the diagnostic procedure of brain tumor, especially when large data volumes are involved and screening based on discovered parameters would allow clinicians to detect tumors at an early stage of development.

  6. Brain Aneurysm: Treatment Options

    Science.gov (United States)

    ... inoperable aneurysms. Decisions regarding management of an unruptured brain aneurysm are based on the careful comparison of the short- and ... so Tired? How Do I Deal With Depression? Learning Principles to Aid Recovery The Memory Book ... Aneurysm Foundation Support Community Research & Grants BAF Research ...

  7. Local specific absorption rate in brain tumors at 7 tesla.

    Science.gov (United States)

    Restivo, Matthew C; van den Berg, Cornelis A T; van Lier, Astrid L H M W; Polders, Daniël L; Raaijmakers, Alexander J E; Luijten, Peter R; Hoogduin, Hans

    2016-01-01

    MR safety at 7 Tesla relies on accurate numerical simulations of transmit electromagnetic fields to fully assess local specific absorption rate (SAR) safety. Numerical simulations for SAR safety are currently performed using models of healthy patients. These simulations might not be useful for estimating SAR in patients who have large lesions with potentially abnormal dielectric properties, e.g., brain tumors. In this study, brain tumor patient models are constructed based on scans of four patients with high grade brain tumors. Dielectric properties for the modeled tumors are assigned based on electrical properties tomography data for the same patients. Simulations were performed to determine SAR. Local SAR increases in the tumors by as much as 30%. However, the location of the maximum 10-gram averaged SAR typically occurs outside of the tumor, and thus does not increase. In the worst case, if the tumor model is moved to the location of maximum electric field intensity, then we do observe an increase in the estimated peak 10-gram SAR directly related to the tumor. Peak local SAR estimation made on the results of a healthy patient model simulation may underestimate the true peak local SAR in a brain tumor patient. © 2015 Wiley Periodicals, Inc.

  8. Quality of life and symptoms in pediatric brain tumor survivors: a systematic review.

    Science.gov (United States)

    Macartney, Gail; Harrison, Margaret B; VanDenKerkhof, Elizabeth; Stacey, Dawn; McCarthy, Patricia

    2014-01-01

    Little is known about the quality of life of children and youth under the age of 20 who have completed treatment for a pediatric brain tumor. This systematic review was conducted to (a) describe the health-related quality of life (HRQL) outcomes in pediatric brain tumor survivors, (b) identify instruments used to measure HRQL, and (c) determine the relationship between symptoms and HRQL. Using a systematic search and review methodology, databases searched included CINAHL, Medline, Embase, and PsycInfo. No date restrictions were used. Search results elicited 485 articles, of which16 met the inclusion criteria. Compared with their healthy peers, pediatric brain tumor survivors did worse on most measures of physical, psychosocial, social, and cognitive domains of HRQL. Compared with other cancer patients, survivors scored themselves significantly lower on the Pediatric Quality of Life Inventory (PedsQL) social functioning scale, and parents of brain tumor survivors reported lower PedsQL social and total functioning scores for their children. Other variables that were associated with decreased HRQL were degree of hypothalamic tumor involvement, osteopenia, need for special education, older age at diagnosis, greater than 1 year since treatment, and radiation treatment. In these studies, pediatric brain tumor survivors fared worse compared with other cancer survivors or healthy peers on several HRQL domains. Only 3 studies explored the relationship between symptoms, including pain or fatigue, and HRQL in pediatric brain tumor survivors. The relationship between symptoms and HRQL was not well elucidated. More research is needed to explore the multidimensional symptom experience and HRQL outcomes in pediatric brain tumor survivors.

  9. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  10. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  11. [Surgical treatment of the sacrum tumor].

    Science.gov (United States)

    Wang, Wei; Yin, Zong-Sheng; Hu, Yong; Zhang, Hui

    2008-02-01

    To discuss the surgical methods and effects in the treatment of sacrum tumor. Fifteen patients of sacrum tumor included 12 males 3 females aged from 17 to 68 years old,mean 54.6 years. Ten cases were primary tumor and 5 were metastatic tumor. Five cases underwent anterior approach tumor extirpation, 3 posterior approach tumor extirpation and 7 posterior tumor extirpation with bone graft and internal fixation of a pedicle screw and rod system. Additionally, all cases were treated with radiotherapy or/and chemotherapy post-operatively according to the character of the tumor. Thirteen patients were followed-up for 4 months to 5 years. One patient had exacerbation accompanying dysfunction of urinary and feca after surgery, which relieved after four months of non-operative treatments. One chordoblastoma and 2 metastatic tumor died of recurrence and metastasis 1 to 2 years after operation, respectively. And in another case of giant cell tumor occurred the local recurrence 6 months after operation, who refused secondary surgical treatment. Individualized surgical treatment with conbination of radio therapy or/and chemotherapy will make good results for patients with sacrum tumor.

  12. Modeling and Targeting MYC Genes in Childhood Brain Tumors.

    Science.gov (United States)

    Hutter, Sonja; Bolin, Sara; Weishaupt, Holger; Swartling, Fredrik J

    2017-03-23

    Brain tumors are the second most common group of childhood cancers, accounting for about 20%-25% of all pediatric tumors. Deregulated expression of the MYC family of transcription factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic approaches for pharmacological inhibition of MYC activity in these tumors.

  13. Imaging cerebral tryptophan metabolism in brain tumor-associated depression.

    Science.gov (United States)

    Bosnyák, Edit; Kamson, David O; Behen, Michael E; Barger, Geoffrey R; Mittal, Sandeep; Juhász, Csaba

    2015-12-01

    Depression in patients with brain tumors is associated with impaired quality of life and shorter survival. Altered metabolism of tryptophan to serotonin and kynurenine metabolites may play a role in tumor-associated depression. Our recent studies with alpha[(11)C]methyl-L-tryptophan (AMT)-PET in brain tumor patients indicated abnormal tryptophan metabolism not only in the tumor mass but also in normal-appearing contralateral brain. In the present study, we explored if tryptophan metabolism in such brain regions is associated with depression. Twenty-one patients (mean age: 57 years) with a brain tumor (10 meningiomas, 8 gliomas, and 3 brain metastases) underwent AMT-PET scanning. MRI and AMT-PET images were co-registered, and AMT kinetic parameters, including volume of distribution (VD', an estimate of net tryptophan transport) and K (unidirectional uptake, related to tryptophan metabolism), were measured in the tumor mass and in unaffected cortical and subcortical regions contralateral to the tumor. Depression scores (based on the Beck Depression Inventory-II [BDI-II]) were correlated with tumor size, grade, type, and AMT-PET variables. The mean BDI-II score was 12 ± 10 (range: 2-33); clinical levels of depression were identified in seven patients (33 %). High BDI-II scores were most strongly associated with high thalamic AMT K values both in the whole group (Spearman's rho = 0.63, p = 0.004) and in the subgroup of 18 primary brain tumors (r = 0.68, p = 0.004). Frontal and striatal VD' values were higher in the depressed subgroup than in non-depressed patients (p Tumor size, grade, and tumor type were not related to depression scores. Abnormalities of tryptophan transport and metabolism in the thalamus, striatum, and frontal cortex, measured by PET, are associated with depression in patients with brain tumor. These changes may indicate an imbalance between the serotonin and kynurenine pathways and serve as a molecular imaging marker of

  14. A model for evaluating therapeutic response of combined cancer treatment modalities: applied to treatment of subcutaneously implanted brain tumors (N32 and N29) in Fischer rats with pulsed electric fields (PEF) and 60Co-gamma radiation (RT).

    Science.gov (United States)

    Persson, Bertil R R; Bauréus Koch, Calvin; Grafstrom, G; Engstrom, P E; Salford, L G

    2003-10-01

    The aim of the present study is to develop a mathematical model for evaluating therapeutic response of combined treatment modalities. The study was performed in rats of the Fischer-344 strain with rat glioma N32 or N29 tumors implanted subcutaneously on the thigh of the hind leg. Pulsed electric fields, PEF, with 16 exponentially decaying pulses with a maximum electric field strength of 140 V/mm and t(1/e)= 1 ms were first applied to the tumors. Then within 5 min radiation therapy with (60)Co-gamma radiation, RT, was given in daily fractions of 5 Gy. The animals were arranged into one group of controls and 3 groups of different kind of treatments: PEF only, RT only or combination of PEF + RT. At about 4 weeks after inoculation, the tumors were given the treatment sessions during one week. In 2 experimental series with totally 52 rats with N32 tumors, of which 16 were controls, were given 4 sessions of PEF treatments and RT (totally 20 Gy). In a special experimental series with totally 56 rats with N32 tumors, of which 10 were controls, the different groups were given 1, 2, 3 or 4 treatment sessions respectively. Another strain of glioma tumor, N29 with 62 tumors of which 14 were controls was studied in 2 series given 4PEF + 4RT and 2PEF + 4RT respectively. Fitting the data obtained from consecutive measurements of tumor volume (TV) of each individual tumor to an exponential model TV = TV(0). exp[TGR.t] estimated the tumor growth rate (TGR % per day) after the first day of treatment (t = 0). The TGR of N32 tumors treated with the combination of 4PEF + 4RT are significantly decreased compared to the controls (p PEF alone (p PEF alone is most efficient after 2 treatments at 2 consecutive days. The TGR of N29 tumors treated with the combination of 4PEF + 4RT are significantly decreased compared to the controls (p PEF + 4RT was more effective (p PEF treatments alone the average STE value was 0.32 for N32 tumors and 0 for N29; for 4RT alone the STE values were 0.29 and 0

  15. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  16. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2016-01-01

    Full Text Available Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs. Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  17. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future

    Science.gov (United States)

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-01-01

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors. PMID:26993776

  18. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future.

    Science.gov (United States)

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-05-31

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors.

  19. Diagnosis and treatment of ampullary tumors

    Directory of Open Access Journals (Sweden)

    YIN Tao

    2017-02-01

    Full Text Available Ampullary tumors mainly manifest as obstructive jaundice and ampullary mass in clinical practice and are difficult to be identified in early stage due to a complex structure of the anatomical site, a deep location, and hidden symptoms. Sometimes a qualitative diagnosis cannot be made. Based on the experience in the treatment of ampullary tumors for many years in our center, this article summarizes the features of ampullary tumors from the aspects of clinical manifestations, diagnosis, treatment, and prognosis, especially the issues regarding imaging evaluation of ampullary tumors, selection of surgical procedure, and prognosis. An early diagnosis is the key to the treatment of ampullary tumors, and early identification and treatment of lesions have great impacts on patients′ prognosis. Accurate preoperative imaging evaluation, a professional diagnosis and treatment team, accurate preoperative and intraoperative pathological analysis, and implementation of reasonable therapeutic strategy are the key to patients′ recovery.

  20. Toward real-time tumor margin identification in image-guided robotic brain tumor resection

    Science.gov (United States)

    Hu, Danying; Jiang, Yang; Belykh, Evgenii; Gong, Yuanzheng; Preul, Mark C.; Hannaford, Blake; Seibel, Eric J.

    2017-03-01

    For patients with malignant brain tumors (glioblastomas), a safe maximal resection of tumor is critical for an increased survival rate. However, complete resection of the cancer is hard to achieve due to the invasive nature of these tumors, where the margins of the tumors become blurred from frank tumor to more normal brain tissue, but in which single cells or clusters of malignant cells may have invaded. Recent developments in fluorescence imaging techniques have shown great potential for improved surgical outcomes by providing surgeons intraoperative contrast-enhanced visual information of tumor in neurosurgery. The current near-infrared (NIR) fluorophores, such as indocyanine green (ICG), cyanine5.5 (Cy5.5), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), are showing clinical potential to be useful in targeting and guiding resections of such tumors. Real-time tumor margin identification in NIR imaging could be helpful to both surgeons and patients by reducing the operation time and space required by other imaging modalities such as intraoperative MRI, and has the potential to integrate with robotically assisted surgery. In this paper, a segmentation method based on the Chan-Vese model was developed for identifying the tumor boundaries in an ex-vivo mouse brain from relatively noisy fluorescence images acquired by a multimodal scanning fiber endoscope (mmSFE). Tumor contours were achieved iteratively by minimizing an energy function formed by a level set function and the segmentation model. Quantitative segmentation metrics based on tumor-to-background (T/B) ratio were evaluated. Results demonstrated feasibility in detecting the brain tumor margins at quasi-real-time and has the potential to yield improved precision brain tumor resection techniques or even robotic interventions in the future.

  1. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape

    DEFF Research Database (Denmark)

    Agn, Mikael; Puonti, Oula; Rosenschöld, Per Munck af

    2016-01-01

    In this paper, we present a fully automated generative method for brain tumor segmentation in multi-modal magnetic resonance images. The method is based on the type of generative model often used for segmenting healthy brain tissues, where tissues are modeled by Gaussian mixture models combined...... with a spatial atlas-based tissue prior. We extend this basic model with a tumor prior, which uses convolutional restricted Boltzmann machines (cRBMs) to model the shape of both tumor core and complete tumor, which includes edema and core. The cRBMs are trained on expert segmentations of training images, without...

  2. Metronomic photodynamic therapy (mPDT): concepts and technical feasibility in brain tumor

    Science.gov (United States)

    Wilson, Brian C.; Bisland, Stuart K.; Bogaards, Arjen; Lin, Annie; Moriyama, Eduardo H.; Zhang, Kai; Lilge, Lothar D.

    2003-06-01

    The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are delivered continuously at low rates over extended periods in order to increase selective tumor cell kill through apoptosis. The focus of the present work is on mPDT treatment of malignant brain tumors, in which selectivity between damage to tumor cells versus normal brain tissue is critical. Previous studies have shown that low-dose PDT using aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue or apoptosis in the latter. In order to produce enough tumor cell kill to be an effective therapy, multiple PDT treatments, such as hyperfractionation or metronomic delivery, are likely requried, based on the levels of apoptosis achieved and model calculations of tumor growth rates. mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of interstitial devices for extended light delivery while allowing free movement. In rat models ALA administration via the drinking water has been accomplished at significant doses for up to 10 days, and ex vivo spectrofluorimetry of tumore, normal brain and other tissues post mortem demonstrates a 3-4 increase in the tumor-to-brain concentration of PpIX, without toxicity. Prototype light sources and delivery devices are also shown to be practical, either using a laser diode or light emitting diode (LED) coupled to an implanted optical fiber in the case of the rat model or a directly-implanted LED in rabbits. The combined delivery of both drug and light over an extended period, with survival of the animals, is demonstrated. Preliminary evidence of selective apoptosis of tumor under these conditions is presented.

  3. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  4. The social trajectory of brain tumor: a qualitative metasynthesis.

    Science.gov (United States)

    Cubis, Lee; Ownsworth, Tamara; Pinkham, Mark B; Chambers, Suzanne

    2017-04-19

    Research indicates that strong social ties can buffer the adverse effects of chronic illness on psychological well-being. Brain tumor typically leads to serious functional impairments that affect relationships and reduce social participation. This metasynthesis aimed to identify, appraise and integrate the findings of qualitative studies that reveal the impact of brain tumor on social networks. Four major databases (PubMed, CINAHL, Cochrane Library and PsycINFO) were systematically searched from inception to September 2016 for qualitative studies that reported findings on the impact of primary brain tumor on social networks during adulthood. Twenty-one eligible studies were identified and appraised according to the Consolidated Criteria for Reporting Qualitative Research. Key findings of these studies were integrated to form superordinate themes. The metasynthesis revealed the core themes of: 1) Life disrupted; 2) Navigating the new reality of life; and 3) Social survivorship versus separation. Multiple changes typically occur across the social trajectory of brain tumor, including a loss of pre-illness networks and the emergence of new ones. Understanding the barriers and facilitators for maintaining social connection may guide interventions for strengthening social networks and enhancing well-being in the context of brain tumor. Implications for rehabilitation Social networks and roles are disrupted throughout the entire trajectory of living with brain tumor Physical, cognitive and psychological factors represent barriers to social integration Barriers to social integration may be addressed by supportive care interventions Compensatory strategies, adjusting goals and expectations, educating friends and family and accepting support from others facilitate social reintegration throughout the trajectory of living with brain tumor.

  5. Research of the multimodal brain-tumor segmentation algorithm

    Science.gov (United States)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  6. CT-guided laser probe for ablation of brain tumors

    Directory of Open Access Journals (Sweden)

    Abdolhadi Daneshi

    2010-01-01

    Full Text Available   Abstract  In this study, 22 patients (15-75 years old were selected and transferred to CT scan for tumor ablation. For ablations, after prep and drep under the local anesthesia and mild sedation in proper position, small incision made and special needle inserted and guided by proper direction to the core of the tumor. Then, laser probe inserted through the needle and laser energy delivered. Although we have not a good prognosis in metastatic tumors but post-operative follow up and brain CT scan established the effect of laser on resection and evaporation and diminution of mass effect in tumor lesions.

  7. Neoadjuvant chemotherapy for brain tumors in infants and young children.

    Science.gov (United States)

    Iwama, Junya; Ogiwara, Hideki; Kiyotani, Chikako; Terashima, Keita; Matsuoka, Kentaro; Iwafuchi, Hideto; Morota, Nobuhito

    2015-05-01

    Because of their large size and high vascularity, complete removal of brain tumors in infants and young children is often difficult. In most cases the degree of resection is associated with prognosis. Neoadjuvant chemotherapy may facilitate resection by reducing the vascularity of the tumor. The authors evaluated the effectiveness of neoadjuvant chemotherapy in the management of these tumors. The authors performed a retrospective review of infants and young children who underwent tumor removal after neoadjuvant chemotherapy. Nine consecutive patients underwent resection after neoadjuvant chemotherapy during the period February 2004 to December 2012. The mean age at diagnosis was 18 months (range 2-50 months). The average largest tumor diameter was 71 mm (range 30-130 mm) at initial surgery. Five patients underwent partial resection, and 4 underwent biopsy as the initial surgery. The histopathological diagnoses were ependymoma in 2 patients, anaplastic ependymoma in 1, primitive neuroectodermal tumor (PNET) in 2, choroid plexus carcinoma in 1, atypical teratoid/rhabdoid tumor (AT/RT) in 1, glioblastoma in 1, and embryonal tumor with abundant neuropil and true rosettes in 1. After 2-4 courses of multiagent chemotherapy (mainly with vincristine, cyclophosphamide, etoposide, and cisplatin), the second-look surgery was performed. In 1 patient with a PNET, intratumoral hemorrhage was observed after 2 courses of chemotherapy. The mean interval between the initial and the second-look surgery was 3 months. The tumor volume was reduced to varying degrees in 5 patients (56%) after chemotherapy. Intraoperatively, the vascularity of the tumor was considerably reduced, and the tumor was more circumscribed in all cases. Gross-total resection was achieved in 8 patients (89%) and neartotal resection in 1 (11%). Histopathological examination demonstrated fibrotic tissue circumscribing the tumor in 6 of 9 cases (67%). The average blood loss was 20% of the estimated blood volume, and

  8. Brain and Spinal Tumors: Hope through Research

    Science.gov (United States)

    ... called lobes, which handle different neurological functions. The frontal lobes manage voluntary movement, such as writing, and let us set and prioritize goals. A frontal lobe tumor can cause changes in personality, intellect, reasoning, ...

  9. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors

    Directory of Open Access Journals (Sweden)

    Wagner LM

    2017-04-01

    Full Text Available Lars M Wagner,1 Val R Adams2 1Division of Pediatric Hematology/Oncology, 2Department of Pharmacy Practice and Science, University of Kentucky, Lexington, KY, USA Abstract: While remarkable advances have been made in the treatment of pediatric leukemia over the past decades, new therapies are needed for children with advanced solid tumors and high-grade brain tumors who fail standard chemotherapy regimens. Immunotherapy with immune checkpoint inhibitors acting through the programmed cell death-1 (PD-1 pathway has shown efficacy in some chemotherapy-resistant adult cancers, generating interest that these agents may also be helpful to treat certain refractory pediatric malignancies. In this manuscript we review current strategies for targeting the PD-1 pathway, highlighting putative biomarkers and the rationale for investigation of these drugs to treat common pediatric tumors such as sarcoma, neuroblastoma, and high-grade glioma. We summarize the completed and ongoing clinical trial data available, and suggest potential applications for further study. Keywords: PD-1, nivolumab, pembrolizumab, pediatric, sarcoma, neuroblastoma, glioma

  10. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    Science.gov (United States)

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Groupwise registration of MR brain images with tumors

    Science.gov (United States)

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-09-01

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of ‘image registration paths’ to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10-9).

  12. Evaluation of health-related quality of life in Lithuanian brain tumor patients using the EORTC brain cancer module

    OpenAIRE

    Bunevičius, Adomas; Tamašauskas, Šarūnas; Tamašauskas, Arimantas; Deltuva, Vytenis Pranas

    2012-01-01

    Background and Objective. Health-related quality of life (HRQoL) is considered an important outcome measure in neuro-oncology. The aim of this study was to evaluate the psychometric properties of the brain cancer-specific Quality of Life Questionnaire (QLQ-BN20) of the European Organization for Research and Treatment of Cancer (EORTC) in Lithuanian brain tumor patients. Material and Methods. One hundred consecutive patients (71% of women; mean age, 58±14 years) admitted for elective brain tum...

  13. Childhood brain tumors and residential electromagnetic fields (EMF).

    Science.gov (United States)

    Kheifets, L I; Sussman, S S; Preston-Martin, S

    1999-01-01

    There are many recent comprehensive reviews of the residential EMF epidemiologic literature, but they do not attempt to cover the issue of childhood brain tumors and EMF in depth. We present here background information on descriptive epidemiology of known or suspected causes of childhood brain tumors and a detailed review of studies that have examined the associations between EMF as represented by various surrogates, and childhood brain tumors. We evaluated nine studies of childhood brain tumors and residential exposure to EMF based on wire codes, distance, measurements, and modeling, and six studies that examined the use of appliances by children or their mothers during pregnancy. For each study we discussed analytical and methodological issues including choice of cutpoints, nonconcurrent control selection, random digit dialing, differential participation, and ability of a study to detect an association. On the basis of this comprehensive review of all available childhood brain cancer studies, we do not see support for an overall association between EMF and childhood brain cancer. This lack of support applied for all surrogates of past magnetic fields, including wire code, distance, measured or calculated fields, and use of appliances by either child or mother.

  14. Pathology Results at Autopsy in Brain-Dead Patients with Brain Tumors.

    Science.gov (United States)

    Sadegh Beigee, Farahnaz; Shahryari, Shagin; Mojtabaee, Meysam; Pourabdollah Toutkaboni, Mihan

    2017-02-01

    Brain tumors are the most challenging causes of brain deaths due to the lack of pathology results in many cases. It is not uncommon to find a brain tumor in a brain-dead patient with no pathology results or neuroradiology reports available; this would exclude the deceased from organ donation. The mortality that occurs while patients are on transplant wait lists motivated us to find a solution to prevent losing brain-dead patients as potential donors. We present our experiences in autopsy examinations of brain tumors and the results of frozen-section pathology. We performed autopsy examinations of 8 brain-dead patients who were suspected of having highly malignant brain tumors and in whom there were no pathology or radiology reports available. The autopsy process began at the conclusion of organ retrieval. First, we performed a complete brain dissection; the tumor was then removed with its adjacent brain tissue and sent for examination by an expert pathologist. Organ transplant was deferred until the pathology examination was completed. Organ transplant was cancelled if the frozen sections revealed a high-grade tumor. For all other results, the transplant was performed. If a medulloblastoma was confirmed, only the heart was transplanted. The duration of the delay for pathologic examination was 30 to 45 minutes. A total of 21 organs were donated that would otherwise have been rejected. It is worth performing an autopsy and frozen-section pathology examination to prevent losing potential organs from donors with brain tumors who are suspected of having a high-grade neoplasm but have no pathology or neuroradiology reports. This process is simple and has the potential to save lives.

  15. Assessment of serum L-fucose in brain tumor cases

    Directory of Open Access Journals (Sweden)

    Manjula S

    2010-01-01

    Full Text Available Background: Glycosylation of altered tumor cell in relation to cellular heterogeneity in human intracranial tumors remains relatively unexposed. Serum protein-bound carbohydrate, L-Fucose is reported to be overexpressed during tumor progression by many investigators. Therefore, there is a need to determine the diagnostic, prognostic, functional significance of glycoprotein elevations in various cases of tumors. Objective: The objective of the present study was to evaluate the clinical utility of serum L-fucose in patients with brain tumor. Materials and Methods: Serum glyco-conjugate levels were estimated in 99 patients with brain tumors. Estimation of L-fucose was carried out colorimetrically by the method of Winzler using cysteine hydrochloride. Results: There was a significant increase in L-fucose level in most of the patients. In the posttreatment cases, the L-fucose levels were apparently low compared to preoperative values. Conclusion: Our results showed that the rise in serum L-fucose may be used as a general marker for brain tumors in addition to other markers.

  16. Pathophysiology, Diagnosis, and Treatment of Radiation Necrosis in the Brain

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; NONOGUCHI, Noasuke; FURUSE, Motomasa; YORITSUNE, Erina; MIYATA, Tomo; KAWABATA, Shinji; KUROIWA, Toshihiko

    2015-01-01

    New radiation modalities have made it possible to prolong the survival of individuals with malignant brain tumors, but symptomatic radiation necrosis becomes a serious problem that can negatively affect a patient’s quality of life through severe and lifelong effects. Here we review the relevant literature and introduce our original concept of the pathophysiology of brain radiation necrosis following the treatment of brain, head, and neck tumors. Regarding the pathophysiology of radiation necrosis, we introduce two major hypotheses: glial cell damage or vascular damage. For the differential diagnosis of radiation necrosis and tumor recurrence, we focus on the role of positron emission tomography. Finally, in accord with our hypothesis regarding the pathophysiology, we describe the promising effects of the anti-vascular endothelial growth factor antibody bevacizumab on symptomatic radiation necrosis in the brain. PMID:25744350

  17. Treatment Option Overview (Ovarian Germ Cell Tumors)

    Science.gov (United States)

    ... Z List of Cancer Drugs Complementary & Alternative Medicine (CAM) Questions to Ask about Your Treatment Research Coping ... Ovarian germ cell tumors usually occur in teenage girls or young women and most often affect just ...

  18. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.

    Directory of Open Access Journals (Sweden)

    Ninette Amariglio

    2009-02-01

    Full Text Available BACKGROUND: Neural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells. METHODS AND FINDINGS: A boy with ataxia telangiectasia (AT was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patient's peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors. CONCLUSIONS: This is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies.

  19. Endoscopic treatment of orbital tumors.

    Science.gov (United States)

    Signorelli, Francesco; Anile, Carmelo; Rigante, Mario; Paludetti, Gaetano; Pompucci, Angelo; Mangiola, Annunziato

    2015-03-16

    Different orbital and transcranial approaches are performed in order to manage orbital tumors, depending on the location and size of the lesion within the orbit. These approaches provide a satisfactory view of the superior and lateral aspects of the orbit and the optic canal but involve risks associated with their invasiveness because they require significant displacement of orbital structures. In addition, external approaches to intraconal lesions may also require deinsertion of extraocular muscles, with subsequent impact on extraocular mobility. Recently, minimally invasive techniques have been proposed as valid alternative to external approaches for selected orbital lesions. Among them, transnasal endoscopic approaches, "pure" or combined with external approaches, have been reported, especially for intraconal lesions located inferiorly and medially to the optic nerve. The avoidance of muscle detachment and the shortness of the surgical intraorbital trajectory makes endoscopic approach less invasive, thus minimizing tissue damage. Endoscopic surgery decreases the recovery time and improves the cosmetic outcome not requiring skin incisions. The purpose of this study is to review and discuss the current surgical techniques for orbital tumors removal, focusing on endoscopic approaches to the orbit and outlining the key anatomic principles to follow for safe tumor resection.

  20. Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Rinke, Anja, E-mail: sprengea@staff.uni-marburg.de; Michl, Patrick; Gress, Thomas [Department of Gastroenterology, University Hospital Marburg, Baldinger Strasse, Marburg D-35043 (Germany)

    2012-02-08

    Treatment of the clinically and prognostically heterogeneous neuroendocrine neoplasms (NEN) should be based on a multidisciplinary approach, including surgical, interventional, medical and nuclear medicine-based therapeutic options. Medical therapies include somatostatin analogues, interferon-α, mTOR inhibitors, multikinase inhibitors and systemic chemotherapy. For the selection of the appropriate medical treatment the hormonal activity, primary tumor localization, tumor grading and growth behaviour as well as the extent of the disease must be considered. Somatostatin analogues are mainly indicated in hormonally active tumors for symptomatic relief, but antiproliferative effects have also been demonstrated, especially in well-differentiated intestinal NET. The efficacy of everolimus and sunitinib in patients with pancreatic neuroendocrine tumors (pNET) has been demonstrated in large placebo-controlled clinical trials. pNETs are also chemosensitive. Streptozocin-based chemotherapeutic regimens are regarded as current standard of care. Temozolomide in combination with capecitabine is an alternative that has shown promising results that need to be confirmed in larger trials. Currently, no comparative studies and no molecular markers are established that predict the response to medical treatment. Therefore the choice of treatment for each pNET patient is based on individual parameters taking into account the patient’s preference, expected side effects and established response criteria such as proliferation rate and tumor load. Platin-based chemotherapy is still the standard treatment for poorly differentiated neuroendocrine carcinomas. Clearly, there is an unmet need for new systemic treatment options in patients with extrapancreatic neuroendocrine tumors.

  1. Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Thomas Gress

    2012-02-01

    Full Text Available Treatment of the clinically and prognostically heterogeneous neuroendocrine neoplasms (NEN should be based on a multidisciplinary approach, including surgical, interventional, medical and nuclear medicine-based therapeutic options. Medical therapies include somatostatin analogues, interferon-a, mTOR inhibitors, multikinase inhibitors and systemic chemotherapy. For the selection of the appropriate medical treatment the hormonal activity, primary tumor localization, tumor grading and growth behaviour as well as the extent of the disease must be considered. Somatostatin analogues are mainly indicated in hormonally active tumors for symptomatic relief, but antiproliferative effects have also been demonstrated, especially in well-differentiated intestinal NET. The efficacy of everolimus and sunitinib in patients with pancreatic neuroendocrine tumors (pNET has been demonstrated in large placebo-controlled clinical trials. pNETs are also chemosensitive. Streptozocin-based chemotherapeutic regimens are regarded as current standard of care. Temozolomide in combination with capecitabine is an alternative that has shown promising results that need to be confirmed in larger trials. Currently, no comparative studies and no molecular markers are established that predict the response to medical treatment. Therefore the choice of treatment for each pNET patient is based on individual parameters taking into account the patient’s preference, expected side effects and established response criteria such as proliferation rate and tumor load. Platin-based chemotherapy is still the standard treatment for poorly differentiated neuroendocrine carcinomas. Clearly, there is an unmet need for new systemic treatment options in patients with extrapancreatic neuroendocrine tumors.

  2. The Influence of Frontal Lobe Tumors and Surgical Treatment on Advanced Cognitive Functions.

    Science.gov (United States)

    Fang, Shengyu; Wang, Yinyan; Jiang, Tao

    2016-07-01

    Brain cognitive functions affect patient quality of life. The frontal lobe plays a crucial role in advanced cognitive functions, including executive function, meta-cognition, decision-making, memory, emotion, and language. Therefore, frontal tumors can lead to serious cognitive impairments. Currently, neurosurgical treatment is the primary method to treat brain tumors; however, the effects of the surgical treatments are difficult to predict or control. The treatment may both resolve the effects of the tumor to improve cognitive function or cause permanent disabilities resulting from damage to healthy functional brain tissue. Previous studies have focused on the influence of frontal lesions and surgical treatments on patient cognitive function. Here, we review cognitive impairment caused by frontal lobe brain tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Multiresolution texture models for brain tumor segmentation in MRI.

    Science.gov (United States)

    Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir

    2011-01-01

    In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.

  4. Differential diagnosis of the epileptogenic supratentorial brain tumors in children

    Directory of Open Access Journals (Sweden)

    V. S. Khalilov

    2015-01-01

    Full Text Available Fifty-six out of 79 pediatric patients with supratentorial brain tumors were noted to have symptomatic epilepsy. Dysembryoplastic neuroepithelial tumors (DNET, diffuse astrocytomas (DA, and gangliogliomas (GG were the most epileptogenic tumors. Seizures were new-onset in all our noted cases of DNET and in 4 patients with GG and the only clinical tumor sign in 6 of 8 cases of DNET. The neuroimaging features of the MRI pattern of DNET, DA, and GG were an iso/hypointense signal on Tl-weighted magnetic resonance images and a signal, the intensity of which varied from heterogeneous to cerebrospinal fluid, on T2-weighted FLAIR images. Cases of DNET and GG displayed no mass effect or perifocal edema, a trend towards location in the temporoinsular regions, and a frequent concurrence with local gray-white matter differentiation disorders and atrophy. The FLAIR images clearly showed the so-called foam-like (multicystic structure with pericystic changes. No significant change in the dimensions of the identified DNET and GG was observed during the follow up period. In low-grade DA, tumor growth was reduced and it is difficult to differentiate minimal perifocal edema from tumor-like tissue. The sensitivity of these tumors to contrast enhancement is ambiguous. Along with DNET (that was epileptogenic in 100% of cases, DA (91,7% and GG (80% were the most common epileptogenic brain tumors.

  5. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition.

    Directory of Open Access Journals (Sweden)

    Jun Cheng

    Full Text Available Automatic classification of tissue types of region of interest (ROI plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor in T1-weighted contrast-enhanced MRI (CE-MRI images. Spatial pyramid matching (SPM, which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM, and bag-of-words (BoW model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

  6. Aerobic Glycolysis as a Marker of Tumor Aggressiveness: Preliminary Data in High Grade Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Andrei G. Vlassenko

    2015-01-01

    Full Text Available Objectives. Glucose metabolism outside of oxidative phosphorylation, or aerobic glycolysis (AG, is a hallmark of active cancer cells that is not directly measured with standard 18F-fluorodeoxyglucose (FDG positron emission tomography (PET. In this study, we characterized tumor regions with elevated AG defined based on PET measurements of glucose and oxygen metabolism. Methods. Fourteen individuals with high-grade brain tumors underwent structural MR scans and PET measurements of cerebral blood flow (CBF, oxygen (CMRO2 and glucose (CMRGlu metabolism, and AG, using 15O-labeled CO, O2 and H2O, and FDG, and were compared to a normative cohort of 20 age-matched individuals. Results. Elevated AG was observed in most high-grade brain tumors and it was associated with decreased CMRO2 and CBF, but not with significant changes in CMRGlu. Elevated AG was a dramatic and early sign of tumor growth associated with decreased survival. AG changes associated with tumor growth were differentiated from the effects of nonneoplastic processes such as epileptic seizures. Conclusions. Our findings demonstrate that high-grade brain tumors exhibit elevated AG as a marker of tumor growth and aggressiveness. AG may detect areas of active tumor growth that are not evident on conventional FDG PET.

  7. Brain MRI tumor image fusion combined with Shearlet and wavelet

    Science.gov (United States)

    Zhang, Changjiang; Fang, Mingchao

    2017-11-01

    In order to extract the effective information in different modalities of the tumor region in brain Magnetic resonance imaging (MRI) images, we propose a brain MRI tumor image fusion method combined with Shearlet and wavelet transform. First, the source images are transformed into Shearlet domain and wavelet domain. Second, the low frequency component of Shearlet domain is fused by Laplace pyramid decomposition. Then the low-frequency fusion image is obtained through inverse Shearlet transform. Third, the high frequency subimages in wavelet domain are fused. Then the high-frequency fusion image is obtained through inverse wavelet transform. Finally, the low-frequency fusion image and high-frequency fusion image are summated to get the final fusion image. Through experiments conducted on 10 brain MRI tumor images, the result shown that the proposed fusion algorithm has the best fusion effect in the evaluation indexes of spatial frequency, edge strength and average gradient. The main spatial frequency of 10 images is 29.22, and the mean edge strength and average gradient is 103.77 and 10.42. Compared with different fusion methods, we find that the proposed method effectively fuses the information of multimodal brain MRI tumor images and improves the clarity of the tumor area well.

  8. Black hairy tongue after chemotherapy for malignant brain tumors.

    Science.gov (United States)

    Yamagishi, Yuki; Maruyama, Keisuke; Kobayashi, Keiichi; Kume, Satoshi; Sasaki, Nobuyoshi; Yokoya, Shigeomi; Saito, Kuniaki; Shiokawa, Yoshiaki; Nagane, Motoo

    2017-01-01

    Black hairy tongue (BHT) developed in five patients (2.6%) among 192 patients undergoing chemotherapy for malignant brain tumors. Three patients with a history of diabetes mellitus developed BHT within 10 days after the initiation of chemotherapy. The other two patients suffered more than 100 days after induction and lymphopenia of grade 3 or worse developed for more than 20 days, which was not observed in the three patients with diabetes. We found that BHT could develop after chemotherapy for malignant brain tumors. Patients with diabetes mellitus presented early after chemotherapy, while patients with longstanding severe lymphopenia presented in late phase.

  9. Air pollution from traffic and risk for brain tumors

    DEFF Research Database (Denmark)

    Poulsen, Aslak Harbo; Sørensen, Mette; Andersen, Zorana J.

    2016-01-01

    to replicate that finding in a large nationwide case-control study. METHODS: We identified all 4,183 adult brain tumor cases in Denmark in the years 2000-2009 and 8,018 risk set sampled population controls matched on gender and year of birth. We extracted residential address histories and estimated mean......PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out...... residential nitrogen oxides (NOx) concentrations since 1971 with a validated dispersion model. Categorical and linear odds ratios (OR) and confidence intervals (CI) were calculated with conditional logistic regression models. RESULTS: The highest risk estimates for any brain cancer were observed among...

  10. SHOCK SYNDROME IN A PATIENT WITH HYPOPITUITARISM DUE TO BRAIN TUMOR

    Directory of Open Access Journals (Sweden)

    Andreja Sinkovič

    2004-04-01

    Full Text Available Background. Shock syndrome is an acute tissue hypoperfusion. Early diagnosis and adequate symptomatic and causal treatment are mandatory. In spite of different etiologies (dehidration, bleeding, heart failure, sepsis, clinical signs and symptomes are similar (hypotension, tachicardia, tachipnoe, pallor, cold and wet skin, oliguria and metabolic acidosis. Rarely, the shock syndrome is the consequence of the adrenal insufficiency due to hypopituitarism caused by brain tumor where early treatment with hydrocortisone is urgent.Methods. This article presents a patient with a shock syndrome and multiorgan failure. Endocrinological testing and brain CT demonstrated an endocrinologically inactive tumor of hypophysis. The tumor was growing into adjacent hypophyseal tissue and causing hypopituitarism with secondary hypothyroidism and adrenal insufficiency and deficit of both gonadotropins and growth hormone.Conclusions. Primary or secondary adrenal insufficiency are among rare causes of shock syndrome. Whenever it is suspected, estimation of serum levels of cortisol and ACTH is necessary and immediate treatment with hydrocortisone should be instituted.

  11. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  12. Significant tumor shift in patients treated with stereotactic radiosurgery for brain metastasis

    Directory of Open Access Journals (Sweden)

    Eline D. Hessen

    2017-02-01

    Conclusion: Our results show that large tumor shifts of brain metastases can occur over time. Because shifts may have a significant impact on the local dose coverage, we recommend minimizing the time between treatment preparation and delivery for Linac based SRS.

  13. Surviving a brain tumor in childhood : impact on family functioning in adolescence

    NARCIS (Netherlands)

    Beek, Laura; Schappin, R; Gooskens, Rob; Huisman, Jaap; Jongmans, Marian

    ObjectiveTo investigate family functioning in families with an adolescent survivor of a pediatric brain tumor. We explored whether adolescent, parent, disease and treatment factors, and demographic characteristics predicted family functioning. MethodsIn this cross-sectional study, 45 adolescent

  14. Social Skills Training Interventions: A Promising Approach for Children Treated for Brain Tumors

    Science.gov (United States)

    Weinberger, Beverley Slome; Barakat, Lamia P.

    2007-01-01

    As a result of their disease, its treatment, and late effects, children treated for brain tumors are at risk for developing problems in social functioning in terms of social competence and peer acceptance, poor social skills, and social isolation. Despite research suggesting the effectiveness of social skills training interventions in improving…

  15. Care for consequences in children treated for leukemia or brain tumor

    NARCIS (Netherlands)

    Aukema, E.J.

    2013-01-01

    This thesis demonstrates that long-term brain tumor survivors suffer from several late effects of their disease and their treatment many years after having been cured. Not only survivors who were treated with surgery and adjuvant therapy, but also survivors who were treated with surgery only can

  16. Kinome Profiling in Pediatric Brain Tumors as a New Approach for Target Discovery

    NARCIS (Netherlands)

    Sikkema, Arend H.; Diks, Sander H.; den Dunnen, Wilfred F. A.; ter Elst, Arja; Scherpen, Frank J. G.; Hoving, Eelco W.; Ruijtenbeek, Rob; Boender, Piet J.; de Wijn, Rik; Kamps, Willem A.; Peppelenbosch, Maikel P.; de Bont, Eveline S. J. M.

    2009-01-01

    Progression in pediatric brain tumor growth is thought to be the net result of signaling through various protein kinase-mediated networks driving cell proliferation. Defining new targets for treatment of human malignancies, without a priori knowledge on aberrant cell signaling activity, remains

  17. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  18. Intraoperative fluorescence imaging for personalized brain tumor resection: Current state and future directions

    Directory of Open Access Journals (Sweden)

    Evgenii Belykh

    2016-10-01

    Full Text Available Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical theranostics. In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients, as well as future applications of recent laboratory and translational studies.Methods: Review of the literature.Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-ALA and ICG, less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine can be used for rapid tumor detection and pathological tissue examination. Other emerging agents such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.Conclusion: We are standing on the doorstep of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

  19. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, A.H.; Barth, R.F.

    1990-01-01

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  20. The efficacy of alginate encapsulated CHO-K1 single chain-TRAIL producer cells in the treatment of brain tumors

    NARCIS (Netherlands)

    Kuijlen, JMA; de Haan, BJ; Helfrich, W; de Boer, JF; Samplonius, D; Mooij, JJA; de Vos, P

    Objective: Patients with astrocytic tumors in the central nervous system (CNS) have low survival rates despite surgery and radiotherapy. Innovative therapies and strategies must be developed to prolong survival of these patients. The alginate microencapsulation method, used to continuously release a

  1. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Brain tumors and anorexia nervosa syndrome.

    Science.gov (United States)

    Chipkevitch, E

    1994-01-01

    This review presents 21 cases, found in the literature, of a CNS lesion (a tumor in 19 of them) associated with emaciation, anorexia and several psychic symptoms that had led to the diagnosis of anorexia nervosa (AN). Anorexia and psychic disturbances preceded the neurologic signs and/or the correct diagnosis in all patients (by a mean of 2.9 years, range = 0.2-17 years). Anorexia had begun before the age of 25 years in 18 patients of which two-thirds were females. Only a few cases fulfilled the DSM-III-R criteria for AN; the majority could be characterized as 'atypical AN'. Although AN is usually conceived as a primarily psychogenic disorder, structural lesions of the hypothalamus (or other sites involved in food regulation) in animal models and in these human cases mimic many features of AN, suggesting the possibility of an as yet unidentified structural hypothalamic disorder to be implicated in the etiopathogeny of AN. The unusually high incidence of germ-cell tumors in this review (33%) suggests that they are more likely than other tumors to influence the limbic system toward an anorectic syndrome.

  3. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.

    Science.gov (United States)

    Zhao, Xiaomei; Wu, Yihong; Song, Guidong; Li, Zhenye; Zhang, Yazhuo; Fan, Yong

    2018-01-01

    Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, treatment planning, and treatment outcome evaluation. Build upon successful deep learning techniques, a novel brain tumor segmentation method is developed by integrating fully convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified framework to obtain segmentation results with appearance and spatial consistency. We train a deep learning based segmentation model using 2D image patches and image slices in following steps: 1) training FCNNs using image patches; 2) training CRFs as Recurrent Neural Networks (CRF-RNN) using image slices with parameters of FCNNs fixed; and 3) fine-tuning the FCNNs and the CRF-RNN using image slices. Particularly, we train 3 segmentation models using 2D image patches and slices obtained in axial, coronal and sagittal views respectively, and combine them to segment brain tumors using a voting based fusion strategy. Our method could segment brain images slice-by-slice, much faster than those based on image patches. We have evaluated our method based on imaging data provided by the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 2013, BRATS 2015 and BRATS 2016. The experimental results have demonstrated that our method could build a segmentation model with Flair, T1c, and T2 scans and achieve competitive performance as those built with Flair, T1, T1c, and T2 scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  5. Application of contact laser in microsurgery of brain stem tumors

    Directory of Open Access Journals (Sweden)

    Jian-wen GU

    2011-02-01

    Full Text Available Objective To explore the therapeutic efficacy of a new type sapphire contact laser using wavelength-shifting technique on microsurgery of brain stem tumors.Methods The clinical data were retrospectively analyzed of 23 patients(13 males and 10 females,aged 6 to 69 years with an average of 38 years,and the duration of disease was 14 to 36 months with average of 22 months with brain stem tumor admitted from Mar.2006 to May 2010.The major symptoms of the patients were cranial nerve impairment,cerebellum function impairment or paralysis.All patients received microsurgical resection of brain stem tumor using sapphire contact laser through median suboccipital incision and posterior brain stem approach,and the tumors were resected with precision operation and vaporization and ablation.Results Of the 23 patients,4 were with glioma,15 with cavernous angioma,2 with angioreticuloma and 2 with metastatic tumor.Total resection was achieved in 15 cases,while subtotal resection(more than 80% in 6 cases.Intraoperative hemorrhage was less and no intraoperative blood transfusion was required.A 6-months follow-up showed symptoms recovered in 15 patients,improved in 4,unchanged in 2,and worsen in 1.One patient died of recurrence of tumor.No postoperative intracranial infection was occurred,and 2 patients were undergone tracheotomy after operation.The average hospital stay was 15d.Conclusion The contact laser can precisely dissect and vaporize the tumors,increase the resection rate,reduce intraoperative hemorrhage and accessory injuries,and has a clear and definite effect.

  6. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers.

    Science.gov (United States)

    Zhang, Fan; Mastorakos, Panagiotis; Mishra, Manoj K; Mangraviti, Antonella; Hwang, Lee; Zhou, Jinyuan; Hanes, Justin; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Kannan, Rangaramanujam M

    2015-06-01

    Effective blood-brain tumor barrier penetration and uniform solid tumor distribution can significantly enhance therapeutic delivery to brain tumors. Hydroxyl-functionalized, generation-4 poly(amidoamine) (PAMAM) dendrimers, with their small size, near-neutral surface charge, and the ability to selectively localize in cells associated with neuroinflammation may offer new opportunities to address these challenges. In this study we characterized the intracranial tumor biodistribution of systemically delivered PAMAM dendrimers in an intracranial rodent gliosarcoma model using fluorescence-based quantification methods and high resolution confocal microscopy. We observed selective and homogeneous distribution of dendrimer throughout the solid tumor (∼6 mm) and peritumoral area within fifteen minutes after systemic administration, with subsequent accumulation and retention in tumor associated microglia/macrophages (TAMs). Neuroinflammation and TAMs have important growth promoting and pro-invasive effects in brain tumors. The rapid clearance of systemically administered dendrimers from major organs promises minimal off-target adverse effects of conjugated drugs. Therefore, selective delivery of immunomodulatory molecules to TAM, using hydroxyl PAMAM dendrimers, may hold promise for therapy of glioblastoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. American brain tumor patients treated with BNCT in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  8. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    Energy Technology Data Exchange (ETDEWEB)

    Hartford, Alan C., E-mail: Alan.C.Hartford@Hitchcock.org [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Paravati, Anthony J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Spire, William J. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Li, Zhongze [Biostatistics Shared Resource, Norris Cotton Cancer Center, Lebanon, New Hampshire (United States); Jarvis, Lesley A. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Fadul, Camilo E. [Section of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Rhodes, C. Harker [Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Erkmen, Kadir [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Friedman, Jonathan [Department of Surgery, Texas A and M College of Medicine, College Station, Texas (United States); Gladstone, David J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Hug, Eugen B. [ProCure, New York, New York (United States); Roberts, David W.; Simmons, Nathan E. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States)

    2013-03-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  9. Systems biology of human epilepsy applied to patients with brain tumors.

    Science.gov (United States)

    Mittal, Sandeep; Shah, Aashit K; Barkmeier, Daniel T; Loeb, Jeffrey A

    2013-12-01

    Epilepsy is a disease of recurrent seizures that can be associated with a wide variety of acquired and developmental brain lesions. Current medications for patients with epilepsy can suppress seizures; they do not cure or modify the underlying disease process. On the other hand, surgical removal of focal brain regions that produce seizures can be curative. This surgical procedure can be more precise with the placement of intracranial recording electrodes to identify brain regions that generate seizure activity as well as those that are critical for normal brain function. The detail that goes into these surgeries includes extensive neuroimaging, electrophysiology, and clinical data. Combined with precisely localized tissues removed, these data provide an unparalleled opportunity to learn about the interrelationships of many "systems" in the human brain not possible in just about any other human brain disorder. Herein, we describe a systems biology approach developed to study patients who undergo brain surgery for epilepsy and how we have begun to apply these methods to patients whose seizures are associated with brain tumors. A central goal of this clinical and translational research program is to improve our understanding of epilepsy and brain tumors and to improve diagnosis and treatment outcomes of both. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  10. Gonadal status in male survivors following childhood brain tumors

    DEFF Research Database (Denmark)

    Schmiegelow, M; Lassen, S; Poulsen, H S

    2001-01-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males...

  11. Learning Profiles of Survivors of Pediatric Brain Tumors

    Science.gov (United States)

    Barkon, Beverly

    2009-01-01

    By 2010 it is predicted that one in 900 adults will be survivors of some form of pediatric cancer. The numbers are somewhat lower for survivors of brain tumors, though their numbers are increasing. Schools mistakenly believe that these children easily fit pre-existing categories of disability. Though these students share some of the…

  12. Life satisfaction in adult survivors of childhood brain tumors.

    Science.gov (United States)

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. © 2014 by Association of Pediatric Hematology/Oncology Nurses.

  13. Imaging brain tumor proliferative activity with [I-124]iododeoxyuridine

    NARCIS (Netherlands)

    Blasberg, RG; Roelcke, U; Weinreich, R; Beattie, B; von Ammon, K; Yonekawa, Y; Landolt, H; Guenther, [No Value; Crompton, NEA; Vontobel, P; Missimer, J; Maguire, RP; Koziorowski, J; Knust, EJ; Finn, RD; Leenders, KL

    2000-01-01

    Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [I-124]IUdR in 20 patients with brain tumors, including meningiomas and gliomas, The PET images were directly compared with

  14. Genetic abnormality predicts benefit for a rare brain tumor

    Science.gov (United States)

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  15. Multi-fractal detrended texture feature for brain tumor classification

    Science.gov (United States)

    Reza, Syed M. S.; Mays, Randall; Iftekharuddin, Khan M.

    2015-03-01

    We propose a novel non-invasive brain tumor type classification using Multi-fractal Detrended Fluctuation Analysis (MFDFA) [1] in structural magnetic resonance (MR) images. This preliminary work investigates the efficacy of the MFDFA features along with our novel texture feature known as multifractional Brownian motion (mBm) [2] in classifying (grading) brain tumors as High Grade (HG) and Low Grade (LG). Based on prior performance, Random Forest (RF) [3] is employed for tumor grading using two different datasets such as BRATS-2013 [4] and BRATS-2014 [5]. Quantitative scores such as precision, recall, accuracy are obtained using the confusion matrix. On an average 90% precision and 85% recall from the inter-dataset cross-validation confirm the efficacy of the proposed method.

  16. Banking Brain Tumor Specimens Using a University Core Facility.

    Science.gov (United States)

    Bregy, Amade; Papadimitriou, Kyriakos; Faber, David A; Shah, Ashish H; Gomez, Carmen R; Komotar, Ricardo J; Egea, Sophie C

    2015-08-01

    Within the past three decades, the significance of banking human cancer tissue for the advancement of cancer research has grown exponentially. The purpose of this article is to detail our experience in collecting brain tumor specimens in collaboration with the University of Miami/Sylvester Tissue Bank Core Facility (UM-TBCF), to ensure the availability of high-quality samples of central nervous system tumor tissue for research. Successful tissue collection begins with obtaining informed consent from patients following institutional IRB and federal HIPAA guidelines, and it needs a well-trained professional staff and continued maintenance of high ethical standards and record keeping. Since starting in 2011, we have successfully banked 225 brain tumor specimens for research. Thus far, the most common tumor histology identified among those specimens has been glioblastoma (22.1%), followed by meningioma (18.1%). The majority of patients were White, non-Hispanics accounting for 45.1% of the patient population; Hispanic/Latinos accounted for 23%, and Black/African Americans accounted for 14%, which represent the particular population of the State of Florida according to the 2010 census data. The most common tumors found in each subgroup were as follows: Black/African American, glioblastoma and meningioma; Hispanic, metastasis and glioblastoma; White, glioblastoma and meningioma. The UM-TBCF is a valuable repository, offering high-quality tumor samples from a unique patient population.

  17. Mitochondrial control by DRP1 in brain tumor initiating cells.

    Science.gov (United States)

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.

  18. Preoperative coiling of coexisting intracranial aneurysm and subsequent brain tumor surgery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Young; Kim, Byung Moon; Kim, Dong Joon [Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-11-15

    Few studies have investigated treatment strategies for brain tumor with a coexisting unruptured intracranial aneurysm (cUIA). The purpose of this study was to evaluate the safety and efficacy of preoperative coiling for cUIA, and subsequent brain tumor surgery. A total of 19 patients (mean age, 55.2 years; M:F = 4:15) underwent preoperative coiling for 23 cUIAs and subsequent brain tumor surgery. Primary brain tumors were meningiomas (n = 7, 36.8%), pituitary adenomas (n = 7, 36.8%), gliomas (n = 3, 15.8%), vestibular schwannoma (n = 1, 5.3%), and Rathke's cleft cyst (n = 1, 5.3%). cUIAs were located at the distal internal carotid artery (n = 9, 39.1%), anterior cerebral artery (n = 8, 34.8%), middle cerebral artery (n = 4, 17.4%), basilar artery top (n = 1, 4.3%), and posterior cerebral artery, P1 segment (n = 1, 4.3%). The outcomes of preoperative coiling of cUIA and subsequent brain tumor surgery were retrospectively evaluated. Single-microcatheter technique was used in 13 cases (56.5%), balloon-assisted in 4 cases (17.4%), double-microcatheter in 4 cases (17.4%), and stent-assisted in 2 cases (8.7%). Complete cUIA occlusion was achieved in 18 cases (78.3%), while residual neck occurred in 5 cases (21.7%). The only coiling-related complication was 1 transient ischemic attack (5.3%). Neurological deterioration did not occur in any patient during the period between coiling and tumor surgery. At the latest clinical follow-up (mean, 29 months; range, 2-120 months), 15 patients (78.9%) had favorable outcomes (modified Rankin Scale, 0-2), while 4 patients (21.1%) had unfavorable outcomes due to consequences of brain tumor surgery. Preoperative coiling and subsequent tumor surgery was safe and effective, making it a reasonable treatment option for patients with brain tumor and cUIA.

  19. Advance MRI for pediatric brain tumors with emphasis on clinical benefits

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Ra, Young Shin [Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of)

    2017-01-15

    Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors.

  20. Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment

    Science.gov (United States)

    ... specialists : Pediatrician . Pediatric neurosurgeon . Radiation oncologist . Neurologist . Pediatric nurse specialist . Rehabilitation specialist . Psychologist . Social worker . Geneticist or genetic counselor . Childhood brain tumors may cause signs or ...

  1. [Automatization and robotics of the set-up and treatment of patients irradiated for brain and base ot the skull tumors].

    Science.gov (United States)

    Noël, G; Ferrand, R; Feuvret, L; Boisserie, G; Meyroneinc, S; Mazeron, J J

    2003-11-01

    Progresses of the three-dimensional imageries and of the software of planning systems makes that the radiotherapy of the tumours of brain and the base of skull is increasingly precise. The set-up of the patients and the positioning of the beams are key acts whose realization can become extremely tiresome if the requirement of precision increases. This precision very often rests still on the visual comparison of digital images. In the near future, the development of the automated systems controlled by robots should allow a noticeable improvement of the precision, safety and speed of the patient set-up.

  2. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low......- and high-grade glioma patients – manually annotated by up to four raters – and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74...... a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  3. Executive Functions and Social Skills in Survivors of Pediatric Brain Tumor

    Science.gov (United States)

    Wolfe, Kelly R.; Walsh, Karin S.; Reynolds, Nina C.; Mitchell, Frances; Reddy, Alyssa T.; Paltin, Iris; Madan-Swain, Avi

    2012-01-01

    Medical advances have resulted in increased survival rates for children with brain tumors. Consequently, issues related to survivorship have become more critical. The use of multimodal treatment, in particular cranial radiation therapy, has been associated with subsequent cognitive decline. Specifically, deficits in executive functions have been reported in survivors of various types of pediatric brain tumor. Survivors are left with difficulties, particularly in self-monitoring, initiation, inhibition, and planning, to name a few. Another domain in which survivors of pediatric brain tumor have been reported to show difficulty is that of social skills. Parents, teachers, and survivors themselves have reported decreased social functioning following treatment. Deficits in executive functions and social skills are likely interrelated in this population, as executive skills are needed to navigate various aspects of social interaction; however, this has yet to be studied empirically. Twenty-four survivors of pediatric brain tumor were assessed using a computerized task of executive functions, as well as paper and pencil measures of social skills and real world executive skills. Social functioning was related to a specific aspect of executive functions, i.e., the survivors’ variability in response time, such that inconsistent responding was associated with better parent-report and survivor-report social skills, independent of intellectual abilities. Additionally, parent-reported real-world global executive abilities predicted parent-reported social skills. The implications of these findings for social skills interventions and future research are discussed. PMID:22420326

  4. Cortical hemosiderin is associated with seizures in patients with newly diagnosed malignant brain tumors.

    Science.gov (United States)

    Roelcke, Ulrich; Boxheimer, Larissa; Fathi, Ali Reza; Schwyzer, Lucia; Ortega, Marcos; Berberat, Jatta; Remonda, Luca

    2013-12-01

    Hemorrhage is common in brain tumors. Due to characteristic magnetic field changes induced by hemosiderin it can be detected using susceptibility weighted MRI (SWI). Its relevance to clinical syndromes is unclear. Here we investigated the patterns of intra-tumoral SWI positivity (SWI(pos)) as a surrogate for hemosiderin with regard to the prevalence of epilepsy. We report on 105 patients with newly diagnosed supra-tentorial gliomas and brain metastasis. The following parameters were recorded from pre-operative MRI: (1) SWI(pos) defined as dot-like or fine linear signal changes; (2) allocation of SWI(pos) to tumor compartments (contrast enhancement, central hypointensity, non-enhancing area outside contrast-enhancement); (3) allocation of SWI(pos) to include the cortex, or SWI(pos) in subcortical tumor parts only; (4) tumor size on T2 weighted and gadolinium-enhanced T1 images. 80 tumors (76 %) showed SWI(pos) (4/14 diffuse astrocytoma WHO II, 5/9 anaplastic astrocytoma WHO III, 41/46 glioblastoma WHO IV, 30/36 metastasis). The presence of SWI(pos) depended on tumor size but not on patient's age, medication with antiplatelet drugs or anticoagulation. Seizures occurred in 60 % of patients. Cortical SWI(pos) significantly correlated with seizures in brain metastasis (p = 0.044), and as a trend in glioblastoma (p = 0.062). Cortical SWI(pos) may confer a risk for seizures in patients with newly diagnosed brain metastasis and glioblastoma. Whether development of cortical SWI(pos) induced by treatment or by the natural course of tumors also leads to the new onset of seizures has to be addressed in longitudinal studies in larger patient cohorts.

  5. [Diagnostic and treatment of carotid bodies tumors].

    Science.gov (United States)

    Tonev, A; Zakhariev, T

    2007-01-01

    Carotid body tumor is rare neoplasm (about 0,5 per cent of all tumors).[28]. The tumor arise from paraganglionic cells of carotid body, which develops from both mesodermal elements of the third branchial arch and neural elements originating from the neural crest ectoderm.[25]. Mathews warned: "this rare tumor presents unusual difficulties to the surgeon, and should one encounter it without having suspected the diagnosis, the experience will not soon be forgotten".[19]. The aim of this retrospective study is to investigate the frequency, number of spreading and results from the treatment in patients with carotid bodies tumors. Eleven patients (2,58%) with carotid bodies tumors were diagnosed and operated under upon from January 1990 to June 2007 at the "Department of Vascular surgery and Angiology" of "St. Ekaterina" University hospital - Sofia, from commonly 427 surgical intervention in the area of carotid triangle for the same period. The clinical picture, operating time and blood loss during the surgery were examined. Careful subadventitial dissection was used like a method, which have to reduce the number of postoperative complications and blood loss. All 11 patients were operated upon with endotrachial anesthesia and in two of them there was intracranial nerves injure, reconstruction of carotid artery has established in two of the patients. In the early postoperative period there was disphagia in three of the patients, four were with partial damage of n. hypoglossus, two- with damage of the face branch of n. facialis and six with parasthesia at the operated side. CT angiography of carotid bifurcation has established as basic method in the diagnostic. Total extirpation of the tumor remains the basic method of treatment from high quality specialists in carotid surgery. Careful subadvetitial dissection and accuracy excision allow the whole separation of the tumor from the carotid bifurcation without traumatic lesion. [28].

  6. History and evolution of brain tumor imaging: insights through radiology.

    Science.gov (United States)

    Castillo, Mauricio

    2014-11-01

    This review recounts the history of brain tumor diagnosis from antiquity to the present and, indirectly, the history of neuroradiology. Imaging of the brain has from the beginning held an enormous interest because of the inherent difficulty of this endeavor due to the presence of the skull. Because of this, most techniques when newly developed have always been used in neuroradiology and, although some have proved to be inappropriate for this purpose, many were easily incorporated into the specialty. The first major advance in modern neuroimaging was contrast agent-enhanced computed tomography, which permitted accurate anatomic localization of brain tumors and, by virtue of contrast enhancement, malignant ones. The most important advances in neuroimaging occurred with the development of magnetic resonance imaging and diffusion-weighted sequences that allowed an indirect estimation of tumor cellularity; this was further refined by the development of perfusion and permeability mapping. From its beginnings with indirect and purely anatomic imaging techniques, neuroradiology now uses a combination of anatomic and physiologic techniques that will play a critical role in biologic tumor imaging and radiologic genomics.

  7. Optical spectroscopy for stereotactic biopsy of brain tumors

    Science.gov (United States)

    Markwardt, Niklas; von Berg, Anna; Fiedler, Sebastian; Goetz, Marcus; Haj-Hosseini, Neda; Polzer, Christoph; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2015-07-01

    Stereotactic biopsy procedure is performed to obtain a tissue sample for diagnosis purposes. Currently, a fiber-based mechano-optical device for stereotactic biopsies of brain tumors is developed. Two different fluorophores are employed to improve the safety and reliability of this procedure: The fluorescence of intravenously applied indocyanine green (ICG) facilitates the recognition of blood vessels and thus helps minimize the risk of cerebral hemorrhages. 5- aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence is used to localize vital tumor tissue. ICG fluorescence detection using a 2-fiber probe turned out to be an applicable method to recognize blood vessels about 1.5 mm ahead of the fiber tip during a brain tumor biopsy. Moreover, the suitability of two different PpIX excitation wavelengths regarding practical aspects was investigated: While PpIX excitation in the violet region (at 405 nm) allows for higher sensitivity, red excitation (at 633 nm) is noticeably superior with regard to blood layers obscuring the fluorescence signal. Contact measurements on brain simulating agar phantoms demonstrated that a typical blood coverage of the tumor reduces the PpIX signal to about 75% and nearly 0% for 633 nm and 405 nm excitation, respectively. As a result, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy.

  8. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood central nervous system (CNS) germ cell tumors form from germ cells (a type of cell that forms as a fetus develops and later becomes sperm in the testicles or eggs in the ovaries). Learn about the signs, tests to diagnose, and treatment of pediatric germ cell tumors in the brain in this expert-reviewed summary.

  9. Family factors associated with academic achievement deficits in pediatric brain tumor survivors.

    Science.gov (United States)

    Ach, Emily; Gerhardt, Cynthia A; Barrera, Maru; Kupst, Mary Jo; Meyer, Eugene A; Patenaude, Andrea F; Vannatta, Kathryn

    2013-08-01

    The purpose of this study is to examine whether parental education, socioeconomic status, or family environment moderate the extent of academic achievement deficits in pediatric brain tumor survivors (PBTS) relative to classmate case-controls. PBTS are known to be at risk for cognitive and academic impairment; however, the degree of impairment varies. Prior research has focused on treatment risk, and efforts to examine the protective role of family resources and relationships have been lacking. Pediatric brain tumor survivors (N = 164), ages 8-15 and 1-5 years posttreatment, were recruited at five treatment centers in the United States and Canada. A case-control classmate, matched for age, gender, and race, was recruited for each survivor. The Wide Range Achievement Test, a demographic form, and the Family Environment Scale were administered in families' homes. Treatment data were abstracted from medical charts. Pediatric brain tumor survivors demonstrated lower achievement than classmate-controls in reading, spelling, and arithmetic. Parental education and socioeconomic status were associated with levels of achievement demonstrated by PBTS but did not account for discrepancies between PBTS and classmate-controls. Deficits in achievement relative to classmate-controls, across all academic domains, were greater for survivors in families lower in support and higher in conflict. These associations remained after controlling for age at diagnosis, time since treatment, and whether treatment had involved chemotherapy, focal, or whole brain radiation. These results support the development of interventions to enhance family functioning as well as educational resources as part of intervention and rehabilitation services to optimize academic progress in children who have been treated for brain tumors. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    Science.gov (United States)

    2016-11-21

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  11. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis.

    Science.gov (United States)

    Lian, Yanyun; Song, Zhijian

    2014-01-01

    Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning, treatment planning, monitoring of therapy. However, manual tumor segmentation commonly used in clinic is time-consuming and challenging, and none of the existed automated methods are highly robust, reliable and efficient in clinic application. An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results. Based on the symmetry of human brain, we employed sliding-window technique and correlation coefficient to locate the tumor position. At first, the image to be segmented was normalized, rotated, denoised, and bisected. Subsequently, through vertical and horizontal sliding-windows technique in turn, that is, two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image, along with calculating of correlation coefficient of two windows, two windows with minimal correlation coefficient were obtained, and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor. At last, the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length, and threshold segmentation and morphological operations were used to acquire the final tumor region. The method was evaluated on 3D FSPGR brain MR images of 10 patients. As a result, the average ratio of correct location was 93.4% for 575 slices containing tumor, the average Dice similarity coefficient was 0.77 for one scan, and the average time spent on one scan was 40 seconds. An fully automated, simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use. Correlation coefficient is a new and effective feature for tumor location.

  12. Brain tumor segmentation and characterization by pattern analysis of multispectral NMR images.

    Science.gov (United States)

    Soltanian-Zadeh, H; Peck, D J; Windham, J P; Mikkelsen, T

    1998-01-01

    A major problem in tumor treatment planning and evaluation is determination of the tumor extent. This paper presents a pattern analysis methodology for segmentation and characterization of brain tumors from multispectral NMR images. The proposed approach has been used in 15 clinical studies of cerebral tumor patients who have been scheduled for surgical biopsy and resection. The tissue biopsy results, obtained at specific spatial coordinates determined in the analysis, have been utilized to validate the methodology. It was found that in all cases the lesion had extended into normal tissue, at least to the location where the sample was taken. In most cases, the proposed method suggested that the lesion had extended several millimetres beyond the point from where the biopsy sample was taken. In some cases, the extent of the lesion into normal tissue was well beyond the boundary seen on T1- or T2-weighted images. It is concluded that the proposed approach indicates brain tumor infiltration more precisely than what is visualized in the original NMR images and therefore its utilization facilitates proper treatment planning for the cerebral tumor patients.

  13. Brain tumor segmentation using holistically nested neural networks in MRI images.

    Science.gov (United States)

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-10-01

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  14. Direct intratumoral application of radioactive substances (/sup 32/P-colloid) and chemotherapeutic agents (BCNU) as a multimodal treatment of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, H.W.; Brock, M.; Franke, A.

    1987-12-01

    The multimodal approach to the treatment of inoperable gliomas is exemplified by the report of a case of astrocytoma IV (WHO). This ist the first application of a liquid nucleid (/sup 32/P) in combination with a chemotherapeutic substance (BCNU). This treatment was performed on a comatose patient who had already been given up, and who was suffering from a right-sided cystic temporal glioblastoma. An improvement of the life quality and of neurological symptoms over a period of 2 1/2 months resulted.

  15. Resilience and Coping Strategies Influencing the Quality of Life in Patients With Brain Tumor.

    Science.gov (United States)

    Pan, Chiu-Ju; Liu, Hui-Chun; Liang, Shu-Yuan; Liu, Chieh-Yu; Wu, Wei-Wen; Cheng, Su-Fen

    2017-06-01

    The study purpose was to evaluate how much of the variance in quality of life (QOL) among Taiwanese patients with brain tumor could be accounted for by resilience and coping strategy. This cross-sectional study included 95 patients who had undergone a treatment of operations or chemotherapy or radiotherapy relevant to brain tumor after at least 1 month and completed the European Organization for Research and Treatment of Cancer QOL Questionnaire-Brain Cancer Module (EORTC QLQ-BN20), Resilience Scale (RS), and Ways of Coping Checklist-Revised (WCC-R). There was a significant negative correlation between resilience and future uncertainty QOL and motor dysfunction QOL. In addition, there was a significant positive correlation between the emotion-focused coping and future uncertainty QOL, as well as a significant negative correlation between problem-focused coping and motor dysfunction QOL. Resilience accounted for 4.8% and the emotion-focused coping accounted for 10.20% of the variance in separately predicting the future uncertainty QOL. This study highlights the potential importance of resilience and coping strategies in patients' QOL, which is relevant to brain tumor treatment.

  16. BRAIN TUMOR SEGMENTATION WITH SYMMETRIC TEXTURE AND SYMMETRIC INTENSITY-BASED DECISION FORESTS.

    Science.gov (United States)

    Bianchi, Anthony; Miller, James V; Tan, Ek Tsoon; Montillo, Albert

    2013-04-01

    Accurate automated segmentation of brain tumors in MR images is challenging due to overlapping tissue intensity distributions and amorphous tumor shape. However, a clinically viable solution providing precise quantification of tumor and edema volume would enable better pre-operative planning, treatment monitoring and drug development. Our contributions are threefold. First, we design efficient gradient and LBPTOP based texture features which improve classification accuracy over standard intensity features. Second, we extend our texture and intensity features to symmetric texture and symmetric intensity which further improve the accuracy for all tissue classes. Third, we demonstrate further accuracy enhancement by extending our long range features from 100mm to a full 200mm. We assess our brain segmentation technique on 20 patients in the BraTS 2012 dataset. Impact from each contribution is measured and the combination of all the features is shown to yield state-of-the-art accuracy and speed.

  17. Intelligence deficits in Chinese patients with brain tumor: the impact of tumor resection.

    Science.gov (United States)

    Shen, Chao; Xie, Rong; Cao, Xiaoyun; Bao, Weimin; Yang, Bojie; Mao, Ying; Gao, Chao

    2013-01-01

    Intelligence is much important for brain tumor patients after their operation, while the reports about surgical related intelligence deficits are not frequent. It is not only theoretically important but also meaningful for clinical practice. Wechsler Adult Intelligence Scale was employed to evaluate the intelligence of 103 patients with intracranial tumor and to compare the intelligence quotient (IQ), verbal IQ (VIQ), and performance IQ (PIQ) between the intracerebral and extracerebral subgroups. Although preoperative intelligence deficits appeared in all subgroups, IQ, VIQ, and PIQ were not found to have any significant difference between the intracerebral and extracerebral subgroups, but with VIQ lower than PIQ in all the subgroups. An immediate postoperative follow-up demonstrated a decline of IQ and PIQ in the extracerebral subgroup, but an improvement of VIQ in the right intracerebral subgroup. Pituitary adenoma resection exerted no effect on intelligence. In addition, age, years of education, and tumor size were found to play important roles. Brain tumors will impair IQ, VIQ, and PIQ. The extracerebral tumor resection can deteriorate IQ and PIQ. However, right intracerebral tumor resection is beneficial to VIQ, and transsphenoidal pituitary adenoma resection performs no effect on intelligence.

  18. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice

    Directory of Open Access Journals (Sweden)

    Haveman Jaap

    2007-09-01

    Full Text Available Abstract Background High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models– high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic brain tumors. Methods Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 × 105 U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BEDtumor = 30.6 Gy. Results In the sham group, 9/10 animals (90% showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18% died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals. Conclusion The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy– without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy.

  19. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  20. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Science.gov (United States)

    Ciregia, Federica; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Extracellular vesicles (EVs) can be classified into apoptotic bodies, microvesicles (MVs), and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM), neuroblastoma (NB), medulloblastoma (MB), and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis. PMID:28912682

  1. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  2. Confocal laser endomicroscopy for brain tumor surgery: a milestone journey from microscopy to cellular surgery (Conference Presentation)

    Science.gov (United States)

    Charalampaki, Cleopatra

    2017-02-01

    The aim in brain tumor surgery is maximal tumor resection with minimal damage of normal neuronal tissue. Today diagnosis of tumor and definition of tumor borders intraoperatively is based on various visualization methods as well as on the histopathologic examination of a limited number of biopsy specimens via frozen sections. Unfortunately, intraoperative histopathology bears several shortcomings, and many biopsies are inconclusive. Therefore, the desirable treatment could be to have the ability to identify intraoperative cellular structures, and differentiate tumor from normal functional brain tissue on a cellular level. To achieve this goal new technological equipment integrated with new surgical concepts is needed.Confocal Laser Endomicroscopy (CLE) is an imaging technique which provides microscopic information of tissue in real-time. We are able to use these technique to perform intraoperative "optical biopsies" in bringing the microscope inside to the patients brain through miniaturized fiber-optic probes, and allow real-time histopathology. In our knowledge we are worldwide the only one neurosurgical group using CLE intraoperative for brain tumor surgery. We can detect and characterize intraoperative tumor cells, providing immediate online diagnosis without the need for frozen sections. It also provides delineation of borders between tumor and normal tissue on a cellular level, making surgical margins more accurate than ever before. The applications of CLE-assisted neurosurgery help to accurate the therapy by extending the resection borders and protecting the functionality of normal brain tissue in critical eloquent areas.

  3. Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients

    Directory of Open Access Journals (Sweden)

    Douw Linda

    2010-08-01

    Full Text Available Abstract Background Both epilepsy patients and brain tumor patients show altered functional connectivity and less optimal brain network topology when compared to healthy controls, particularly in the theta band. Furthermore, the duration and characteristics of epilepsy may also influence functional interactions in brain networks. However, the specific features of connectivity and networks in tumor-related epilepsy have not been investigated yet. We hypothesize that epilepsy characteristics are related to (theta band connectivity and network architecture in operated glioma patients suffering from epileptic seizures. Included patients participated in a clinical study investigating the effect of levetiracetam monotherapy on seizure frequency in glioma patients, and were assessed at two time points: directly after neurosurgery (t1, and six months later (t2. At these time points, magnetoencephalography (MEG was recorded and information regarding clinical status and epilepsy history was collected. Functional connectivity was calculated in six frequency bands, as were a number of network measures such as normalized clustering coefficient and path length. Results At the two time points, MEG registrations were performed in respectively 17 and 12 patients. No changes in connectivity or network topology occurred over time. Increased theta band connectivity at t1 and t2 was related to a higher total number of seizures. Furthermore, higher number of seizures was related to a less optimal, more random brain network topology. Other factors were not significantly related to functional connectivity or network topology. Conclusions These results indicate that (pathologically increased theta band connectivity is related to a higher number of epileptic seizures in brain tumor patients, suggesting that theta band connectivity changes are a hallmark of tumor-related epilepsy. Furthermore, a more random brain network topology is related to greater vulnerability to

  4. Computer-Aided Detection of Brain Tumors Using Morphological Reconstruction

    Directory of Open Access Journals (Sweden)

    Buket DOĞAN

    2016-11-01

    Full Text Available Computer aided detection (CAD systems helps the detection of abnormalities in medical images using advanced image processing and pattern recognition techniques. CAD has advantages in accelerating decision-making and reducing the human error in detection process. In this study, a CAD system is developed which is based on morphological reconstruction and classification methods with the use of morphological features of the regions of interest to detect brain tumors from brain magnetic resonance (MR images. The CAD system consists of four stages: the preprocessing, the segmentation, region of interest specification and tumor detection stages. The system is evaluated on REMBRANDT dataset with 497 MR image slices of 10 patients. In the classification stage the performance of CAD has achieved accuracy of 93.36% with Decision Tree Algorithm, 94.89% with Artificial Neural Network (Multilayer Perceptron, 96.93% with K-Nearest Neighbour Algorithm and 96.93% with  Meta-Learner (Decorate Algorithm. These results show that the proposed technique is effective and promising for detecting tumors in brain MR images and enhances the classification process to be more accurate. The using morphological reconstruction method is useful and adaptive than the methods used in other CAD applications.

  5. Cognitive tasks challenging brain tumor survivors at work.

    Science.gov (United States)

    Collins, Courtney; Gehrke, Amanda; Feuerstein, Michael

    2013-12-01

    To identify problematic work tasks involving cognitive function in employed brain tumor survivors. Work tasks involving cognitive functions were compared between employed brain tumor survivors (n = 137) and a disease-free group (n = 96). Multivariable logistic regressions were conducted. In the brain tumor survivors, 44% (26/59) of work tasks were more likely to be problematic. Top five problematic work tasks included were as follows: following the flow of events (odds ratio [OR] = 11.72; 95% confidence interval [CI] = 3.19 to 43.07), remembering train of thought while speaking (OR = 11.70; 95% CI = 5.25 to 26.10), putting together materials for a task (OR = 10.90; 95% CI = 2.80 to 42.38), shifting between tasks (OR = 10.71; 95% CI = 3.62 to 31.74), and following written instructions (OR = 9.96; 95% CI = 2.65 to 37.41). Findings identified problematic work tasks involving major domains of cognitive function.

  6. APOE polymorphisms and cognitive functions in patients with brain tumors.

    Science.gov (United States)

    Correa, Denise D; Satagopan, Jaya; Baser, Raymond E; Cheung, Kenneth; Richards, Elizabeth; Lin, Michael; Karimi, Sasan; Lyo, John; DeAngelis, Lisa M; Orlow, Irene

    2014-07-22

    The goal of this study was to assess whether the APOE ε4 allele and other APOE single nucleotide polymorphisms (SNPs) influence neuropsychological and neuroimaging outcomes in patients with brain tumors. Two hundred eleven patients with brain tumors participated in the study. All patients completed standardized neuropsychological tests and provided a blood sample for APOE genotyping. Ratings of white matter abnormalities were performed on MRI scans. Patients were classified into 2 groups based on the presence (n = 50) or absence (n = 161) of at least one APOE ε4 allele. Additional APOE SNPs were genotyped in a subset of 150 patients. Patients with at least one APOE ε4 allele had significantly lower scores in verbal learning and delayed recall, and marginally significant lower scores in executive function, in comparison to noncarriers of an ε4 allele. Patients with at least one ε4 allele and history of cigarette smoking had significantly higher scores in working memory and verbal learning than ε4 carriers who never smoked. Nine additional APOE SNPs were significantly associated with attention and executive and memory abilities. There were no significant differences between ε4 carriers and noncarriers on the extent of white matter abnormalities on MRI. The findings suggest that patients with brain tumors who are carriers of the APOE ε4 allele may have increased vulnerability to developing memory and executive dysfunction, and that additional SNPs in the APOE gene may be associated with cognitive outcome. © 2014 American Academy of Neurology.

  7. Evaluation of the increase in permeability of the blood-brain barrier during tumor progression after pulsed focused ultrasound.

    Science.gov (United States)

    Yang, Feng-Yi; Wang, Hsin-Ell; Lin, Guan-Liang; Lin, Hui-Hsien; Wong, Tai-Tong

    2012-01-01

    The purpose of this study was to evaluate the permeability of the blood-brain barrier after sonication by pulsed high-intensity focused ultrasound and to determine if such an approach increases the tumor:ipsilateral brain permeability ratio. F98 glioma-bearing Fischer 344 rats were injected intravenously with Evans blue with or without blood-tumor barrier disruption induced by transcranial pulsed high-intensity focused ultrasound. Sonication was applied at a frequency of 1 MHz with a 5% duty cycle and a repetition frequency of 1 Hz. The permeability of the blood-brain barrier was assessed by the extravasation of Evans blue. Contrast-enhanced magnetic resonance images were used to monitor the gadolinium deposition path associated with transcranial pulsed high-intensity focused ultrasound, and the influencing size and location was also investigated. In addition, whole brain histological analysis was performed. The results were compared by two-tailed unpaired t-test. The accumulation of Evans blue in brains and the tumor:ipsilateral brain permeability ratio of Evans blue were significantly increased after pulsed high-intensity focused ultrasound exposure. Evans blue injection followed by sonication showed an increase in the tumor:ipsilateral brain ratio of the target tumors (9.14:1) of about 2.23-fold compared with the control tumors (x4.09) on day 6 after tumor implantation. Magnetic resonance images showed that pulsed high-intensity focused ultrasound locally enhances the permeability of the blood-tumor barrier in the glioma-bearing rats. This method could allow enhanced synergistic effects with respect to other brain tumor treatment regimens.

  8. A prospective pilot study of two-session Gamma Knife surgery for large metastatic brain tumors.

    Science.gov (United States)

    Yomo, Shoji; Hayashi, Motohiro; Nicholson, Claire

    2012-08-01

    The purpose of this prospective study is to evaluate the efficacy and limitations of two-session Gamma Knife radiosurgery (GKS) alone for large metastatic brain tumors. Inclusion criteria were as follows: (i) patients with large metastatic brain tumors (volume >15 cm(3) in the supratentorial region or >10 cm(3) in the infratentorial region), and (ii) tumors not causing clinical signs of impending cerebral herniation. Twenty-eight lesions in 27 consecutive patients (18 men and 9 women, age range 32 to 88 years, median age 65 years) were included in this study. The radiosurgical protocol was as follows: 20-30 Gy given in two fractions 3-4 weeks apart. The local tumor control rate and the overall survival rate were calculated by using the Kaplan-Meier method. Median tumor volumes were 17.8 cm(3) at first GKS and 9.7 cm(3) at second GKS. Median follow-up time was 8.9 months. The local control rate was 85 % at 6 months and 61 % at 12 months. The overall survival rate after GKS was 63 % at 6 months and 45 % at 12 months. The 1-year rate of prevention of neurological death was maintained at 78 %. Mean Karnofsky performance status (KPS) improved from 61 [95 % confidence interval (CI), 57-71] at first GKS to 80 (95 % CI, 74-85) at second GKS; the best follow-up mean KPS was 85 (95 % CI, 78-91) (p session GKS for large brain metastases appears to be an effective treatment in terms of both local tumor control and neurological palliation with minimal treatment-related morbidity. These data suggest that two-session GKS could be used as an alternative to surgical resection of large tumors in patients with significant comorbidity and/or at an advanced age. The optimum regimen for dose and fraction schedule remains to be established.

  9. Volumetric multimodality neural network for brain tumor segmentation

    Science.gov (United States)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  10. Adult Central Nervous System Tumors Treatment (PDQ®)-Patient Version

    Science.gov (United States)

    ... pineal astrocytic tumor forms in tissue around the pineal gland and may be any grade. The pineal gland is a tiny organ in the brain that ... the cells that make up most of the pineal gland. These tumors are different from pineal astrocytic tumors. ...

  11. Increased frontal functional networks in adult survivors of childhood brain tumors

    Directory of Open Access Journals (Sweden)

    Hongbo Chen

    2016-01-01

    Full Text Available Childhood brain tumors and associated treatment have been shown to affect brain development and cognitive outcomes. Understanding the functional connectivity of brain many years after diagnosis and treatment may inform the development of interventions to improve the long-term outcomes of adult survivors of childhood brain tumors. This work investigated the frontal region functional connectivity of 16 adult survivors of childhood cerebellar tumors after an average of 14.9 years from diagnosis and 16 demographically-matched controls using resting state functional MRI (rs-fMRI. Independent component analysis (ICA was applied to identify the resting state activity from rs-fMRI data and to select the specific regions associated with executive functions, followed by the secondary analysis of the functional networks connecting these regions. It was found that survivors exhibited differences in the functional connectivity in executive control network (ECN, default mode network (DMN and salience network (SN compared to demographically-matched controls. More specifically, the number of functional connectivity observed in the survivors is higher than that in the controls, and with increased strength, or stronger correlation coefficient between paired seeds, in survivors compared to the controls. Observed hyperconnectivity in the selected frontal functional network thus is consistent with findings in patients with other neurological injuries and diseases.

  12. A Nonparametric model for Brain Tumor Segmentation and Volumetry in Longitudinal MR Sequences

    OpenAIRE

    Alberts, Esther; Charpiat, Guillaume; Tarabalka, Yuliya; Huber, Thomas; Weber, Marc-André; Bauer, Jan; Zimmer, Claus; Menze, Bjoern H.

    2015-01-01

    International audience; Brain tumor image segmentation and brain tumor growth assessment are inter-dependent and benet from a joint evaluation. Starting from a generative model for multimodal brain tumor segmentation, we make use of a nonparametric growth model that is implemented as a conditional random field (CRF) including directed links with infinite weight in order to incorporate growth and inclusion constraints, reflecting our prior belief on tumor occurrence in the dierent image modali...

  13. Childhood Brain Stem Glioma Treatment

    Science.gov (United States)

    ... factors for brain stem glioma include: Having certain genetic disorders , such as neurofibromatosis type 1 (NF1). The signs and symptoms of brain stem glioma are not the same in every child. Signs ...

  14. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    NARCIS (Netherlands)

    Meyners, Thekla; Heisterkamp, Christine; Kueter, Jan-Dirk; Veninga, Theo; Stalpers, Lukas J. A.; Schild, Steven E.; Rades, Dirk

    2010-01-01

    This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI) alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from escalating the

  15. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    NARCIS (Netherlands)

    Meyners, T.; Heisterkamp, C.; Kueter, J.D.; Veninga, T.; Stalpers, L.J.A.; Schild, S.E.; Rades, D.

    2010-01-01

    Background: This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI) alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from

  16. Stereotactic radiosurgery for the treatment of brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Hiyama, Hirofumi; Arai, Koji; Izawa, Masahiro; Takakura, Kintomo [Tokyo Women`s Medical Coll. (Japan). Neurological Inst.

    1996-02-01

    The treatment outcome of the metastatic brain tumor in Tokyo Women`s Medical College was reported, and it was described on present state and problem of radiosurgery (RS). One hundred five lesions of 50 patients (male 36, female 12, age 27-85 years) undertaken RS by gamma knife were studied. The primary lesions were the lungs in 23 patients, digestive tract in 12, mammary gland in 4, kidney in 3, thyroid gland in 13, prostate gland in 2 and the other in 3. Thirty nine patients had primary tumor, and 11 patients had recurrent tumor. The volume of 105 lesions was 0.03-56 ml (mean 6.4 ml), and the treatment was carried out for these tumors at average maximum dose 47Gy, average limbic dosage 23Gy. In the image findings, elimination of 46 lesions (44%), reduction of 39 lesions (37%), unchangeable 7 lesions (7%), increase of 13 lesions (13%) were recognized, and tumor reduction rate 81%, local control rate 88% were obtained. The local control rate was around 90% of the tumor, which seize was 15 ml or less. After the treatment, radionecrosis were suspected in 2 lesions of 1 patient. Appearance or aggravation of the edema by the radiation were observed 1-2 month after the treatment in 6 lesions of 5 patients. By the treatment, the following were improved: the hemiplegia in 9 patients, the aphasia in 2, the vertigo in 3. On prognosis, 21 of 46 patients except for the uncertain 4 were alive and 25 died. Through RS is the therapy which is very effective for the metastatic brain tumor, it also exists on some problems to be reached. (A.N.).

  17. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    Science.gov (United States)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  18. Recent advances in brain tumor-targeted nano-drug delivery systems.

    Science.gov (United States)

    Liu, Yu; Lu, Weiyue

    2012-06-01

    Brain tumors represent one of the most challenging and difficult areas in unmet medical needs. Fortunately, the past decade has seen momentous developments in brain tumor research in terms of brain tumor-targeted novel nano-drug delivery systems with significant important superiority over conventional formulations with respect to decreased toxicity and improved pharmacokinetics/pharmacodynamics. This review first introduces the characteristics of the two major obstacles in brain-tumor targeted delivery, blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), and then reviews recent advances in brain tumor-targeted novel nano-drug delivery systems according to their targeting strategies aimed at different stages of brain tumor development and growth. Based on continuously changing vascular characteristics of brain tumors at different development and growth stages, we propose the concept of 'whole-process targeting' for brain tumor for nano-drug delivery systems, referring to a series of overall targeted drug delivery strategies aimed at key points during the whole development of brain tumors.

  19. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell...

  20. TREATMENT OF SINGLE BRAIN METASTASIS - RADIOTHERAPY ALONE OR COMBINED WITH NEUROSURGERY

    NARCIS (Netherlands)

    VECHT, CJ; HAAXMAREICHE, H; NOORDIJK, EM; PADBERG, GW; VOORMOLEN, JHC; HOEKSTRA, FH; TANS, JTJ; LAMBOOIJ, N; METSAARS, JAL; WATTENDORFF, AR; BRAND, R; HERMANS, J

    Most patients treated for single or multiple brain metastases die from progression of extracranial tumor activity. This makes it uncertain whether the combination of neurosurgery and radiotherapy for treatment of single brain metastasis will lead to better results than less invasive treatment with

  1. Quality of Life Among Parents of Adolescent and Young Adult Brain Tumor Survivors.

    Science.gov (United States)

    Buchbinder, David K; Fortier, Michelle A; Osann, Kathryn; Wilford, Justin; Shen, Violet; Torno, Lilibeth; Sender, Leonard S; Parsons, Susan K; Wenzel, Lari

    2017-11-01

    We aimed to describe the quality of life (QOL) among parents of adolescent and young adult brain tumor survivors as well as parent, survivor, and diagnosis/treatment-related factors associated with adverse QOL. A cross-sectional study of 28 parents of adolescent and young adult brain tumor survivors (who were on average 10 y postdiagnosis) was used to assess QOL. Parent QOL was measured using the Patient-Reported Outcomes Measurement Information System Global Health measure. Factors associated with adverse parent QOL were explored using logistic regression including: parent, survivor, and diagnosis/treatment-related factors. Parent QOL was within the normal range; however, 40% scored below the clinical threshold of 0.5 SD below the mean for physical and mental health. Parent perceptions of greater family impact, survivor emotional/behavioral health problems, improved cognitive function, and recurrence were associated with adverse parent physical health. Parent anger/sorrow, uncertainty, survivor emotional/behavioral health problems, speech/language problems, and recurrence were associated with adverse parent mental health. Parental emotional resources and perceptions of improved survivor peer relationships were associated with greater parent physical and mental health. The impact of a brain tumor diagnosis and treatment on the QOL of parents may be significant. Interventions are needed to ensure that the needs of parents are met.

  2. Metronomic photodynamic therapy (mPDT) -- headlights to lead the way forward: technical feasibility and rationale in brain tumor

    Science.gov (United States)

    Bisland, Stuart L.; Lilge, Lothar D.; Lin, Annie; Bogaards, Arjen; Wilson, Brian C.

    2003-12-01

    The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are deliverd continuously at low rates over extended periods in order to increase selective tumor cell kill through apoptosis. The focus of the present work is on mPDT treatment of malignant brain tumors, in which selectivity between damage to tumor cells versus normal brain tissue is critical. Previous studies have shown taht low-dose PDT using aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) can induce apoptosis in tumor cells within causing nectrosis in either tumor or normal brain tissue or apoptosis in teh latter. In order to produce enough tumor cell kill to be an effective therapy, multiple PDT treatments, such as hyperfractionation or metronomic delivery, are likely required, based on the levels of apoptosis achieved and model calculations of tumor growth rates. mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of interstitial devices for extended light delivery while allowing free movement. In rat models ALAL administration via the drinking water has been accomplished at significant doesse (up to 10 times therapeutic dose) for up to 10 days, and ex vivo spectrofluorimetry of tumor, normal brain and other tissues post mortem demonstrates a 3-4 increase in the tumor-to-brain concentration of PpIX, without toxicity. Prototype light sources and delivery devices are also shown to be practical, either using laser diode or light emitting diode (LED) coupled to an implanted optical fiber in the case of the rat model or a directly-implanted LED in rabbits. The combined delivery of both drug and light over an extended period, with survival of the animls, is demonstrated. Preliminary evidence of selective aopotosis of tumor under these conditions is presented.

  3. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  4. Oncolytic Herpes Simplex Virus Inhibits Pediatric Brain Tumor Migration and Invasion

    Directory of Open Access Journals (Sweden)

    Julia V. Cockle

    2017-06-01

    Full Text Available Pediatric high-grade glioma (pHGG and diffuse intrinsic pontine glioma (DIPG are invasive tumors with poor survival. Oncolytic virotherapy, initially devised as a direct cytotoxic treatment, is now also known to act via immune-mediated mechanisms. Here we investigate a previously unreported mechanism of action: the inhibition of migration and invasion in pediatric brain tumors. We evaluated the effect of oncolytic herpes simplex virus 1716 (HSV1716 on the migration and invasion of pHGG and DIPG both in vitro using 2D (scratch assay, live cell imaging and 3D (spheroid invasion in collagen assays and in vivo using an orthotopic xenograft model of DIPG invasion. HSV1716 inhibited migration and invasion in pHGG and DIPG cell lines. pHGG cells demonstrated reduced velocity and changed morphology in the presence of virus. HSV1716 altered pHGG cytoskeletal dynamics by stabilizing microtubules, inhibiting glycogen synthase kinase-3, and preventing localized clustering of adenomatous polyposis coli (APC to the leading edge of cells. HSV1716 treatment also reduced tumor infiltration in a mouse orthotopic xenograft DIPG model. Our results demonstrate that HSV1716 targets the migration and invasion of pHGG and DIPG and indicates the potential of an oncolytic virus (OV to be used as a novel anti-invasive treatment strategy for pediatric brain tumors.

  5. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images.

    Science.gov (United States)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-27

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  6. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    Science.gov (United States)

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-11-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  7. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    Science.gov (United States)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  8. Fate of foreign DNA in mammalian organisms. Project task: use of foreign DNA for treatment of malignant brain tumors. Final report; Schicksal fremder DNA im Saeugerorganismus. Teilprojekt: Verwendung fremder DNA zur Therapie maligner Hirntumore. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, A.; Heiss, W.D.

    1999-11-30

    Radiochemical synthesis of the guanosine analogon Ganciclovir (GCV) was first examined as a possibly suitable approach, as this pro-drug is a licensed drug for treatment of cytomegaly virus infections. As the labelling of GCV was found to be unsatisfactory, tests examining the labelling of another specific HSV-1-TK substrate, the uracil derivative 2'-fluoro-2'-deoxy-1{beta}-D-arabinofuranosyl-uracil (FAU), with {sup 124}I were made and proved to be successful. In order to assess the tumor uptake of {sup 124}I-FIAU, the kinetics of {sup 124}I-FIAU was studied in healthy cats and in a patient with relapse of a glioblastoma. Results of the study: The radiochemical yields range from 41.5 to 64%, the chemical and radiochemical purity is > 96% or 98%, respectively, on the average. In the healthy organism, spreading of the {sup 124}I-FIAU took only a few minutes, depending on blood supply of the organ, and excretion via the kidneys was completed in a very short time. Whereas only a small fraction of the {sup 124}I could penetrate the intact blood-brain barrier, a significant uptake of {sup 124}I-FIAU in a glioblastoma with defective blood-brain barrier was observed (1 h after application), as well as subsequent exponential clearance. (orig./CB) [German] Zunaechst wurde die radiochemische Synthese des Guanosin-Analogons Ganciclovir (GCV) verfolgt, da dieses Pro-Drug als Medikament in der Behandlung von Zytomegalievirusinfektionen zugelassen ist. Da die Markierung von GCV nicht zufriedenstellend verlief, wurde dann die Markierung eines anderen spezifischen HSV-1-TK Substrates, dem Uracilabkoemmling 2'-Fluoro-2'-deoxy-1{beta}-D-Arabinofuranosyl-Uracil (FAU), mittels {sup 124}I etabliert. Um die Tumorgaengigkeit von {sup 124}I-FIAU zu untersuchen, wurde die Kinetik von {sup 124}I-FIAU in gesunden Katzen und bei einem Patienten mit einem Glioblastomrezidiv untersucht. Die radiochemischen Ausbeuten liegen zwischen 41.5 und 64 %, die chemische und

  9. Pharmacokinetics, Brain Delivery, and Efficacy in Brain Tumor-Bearing Mice of Glutathione Pegylated Liposomal Doxorubicin (2B3-101)

    Science.gov (United States)

    Gaillard, Pieter J.; Appeldoorn, Chantal C. M.; Dorland, Rick; van Kregten, Joan; Manca, Francesca; Vugts, Danielle J.; Windhorst, Bert; van Dongen, Guus A. M. S.; de Vries, Helga E.; Maussang, David; van Tellingen, Olaf

    2014-01-01

    Brain cancer is a devastating disease affecting many people worldwide. Effective treatment with chemotherapeutics is limited due to the presence of the blood-brain barrier (BBB) that tightly regulates the diffusion of endogenous molecules but also xenobiotics. Glutathione pegylated liposomal doxorubicin (2B3-101) is being developed as a new treatment option for patients with brain cancer. It is based on already marketed pegylated liposomal doxorubicin (Doxil®/Caelyx®), with an additional glutathione coating that safely enhances drug delivery across the BBB. Uptake of 2B3-101 by human brain capillary endothelial cells in vitro was time-, concentration- and temperature-dependent, while pegylated liposomal doxorubicin mainly remained bound to the cells. In vivo, 2B3-101 and pegylated liposomal doxorubicin had a comparable plasma exposure in mice, yet brain retention 4 days after administration was higher for 2B3-101. 2B3-101 was overall well tolerated by athymic FVB mice with experimental human glioblastoma (luciferase transfected U87MG). In 2 independent experiments a strong inhibition of brain tumor growth was observed for 2B3-101 as measured by bioluminescence intensity. The effect of weekly administration of 5 mg/kg 2B3-101 was more pronounced compared to pegylated liposomal doxorubicin (pbrain tumor growth (pbrain tumors and could become a promising new therapeutic option for the treatment of brain malignancies. PMID:24416140

  10. Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors

    Science.gov (United States)

    2015-10-01

    for childhood central nervous system (CNS) tumors, they remain the leading cause of death in pediatric oncology . One potential therapeutic...clinical trial design for pediatric brain tumor patients harboring the mutation. Keywords: Autophagy BRAF Brain tumor Pediatric Resistance...I submitted an abstract of my most recent findings to the Society of Neuro- Oncology Pediatric Neuro- Oncology Basic and Translational Research

  11. Multisession stereotactic radiosurgery for large benign brain tumors of >3cm- early clinical outcomes

    Science.gov (United States)

    Memon, Muhammad Ali; Ahmed, Usman; Saleem, Muhammad Abid; Bhatti, Amer Iqtidar; Ahmed, Naveed; Hashim, Abdul Sattar M.

    2012-01-01

    Objective To evaluate the clinical outcome of linear accelerator based multisession stereotactic radiosurgery (SRS) for large benign brain tumors of >3cm. Methods Between June 2009 and May 2011, 35 patients having large benign brain tumors of >3cm (≥15 cm3) were treated by multisession stereotactic radiosurgery. This retrospective study was carried out at Neurospinal & Medical Institute Karachi. There were 17 (48.6 %) males and 18(51.4 %) females. Median age was 36 years (range: 13-65 years). Median target volume was 49.4 cm3 (range: 15-184 cm3). The median marginal dose was 25 Gy (range: 20–27.5Gy) prescribed to a median 75% isodose line (range: 65-100 %). Median number of 5 fractions were used ranging 3-5 fractions. Results All the patients tolerated treatment very well. 21 (58.3%) patients had remarkable clinical improvement of neurological symptoms, 14 (38.9%) patients had stable symptoms, and only one patient had transient worsening of symptoms. No permanent neurological damage or radiation injury was seen. Radiologically, 9 (25.7%) patients achieved reduction in size of the tumor, 26(74.3 %) patients were having stable disease, and overall control rate was found to be 100 %. Median follow-up time from the end of SRS was 6.4 months (range: 1-22.5months). Conclusion Linear accelerator based multisession stereotactic radiosurgery for large benign brain tumors of >3cm is effective and well tolerated. PMID:29296340

  12. Headache as a risk factor for neurovascular events in pediatric brain tumor patients.

    Science.gov (United States)

    Kranick, Sarah M; Campen, Cynthia J; Kasner, Scott E; Kessler, Sudha K; Zimmerman, Robert A; Lustig, Robert A; Phillips, Peter C; Beslow, Lauren A; Ichord, Rebecca; Fisher, Michael J

    2013-04-16

    To determine whether severe recurrent headache is a risk factor for neurovascular events in children who received radiation for brain tumors. This is a retrospective cohort study of children with brain tumors who received cranial irradiation at a large tertiary care center, aged 0-21 years at diagnosis, with initial treatment between January 1, 1993 and December 31, 2002, and 2 or more follow-up visits. Patients were considered to have severe recurrent headache if this appeared as a complaint on 2 or more visits. Headaches attributed to tumor progression, shunt malfunction, or infection, or appearing at the end of life, were excluded. Medical records were reviewed for events of stroke or TIA. Of 265 subjects followed for a median of 6.0 years (interquartile range 1.7-9.2 years), stroke or TIA occurred in 7/37 (19%) with severe headaches compared to 6/228 (3%) without these symptoms (hazard ratio 5.3, 95% confidence interval 1.8-15.9, p = 0.003). Adjusting for multiple variables did not remove the significance of this risk. Median time to first neurovascular event for the entire cohort was 4.9 years (interquartile range 1.7-5.5 years). Severe recurrent headache appears to be a risk factor or predictor for subsequent cerebral ischemia in pediatric brain tumor survivors treated with radiation. This finding has clinical implications for both monitoring survivors and targeting a specific population for primary stroke prevention.

  13. Correlation between MR imaging and histopathological findings of cystic metastatic brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Fukusumi, Akio [Nara Medical Univ., Kashihara (Japan); Iwasaki, Satoru; Ohkawa, Naosumi [and others

    1996-12-01

    To clarify the correlation between the histopathological findings and MR signal intensity of the cyst wall, fifteen cystic metastatic brain tumors of eleven patients were imaged using a 0.5T MR unit just before surgery, and the MRI findings were correlated with the histopathological findings of resected lesions. On T2-weighted images, all cyst walls showed hypointensity. On T1-weighted images, the intensity of the cyst wall could be classified into three groups, compared with the cerebral cortex. Walls with hyperintensity on T1WI (group H; n=6) consisted of ample tumor cells, blood vessels and connective tissues, suggesting viable tumor cells. Iso-intense walls on T1WI (group I; n=3) had abundant reactive glial tissues. Hypointense walls on T1WI (group L; n=5) revealed hemorrhage and/or hemosiderin in the wall, suggesting hemorrhagic necrosis. Thus a good correlation was demonstrated between the MR signal intensities and histopathological findings of cyst walls of cystic metastatic brain tumors. This may contribute not only to more precise diagnosis on MRI but also to more planning for treatment of cystic brain metastases. (author)

  14. Inhibition of brain tumor growth by intravenous poly (β-L-malic acid) nanobioconjugate with pH-dependent drug release [corrected].

    Science.gov (United States)

    Ding, Hui; Inoue, Satoshi; Ljubimov, Alexander V; Patil, Rameshwar; Portilla-Arias, Jose; Hu, Jinwei; Konda, Bindu; Wawrowsky, Kolja A; Fujita, Manabu; Karabalin, Natalya; Sasaki, Takako; Black, Keith L; Holler, Eggehard; Ljubimova, Julia Y

    2010-10-19

    Effective treatment of brain neurological disorders such as Alzheimer's disease, multiple sclerosis, or tumors should be possible with drug delivery through blood-brain barrier (BBB) or blood-brain tumor barrier (BTB) and targeting specific types of brain cells with drug release into the cell cytoplasm. A polymeric nanobioconjugate drug based on biodegradable, nontoxic, and nonimmunogenic polymalic acid as a universal delivery nanoplatform was used for design and synthesis of nanomedicine drug for i.v. treatment of brain tumors. The polymeric drug passes through the BTB and tumor cell membrane using tandem monoclonal antibodies targeting the BTB and tumor cells. The next step for polymeric drug action was inhibition of tumor angiogenesis by specifically blocking the synthesis of a tumor neovascular trimer protein, laminin-411, by attached antisense oligonucleotides (AONs). The AONs were released into the target cell cytoplasm via pH-activated trileucine, an endosomal escape moiety. Drug delivery to the brain tumor and the release mechanism were both studied for this nanobiopolymer. Introduction of a trileucine endosome escape unit resulted in significantly increased AON delivery to tumor cells, inhibition of laminin-411 synthesis in vitro and in vivo, specific accumulation in brain tumors, and suppression of intracranial glioma growth compared with pH-independent leucine ester. The availability of a systemically active polymeric drug delivery system that passes through the BTB, targets tumor cells, and inhibits glioma growth gives hope for a successful strategy of glioma treatment. This delivery system with drug release into the brain-specific cell type could be useful for treatment of various brain pathologies.

  15. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses.

    Science.gov (United States)

    Deeken, John F; Löscher, Wolfgang

    2007-03-15

    Despite scientific advances in understanding the causes and treatment of human malignancy, a persistent challenge facing basic and clinical investigators is how to adequately treat primary and metastatic brain tumors. The blood-brain barrier is a physiologic obstruction to the delivery of systemic chemotherapy to the brain parenchyma and central nervous system (CNS). A number of physiologic properties make the endothelium in the CNS distinct from the vasculature found in the periphery. Recent evidence has shown that a critical aspect of this barrier is composed of xenobiotic transporters which extrude substrates from the brain into the cerebrospinal fluid and systemic circulation. These transporters also extrude drugs and toxins if they gain entry into the cytoplasm of brain endothelial cells before they enter the brain. This review highlights the properties of the blood-brain barrier, including the location, function, and relative importance of the drug transporters that maintain this barrier. Primary and metastatic brain malignancy can compromise this barrier, allowing some access of chemotherapy treatment to reach the tumor. The responsiveness of brain tumors to systemic treatment found in past clinical research is discussed, as are possible explanations as to why CNS tumors are nonetheless able to evade therapy. Finally, strategies to overcome this barrier and better deliver chemotherapy into CNS tumors are presented.

  16. Absence of human cytomegalovirus infection in childhood brain tumors.

    Science.gov (United States)

    Sardi, Iacopo; Lucchesi, Maurizio; Becciani, Sabrina; Facchini, Ludovica; Guidi, Milena; Buccoliero, Anna Maria; Moriondo, Maria; Baroni, Gianna; Stival, Alessia; Farina, Silvia; Genitori, Lorenzo; de Martino, Maurizio

    2015-01-01

    Human cytomegalovirus (HCMV) is a common human pathogen which induces different clinical manifestations related to the age and the immune conditions of the host. HCMV infection seems to be involved in the pathogenesis of adult glioblastomas. The aim of our study was to detect the presence of HCMV in high grade gliomas and other pediatric brain tumors. This hypothesis might have important therapeutic implications, offering a new target for adjuvant therapies. Among 106 pediatric patients affected by CNS tumors we selected 27 patients with a positive HCMV serology. The serological analysis revealed 7 patients with positive HCMV IGG (≥14 U/mL), whom had also a high HCMV IgG avidity, suggesting a more than 6 months-dated infection. Furthermore, HCMV IGM were positive (≥22 U/mL) in 20 patients. Molecular and immunohistochemical analyses were performed in all the 27 samples. Despite a positive HCMV serology, confirmed by ELISA, no viral DNA was shown at the PCR analysis in the patients' neoplastic cells. At immunohistochemistry, no expression of HCMV antigens was observed in tumoral cells. Our results are in agreement with recent results in adults which did not evidence the presence of HCMV genome in glioblastoma lesions. We did not find any correlation between HCMV infection and pediatric CNS tumors.

  17. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    Science.gov (United States)

    Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2016-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501

  18. Trends in childhood brain tumor incidence, 1973-2009.

    Science.gov (United States)

    McKean-Cowdin, Roberta; Razavi, Pedram; Barrington-Trimis, Jessica; Baldwin, Rachel Tobias; Asgharzadeh, Shahab; Cockburn, Myles; Tihan, Tarik; Preston-Martin, Susan

    2013-11-01

    In the mid-1980s, there was a rise in incidence rates of childhood brain tumors (CBT) in the United States that appeared to stabilize at a higher rate in the early 1990 s. An updated analysis of the pattern of CBT over the past 2 decades, with commentary on whether the elevated incidence rate has continued, is past due. We used Surveillance, Epidemiology and End Results (SEER) data to examine trends in incidence of CBT from 1973 through 2009. We examined age-adjusted incidence rates (AAIRs) and secular trends for all malignant brain tumors combined (SEER classification) by histologic tumor type and anatomic site. The incidence of CBT remained stable from 1987 to 2009 [annual percent change (APC) = 0.10; 95 % confidence intervals (CI) -0.39 to 0.61] with an AAIR for all CBT of 3.32 (95 % CI 3.22-3.42). The stability of rates in these two decades contrast the change that occurred in the mid-1980s (1983-1986), when the incidence of CBT increased by 53 % (APC = 14.06; 95 % CI 4.05-25.0). From 1983 to 1986, statistically significant rate increases were observed for pilocytic astrocytoma, PNET/medulloblastoma, and mixed glioma. Further, the rate of increase in pilocytic astrocytoma was similar to the rate of decrease for astrocytomas NOS from 1981 to 2009, suggesting a change from a more general to more specific classification. After the increase in rates in the mid-1980s, rates of CBT over the past two decades have stabilized. Changes in incidence rates of subtypes of tumors over this time period reflect changes both in classification of CBT and in diagnostic techniques.

  19. Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases.

    Directory of Open Access Journals (Sweden)

    Euiheon Chung

    2009-12-01

    Full Text Available Currently, only few techniques are available for quantifying systemic metastases in preclinical model. Thus techniques that can sensitively detect metastatic colonization and assess treatment response in real-time are urgently needed. To this end, we engineered tumor cells to express a naturally secreted Gaussia luciferase (Gluc, and investigated its use as a circulating biomarker for monitoring viable metastatic or primary tumor growth and their treatment responses.We first developed orthotopic primary and metastatic breast tumors with derivative of MDA-MB-231 cells expressing Gluc. We then correlated tumor burden with Gluc activity in the blood and urine along with bioluminescent imaging (BLI. Second, we utilized blood Gluc assay to monitor treatment response to lapatinib in an experimental model of systemic metastasis. We observed good correlation between the primary tumor volume and Gluc concentration in blood (R(2 = 0.84 and urine (R(2 = 0.55 in the breast tumor model. The correlation deviated as a primary tumor grew due to a reduction in viable tumor fraction. This was also supported by our mathematical models for tumor growth to compare the total and viable tumor burden in our model. In the experimental metastasis model, we found numerous brain metastases as well as systemic metastases including bone and lungs. Importantly, blood Gluc assay revealed early growth of metastatic tumors before BLI could visualize their presence. Using secreted Gluc, we localized systemic metastases by BLI and quantitatively monitored the total viable metastatic tumor burden by blood Gluc assay during the course of treatment with lapatinib, a dual tyrosine kinase inhibitor of EGFR and HER2.We demonstrated secreted Gluc assay accurately reflects the amount of viable cancer cells in primary and metastatic tumors. Blood Gluc activity not only tracks metastatic tumor progression but also serves as a longitudinal biomarker for tumor response to treatments.

  20. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data

    Science.gov (United States)

    Davis, Faith G.; Dolecek, Therese A.; McCarthy, Bridget J.; Villano, John L.

    2012-01-01

    Few population estimates of brain metastasis in the United States are available, prompting this study. Our objective was to estimate the expected number of metastatic brain tumors that would subsequently develop among incident cancer cases for 1 diagnosis year in the United States. Incidence proportions for primary cancer sites known to develop brain metastasis were applied to United States cancer incidence data for 2007 that were retrieved from accessible data sets through Centers for Disease Control and Prevention (CDC Wonder) and Surveillance, Epidemiology, and End Results (SEER) Program Web sites. Incidence proportions were identified for cancer sites, reflecting 80% of all cancers. It was conservatively estimated that almost 70 000 new brain metastases would occur over the remaining lifetime of individuals who received a diagnosis in 2007 of primary invasive cancer in the United States. That is, 6% of newly diagnosed cases of cancer during 2007 would be expected to develop brain metastasis as a progression of their original cancer diagnosis; the most frequent sites for metastases being lung and bronchus and breast cancers. The estimated numbers of brain metastasis will be expected to be higher among white individuals, female individuals, and older age groups. Changing patterns in the occurrence of primary cancers, trends in populations at risk, effectiveness of treatments on survival, and access to those treatments will influence the extent of brain tumor metastasis at the population level. These findings provide insight on the patterns of brain tumor metastasis and the future burden of this condition in the United States. PMID:22898372

  1. Tumor growth model for atlas based registration of pathological brain MR images

    Science.gov (United States)

    Moualhi, Wafa; Ezzeddine, Zagrouba

    2015-02-01

    The motivation of this work is to register a tumor brain magnetic resonance (MR) image with a normal brain atlas. A normal brain atlas is deformed in order to take account of the presence of a large space occupying tumor. The method use a priori model of tumor growth assuming that the tumor grows in a radial way from a starting point. First, an affine transformation is used in order to bring the patient image and the brain atlas in a global correspondence. Second, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. Finally, the seeded atlas is deformed combining a method derived from optical flow principles and a model for tumor growth (MTG). Results show that an automatic segmentation method of brain structures in the presence of large deformation can be provided.

  2. SU-C-BRA-06: Automatic Brain Tumor Segmentation for Stereotactic Radiosurgery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Stojadinovic, S; Jiang, S; Timmerman, R; Abdulrahman, R; Nedzi, L; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Stereotactic radiosurgery (SRS), which delivers a potent dose of highly conformal radiation to the target in a single fraction, requires accurate tumor delineation for treatment planning. We present an automatic segmentation strategy, that synergizes intensity histogram thresholding, super-voxel clustering, and level-set based contour evolving methods to efficiently and accurately delineate SRS brain tumors on contrast-enhance T1-weighted (T1c) Magnetic Resonance Images (MRI). Methods: The developed auto-segmentation strategy consists of three major steps. Firstly, tumor sites are localized through 2D slice intensity histogram scanning. Then, super voxels are obtained through clustering the corresponding voxels in 3D with reference to the similarity metrics composited from spatial distance and intensity difference. The combination of the above two could generate the initial contour surface. Finally, a localized region active contour model is utilized to evolve the surface to achieve the accurate delineation of the tumors. The developed method was evaluated on numerical phantom data, synthetic BRATS (Multimodal Brain Tumor Image Segmentation challenge) data, and clinical patients’ data. The auto-segmentation results were quantitatively evaluated by comparing to ground truths with both volume and surface similarity metrics. Results: DICE coefficient (DC) was performed as a quantitative metric to evaluate the auto-segmentation in the numerical phantom with 8 tumors. DCs are 0.999±0.001 without noise, 0.969±0.065 with Rician noise and 0.976±0.038 with Gaussian noise. DC, NMI (Normalized Mutual Information), SSIM (Structural Similarity) and Hausdorff distance (HD) were calculated as the metrics for the BRATS and patients’ data. Assessment of BRATS data across 25 tumor segmentation yield DC 0.886±0.078, NMI 0.817±0.108, SSIM 0.997±0.002, and HD 6.483±4.079mm. Evaluation on 8 patients with total 14 tumor sites yield DC 0.872±0.070, NMI 0.824±0

  3. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Darshana S., E-mail: darshanaj_cup@yahoo.com [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Bajaj, Amrita N. [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Athawale, Rajani B., E-mail: rajani.athawale@gmail.com [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Shikhande, Shruti S. [C.U. Shah College of Pharmacy, S.N.D.T Women' s University, Juhu Tara Road, Santacruz (West), Mumbai 400 049 (India); Pandey, Abhijeet [H. R Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra (India); Goel, Peeyush N.; Gude, Rajiv P. [Gude Lab, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410 210 (India); Patil, Satish; Raut, Preeti [Cipla Pvt. Ltd., Vikhroli (West), Mumbai (India)

    2016-06-01

    Delivery of drugs to the brain via nasal route has been studied by many researchers. However, low residence time, mucociliary clearance and enzymatically active environment of nasal cavity pose many challenges to successful nasal delivery of drugs. We aim to deliver methotrexate by designing thermosensitive nanodispersion exhibiting enhanced residence time in nasal cavity and bypassing the blood brain barrier (BBB). PLA nanoparticles were developed using solvent evaporation technique. The developed nanoparticles were further dispersed in prepared thermosensitive vehicle of poloxamer 188 and Carbopol 934 to impart the property of increased residence time. The formulated nanoparticles demonstrated no interaction with the simulated nasal fluids (SNF), mucin, serum proteins and erythrocytes which demonstrate the safety of developed formulation for nasal administration. The penetration property of nanoparticles though the nasal mucosa was higher than the pure drug due to low mucociliary clearance. The developed nanoparticles diffused though the membrane pores and rapidly distributed into the brain portions compared to the pure drug. There was detectable and quantifiable amount of drug seen in the brain as demonstrated by in vivo brain distribution studies with considerably low amount of drug deposition in the lungs. The pharmacokinetic parameters demonstrated the enhancement in circulation half life, area under curve (AUC) and Cmax of the drug when administered intranasal in encapsulated form. Thus, the thermosensitive nanodispersions are surely promising delivery systems for delivering anticancer agents though the nasal route for potential treatment of brain tumors. - Highlights: • The present investigation explores intra-nasal route as potential route for targeting brain tumor. • Thermosensitive nanodispersion has been formulated for enhancing nasal residence time. • PLA nanoparticles enhance penetration into the brain owing to hydrophobic nature and small size

  4. Profiles of Executive Function Across Children with Distinct Brain Disorders: Traumatic Brain Injury, Stroke, and Brain Tumor.

    Science.gov (United States)

    Araujo, Gabriel C; Antonini, Tanya N; Anderson, Vicki; Vannatta, Kathryn A; Salley, Christina G; Bigler, Erin D; Taylor, H Gerry; Gerhardt, Cynthia; Rubin, Kenneth; Dennis, Maureen; Lo, Warren; Mackay, Mark T; Gordon, Anne; Hajek Koterba, Christine; Gomes, Alison; Greenham, Mardee; Owen Yeates, Keith

    2017-08-01

    This study examined whether children with distinct brain disorders show different profiles of strengths and weaknesses in executive functions, and differ from children without brain disorder. Participants were children with traumatic brain injury (N=82; 8-13 years of age), arterial ischemic stroke (N=36; 6-16 years of age), and brain tumor (N=74; 9-18 years of age), each with a corresponding matched comparison group consisting of children with orthopedic injury (N=61), asthma (N=15), and classmates without medical illness (N=68), respectively. Shifting, inhibition, and working memory were assessed, respectively, using three Test of Everyday Attention: Children's Version (TEA-Ch) subtests: Creature Counting, Walk-Don't-Walk, and Code Transmission. Comparison groups did not differ in TEA-Ch performance and were merged into a single control group. Profile analysis was used to examine group differences in TEA-Ch subtest scaled scores after controlling for maternal education and age. As a whole, children with brain disorder performed more poorly than controls on measures of executive function. Relative to controls, the three brain injury groups showed significantly different profiles of executive functions. Importantly, post hoc tests revealed that performance on TEA-Ch subtests differed among the brain disorder groups. Results suggest that different childhood brain disorders result in distinct patterns of executive function deficits that differ from children without brain disorder. Implications for clinical practice and future research are discussed. (JINS, 2017, 23, 529-538).

  5. Treatments of intramedullary spinal cord tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Kazumasa; Okada, Akihiro; Echigoya, Naoki; Yokoyama, Toru; Harata, Seiko [Hirosaki Univ., Aomori (Japan). School of Medicine

    2001-04-01

    In order to establish a treatment for intramedullary spinal cord tumors, histology, symptoms (preoperative, upon discharge from the hospital, and at the final follow-up examination), postoperative combination therapy, postoperative complications, and recurrence were assessed in patients with intramedullary spinal cord tumors treated in the author's hospital during the past 19 years. There were 26 subjects (astrocytoma in 8, ependymoma in 6, intramedullary neurinoma in 3, lipoma in 3, hemangioblastoma in 3, cavernous angioma in 1, capillary hemangioma in 1, and enterogenous cyst in 1). Surgery had been performed in 24 of them, and 7 of the tumors were completely resected, 6 were incompletely resected, and 3 were partially resected. Radiotherapy had been performed to treat 7 astrocytomas and 2 ependymomas. Kyphosis was noted as a postoperative complication in 1 patient with an astrocytoma who had received postoperative radiotherapy. Postoperative improvement was better in the patients who had the ependymomas, lipoma, and angioma, and in 1 patient with an astrocytoma. The astrocytomas were very difficult to completely remove surgically, and postoperative radiotherapy was thought to be indispensable. The ependymomas, hemangioblastomas, and angiomas could be surgically resected, but the surgeon must has to exercise sufficient care during the operation. The lipomas were also difficult to resect surgically and intratumoral decompression or decompression should be performed. For adolescents spinal deformity should be considered as one of the postoperative complications. (K.H.)

  6. Keratocystic odontogenic tumor: Clinicopathological aspects and treatment.

    Directory of Open Access Journals (Sweden)

    Patricio Robles

    2014-12-01

    Full Text Available The keratocystic odontogenic tumor is a benign intraosseous neoplasm derived from remnants of the dental lamina and it occurs with high frequency. Regarding histological characteristics, it has a high recurrence rate which is one of the main therapeutic problems. Also, it presents high local aggressiveness, expressed in cortical expansion, delayed eruption and displacement of teeth, blood vessels and nerves. At present, there are various treatments, being ideal the one which presents the lowest risk of recurrence with low morbidity for the patient. In this review, the main histopathological, clinical and therapeutic aspects of this oral pathology are discussed.

  7. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.

    Science.gov (United States)

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C; Heth, Jason A; Maher, Cormac O; Sanai, Nader; Johnson, Timothy D; Freudiger, Christian W; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A

    2015-10-14

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a nondestructive, label-free optical method, to reveal glioma infiltration in animal models. We show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ = 0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density, and protein/lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density, and protein/lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery. Copyright © 2015, American Association for the Advancement of Science.

  8. Brain tumor evaluation and segmentation by in vivo proton spectroscopy and relaxometry.

    Science.gov (United States)

    Martín-Landrove, Miguel; Mayobre, Finita; Bautista, Igor; Villalta, Raúl

    2005-12-01

    A new methodology has been developed for the evaluation and segmentation of brain tumors using information obtained by different magnetic resonance techniques such as in vivo proton magnetic resonance spectroscopy (1HMRS) and relaxometry. In vivo 1HMRS may be used as a preoperative technique that allows noninvasive monitoring of metabolites to identify the different tissue types present in the lesion (active tumor, necrotic tissue, edema, and normal or non-affected tissue). Spatial resolution for treatment consideration may be improved by using 1HMRS combined or fused with images obtained by relaxometry which exhibit excellent spatial resolution. Some segmentation schemes are presented and discussed. The results show that segmentation performed in this way efficiently determines the spatial localization of the tumor both qualitatively and quantitatively. It provides appropriate information for therapy planning and application of therapies such as radiosurgery or radiotherapy and future control of patient evolution.

  9. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications

    Science.gov (United States)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-01

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8

  10. Computed tomographic aspects of primary brain tumors in dogs and cats; Aspectos tomograficos de tumores cerebrais primarios em caes e gatos

    Energy Technology Data Exchange (ETDEWEB)

    Babicsak, Viviam Rocco; Zardo, Karen Maciel; Santos, Debora Rodrigues dos; Silva, Luciana Carandina da; Machado, Vania Maria de Vasconcelos; Vulcano, Luiz Carlos, E-mail: viviam.babicsak@gmail.com [Setor de Diagnostico por Imagem - FMVZ - UNESP/Botucatu, SP (Brazil)

    2011-07-01

    Over the years, the Veterinary Medicine has made great advances, enabling thus the diagnosis of many diseases. As a result of this new situation, there was an increased expectation of life of animals resulting in an increase in the number of clinical care of older animals. Thus, diseases considered unusual in the past, begin to be diagnosed more frequently, as is the case of brain damage. Recently, computed tomography has been widely used in Brazil as a tool to aid in the diagnosis of several diseases. This noninvasive imaging technique allows the identification and evaluation of lesions of central nervous tissue such as brain tumors. This provides information about the size, shape and location of the lesion, in addition to the magnitude of compression and invasion of adjacent structures by the tumor and its side effects (such as the peritumoral edema and hydrocephalus). The image obtained from computed tomography may suggest the presence of a certain type brain tumor, data of great importance for the prognosis and treatment of the animal. This review covers the computed tomography aspects of primary brain tumors such as meningiomas, astrocytomas, oligodendrogliomas, choroid plexus tumors and ependymomas. However, despite the computed tomography provide much information about the changes inside the skull; no way replace histopathological examination in determining the definitive diagnosis. (author)

  11. Predictors of adaptive functioning and psychosocial adjustment in children with pediatric brain tumor: a report from the Brain Radiation Investigative Study Consortium.

    Science.gov (United States)

    Robinson, Kristen E; Wolfe, Kelly R; Yeates, Keith O; Mahone, E Mark; Cecil, Kim M; Ris, M Douglas

    2015-03-01

    Children are at risk for psychosocial and adaptive morbidities following diagnosis of and treatment for a pediatric brain tumor. This study examined whether familial/demographic, developmental, diagnostic, or treatment-related variables best predict the acute psychosocial adjustment and adaptive functioning of children soon after an initial diagnosis. Participants included 56 children (mean age = 10.72, SD = 4.02) newly diagnosed with a pediatric brain tumor. Parents completed background/demographic forms and completed ratings of children's behavioral and emotional symptoms, and adaptive behavior. Diagnostic and treatment-related information was abstracted from medical records. Parent ratings of behavioral symptoms and adaptive functioning were within normative expectation, although rates of clinical impairment in adaptive functioning exceeded expected rates. A combination of familial/demographic and diagnostic variables were associated with acute functioning. In multiple regressions, tumor size best predicted adaptive functioning after initial diagnosis, whereas tumor location best predicted variance in behavioral symptoms. Children may be more vulnerable to acute impairment in adaptive functioning following diagnosis of a pediatric brain tumor, but rates of behavioral symptoms were within expectation. Familial, sociodemographic, and diagnostic variables may help to identify those most at risk of impairment. Screening of these factors within tertiary care settings will be useful to identify those most in need of psychosocial care during the initial phases of treatment. © 2014 Wiley Periodicals, Inc.

  12. Permeability of Brain Tumor Vessels Induced by Uniform or Spatially Microfractionated Synchrotron Radiation Therapies.

    Science.gov (United States)

    Bouchet, Audrey; Potez, Marine; Coquery, Nicolas; Rome, Claire; Lemasson, Benjamin; Bräuer-Krisch, Elke; Rémy, Chantal; Laissue, Jean; Barbier, Emmanuel L; Djonov, Valentin; Serduc, Raphael

    2017-08-01

    To compare the blood-brain barrier permeability changes induced by synchrotron microbeam radiation therapy (MRT, which relies on spatial fractionation of the incident x-ray beam into parallel micron-wide beams) with changes induced by a spatially uniform synchrotron x-ray radiation therapy. Male rats bearing malignant intracranial F98 gliomas were randomized into 3 groups: untreated, exposed to MRT (peak and valley dose: 241 and 10.5 Gy, respectively), or exposed to broad beam irradiation (BB) delivered at comparable doses (ie, equivalent to MRT valley dose); both applied by 2 arrays, intersecting orthogonally the tumor region. Vessel permeability was monitored in vivo by magnetic resonance imaging 1 day before (T-1) and 1, 2, 7, and 14 days after treatment start. To determine whether physiologic parameters influence vascular permeability, we evaluated vessel integrity in the tumor area with different values for cerebral blood flow, blood volume, edema, and tissue oxygenation. Microbeam radiation therapy does not modify the vascular permeability of normal brain tissue. Microbeam radiation therapy-induced increase of tumor vascular permeability was detectable from T2 with a maximum at T7 after exposure, whereas BB enhanced vessel permeability only at T7. At this stage MRT was more efficient at increasing tumor vessel permeability (BB vs untreated: +19.1%; P=.0467; MRT vs untreated: +44.8%; Ptumor than BB. Microbeam radiation therapy-induced increased tumor vascular permeability is: (1) significantly greater; (2) earlier and more prolonged than that induced by BB irradiation, especially in highly proliferative tumor areas; and (3) targets all tumor areas discriminated by physiologic characteristics, including those not damaged by homogeneous irradiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Gliomatosis cerebri: no evidence for a separate brain tumor entity.

    Science.gov (United States)

    Herrlinger, Ulrich; Jones, David T W; Glas, Martin; Hattingen, Elke; Gramatzki, Dorothee; Stuplich, Moritz; Felsberg, Jörg; Bähr, Oliver; Gielen, Gerrit H; Simon, Matthias; Wiewrodt, Dorothee; Schabet, Martin; Hovestadt, Volker; Capper, David; Steinbach, Joachim P; von Deimling, Andreas; Lichter, Peter; Pfister, Stefan M; Weller, Michael; Reifenberger, Guido

    2016-02-01

    Gliomatosis cerebri (GC) is presently considered a distinct astrocytic glioma entity according to the WHO classification for CNS tumors. It is characterized by widespread, typically bilateral infiltration of the brain involving three or more lobes. Genetic studies of GC have to date been restricted to the analysis of individual glioma-associated genes, which revealed mutations in the isocitrate dehydrogenase 1 (IDH1) and tumor protein p53 (TP53) genes in subsets of patients. Here, we report on a genome-wide analysis of DNA methylation and copy number aberrations in 25 GC patients. Results were compared with those obtained for 105 patients with various types of conventional, i.e., non-GC gliomas including diffuse astrocytic gliomas, oligodendrogliomas and glioblastomas. In addition, we assessed the prognostic role of methylation profiles and recurrent DNA copy number aberrations in GC patients. Our data reveal that the methylation profiles in 23 of the 25 GC tumors corresponded to either IDH mutant astrocytoma (n = 6), IDH mutant and 1p/19q codeleted oligodendroglioma (n = 5), or IDH wild-type glioblastoma including various molecular subgroups, i.e., H3F3A-G34 mutant (n = 1), receptor tyrosine kinase 1 (RTK1, n = 4), receptor tyrosine kinase 2 (classic) (RTK2, n = 2) or mesenchymal (n = 5) glioblastoma groups. Two tumors showed methylation profiles of normal brain tissue due to low tumor cell content. While histological grading (WHO grade IV vs. WHO grade II and III) was not prognostic, the molecular classification as classic/RTK2 or mesenchymal glioblastoma was associated with worse overall survival. Multivariate Cox regression analysis revealed MGMT promoter methylation as a positive prognostic factor. Taken together, DNA-based large-scale molecular profiling indicates that GC comprises a genetically and epigenetically heterogeneous group of diffuse gliomas that carry DNA methylation and copy number profiles closely matching the common molecularly

  14. Genetic and modifying factors that determine the risk of brain tumors

    DEFF Research Database (Denmark)

    Montelli, Terezinha de Cresci Braga; Peraçoli, Maria Terezinha Serrão; Rogatto, Silvia Regina

    2011-01-01

    . Mutagen sensitivity is associated with cancer risk. The convincing studies that linked DNA damages and DNA repair alterations with brain tumors are also described. Another important modifying factor is immunity. General immune response against cancer, tumor microenvironment and immune response, mechanisms...... established that there is association between brain tumor risk and mutagen sensitivity, which is highly heritable. Primary brain tumors cause depression in systemic host immunity; local immuno-suppressive factors and immunological characteristics of tumor cells may explain the poor prognosis and DNA damages...

  15. Peritumoral hemorrhage after radiosurgery for metastatic brain tumor; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Motozaki, Takahiko (Nishinomiya City General Hospital, Hyogo (Japan)); Ban, Sadahiko; Yamamoto, Toyoshiro; Hamasaki, Masatake

    1994-08-01

    An unusual case of peritumoral hemorrhage after radiosurgery for the treatment of metastatic brain tumor is reported. This 64-year-old woman had a history of breast cancer and underwent right mastectomy in 1989. She remained well until January 1993, when she started to have headache, nausea and speech disturbance, and was hospitalized on February 25, 1993. Neurological examination disclosed right hemiparesis and bilateral papilledema. CT scan and MR imaging showed a solitary round mass lesion in the left basal ganglia region. It was a well-demarcated, highly enhanced mass, 37 mm in diameter. Cerebral angiography confirmed a highly vascular mass lesion in the same location. She was treated with radiosurgery on March 8 (maximum dose was 20 Gy in the center and 10 Gy in the peripheral part of the tumor). After radiosurgery, she had an uneventful course and clinical and radiosurgical improvement could be detected. Her neurological symptoms and signs gradually improved and reduction of the tumor size and perifocal edema could be seen one month after radiosurgery. However, 6 weeks after radiosurgery, she suddenly developed semicoma and right hemiplegia. CT scan disclosed a massive peritumoral hemorrhage. Then, emergency craniotomy, evacuation of the hematoma and total removal of the tumor were performed on April 24. Histopathological diagnosis was adenocarcinoma. It was the same finding as that of the previous breast cancer. Histopathological examination revealed necrosis without tumor cells in the center and residual tumor cells in the peripheral part of the tumor. It is postulated that peritumoral hemorrhage was caused by hemodynamic changes in the vascular-rich tumor after radiosurgery and breakdown of the fragile abnormal vessels in the peripheral part of the tumor. (author).

  16. The adolescent and young adult with cancer: state of the art--brain tumor.

    Science.gov (United States)

    Epelman, Sidnei

    2013-08-01

    The management of adolescents and young adults with brain tumors, which consist of many different histologic subtypes, continues to be a challenge. Better outcome with a decrease of the side effects of the disease and therapy and improvement of quality of life has been demonstrated in recent decades for some tumors. Significant differences in survival and cure are also observed between adult and pediatric tumors of the same histologic grade. Genetic, developmental, and environmental factors likely influence the type of tumor and response observed, even though no clear pathologic features differentiate these lesions among children, adolescents, and adults. Similarly, treatment strategies are not identical among these populations; most patients receive surgery, followed by radiation therapy and multiagent chemotherapy. Advances in understanding the biology underlying the distribution of tumors in adolescents and young adults may influence the development of prospective trials. A more individualized view of these tumors will likely influence stratification of patients in future studies as well as selection for targeted agents. Accordingly, outcomes may improve and long-term morbidities may decrease.

  17. Intracranial pressure following complete removal of a small demarcated brain tumor

    DEFF Research Database (Denmark)

    Andresen, Morten; Juhler, Marianne

    2014-01-01

    and therapeutic purposes. This study documents normal ICP in humans. METHODS: In this study the authors included adult patients scheduled for complete removal of a solitary, clearly demarcated, small brain tumor. The mean age of these patients was 67 years old (range 58-85 years old). Exclusion criteria were...... human brain decreases to negative values when assuming the upright position. If these results are later confirmed in a larger series, they might provide reference values for diagnosis and treatment in patients with CSF-related disorders. New normal values also have implications for future shunt design...... intended to create a study population with as normal brains as possible. A new telemetric ICP monitoring device was implanted at the end of surgery and monitoring was conducted 2 and 4 weeks postoperatively. RESULTS: In the supine position, mean ICP was 0.5 ± 4.0 mm Hg at 4 weeks postoperatively. Postural...

  18. Comparison of immune microenvironments between primary tumors and brain metastases in patients with breast cancer.

    Science.gov (United States)

    Ogiya, Rin; Niikura, Naoki; Kumaki, Nobue; Yasojima, Hiroyuki; Iwasa, Tsutomu; Kanbayashi, Chizuko; Oshitanai, Risa; Tsuneizumi, Michiko; Watanabe, Ken-Ichi; Matsui, Akira; Fujisawa, Tomomi; Saji, Shigehira; Masuda, Norikazu; Tokuda, Yutaka; Iwata, Hiroji

    2017-11-28

    Immune checkpoint inhibitors are reported to be effective in patients with brain metastases. However, detailed characteristics of the brain metastasis immune microenvironment remain unexplored. The median tumor-infiltrating lymphocyte (TIL) category in brain metastases was 5% (1-70%). In 46 pair-matched samples, the percentages of TILs were significantly higher in primary breast tumors than in brain metastases (paired t-test, P L1, PD-L2, and HLA class I was also performed. There are significantly fewer TILs in brain metastases than in primary breast tumors.

  19. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Carina [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Ribeiro, Andre Santos [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London (United Kingdom); Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich (Germany); Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal)

    2015-05-18

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm{sup 3}), DTI (dir=30, b=0,800s/mm2, 2x2x2mm{sup 3}), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  20. Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis.

    Science.gov (United States)

    Bhandari, A; Bansal, A; Singh, A; Sinha, N

    2017-07-05

    Cancer is one of the leading causes of death all over the world. Among the strategies that are used for cancer treatment, the effectiveness of chemotherapy is often hindered by factors such as irregular and non-uniform uptake of drugs inside tumor. Thus, accurate prediction of drug transport and deposition inside tumor is crucial for increasing the effectiveness of chemotherapeutic treatment. In this study, a computational model of human brain tumor is developed that incorporates dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data into a voxelized porous media model. The model takes into account realistic transport and perfusion kinetics parameters together with realistic heterogeneous tumor vasculature and accurate arterial input function (AIF), which makes it patient specific. The computational results for interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and tracer concentration show good agreement with the experimental results. The computational model can be extended further for predicting the deposition of chemotherapeutic drugs in tumor environment as well as selection of the best chemotherapeutic drug for a specific patient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Spectroscopic optical coherence tomography for ex vivo brain tumor analysis

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Dillmann, Christopher; Gerling, Alexandra; Gerhardt, Nils C.; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2017-02-01

    For neurosurgeries precise tumor resection is essential for the subsequent recovery of the patients since nearby healthy tissue that may be harmed has a huge impact on the life quality after the surgery. However, so far no satisfying methodology has been established to assist the surgeon during surgery to distinguish between healthy and tumor tissue. Optical Coherence Tomography (OCT) potentially enables non-contact in vivo image acquisition at penetration depths of 1-2 mm with a resolution of approximately 1-15 μm. To analyze the potential of OCT for distinction between brain tumors and healthy tissue, we used a commercially available Thorlabs Callisto system to measure healthy tissue and meningioma samples ex vivo. All samples were measured with the OCT system and three dimensional datasets were generated. Afterwards they were sent to the pathology for staining with hematoxylin and eosin and then investigated with a bright field microscope to verify the tissue type. This is the actual gold standard for ex vivo analysis. The images taken by the OCT system exhibit variations in the structure for different tissue types, but these variations may not be objectively evaluated from raw OCT images. Since an automated distinction between tumor and healthy tissue would be highly desirable to guide the surgeon, we applied Spectroscopic Optical Coherence Tomography to further enhance the differences between the tissue types. Pattern recognition and machine learning algorithms were applied to classify the derived spectroscopic information. Finally, the classification results are analyzed in comparison to the histological analysis of the samples.

  2. Stereotactic Radiosurgery for Treatment of Brain Metastases.

    Science.gov (United States)

    Badiyan, Shahed N; Regine, William F; Mehta, Minesh

    2016-08-01

    Brain metastases are the most common intracranial malignancy. Incidence of brain metastases has risen as systemic therapies have improved and patients with metastatic disease live longer. Whole-brain radiation therapy, for many years, has been the standard treatment approach. Stereotactic radiosurgery has become an increasingly popular option because of its relatively short, convenient, and noninvasive treatment course. Although recently published data have renewed interest in use of whole-brain radiation therapy or systemic therapies for control of micrometastatic disease, stereotactic radiosurgery continues to be an important modality, capable of delivering ablative doses of radiation for long-term control of macroscopic disease. The purpose of this review is to explore the different paradigms for incorporation of stereotactic radiosurgery into management of brain metastases. Current uses for stereotactic radiosurgery include delivery as a boost with whole-brain radiation therapy; alone for patients with a limited number of brain metastases; in pre- or postoperative settings; and in combination with systemic, targeted, and immune-based therapies. Mature prospective data on use of stereotactic radiosurgery in combination with whole-brain radiation therapy is available; however, prospective, randomized data on stereotactic radiosurgery for patients with a greater number of brain metastases, its use in pre- and postoperative settings, and its use in combination with systemic therapies are limited. Data from ongoing and future studies are needed to define the appropriate use of stereotactic radiosurgery in these settings. Copyright © 2016 by American Society of Clinical Oncology.

  3. ALGORITHM OF THE SURGICAL TREATMENT FOR SPINAL TUMORS

    Directory of Open Access Journals (Sweden)

    D. A. Ptashnikov

    2010-01-01

    Full Text Available The 571 patients with the tumors of cervical, thoracical and lumbar spine (159 patients with benging tumors, 35 - with primary malignant tumors and 377 - with metastatic lesion of the spine have been treated surgically in 1997-2009. Tactics of surgical treatment of patients with a tumoral lesion of a column was based on an individual approach to each case of disease and depend on histological type of a tumor, localization, a degree of diffusion of process, presence of complications, age, a somatic state of the patient and sensitivity of a tumor to conservative methods of treatment.

  4. [Study on medical economic evaluation methods for metastatic brain tumors therapy].

    Science.gov (United States)

    Takura, Tomoyuki; Hayashi, Motohiro; Muragaki, Yoshihiro; Iseki, Hiroshi; Uetsuka, Yoshio

    2010-07-01

    Treatment design for metastatic brain tumors is required to firstly care about the life and function for which the patient hopes because it is terminal care. Therefore, to discuss the value of the therapy, a viewpoint of the QOL and the socioeconomic factors other than the survival rate is important. However, examination that applies these factors to the therapy needs to be carried out more thoroughly. With this in mind, we discuss cost effectiveness of therapy for metastatic brain tumor, through a pilot study on gamma knife therapy. We studied 18 patients (mean age 61.6 years old) undergoing therapy for metastatic brain tumors. The health rate QOL was assessed by the profile-type measure SF-36 (Short-Form 36-Item Ver1.2) and the preference-based measure EQ-5D (EuroQoL-5D), before and six months after gamma knife therapy. Cost-utility-analysis (yen/Qaly) was carried out from quality adjusted life years (Qalys) and medical fee claims. In addition, we made a correlation analysis of the irradiation procedure and the gains attained. The observation by SF-36 for six months was useful for metastatic brain tumor. As a result, the QOL indicators showed increased mental health (MH: p=0.040) and role emotional (RE: p=0.029) with significant difference. In the measurement of EQ-5D, it was added only for one month based on the significant difference (p=0.022) from the pre-therapy QOL. The utilities that were analyzed became 0.052+/-0.175SD (score), and Qalys were 0.135. Because the cost was 721.4+/-5.2SD (thousand yen), the performance of cost-utility-analysis was estimated as 5, 330, 000 (yen/Qaly). In addition, positive correlation (r=0.845/p=0.034) was found between the EQ-5D utility score and the tumor irradiation energy (mJ), etc. We established a new value over and above mere survival rate concerning metastatic brain tumor therapy. The socioeconomics and efficacy of therapy are more difficult to discuss in this disease than in other diseases. We did this by clarifying

  5. A phase II trial with bevacizumab and irinotecan for patients with primary brain tumors and progression after standard therapy

    DEFF Research Database (Denmark)

    Møller, Søren; Grunnet, Kirsten; Hansen, Steinbjørn

    2012-01-01

    The combination of irinotecan and bevacizumab has shown efficacy in the treatment of recurrent glioblastoma multiforme (GBM). A prospective, phase II study of 85 patients with various recurrent brain tumors was carried out. Primary endpoints were progression free survival (PFS) and response rate....

  6. The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor.

    Directory of Open Access Journals (Sweden)

    Suely Maymone de Melo

    Full Text Available Glioblastoma (GBM is an infiltrative tumor that is difficult to eradicate. Treating GBM with mesenchymal stem cells (MSCs that have been modified with the HSV-Tk suicide gene has brought significant advances mainly because MSCs are chemoattracted to GBM and kill tumor cells via a bystander effect. To use this strategy, abundantly present adipose-tissue-derived mesenchymal stem cells (AT-MSCs were evaluated for the treatment of GBM in mice. AT-MSCs were prepared using a mechanical protocol to avoid contamination with animal protein and transduced with HSV-Tk via a lentiviral vector. The U-87 glioblastoma cells cultured with AT-MSC-HSV-Tk died in the presence of 25 or 50 μM ganciclovir (GCV. U-87 glioblastoma cells injected into the brains of nude mice generated tumors larger than 3.5 mm2 after 4 weeks, but the injection of AT-MSC-HSV-Tk cells one week after the U-87 injection, combined with GCV treatment, drastically reduced tumors to smaller than 0.5 mm2. Immunohistochemical analysis of the tumors showed the presence of AT-MSC-HSV-Tk cells only within the tumor and its vicinity, but not in other areas of the brain, showing chemoattraction between them. The abundance of AT-MSCs and the easier to obtain them mechanically are strong advantages when compared to using MSCs from other tissues.

  7. Role of magnetic resonance spectroscopy & diffusion weighted imaging in differentiation of supratentorial brain tumors

    Directory of Open Access Journals (Sweden)

    Abdel Monem Nooman Darwiesh

    2016-09-01

    Conclusion: Intra-lesional ADC values are not useful in the differentiation between primary and metastatic tumors. Perilesional ADC values can differentiate between primary & metastatic brain tumors. Intralesional MRS values (CHO/Cr ratio were able to grade the tumor and differentiate between high and low grade tumors, while Perilesional MRS values (CHO/Cr ratio could be able to differentiate primary tumors from metastasis.

  8. Validation of the Mishel's uncertainty in illness scale-brain tumor form (MUIS-BT).

    Science.gov (United States)

    Lin, Lin; Acquaye, Alvina A; Vera-Bolanos, Elizabeth; Cahill, Jennifer E; Gilbert, Mark R; Armstrong, Terri S

    2012-11-01

    The Mishel uncertainty in illness scale (MUIS) has been used extensively with other solid tumors throughout the continuum of illness. Interventions to manage uncertainty have been shown to improve mood and symptoms. Patients with primary brain tumors (PBT) face uncertainty related to diagnosis, prognosis, symptoms and response. Modifying the MUIS to depict uncertainty in PBT patients will help define this issue and allow for interventions to improve quality of life. Initially, 15 experts reviewed the content validity of the MUIS-brain tumor form (MUIS-BT). Patients diagnosed with PBT then participated in the study to test validity and reliability. Data was collected at one point in time. Six out of 33 items in the original MUIS were modified to better describe PBT patients' uncertainty. 32 of the 186 patients in the second-stage of the study were newly diagnosed with PBT, 85 were on treatment, and 69 were followed-up without active treatment. The validity of the MUIS-BT was demonstrated by its correlations with mood states (P uncertainty and evaluation of measures to help manage patients' uncertainty can be evaluated which in turn may improve coping and quality of life.

  9. Tumor histology and location predict deep nuclei toxicity: Implications for late effects from focal brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, Alexis; Shields, Lisa B.E. [Norton Neuroscience Institute, Louisville, KY (United States); Sun, David A.; Vitaz, Todd W. [Norton Neuroscience Institute, Louisville, KY (United States); Brain Tumor Center, Norton Healthcare, Louisville, KY (United States); Spalding, Aaron C., E-mail: acspalding1@gmail.com [Brain Tumor Center, Norton Healthcare, Louisville, KY (United States); Norton Cancer Institute, Radiation Center, Kosair Children' s Hospital, Louisville, KY (United States)

    2012-10-01

    Normal tissue toxicity resulting from both disease and treatment is an adverse side effect in the management of patients with central nervous system malignancies. We tested the hypothesis that despite these improvements, certain tumors place patients at risk for neurocognitive, neuroendocrine, and neurosensory late effects. Defining patient groups at risk for these effects could allow for development of preventive strategies. Fifty patients with primary brain tumors underwent radiation planning with magnetic resonance imaging scan and computed tomography datasets. Organs at risk (OAR) responsible for neurocognitive, neuroendocrine, and neurosensory function were defined. Inverse-planned intensity-modulated radiation therapy was optimized with priority given to target coverage while penalties were assigned to exceeding normal tissue tolerances. Tumor laterality, location, and histology were compared with OAR doses, and analysis of variance was performed to determine the significance of any observed correlation. The ipsilateral hippocampus exceeded dose limits in frontal (74%), temporal (94%), and parietal (100%) lobe tumor locations. The contralateral hippocampus was at risk in the following tumor locations: frontal (53%), temporal (83%), or parietal (50%) lobe. Patients with high-grade glioma were at risk for ipsilateral (88%) and contralateral (73%) hippocampal damage (P <0.05 compared with other histologies). The pituitary gland and hypothalamus exceeded dose tolerances in patients with pituitary tumors (both 100%) and high-grade gliomas (50% and 75%, P <0.05 compared with other histologies), respectively. Despite application of modern radiation therapy, certain tumor locations and histologies continue to place patients at risk for morbidity. Patients with high-grade gliomas or tumors located in the frontal, temporal, or parietal lobes are at risk for neurocognitive decline, likely because of larger target volumes and higher radiation doses. Data from this study

  10. A murine model for virotherapy of malignant brain tumors

    Directory of Open Access Journals (Sweden)

    E. Gambini

    2011-01-01

    Full Text Available Glioblastomas (GBMs are very aggressive and almost incurable brain tumors. The development of new therapeutical approaches capable of selectively killing cancer cells could represent a step forward to fight cancer. With this aim we tested the efficacy of a novel oncolytic therapy based on recombinant herpes simplex viruses (HSVs infecting exclusively cells expressing the human receptor HER-2 [1, 2], overexpressed in about 15% of GBM model based on PDGF-B embryonic transduction [4, 5]. We engineered cell cultures derived from this model to express HER-2 and we injected intracranically such cultures in NOD/SCID mice. We evaluated the efficacy of R-LM113, a recombinant HSV directed to HER-2, in this glioma model expressing HER-2. We demostrated that mice injected with engineered glioma cells infected with R-LM113 developed glioma with a statistically significant delay compared to mice injected with non-infected engineered glioma cells.

  11. Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kuthala, Naresh; Vankayala, Raviraj; Li, Yi-Nan; Chiang, Chi-Shiun; Hwang, Kuo Chu

    2017-08-01

    Glioblastoma multiforme (GBM) is a very common type of "incurable" malignant brain tumor. Although many treatment options are currently available, most of them eventually fail due to its recurrence. Boron neutron capture therapy (BNCT) emerges as an alternative noninvasive therapeutic treatment modality. The major challenge in treating GBMs using BNCT is to achieve selective imaging, targeting, and sufficient accumulation of boron-containing drug at the tumor site so that effective destruction of tumor cells can be achieved without harming the normal brain cells. To tackle this challenge, this study demonstrates for the first time that an unprecedented 10 B-enriched (96% 10 B enrichment) boron nanoparticle nanomedicine (10 BSGRF NPs) surface-modified with a Fluorescein isothiocyanate (FITC)-labeled RGD-K peptide can pass through the brain blood barrier, selectively target at GBM brain tumor sites, and deliver high therapeutic dosage (50.5 µg 10 B g-1 cells) of boron atoms to tumor cells with a good tumor-to-blood boron ratio of 2.8. The 10 BSGRF NPs not only can enhance the contrast of magnetic resonance (MR) imaging to help diagnose the location/size/progress of brain tumor, but also effectively suppress murine brain tumors via MR imaging-guided BNCT, prolonging the half-life of mice from 22 d (untreated group) to 39 d. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Perfusion magnetic resonance imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dallery, F.; Michel, D.; Constans, J.M.; Gondry-Jouet, C. [University Hospital, Department of Radiology, Amiens (France); Bouzerar, R.; Promelle, V.; Baledent, O. [University Hospital, Department of Imaging and Biophysics, Amiens (France); Attencourt, C. [University Hospital, Departement of Pathology, Amiens (France); Peltier, J. [University Hospital, Departement of Neurosurgery, Amiens (France)

    2017-11-15

    The use of DSC-MR imaging in pediatric neuroradiology is gradually growing. However, the number of studies listed in the literature remains limited. We propose to assess the perfusion and permeability parameters in pediatric brain tumor grading. Thirty children with a brain tumor having benefited from a DSC-MR perfusion sequence have been retrospectively explored. Relative CBF and CBV were computed on the ROI with the largest lesion coverage. Assessment of the lesion's permeability was also performed through the semi-quantitative PSR parameter and the K2 model-based parameter on the whole-lesion ROI and a reduced ROI drawn on the permeability maps. A statistical comparison of high- and low-grade groups (HG, LG) as well as a ROC analysis was performed on the histogram-based parameters. Our results showed a statistically significant difference between LG and HG groups for mean rCBV (p < 10{sup -3}), rCBF (p < 10{sup -3}), and for PSR (p = 0.03) but not for the K2 factor (p = 0.5). However, the ratio K2/PSR was shown to be a strong discriminating factor between the two groups of lesions (p < 10{sup -3}). For rCBV and rCBF indicators, high values of ROC AUC were obtained (> 0.9) and mean value thresholds were observed at 1.07 and 1.03, respectively. For K2/PSR in the reduced area, AUC was also superior to 0.9. The implementation of a dynamic T2* perfusion sequence provided reliable results using an objective whole-lesion ROI. Perfusion parameters as well as a new permeability indicator could efficiently discriminate high-grade from low-grade lesions in the pediatric population. (orig.)

  13. Cerebral effect of acute normovolemic hemodilution during brain tumor resection.

    Science.gov (United States)

    Daif, Ahmed Attia Atwa; Hassan, Younis Mohamed Abd El Mageed; Ghareeb, Nawal Abd El-Galil; Othman, Mahmoud Mahmoud; Mohamed, Sherif Abdo Mousa

    2012-01-01

    Acute normovolemic hemodilution (ANH) is used in major surgery expected to be accompanied by excessive blood loss. Reducing the hemoglobin content may disturb cerebral oxygen balance. The aim of this study was to assess the effect of ANH on cerebral oxygen balance in patients subjected to brain tumor resection. Forty patients were randomly allocated into 2 groups (hemodilution and control). In the hemodilution group (HG), 1000 mL of blood was drawn and replaced with the same volume of HES 130/0.4 (6%, Voluven) colloid. In the control group (CG), no blood was drawn, and hemodynamics were stabilized using normal saline until allogenic blood was needed. Arterial and jugular bulb blood samples obtained after induction (basal, sample 1), 40 minutes after induction (or on completion of hemodilution, sample 2), after surgical hemostasis (sample 3), and just before extubation (sample 4) were used for the calculation of arterial-jugular oxygen content difference "Ca-jO(2)," cerebral oxygen extraction "CEO(2)," estimated cerebral metabolic rate for oxygen "eCMRO(2)," cerebral blood flow equivalent "CBFe," and jugular-arterial lactate difference "J-ALD" in both groups. Jugular oxygen saturation "SjvO(2)", CEO(2), and J-ALD showed no significant difference when the 2 groups were compared at the corresponding time points and when the values obtained at different time points were compared with the basal value in the same group. In CG, "Ca-jO(2)" significantly decreased at the end of surgery and before tracheal extubation (Pcerebral oxygenation parameters in patients subjected to brain tumor resection.

  14. HMGB1 mediates endogenous TLR2 activation and brain tumor regression.

    Directory of Open Access Journals (Sweden)

    James F Curtin

    2009-01-01

    Full Text Available Glioblastoma multiforme (GBM is the most aggressive primary brain tumor that carries a 5-y survival rate of 5%. Attempts at eliciting a clinically relevant anti-GBM immune response in brain tumor patients have met with limited success, which is due to brain immune privilege, tumor immune evasion, and a paucity of dendritic cells (DCs within the central nervous system. Herein we uncovered a novel pathway for the activation of an effective anti-GBM immune response mediated by high-mobility-group box 1 (HMGB1, an alarmin protein released from dying tumor cells, which acts as an endogenous ligand for Toll-like receptor 2 (TLR2 signaling on bone marrow-derived GBM-infiltrating DCs.Using a combined immunotherapy/conditional cytotoxic approach that utilizes adenoviral vectors (Ad expressing Fms-like tyrosine kinase 3 ligand (Flt3L and thymidine kinase (TK delivered into the tumor mass, we demonstrated that CD4(+ and CD8(+ T cells were required for tumor regression and immunological memory. Increased numbers of bone marrow-derived, tumor-infiltrating myeloid DCs (mDCs were observed in response to the therapy. Infiltration of mDCs into the GBM, clonal expansion of antitumor T cells, and induction of an effective anti-GBM immune response were TLR2 dependent. We then proceeded to identify the endogenous ligand responsible for TLR2 signaling on tumor-infiltrating mDCs. We demonstrated that HMGB1 was released from dying tumor cells, in response to Ad-TK (+ gancyclovir [GCV] treatment. Increased levels of HMGB1 were also detected in the serum of tumor-bearing Ad-Flt3L/Ad-TK (+GCV-treated mice. Specific activation of TLR2 signaling was induced by supernatants from Ad-TK (+GCV-treated GBM cells; this activation was blocked by glycyrrhizin (a specific HMGB1 inhibitor or with antibodies to HMGB1. HMGB1 was also released from melanoma, small cell lung carcinoma, and glioma cells treated with radiation or temozolomide. Administration of either glycyrrhizin or anti

  15. Future directions in treatment of brain metastases.

    Science.gov (United States)

    Barani, Igor J; Larson, David A; Berger, Mitchel S

    2013-01-01

    Brain metastases affect up to 30% of patients with cancer. Management of brain metastases continues to evolve with ever increasing focus on cognitive preservation and quality of life. This manuscript reviews current state of brain metastases management and discusses various treatment controversies with focus on future clinical trials. Stereotactic radiosurgery (SRS) and whole-brain radiotherapy (WBRT) are discussed in context of multiple (4+ brain metastases) as well as new approaches combining radiation and targeted agents. A brief discussion of modified WBRT approaches, including hippocampal-avoidance WBRT (HA-WBRT) is included as well as a section on recently presented results of Radiation Therapy Oncology Group (RTOG) 0614, a randomized, double-blind, placebo-controlled trial of menantine for prevention of neurocognitive injury after WBRT. A search of selected studies relevant to management of brain metastases was performed in PubMed as well as in various published meeting abstracts. This data was collated and analyzed in context of contemporary management and future clinical trial plans. This data is presented in tabular form and discussed extensively in the text. The published data demonstrate continued evolution of clinical trials and management strategies designed to minimize and/or prevent cognitive decline following radiation therapy management of brain metastases. Hippocampal avoidance whole-brain radiation therapy (HA-WBRT) and radiosurgery treatments for multiple brain metastases are discussed along with preliminary results of RTOG 0614, a trial of memantine therapy to prevent cognitive decline following WBRT. Trial results appear to support the use of memantine for prevention of cognitive decline. Different management strategies for multiple brain metastases (>4 brain metastases) are currently being evaluated in prospective clinical trials to minimize the likelihood of cognitive decline following WBRT.

  16. Treatment Options for Ovarian Low Malignant Potential Tumors

    Science.gov (United States)

    ... Cancer Screening Research Ovarian Low Malignant Potential Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Low ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  17. PET imaging in the surgical management of pediatric brain tumors.

    Science.gov (United States)

    Pirotte, Benoit; Acerbi, Francesco; Lubansu, Alphonse; Goldman, Serge; Brotchi, Jacques; Levivier, Marc

    2007-07-01

    The present article illustrates whether positron-emission tomography (PET) imaging may improve the surgical management of pediatric brain tumors (PBT) at different steps. Among 400 consecutive PBT treated between 1995 and 2005 at Erasme Hospital, Brussels, Belgium, we have studied with (18) F-2-fluoro-2-deoxy-D-glucose (FDG)-PET and/or L-(methyl-(11)C)methionine (MET)-PET and integrated PET images in the diagnostic workup of 126 selected cases. The selection criteria were mainly based on the lesion appearance on magnetic resonance (MR) sequences. Cases were selected when MR imaging showed limitations for (1) assessing the evolving nature of an incidental lesion (n = 54), (2) selecting targets for contributive and accurate biopsy (n = 32), and (3) delineating tumor tissue for maximal resection (n = 40). Whenever needed, PET images were integrated in the planning of image-guided surgical procedures (frame-based stereotactic biopsies (SB), frameless navigation-based resections, or leksell gamma knife radiosurgery). Like in adults, PET imaging really helped the surgical management of the 126 children explored, which represented about 30% of all PBT, especially when the newly diagnosed brain lesion was (1) an incidental finding so that the choice between surgery and conservative MR follow-up was debated, and (2) so infiltrative or ill-defined on MR that the choice between biopsy and resection was hardly discussed. Integrating PET into the diagnostic workup of these two selected groups helped to (1) take a more appropriate decision in incidental lesions by detecting tumor/evolving tissue; (2) better understand complex cases by differentiating indolent and active components of the lesion; (3) improve target selection and diagnostic yield of stereotactic biopsies in gliomas; (4) illustrate the intratumoral histological heterogeneity in gliomas; (5) provide additional prognostic information; (6) reduce the number of trajectories in biopsies performed in eloquent areas such

  18. Drug-Resistant Brain Metastases: A Role for Pharmacology, Tumor Evolution, and Too-Late Therapy.

    Science.gov (United States)

    Stricker, Thomas; Arteaga, Carlos L

    2015-11-01

    Two recent studies report deep molecular profiling of matched brain metastases and primary tumors. In both studies, somatic alterations in the brain metastases were frequently discordant with those in the primary tumor, suggesting divergent evolution at metastatic sites and raising questions about the use of biomarkers in patients in clinical trials with targeted therapies. ©2015 American Association for Cancer Research.

  19. Health-related quality of life in long-term survivors of childhood brain tumors

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Mortensen, Erik Lykke; Nysom, Karsten

    2009-01-01

    BACKGROUND: To identify predictors for health-related quality of life (HRQOL) in survivors of childhood brain tumors and its relationship to cognitive function. PROCEDURE: One hundred twenty-six consecutive Danish childhood brain tumor patients treated 1970-1997 and being 7.9-40.4 years at follow...

  20. Brain tumors in children and adolescents and exposure to animals and farm life

    DEFF Research Database (Denmark)

    Christensen, Jeppe Schultz; Mortensen, Laust Hvas; Röösli, Martin

    2012-01-01

    The etiology of brain tumors in children and adolescents is largely unknown, and very few environmental risk factors have been identified. The aim of this study was to examine the relationship between pre- or postnatal animal contacts or farm exposures and the risk of childhood brain tumors (CBTs...

  1. Caring for patients with brain tumor: The patient and care giver ...

    African Journals Online (AJOL)

    Background: Patients with brain tumors form a heterogeneous group in terms of clinical presentation and pathology. However, the impact of the disease on patients' families is often more homogenous and frequently quite profound. A considerable body of literature is available on the management of brain tumors and ...

  2. Cognitive deficits in long-term survivors of childhood brain tumors: Identification of predictive factors

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Ehrenfels, Susanne; Mortensen, Erik Lykke

    2003-01-01

    To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors.......To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors....

  3. Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique

    Directory of Open Access Journals (Sweden)

    S. S. Shanbhag

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG parameter. The relative increase in the SIG values (RSIG for the subjects with glioma and meningioma was in the range of 10.08–28.36 times and 5.60–9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P<0.01, with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative.

  4. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI

    Directory of Open Access Journals (Sweden)

    N. Sauwen

    2016-01-01

    Full Text Available Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs, as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI, diffusion-weighted imaging (DWI and magnetic resonance spectroscopic imaging (MRSI have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  5. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.

    Science.gov (United States)

    Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S

    2016-01-01

    Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  6. [A case of cerebral syphilitic gumma mimicking a brain tumor].

    Science.gov (United States)

    Hamauchi, Akiko; Abe, Takenori; Nihira, Atsuko; Mizobuchi, Masahiro; Sako, Kazuya; Ito, Tamio

    2014-01-01

    We report a case of young immunocompetent woman who was presented with a left parieto-temporal mass as the first and single manifestation of syphilis. A 23 year-old woman with no significant past medical history was reffered to our hospital due to 3 month history of headache. She had a single unprotected sexual intercourse with a promiscuous man 6 month before the time of admission. Physical and neurological examinations revealed no obvious abnormalities. A brain tumor was firstly suggested according to the findings of brain magnetic resonance imaging (MRI). However, the serologic and cerebrospinal fluid test of syphilis proved to be positive, syphilitic gumma was most likely suspected. She responded dramatically to benzylpenicillin potassium. Cerebral syphilitic gumma is a rare manifestations of the neurosyphilis. Treponemal invasion of the cerebrospinal fluid occurs in approximately 25 to 60% of patients after the infection, but most cases spend asymptomatic. Cerebral gumma should be considered in differential diagnosis of any intracranial mass lesions, even in the early syphilitic stages.

  7. (18)F-Fluorodeoxyglucose PET/Computed Tomography for Primary Brain Tumors

    DEFF Research Database (Denmark)

    Antonsen Segtnan, Eivind; Hess, Søren; Grupe, Peter

    2015-01-01

    Structural imaging with computed tomography (CT) and MR imaging is the mainstay in primary diagnosis of primary brain tumors, but these modalities depend on morphologic appearance and an intact blood-brain barrier, and important aspects of tumor biology are not addressed. Such issues may...... be alleviated by (18)F-fluorodeoxyglucose (FDG)-PET and FDG-PET/CT imaging, which may provide clinically important information with regard to primary differentiation between tumor types, initial staging and risk stratification, therapy planning, response evaluation, and recurrence detection. This article...... describes some of the potential contemporary applications of FDG and PET in primary brain tumors....

  8. Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy.

    Science.gov (United States)

    Scoccianti, Silvia; Detti, Beatrice; Cipressi, Samantha; Iannalfi, Alberto; Franzese, Ciro; Biti, Giampaolo

    2012-06-01

    This review aims to summarize what is currently known about neurocognitive outcome and quality of life in patients with brain tumors treated with radiotherapy. Whether potential tumor-controlling benefits of radiotherapy outweigh its potential toxicity in the natural history of brain tumors is a matter of debate. This review focuses on some of the adult main brain tumors, for which the issue of neurocognitive decline has been thoroughly studied: low-grade gliomas, brain metastases, and primary central nervous system lymphomas. The aims of this review are: (1) the analysis of existing data regarding the relationship between radiotherapy and neurocognitive outcome; (2) the identification of strategies to minimize radiotherapy-related neurotoxicity by reducing the dose or the volume; (3) the evidence-based data concerning radiotherapy withdrawal; and (4) the definition of patients subgroups that could benefit from immediate radiotherapy. For high grade gliomas, the main findings from literature are summarized and some strategies to reduce the neurotoxicity of the treatment are presented. Although further prospective studies with adequate neuropsychological follow-up are needed, this article suggests that cognitive deficits in patients with brain tumor have a multifactorial genesis: radiotherapy may contribute to the neurocognitive deterioration, but the causes of this decline include the tumor itself, disease progression, other treatment modalities and comorbidities. Treatment variables, such as total and fractional dose, target volume, and irradiation technique can dramatically affect the safety of radiotherapy: optimizing radiation parameters could be an excellent approach to improve outcome and to reduce neurotoxicity. At the same time, delayed radiotherapy could be a valid option for highly selected patients.

  9. Separation of the tumor and brain surface by "water jet" in cases of meningiomas.

    Science.gov (United States)

    Toth, S; Vajda, J; Pasztor, E; Toth, Z

    1987-01-01

    In the surgery of meningiomas one of the most delicate problems is the separation of the tumor from the brain surface. The authors generally recommend microsurgery to preserve the brain surface anatomically and functionally. For this purpose we have developed a new surgical technique according to our concepts of tissue care. After excavating the tumor from inside the tumor brain surface was separated by repeated "water jets" into the tumor arachnoideal space. The "water jet" was produced by an ordinary bulb syringe. The front pressure of the jets was 300-1000 mm of water and the side pressure 100-300 mm of water. In the tumor-arachnoideal space the spreading water (phys. NaCl) separates the brain from the tumor with utmost care. We operated on 55 meningiomas of different types with the "water jet" technique. The immediate results were anatomically excellent. Intraoperative and postoperative acute and late edemas appeared only in a few cases. The functions of the nearby brain were generally preserved. The surgery was uneventful when the tumor surface was smooth and the tumor was spherical. When the tumor surface was uneven, one part of the tumor extended under the dura as a thin layer or the tumor was multilobulated with expanded vessels between the lobules, more microseparation was necessary. We compared the results of the "water jet" technique with the results of the "pre-water jet" series. The surgery with the "water jet" technique was much shorter and its results were better than those of microsurgery alone.

  10. Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake

    Science.gov (United States)

    Flavahan, William A.; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E.; Weil, Robert J.; Nakano, Ichiro; Sarkaria, Jann N.; Stringer, Brett W.; Day, Bryan W.; Li, Meizhang; Lathia, Justin D.; Rich, Jeremy N.; Hjelmeland, Anita B.

    2013-01-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) due to preferential BTIC survival and adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3 and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, TICs may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may instruct the tumor hierarchy and portend poor prognosis. PMID:23995067

  11. Renal carcinoma with brain metastases. Prognostic factors and treatment outcomes

    Directory of Open Access Journals (Sweden)

    A. V. Golanov

    2016-01-01

    Full Text Available Introduction. Surgical excision followed by whole-brain radiotherapy (WBRT is a traditional treatment option for solitary brain metastases (SBM of renal carcinoma. In the presence of multiple brain metastases of renal carcinoma WBRT remains to be the most common treatment option in this group of patients. However, the effectiveness of WBRT is insufficient due to radioresistance of renal carcinoma. After introduction of the standards in the radiosurgical practice, treatment options of renal carcinoma have been changed, since radiosurgery may overcome WBRT limitations in the treatment of brain metastases of radioresistant tumorsObjective: to study the effectiveness of stereotactic radiosurgery by using “Gamma Knife” device in the treatment of brain metastases of renal carcinoma.Materials and methods. We have analyzed results of the treatment of 112 patients with brain metastases of renal carcinoma who underwent radiosurgical treatment in Moscow Center “Gamma Knife”. Age median of the patients was 58 (33 –77 years. Total number of irradiated metastatic foci – 444, an average number of brain metastases in 1 patient was 4 (1–30. Twenty eight (25.0 % patients had a single brain metastasis. A median of cumulative volume of brain metastases for each patient was 5.9 (0.1–29.1 cm3. An average value of the marginal dose for metastatic lesion was 22 (12–26 Gy, mean value of isodose used for treatment planning was 64 (39-99 %.Results. An overall survival (OS rate after radiosurgical treatment was 37.7; 16.4 and 9.3 % for 12, 24 and 36 months, respectively. A median OS was 9.1 months (95% confidence interval (CI 7.1–11.8. New brain metastases (distant recurrences following radiosurgical treatment occurred in 44 (54.3 % patients, with a median of 10.1 months (95 % CI:7-18. Local recurrences after radiosurgical treatment were detected in 19 (17 % patients with a median time of 6.6 months (95 % CI 4.0–9.6. Factors associated with the best

  12. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability.

    Science.gov (United States)

    Uematsu, Hidemasa; Maeda, Masayuki

    2006-01-01

    Perfusion-weighted magnetic resonance (MR) imaging using contrast agents plays a key role in characterizing tumors of the brain. We have shown that double-echo perfusion-weighted MR imaging (DEPWI) is potentially useful in assessing brain tumors. Quantitative indices, such as tumor blood volume, are obtained using DEPWI, which allows correction of underestimation of tumor blood volume due to leakage of contrast agents from tumor vessels, in addition to simultaneous acquisition of tumor vessel permeability. This article describes basic concepts of DEPWI and demonstrates clinical applications in brain tumors.

  13. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    Science.gov (United States)

    ... but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between ... the gonads (testicles or ovaries). This includes the pineal gland in the brain, the mediastinum (area between the ...

  14. Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin.

    Science.gov (United States)

    Zemp, Franz J; Lun, Xueqing; McKenzie, Brienne A; Zhou, Hongyuan; Maxwell, Lori; Sun, Beichen; Kelly, John J P; Stechishin, Owen; Luchman, Artee; Weiss, Samuel; Cairncross, J Gregory; Hamilton, Mark G; Rabinovich, Brian A; Rahman, Masmudur M; Mohamed, Mohamed R; Smallwood, Sherin; Senger, Donna L; Bell, John; McFadden, Grant; Forsyth, Peter A

    2013-07-01

    Intratumoral heterogeneity in glioblastoma multiforme (GBM) poses a significant barrier to therapy in certain subpopulation such as the tumor-initiating cell population, being shown to be refractory to conventional therapies. Oncolytic virotherapy has the potential to target multiple compartments within the tumor and thus circumvent some of the barriers facing conventional therapies. In this study, we investigate the oncolytic potential of myxoma virus (MYXV) alone and in combination with rapamycin in vitro and in vivo using human brain tumor-initiating cells (BTICs). We cultured fresh GBM specimens as neurospheres and assayed their growth characteristics in vivo. We then tested the susceptibility of BTICs to MYXV infection with or without rapamycin in vitro and assessed viral biodistribution/survival in vivo in orthotopic xenografts. The cultured neurospheres were found to retain stem cell markers in vivo, and they closely resembled human infiltrative GBM. In this study we determined that (i) all patient-derived BTICs tested, including those resistant to temozolomide, were susceptible to MYXV replication and killing in vitro; (ii) MYXV replicated within BTICs in vivo, and intratumoral administration of MYXV significantly prolonged survival of BTIC-bearing mice; (iii) combination therapy with MYXV and rapamycin improved antitumor activity, even in mice bearing "advanced" BTIC tumors; (iv) MYXV treatment decreased expression of stem cell markers in vitro and in vivo. Our study suggests that MYXV in combination with rapamycin infects and kills both the BTICs and the differentiated compartments of GBM and may be an effective treatment even in TMZ-resistant patients.

  15. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI

    NARCIS (Netherlands)

    Sauwen, Nicolas; Sima, Diana M.; Van Cauter, Sofie; Veraart, Jelle; Leemans, Alexander; Maes, Frederik; Himmelreich, Uwe; Van Huffel, Sabine

    2015-01-01

    Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor

  16. Aprepitant reduces chemotherapy-induced vomiting in children and young adults with brain tumors.

    Science.gov (United States)

    Duggin, Kelly; Tickle, Kelly; Norman, Gina; Yang, Jie; Wang, Chong; Cross, Shane J; Gajjar, Amar; Mandrell, Belinda

    2014-01-01

    Chemotherapy-induced nausea and vomiting are common and distressing side effects in patients with brain tumors and may be associated with radiation and the administration of highly emetogenic chemotherapy (HEC). Pediatric antiemetic guidelines recommend administration of a 5-hydroxytryptamine-3 (5HT3) receptor antagonists and the addition of aprepitant, a neurokinin 1 (NK1) antagonist with corticosteroids for the treatment of HEC. However, challenges persist in treating chemotherapy-induced nausea and vomiting in patients with brain tumors as corticosteroids are contraindicated due to potential impairment of the blood-brain barrier permeability. The objective was to determine whether a 5HT3 receptor antagonist and the addition of aprepitant, an NK1 antagonist without a corticosteroid, were effective in reducing HEC vomiting in pediatric brain tumor patients. A retrospective review found that 18 patients with a history of high-grade vomiting during radiation were prescribed a 5HT3 receptor antagonist and aprepitant without a corticosteroid during their first course of HEC. To determine the efficacy of aprepitant without a corticosteroid, each recipient was matched with 2 controls who did not receiv aprepitant. During HEC, controls without aprepitant were more likely to have Grade 2 or higher vomiting than the aprepitant recipients (P = .03; odds ratio = 4.15; 95% confidence interval = 1.59-10.82), after controlling for radiation-associated vomiting toxicity. Significantly less vomiting was identified in children receiving HEC and prescribed a 5HT3 receptor antagonist and aprepitant. Findings suggest that the addition of an NK1 antagonist may be beneficial to emetic control in this highly vulnerable population. © 2014 by Association of Pediatric Hematology/Oncology Nurses.

  17. Intravenous and oral levetiracetam in patients with a suspected primary brain tumor and symptomatic seizures undergoing neurosurgery: the HELLO trial.

    Science.gov (United States)

    Bähr, Oliver; Hermisson, Mirjam; Rona, Sabine; Rieger, Johannes; Nussbaum, Susanne; Körtvelyessy, Peter; Franz, Kea; Tatagiba, Marcos; Seifert, Volker; Weller, Michael; Steinbach, Joachim P

    2012-02-01

    Levetiracetam (LEV) is a newer anticonvulsant with a favorable safety profile. There seem to be no relevant drug interactions, and an intravenous formulation is available. Therefore, LEV might be a suitable drug for the perioperative anticonvulsive therapy of patients with suspected brain tumors undergoing neurosurgery. In this prospective study (NCT00571155) patients with suspected primary brain tumors and tumor-related seizures were perioperatively treated with oral and intravenous LEV up to 4 weeks before and until 4 weeks after a planned neurosurgical procedure. Thirty patients with brain tumor-related seizures and intended neurosurgery were included. Three patients did not undergo the scheduled surgery after enrollment, and two patients were lost to follow-up. Therefore, 25 patients were fully evaluable. After initiation of therapy with LEV, 100% of the patients were seizure-free in the pre-surgery phase (3 days up to 4 weeks before surgery), 88% in the 48 h post-surgery phase and 84% in the early follow-up phase (48 h to 4 weeks post surgery). Treatment failure even after dose escalation to 3,000 mg/day occurred in three patients. No serious adverse events related to the treatment with LEV occurred. Our data show the feasibility and safety of oral and intravenous LEV in the perioperative treatment of tumor-related seizures. Although this was a single arm study, the efficacy of LEV appears promising. Considering the side effects and interactions of other anticonvulsants, LEV seems to be a favorable option in the perioperative treatment of brain tumor-related seizures.

  18. Disruption of White Matter Integrity in Adult Survivors of Childhood Brain Tumors: Correlates with Long-Term Intellectual Outcomes.

    Science.gov (United States)

    King, Tricia Z; Wang, Liya; Mao, Hui

    2015-01-01

    Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood. Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an intelligence test (IQ). Voxel-wise group comparisons of fractional anisotropy calculated from DTI data were performed using Tract Based Spatial Statistics (TBSS) on 27 survivors (14 treated with radiation with and without chemotherapy and 13 treated without radiation treatment on average over 13 years since diagnosis) and 27 healthy comparison participants. Whole brain white matter fractional anisotropy (FA) differences were explored between each group. The relationships between IQ and FA in the regions where statistically lower FA values were found in survivors were examined, as well as the role of cumulative neurological factors. The group of survivors treated with radiation with and without chemotherapy had lower IQ relative to the group of survivors without radiation treatment and the healthy comparison group. TBSS identified white matter regions with significantly different mean fractional anisotropy between the three different groups. A lower level of white matter integrity was found in the radiation with or without chemotherapy treated group compared to the group without radiation treatment and also the healthy control group. The group without radiation treatment had a lower mean FA relative to healthy controls. The white matter disruption of the radiation with or without chemotherapy treated survivors was positively correlated with IQ and cumulative neurological factors. Lower long-term intellectual outcomes of childhood brain tumor survivors are associated with lower white matter integrity

  19. Disruption of White Matter Integrity in Adult Survivors of Childhood Brain Tumors: Correlates with Long-Term Intellectual Outcomes.

    Directory of Open Access Journals (Sweden)

    Tricia Z King

    Full Text Available Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood.Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an intelligence test (IQ. Voxel-wise group comparisons of fractional anisotropy calculated from DTI data were performed using Tract Based Spatial Statistics (TBSS on 27 survivors (14 treated with radiation with and without chemotherapy and 13 treated without radiation treatment on average over 13 years since diagnosis and 27 healthy comparison participants. Whole brain white matter fractional anisotropy (FA differences were explored between each group. The relationships between IQ and FA in the regions where statistically lower FA values were found in survivors were examined, as well as the role of cumulative neurological factors.The group of survivors treated with radiation with and without chemotherapy had lower IQ relative to the group of survivors without radiation treatment and the healthy comparison group. TBSS identified white matter regions with significantly different mean fractional anisotropy between the three different groups. A lower level of white matter integrity was found in the radiation with or without chemotherapy treated group compared to the group without radiation treatment and also the healthy control group. The group without radiation treatment had a lower mean FA relative to healthy controls. The white matter disruption of the radiation with or without chemotherapy treated survivors was positively correlated with IQ and cumulative neurological factors.Lower long-term intellectual outcomes of childhood brain tumor survivors are associated with lower white

  20. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  1. [Diagnosis and treatment of tumor metastases].

    Science.gov (United States)

    Petruzelka, L

    2001-08-01

    More than half the patients with malignat tumours have at the time of diagnosis already remote metastases or they develop remote dissemination after different intervals following termination of local treatment. Organ complications in case of metastatic dissemination are for the majority of patients the most life threatening condition. In therapeutic decisions the approach to some solid tumours is the same as in systemic diseases. The possibility to achieve a long-term therapeutic effect during conventional systemic therapy are limited in metastatizing solid tumours of adult age. Assessment of the extent of the disease incl. detection of metastatic dissemination is of decisive importance for the selection of therapeutic strategy. Imaging methods such as computed tomography, ultrasonography and nuclear magnetic resonance provide basic structural anatomic information. The limitating factor is obtaining functional information on tumor tissues and the possibility to differentiate the residual disease from non-viable or necrotic tumor masses. These data can be provided by radiopharmacological imaging methods such as positron emission tomography. Introduction of new imaging methods is becoming increasingly important when new therapeutic methods are used where the effect of the therapeutic result does not mean necessarily reduction of the tumour volume. Research of the metastatic process involved revolutionary changese lucidating individual stages linked in a cascade pattern. The metastatic potential of human tumours correlates with the expression of a number of genes regulating tumour growth (EGF - epidermal growth factor, IGF - insulin like growth factor) motility of tumour cells (AMF - autocrine motility factor) the process of angiogenesis (VEGF vascular endothelial growth factor, bFGF - basal fibroblastic growth factor, interleukin-8) and the invasiveness (genes for the matrix of metalloproteinase MMP-2/MMP-9). Expression of the surface glycoporotein E-cadherin which

  2. Perspectives of boron-neutron capture therapy of malignant brain tumors

    Science.gov (United States)

    Kanygin, V. V.; Kichigin, A. I.; Krivoshapkin, A. L.; Taskaev, S. Yu.

    2017-09-01

    Boron neutron capture therapy (BNCT) is characterized by a selective effect directly on the cells of malignant tumors. The carried out research showed the perspective of the given kind of therapy concerning malignant tumors of the brain. However, the introduction of BNCT into clinical practice is hampered by the lack of a single protocol for the treatment of patients and the difficulty in using nuclear reactors to produce a neutron beam. This problem can be solved by using a compact accelerator as a source of neutrons, with the possibility of installation in a medical institution. Such a neutron accelerator for BNCT was developed at Budker Institute of Nuclear Physics, Novosibirsk. A neutron beam was obtained on this accelerator, which fully complies with the requirements of BNCT, as confirmed by studies on cell cultures and experiments with laboratory animals. The conducted experiments showed the relative safety of the method with the absence of negative effects on cell cultures and living organisms, and also confirmed the effectiveness of BNCT for malignant brain tumors.

  3. Symptoms and management of pediatric patients with incurable brain tumors in palliative home care.

    Science.gov (United States)

    Kuhlen, Michaela; Hoell, Jessica; Balzer, Stefan; Borkhardt, Arndt; Janssen, Gisela

    2016-03-01

    Brain tumors have the highest disease-related mortality rate of all pediatric cancers. The goal of this study was to determine whether all children with incurable brain tumors cared for by a pediatric palliative care team in a home setting suffer from the same symptoms towards the end of their lives or whether there are differences between the tumor localizations with implications for palliative care. This study was conducted as a retrospective, single center chart review including all patients treated between January 1st 2000 and December 31st 2013. 70 children, adolescents and young adults were included in the analysis. Symptom burden was high with a mean number of symptoms of 7.2 per patient. 74% of the symptoms already existed one week before death. Within the last week of life, impaired consciousness (75.7%) most often occurred. Furthermore, symptoms considerably depended on tumor localization. Patients with supratentorial tumors presented more frequently with seizures (p paralysis (p brain stem tumors. 84.3% of the patients needed analgesics, only 64.4% WHO class III analgesics. Anticonvulsants were given more often in supratentorial tumors (p child suffering from a brain tumor needs increased awareness of the neurological deterioration. The symptom pattern strongly depends on the tumor localization and significantly differs between supratentorial, infratentorial and brain stem tumors. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Segmentation of brain tumor images using in vivo spectroscopy, relaxometry and diffusometry by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Martin L, M. [Universidad Central de Venezuela, A.P. 47586, Caracas 1041-A (Venezuela)

    2006-07-01

    A new methodology is developed for the segmentation of brain tumor images using information obtained by different magnetic resonance techniques such as in vivo spectroscopy, relaxometry and diffusometry. In vivo spectroscopy is used as a sort of virtual biopsy to characterize the different tissue types present in the lesion (active tumor, necrotic tissue or edema and normal or non-affected tissue). Due to the fact that in vivo spectroscopy information lacks the spatial resolution for treatment considerations, this information has to be combined or fused with images obtained by relaxometry and diffusometry with excellent spatial resolution. Some segmentation schemes are presented and discussed, using the high spatial resolution techniques individually or combined. The results show that segmentation done in this way is highly reliable for the application of future therapies such as radiosurgery or radiotherapy. (Author)

  5. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target

    Science.gov (United States)

    Huang, Xi; He, Ye; Dubuc, Adrian M.; Hashizume, Rintaro; Zhang, Wei; Reimand, Jüri; Yang, Huanghe; Wang, Tongfei A.; Stehbens, Samantha J.; Younger, Susan; Barshow, Suzanne; Zhu, Sijun; Cooper, Michael K.; Peacock, John; Ramaswamy, Vijay; Garzia, Livia; Wu, Xiaochong; Remke, Marc; Forester, Craig M.; Kim, Charles C.; Weiss, William A.; James, C. David; Shuman, Marc A.; Bader, Gary D.; Mueller, Sabine; Taylor, Michael D.; Jan, Yuh Nung; Jan, Lily Yeh

    2015-01-01

    Over 20% of the drugs for treating human diseases target ion channels, however, no cancer drug approved by the U.S. Food and Drug Administration (FDA) is intended to target an ion channel. Here, we demonstrate the evolutionarily conserved function of EAG2 potassium channel in promoting brain tumor growth and metastasis, delineate downstream pathways and uncover a mechanism for different potassium channels to functionally corporate and regulate mitotic cell volume and tumor progression. We show that EAG2 potassium channel is enriched at the trailing edge of migrating MB cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identify the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings thus illustrate the potential of targeting ion channels in cancer treatment. PMID:26258683

  6. Significant anti-tumor effect of bevacizumab in treatment of pineal gland glioblastoma multiforme.

    Science.gov (United States)

    Mansour, Joshua; Fields, Braxton; Macomson, Samuel; Rixe, Olivier

    2014-12-01

    Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas. Current standard treatment for GBM involves a combination of cytoreduction through surgical resection, followed by radiation with concomitant and adjuvant chemotherapy (temozolomide). The role of bevacizumab in the treatment of GBM continues to be a topic of ongoing research and debate. Despite aggressive treatment, these tumors remain undoubtedly fatal, especially in the elderly. Furthermore, tumors present in the pineal gland are extremely rare, accounting for only 0.1-0.4 % of all adult brain tumors, with this location adding to the complexity of treatment. We present a case of GBM, at the rare location of pineal gland, in an elderly patient who was refractory to initial standard of care treatment with radiation and concomitant and adjuvant temozolomide, but who developed a significant response to anti-angiogenic therapy using bevacizumab.

  7. 18F-FDG PET and MR Imaging Associations Across a Spectrum of Pediatric Brain Tumors: A Report from the Pediatric Brain Tumor Consortium

    Science.gov (United States)

    Zukotynski, Katherine; Fahey, Frederic; Kocak, Mehmet; Kun, Larry; Boyett, James; Fouladi, Maryam; Vajapeyam, Sridhar; Treves, Ted; Poussaint, Tina Y.

    2014-01-01

    The purpose of this study was to describe 18F-FDG uptake across a spectrum of pediatric brain tumors and correlate 18F-FDG PET with MR imaging variables, progression-free survival (PFS), and overall survival (OS). Methods A retrospective analysis was conducted of children enrolled in phase I/II clinical trials through the Pediatric Brain Tumor Consortium from August 2000 to June 2010. PET variables were summarized within diagnostic categories using descriptive statistics. Associations of PET with MR imaging variables and PFS and OS by tumor types were evaluated. Results Baseline 18F-FDG PET was available in 203 children; 66 had newly diagnosed brain tumors, and 137 had recurrent/refractory brain tumors before enrolling in a Pediatric Brain Tumor Consortium trial. MR imaging was performed within 2 wk of PET and before therapy in all cases. The 18F-FDG uptake pattern and MR imaging contrast enhancement (CE) varied by tumor type. On average, glioblastoma multiforme and medulloblastoma had uniform, intense uptake throughout the tumor, whereas brain stem gliomas (BSGs) had low uptake in less than 50% of the tumor and ependymoma had low uptake throughout the tumor. For newly diagnosed BSG, correlation of 18F-FDG uptake with CE portended reduced OS (P = 0.032); in refractory/recurrent BSG, lack of correlation between 18F-FDG uptake and CE suggested decreased PFS (P = 0.023). In newly diagnosed BSG for which more than 50% of the tumor had 18F-FDG uptake, there was a suggestion of lower apparent diffusion coefficient (P = 0.061) and decreased PFS (P = 0.065). Conclusion 18F-FDG PET and MR imaging showed a spectrum of patterns depending on tumor type. In newly diagnosed BSG, the correlation of 18F-FDG uptake and CE suggested decreased OS, likely related to more aggressive disease. When more than 50% of the tumor had 18F-FDG uptake, the apparent diffusion coefficient was lower, consistent with increased cellularity. In refractory/recurrent BSG, poor correlation between 18F

  8. Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael; Fonta, Caroline; Renaud, Luc [Universite de Toulouse, UPS, Centre de Recherche Cerveau et Cognition (France); Bouchet, Audrey; Braeuer-Krisch, Elke; Sarun, Sukhena; Bravin, Alberto; Le Duc, Geraldine [European Synchrotron Radiation Facility, F38043 Grenoble (France); Laissue, Jean A [Institute of Pathology, University of Bern (Switzerland); Spiga, Jenny [Department of Physics, University of Cagliari, s.p. Monserrato-Sestu, Monserrato (Canada) 09042 (Italy); Boutonnat, Jean [TIMC lab, UMR CNRS 5525, Univ Joseph Fourier, CHU, Grenoble (France); Siegbahn, Erik Albert [Department of Medical Physics, Karolinska Universitetssjukhuset, 17176 Stockholm (Sweden); Esteve, Francois [INSERM U836, Equipe 6, Institut des Neurosciences de Grenoble, 38043 Grenoble Cedex (France)], E-mail: raph.serduc@gmail.com

    2009-11-07

    To analyze the effects of the microbeam width (25, 50 and 75 {mu}m) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 {mu}m wide microbeams, all spaced 211 {mu}m on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 {mu}m wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of {approx}50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 {mu}m width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 {mu}m or 25 {mu}m widths when used with a 211 {mu}m on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are kept constant in

  9. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality

    NARCIS (Netherlands)

    Jansma, J. M.; Ramsey, N.; Rutten, G.J.M.

    2015-01-01

    Aim. Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MM can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on

  10. Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery

    Science.gov (United States)

    Klein, Justin S.; Mitchell, Gregory S.; Cherry, Simon R.

    2017-05-01

    Cerenkov luminescence imaging (CLI) is a developing imaging modality that detects radiolabeled molecules via visible light emitted during the radioactive decay process. We used a Monte Carlo based computer simulation to quantitatively investigate CLI compared to direct detection of the ionizing radiation itself as an intraoperative imaging tool for assessment of brain tumor margins. Our brain tumor model consisted of a 1 mm spherical tumor remnant embedded up to 5 mm in depth below the surface of normal brain tissue. Tumor to background contrast ranging from 2:1 to 10:1 were considered. We quantified all decay signals (e±, gamma photon, Cerenkov photons) reaching the brain volume surface. CLI proved to be the most sensitive method for detecting the tumor volume in both imaging and non-imaging strategies as assessed by contrast-to-noise ratio and by receiver operating characteristic output of a channelized Hotelling observer.

  11. Percutaneous treatment of pulmonary tumors by electrolysis.

    Science.gov (United States)

    Samuelsson, L; Jönsson, L; Ståhl, E

    1983-06-01

    Five lung tumors in four patients were treated with electrolysis. One of the tumors was probably primary, while the others were metastases. Under local anesthesia, two or three platinum electrodes (diameter 3 mm) were introduced through the thoracic wall into the lung tumor using biplane fluoroscopy. The patient was sedated before the procedure and a chest tube was inserted into the pleural cavity. Between anode and cathode a direct current of 80 mA and 10 V was passed during 2-4 h, creating substantial electrolytic destruction mainly through chlorine liberation. Observations at autopsy, surgery, chest X-ray, and CT showed that 60%-80% of the tumor mass was destroyed. No tumor was completely destroyed. The patients tolerated the procedure well.

  12. Percutaneous treatment of pulmonary tumors by electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, L.; Joensson, L.; Stahl, E.

    1983-06-01

    Five lung tumors in four patients were treated with electrolysis. One of the tumors was probably primary, while the others were metastases. Under local anesthesia, two or three platinum electrodes (diameter 3 mm) were introduced through the thoracic wall into the lung tumor using biplane fluoroscopy. The patient was sedated before the procedure and a chest tube was inserted into the pleural cavity. Between anode and cathode a direct current of 80 mA and 10 V was passed during 2-4 h, creating substantial electrolytic destruction mainly through chlorine liberation. Observations at autopsy, surgery, chest X-ray, and CT showed that 60%-80% of the tumor mass was destroyed. No tumor was completely destroyed. The patients stood the procedure well.

  13. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.

    Science.gov (United States)

    Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P

    2017-11-01

    Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.

  14. Brain Tumor Tropism of Transplanted Human Neural Stem Cells Is Induced by Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Nils Ole Schmidt

    2005-06-01

    Full Text Available The transplantation of neural stem cells (NSCs offers a new potential therapeutic approach as a cell-based delivery system for gene therapy in brain tumors. This is based on the unique capacity of NSCs to migrate throughout the brain and to target invading tumor cells. However, the signals controlling the targeted migration of transplanted NSCs are poorly defined. We analyzed the in vitro and in vivo effects of angiogenic growth factors and protein extracts from surgical specimens of brain tumor patients on NSC migration. Here, we demonstrate that vascular endothelial growth factor (VEGF is able to induce a long-range attraction of transplanted human NSCs from distant sites in the adult brain. Our results indicate that tumorupregulated VEGF and angiogenic-activated microvasculature are relevant guidance signals for NSC tropism toward brain tumors.

  15. Altered brain anatomical networks and disturbed connection density in brain tumor patients revealed by diffusion tensor tractography.

    Science.gov (United States)

    Yu, Zhou; Tao, Ling; Qian, Zhiyu; Wu, Jiangfen; Liu, Hongyi; Yu, Yun; Song, Jiantai; Wang, Shaobo; Sun, Jinyang

    2016-11-01

    Brain tumor patients are usually accompanied by impairments in cognitive functions, and these dysfunctions arise from the altered diffusion tensor of water molecules and disrupted neuronal conduction in white matter. Diffusion tensor imaging (DTI) is a powerful noninvasive imaging technique that can reflect diffusion anisotropy of water and brain white matter neural connectivity in vivo. This study was aimed to analyze the topological properties and connection densities of the brain anatomical networks in brain tumor patients based on DTI and provide new insights into the investigation of the structural plasticity and compensatory mechanism of tumor patient's brain. In this study, the brain anatomical networks of tumor patients and healthy controls were constructed using the tracking of white matter fiber bundles based on DTI and the topological properties of these networks were described quantitatively. The statistical comparisons were performed between two groups with six DTI parameters: degree, regional efficiency, local efficiency, clustering coefficient, vulnerability, and betweenness centrality. In order to localize changes in structural connectivity to specific brain regions, a network-based statistic approach was utilized. By comparing the edge connection density of brain network between two groups, the edges with greater difference in connection density were associated with three functional systems. Compared with controls, tumor patients show a significant increase in small-world feature of cerebral structural network. Two-sample two-tailed t test indicates that the regional properties are altered in 17 regions ([Formula: see text]). Study reveals that the positive and negative changes in vulnerability take place in the 14 brain areas. In addition, tumor patients lose 3 hub regions and add 2 new hubs when compared to normal controls. Eleven edges show much significantly greater connection density in the patients than in the controls. Most of the edges with

  16. 2016 Updates to the WHO Brain Tumor Classification System: What the Radiologist Needs to Know.

    Science.gov (United States)

    Johnson, Derek R; Guerin, Julie B; Giannini, Caterina; Morris, Jonathan M; Eckel, Lawrence J; Kaufmann, Timothy J

    2017-01-01

    Radiologists play a key role in brain tumor diagnosis and management and must stay abreast of developments in the field to advance patient care and communicate with other health care providers. In 2016, the World Health Organization (WHO) released an update to its brain tumor classification system that included numerous significant changes. Several previously recognized brain tumor diagnoses, such as oligoastrocytoma, primitive neuroectodermal tumor, and gliomatosis cerebri, were redefined or eliminated altogether. Conversely, multiple new entities were recognized, including diffuse leptomeningeal glioneuronal tumor and multinodular and vacuolating tumor of the cerebrum. The glioma category has been significantly reorganized, with several infiltrating gliomas in children and adults now defined by genetic features for the first time. These changes were driven by increased understanding of important genetic factors that directly impact tumorigenesis and influence patient care. The increased emphasis on genetic factors in brain tumor diagnosis has important implications for radiology, as we now have tools that allow us to evaluate some of these alterations directly, such as the identification of 2-hydroxyglutarate within infiltrating gliomas harboring mutations in the genes for the isocitrate dehydrogenases. For other tumors, such as medulloblastoma, imaging can demonstrate characteristic patterns that correlate with particular disease subtypes. The purpose of this article is to review the changes to the WHO brain tumor classification system that are most pertinent to radiologists. ©RSNA, 2017.

  17. Targeting c-Met receptor overcomes TRAIL-resistance in brain tumors.

    Directory of Open Access Journals (Sweden)

    Wanlu Du

    Full Text Available Tumor necrosis factor related apoptosis-inducing ligand (TRAIL induced apoptosis specifically in tumor cells. However, with approximately half of all known tumor lines being resistant to TRAIL, the identification of TRAIL sensitizers and their mechanism of action become critical to broadly use TRAIL as a therapeutic agent. In this study, we explored whether c-Met protein contributes to TRAIL sensitivity. We found a direct correlation between the c-Met expression level and TRAIL resistance. We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR 5. This interruption greatly induces the formation of death-inducing signaling complex (DISC and subsequent downstream apoptosis signaling. Using intracranially implanted brain tumor cells and stem cell (SC lines engineered with different combinations of fluorescent and bioluminescent proteins, we show that SC expressing a potent and secretable TRAIL (S-TRAIL have a significant anti-tumor effect in mice bearing c-Met knock down of TRAIL-resistant brain tumors. To our best knowledge, this is the first study that demonstrates c-Met contributes to TRAIL sensitivity of brain tumor cells and has implications for developing effective therapies for brain tumor patients.

  18. Evaluation of health-related quality of life in Lithuanian brain tumor patients using the EORTC brain cancer module.

    Science.gov (United States)

    Bunevičius, Adomas; Tamašauskas, Šarūnas; Tamašauskas, Arimantas; Deltuva, Vytenis

    2012-01-01

    BACKGROUND AND OBJECTIVE. Health-related quality of life (HRQoL) is considered an important outcome measure in neuro-oncology. The aim of this study was to evaluate the psychometric properties of the brain cancer-specific Quality of Life Questionnaire (QLQ-BN20) of the European Organization for Research and Treatment of Cancer (EORTC) in Lithuanian brain tumor patients. MATERIAL AND METHODS. One hundred consecutive patients (71% of women; mean age, 58 ± 14 years) admitted for elective brain tumor surgery were evaluated for HRQoL using the QLQ-BN20, QLQ-C30 (a core EORTC questionnaire for cancer patients), and SF-36 scale; for motor dysfunction (clinical examination); for cognitive dysfunction (Mini-Mental State Examination); and for disability (Barthel Index). RESULTS. The QLQ-BN20 subscales had an adequate internal consistency (Cronbach α, 0.75-0.90). Motor dysfunction on neurological examination was associated with greater motor dysfunction on the QLQ-BN20; greater disability, with greater future uncertainty, motor dysfunction, communication deficits, headaches, seizures, drowsiness, itchy skin, weakness of legs, and poor bladder control on the QLQ-BN20; and cognitive dysfunction, with greater future uncertainty, visual deficits, motor dysfunction, communication deficits, headaches, drowsiness, and weakness of legs symptoms on the QLQ-BN20, suggesting an adequate clinical validity of the QLQ-BN20. A score for motor dysfunction on the QLQ-BN20 correlated with a score for motor dysfunction on the QLQ-C30 and SF-36 scales; a score for headache on the QLQ-BN20, with a score for pain on the QLQ-C30 and SF-36 scales; and a score for drowsiness symptoms on the QLQ-BN20, with a score for fatigue on the QLQ-C30. CONCLUSIONS. The Lithuanian version of the EORTC-QLQ-BN20 scale has acceptable psychometric properties and can be reliably used for the assessment of HRQoL in brain tumor patients.

  19. Monte Carlo modeling and optimization of contrast-enhanced radiotherapy of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, C E; Garnica-Garza, H M, E-mail: hgarnica@cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL CP 66600 (Mexico)

    2011-07-07

    Contrast-enhanced radiotherapy involves the use of a kilovoltage x-ray beam to impart a tumoricidal dose to a target into which a radiological contrast agent has previously been loaded in order to increase the x-ray absorption efficiency. In this treatment modality the selection of the proper x-ray spectrum is important since at the energy range of interest the penetration ability of the x-ray beam is limited. For the treatment of brain tumors, the situation is further complicated by the presence of the skull, which also absorbs kilovoltage x-ray in a very efficient manner. In this work, using Monte Carlo simulation, a realistic patient model and the Cimmino algorithm, several irradiation techniques and x-ray spectra are evaluated for two possible clinical scenarios with respect to the location of the target, these being a tumor located at the center of the head and at a position close to the surface of the head. It will be shown that x-ray spectra, such as those produced by a conventional x-ray generator, are capable of producing absorbed dose distributions with excellent uniformity in the target as well as dose differential of at least 20% of the prescribed tumor dose between this and the surrounding brain tissue, when the tumor is located at the center of the head. However, for tumors with a lateral displacement from the center and close to the skull, while the absorbed dose distribution in the target is also quite uniform and the dose to the surrounding brain tissue is within an acceptable range, hot spots in the skull arise which are above what is considered a safe limit. A comparison with previously reported results using mono-energetic x-ray beams such as those produced by a radiation synchrotron is also presented and it is shown that the absorbed dose distributions rendered by this type of beam are very similar to those obtained with a conventional x-ray beam.

  20. Harvey Cushing and pediatric brain tumors at Johns Hopkins: the early stages of development.

    Science.gov (United States)

    Pendleton, Courtney; Ahn, Edward S; Quiñones-Hinojosa, Alfredo

    2011-06-01

    Harvey Cushing, credited with pioneering the field of neurosurgery as a distinct surgical subspecialty in the US, was at the forefront of neurooncology, publishing seminal papers on the diagnosis and treatment of pediatric brain tumors during the latter part of his career. However, his contributions to the surgical treatment of these lesions during the early stages of his tenure at the Johns Hopkins Hospital, from 1896 to 1912, remain largely unknown. After obtaining institutional review board approval, and through the courtesy of the Alan Mason Chesney Archives, the authors reviewed the Johns Hopkins Hospital surgical files from the years 1896 to 1912. Patients younger than 18 years of age, presenting with symptoms suspicious for an intracranial tumor, and undergoing surgical intervention by Cushing were selected for further analysis. Of the 40 pediatric patients undergoing surgery for suspected intracranial neoplasms, 26 were male. The mean age among the entire sample was 10.1 years. Cushing used three main operative approaches in the surgical treatment of pediatric intracranial neoplasms: infratentorial/suboccipital, subtemporal, and hemisphere flap. Twenty-three patients had negative findings following both the primary and subsequent surgical interventions conducted by Cushing. Postoperative conditions following the primary surgical intervention were improved in 24 patients. Twelve patients (30%) died during their inpatient stay for the primary intervention. The mean time to the last follow-up was 24.9 months; the mean time to death was 10.0 months. Cushing strove to maximize exposure while minimizing blood loss in an attempt to increase his ability to successfully treat pediatric brain tumors. His early contributions to the field of pediatric neurooncology demonstrate his commitment to advancing the field of neurosurgery.

  1. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    Science.gov (United States)

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  2. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    Directory of Open Access Journals (Sweden)

    Daniel C Stewart

    Full Text Available While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  3. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms

    Science.gov (United States)

    Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392

  4. HIF-1α- Targeting Acriflavine Provides Long Term Survival and Radiological Tumor Response in Brain Cancer Therapy.

    Science.gov (United States)

    Mangraviti, Antonella; Raghavan, Tula; Volpin, Francesco; Skuli, Nicolas; Gullotti, David; Zhou, Jinyuan; Asnaghi, Laura; Sankey, Eric; Liu, Ann; Wang, Yuan; Lee, Dong-Hoon; Gorelick, Noah; Serra, Riccardo; Peters, Michael; Schriefer, Destiny; Delaspre, Fabien; Rodriguez, Fausto J; Eberhart, Charles G; Brem, Henry; Olivi, Alessandro; Tyler, Betty

    2017-11-02

    Tumor progression, limited efficacy of current standard treatments, and the rise in patient mortality are associated with gene expression caused by the synergistic action of intratumoral hypoxia and HIF-1α activation. For this reason, recent investigations have focused on HIF-targeting therapeutic agents, with encouraging preclinical and clinical results in solid tumors. Here we describe the efficacy of a HIF-1α inhibitor, Acriflavine, and demonstrate its potency against brain cancer. This safe antibacterial dye induces cell death and apoptosis in several glioma cell lines, targets HIF-1α-mediated pathways, and decreases the level of PGK1, VEGF and HIF-1α in vitro and in vivo. Administered locally via biodegradable polymers, Acriflavine provides significant benefits in survival resulting in nearly 100% long term survival, confirmed by MRI and histological analyses. This study reports preclinical evidence that this safe, small molecule can contribute to brain tumor therapy and highlights the significance of HIF-1α-targeting molecules.

  5. [Cognitive functions and personality traits in patients with brain tumors: the role of lesion localization].

    Science.gov (United States)

    Razumnikova, O M; Perfil'ev, A M; Stupak, V V

    2014-01-01

    Personality traits and cognitive functions were studied depending on a tumor localization in the brain in 21 neurosurgical patients and the results were compared with a control group. In patients with brain damage, mostly affected were personality traits associated with emotion regulation and social interaction (neuroticism, psychoticism and social conformity). Increases in psychoticism and decreases in neuroticism were more expressed in patients with a left-hemisphere localization of tumors. The tumor-induced decrease in cognitive abilities was more presented in performing figurative tasks and less in verbal ones. Verbal functions were more decreased in the group with frontal localization of tumor compared to that with parietal localization.

  6. Novel Treatment Shrinks Ovarian Tumors in Mice

    Science.gov (United States)

    Researchers have developed a new approach for treating tumors that express mutant versions of the p53 protein, which are present in more than half of all cancers, including an aggressive and common subtype of ovarian cancer.

  7. Multiple brain metastases - current management and perspectives for treatment with electrochemotherapy

    DEFF Research Database (Denmark)

    Linnert, Mette; Iversen, Helle Klingenberg; Gehl, Julie

    2012-01-01

    BACKGROUND: Due to the advanced oncological treatments of cancer, an overall increase in cancer incidence, and better diagnostic tools, the incidence of brain metastases is on the rise. This review addresses the current treatment options for patients with multiple brain metastases, presenting...... electrochemotherapy (ECT) as one of the new experimental treatments for this group of patients. CONCLUSIONS: Neurosurgery, stereotactic surgery, and whole-brain radiotherapy are the evidence-based treatments that can be applied for patients with multiple brain metastases. Treatment with chemotherapy and molecularly...... targeted agents may also be warranted. Several experimental treatments are emerging, one of which is ECT, an effective cancer treatment comprising electric pulses given by electrodes in the tumor tissue, causing electroporation of the cell membrane, and thereby augmenting uptake and the cytotoxicity...

  8. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    Science.gov (United States)

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.

  9. Comparison of Amino Acid Positron Emission Tomographic Radiotracers for Molecular Imaging of Primary and Metastatic Brain Tumors

    Directory of Open Access Journals (Sweden)

    Csaba Juhász

    2014-08-01

    Full Text Available Positron emission tomography (PET is an imaging technology that can detect and characterize tumors based on their molecular and biochemical properties, such as altered glucose, nucleoside, or amino acid metabolism. PET plays a significant role in the diagnosis, prognostication, and treatment of various cancers, including brain tumors. In this article, we compare uptake mechanisms and the clinical performance of the amino acid PET radiotracers (L-[methyl-11C]methionine [MET], 18F-fluoroethyl-tyrosine [FET], 18F-fluoro-L- dihydroxy-phenylalanine [FDOPA], and 11C-alpha-methyl-L-tryptophan [AMT] most commonly used for brain tumor imaging. First, we discuss and compare the mechanisms of tumoral transport and accumulation, the basis of differential performance of these radioligands in clinical studies. Then we summarize studies that provided direct comparisons among these amino acid tracers and to clinically used 2-deoxy-2[18F]fluoro-D-glucose [FDG] PET imaging. We also discuss how tracer kinetic analysis can enhance the clinical information obtained from amino acid PET images. We discuss both similarities and differences in potential clinical value for each radioligand. This comparative review can guide which radiotracer to favor in future clinical trials aimed at defining the role of these molecular imaging modalities in the clinical management of brain tumor patients.

  10. Tumor burden talks in cancer treatment with PEGylated liposomal drugs.

    Directory of Open Access Journals (Sweden)

    Yi-Yu Lin

    Full Text Available PURPOSE: PEGylated liposomes are important drug carriers that can passively target tumor by enhanced permeability and retention (EPR effect in neoplasm lesions. This study demonstrated that tumor burden determines the tumor uptake, and also the tumor response, in cancer treatment with PEGylated liposomal drugs in a C26/tk-luc colon carcinoma-bearing mouse model. METHODS: Empty PEGylated liposomes (NanoX and those encapsulated with VNB (NanoVNB were labeled with In-111 to obtain InNanoX and InVNBL in high labeling yield and radiochemical purity (all >90%. BALB/c mice bearing either small (58.4±8.0 mm(3 or large (102.4±22.0 mm(3 C26/tk-luc tumors in the right dorsal flank were intravenously administered with NanoVNB, InNanoX, InVNBL, or NanoX as a control, every 7 days for 3 times. The therapeutic efficacy was evaluated by body weight loss, tumor growth inhibition (using calipers and bioluminescence imaging and survival fraction. The scintigraphic imaging of tumor mouse was performed during and after treatment. RESULTS: The biodistribution study of InVNBL revealed a clear inverse correlation (r (2 = 0.9336 between the tumor uptake and the tumor mass ranged from 27.6 to 623.9 mg. All three liposomal drugs showed better therapeutic efficacy in small-tumor mice than in large-tumor mice. Tumor-bearing mice treated with InVNBL (a combination drug showed the highest tumor growth inhibition rate and survival fraction compared to those treated with NanoVNB (chemodrug only and InNanoX (radionuclide only. Specific tumor targeting and significantly increased tumor uptake after periodical treatment with InVNBL were evidenced by scintigraphic imaging, especially in mice bearing small tumors. CONCLUSION: The significant differences in the outcomes of cancer treatment and molecular imaging between animals bearing small and large tumors revealed that tumor burden is a critical and discriminative factor in cancer therapy using PEGylated liposomal drugs.

  11. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors

    DEFF Research Database (Denmark)

    Larsson, H B; Stubgaard, M; Frederiksen, Jette Lautrup Battistini

    1990-01-01

    In this study quantitation of the degree of deficiency of the blood-brain barrier (BBB) in patients with multiple sclerosis or brain tumors, by using MRI, is shown to be possible. As a measure of permeability of the BBB to Gadolinium-DTPA (Gd-DTPA) the flux per unit of distribution volume per unit......, and the results were comparable to results obtained from similar studies using positron emission tomography. The improved possibility of quantitating the defect of the BBB by MRI may give new information about pathogenesis or etiology, and leads to improved methods in monitoring the efficacy of treatments...... of brain mass was used. This quantity was found by introducing the longitudinal relaxation rate (R1) as a measure of concentration of Gd-DTPA in the brain tissue in the mathematical model for the transcapillary transport over the BBB. High accordance between the observed data points and the model was found...

  12. Tumor cell endocytosis imaging facilitates delineation of the glioma-brain interface.

    Science.gov (United States)

    Zimmer, C; Wright, S C; Engelhardt, R T; Johnson, G A; Kramm, C; Breakefield, X O; Weissleder, R

    1997-01-01

    We describe a method for measuring tumor cell endocytosis in vivo and provide the anatomic correlate of this tumor cell function using a superparamagnetic and histologically detectable marker for cell uptake (MION). Rats (n = 22) were intrahemispherically implanted with a thymidine kinase (TK)-positive 9L gliosarcoma cell line, where TK served as the tumor marker. Twenty-four hours after intravenous injection of 10 mg Fe/kg of MION, rat brains were removed and underwent MR imaging ex vivo at near-microscopic resolution (isotropic voxel size of 86 microm, 9.4 T) prior to histologic processing. The imaging probe accumulated within tumor cells adjacent to the hyperpermeable tumor-brain interface including microscopic deposits and along finger-like invasions of the tumor into brain, facilitating the demarcation of the true histologic tumor border in three dimensions by MR microscopy. The method has potential research and clinical implications for delineating the tumor-brain interface prior to therapy and/or for providing a rational basis for imaging nanocolloid drug delivery to solid tumors.

  13. Treatment of gastrointestinal stromal tumor (GIST during bariatric surgery

    Directory of Open Access Journals (Sweden)

    Fernando de Barros

    Full Text Available The gastrointestinal stromal tumor (GIST is a rare mesenchymal tumor. One should pay special attention when the GIST comes in obese patients during surgery. The laparoscopic resections with standard techniques, such as gastric bypass, have been described with good results. However, GIST resection associated sleeve gastrectomy for the treatment of obesity is rare, but can be done safely, depending on the location of the tumor.

  14. Brain Tumor Immunotherapy: What have We Learned so Far?

    Science.gov (United States)

    Van Gool, Stefaan Willy

    2015-01-01

    High grade glioma is a rare brain cancer, incurable in spite of modern neurosurgery, radiotherapy, and chemotherapy. Novel approaches are in research, and immunotherapy emerges as a promising strategy. Clinical experiences with active specific immunotherapy demonstrate feasibility, safety and most importantly, but incompletely understood, prolonged long-term survival in a fraction of the patients. In relapsed patients, we developed an immunotherapy schedule and we categorized patients into clinically defined risk profiles. We learned how to combine immunotherapy with standard multimodal treatment strategies for newly diagnosed glioblastoma multiforme patients. The developmental program allows further improvements related to newest scientific insights. Finally, we developed a mode of care within academic centers to organize cell-based therapies for experimental clinical trials in a large number of patients.

  15. Brain tumor immunotherapy. What have we learned so far ?

    Directory of Open Access Journals (Sweden)

    Stefaan Willy Van Gool

    2015-06-01

    Full Text Available High grade glioma (HGG is a rare brain cancer, incurable in spite of modern neurosurgery, radiotherapy and chemotherapy. Novel approaches are in research, and immunotherapy emerges as a promising strategy. Clinical experiences with active specific immunotherapy demonstrate feasibility, safety and most importantly, but incompletely understood, prolonged long-term survival in a fraction of the patients. In relapsed patients, we developed an immunotherapy schedule and we categorized patients into clinically defined risk profiles. We learned how to combine immunotherapy with standard multimodal treatment strategies for newly diagnosed glioblastoma multiforme (GBM patients. The developmental program allows further improvements related to newest scientific insights. Finally we developed a mode of care within academic centers to organize cell-based therapies for experimental clinical trials in a large number of patients.

  16. Evaluation of the making sense of brain tumor program: a randomized controlled trial of a home-based psychosocial intervention.

    Science.gov (United States)

    Ownsworth, Tamara; Chambers, Suzanne; Damborg, Ea; Casey, Leanne; Walker, David G; Shum, David H K

    2015-05-01

    Despite significant psychosocial morbidity, there are few controlled trials of psychological support for people with brain tumor. This study evaluated the efficacy of the Making Sense of Brain Tumor (MSoBT) program, a home-based psychosocial intervention. A randomized controlled trial with a wait list condition Fifty participants aged 17-82 years with brain tumor (54% benign) were randomly allocated to immediate treatment (n = 27) or a waitlist (n = 23). Measures included Montgomery-Asberg Depression Rating Scale (MADRS), McGill Quality of Life (MQOL) Questionnaire, Depression Anxiety Stress Scales (DASS) and Functional Assessment of Cancer Therapy-Brain (FACT-Br). The immediate treatment group received the 10-session MSoBT program, while the waitlist group received usual care for 10 weeks and were then re-assessed before receiving the MSoBT program. A 6-month post-intervention follow-up was conducted. Analysis of covariance adjusting for baseline functioning identified that the immediate treatment group reported significantly lower levels of depression on the MADRS (η(p)(2)  = .19) and higher levels of existential well-being on the MQOL (η(p)(2)  = .13) and functional well-being (η(p)(2)  = .21) and global quality of life on the FACT-Br (η(p)(2)  = .12) at post-assessment than the waitlist group. At 6-month follow-up participants reported significantly lower levels of depression and stress and higher existential well-being and quality of life relative to pre-intervention. The MSoBT program appears to have efficacy for enhancing psychological well-being and quality of life after brain tumor. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Analysis of Brain Tumors Due to the Usage of Mobile Phones

    Directory of Open Access Journals (Sweden)

    SOOBIA SAEED

    2017-07-01

    Full Text Available The impact of cellular phone radiation on human health is the subject of current mindfulness and is an outcome of the huge increase in phone usage throughout the world. Phones use electromagnetic radiation in the microwave range. The issue is associated with wireless use for 50 minutes and above. The excessive use of mobile phone may cause brain tumors. Nowadays the most commonly developed brain tumor type is GBM (Glioblastoma in multiform and Malignant Astrocytoma. In this paper, we focus on the causes of brain tumor (cancer due to the cell phone as this increase in glucose metabolism. The aim of the study is to address the aforementioned problems associated with the cell phone. MATLAB programming to detect a brain tumor has been used. We have conducted MRI (Magnetic Resonance Imaging study to get the best images and results.

  18. Targeting c-Met receptor overcomes TRAIL-resistance in brain tumors

    National Research Council Canada - National Science Library

    Du, Wanlu; Uslar, Liubov; Sevala, Sindhura; Shah, Khalid

    2014-01-01

    .... We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5...

  19. Targeting c-Met Receptor Overcomes TRAIL-Resistance in Brain Tumors: e95490

    National Research Council Canada - National Science Library

    Wanlu Du; Liubov Uslar; Sindhura Sevala; Khalid Shah

    2014-01-01

    .... We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5...

  20. Stereotactic iodine-125 brachytherapy for brain tumors: temporary versus permanent implantation

    Directory of Open Access Journals (Sweden)

    Ruge Maximilian I

    2012-06-01

    Full Text Available Abstract Stereotactic brachytherapy (SBT has been described in several publications as an effective, minimal invasive and safe highly focal treatment option in selected patients with well circumscribed brain tumors 40 cGy/h in combination with adjuvant external beam radiation and/or chemotherapy for the treatment of malignant gliomas and metastases resulted in increased rates of radiation induced adverse tissue changes requiring surgical intervention. Vice versa, such effects have been only minimally observed in numerous studies applying low dose rate (LDR regiments (3–8 cGy/h for low grade gliomas, metastases and other rare indications. Besides these observations, there are, however, no data available directly comparing the long term incidences of tissue changes after HDR and LDR and there is, furthermore, no evidence regarding a difference between temporary or permanent LDR implantation schemes. Thus, recommendations for effective and safe implantation schemes have to be investigated and compared in future studies.

  1. Primary brain tumors and posterior reversible encephalopathy syndrome.

    Science.gov (United States)

    Kamiya-Matsuoka, Carlos; Cachia, David; Olar, Adriana; Armstrong, Terri S; Gilbert, Mark R

    2014-12-01

    Posterior reversible encephalopathy syndrome (PRES) is a neurotoxic encephalopathic state associated with reversible cerebral vasogenic edema. It is an increasingly recognized occurrence in the oncology population. However, it is very uncommon in patients with primary brain tumors (PBTs). The aim of this study was to analyze the clinicoradiological features and report the clinical outcomes of PRES in PBT patients. We identified 4 cases with PBT who developed PRES at MD Anderson Cancer Center (MDACC) between 2012 and 2014. Clinical and radiological data were abstracted from their records. In addition, we also solicited 8 cases from the literature. The median age at PRES onset was 19 years, male-to-female ratio was 1:1, and the syndrome occurred in patients with ependymoma (n = 4), glioblastoma (n = 3), diffuse intrinsic pontine glioma (DIPG; n = 3), juvenile pilocytic astrocytoma (n = 1), and atypical meningioma (n = 1). Two glioblastomas and 2 DIPG cases received bevacizumab and vandetanib before the onset of symptoms, respectively. The most common clinical presentation was seizures (n = 7). Three MDACC patients recovered completely in 3-4 weeks after the onset of symptoms. One patient died due to active cancer and several comorbidities including PRES. Hypertension seems to be the most important coexisting risk factor for development of PRES; however, the potential effects of chemotherapeutic agents in the pathogenesis of PRES should also be examined. The clinicoradiological course of PRES in PBT patients did not vary from the classical descriptions of PRES found in other causes. PRES must be considered as part of the differential diagnosis in patients with PBTs presenting with seizures or acute encephalopathy.

  2. [Effect of surgeons on palliative treatment for malignant tumors].

    Science.gov (United States)

    Gu, Jin

    2017-01-25

    For advanced stage tumor patients who can not receive radical treatment, quite a part of them require surgical intervention. Surgeons play a important role and are still the main force in palliative treatment for tumors. But in present medical education system, training contents for surgeon involving palliative treatment are few. In fact, surgeons have responsibilities for improving the quality of life, ameliorating pain, preserving the dignity and relieving symptoms of patients in the palliative treatment of tumors. Surgeons should pay attentions to the communication with patients, play a part of clinical multidisciplinary team and apply reasonable surgical intervention approach. Education of palliative treatment for surgeons should also include medical humanistic concern, and the recognition of effects of medical humanity, ethics, dignity and religion on the recovery of tumor patients.

  3. Analysis of Brain Tumors Due to the Usage of Mobile Phones

    OpenAIRE

    SOOBIA SAEED; ASADULLAH SHAIKH; SHABAZ AHMED NOOR

    2017-01-01

    The impact of cellular phone radiation on human health is the subject of current mindfulness and is an outcome of the huge increase in phone usage throughout the world. Phones use electromagnetic radiation in the microwave range. The issue is associated with wireless use for 50 minutes and above. The excessive use of mobile phone may cause brain tumors. Nowadays the most commonly developed brain tumor type is GBM (Glioblastoma) in multiform and Malignant Astrocytoma. In this paper, we focus ...

  4. Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain tumor resection.

    Science.gov (United States)

    Azarnoush, Hamed; Alzhrani, Gmaan; Winkler-Schwartz, Alexander; Alotaibi, Fahad; Gelinas-Phaneuf, Nicholas; Pazos, Valérie; Choudhury, Nusrat; Fares, Jawad; DiRaddo, Robert; Del Maestro, Rolando F

    2015-05-01

    Virtual reality simulator technology together with novel metrics could advance our understanding of expert neurosurgical performance and modify and improve resident training and assessment. This pilot study introduces innovative metrics that can be measured by the state-of-the-art simulator to assess performance. Such metrics cannot be measured in an operating room and have not been used previously to assess performance. Three sets of performance metrics were assessed utilizing the NeuroTouch platform in six scenarios with simulated brain tumors having different visual and tactile characteristics. Tier 1 metrics included percentage of brain tumor resected and volume of simulated "normal" brain tissue removed. Tier 2 metrics included instrument tip path length, time taken to resect the brain tumor, pedal activation frequency, and sum of applied forces. Tier 3 metrics included sum of forces applied to different tumor regions and the force bandwidth derived from the force histogram. The results outlined are from a novice resident in the second year of training and an expert neurosurgeon. The three tiers of metrics obtained from the NeuroTouch simulator do encompass the wide variability of technical performance observed during novice/expert resections of simulated brain tumors and can be employed to quantify the safety, quality, and efficiency of technical performance during simulated brain tumor resection. Tier 3 metrics derived from force pyramids and force histograms may be particularly useful in assessing simulated brain tumor resections. Our pilot study demonstrates that the safety, quality, and efficiency of novice and expert operators can be measured using metrics derived from the NeuroTouch platform, helping to understand how specific operator performance is dependent on both psychomotor ability and cognitive input during multiple virtual reality brain tumor resections.

  5. Coffee and green tea consumption in relation to brain tumor risk in a Japanese population.

    Science.gov (United States)

    Ogawa, Takahiro; Sawada, Norie; Iwasaki, Motoki; Budhathoki, Sanjeev; Hidaka, Akihisa; Yamaji, Taiki; Shimazu, Taichi; Sasazuki, Shizuka; Narita, Yoshitaka; Tsugane, Shoichiro

    2016-12-15

    Few prospective studies have investigated the etiology of brain tumor, especially among Asian populations. Both coffee and green tea are popular beverages, but their relation with brain tumor risk, particularly with glioma, has been inconsistent in epidemiological studies. In this study, we evaluated the association between coffee and greed tea intake and brain tumor risk in a Japanese population. We evaluated a cohort of 106,324 subjects (50,438 men and 55,886 women) in the Japan Public Health Center-Based Prospective Study (JPHC Study). Subjects were followed from 1990 for Cohort I and 1993 for Cohort II until December 31, 2012. One hundred and fifty-seven (70 men and 87 women) newly diagnosed cases of brain tumor were identified during the study period. Hazard ratio (HR) and 95% confidence intervals (95%CIs) for the association between coffee or green tea consumption and brain tumor risk were assessed using a Cox proportional hazards regression model. We found a significant inverse association between coffee consumption and brain tumor risk in both total subjects (≥3 cups/day; HR = 0.47, 95%CI = 0.22-0.98) and in women (≥3 cups/day; HR = 0.24, 95%CI = 0.06-0.99), although the number of cases in the highest category was small. Furthermore, glioma risk tended to decrease with higher coffee consumption (≥3 cups/day; HR = 0.54, 95%CI = 0.16-1.80). No association was seen between green tea and brain tumor risk. In conclusion, our study suggested that coffee consumption might reduce the risk of brain tumor, including that of glioma, in the Japanese population. © 2016 UICC.

  6. A clinical perspective on the 2016 WHO brain tumor classification and routine molecular diagnostics.

    Science.gov (United States)

    van den Bent, Martin J; Weller, Michael; Wen, Patrick Y; Kros, Johan M; Aldape, Ken; Chang, Susan

    2017-05-01

    The 2007 World Health Organization (WHO) classification of brain tumors did not use molecular abnormalities as diagnostic criteria. Studies have shown that genotyping allows a better prognostic classification of diffuse glioma with improved treatment selection. This has resulted in a major revision of the WHO classification, which is now for adult diffuse glioma centered around isocitrate dehydrogenase (IDH) and 1p/19q diagnostics. This revised classification is reviewed with a focus on adult brain tumors, and includes a recommendation of genes of which routine testing is clinically useful. Apart from assessment of IDH mutational status including sequencing of R132H-immunohistochemistry negative cases and testing for 1p/19q, several other markers can be considered for routine testing, including assessment of copy number alterations of chromosome 7 and 10 and of TERT promoter, BRAF, and H3F3A mutations. For "glioblastoma, IDH mutated" the term "astrocytoma grade IV" could be considered. It should be considered to treat IDH wild-type grades II and III diffuse glioma with polysomy of chromosome 7 and loss of 10q as glioblastoma. New developments must be more quickly translated into further revised diagnostic categories. Quality control and rapid integration of molecular findings into the final diagnosis and the communication of the final diagnosis to clinicians require systematic attention. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model.

    Directory of Open Access Journals (Sweden)

    Weili Jiang

    Full Text Available Currently, effective and specific diagnostic imaging of brain glioma is a major challenge. Nanomedicine plays an essential role by delivering the contrast agent in a targeted manner to specific tumor cells, leading to improvement in accurate diagnosis by good visualization and specific demonstration of tumor cells. This study investigated the preparation and characterization of a targeted MR contrast agent, transferrin-conjugated superparamagnetic iron oxide nanoparticles (Tf-SPIONs, for brain glioma detection. MR imaging showed the obvious contrast change of brain glioma before and after administration of Tf-SPIONs in C6 glioma rat model in vivo on T2 weighted imaging. Significant contrast enhancement of brain glioma could still be clearly seen even 48 h post injection, due to the retention of Tf-SPIONs in cytoplasm of tumor cells which was proved by Prussian blue staining. Thus, these results suggest that Tf-SPIONs could be a potential targeting MR contrast agent for the brain glioma.

  8. Family history of cancer in benign brain tumor subtypes versus gliomas

    Directory of Open Access Journals (Sweden)

    Quinn eOstrom

    2012-02-01

    Full Text Available Purpose: Family history is associated with gliomas, but this association has not ben established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study (OBTS. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%, 78 meningioma (65%, 49 pituitary adenoma (73.1% and 152 glioma patients (58.2%. The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs and 95% confidence intervals (95% CI. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusions: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases.

  9. Family History of Cancer in Benign Brain Tumor Subtypes Versus Gliomas

    Science.gov (United States)

    Ostrom, Quinn T.; McCulloh, Christopher; Chen, Yanwen; Devine, Karen; Wolinsky, Yingli; Davitkov, Perica; Robbins, Sarah; Cherukuri, Rajesh; Patel, Ashokkumar; Gupta, Rajnish; Cohen, Mark; Barrios, Jaime Vengoechea; Brewer, Cathy; Schilero, Cathy; Smolenski, Kathy; McGraw, Mary; Denk, Barbara; Naska, Theresa; Laube, Frances; Steele, Ruth; Greene, Dale; Kastl, Alison; Bell, Susan; Aziz, Dina; Chiocca, E. A.; McPherson, Christopher; Warnick, Ronald; Barnett, Gene H.; Sloan, Andrew E.; Barnholtz-Sloan, Jill S.

    2012-01-01

    Purpose: Family history is associated with gliomas, but this association has not been established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%), 78 meningioma (65%), 49 pituitary adenoma (73.1%), and 152 glioma patients (58.2%). The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs) and 95% confidence intervals. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusion: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases. PMID:22649779

  10. Comparison of resilience in adolescent survivors of brain tumors and healthy adolescents.

    Science.gov (United States)

    Chen, Chin-Mi; Chen, Yueh-Chih; Wong, Tai-Tong

    2014-01-01

    Resilience is essential for the psychological adjustment of adolescents experiencing difficulty. Comparing differences in resilience between adolescent survivors of brain tumors and healthy adolescents may help identify factors related to resilience in adolescents. The purpose of this study was to clarify how illness impacts the normative development of adolescent survivors of brain tumors by comparing them to healthy adolescents in terms of resilience and how it is affected by various health problems. This cross-sectional, case-control study used convenience sampling to recruit 13- to 18-year-old adolescent survivors of brain tumors and healthy adolescents matched by school level, gender, and living area. Data were collected by structured questionnaires. The sample included 60 adolescent survivors and 120 healthy adolescents. Participants in both groups were predominantly male adolescents (63.3%) and junior high school students (55%). The 2 groups did not differ significantly in resilience, but survivors without emotional problems had a higher mean resilience score than did healthy adolescents and survivors with emotional problems (F = 8.65, P adolescent survivors of brain tumors and healthy adolescents. In addition, the impact of emotional problems on resilience was more severe in brain tumor survivors than in healthy adolescents. Our results suggest that pediatric oncology nurses design interdisciplinary school-based interventions to reduce the impact of emotional problems on resilience in both healthy adolescents and those who survived brain tumors.

  11. Expression and prognostic value of Oct-4 in astrocytic brain tumors

    DEFF Research Database (Denmark)

    Krogh Petersen, Jeanette; Jensen, Per; Sørensen, M. D.

    2016-01-01

    suggested to have promising potentials as prognostic markers in gliomas. Methodology/Principal Findings: The aim of the present study was to investigate the expression and prognostic impact of the TSC-related marker Oct-4 in astrocytic brain tumors of increasing grade. In total 114 grade II, III and IV...... astrocytic brain tumors were immunohistochemically stained for Oct-4, and the fraction and intensity of Oct-4 positive cells were determined by morphometric analysis of full tumor sections. Oct-4 was expressed in all tumors, and the Oct-4 positive cell fraction increased with tumor grade (p = 0.......045). There was no association between survival and Oct-4 positive cell fraction, neither when combining all tumor grades nor in analysis of individual grades. Oct-4 intensity was not associated with grade, but taking IDH1 status into account we found a tendency for high Oct-4 intensity to be associated with poor prognosis...

  12. Feasibility and utility of telephone-based psychological support for people with brain tumor: A single-case experimental study

    Directory of Open Access Journals (Sweden)

    Stephanie eJones

    2015-03-01

    Full Text Available Rates of psychological distress are high following diagnosis and treatment of brain tumor. There can be multiple barriers to accessing psychological support, including physical and cognitive impairments and geographical limitations. Tele-based support could provide an effective and more flexible option for delivering psychological interventions. The present study aimed to investigate the feasibility and utility of a telephone-based psychotherapy intervention for people with brain tumor. A single-case multiple-baseline design was employed with a 4-7 week baseline phase, 10-week treatment phase and 5-week maintenance phase including a booster session. Four participants with a benign or malignant brain tumor (3 males & 1 female; aged 34 to 49 years, received 10 sessions of tele-based therapy and a booster session at four weeks post-treatment. Levels of depression, anxiety, and illness cognitions were monitored on a weekly basis throughout each phase whilst measures of quality of life, stress and self-concept were administered at the start and end of each phase. Weekly measures were analysed using a combination of both visual analysis and Tau-U statistics. Of the four participants, two of them demonstrated significant gains in mental health (depression and/or anxiety and a significant decrease in their levels of helplessness (p<.05. The other two participants did not show gains in mental health or change in illness cognitions. All participants reported improvement in quality of life post-treatment. The results of the study provide preliminary support concerning the feasibility and utility of tele-based therapy for some people with brain tumor. Further research examining factors influencing the outcomes of tele-based psychological support is needed.

  13. Expression of CD44 splice variants in human primary brain tumors

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Morsink, F.; Keehnen, R. M.; Leenstra, S.; Bosch, D. A.; Pals, S. T.

    1995-01-01

    Expression of CD44, particularly of certain splice variants, has been linked to tumor progression and metastatic potential in a number of different animal and human cancers. Although differential expression of CD44 standard epitopes (CD44s) in human brain tumors has been reported, the expression of

  14. Predictive value of clinical evaluation in the follow-up of children with a brain tumor

    NARCIS (Netherlands)

    Hew, JM; Fock, JM; Kamps, WA

    Background. During follow-up of children with a brain tumor, traditionally surveillance-imaging studies are done in addition to clinical evaluations, The purpose of this study was to determine the role of clinical evaluations by a multidisciplinary team for the detection of recurrent tumor.

  15. Incidence and clinical course of radionecrosis in children with brain tumors. A 20-year longitudinal observational study

    Energy Technology Data Exchange (ETDEWEB)

    Strenger, V.; Lackner, H. [Graz Medical Univ. (Austria). Div. of Pediatric Hematology/Oncology; Mayer, R. [EBG MedAustron GmbH, Wiener Neustadt (Austria). Dept. of Radiotherapy] [and others

    2013-09-15

    Radionecrosis (RN) in children treated for brain tumors represents a potentially severe long-term complication. Its diagnosis is challenging, since magnetic resonance imaging (MRI) cannot clearly discriminate between RN and tumor recurrence. A retrospective single-center study was undertaken to describe the incidence and clinical course of RN in a cohort of 107 children treated with external radiotherapy (RT) for various brain tumors between 1992 and 2012. During a median follow-up of 4.6 years (range 0.29-20.1 years), RN was implied by suspicious MRI findings in in 5 children (4.7 %), 5-131 months after RT. Suspicion was confirmed histologically (1 patient) or substantiated by FDG positron-emission tomography (FDG-PET, 2 patients) or by FDG-PET and MR spectroscopy (1 patient). Before developing RN, all 5 patients had received cytotoxic chemotherapy in addition to RT. In addition to standard treatment protocols, 2 patients had received further chemotherapy for progression or relapse. Median radiation dose expressed as the biologically equivalent total dose applied in 2 Gy fractions (EQD2) was 51.7 Gy (range 51.0-60.0 Gy). At RN onset, 4 children presented with neurological symptoms. Treatment of RN included resection (n = 1), corticosteroids (n = 2) and a combination of corticosteroids, hyperbaric oxygen (HBO) and bevacizumab (n = 1). One patient with asymptomatic RN was not treated. Complete radiological regression of the lesions was observed in all patients. Clinical symptoms normalized in 3 patients, whereas 2 developed permanent severe neurological deficits. RN represents a severe long-term treatment complication in children with brain tumors. The spectrum of clinical presentation is wide; ranging from asymptomatic lesions to progressive neurological deterioration. FDG-PET and MR spectroscopy may be useful for distinguishing between RN and tumor recurrence. Treatment options in patients with symptomatic RN include conservative management (steroids, HBO

  16. Treatment of oral soft tissues benign tumors using laser

    Science.gov (United States)

    Crisan, Bogdan; Baciut, Mihaela; Crisan, Liana; Bran, Simion; Rotar, Horatiu; Dinu, Cristian; Moldovan, Iuliu; Baciut, Grigore

    2014-01-01

    The present study aimed to assess the efficacy and indications of surgical laser therapy in the treatment of oral soft tissues benign tumors compared to classic surgery. A controlled clinical study was conducted in a group of 93 patients presenting various forms of oral soft tissues benign tumors. These patients were examined pre-and postoperatively and the oral benign tumors were measured linearly and photographed. The surgery of laser-assisted biopsy excision of oral benign tumors was carried out using a diode laser device of 980 nm. In patients who received surgical laser treatment, therapeutic doses of laser to biostimulate the operated area were administered on the first day after the surgery. The interventions of conventional excision of oral soft tissues benign tumors consisted in removing them using scalpel. In patients who have received therapeutic doses of laser for biostimulation of the operated area, a faster healing of wound surfaces and tumor bed was observed during the first days after surgery. Two weeks after the surgical treatment, good healing without scarring or discomfort in the area of excision was documented. Surgical treatment of oral soft tissues benign tumors with laser assisted postoperative therapy confirms the benefits of this surgical procedure. A faster healing process of the excision area due to laser biostimulation of low intensity has been observed in patients with surgical laser assisted treatment in the postoperative period.

  17. Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model.

    Science.gov (United States)

    Parrish, Karen E; Pokorny, Jenny; Mittapalli, Rajendar K; Bakken, Katrina; Sarkaria, Jann N; Elmquist, William F

    2015-11-01

    6-Acetyl-8-cyclopentyl-5-methyl-2-([5-(piperazin-1-yl)pyridin-2-yl]amino)pyrido(2,3-d)pyrimidin-7(8H)-one [palbociclib (PD-0332991)] is a cyclin-dependent kinase 4/6 inhibitor approved for the treatment of metastatic breast cancer and is currently undergoing clinical trials for many solid tumors. Glioblastoma (GBM) is the most common primary brain tumor in adults and has limited treatment options. The cyclin-dependent kinase 4/6 pathway is commonly dysregulated in GBM and is a promising target in treating this devastating disease. The blood-brain barrier (BBB) limits the delivery of drugs to invasive regions of GBM, where the efflux transporters P-glycoprotein and breast cancer resistance protein can prevent treatments from reaching the tumor. The purpose of this study was to examine the mechanisms limiting the effectiveness of palbociclib therapy in an orthotopic xenograft model. The in vitro intracellular accumulation results demonstrated that palbociclib is a substrate for both P-glycoprotein and breast cancer resistance protein. In vivo studies in transgenic mice confirmed that efflux transport is responsible for the limited brain distribution of palbociclib. There was an ∼115-fold increase in brain exposure at steady state in the transporter deficient mice when compared with wild-type mice, and the efflux inhibitor elacridar significantly increased palbociclib brain distribution. Efficacy studies demonstrated that palbociclib is an effective therapy when GBM22 tumor cells are implanted in the flank, but ineffective in an orthotopic (intracranial) model. Moreover, doses designed to mimic brain exposure were ineffective in treating flank tumors. These results demonstrate that efflux transport in the BBB is involved in limiting the brain distribution of palbociclib and this has critical implications in determining effective dosing regimens of palbociclib therapy in the treatment of brain tumors. Copyright © 2015 by The American Society for Pharmacology and

  18. Losartan treatment attenuates tumor-induced myocardial dysfunction.

    Science.gov (United States)

    Stevens, Sarah C W; Velten, Markus; Youtz, Dane J; Clark, Yvonne; Jing, Runfeng; Reiser, Peter J; Bicer, Sabahattin; Devine, Raymond D; McCarthy, Donna O; Wold, Loren E

    2015-08-01

    Fatigue and muscle wasting are common symptoms experienced by cancer patients. Data from animal models demonstrate that angiotensin is involved in tumor-induced muscle wasting, and that tumor growth can independently affect myocardial function, which could contribute to fatigue in cancer patients. In clinical studies, inhibitors of angiotensin converting enzyme (ACE) can prevent the development of chemotherapy-induced cardiovascular dysfunction, suggesting a mechanistic role for the renin-angiotensin-aldosterone system (RAAS). In the present study, we investigated whether an angiotensin (AT) 1-receptor antagonist could prevent the development of tumor-associated myocardial dysfunction. Colon26 adenocarcinoma (c26) cells were implanted into female CD2F1 mice at 8weeks of age. Simultaneously, mice were administered Losartan (10mg/kg) daily via their drinking water. In vivo echocardiography, blood pressure, in vitro cardiomyocyte function, cell proliferation assays, and measures of systemic inflammation and myocardial protein degradation were performed 19days following tumor cell injection. Losartan treatment prevented tumor-induced loss of muscle mass and in vitro c26 cell proliferation, decreased tumor weight, and attenuated myocardial expression of interleukin-6. Furthermore, Losartan treatment mitigated tumor-associated alterations in calcium signaling in cardiomyocytes, which was associated with improved myocyte contraction velocity, systolic function, and blood pressures in the hearts of tumor-bearing mice. These data suggest that Losartan may mitigate tumor-induced myocardial dysfunction and inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  20. Treatment Options for Childhood Extracrania