Sample records for brain tissue injury

  1. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury. (United States)

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François


    Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue

  2. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell


    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  3. Regional mechanical properties of human brain tissue for computational models of traumatic brain injury. (United States)

    Finan, John D; Sundaresh, Sowmya N; Elkin, Benjamin S; McKhann, Guy M; Morrison, Barclay


    To determine viscoelastic shear moduli, stress relaxation indentation tests were performed on samples of human brain tissue resected in the course of epilepsy surgery. Through the use of a 500µm diameter indenter, regional mechanical properties were measured in cortical grey and white matter and subregions of the hippocampus. All regions were highly viscoelastic. Cortical grey matter was significantly more compliant than the white matter or hippocampus which were similar in modulus. Although shear modulus was not correlated with the age of the donor, cortex from male donors was significantly stiffer than from female donors. The presented material properties will help to populate finite element models of the brain as they become more anatomically detailed. We present the first mechanical characterization of fresh, post-operative human brain tissue using an indentation loading mode. Indentation generates highly localized data, allowing structure-specific mechanical properties to be determined from small tissue samples resected during surgery. It also avoids pitfalls of cadaveric tissue and allows data to be collected before degenerative processes alter mechanical properties. To correctly predict traumatic brain injury, finite element models must calculate intracranial deformation during head impact. The functional consequences of injury depend on the anatomical structures injured. Therefore, morbidity depends on the distribution of deformation across structures. Accurate prediction of structure-specific deformation requires structure-specific mechanical properties. This data will facilitate deeper understanding of the physical mechanisms that lead to traumatic brain injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor


    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  5. Mice Brain Tissue Injury Induced by Diisononyl Phthalate Exposure and the Protective Application of Vitamin E. (United States)

    Peng, Ling


    As a widely used plasticizer in plastic industry, the data of diisononyl phthalate (DINP) toxicity due to exposure are insufficient. This work investigated the brain tissue injury induced by DINP exposure. Through oral exposure to DINP, oxidative stress, inflammatory responses, apoptosis, and hippocampus pathological alterations were found in the mice brain. And through the Morris water maze test, cognitive deficits were tested. Our data also showed that these exacerbations were counteracted by vitamin E. These results above indicated that oral exposure of mice to DINP induced brain damage, and oxidative stress, inflammation, and the consequential apoptosis jointly constituted the potential mechanisms of such induced toxicity. © 2015 Wiley Periodicals, Inc.

  6. Effect of Cerebrospinal Fluid Drainage on Brain Tissue Oxygenation in Traumatic Brain Injury. (United States)

    Akbik, Omar S; Krasberg, Mark; Nemoto, Edwin M; Yonas, Howard


    The effectiveness of cerebrospinal fluid (CSF) drainage in lowering high intracranial pressure (ICP) is well established in severe traumatic brain injury (TBI). Recently, however, the use of external ventricular drains (EVDs) and ICP monitors in TBI has come under question. The aim of this retrospective study was to investigate the effect of CSF drainage on brain tissue oxygenation (PbtO2). Using a multi-modality monitoring system, we continuously monitored PbtO2 and parenchymal ICP during CSF drainage events via a ventriculostomy in 40 patients with severe TBI. Measurements were time-locked continuous recordings on a Component Neuromonitoring System in a neuroscience intensive care unit. We further selected for therapeutic CSF drainage events initiated at ICP values above 25 mm Hg and analyzed the 4-min periods before and after drainage for the physiologic variables ICP, cerebral perfusion pressure (CPP), and PbtO2. We retrospectively identified 204 CSF drainage events for ICP EVD-opening values greater than 25 mm Hg in 23 patients. During the 4 min of opened EVD, ICP decreased by 5.7 ± 0.6 mm Hg, CPP increased by 4.1 ± 1.2 mm Hg, and PbtO2 increased by 1.15 ± 0.26 mm Hg. ICP, CPP, and PbtO2 all improved with CSF drainage at ICP EVD-opening values above 25 mm Hg. Although the average PbtO2 changes were small, a clinically significant change in PbtO2 of 5 mm Hg or greater occurred in 12% of CSF drainage events, which was correlated with larger decreases in ICP, displaying a complex relationship between ICP and PbtO2 that warrants further studies.

  7. Controlled single bubble cavitation collapse results in jet-induced injury in brain tissue. (United States)

    Canchi, Saranya; Kelly, Karen; Hong, Yu; King, Michael A; Subhash, Ghatu; Sarntinoranont, Malisa


    Multiscale damage due to cavitation is considered as a potential mechanism of traumatic brain injury (TBI) associated with explosion. In this study, we employed a TBI relevant hippocampal ex vivo slice model to induce bubble cavitation. Placement of single reproducible seed bubbles allowed control of size, number, and tissue location to visualize and measure deformation parameters. Maximum strain value was measured at 45 µs after bubble collapse, presented with a distinct contour and coincided temporally and spatially with the liquid jet. Composite injury maps combined this maximum strain value with maximum measured bubble size and location along with histological injury patterns. This facilitated the correlation of bubble location and subsequent jet direction to the corresponding regions of high strain which overlapped with regions of observed injury. A dynamic threshold strain range for tearing of cerebral cortex was estimated to be between 0.5 and 0.6. For a seed bubble placed underneath the hippocampus, cavitation induced damage was observed in hippocampus (local), proximal cerebral cortex (marginal) and the midbrain/forebrain (remote) upon histological evaluation. Within this test model, zone of cavitation injury was greater than the maximum radius of the bubble. Separation of apposed structures, tissue tearing, and disruption of cellular layers defined early injury patterns that were not detected in the blast-exposed half of the brain slice. Ultrastructural pathology of the neurons exposed to cavitation was characterized by disintegration of plasma membrane along with loss of cellular content. The developed test system provided a controlled experimental platform to study cavitation induced high strain deformations on brain tissue slice. The goal of the future studies will be to lower underpressure magnitude and cavitation bubble size for more sensitive evaluation of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Analysis of sports related mTBI injuries caused by elastic wave propagation through brain tissue

    Directory of Open Access Journals (Sweden)

    D Case


    Full Text Available Repetitive concussions and sub-concussions suffered by athletes have been linked to a series of sequelae ranging from traumatic encephalopathy to dementia pugilistica. A detailed finite element model of the human head was developed based on standard libraries of medical imaging. The model includes realistic material properties for the brain tissue, bone, soft tissue, and CSF, as well as the structure and properties of a protective helmet. Various impact scenarios were studied, with a focus on the strains/stresses and pressure gradients and concentrations created in the brain tissue due to propagation of waves produced by the impact through the complex internal structure of the human head. This approach has the potential to expand our understanding of the mechanism of brain injury, and to better assess the risk of delayed neurological disorders for tens of thousands of young athletes throughout the world.

  9. Radiation Injury to the Brain (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  10. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel


    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective....... Higher mortality related to average CPP regardless of which index was used to calculate CPPopt. CONCLUSION: In the TBI setting, ORx does not appear to correlate with vascular pressure reactivity as assessed with PRx. Its potential use for individualizing CPP thresholds remains unclear....

  11. Brain tissue oxygen tension and its response to physiological manipulations: influence of distance from injury site in a swine model of traumatic brain injury. (United States)

    Hawryluk, Gregory W J; Phan, Nicolas; Ferguson, Adam R; Morabito, Diane; Derugin, Nikita; Stewart, Campbell L; Knudson, M Margaret; Manley, Geoffrey; Rosenthal, Guy


    OBJECTIVE The optimal site for placement of tissue oxygen probes following traumatic brain injury (TBI) remains unresolved. The authors used a previously described swine model of focal TBI and studied brain tissue oxygen tension (PbtO2) at the sites of contusion, proximal and distal to contusion, and in the contralateral hemisphere to determine the effect of probe location on PbtO2 and to assess the effects of physiological interventions on PbtO2 at these different sites. METHODS A controlled cortical impact device was used to generate a focal lesion in the right frontal lobe in 12 anesthetized swine. PbtO2 was measured using Licox brain tissue oxygen probes placed at the site of contusion, in pericontusional tissue (proximal probe), in the right parietal region (distal probe), and in the contralateral hemisphere. PbtO2 was measured during normoxia, hyperoxia, hypoventilation, and hyperventilation. RESULTS Physiological interventions led to expected changes, including a large increase in partial pressure of oxygen in arterial blood with hyperoxia, increased intracranial pressure (ICP) with hypoventilation, and decreased ICP with hyperventilation. Importantly, PbtO2 decreased substantially with proximity to the focal injury (contusion and proximal probes), and this difference was maintained at different levels of fraction of inspired oxygen and partial pressure of carbon dioxide in arterial blood. In the distal and contralateral probes, hypoventilation and hyperventilation were associated with expected increased and decreased PbtO2 values, respectively. However, in the contusion and proximal probes, these effects were diminished, consistent with loss of cerebrovascular CO2 reactivity at and near the injury site. Similarly, hyperoxia led to the expected rise in PbtO2 only in the distal and contralateral probes, with little or no effect in the proximal and contusion probes, respectively. CONCLUSIONS PbtO2 measurements are strongly influenced by the distance from the

  12. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H


    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  13. Traumatic Brain Injury (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  14. Analysis of sports related mTBI injuries caused by elastic wave propagation through brain tissue


    Case, D.; Richer, E.


    Repetitive concussions and sub-concussions suffered by athletes have been linked to a series of sequelae ranging from traumatic encephalopathy to dementia pugilistica. A detailed finite element model of the human head was developed based on standard libraries of medical imaging. The model includes realistic material properties for the brain tissue, bone, soft tissue, and CSF, as well as the structure and properties of a protective helmet. Various impact scenarios were studied, with a focus on...

  15. Brain injury - discharge (United States)

    ... this page: // Brain injury - discharge To use the sharing features on ... know was in the hospital for a serious brain injury. At home, it will take time for ...

  16. Mild Traumatic Brain Injury (United States)

    ... Post-Traumatic Stress Physical Injury Families & Friendships Military Sexual Trauma Depression mild Traumatic Brain Injury Life Stress Health & ... Traumatic Stress Physical Injury Anxiety Health & Wellness Military Sexual Trauma Tobacco Community About Depression Life Stress Alcohol & Drugs ...

  17. Preservation of the blood brain barrier and cortical neuronal tissue by liraglutide, a long acting glucagon-like-1 analogue, after experimental traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Jakob Hakon

    Full Text Available Cerebral edema is a common complication following moderate and severe traumatic brain injury (TBI, and a significant risk factor for development of neuronal death and deterioration of neurological outcome. To this date, medical approaches that effectively alleviate cerebral edema and neuronal death after TBI are not available. Glucagon-like peptide-1 (GLP-1 has anti-inflammatory properties on cerebral endothelium and exerts neuroprotective effects. Here, we investigated the effects of GLP-1 on secondary injury after moderate and severe TBI. Male Sprague Dawley rats were subjected either to TBI by Controlled Cortical Impact (CCI or sham surgery. After surgery, vehicle or a GLP-1 analogue, Liraglutide, were administered subcutaneously twice daily for two days. Treatment with Liraglutide (200 μg/kg significantly reduced cerebral edema in pericontusional regions and improved sensorimotor function 48 hours after CCI. The integrity of the blood-brain barrier was markedly preserved in Liraglutide treated animals, as determined by cerebral extravasation of Evans blue conjugated albumin. Furthermore, Liraglutide reduced cortical tissue loss, but did not affect tissue loss and delayed neuronal death in the thalamus on day 7 post injury. Together, our data suggest that the GLP-1 pathway might be a promising target in the therapy of cerebral edema and cortical neuronal injury after moderate and severe TBI.

  18. Subacute intranasal administration of tissue plasminogen activator promotes neuroplasticity and improves functional recovery following traumatic brain injury in rats.

    Directory of Open Access Journals (Sweden)

    Yuling Meng

    Full Text Available Traumatic brain injury (TBI is a major cause of death and long-term disability worldwide. To date, there are no effective pharmacological treatments for TBI. Recombinant human tissue plasminogen activator (tPA is the effective drug for the treatment of acute ischemic stroke. In addition to its thrombolytic effect, tPA is also involved in neuroplasticity in the central nervous system. However, tPA has potential adverse side effects when administered intravenously including brain edema and hemorrhage. Here we report that tPA, administered by intranasal delivery during the subacute phase after TBI, provides therapeutic benefit. Animals with TBI were treated intranasally with saline or tPA initiated 7 days after TBI. Compared with saline treatment, subacute intranasal tPA treatment significantly 1 improved cognitive (Morris water maze test and sensorimotor (footfault and modified neurological severity score functional recovery in rats after TBI, 2 reduced the cortical stimulation threshold evoking ipsilateral forelimb movement, 3 enhanced neurogenesis in the dentate gyrus and axonal sprouting of the corticospinal tract originating from the contralesional cortex into the denervated side of the cervical gray matter, and 4 increased the level of mature brain-derived neurotrophic factor. Our data suggest that subacute intranasal tPA treatment improves functional recovery and promotes brain neurogenesis and spinal cord axonal sprouting after TBI, which may be mediated, at least in part, by tPA/plasmin-dependent maturation of brain-derived neurotrophic factor.

  19. A correlation study of the expression of resistin and glycometabolism in muscle tissue after traumatic brain injury in rats

    Directory of Open Access Journals (Sweden)

    Jin Peng


    Full Text Available Objective:To investigate the expression pattern of resistin (RSTN in skeletal muscle tissue and its influence on glycometabolism in rats with traumatic brain injury (TBI. Methods:Seventy-eight SD rats were randomly divided into traumatic group (n=36, RSTN group (n=36 and sham operation group (n=6. Fluid percussion TBI model was developed in traumatic and RSTN groups and the latter received additional 1 mg RSTN antibody treatment for each rat. At respectively 12 h, 24 h, 72 h, 1 w, 2 w, and 4 w after operation, venous blood was collected and the right hind leg skeletal muscle tissue was sampled. We used real-time PCR to determine mRNA expression of RSTN in skeletal muscles, western blot to determine RSTN protein expression and ELISA to assess serum insulin as well as fasting blood glucose (FBG levels. Calculation of the quantitative insulin sensitivity check index (Q value was also conducted. The above mentioned indicators and their correction were statistically analyzed. Results:Compared with sham operation group, the RSTN expression in the skeletal muscle as well as serum insulin and FBG levels revealed significant elevation (P<0.05, and reduced Q value (P<0.05 in traumatic group. Single factor linear correlation analysis showed a significant negative correlation between RSTN expression and Q values (P<0.001 in traumatic group. Conclusion:The expression of RSTN has been greatly increased in the muscular tissue of TBI rats and it was closely related to the index of glycometabolism. RSTN may play an important role in the process of insulin resistance after TBI. Key words: Brain injuries; Resistin; Insulin resistance; Blood glucose; Insulin sensitivity

  20. Maxillofacial injuries and traumatic brain injury--a pilot study. (United States)

    Rajandram, Rama Krsna; Syed Omar, Syed Nabil; Rashdi, Muhd Fazly Nizam; Abdul Jabar, Mohd Nazimi


    Maxillofacial injuries comprising hard tissue as well as soft tissue injuries can be associated with traumatic brain injuries due to the impact of forces transmitted through the head and neck. To date, the role of maxillofacial injury on brain injury has not been properly documented with some saying it has a protective function on the brain while others opposing this idea. This cross-sectional retrospective study evaluated all patients with maxillofacial injuries. The aim of the study was to analyze the occurrence and relationship of maxillofacial injuries with traumatic brain injuries. We retrospectively studied the hospital charts of all trauma patients seen at the accident and emergency department of UKM Medical Centre from November 2010 until November 2011. A detail analysis was then carried out on all patients who satisfied the inclusion and exclusion criteria. A total of 11294 patients were classified as trauma patients in which 176 patients had facial fractures and 292 did not have facial fractures. Middle face fractures was the most common pattern of facial fracture seen. Traumatic brain injury was present in 36.7% of maxillofacial cases. A significant association was found between facial fractures and traumatic brain injury (P maxillofacial injuries with or without facial fractures are at risk of acute or delayed traumatic brain injury. All patients should always have proper radiological investigations together with a proper observation and follow-up schedule. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Higher impact energy in traumatic brain injury interferes with noncovalent and covalent bonds resulting in cytotoxic brain tissue edema as measured with computational simulation. (United States)

    von Holst, Hans; Li, Xiaogai


    Cytotoxic brain tissue edema is a complicated secondary consequence of ischemic injury following cerebral diseases such as traumatic brain injury and stroke. To some extent the pathophysiological mechanisms are known, but far from completely. In this study, a hypothesis is proposed in which protein unfolding and perturbation of nucleotide structures participate in the development of cytotoxic edema following traumatic brain injury (TBI). An advanced computational simulation model of the human head was used to simulate TBI. The consequences of kinetic energy transfer following an external dynamic impact were analyzed including the intracranial pressure (ICP), strain level, and their potential influences on the noncovalent and covalent bonds in folded protein structures. The result shows that although most of the transferred kinetic energy is absorbed in the skin and three bone layers, there is a substantial amount of energy reaching the gray and white matter. The kinetic energy from an external dynamic impact has the theoretical potential to interfere not only with noncovalent but also covalent bonds when high enough. The induced mechanical strain and pressure may further interfere with the proteins, which accumulate water molecules into the interior of the hydrophobic structures of unfolded proteins. Simultaneously, the noncovalent energy-rich bonds in nucleotide adenosine-triphosphates may be perturbed as well. Based on the analysis of the numerical simulation data, the kinetic energy from an external dynamic impact has the theoretical potential to interfere not only with noncovalent, but also with covalent bonds when high enough. The subsequent attraction of increased water molecules into the unfolded protein structures and disruption of adenosine-triphosphate bonds could to some extent explain the etiology to cytotoxic edema.

  2. Pediatric acquired brain injury. (United States)

    Bodack, Marie I


    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  3. Brain injury in sports. (United States)

    Lloyd, John; Conidi, Frank


    Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of

  4. The Effect Of Supraphysiologic Blood Pressure on Traumatic Brain Injury and Proximal Tissue Beds During Resuscitative Balloon Occlusion of the Aorta and Variable Aortic Control in a Porcine Model (Sus scrofa) of Polytrauma. (United States)


    Supraphysiologic Blood Pressure On Traumatic Brain Injury And Proximal Tissue Beds During Resuscitative Balloon Occlusion Of The Aorta And Variable Aortic...Mandatory) The Effect of REBOA, Partial Aortic Occlusion and Aggressive Blood Transfusion on Traumatic Brain Injury in a Swine Polytrauma Model...Objectives: Despite clinical reports of poor outcomes, the degree to which REBOA exacerbates traumatic brain injury (TBI) is not known. We hypothesized that

  5. Picroside II Inhibits Neuronal Apoptosis and Improves the Morphology and Structure of Brain Tissue following Cerebral Ischemic Injury in Rats.

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    Full Text Available This paper aimed to explore the protective effects of picroside II against the neuronal apoptosis and changes in morphology and structure that follow cerebral ischemic injury in rats. A focal cerebral ischemic model was established by inserting a monofilament thread to achieve middle cerebral artery occlusion (MCAO in 60 Wistar rats, and intraperitoneal injections of picroside II (20 mg/kg were administered. The neurobehavioral functions were evaluated with the modified neurological severity score (mNSS test. The cerebral infarct volumes were measured with tetrazolium chloride (TTC staining. The morphology and ultrastructure of the cortical brain tissues were observed with hematoxylin-eosin staining and transmission electron microscopy, respectively. The apoptotic cells were counted with terminal deoxynucleotidyl transferase dUTP nick-end labeling and flow cytometry, and pERK1/2 expression was determined by immunohistochemical assay and Western blot. The results indicated that neurological behavioral malfunctions and cerebral infarcts were present in the MCAO rats. In the model group, the damage to the structures of the neurons and the blood brain barrier (BBB in the cortex was more severe, and the numbers of apoptotic cells, the early apoptotic ratio (EAR and pERK1/2 expression were significantly increased in this group compared to the control group (P<0.05. In the treatment group, the neurological behavioral function and the morphology and ultrastructure of the neurons and the BBB were improved including the number of Mi increased and relative area of condensed chromosome and basement (BM thickness descreased, and the cerebral infarct volume, the number of apoptotic cells, the EAR and pERK1/2 expression were significantly decreased compared to the model group (P<0.05. These results suggest that picroside II reduced apoptosis and improved the morphology and ultrastructure of the neurons and the BBB and that these effects resulted in the

  6. Banking brain tissue for research

    NARCIS (Netherlands)

    Klioueva, Natasja; Bovenberg, Jasper; Huitinga, I.


    Well-characterized human brain tissue is crucial for scientific breakthroughs in research of the human brain and brain diseases. However, the collection, characterization, management, and accessibility of brain human tissue are rather complex. Well-characterized human brain tissue is often provided

  7. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)


    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  8. Concussion and Traumatic Brain Injury (United States)

    ... of this page please turn JavaScript on. Feature: Concussion Concussion and Traumatic Brain Injury Past Issues / Summer 2015 ... have a concussion or more serious brain injury. Concussion Signs Observed Can't recall events prior to ...

  9. Brain Injury Association of America (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  10. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chun-juan Jiang


    Full Text Available Some in vitro experiments have shown that erythropoietin (EPO increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI and diffusion-weighted imaging (DWI have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.

  11. On the consequences of non linear constitutive modelling of brain tissue for injury prediction with numerical head models

    NARCIS (Netherlands)

    Hrapko, M.; Dommelen, J.A.W. van; Peters, G.W.M.; Wismans, J.S.H.M.


    The objective of this work was to investigate the influences of constitutive non linearities of brain tissue in numerical head model simulations by comparing the performance of a recently developed non linear constitutive model [10, 11] with a simplified version, based on neo-Hookean elastic

  12. Traumatic brain injuries. (United States)

    Blennow, Kaj; Brody, David L; Kochanek, Patrick M; Levin, Harvey; McKee, Ann; Ribbers, Gerard M; Yaffe, Kristine; Zetterberg, Henrik


    Traumatic brain injuries (TBIs) are clinically grouped by severity: mild, moderate and severe. Mild TBI (the least severe form) is synonymous with concussion and is typically caused by blunt non-penetrating head trauma. The trauma causes stretching and tearing of axons, which leads to diffuse axonal injury - the best-studied pathogenetic mechanism of this disorder. However, mild TBI is defined on clinical grounds and no well-validated imaging or fluid biomarkers to determine the presence of neuronal damage in patients with mild TBI is available. Most patients with mild TBI will recover quickly, but others report persistent symptoms, called post-concussive syndrome, the underlying pathophysiology of which is largely unknown. Repeated concussive and subconcussive head injuries have been linked to the neurodegenerative condition chronic traumatic encephalopathy (CTE), which has been reported post-mortem in contact sports athletes and soldiers exposed to blasts. Insights from severe injuries and CTE plausibly shed light on the underlying cellular and molecular processes involved in mild TBI. MRI techniques and blood tests for axonal proteins to identify and grade axonal injury, in addition to PET for tau pathology, show promise as tools to explore CTE pathophysiology in longitudinal clinical studies, and might be developed into diagnostic tools for CTE. Given that CTE is attributed to repeated head trauma, prevention might be possible through rule changes by sports organizations and legislators.

  13. Neurostimulation to treat brain injury?


    Schonfeld, Lisa


    nvt. Universiteit Hasselt & Universiteit Maastricht, Hersenstichting Nederland, Medtronic US traumatic brain injury; controlled cortical impact; animal models; motor impairment; motor cortex, motor cortex stimulation, motor recovery

  14. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury (United States)

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang


    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  15. Traumatic brain injury: pathophysiology for neurocritical care. (United States)

    Kinoshita, Kosaku


    Severe cases of traumatic brain injury (TBI) require neurocritical care, the goal being to stabilize hemodynamics and systemic oxygenation to prevent secondary brain injury. It is reported that approximately 45 % of dysoxygenation episodes during critical care have both extracranial and intracranial causes, such as intracranial hypertension and brain edema. For this reason, neurocritical care is incomplete if it only focuses on prevention of increased intracranial pressure (ICP) or decreased cerebral perfusion pressure (CPP). Arterial hypotension is a major risk factor for secondary brain injury, but hypertension with a loss of autoregulation response or excess hyperventilation to reduce ICP can also result in a critical condition in the brain and is associated with a poor outcome after TBI. Moreover, brain injury itself stimulates systemic inflammation, leading to increased permeability of the blood-brain barrier, exacerbated by secondary brain injury and resulting in increased ICP. Indeed, systemic inflammatory response syndrome after TBI reflects the extent of tissue damage at onset and predicts further tissue disruption, producing a worsening clinical condition and ultimately a poor outcome. Elevation of blood catecholamine levels after severe brain damage has been reported to contribute to the regulation of the cytokine network, but this phenomenon is a systemic protective response against systemic insults. Catecholamines are directly involved in the regulation of cytokines, and elevated levels appear to influence the immune system during stress. Medical complications are the leading cause of late morbidity and mortality in many types of brain damage. Neurocritical care after severe TBI has therefore been refined to focus not only on secondary brain injury but also on systemic organ damage after excitation of sympathetic nerves following a stress reaction.

  16. Effect of vitro preservation on mechanical properties of brain tissue (United States)

    Zhang, Wei; Liu, Yi-fan; Liu, Li-fu; Niu, Ying; Ma, Jian-li; Wu, Cheng-wei


    To develop the protective devices for preventing traumatic brain injuries, it requires the accurate characterization of the mechanical properties of brain tissue. For this, it necessary to elucidate the effect of vitro preservation on the mechanical performance of brain tissue as usually the measurements are carried out in vitro. In this paper, the thermal behavior of brain tissue preserved for various period of time was first investigated and the mechanical properties were also measured. Both reveals the deterioration with prolonged preservation duration. The observations of brain tissue slices indicates the brain tissue experiences karyorrhexis and karyorrhexis in sequence, which accounts for the deterioration phenomena.

  17. Exercise and soft tissue injury. (United States)

    Hart, L E


    Once the almost exclusive domain of the orthopaedic surgeon, sports injuries are now being seen with increasing frequency by other specialists, including rheumatologists. It is therefore important for rheumatologists to be able to diagnose and manage the various musculoskeletal conditions that are associated with physical activity. Soft tissue injuries are a very common cause of morbidity in both competitive and recreational athletes. Most of these conditions are provoked by muscle-tendon overload (or overuse) that is usually the result of excessive training or improper training techniques. However, despite an emerging literature on the natural history of soft tissue overuse syndromes, relatively little is known about the causes, incidence and outcome of many of these injuries. Of the methodologically robust epidemiological studies that have been done, most have focused on habitual distance runners. In this population, it has been reported that the incidence of injury can be as high as 50% or more, and that overtraining and the presence of previous injury are the most significant predictors of future injury. In other popular forms of exercise, such as walking, swimming, cycling, aerobics and racquet sports, injuries are also reported with high frequency but, to date, no prospective studies have examined actual incidences in these populations, and risk factors for injury in these activities remain speculative. Several of the more commonly occurring soft tissue injuries (such as rotator cuff tendinitis, lateral and medial epicondylitis, patellar tendinitis, the iliotibial band friction syndrome, Achilles tendinitis and plantar fasciitis) exemplify the overuse concept and are therefore highlighted in this review. The management of these, and most other, exercise-related soft tissue injuries is directed towards promptly restoring normal function and preventing re-injury.

  18. Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain.

    Directory of Open Access Journals (Sweden)

    Fernando Casanova

    Full Text Available Flow back along a needle track (backflow can be a problem during direct infusion, e.g. convection-enhanced delivery (CED, of drugs into soft tissues such as brain. In this study, the effect of needle insertion speed on local tissue injury and backflow was evaluated in vivo in the rat brain. Needles were introduced at three insertion speeds (0.2, 2, and 10 mm/s followed by CED of Evans blue albumin (EBA tracer. Holes left in tissue slices were used to reconstruct penetration damage. These measurements were also input into a hyperelastic model to estimate radial stress at the needle-tissue interface (pre-stress before infusion. Fast insertion speeds were found to produce more tissue bleeding and disruption; average hole area at 10 mm/s was 1.87-fold the area at 0.2 mm/s. Hole measurements also differed at two fixation time points after needle retraction, 10 and 25 min, indicating that pre-stresses are influenced by time-dependent tissue swelling. Calculated pre-stresses were compressive (0 to 485 Pa and varied along the length of the needle with smaller average values within white matter (116 Pa than gray matter (301 Pa regions. Average pre-stress at 0.2 mm/s (351.7 Pa was calculated to be 1.46-fold the value at 10 mm/s. For CED backflow experiments (0.5, 1, and 2 µL/min, measured EBA backflow increased as much as 2.46-fold between 10 and 0.2 mm/s insertion speeds. Thus, insertion rate-dependent damage and changes in pre-stress were found to directly contribute to the extent of backflow, with slower insertion resulting in less damage and improved targeting.

  19. Nonfreezing Tissue Injuries (United States)

    ... Summer Camp Tips for Kids With Asthma, Allergies Antioxidants: The Good Health Helpers As Stroke 'Liquefies' Brain ... Mouth and Dental Disorders Older People’s Health Issues Skin Disorders Special Subjects Women's Health Issues Symptoms ALL ...

  20. AT2 Receptor and Tissue Injury

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Recarti, Chiara; Foulquier, Sébastien


    The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well...... and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans...

  1. Traumatic Brain Injury Registry (TBI) (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  2. Temperature Effects on Brain Tissue in Compression

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.04.005


    Extensive research has been carried out for at least 50 years to understand the mechanical properties of brain tissue in order to understand the mechanisms of traumatic brain injury (TBI). The observed large variability in experimental results may be due to the inhomogeneous nature of brain tissue and to the broad range of test conditions. However, test temperature is also considered as one of the factors influencing the properties of brain tissue. In this research, the mechanical properties of porcine brain have been investigated at 22C (room temperature) and at 37C (body temperature) while maintaining a constant preservation temperature of approximately 4-5C. Unconfined compression tests were performed at dynamic strain rates of 30 and 50/s using a custom made test apparatus. There was no significant difference (p = 0.8559 - 0.9290) between the average engineering stresses of the brain tissue at the two different temperature conditions. The results of this study should help to understand the behavior of bra...

  3. Advanced monitoring in traumatic brain injury: microdialysis. (United States)

    Carpenter, Keri L H; Young, Adam M H; Hutchinson, Peter J


    Here, we review the present state-of-the-art of microdialysis for monitoring patients with severe traumatic brain injury, highlighting the newest developments. Microdialysis has evolved in neurocritical care to become an established bedside monitoring modality that can reveal unique information on brain chemistry. A major advance is recent consensus guidelines for microdialysis use and interpretation. Other advances include insight obtained from microdialysis into the complex, interlinked traumatic brain injury disorders of electrophysiological changes, white matter injury, inflammation and metabolism. Microdialysis has matured into being a standard clinical monitoring modality that takes its place alongside intracranial pressure and brain tissue oxygen tension measurement in specialist neurocritical care centres, as well as being a research tool able to shed light on brain metabolism, inflammation, therapeutic approaches, blood-brain barrier transit and drug effects on downstream targets. Recent consensus on microdialysis monitoring is paving the way for improved neurocritical care protocols. Furthermore, there is scope for future improvements both in terms of the catheters and microdialysate analyser technology, which may further enhance its applicability.

  4. Thrombin Preconditioning in Surgical Brain Injury in Rats. (United States)

    Benggon, Michael; Chen, Hank; Applegate, Richard L; Zhang, John


    The surgical brain injury model replicates neurosurgical brain parenchymal damage. Postsurgical brain edema correlates with postoperative neurological dysfunction. Intranasal administration is a proven method of delivering therapies to brain tissue. Thrombin preconditioning decreased brain edema and improved neurological outcomes in models of ischemic brain injury. We hypothesized thrombin preconditioning in surgical brain injury may improve postoperative brain edema and neurological outcomes. Adult male Sprague-Dawley rats (n = 78) weighing 285-355 g were randomly assigned to sham or pre-injury treatment: one-time pretreatment 1 day prior, one-time pretreatment 5 days prior, and daily preconditioning for 5 days prior. Treatment arms were divided into vehicle or thrombin therapies, and subdivided into intranasal (thrombin 5 units/50 μL 0.9 % saline) or intracerebral ventricular (thrombin 0.1 unit/10 μL 0.9 % saline) administration. Blinded observers performed neurological testing 24 h after brain injury followed immediately by measurement of brain water content. There was a significant difference in ipsilateral brain water content and neurological outcomes between all treatment groups and the sham group. However, there was no change in brain water content or neurological outcomes between thrombin- and vehicle-treated animals. Thrombin preconditioning did not significantly improve brain edema or neurological function in surgical brain injury in rats.

  5. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno


    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  6. Traumatic Brain Injury (United States)

    ... or therapy. A surgeon can repair a skull fracture, remove blood clots, or relieve pressure. Occupational therapy helps you regain skills you forgot from your injury. This includes walking, eating, or dressing. Physical therapy consists of stretching, strengthening, and training exercises. ...

  7. Family needs after brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Perrin, Paul B; Cuberos-Urbano, Gustavo


    OBJECTIVE: The objective of this study was to explore differences by country in the importance of family needs after traumatic brain injury (TBI), as well as differences in met/unmet needs. METHOD: Two hundred and seventy-one family members of an individual with TBI in Mexico, Colombia, Spain...

  8. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla


    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...

  9. Assessment of Students with Traumatic Brain Injury (United States)

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.


    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  10. Knowledge of Traumatic Brain Injury among Educators (United States)

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith


    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  11. Predicting Mild Traumatic Brain Injury with Injury Risk Functions


    Young, Tyler


    To assess the safety of various products, equipment, and vehicles during traumatic events injury risk curves have been developed correlate measurable parameters with risk of injury. The first risk curves to predict head injuries focused on severe head injuries such as skull fractures. These curves were generated by impacting cadaver heads. To understand the biomechanics of mild traumatic brain injuries, cadaver heads have also been used to monitor pressure and strain in the brain during impac...

  12. Dexmedetomidine Postconditioning Reduces Brain Injury after Brain Hypoxia-Ischemia in Neonatal Rats. (United States)

    Ren, Xiaoyan; Ma, Hong; Zuo, Zhiyi


    Perinatal asphyxia can lead to death and severe disability. Brain hypoxia-ischemia (HI) injury is the major pathophysiology contributing to death and severe disability after perinatal asphyxia. Here, seven-day old Sprague-Dawley rats were subjected to left brain HI. Dexmedetomidine was given intraperitoneally after the brain HI. Yohimbine or atipamezole, two α2 adrenergic receptor antagonists, were given 10 min before the dexmedetomidine injection. Neurological outcome was evaluated 7 or 28 days after the brain HI. Frontal cerebral cortex was harvested 6 h after the brain HI. Left brain HI reduced the left cerebral hemisphere weight assessed 7 days after the brain HI. This brain tissue loss was dose-dependently attenuated by dexmedetomidine. Dexmedetomidine applied within 1 h after the brain HI produced this effect. Dexmedetomidine attenuated the brain HI-induced brain tissue and cell loss as well as neurological and cognitive dysfunction assessed from 28 days after the brain HI. Dexmedetomidine postconditioning-induced neuroprotection was abolished by yohimbine or atipamezole. Brain HI increased tumor necrosis factor α and interleukin 1β in the brain tissues. This increase was attenuated by dexmedetomidine. Atipamezole inhibited this dexmedetomidine effect. Our results suggest that dexmedetomidine postconditioning reduces HI-induced brain injury in the neonatal rats. This effect may be mediated by α2 adrenergic receptor activation that inhibits inflammation in the ischemic brain tissues.

  13. Sleep and Traumatic Brain Injury. (United States)

    Baumann, Christian R


    Post-traumatic sleep-wake disturbances are frequent and often chronic complications after traumatic brain injury. The most prevalent sleep-wake disturbances are insomnia, excessive daytime sleepiness, and pleiosomnia, (i.e., increased sleep need). These disturbances are probably of multifactorial origin, but direct traumatic damage to key brain structures in sleep-wake regulation is likely to contribute. Diagnosis and treatment consist of standard approaches, but because of misperception of sleep-wake behavior in trauma patients, subjective testing alone may not always suffice. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model. (United States)

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung


    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms.

  15. Novel roles for metallothionein-I + II (MT-I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: insights from global gene expression profiling in wild-type and MT-I + II knockout mice

    DEFF Research Database (Denmark)

    Penkowa, Milena; Cáceres, Mario; Borup, Rehannah


    . A genomic approach, such as the use of microarrays, provides much insight in this regard, especially if combined with the use of gene-targeted animals. We report here the results of one of these studies comparing wild-type and metallothionein-I + II knockout mice subjected to a cryolesion...... times consistent with the processes involved in the initial tissue injury and later regeneration of the parenchyma, as well as a prominent effect of MT-I + II deficiency. The results thoroughly confirmed the importance of the antioxidant proteins MT-I + II in the response of the brain to injury...

  16. BPSD following traumatic brain injury. (United States)

    Anghinah, Renato; Freire, Fabio Rios; Coelho, Fernanda; Lacerda, Juliana Rhein; Schmidt, Magali Taino; Calado, Vanessa Tomé Gonçalves; Ianof, Jéssica Natuline; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Paiva, Wellingson Silva; Amorim, Robson Luis


    Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI) in Brazil. We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD) findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery.

  17. BPSD following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI in Brazil. Objective: We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. Methods: Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. Results: Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. Conclusion: Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery.

  18. Traumatic brain injury-induced sleep disorders

    Directory of Open Access Journals (Sweden)

    Viola-Saltzman M


    Full Text Available Mari Viola-Saltzman, Camelia Musleh Department of Neurology, NorthShore University HealthSystem, Evanston, IL, USA Abstract: Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%–70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. Keywords: traumatic brain injury, insomnia, hypersomnia, sleep apnea, periodic limb movement disorder, fatigue

  19. Brain injury severity and autonomic dysregulation accurately predict heterotopic ossification in patients with traumatic brain injury.

    NARCIS (Netherlands)

    Hendricks, H.T.; Geurts, A.C.H.; Ginneken, B.C. van; Heeren, A.J.; Vos, P.E.


    OBJECTIVE: To assess brain injury severity, autonomic dysregulation and systemic infection as risk factors for the occurrence of heterotopic ossification in patients with severe traumatic brain injury. DESIGN: Historic cohort study. SETTING: Radboud University Medical Centre. SUBJECTS: All

  20. Neurobiology of premature brain injury. (United States)

    Salmaso, Natalina; Jablonska, Beata; Scafidi, Joseph; Vaccarino, Flora M; Gallo, Vittorio


    Every year in the United States, an estimated 500,000 babies are born preterm (before 37 completed weeks of gestation), and this number is rising, along with the recognition of brain injuries due to preterm delivery. A common underlying pathogenesis appears to be perinatal hypoxia induced by immature lung development, which causes injury to vulnerable neurons and glia. Abnormal growth and maturation of susceptible cell types, particularly neurons and oligodendrocytes, in preterm babies with very low birth weight is associated with decreased cerebral and cerebellar volumes and increases in cerebral ventricular size. Here we reconcile these observations with recent studies using models of perinatal hypoxia that show perturbations in the maturation and function of interneurons, oligodendrocytes and astroglia. Together, these findings suggest that the global mechanism by which perinatal hypoxia alters development is through a delay in maturation of affected cell types, including astroglia, oligodendroglia and neurons.

  1. Mechanical characterization of human brain tissue. (United States)

    Budday, S; Sommer, G; Birkl, C; Langkammer, C; Haybaeck, J; Kohnert, J; Bauer, M; Paulsen, F; Steinmann, P; Kuhl, E; Holzapfel, G A


    compression but not tension. Our results demonstrate that material parameters identified for a single loading mode fail to predict the response under arbitrary loading conditions. Our systematic characterization of human brain tissue will lead to more accurate computational simulations, which will allow us to determine criteria for injury, to develop smart protection systems, and to predict brain development and disease progression. There is a pressing need to characterize the mechanical behavior of human brain tissue under multiple loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We perform a sequence of experimental tests on the same brain specimen to characterize the regional and directional behavior, and we supplement our tests with DTI and histology to explore to which extent the macrostructural response is a result of the underlying microstructure. Results demonstrate that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry, and we show that the multiaxial data can best be captured by a modified version of the one-term Ogden model. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Traumatic brain injury complicated by environmental hyperthermia

    Directory of Open Access Journals (Sweden)

    Hermstad Erik


    Full Text Available Temperature variations after traumatic brain injury are common and devastating. This has been shown most clearly with hypothermia, but the complications associated with hyperthermia in the setting of traumatic brain injury can be just as problematic. We present the case of a soldier with traumatic brain injury exposed to environmental temperatures of 115-120° F with a core temperature of over 108° F. The complications of his conditions are discussed as well as potential treatments for the deadly combination of traumatic brain injury and environmental hyperthermia.

  3. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates (United States)

    Degeneffe, Charles Edmund; Tucker, Mark


    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  4. Leukocyte recruitment and ischemic brain injury. (United States)

    Yilmaz, Gokhan; Granger, D Neil


    Leukocytes are recruited into the cerebral microcirculation following an ischemic insult. The leukocyte-endothelial cell adhesion manifested within a few hours after ischemia (followed by reperfusion, I/R) largely reflects an infiltration of neutrophils, while other leukocyte populations appear to dominate the adhesive interactions with the vessel wall at 24 h of reperfusion. The influx of rolling and adherent leukocytes is accompanied by the recruitment of adherent platelets, which likely enhances the cytotoxic potential of the leukocytes to which they are attached. The recruitment of leukocytes and platelets in the postischemic brain is mediated by specific adhesion glycoproteins expressed by the activated blood cells and on cerebral microvascular endothelial cells. This process is also modulated by different signaling pathways (e.g., CD40/CD40L, Notch) and cytokines (e.g., RANTES) that are activated/released following I/R. Some of the known risk factors for cardiovascular disease, including hypercholesterolemia and obesity appear to exacerbate the leukocyte and platelet recruitment elicited by brain I/R. Although lymphocyte-endothelial cell and -platelet interactions in the postischemic cerebral microcirculation have not been evaluated to date, recent evidence in experimental animals implicate both CD4+ and CD8+ T-lymphocytes in the cerebral microvascular dysfunction, inflammation, and tissue injury associated with brain I/R. Evidence implicating regulatory T-cells as cerebroprotective modulators of the inflammatory and tissue injury responses to brain I/R support a continued focus on leukocytes as a target for therapeutic intervention in ischemic stroke.

  5. Glyburide - Novel Prophylaxis and Effective Treatment for Traumatic Brain Injury (United States)


    in B, and which is marked on the scalp with black ink in (C), snout facing downward. (D and E) Photographs of the thin glass strain gauge glued to...vasculature after Blast-TBI is to investigate events of blast injury in the pathology of brain tissue. We hypothesized that elucidating BBB permeability after... permeability after Blast-TBI, as early as 3 min and up to 24 hrs. post- injury. The content of EB in brain tissue increased as early as 3min post-Blast-TBI

  6. Evaluation of Head and Brain Injury Risk Functions Using Sub-Injurious Human Volunteer Data. (United States)

    Sanchez, Erin J; Gabler, Lee F; McGhee, James S; Olszko, Ardyn V; Chancey, V Carol; Crandall, Jeff R; Panzer, Matthew B


    Risk assessment models are developed to estimate the probability of brain injury during head impact using mechanical response variables such as head kinematics and brain tissue deformation. Existing injury risk functions have been developed using different datasets based on human volunteer and scaled animal injury responses to impact. However, many of these functions have not been independently evaluated with respect to laboratory-controlled human response data. In this study, the specificity of 14 existing brain injury risk functions was assessed by evaluating their ability to correctly predict non-injurious response using previously conducted sled tests with well-instrumented human research volunteers. Six degrees-of-freedom head kinematics data were obtained for 335 sled tests involving subjects in frontal, lateral, and oblique sled conditions up to 16 Gs peak sled acceleration. A review of the medical reports associated with each individual test indicated no clinical diagnosis of mild or moderate brain injury in any of the cases evaluated. Kinematic-based head and brain injury risk probabilities were calculated directly from the kinematic data, while strain-based risks were determined through finite element model simulation of the 335 tests. Several injury risk functions substantially over predict the likelihood of concussion and diffuse axonal injury; proposed maximum principal strain-based injury risk functions predicted nearly 80 concussions and 14 cases of severe diffuse axonal injury out of the 335 non-injurious cases. This work is an important first step in assessing the efficacy of existing brain risk functions and highlights the need for more predictive injury assessment models.

  7. Accuracy of brain multimodal monitoring to detect cerebral hypoperfusion after traumatic brain injury*. (United States)

    Bouzat, Pierre; Marques-Vidal, Pedro; Zerlauth, Jean-Baptiste; Sala, Nathalie; Suys, Tamarah; Schoettker, Patrick; Bloch, Jocelyne; Daniel, Roy T; Levivier, Marc; Meuli, Reto; Oddo, Mauro


    To examine the accuracy of brain multimodal monitoring-consisting of intracranial pressure, brain tissue PO2, and cerebral microdialysis--in detecting cerebral hypoperfusion in patients with severe traumatic brain injury. Prospective single-center study. Patients with severe traumatic brain injury. Medico-surgical ICU, university hospital. Intracranial pressure, brain tissue PO2, and cerebral microdialysis monitoring (right frontal lobe, apparently normal tissue) combined with cerebral blood flow measurements using perfusion CT. Cerebral blood flow was measured using perfusion CT in tissue area around intracranial monitoring (regional cerebral blood flow) and in bilateral supra-ventricular brain areas (global cerebral blood flow) and was matched to cerebral physiologic variables. The accuracy of intracranial monitoring to predict cerebral hypoperfusion (defined as an oligemic regional cerebral blood flow < 35 mL/100 g/min) was examined using area under the receiver-operating characteristic curves. Thirty perfusion CT scans (median, 27 hr [interquartile range, 20-45] after traumatic brain injury) were performed on 27 patients (age, 39 yr [24-54 yr]; Glasgow Coma Scale, 7 [6-8]; 24/27 [89%] with diffuse injury). Regional cerebral blood flow correlated significantly with global cerebral blood flow (Pearson r = 0.70, p < 0.01). Compared with normal regional cerebral blood flow (n = 16), low regional cerebral blood flow (n = 14) measurements had a higher proportion of samples with intracranial pressure more than 20 mm Hg (13% vs 30%), brain tissue PO2 less than 20 mm Hg (9% vs 20%), cerebral microdialysis glucose less than 1 mmol/L (22% vs 57%), and lactate/pyruvate ratio more than 40 (4% vs 14%; all p < 0.05). Compared with intracranial pressure monitoring alone (area under the receiver-operating characteristic curve, 0.74 [95% CI, 0.61-0.87]), monitoring intracranial pressure + brain tissue PO2 (area under the receiver-operating characteristic curve, 0.84 [0

  8. Paclitaxel improves outcome from traumatic brain injury


    Cross, Donna J.; Garwin, Gregory G.; Cline, Marcella M.; Richards, Todd L.; Yarnykh, Vasily; Mourad, Pierre D.; Ho, Rodney J.Y.; Minoshima, Satoshi


    Pharmacologic interventions for traumatic brain injury (TBI) hold promise to improve outcome. The purpose of this study was to determine if the microtubule stabilizing therapeutic paclitaxel used for more than 20 years in chemotherapy would improve outcome after TBI. We assessed neurological outcome in mice that received direct application of paclitaxel to brain injury from controlled cortical impact (CCI). Magnetic resonance imaging was used to assess injury-related morphological changes. Ca...

  9. Traumatic brain injury: a review of pathophysiology and management. (United States)

    Sande, Allison; West, Chad


    To review current information regarding the pathophysiology associated with traumatic brain injury (TBI), and to outline appropriate patient assessment, diagnostic, and therapeutic options. TBI in veterinary patients can occur subsequent to trauma induced by motor vehicle accidents, falls, and crush injuries. Primary brain injury occurs at the time of initial impact as a result of direct mechanical damage. Secondary brain injury occurs in the minutes to days following the trauma as a result of systemic extracranial events and intracranial changes. The initial diagnosis is often made based on history and physical examination. Assessment should focus on the cardiovascular and respiratory systems followed by a complete neurologic examination. Advanced imaging may be indicated in a patient that fails to respond to appropriate medical therapy. Primary brain injury is beyond the control of the veterinarian. Therefore, treatment should focus on minimizing the incidence or impact of secondary brain injury. Because of a lack of prospective or retrospective clinical data, treatment recommendations for veterinary TBI patients are primarily based on human and experimental studies and personal experience. Therapeutic guidelines have been developed that center on maintaining adequate cerebral perfusion. Severe head trauma is associated with high mortality in humans and animals. However, dogs and cats have a remarkable ability to compensate for loss of cerebral tissue. It is therefore important not to reach hasty prognostic conclusions based on initial appearance. Many pets go on to have a functional outcome and recover from injury.

  10. Spectroscopic Monitoring of Kidney Tissue Ischemic Injury

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Fitzgerald, J T; Michalopoulou, A P; Troppmann, C


    Noninvasive evaluation of tissue viability of donor kidneys used for transplantation is an issue that current technology is not able to address. In this work, we explore optical spectroscopy for its potential to assess the degree of ischemic damage in kidney tissue. We hypothesized that ischemic damage to kidney tissue will give rise to changes in its optical properties which in turn may be used to asses the degree of tissue injury. The experimental results demonstrate that the autofluorescence intensity of the injured kidney is decreasing as a function of time exposed to ischemic injury. Changes were also observed in the NIR light scattering intensities most probably arising from changes due to injury and death of the tissue.

  11. The Regulation of the CNS Innate Immune Response Is Vital for the Restoration of Tissue Homeostasis (Repair after Acute Brain Injury: A Brief Review

    Directory of Open Access Journals (Sweden)

    M. R. Griffiths


    Full Text Available Neurons and glia respond to acute injury by participating in the CNS innate immune response. This involves the recognition and clearance of “not self ” pathogens and “altered self ” apoptotic cells. Phagocytic receptors (CD14, CD36, TLR–4 clear “not self” pathogens; neurons and glia express “death signals” to initiate apoptosis in T cells.The complement opsonins C1q, C3, and iC3b facilitate the clearance of apoptotic cells by interacting with CR3 and CR4 receptors. Apoptotic cells are also cleared by the scavenger receptors CD14, Prs-R, TREM expressed by glia. Serpins also expressed by glia counter the neurotoxic effects of thrombin and other systemic proteins that gain entry to the CNS following injury. Complement pathway and T cell activation are both regulated by complement regulatory proteins expressed by glia and neurons. CD200 and CD47 are NIRegs expressed by neurons as “don't eat me” signals and they inhibit microglial activity preventing host cell attack. Neural stem cells regulate T cell activation, increase the Treg population, and suppress proinflammatory cytokine expression. Stem cells also interact with the chemoattractants C3a, C5a, SDF-1, and thrombin to promote stem cell migration into damaged tissue to support tissue homeostasis.

  12. [Automobile driving after a brain injury]. (United States)

    Mosberg, A; Østen, P E; Schanke, A K


    Little is known about driving fitness after brain damage. The present study describes 62 brain injured patients, 36 with cerebral vascular accidents, 15 with traumatic brain injuries, and 11 with other neurological diseases, mean age 50 years, who after thorough assessment had been found fit enough for driving a car. 15 months later they were sent a questionnaire about their driving behaviour and skills. A higher number of traffic incidents were found after brain injury, but the difference was not significant. Patients with traumatic brain injury had a significantly higher number of traffic incidents post-injury than patients with stroke. A majority of those involved in incidents were young males with traumatic brain injury, who had deficits in cognitive executive functions. Patients with traumatic brain injuries seem to need special attention when assessed for driving. Time to follow-up is too short for the results to be conclusive for the whole material of brain-injured patients. Further studies should be conducted.

  13. A High Rate Tension Device for Characterizing Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1177/1754337112436900


    The mechanical characterization of brain tissue at high loading velocities is vital for understanding and modeling Traumatic Brain Injury (TBI). The most severe form of TBI is diffuse axonal injury (DAI) which involves damage to individual nerve cells (neurons). DAI in animals and humans occurs at strains > 10% and strain rates > 10/s. The mechanical properties of brain tissues at these strains and strain rates are of particular significance, as they can be used in finite element human head models to accurately predict brain injuries under different impact conditions. Existing conventional tensile testing machines can only achieve maximum loading velocities of 500 mm/min, whereas the Kolsky bar apparatus is more suitable for strain rates > 100/s. In this study, a custom-designed high rate tension device is developed and calibrated to estimate the mechanical properties of brain tissue in tension at strain rates < 90/s, while maintaining a uniform velocity. The range of strain can also be extended to 100% de...

  14. Brain injury risk from primary blast. (United States)

    Rafaels, Karin A; Bass, Cameron R Dale; Panzer, Matthew B; Salzar, Robert S; Woods, William A; Feldman, Sanford H; Walilko, Tim; Kent, Richard W; Capehart, Bruce P; Foster, Jonathan B; Derkunt, Burcu; Toman, Amanda


    Military service members are often exposed to at least one explosive event, and many blast-exposed veterans present with symptoms of traumatic brain injury. However, there is little information on the intensity and duration of blast necessary to cause brain injury. Varying intensity shock tube blasts were focused on the head of anesthetized ferrets, whose thorax and abdomen were protected. Injury evaluations included physiologic consequences, gross necropsy, and histologic diagnosis. The resulting apnea, meningeal bleeding, and fatality were analyzed using logistic regressions to determine injury risk functions. Increasing severity of blast exposure demonstrated increasing apnea immediately after the blast. Gross necropsy revealed hemorrhages, frequently near the brain stem, at the highest blast intensities. Apnea, bleeding, and fatality risk functions from blast exposure to the head were determined for peak overpressure and positive-phase duration. The 50% risk of apnea and moderate hemorrhage were similar, whereas the 50% risk of mild hemorrhage was independent of duration and required lower overpressures (144 kPa). Another fatality risk function was determined with existing data for scaled positive-phase durations from 1 millisecond to 20 milliseconds. The first primary blast brain injury risk assessments for mild and moderate/severe injuries in a gyrencephalic animal model were determined. The blast level needed to cause a mild/moderate brain injury may be similar to or less than that needed for pulmonary injury. The risk functions can be used in future research for blast brain injury by providing realistic injury risks to guide the design of protection or evaluate injury.

  15. Traumatic Brain Injury service (TBI) Service (United States)

    Department of Veterans Affairs — This Service provides access to Tramatic Brain injury patient data consult notes. The service also provides one write service method writeNote. The Service supports...

  16. Lateral fluid percussion: model of traumatic brain injury in mice. (United States)

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita


    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific

  17. Reducing Secondary Insults in Traumatic Brain Injury (United States)


    persons, and leaves 99,000 persons permanently disabled [1]. The total cost for treatment and rehabilitation of patients with brain injuries is...registry based or retrospective or include only secondary insults that occur in the intensive care unit ( ICU ) setting. Most prior investigations the surgical and neurosurgical ICU diagnosed with a traumatic brain injury requiring a diagnostic procedure were eligible for the study. The study

  18. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure


    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  19. Progesterone exerts neuroprotective effects after brain injury. (United States)

    Stein, Donald G


    Progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. This review assesses recent, primarily in vivo, evidence that progesterone can play an important role in promoting and enhancing repair after traumatic brain injury and stroke. Although many of its specific actions on neuroplasticity remain to be discovered, there is growing evidence that this hormone may be a safe and effective treatment for traumatic brain injury and other neural disorders in humans.

  20. Modeling premature brain injury and recovery (United States)

    Scafidi, Joey; Fagel, Devon M.; Ment, Laura R.; Vaccarino, Flora M.


    Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain. PMID:19482072

  1. Brain injury following cardiac arrest: pathophysiology for neurocritical care. (United States)

    Uchino, Hiroyuki; Ogihara, Yukihiko; Fukui, Hidekimi; Chijiiwa, Miyuki; Sekine, Shusuke; Hara, Naomi; Elmér, Eskil


    Cardiac arrest induces the cessation of cerebral blood flow, which can result in brain damage. The primary intervention to salvage the brain under such a pathological condition is to restore the cerebral blood flow to the ischemic region. Ischemia is defined as a reduction in blood flow to a level that is sufficient to alter normal cellular function. Brain tissue is highly sensitive to ischemia, such that even brief ischemic periods in neurons can initiate a complex sequence of events that may ultimately culminate in cell death. However, paradoxically, restoration of blood flow can cause additional damage and exacerbate the neurocognitive deficits in patients who suffered a brain ischemic event, which is a phenomenon referred to as "reperfusion injury." Transient brain ischemia following cardiac arrest results from the complex interplay of multiple pathways including excitotoxicity, acidotoxicity, ionic imbalance, peri-infarct depolarization, oxidative and nitrative stress, inflammation, and apoptosis. The pathophysiology of post-cardiac arrest brain injury involves a complex cascade of molecular events, most of which remain unknown. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. Mitochondrial dysfunction based on the mitochondrial permeability transition after reperfusion, particularly involving the calcineurin/immunophilin signal transduction pathway, appears to play a pivotal role in the induction of neuronal cell death. The aim of this article is to discuss the underlying pathophysiology of brain damage, which is a devastating pathological condition, and highlight the central signal transduction pathway involved in brain damage, which reveals potential targets for therapeutic intervention.

  2. Spreading depolarization monitoring in neurocritical care of acute brain injury. (United States)

    Hartings, Jed A


    Spreading depolarizations are unique in being discrete pathologic entities that are well characterized experimentally and also occur commonly in patients with substantial acute brain injury. Here, we review essential concepts in depolarization monitoring, highlighting its clinical significance, interpretation, and future potential. Cortical lesion development in diverse animal models is mediated by tissue waves of mass spreading depolarization that cause the toxic loss of ion homeostasis and limit energy substrate supply through associated vasoconstriction. The signatures of such deterioration are observed in electrocorticographic recordings from perilesional cortex of patients with acute stroke or brain trauma. Experimental work suggests that depolarizations are triggered by energy supply-demand mismatch in focal hotspots of the injury penumbra, and depolarizations are usually observed clinically when other monitoring variables are within recommended ranges. These results suggest that depolarizations are a sensitive measure of relative ischemia and ongoing secondary injury, and may serve as a clinical guide for personalized, mechanistically targeted therapy. Both existing and future candidate therapies offer hope to limit depolarization recurrence. Electrocorticographic monitoring of spreading depolarizations in patients with acute brain injury provides a sensitive measure of relative energy shortage in focal, vulnerable brains regions and indicates ongoing secondary damage. Depolarization monitoring holds potential for targeted clinical trial design and implementation of precision medicine approaches to acute brain injury therapy.

  3. Visceral adipose tissue is associated with microstructural brain tissue damage. (United States)

    Widya, Ralph L; Kroft, Lucia J M; Altmann-Schneider, Irmhild; van den Berg-Huysmans, Annette A; van der Bijl, Noortje; de Roos, Albert; Lamb, Hildo J; van Buchem, Mark A; Slagboom, P Eline; van Heemst, Diana; van der Grond, Jeroen


    Obesity has been associated with microstructural brain tissue damage. Different fat compartments demonstrate different metabolic and endocrine behaviors. The aim was to investigate the individual associations between abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) and microstructural integrity in the brain. This study comprised 243 subjects aged 65.4 ± 6.7 years. The associations between abdominal VAT and SAT, assessed by CT, and magnetization transfer imaging markers of brain microstructure for gray and white matter were analyzed and adjusted for confounding factors. VAT was associated with normalized MTR peak height in gray (β -0.216) and white matter (β -0.240) (both P  0.05). Stepwise linear regression analysis showed that only VAT was associated with normalized MTR peak height in gray and white matter (both P VAT rather than SAT is associated with microstructural brain tissue damage in elderly individuals. © 2015 The Obesity Society.

  4. Occupational Therapy and Community Reintegration of Persons with Brain Injury (United States)

    Fact Sheet Occupational Therapy and Community Reintegration of Persons With Brain Injury Brain injuries can affect motor, sensory, cognitive, and behavioral functioning. A person who has sustained a brain ...

  5. Brain response to traumatic brain injury in wild-type and interleukin-6 knockout mice: a microarray analysis

    DEFF Research Database (Denmark)

    Poulsen, Christian Bjørn; Penkowa, Milena; Borup, Rehannah


    Traumatic injury to the brain is one of the leading causes of injury-related death or disability. Brain response to injury is orchestrated by cytokines, such as interleukin (IL)-6, but the full repertoire of responses involved is not well known. We here report the results obtained with microarrays...... in the initial tissue injury and later regeneration of the parenchyma. IL-6 deficiency showed a dramatic effect in the expression of many genes, especially in the 1 day post-lesion timing, which presumably underlies the poor capacity of IL-6 knockout mice to cope with brain damage. The results highlight...

  6. Anemia and brain oxygen after severe traumatic brain injury. (United States)

    Oddo, Mauro; Levine, Joshua M; Kumar, Monisha; Iglesias, Katia; Frangos, Suzanne; Maloney-Wilensky, Eileen; Le Roux, Peter D


    To investigate the relationship between hemoglobin (Hgb) and brain tissue oxygen tension (PbtO(2)) after severe traumatic brain injury (TBI) and to examine its impact on outcome. This was a retrospective analysis of a prospective cohort of severe TBI patients whose PbtO(2) was monitored. The relationship between Hgb-categorized into four quartiles (≤9; 9-10; 10.1-11; >11 g/dl)-and PbtO(2) was analyzed using mixed-effects models. Anemia with compromised PbtO(2) was defined as episodes of Hgb ≤ 9 g/dl with simultaneous PbtO(2) 11 g/dl as the reference level, and controlling for important physiologic covariates (CPP, PaO(2), PaCO(2)), Hgb ≤ 9 g/dl was the only Hgb level that was associated with lower PbtO(2) (coefficient -6.53 (95 % CI -9.13; -3.94), p < 0.001). Anemia with simultaneous PbtO(2) < 20 mmHg, but not anemia alone, increased the risk of unfavorable outcome (odds ratio 6.24 (95 % CI 1.61; 24.22), p = 0.008), controlling for age, GCS, Marshall CT grade, and APACHE II score. In this cohort of severe TBI patients whose PbtO(2) was monitored, a Hgb level no greater than 9 g/dl was associated with compromised PbtO(2). Anemia with simultaneous compromised PbtO(2), but not anemia alone, was a risk factor for unfavorable outcome, irrespective of injury severity.

  7. Catecholamines and cognition after traumatic brain injury. (United States)

    Jenkins, Peter O; Mehta, Mitul A; Sharp, David J


    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person's catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain 'networks' that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  8. Dementia resulting from traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Joana Ramalho

    Full Text Available ABSTRACT Traumatic brain injury (TBI represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge.

  9. Dementia resulting from traumatic brain injury. (United States)

    Ramalho, Joana; Castillo, Mauricio


    Traumatic brain injury (TBI) represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge.

  10. What Can I Do to Help Prevent Traumatic Brain Injury? (United States)

    ... Playing a contact sport, such as football, ice hockey, or boxing; Using in-line skates or riding ... Brain Injury Awareness Additional Pevention Resources Childhood Injuries Concussion in Children and Teens Injuries from Violence Injuries ...

  11. The role of free radicals in traumatic brain injury. (United States)

    O'Connell, Karen M; Littleton-Kearney, Marguerite T


    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  12. Traumatic brain injury and obesity induce persistent central insulin resistance. (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M


    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Traumatic brain injury, neuroimaging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Erin D. Bigler


    Full Text Available Depending on severity, traumatic brain injury (TBI induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1 the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2 how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3 how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  14. Primary blast-induced traumatic brain injury: lessons from lithotripsy (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.


    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics


    African Journals Online (AJOL)


    Sep 9, 2012 ... Perodontology, Community and Preventive Dentistry, University of Nairobi, P. O. Box 19676-00202, Nairobi, Kenya. MAXILLOFACIAL SOFT TISSUE INJURIES IN NAIROBI, KENYA ..... dog- bites in which the peak incidence occurred in children aged less than ten years with an exponential decrease in ...

  16. Intra-Arterial Administration of Multipotent Mesenchymal Stromal Cells Promotes Functional Recovery of the Brain After Traumatic Brain Injury. (United States)

    Silachev, D N; Plotnikov, E Yu; Babenko, V A; Danilina, T I; Zorov, L D; Pevzner, I B; Zorov, D B; Sukhikh, G T


    We compared the efficiency of delivery of multipotent mesenchymal stem cells into the brain after their intravenous and intra-arterial injection. Analysis of the therapeutic effects of cells after experimental traumatic brain injury revealed improvement of the neurological status and motor functions of the damaged hemisphere, the effect being more pronounced after intraarterial injection of cells. Intra-arterial administration was followed by rapid infiltration of the cells into the brain tissue and their number considerably surpassed that after intravenous infusion. Targeted delivery of multipotent mesenchymal stromal cells into the brain after their injection into the carotid arteries substantially potentiated their neuroprotective effects in traumatic brain injury.

  17. Electrical bioimpedance enabling prompt intervention in traumatic brain injury (United States)

    Seoane, Fernando; Atefi, S. Reza


    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  18. Could cord blood cell therapy reduce preterm brain injury?

    Directory of Open Access Journals (Sweden)

    Jingang eLi


    Full Text Available Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP. Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia-ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia-ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB derived from preterm and term infants for use in clinical applications.

  19. Involvement of tau phosphorylation in traumatic brain injury patients. (United States)

    Yang, W-J; Chen, W; Chen, L; Guo, Y-J; Zeng, J-S; Li, G-Y; Tong, W-S


    Traumatic brain injury (TBI) results in significant morbidity and mortality throughout the world. In TBI patients suffering cognitive, emotional, and behavioral deficits, the leading cause derives from the physical injury to the central nervous system (CNS) that impairs brain function. Here, we applied a targeted approach to understand the potential mechanisms of neuron damage after TBI. Tau protein phosphorylation was compared in the brain tissues collected from patients underwent brain surgery based on the assessment of brain injury extent by Glasgow Coma Scale (GCS). The results indicated that the levels of phosphorylated tau were significantly higher in the severe and extremely severe TBI groups, compared to the moderate group of patients. Phosphorylated, but not the total tau protein was uniquely correlated with the GCS score (R2 =.7849, P<.01) in 142 TBI patients. Consistently, the activities of key players associated with tau hyperphosphorylation GSK-3β and PP2A showed parallel correlations with the severity of TBI as well. These data suggest that the enhanced tau protein phosphorylation occurs upon severe neuron injures and may contribute to the pathological structural changes of CNS leading to brain damage of TBI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin


    . CONCLUSIONS: The review will summarize the current knowledge in the field with the aim of increasing understanding and guiding future research on the associations between fatigue and clinically important factors, as well as the consequences of fatigue in traumatic brain injury. PROSPERO registry number: CRD......BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...

  1. Minocycline Attenuates Iron-Induced Brain Injury. (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya


    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  2. Return to school after brain injury


    Hawley, Carol; Ward, Anthony B.; Magnay, Andrew R.; Mychilkiq, Wasyl


    Objective: To examine return to school and classroom performance following traumatic brain injury (TBI)\\ud Design: Cross-sectional\\ud Setting: Community\\ud Subjects: 67 school-age children with TBI (35 mild, 13 moderate, 19 severe), and 14 uninjured matched controls.\\ud Interventions: Parents and children were interviewed and children assessed at a mean of two years post injury. Teachers reported on academic performance and educational needs.\\ud Main measures: Classroom performance, Children’...

  3. Traumatic Brain Injury and Sleep Disorders


    Viola-Saltzman, Mari; Watson, Nathaniel F.


    Sleep disturbance is common following traumatic brain injury (TBI), affecting 30–70% of individuals, many occurring after mild injuries. Insomnia, fatigue and sleepiness are the most frequent post-TBI sleep complaints with narcolepsy (with or without cataplexy), sleep apnea (obstructive and/or central), periodic limb movement disorder, and parasomnias occurring less commonly. In addition, depression, anxiety and pain are common TBI co-morbidities with substantial influence on sleep quality. T...

  4. Neuropsychiatric aspects of severe brain injuries

    Directory of Open Access Journals (Sweden)

    O. S. Zaitsev


    Full Text Available The state-of-the-art of Russian neuropsychiatry and priority developments in different psychopathological syndromes in severe brain injuries are assessed. Many cognitive and emotional impairments are explained in terms of the idea on the organization of psychic activity over time. It is emphasized that to achieve the premorbid levels of an interhemispheric interaction and functional asymmetry of the cerebral hemispheres affords psychic activity recovery. The experience in investigating, classifying, and treating various mental disorders occurring after severe brain injuries is generalized. The basic principles of psychopharmacotherapy and rehabilitation of victims are stated.

  5. Traumatic brain injury in intoxicated patients. (United States)

    Golan, Jeff Dror; Marcoux, Judith; Golan, Eyal; Schapiro, Robert; Johnston, Karen M; Maleki, Mahammed; Khetarpal, Suneel; Jacques, Line


    We sought to evaluate the effect alcohol intoxication may have had in nonsurgically treated patients with severe traumatic brain injury. The Montreal General Hospital Traumatic Brain Injury Registry was used to identify all adult patients with a Glasgow Coma Scale score toxic blood alcohol levels (BAL > or =21.7 mmol/L), 24 were alcohol negative (BAL Coma Scale score < or =8. Intoxicated patients had a mean delay of 151 minutes more in the insertion time of an intracranial pressure monitoring device, compared with alcohol-negative patients. Alcohol was a confounding factor in the treatment of some of our patients.

  6. Surgical management of traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Vidgeon, Steven; Strong, Anthony J


    OBJECT: Mass lesions from traumatic brain injury (TBI) often require surgical evacuation as a life-saving measure and to improve outcomes, but optimal timing and surgical technique, including decompressive craniectomy, have not been fully defined. The authors compared neurosurgical approaches...... enrolled in the Co-Operative Studies on Brain Injury Depolarizations (COSBID) at King's College Hospital (KCH, n = 27) and Virginia Commonwealth University (VCU, n = 24) from July 2004 to March 2010. Subdural electrode strips were placed at the time of surgery for subsequent electrocorticographic...

  7. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras


    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  8. Prehospital Care of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    TVSP Murthy


    Full Text Available Traumatic brain injury (TBI occurs when a sudden trauma causes brain damage. Depending on the severity, outcome can be anything from complete recovery to permanent disability or death. Emergency medical services play a dominant role in provision of primary care at the site of injury. Since little can be done to reverse the initial brain damage due to trauma, attempts to prevent further brain damage and stabilize the patient before he can be brought to a specialized trauma care centre play a pivotal role in the final outcome. Recognition and early treatment of hypoten-sion, hypoxemia, and hypoglycemia, objective neurological assessment based on GCS and pupils, and safe transport to an optimal care centre are the key elements of prehospital care of a TBI patient.

  9. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  10. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  11. Advanced monitoring in traumatic brain injury: microdialysis


    Carpenter, KLH; Young, AMH; Hutchinson, PJ


    Purpose of review: Here, we review the present state-of-the-art of microdialysis for monitoring patients with severe traumatic brain injury, highlighting the newest developments. Microdialysis has evolved in neurocritical care to become an established bedside monitoring modality that can reveal unique information on brain chemistry. Recent findings: A major advance is recent consensus guidelines for microdialysis use and interpretation. Other advances include insight obtained from microdi...

  12. Low level laser therapy for traumatic brain injury (United States)

    Wu, Qiuhe; Huang, Ying-Ying; Dhital, Saphala; Sharma, Sulbha K.; Chen, Aaron C.-H.; Whalen, Michael J.; Hamblin, Michael R.


    Low level laser (or light) therapy (LLLT) has been clinically applied for many indications in medicine that require the following processes: protection from cell and tissue death, stimulation of healing and repair of injuries, and reduction of pain, swelling and inflammation. One area that is attracting growing interest is the use of transcranial LLLT to treat stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain would allow non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. LLLT may have beneficial effects in the acute treatment of brain damage injury by increasing respiration in the mitochondria, causing activation of transcription factors, reducing key inflammatory mediators, and inhibiting apoptosis. We tested LLLT in a mouse model of TBI produced by a controlled weight drop onto the skull. Mice received a single treatment with 660-nm, 810-nm or 980-nm laser (36 J/cm2) four hours post-injury and were followed up by neurological performance testing for 4 weeks. Mice with moderate to severe TBI treated with 660- nm and 810-nm laser had a significant improvement in neurological score over the course of the follow-up and histological examination of the brains at sacrifice revealed less lesion area compared to untreated controls. Further studies are underway.

  13. Endogenous lipoid pneumonia in a cachectic patient after brain injury. (United States)

    Zhang, Ji; Mu, Jiao; Lin, Wei; Dong, Hongmei


    Endogenous lipoid pneumonia (EnLP) is an uncommon non-life-threatening inflammatory lung disease that usually occurs in patients with conditions such as lung cancers, primary sclerosing cholangitis, and undifferentiated connective tissue disease. Here we report a case of EnLP in a paralytic and cachectic patient with bronchopneumonia after brain injury. A 40-year-old man experienced a severe brain injury in an automobile accident. He was treated for 1 month and his status plateaued. However, he became paralyzed and developed cachexia and ultimately died 145 days after the accident. Macroscopically, multifocal yellowish firm nodules were visible on scattered gross lesions throughout the lungs. Histologically, many foam cells had accumulated within the alveoli and alveolar walls accompanied by a surrounding interstitial infiltration of lymphocytes. The findings were in accordance with a diagnosis of EnLP. Bronchopneumonia was also noted. To our knowledge, there have been few reports of EnLP associated with bronchopneumonia and cachexia after brain injury. This uncommon pathogenesis should be well recognized by clinicians and forensic pathologists. The case reported here should prompt medical staff to increase the nutritional status and fight pulmonary infections in patients with brain injury to prevent the development of EnLP.

  14. Neuroprotective Therapies after Perinatal Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Enrique Hilario


    Full Text Available Hypoxic-ischemic (HI brain injury is one of the main causes of disabilities in term-born infants. It is the result of a deprivation of oxygen and glucose in the neural tissue. As one of the most important causes of brain damage in the newborn period, the neonatal HI event is a devastating condition that can lead to long-term neurological deficits or even death. The pattern of this injury occurs in two phases, the first one is a primary energy failure related to the HI event and the second phase is an energy failure that takes place some hours later. Injuries that occur in response to these events are often manifested as severe cognitive and motor disturbances over time. Due to difficulties regarding the early diagnosis and treatment of HI injury, there is an increasing need to find effective therapies as new opportunities for the reduction of brain damage and its long term effects. Some of these therapies are focused on prevention of the production of reactive oxygen species, anti-inflammatory effects, anti-apoptotic interventions and in a later stage, the stimulation of neurotrophic properties in the neonatal brain which could be targeted to promote neuronal and oligodendrocyte regeneration.

  15. How to manage blood pressure after brain injury? (United States)

    Carteron, Laurent; Taccone, Fabio S; Oddo, Mauro


    Manipulation of blood pressure (BP) is a mainstay of therapy in patients with acute brain injury (ABI). In the early emergent phase (first hours from injury), depending on intracranial pathology, BP manipulation aims to: 1) limit the progression of parenchymal hematomas or hemorrhagic transformation (in patients with ischemic/hemorrhagic stroke and aneurysmal subarachnoid hemorrhage [SAH]), and 2) attenuate hypoperfusion and secondary cerebral ischemic insults (in patients with traumatic brain injury [TBI]). During the intensive care unit (ICU) phase, BP management is primarily focused at identifying the so-called "optimal" BP/cerebral perfusion pressure (CPP), i.e. the threshold of mean arterial pressure (MAP)/CPP to prevent secondary cerebral ischemia. BP augmentation is also an essential component of the medical management of delayed cerebral ischemia following SAH. Increasing clinical data support the use of surrogate monitoring modalities of cerebral perfusion (including trans-cranial Doppler and brain tissue oximetry) to indentify BP/CPP targets in ABI patients. We reviewed herein the actual evidence regarding BP control in the early phase after ABI and recent clinical investigations using multimodal monitoring to optimize CPP and BP in severe ABI patients. The main purpose of this review is to provide a pragmatic approach of BP management, taking into account the timing of injury and differences in brain pathologies.

  16. Psychiatric sequelae of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Suprakash Chaudhury


    Full Text Available Almost half of the people suffering traumatic brain injury (TBI may later be diagnosed with psychiatric disorders. The literature (PubMed, IndMed of past 30 years on psychiatric disturbances associated with TBI is reviewed. The authors highlight the close link between head injury and psychiatry and provide an overview of the epidemiology, risk-factors, and mechanisms of psychiatric sequelae including, cognitive deficits, substance abuse, psychoses, mood disorders, suicide, anxiety disorders, dissociative disorders, post-concussion syndrome, and personality changes following head injury. The various psychiatric sequelae are briefly discussed.

  17. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath


    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.


    Directory of Open Access Journals (Sweden)



    Full Text Available Traumatic brain injury is one of the major causes of morbidity and mortality in children. The anatomical features, physiological response to injury, neuronal development, and low myelination in children cause different clinical features compared to the adult traumatic brain injury. Our aim is to study the incidence, predisposing factors, clinical presentations, and outcome in pediatric head injuries. The patients included in this retrospective study are under the age of 14 years admitted in the Neurosurgery Department of King George Hospital, Visakhapatnam, which is a tertiary care centre. The study period is two years’ duration from 1.1.2013 to 31.12.2014. Data collected on the basis of history, physical examination, base line investigations, and the plain CT scan is all cases. The pediatric patients were 226 in total 1643 case of head injury cases. There were 64.6% (n=146 males and 35.4% (n=80 females. The age ranged from 12 days to 14 years. Fall from height was the commonest cause of head injury found in 48.6% (n=110 cases, road traffic accidents (RTA in 34.5% (n=78 and other causes 16.8% (n=38; 49 (21.68% patients had associated injuries. At 55.75% (n=126 cases mild head injury with GCS 13-15 was present and severe head injury with GCS less than 8 in 29 (12.8% patients. The 188 patients are treated conservatively, 38 patients underwent different neurosurgical procedures in which 5 patients died. CONCLUSION: Head injury in pediatric age group carries high risk of morbidity and mortality. Good outcome achieved by early diagnosis and referral from primary care centers to tertiary care centers.


    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros


    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  20. The Impact of Traumatic Brain Injury on the Aging Brain. (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E


    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  1. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants,. Inflammatory markers. Tropical Journal of ... live births, of which ~55 % of the affected premature children die by the age of 2 years ..... severe complications, including cerebral palsy, epilepsy, motor impairment, and delayed.

  2. Psychiatric sequelae of traumatic brain injury: Retrospective ...

    African Journals Online (AJOL)


    Dec 23, 2011 ... Objective: Traumatic brain injury (TBI) is a public health problem and is associated with many complications. However little is known about the psychiatric sequelae of TBI in Nigeria. This study described the pattern and determinants of psychiatric sequelae among subjects with TBI. Materials and Methods: ...

  3. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants,. Inflammatory markers. Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, ...

  4. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L


    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  5. Traumatic Brain Injury and Personality Change (United States)

    Fowler, Marc; McCabe, Paul C.


    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  6. Narrative Language in Traumatic Brain Injury (United States)

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio


    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  7. Monitoring Agitated Behavior After acquired Brain Injury

    DEFF Research Database (Denmark)

    Aadal, Lena; Mortensen, Jesper; Nielsen, Jørgen Feldbaek


    Purpose: To describe the onset, duration, intensity, and nursing shift variation of agitated behavior in patients with acquired brain injury (ABI) at a rehabilitation hospital. Design: Prospective descriptive study. Methods: A total of 11 patients with agitated behavior were included. Agitated...

  8. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk


    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... an uptake area of 2.4 million in Denmark were included at admission to a regional brain injury unit (BIU), on average 19 days after injury. Patients in the retrospective study used for comparison were randomly chosen from the national hospital register. RESULTS AND CONCLUSIONS: Out of 117 patients...... post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge...

  9. Relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Petersen, Janne; Lykke Mortensen, Erik


    relatives of patients with severe brain injury. METHODS: The relatives were assessed on the anxiety and depression scales from the Symptom Checklist-90-Revised and latent variable growth curve models were used to model the trajectories. The effects of patient's age, patient's Glasgow Coma Score, level...... improvement. Higher initial level of symptoms of depression was seen in female relatives. Higher initial level of anxiety was associated with younger patient age, lower level of function and consciousness in the patient and the relative being female or the spouse. CONCLUSION: Future research and interventions......PRIMARY OBJECTIVE: To investigate trajectories and predictors of trajectories of anxiety and depression in relatives of patients with a severe brain injury during the first year after injury. RESEARCH DESIGN: A prospective longitudinal study with four repeated measurements. SUBJECTS: Ninety...

  10. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury. (United States)


    ... does not include children with brain injuries that are congenital or degenerative or caused by birth... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A...

  11. Perspective on Pediatric Traumatic Brain Injury | Igun | African ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is an important aspect of paediatric trauma because of its contribution to mortality ant post trauma seqeulae. Management of traumatic brain injury remains a challenge to surgeons, especially in developing countries. This study aims to determine the pattern of traumatic brain injury among ...

  12. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. (United States)

    Roux, Aurelie; Muller, Ludovic; Jackson, Shelley N; Post, Jeremy; Baldwin, Katherine; Hoffer, Barry; Balaban, Carey D; Barbacci, Damon; Schultz, J Albert; Gouty, Shawn; Cox, Brian M; Woods, Amina S


    Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion. A matrix of implanted silver nanoparticles was implanted superficially in brain sections for matrix-assisted laser desorption (MALDI) imaging of 50μm diameter microdomains across unfixed cryostat sections of rat brain. Ion-mobility time-of-flight MS was used to analyze and map changes over time in brain lipid composition in a rats after Controlled Cortical Impact (CCI) TBI. Brain MS images showed changes in sphingolipids near the CCI site, including increased ceramides and decreased sphingomyelins, accompanied by changes in glycerophospholipids and cholesterol derivatives. The kinetics differed for each lipid class; for example ceramides increased as early as 1 day after the injury whereas other lipids changes occurred between 3 and 7 days post injury. Silver nanoparticles MALDI matrix is a sensitive new tool for revealing previously undetectable cellular injury response and remodeling in neural, glial and vascular structure of the brain. Lipid biochemical and structural changes after TBI could help highlighting molecules that can be used to determine the severity of such injuries as well as to evaluate the efficacy of potential treatments. Copyright © 2016. Published by Elsevier B.V.

  13. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice. (United States)

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi


    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Forensic Pathology of Traumatic Brain Injury. (United States)

    Finnie, J W


    Traumatic brain injury constitutes a significant proportion of cases requiring forensic examination, and it encompasses (1) blunt, nonmissile head injury, especially involving motor vehicle accidents, and (2) penetrating, missile injury produced by a range of high- and lower-velocity projectiles. This review examines the complex pathophysiology and biomechanics of both types of neurotrauma and assesses the macroscopic and histologic features of component lesions, which may be used to determine the cause and manner of death resulting from an intentional assault or accident. Estimation of the survival time postinjury by pathologic examination is also important where malicious head injury is suspected, in an attempt to ascertain a time at which the traumatic event might have been committed, thereby evaluating the authenticity of statements made by the alleged perpetrator. © The Author(s) 2015.

  15. Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury


    Sala, Nathalie; Suys, Tamarah; Zerlauth, Jean-Baptiste; Bouzat, Pierre; Messerer, Mahmoud; Bloch, Jocelyne; Levivier, Marc; Magistretti, Pierre J; Meuli, Reto; Oddo, Mauro


    Growing evidence suggests that endogenous lactate is an important substrate for neurons. This study aimed to examine cerebral lactate metabolism and its relationship with brain perfusion in patients with severe traumatic brain injury (TBI). A prospective cohort of 24 patients with severe TBI monitored with cerebral microdialysis (CMD) and brain tissue oxygen tension (PbtO2) was studied. Brain lactate metabolism was assessed by quantification of elevated CMD lactate samples (>4 mmol/L); these ...

  16. The neuropathology and neurobiology of traumatic brain injury. (United States)

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik


    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Identification, tissue distribution and evaluation of brain ...

    Indian Academy of Sciences (India)


    mechanisms regulating feeding in order to improve its performance in captivity. The objectives of this study were to clone NPY cDNA, evaluate the mRNA levels in different tissues of flounder, and also evaluate brain NPY expression to associate food intake with NPY expression levels. A 597 bp NPY cDNA was cloned from ...

  18. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn


    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...

  19. Magnetic resonance imaging in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo (Nippon Medical School, Tokyo (Japan))


    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author).

  20. Respiratory mechanics in brain injury: A review. (United States)

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta


    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  1. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter


    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  2. Acute Management of Traumatic Brain Injury. (United States)

    Vella, Michael A; Crandall, Marie L; Patel, Mayur B


    Traumatic brain injury (TBI) is a leading cause of death and disability in patients with trauma. Management strategies must focus on preventing secondary injury by avoiding hypotension and hypoxia and maintaining appropriate cerebral perfusion pressure (CPP), which is a surrogate for cerebral blood flow. CPP can be maintained by increasing mean arterial pressure, decreasing intracranial pressure, or both. The goal should be euvolemia and avoidance of hypotension. Other factors that deserve important consideration in the acute management of patients with TBI are venous thromboembolism, stress ulcer, and seizure prophylaxis, as well as nutritional and metabolic optimization. Published by Elsevier Inc.

  3. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hai-jun Bao


    Full Text Available The adipocytokine, apelin-13, is an abundantly expressed peptide in the nervous system. Apelin-13 protects the brain against ischemia/reperfusion injury and attenuates traumatic brain injury by suppressing autophagy. However, secondary apelin-13 effects on traumatic brain injury-induced neural cell death and blood-brain barrier integrity are still not clear. Here, we found that apelin-13 significantly decreases cerebral water content, mitigates blood-brain barrier destruction, reduces aquaporin-4 expression, diminishes caspase-3 and Bax expression in the cerebral cortex and hippocampus, and reduces apoptosis. These results show that apelin-13 attenuates secondary injury after traumatic brain injury and exerts a neuroprotective effect

  4. Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. (United States)

    Bouzat, Pierre; Sala, Nathalie; Payen, Jean-François; Oddo, Mauro


    Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult-after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.

  5. The neuroethics and neurolaw of brain injury. (United States)

    Aggarwal, Neil Krishan; Ford, Elizabeth


    Neuroethics and neurolaw are fields of study that involve the interface of neuroscience with clinical and legal decision-making. The past two decades have seen increasing attention being paid to both fields, in large part because of the advances in neuroimaging techniques and improved ability to visualize and measure brain structure and function. Traumatic brain injury (TBI), along with its acute and chronic sequelae, has emerged as a focus of neuroethical issues, such as informed consent for treatment and research, diagnostic and prognostic uncertainties, and the subjectivity of interpretation of data. The law has also more frequently considered TBI in criminal settings for exculpation, mitigation and sentencing purposes and in tort and administrative law for personal injury, disability and worker's compensation cases. This article provides an overview of these topics with an emphasis on the current challenges that the neuroscience of TBI faces in the medicolegal arena. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Cognitive retraining in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Diya Nangia


    Full Text Available Traumatic brain injury (TBI is often associated with cognitive impairments. The psychological sequelae of cognitive deficits and emotional problems contribute significantly to the disability in the patient and to the distress of the family. The study aimed to develop a cognitive retraining programme to enhance cognitive functioning in TBI. 25 years old male presenting with history of left temporal hemorrhagic contusion with cerebral edema underwent 2 months of a cognitive retaining programme, addressing executive functions impairment. A single case experimental design with pre- and post-assessment was adopted to evaluate changes in the patient in response to the intervention. Improvements were found in cognitive functioning, and in symptom reduction and behaviour. The 2 months hospital based cognitive retraining programme was found to be efficacious in ameliorating symptoms and improving cognitive, social and occupational functioning post traumatic brain injury.

  7. Metabolomics studies in brain tissue: A review. (United States)

    Gonzalez-Riano, Carolina; Garcia, Antonia; Barbas, Coral


    Brain is still an organ with a composition to be discovered but beyond that, mental disorders and especially all diseases that curse with dementia are devastating for the patient, the family and the society. Metabolomics can offer an alternative tool for unveiling new insights in the discovery of new treatments and biomarkers of mental disorders. Until now, most of metabolomic studies have been based on biofluids: serum/plasma or urine, because brain tissue accessibility is limited to animal models or post mortem studies, but even so it is crucial for understanding the pathological processes. Metabolomics studies of brain tissue imply several challenges due to sample extraction, along with brain heterogeneity, sample storage, and sample treatment for a wide coverage of metabolites with a wide range of concentrations of many lipophilic and some polar compounds. In this review, the current analytical practices for target and non-targeted metabolomics are described and discussed with emphasis on critical aspects: sample treatment (quenching, homogenization, filtration, centrifugation and extraction), analytical methods, as well as findings considering the used strategies. Besides that, the altered analytes in the different brain regions have been associated with their corresponding pathways to obtain a global overview of their dysregulation, trying to establish the link between altered biological pathways and pathophysiological conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. [Prognosis in pediatric traumatic brain injury. A dynamic cohort study]. (United States)

    Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma


    traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.

  9. The minimal energetic requirement of sustained awareness after brain injury

    DEFF Research Database (Denmark)

    Stender, Johan; Mortensen, Kristian Nygaard; Thibaut, Aurore


    Differentiation of the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS) is a persistent clinical challenge [1]. Based on positron emission tomography (PET) studies with [18F]-fluorodeoxyglucose (FDG) during sleep and anesthesia, the global cerebral metabolic rate...... changes in brain metabolism [4]. We here used FDG-PET to measure resting state brain glucose metabolism in 131 DOC patients to identify objective quantitative metabolic indicators and predictors of awareness. Quantitation of images was performed by normalizing to extracerebral tissue. We show that 42......, associated with the reemergence of consciousness after brain injury. Our data further revealed that regional variations relative to the global resting metabolic level reflect preservation of specific cognitive or sensory modules, such as vision and language comprehension. These findings provide a simple...

  10. Reducing Secondary Insults in Traumatic Brain Injury (United States)


    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 24 Jun 2015 2. REPORT TYPE Journal...transport, intracranial pressure, monitoring, hypoxia, hypotension 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...of productivity8 Previous studies suggest that secondary insults such as hypoxia and hypotension may worsen a brain injury.9-’ 9 Recent recognition



    Stein, Donald G.


    Progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. This review assesses recent, primarily in vivo, evidence that progesterone can play an important role in promoting and enhancing repair after traumatic brain injury and stroke. Although many of its specific actions on neuroplasticity remain to be discovered, there is growing evidence that this hormone may be a safe and effective treatment for traumatic...

  12. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins


    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  13. Cerebral Lactate Metabolism After Traumatic Brain Injury. (United States)

    Patet, Camille; Suys, Tamarah; Carteron, Laurent; Oddo, Mauro


    Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome.

  14. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice


    PRIMARY OBJECTIVE: Olfactory functions are not systematically evaluated following traumatic brain injury (TBI). This study aimed at comparing two smell tests that are used in a clinical setting. RESEARCH DESIGN: The University of Pennsylvania Smell Identification Test (UPSIT) and the Alberta Smell...... Test were compared in terms of assessment time, cost and diagnosis. Parameters associated with olfactory loss such as injury severity, type of cerebral lesion and depressive data were considered. Forty-nine TBI patients admitted to an outpatient rehabilitation programme took part in this experiment....... RESULTS: The scores of the two smell tests were significantly correlated. Both tests indicated that patients with frontal lesion performed significantly worse than patients with other types of lesion. Mood and injury severity were not associated with olfactory impairment when age was taken into account...

  15. Biomechanical characterization of soft tissue injuries (United States)

    Winnem, Andreas Meyer; Randeberg, Lise Lyngsnes; Larsen, Eivind L. P.; Lilledahl, Magnus B.; Haaverstad, Rune; Haugen, Olav A.; Skallerud, Bjørn; Svaasand, Lars O.


    Determining the cause of an injury and the force behind the impact may be of crucial importance in a court case. For non-penetrating soft tissue injuries there is a lack of information available in the literature. In this study controlled bruises were inflicted on an anesthetized pig by high speed, low-weight paintball projectiles (diameter 17.1 mm, weight 3.15 g). The speed of the object and the impact itself were monitored using a high speed camera. Punch biopsies (5 mm) were collected from the injury sites. A red and purple ring with a diameter of 1.5 cm appeared on the skin within 30 seconds after the paintball impact. The ring was visually fully established after 5-10 minutes. Numerical finite element simulations performed with ABAQUSExplicit showed a build up of shear stresses in the skin where the ring formed. Biopsies demonstrated severe dermal vessel damage in the same area. It is concluded that considerable shear stresses during the impact will create dermal vessel damage and thereby cause a visible bruise. Larger forces are required for compressive stresses to inflict equivalent vascular damage.

  16. Chronic neurodegenerative consequences of traumatic brain injury. (United States)

    Chauhan, Neelima B


    Traumatic brain injury (TBI) is a serious public health concern and a major cause of death and disability worldwide. Each year, an estimated 1.7 million Americans sustain TBI of which ~52,000 people die, ~275,000 people are hospitalized and 1,365,000 people are treated as emergency outpatients. Currently there are ~5.3 million Americans living with TBI. TBI is more of a disease process than of an event that is associated with immediate and long-term sensomotor, psychological and cognitive impairments. TBI is the best known established epigenetic risk factor for later development of neurodegenerative diseases and dementia. People sustaining TBI are ~4 times more likely to develop dementia at a later stage than people without TBI. Single brain injury is linked to later development of symptoms resembling Alzheimer's disease while repetitive brain injuries are linked to later development of chronic traumatic encephalopathy (CTE) and/or Dementia Pugilistica (DP). Furthermore, genetic background of ß-amyloid precursor protein (APP), Apolipoprotein E (ApoE), presenilin (PS) and neprilysin (NEP) genes is associated with exacerbation of neurodegenerative process after TBI. This review encompasses acute effects and chronic neurodegenerative consequences after TBI.

  17. Traumatic brain injury in modern war (United States)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.


    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  18. New swine model of infected soft tissue blast injury. (United States)

    Li, Jinqing; Topaz, Morris; Xun, Wenxing; Li, Wangzhou; Wang, Xiaolin; Liu, Haibo; Yuan, Yanqin; Chen, Shaozong; Li, Yuejun; Li, Xueyong


    War injuries, especially blast injuries, have a high risk of infection. However, no animal models of infected war injuries have been built in large animals, which retards both the understanding and the treatment optimization of infected war injuries. Soft tissue blast injuries were created by explosion of electric detonators in white domestic pigs. The ultra structure of the tissue around the wound was determined by transmission electron microscope. To develop infection of blast injury wounds, the pigs were housed in a standard animal house which was disinfected periodically, and the wounds were left untreated for 3 days. Wound specimens were collected daily to determine the bacterial load and bacterial components. To determine whether infection induces tissue necrosis in infected soft tissue blast injury wounds, uninfected blast injury wounds were created as controls of infected wounds by surgical debridement daily, and the wound area and wound depth of both wounds were measured. The wound area and the wound depth of the soft tissue blast injury created in this study fell in the range of human moderate soft tissue war injuries, and the ultra structure of the wounds was comparable with that of human blast injury wounds. The bacterial load of uninfected wounds was under 10 colony forming unit/g during the first 3 days of injury, while that of infected wounds was over 10 colony forming unit/g after 2 days of injury. The infected soft tissue blast injury wounds contained most of the bacteria frequently isolated in battlefield wounds. In addition, infection induced evident tissue necrosis in infected blast injury wounds. The infected soft tissue blast injury wounds mimic those in human, and they can be used to address key points of treatment optimization.

  19. Etanercept Attenuates Traumatic Brain Injury in Rats by Reducing Brain TNF-α Contents and by Stimulating Newly Formed Neurogenesis (United States)

    Cheong, Chong-Un; Chao, Chien-Ming; Cheng, Bor-Chih; Yang, Chung-Zhing; Chio, Chung-Ching


    It remains unclear whether etanercept penetrates directly into the contused brain and improves the outcomes of TBI by attenuating brain contents of TNF-α and/or stimulating newly formed neurogenesis. Rats that sustained TBI are immediately treated with etanercept. Acute neurological and motor injury is assessed in all rats the day prior to and 7 days after surgery. The numbers of the colocalizations of 5-bromodeoxyuridine and doublecortin specific markers in the contused brain injury that occurred during TBI were counted by immunofluorescence staining. Enzyme immunoassay for quantitative determination of TNF-α or etanercept in brain tissues is also performed. Seven days after systemic administration of etanercept, levels of etanercept can be detected in the contused brain tissues. In addition, neurological and motor deficits, cerebral contusion, and increased brain TNF-α contents caused by TBI can be attenuated by etanercept therapy. Furthermore, the increased numbers of the colocalizations of 5-bromodeoxyuridine and doublecortin specific markers in the contused brain tissues caused by TBI can be potentiated by etanercept therapy. These findings indicate that systemically administered etanercept may penetrate directly into the contused brain tissues and may improve outcomes of TBI by reducing brain contents of TNF-α and by stimulating newly formed neurogenesis. PMID:23710117

  20. Aquaporin 9 in rat brain after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui Liu


    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  1. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)


    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  2. Inhomogeneous Deformation of Brain Tissue During Tension Tests

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael D; 10.1016/j.commatsci.2012.05.030


    Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI). In this research, we present the design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0-14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters (mu = 4395.0 Pa, alpha = -2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine Young's modulus (E= 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S < 1.0 are required to minimise the effects of inhomogeneous...

  3. Experimental Injury Biomechanics of the Pediatric Head and Brain (United States)

    Margulies, Susan; Coats, Brittany

    Traumatic brain injury (TBI) is a leading cause of death and disability among children and young adults in the United States and results in over 2,500 childhood deaths, 37,000 hospitalizations, and 435,000 emergency department visits each year (Langlois et al. 2004). Computational models of the head have proven to be powerful tools to help us understand mechanisms of adult TBI and to determine load thresholds for injuries specific to adult TBI. Similar models need to be developed for children and young adults to identify age-specific mechanisms and injury tolerances appropriate for children and young adults. The reliability of these tools, however, depends heavily on the availability of pediatric tissue material property data. To date the majority of material and structural properties used in pediatric computer models have been scaled from adult human data. Studies have shown significant age-related differences in brain and skull properties (Prange and Margulies 2002; Coats and Margulies 2006a, b), indicating that the pediatric head cannot be modeled as a miniature adult head, and pediatric computer models incorporating age-specific data are necessary to accurately mimic the pediatric head response to impact or rotation. This chapter details the developmental changes of the pediatric head and summarizes human pediatric properties currently available in the literature. Because there is a paucity of human pediatric data, material properties derived from animal tissue are also presented to demonstrate possible age-related differences in the heterogeneity and rate dependence of tissue properties. The chapter is divided into three main sections: (1) brain, meninges, and cerebral spinal fluid (CSF); (2) skull; and (3) scalp.

  4. Optical microangiography enabling visualization of change in meninges after traumatic brain injury in mice in vivo (United States)

    Choi, Woo June; Qin, Wan; Qi, Xiaoli; Wang, Ruikang K.


    Traumatic brain injury (TBI) is a form of brain injury caused by sudden impact on brain by an external mechanical force. Following the damage caused at the moment of injury, TBI influences pathophysiology in the brain that takes place within the minutes or hours involving alterations in the brain tissue morphology, cerebral blood flow (CBF), and pressure within skull, which become important contributors to morbidity after TBI. While many studies for the TBI pathophysiology have been investigated with brain cortex, the effect of trauma on intracranial tissues has been poorly studied. Here, we report use of high-resolution optical microangiography (OMAG) to monitor the changes in cranial meninges beneath the skull of mouse after TBI. TBI is induced on a brain of anesthetized mouse by thinning the skull using a soft drill where a series of drilling exert mechanical stress on the brain through the skull, resulting in mild brain injury. Intracranial OMAG imaging of the injured mouse brain during post-TBI phase shows interesting pathophysiological findings in the meningeal layers such as widening of subdural space as well as vasodilation of subarachnoid vessels. These processes are acute and reversible within hours. The results indicate potential of OMAG to explore mechanism involved following TBI on small animals in vivo.

  5. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman


    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  6. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species (United States)


    Traumatic brain injury: football , warfare, and long- term effects. N. Engl. J. Med. 363, 1293–1296. Elder, G. A., Dorr, N. P., De Gasperi, R., Gama Sosa, M. (2012). Intranasal administration of nerve growth fac - tor ameliorate beta-amyloid deposi- tion after traumatic brain injury in rats. Brain Res

  7. Brain injury coping skills group: a preventative intervention for patients with brain injury and their caregivers. (United States)

    Backhaus, Samantha L; Ibarra, Summer L; Klyce, Daniel; Trexler, Lance E; Malec, James F


    To determine whether training in coping strategies will improve psychologic functioning and self-efficacy in survivors of brain injury (BI) and caregivers. Randomized controlled pilot study with measurements at baseline, postintervention, and 3-month follow-up. Postacute rehabilitation clinic. Survivors of BI (n=20) and caregivers (n=20). The Brain Injury Coping Skills Group is a 12-session, manualized, cognitive-behavioral treatment (CBT) group providing psychoeducation, support, and coping skills training. Effects of this preventative intervention were examined on emotional functioning and perceived self-efficacy (PSE). Brief Symptom Inventory-18 (BSI-18) and Brain Injury Coping Skills Questionnaire. Analyses revealed that the Brain Injury Coping Skills group showed significantly improved PSE compared with the control group immediately posttreatment (F=14.16; P=.001) and maintained this over time. PSE assessed posttreatment predicted global distress at 3-month follow-up across groups (rho=-.46). No differences between treatment and control groups were apparent on the BSI-18 posttreatment. However, the control group showed increased emotional distress at 3-month follow-up while the Brain Injury Coping Skills group remained stable over time. Few CBT studies have included survivors of BI and caregivers together in group treatment or included a control group. No prior studies have examined the role of PSE specifically. Prior intervention studies show inconsistent effects on emotional functioning, raising questions regarding the role of intervening variables. This study offers a new conceptualization that PSE may moderate longer-term emotional adjustment after brain injury. Results indicate that PSE is an important and modifiable factor in helping persons better adjust to BI. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Age and Diet Affect Genetically Separable Secondary Injuries that Cause Acute Mortality Following Traumatic Brain Injury in Drosophila

    Directory of Open Access Journals (Sweden)

    Rebeccah J. Katzenberger


    Full Text Available Outcomes of traumatic brain injury (TBI vary because of differences in primary and secondary injuries. Primary injuries occur at the time of a traumatic event, whereas secondary injuries occur later as a result of cellular and molecular events activated in the brain and other tissues by primary injuries. We used a Drosophila melanogaster TBI model to investigate secondary injuries that cause acute mortality. By analyzing mortality percentage within 24 hr of primary injuries, we previously found that age at the time of primary injuries and diet afterward affect the severity of secondary injuries. Here, we show that secondary injuries peaked in activity 1–8 hr after primary injuries. Additionally, we demonstrate that age and diet activated distinct secondary injuries in a genotype-specific manner, and that concurrent activation of age- and diet-regulated secondary injuries synergistically increased mortality. To identify genes involved in secondary injuries that cause mortality, we compared genome-wide mRNA expression profiles of uninjured and injured flies under age and diet conditions that had different mortalities. During the peak period of secondary injuries, innate immune response genes were the predominant class of genes that changed expression. Furthermore, age and diet affected the magnitude of the change in expression of some innate immune response genes, suggesting roles for these genes in inhibiting secondary injuries that cause mortality. Our results indicate that the complexity of TBI outcomes is due in part to distinct, genetically controlled, age- and diet-regulated mechanisms that promote secondary injuries and that involve a subset of innate immune response genes.

  9. Age and Diet Affect Genetically Separable Secondary Injuries that Cause Acute Mortality Following Traumatic Brain Injury in Drosophila. (United States)

    Katzenberger, Rebeccah J; Ganetzky, Barry; Wassarman, David A


    Outcomes of traumatic brain injury (TBI) vary because of differences in primary and secondary injuries. Primary injuries occur at the time of a traumatic event, whereas secondary injuries occur later as a result of cellular and molecular events activated in the brain and other tissues by primary injuries. We used a Drosophila melanogaster TBI model to investigate secondary injuries that cause acute mortality. By analyzing mortality percentage within 24 hr of primary injuries, we previously found that age at the time of primary injuries and diet afterward affect the severity of secondary injuries. Here, we show that secondary injuries peaked in activity 1-8 hr after primary injuries. Additionally, we demonstrate that age and diet activated distinct secondary injuries in a genotype-specific manner, and that concurrent activation of age- and diet-regulated secondary injuries synergistically increased mortality. To identify genes involved in secondary injuries that cause mortality, we compared genome-wide mRNA expression profiles of uninjured and injured flies under age and diet conditions that had different mortalities. During the peak period of secondary injuries, innate immune response genes were the predominant class of genes that changed expression. Furthermore, age and diet affected the magnitude of the change in expression of some innate immune response genes, suggesting roles for these genes in inhibiting secondary injuries that cause mortality. Our results indicate that the complexity of TBI outcomes is due in part to distinct, genetically controlled, age- and diet-regulated mechanisms that promote secondary injuries and that involve a subset of innate immune response genes. Copyright © 2016 Katzenberger et al.

  10. Imaging brain injury using time-resolved near infrared light scanning. (United States)

    Van Houten, J P; Benaron, D A; Spilman, S; Stevenson, D K


    Conventional brain imaging modalities are limited in that they image only secondary physical manifestations of brain injury, which may occur well after the actual insult to the brain and represent irreversible structural changes. A real-time continuous bedside monitor that images functional changes in cerebral blood flow or oxygenation might allow for recognition of brain tissue ischemia or hypoxia before the development of irreversible injury. Visible and near infrared light pass through human bone and tissue in small amounts, and the emerging light can be used to form images of the interior structure of the tissue and measure tissue blood flow and oxygen utilization based on light absorbance and scattering. We developed a portable time-of-flight and absorbance system which emits pulses of near infrared light into tissue and measures the transit time of photons through the tissue. Images can then be reconstructed mathematically using either absorbance or scattering information. Pathologic brain specimens from adult sheep and human newborns were studied with this device using rotational optical tomography. Images generated from these optical scans show that neonatal brain injuries such as subependymal and intraventricular hemorrhages can be successfully identified and localized. Resolution of this system appears to be better than 1 cm at a tissue depth of 5 cm, which should be sufficient for imaging some brain lesions as well as for detection of regional changes in cerebral blood flow and oxygenation. We conclude that light-based imaging of cerebral structure and function is feasible and may permit identification of patients with impending brain injury as well as monitoring of the efficacy of intervention. Construction of real-time images of brain structure and function is now underway using a fiber optic headband and nonmechanical rotational scanner allowing comfortable, unintrusive monitoring over extended periods of time.

  11. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. (United States)

    McDonald, Stuart J; Sun, Mujun; Agoston, Denes V; Shultz, Sandy R


    Traumatic injuries are physical insults to the body that are prevalent worldwide. Many individuals involved in accidents suffer injuries affecting a number of extremities and organs, otherwise known as multitrauma or polytrauma. Traumatic brain injury is one of the most serious forms of the trauma-induced injuries and is a leading cause of death and long-term disability. Despite over dozens of phase III clinical trials, there are currently no specific treatments known to improve traumatic brain injury outcomes. These failures are in part due to our still poor understanding of the heterogeneous and evolving pathophysiology of traumatic brain injury and how factors such as concomitant extracranial injuries can impact these processes. Here, we review the available clinical and pre-clinical studies that have investigated the possible impact of concomitant injuries on traumatic brain injury pathobiology and outcomes. We then list the pathophysiological processes that may interact and affect outcomes and discuss promising areas for future research. Taken together, many of the clinical multitrauma/polytrauma studies discussed in this review suggest that concomitant peripheral injuries may increase the risk of mortality and functional deficits following traumatic brain injury, particularly when severe extracranial injuries are combined with mild to moderate brain injury. In addition, recent animal studies have provided strong evidence that concomitant injuries may increase both peripheral and central inflammatory responses and that structural and functional deficits associated with traumatic brain injury may be exacerbated in multiply injured animals. The findings of this review suggest that concomitant extracranial injuries are capable of modifying the outcomes and pathobiology of traumatic brain injury, in particular neuroinflammation. Though additional studies are needed to further identify the factors and mechanisms involved in central and peripheral injury

  12. [Treatment of traumatic brain injury in Germany]. (United States)

    Rickels, E; von Wild, K; Wenzlaff, P


    The relationship between severe, moderate and mild traumatic brain injury (TBI) as well as the course of treatment and quality management, were studied in a 1-year prospective study in regions of Hannover and Münster Germany. A total of 6,783 patients were documented at the initial examination (58.4% male, 28.1% children <16 years old) and 63.5% participated in the follow-up survey 1 year after the accident. Of these TBI patients 5,220 (73%) were admitted to hospital for clinical treatment but only 258 (<4%) received inpatient rehabilitation. The incidence of TBI was 332/100,000 inhabitants and according to the Glasgow Coma Scale (GCS) brain injury was mild in 90.9%, severe in 5.2% and moderate in 3.9%. The main cause of injury was a fall (52.5%) followed by a traffic accident (26.3%). In-hospital mortality was 1%. Only 56% of TBI patients were neurological examined and 63% were examined in hospital within the first hour after the accident. An immediate x-ray of the skull with a doubtful evidential value was made in 82%. Of the participants 35.9% were still receiving medical treatment 1 year after the accident although the majority only suffered mild TBI. An overabundance of severe socioeconomic consequences, e.g. loss of job, accommodation, family, were also found following only mild TBI.

  13. Cognitive rehabilitation following traumatic brain injury. (United States)

    Freire, Fabio Rios; Coelho, Fernanda; Lacerda, Juliana Rhein; da Silva, Marcio Fernando; Gonçalves, Vanessa Tome; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Oliveira, Arthur Maynart Pereira; Paiva, Wellingson Silva; Kanda, Paulo Afonso Medeiros; Anghinah, Renato


    Annually, some 500,000 people are hospitalized with brain lesions acquired after traumatic brain injury (TBI) in Brazil. Between 75,000 and 100,000 individuals die within hours of the event and 70,000 to 90,000 evolve to irreversible loss of some neurological function. The principal causes of TBI include motor vehicle accidents (50%), falls (21%), assaults and robberies (12%) and accidents during leisure activities (10%). Within this context, cognitive rehabilitation, a clinical area encompassing interdisciplinary action aimed at recovery as well as compensation of cognitive functions altered as a result of cerebral injury, is extremely important for these individuals. Therefore, the aim of this study was to review the basic concepts related to TBI, including mechanisms of injury, severity levels of TBI, the most common findings in moderate and severe TBI survivors, and the most frequent cognitive impairments following TBI, and also to discuss the strategies used to handle patients post-TBI. The study results yielded relevant information on a structured cognitive rehabilitation service, representing an alternative for patients and families afflicted by TBI, enabling the generation of multiple research protocols.

  14. The importance of the detail forensic-neuropathological examination in the determination of the diffuse brain injuries. (United States)

    Davceva, N; Janevska, V; Ilievski, B; Jovanovic, R


    According to the contemporary classification, traumatic brain damage is divided on focal and diffuse brain injuries, and primary and secondary brain damage. The aim of this paper is to emphasize the necessity of the forensic-neuropathological examination in the determination of the diffuse brain injuries. In those injuries frequently neither the most sophisticated clinical-investigation techniques like CT and MRI, nor the routine post-mortem forensic pathological examination, give any results with discovering an intracranial mass lesion, despite the fact that patients had manifested a serious brain failure. In a series of 80 cases with closed head injuries where forensic-neuropathological examination has been undertaken (examination of a fixed brain tissue and immunohistochemistry using monoclonal antibodies against β-amyloid precursor protein), the occurrence of the diffuse brain injuries in the absence of any other massive intracranial lesion has been established in 14 (17,7%) of the cases. Hence, forensic-neuropathological examination has been the only way to establish the diagnosis of the brain injury that caused a serious brain failure and in most of them occurred as a concrete cause of death. This method has already been affirmed in the forensic medicine science and has been implemented in a Recommendation No 99 of the Council of Europe where medico-legal autopsy rules are given, thus, establishing it as an unavoidable part of the daily forensic medicine practice. diffuse axonal injury - diffuse vascular injury - closed head injuries - traumatic brain damage - diffuse brain damage.

  15. Connexin40 correlates with oxidative stress in brains of traumatic brain injury rats. (United States)

    Chen, Wei; Guo, Yijun; Yang, Wenjin; Zheng, Ping; Zeng, Jinsong; Tong, Wusong


    Oxidative stress is an important factor in the pathophysiologic changes after traumatic brain injury (TBI). Connexin43 (Cx43) was reported to contribute to cerebral damage. However, the impacts of Cx40 have not been investigated in detail. In the present study, we hypothesized that Cx40 was involved in oxidative stress-induced brain injury after TBI. The controlled cortical impact (CCI) model was introduced to Wistar rats as a TBI model. Neurological deficits, oxidative stress and Cx40 were evaluated in TBI rats and N-acetylcysteine (NAC)-treated TBI rats. Neurological severity score (NSS) was used to assess neurological deficits. Brain infarction was measured by histo-staining. Brain edema was evaluated by measuring the brain water content. Cortex samples were collected to measure the tissue levels of malonyldialdehyde (MDA), nitric oxide (NO) and glutathione (GSH) and NADPH oxidase activity. Cx40 expression was determined by Western-blot. TBI-induced brain injuries gradually increased from 6 h to 24 h post CCI, and the severity remained till 72 h. The level of oxidative stress was consistent with the extent of neurological deficits. Cx40 was upregulated after TBI in a linear correlated manner with increased oxidative stress. With NAC intervention, both neurological deficits and oxidative stress were significantly attenuated. Meanwhile, elevated Cx40 expression in cortex was also prevented by NAC treatment. These studies revealed the relationship between levels of Cx40 and oxidative stress after TBI. The cortex Cx40 expression was positively correlated with the cerebral oxidative stress, indicating the involvement of Cx40 in the progress of brain damage.

  16. Functional Recovery After Severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Hart, Tessa; Kozlowski, Allan; Whyte, John


    functional levels received more treatment and more treatment was associated with slower recovery, presumably because treatment was allocated according to need. Thus, effects of treatment on outcome could not be disentangled from effects of case mix factors. CONCLUSIONS: FIM gain during inpatient recovery......OBJECTIVE: To examine person, injury, and treatment characteristics associated with recovery trajectories of people with severe traumatic brain injury (TBI) during inpatient rehabilitation. DESIGN: Observational prospective longitudinal study. SETTING: Two specialized inpatient TBI rehabilitation...... recovery was best modeled with linear, cubic, and quadratic components: relatively steep recovery was followed by deceleration of improvement, which attenuated prior to discharge. Slower recovery was associated with older age, longer coma, and interruptions to rehabilitation. Patients admitted at lower...

  17. Sexual offenses and traumatic brain injury. (United States)

    Langevin, R


    A sample of 476 male sexual offenders, seen at a university psychiatric hospital for forensic assessment, was examined for the incidence of traumatic head injuries. A total of 49.3% had sustained head injuries that led to unconsciousness and of these 22.5% sustained significant neurological insults. A major causative factor was motor vehicle accidents, but lifestyle variables including alcohol and drug abuse and history of violence also contributed. The brain-injured group was convicted for a wide range of sexual offenses and was comparable to the non-injured group in this respect, but tended more often to offend against adults than against children and to show somewhat more exhibiting and polymorphous sexual behavior. In spite of the serious legal implications for these men and the additional distress to their families, psychologists, psychiatrists, and the professional literature have been relatively silent on the subject which calls for more attention to sexual behavior as part of assessments and treatment planning.

  18. Robust whole-brain segmentation: application to traumatic brain injury. (United States)

    Ledig, Christian; Heckemann, Rolf A; Hammers, Alexander; Lopez, Juan Carlos; Newcombe, Virginia F J; Makropoulos, Antonios; Lötjönen, Jyrki; Menon, David K; Rueckert, Daniel


    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to

  19. Nonsurgical interventions after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Nygren-de Boussard, Catharina; Holm, Lena W; Cancelliere, Carol


    OBJECTIVE: To synthesize the best available evidence regarding the impact of nonsurgical interventions on persistent symptoms after mild traumatic brain injury (MTBI). DATA SOURCES: MEDLINE and other databases were searched (2001-2012) with terms including "rehabilitation." Inclusion criteria were...... original, peer-reviewed research published in English and other languages. References were also identified from the bibliographies of eligible articles. STUDY SELECTION: Controlled trials and cohort and case-control studies were selected according to predefined criteria. Studies had to have a minimum of 30...

  20. Severe Brain Injury in Massachusetts: Assessing the Continuum of Care. (United States)

    Lorenz, Laura; Katz, Gabrielle


    Acquired brain injury (ABI) is a major public health problem in Massachusetts (Hackman et al, 2014) and includes traumatic brain injury (TBI), stroke, ABI-related infectious diseases, metabolic disorders affecting the central nervous system (brain and spinal cord), and brain tumor. Advances in emergency medical care and neurosurgery mean that more people are surviving severe traumatic brain injury (Trexler et al, 2014). Yet many patients with severe TBI in particular, are not receiving inpatient services after initial treatment (Hackman et al, 2014; CDC, 2014) or later that are known to be effective (Malec & Kean, 2015; Lewis & Horn, 2015; BI Commission, 2011; Kolakowsky-Hayner et al, 2000; Interviews). These services include post-acute rehabilitation, case management, and brain injury-specific community programming (CDC, 2014; BI Commission, 2011; Interviews). Governance and data for decision-making are also major gaps in the continuum of care for severe brain injury in MA (Interviews; NASHIA, 2005). The last two decades saw a surge in interest in the brain, with advances in neuroscience, diagnosis and measurement of brain injury, rehabilitation services, and brain theory (Boyle, 2001). Severe brain injury however is the new "hidden epidemic" in our society. For many, an injury to the brain is not a short-term event that can be "cured" but the beginning of a life-long disability (CDC, 2014; Langlois et al, 2006). Fortunately, even after a severe brain injury, when the right rehabilitation is provided at the right time, the "rest of life" journey can be a positive one for many (Marquez de la Plata, 2015; Langlois et al, 2006). Severe brain injury can lead to a "new normal" as patients regain skills, find new meaning and in life, and take on new family, volunteer, and work roles. Throughout this brief, the term "severe brain injury" refers to "severe acquired brain injury," or any injury to the brain that occurs after birth. This definition does not include

  1. A longitudinal study of the mechanical properties of injured brain tissue in a mouse model. (United States)

    Feng, Yuan; Gao, Yuan; Wang, Tao; Tao, Luyang; Qiu, Suhao; Zhao, Xuefeng


    Mechanical properties of brain tissue are crucial to understand the mechanism of traumatic brain injury (TBI). Over the past several decades, most of the studies focused on healthy brain tissues, while few of them are about the injured tissues. Therefore, limited knowledge is known about the mechanical properties of the injured brain tissues. In this study, we used an in vivo mouse model with a weight drop device to study injured brain tissues. Around the injury site, mechanical properties of the injured, neighboring, and the corresponding contralateral regions of interest (ROIs) were measured over five temporal points by indentation. Longitudinal and regional comparisons of the mechanical properties revealed that the ROI of the injured tissue had a higher elastic modulus than the contralateral counterpart one-hour post-injury. However, the elastic modulus decreased one-day post-injury and recovered to be close to the contralateral ROI in 7 days. The elastic modulus curves of the injured and the contralateral counterpart ROIs crossed at time points of 12h and 1 day post-injury, where two significant increases of glial fibrillary acidic protein (GFAP) positive cells were observed. Biological staining results indicated that both the astrocytic responses and the morphological structure could affect the mechanical properties of the injured tissue. The observed longitudinal changes of the mechanical properties at the tissue level and the morphological and biological changes at the cellular level provide insights into understanding the mechanism of TBI. Results are also meaningful for applying emerging in vivo diagnostic tools such as magnetic resonance elastography (MRE) in TBI detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Different tissue type categories of overuse injuries to cricket fast ...

    African Journals Online (AJOL)

    variation in severity and incidence of injury to different tissue types in cricket fast bowlers. Materials and methods. Cricket Australia conducts an annual ongoing injury survey recording injuries in contracted first-class players. Methods for this survey have been described previously.[14] The methods used for Cricket Australia.

  3. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. (United States)

    Hamed, Sherifa A


    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  4. Viscoelastic parameter identification of human brain tissue. (United States)

    Budday, S; Sommer, G; Holzapfel, G A; Steinmann, P; Kuhl, E


    Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model parameters are typically calibrated with a single loading mode and fail to predict the behavior under arbitrary loading conditions. Here we used a finite viscoelastic Ogden model with six material parameters-an elastic stiffness, two viscoelastic stiffnesses, a nonlinearity parameter, and two viscous time constants-to model the characteristic nonlinearity, conditioning, hysteresis and tension-compression asymmetry of the human brain. We calibrated the model under shear, shear relaxation, compression, compression relaxation, and tension for four different regions of the human brain, the cortex, basal ganglia, corona radiata, and corpus callosum. Strikingly, unconditioned gray matter with 0.36kPa and white matter with 0.35kPa were equally stiff, whereas conditioned gray matter with 0.52kPa was three times stiffer than white matter with 0.18kPa. While both unconditioned viscous time constants were larger in gray than in white matter, both conditioned constants were smaller. These rheological differences suggest a different porosity between both tissues and explain-at least in part-the ongoing controversy between reported stiffness differences in gray and white matter. Our unconditioned and conditioned parameter sets are readily available for finite element simulations with commercial software packages that feature Ogden type models at finite deformations. As such, our results have direct implications on improving the accuracy of human brain simulations in health and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ischemic preconditioning protects against ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Xiao-meng Ma


    Full Text Available In this study, we hypothesized that an increase in integrin αv ß 3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αv ß 3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αv ß 3 and vascular endothelial growth factor levels in the brain following ischemia.

  6. Impaired Pituitary Axes Following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Robert A. Scranton


    Full Text Available Pituitary dysfunction following traumatic brain injury (TBI is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed.

  7. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold


    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  8. Update in mild traumatic brain injury. (United States)

    Freire-Aragón, María Dolores; Rodríguez-Rodríguez, Ana; Egea-Guerrero, Juan José


    There has been concern for many years regarding the identification of patients with mild traumatic brain injury (TBI) at high risk of developing an intracranial lesion (IL) that would require neurosurgical intervention. The small percentage of patients with these characteristics and the exceptional mortality associated with mild TBI with IL have led to the high use of resources such as computerised tomography (CT) being reconsidered. The various protocols developed for the management of mild TBI are based on the identification of risk factors for IL, which ultimately allows more selective indication or discarding both the CT application and the hospital stay for neurological monitoring. Finally, progress in the study of brain injury biomarkers with prognostic utility in different clinical categories of TBI has recently been incorporated by several clinical practice guidelines, which has allowed, together with clinical assessment, a more accurate prognostic approach for these patients to be established. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  9. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis


    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  10. Neuropharmacology in pediatric brain injury: a review. (United States)

    Pangilinan, Percival H; Giacoletti-Argento, Angela; Shellhaas, Renee; Hurvitz, Edward A; Hornyak, Joseph Edward


    In this review, the current evidence is examined regarding neuropharmacologic treatment for children and adolescents (under the age of 18 years) who sustained a traumatic brain injury (TBI). Although the focus is on the pediatric TBI population, there is a paucity of empirical data related to the role of medication with children and adolescents after brain injury. Therefore, findings from the adult TBI literature are incorporated where appropriate so as to identify potential agents that warrant further examination in pediatric populations. This review addresses specific sequelae of TBI from the earliest stages of neurologic recovery to long-term comorbidities, including disorders of impaired consciousness, post-TBI agitation, cognitive decline, and post-TBI depression. The evidence regarding the role of medication in neuroprotection and neurorecovery in this population is also explored. Medication classes reviewed include excitatory amino acids, antagonists to the N-methyl-D-aspartate receptor, dopamine agonists, benzodiazepines, β-blockers, anticonvulsants, and antidepressants. It is hoped that this review will guide future research, and ideas as to how this may be accomplished within a pediatric population are suggested. © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury. (United States)

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D


    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  12. Blast induced mild traumatic brain injury/concussion: A physical analysis (United States)

    Kucherov, Yan; Hubler, Graham K.; DePalma, Ralph G.


    Currently, a consensus exists that low intensity non-impact blast wave exposure leads to mild traumatic brain injury (mTBI). Considerable interest in this "invisible injury" has developed in the past few years but a disconnect remains between the biomedical outcomes and possible physical mechanisms causing mTBI. Here, we show that a shock wave travelling through the brain excites a phonon continuum that decays into specific acoustic waves with intensity exceeding brain tissue strength. Damage may occur within the period of the phonon wave, measured in tens to hundreds of nanometers, which makes the damage difficult to detect using conventional modalities.

  13. Significance of prevertebral soft tissue measurement in cervical spine injuries

    Energy Technology Data Exchange (ETDEWEB)

    Dai Liyang E-mail:


    Objective: The objective of this study was to evaluate the diagnostic value of prevertebral soft tissue swelling in cervical spine injuries. Materials and methods: A group of 107 consecutive patients with suspected injuries of the cervical vertebrae were reviewed retrospectively to identify the presence of prevertebral soft tissue swelling and to investigate the association of prevertebral soft tissue swelling with the types and degrees of cervical spine injuries. Results: Prevertebral soft tissue swelling occurred in 47 (43.9%) patients. Of the 47 patients, 38 were found with bony injury and nine were without. The statistic difference was significant (P<0.05). No correlation was demonstrated between soft tissue swelling and either the injured level of the cervical vertebrae or the degree of the spinal cord injury (P>0.05). Anterior element injuries in the cervical vertebrae had widening of the prevertebral soft tissue more than posterior element injuries (P<0.05). Conclusion: The diagnostic value of prevertebral soft tissue swelling for cervical spine injuries is significant, but the absence of this sign does not mean that further image evaluation can be spared.

  14. A review of glutamate's role in traumatic brain injury mechanisms (United States)

    Good, Cameron H.


    Glutamate is the primary excitatory neurotransmitter used by the central nervous system (CNS) for synaptic communication, and its extracellular concentration is tightly regulated by glutamate transporters located on nearby astrocytes. Both animal models and human clinical studies have demonstrated elevated glutamate levels immediately following a traumatic brain event, with the duration and severity of the rise corresponding to prognosis. This rise in extracellular glutamate likely results from a combination of excessive neurotransmitter release from damaged neurons and down regulation of uptake mechanisms in local astrocytes. The immediate results of a traumatic event can lead to necrotic tissue in severely injured regions, while prolonged increases in excitatory transmission can cause secondary excitotoxic injury through activation of delayed apoptotic pathways. Initial TBI animal studies utilized a variety of broad glutamate receptor antagonists to successfully combat secondary injury mechanisms, but unfortunately this same strategy has proven inconclusive in subsequent human trials due to deleterious side effects and heterogeneity of injuries. More recent treatment strategies have utilized specific glutamate receptor subunit antagonists in an effort to minimize side effects and have shown promising results. Future challenges will be detecting the concentration and kinetics of the glutamate rise following injury, determining which patient populations could benefit from antagonist treatment based on their extracellular glutamate concentrations and when drugs should be administered to maximize efficacy.

  15. Chronic Traumatic Brain Injury in Amateur Boxers

    Directory of Open Access Journals (Sweden)

    M. Rahmati


    Full Text Available Introduction & objective: Despite of young and adolescence intent to the boxing sport, because of dominant aggression and direct blows contact to head, face and central nervous system, it is continuously criticize by different groups. The groups of sporting and physician conventions are distinguished boxing with physical and neuropsychological disorders and some groups believe that side effects of this sport are not more than other sports. For this base the aim of this study was to determine the chronic traumatic brain injury in a group amateur boxers.Materials & Methods: In a case-control study, three groups of sport men were considered, each group contained 20 randomly selected cases. The first group were amateur boxers with 4 years minimal activity(directly has been presented to the head blows, second group were amateur soccer players with 4 years minimal activity(has been presented to the not very severe head blows, third group were non athlete subjects .The groups were matched in weight, height, age and education .To understand brain disorder interview by medicine method has been used, then Wiskancin, Bonardele, Bender geshtalt, Kim karad visual memory, Benton and wechler memory (Alef type tests has been performed and EEG has got in the same hour and condition.Results: The homogeneity of between group variances was gained by the statistical method. Also between structural–visual abilities neuropsychological aspect in groups, significant difference has been gained (p= 0.000. In Kim karad visual memory test at the mild and long term visual memory deficit, significant differences between three groups was observed (P= 0.000, P=0.009 that least score has been belonged to the boxers. Also in boxers 6 abnormal EEGs is observed.Conclusion: It can be said that of four years amateur boxing can affect on boxers visual and memory perception and their spatial orientation. Additionally our study have showed that amateur boxing has a significant

  16. Impact of additional extracranial injuries on outcome after mild traumatic brain injury.

    NARCIS (Netherlands)

    Stulemeijer, M.; Werf, S.P. van der; Jacobs, B.; Biert, J.; Vugt, A.B. van; Brauer, J.; Vos, P.E.


    Many patients with mild traumatic brain injury (MTBI) concurrently sustain extracranial injuries; however, little is known about the impact of these additional injuries on outcome. We assessed the impact of additional injuries on the severity of postconcussional symptoms (PCS) and functional outcome

  17. The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury (United States)


    brain slices were treated after injury with either a nootropic agent (aniracetam, cyclothiazide, IDRA 21, or 1-BCP) or the antiepileptic drug...pharmacological approach. 15. SUBJECT TERMS traumatic brain injury, cell necrosis, neuroprotection, nootropics , epilepsy, long-term potentiation...render their use problematic in an effective brain tourniquet system. We chose to focus our investigations on the nootropic (cognition enhancing) drugs

  18. Vestibular rehabilitation following mild traumatic brain injury. (United States)

    Gurley, James M; Hujsak, Bryan D; Kelly, Jennifer L


    Vertigo, dizziness, and imbalance are a symptom complex that is commonly found following concussion. Early metabolic changes following concussion may lead to worsening of the injury and symptoms in individuals not properly managed from the outset. When symptoms do not recover spontaneously, skilled vestibular rehabilitation can be an effective modality in an attempt to normalize the individual's vestibular responses. The purpose of this review is to appraise the current and accepted methods available to the skilled clinician in quantifying and treating vestibular dysfunction following concussion. Incidence and prognostic indicators will be reviewed along with common barriers to recovery. Vestibular Rehabilitation following concussion utilizes similar tools and techniques employed when treating those solely with peripheral pathology. The clinician must not only have a solid understanding of when and why certain exercises are required, but also be willing to accept that less exercise may be indicated in this population. As injury to the system following mild traumatic brain injury can include both peripheral and central structures, the duration of therapy and the time to recovery may be prolonged. Co-morbidities including cognitive and behavioral issues, visual-perceptual dysfunction, metabolic dysfunction, and autonomic dysfunction may hamper the effectiveness of the traditional Vestibular Rehabilitation approach. As successful treatment does not occur in a vacuum, working closely with other disciplines well versed in treating these co-morbid issues will help the individual to obtain optimal recovery. Vestibular Rehabilitation is an effective modality for managing dizziness, vertigo, and imbalance following concussion. Careful consideration of the acuity of the injury, along with effective management of co-morbid conditions will optimize the result.

  19. The Pediatric Test of Brain Injury: Development and Interpretation (United States)

    Hotz, Gillian A.; Helm-Estabrooks, Nancy; Nelson, Nickola Wolf; Plante, Elena


    The Pediatric Test of Brain Injury (PTBI) is designed to assess neurocognitive, language, and literacy abilities that are relevant to the school curriculum of children and adolescents recovering from brain injury. The PTBI is intended to help clinicians establish baseline levels of cognitive-linguistic abilities in the acute stages of recovery,…

  20. Misconceptions about traumatic brain injuries among South African ...

    African Journals Online (AJOL)

    Worldwide, the most frequent cause of death and disability appears to be acquired brain injury.[1]. Traumatic brain injury (TBI) is a devastating condition that affects more than 10 million people a year worldwide.[2] In the United States (US), Faul et al.[3] estimate that TBIs affect 1.7 million people annually. According to the.

  1. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James


    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  2. Role of microvascular disruption in brain damage from traumatic brain injury (United States)

    Logsdon, Aric F.; Lucke-Wold, Brandon P.; Turner, Ryan C.; Huber, Jason D.; Rosen, Charles L.; Simpkins, James W.


    Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis. PMID:26140712

  3. Rehabilitation of patients with traumatic brain injuries in South Sudan

    African Journals Online (AJOL)

    injuries. Convincing evidence has emerged that TBI patients with moderate or severe injuries will have their hospital stay reduced by approximately 30% and the re-acquisition of personal independence increased by the provision of a formal specialised inpatient rehabilitation programme. (3). •. Severe traumatic brain injury ...

  4. Aetiology and treatment outcome of severe traumatic brain injuries ...

    African Journals Online (AJOL)

    Background: Severe traumatic brain injury (TBI) is a major challenge to the patient, the relatives, the care givers, and the society in general. The primary and secondary injuries, and the high metabolism are formidable stages of the injury, each capable of taking the life of the patient. The objectives were to determine the ...

  5. Modeling Cerebral Vascular Injury (United States)


    Chichester (UK): John Wiley and Sons, Ltd; 2000. Kleiven S. Predictors for traumatic brain injuries evaluated through accident reconstructions...vessels to inform the material response of the surrounding brain tissue. 15. SUBJECT TERMS traumatic brain injury , vasculature, injury biomechanics... Traumatic brain injury (TBI) is a serious concern for the military and the general civilian population. Blast-related TBI has been prevalent in

  6. Dimethyl fumarate treatment after traumatic brain injury prevents depletion of antioxidative brain glutathione and confers neuroprotection. (United States)

    Krämer, Tobias; Grob, Theresa; Menzel, Lutz; Hirnet, Tobias; Griemert, Eva; Radyushkin, Konstantin; Thal, Serge C; Methner, Axel; Schaefer, Michael K E


    Dimethyl fumarate (DMF) is an immunomodulatory compound to treat multiple sclerosis and psoriasis with neuroprotective potential. Its mechanism of action involves activation of the antioxidant pathway regulator Nuclear factor erythroid 2-related factor 2 thereby increasing synthesis of the cellular antioxidant glutathione (GSH). The objective of this study was to investigate whether post-traumatic DMF treatment is beneficial after experimental traumatic brain injury (TBI). Adult C57Bl/6 mice were subjected to controlled cortical impact followed by oral administration of DMF (80 mg/kg body weight) or vehicle at 3, 24, 48, and 72 h after the inflicted TBI. At 4 days after lesion (dal), DMF-treated mice displayed less neurological deficits than vehicle-treated mice and reduced histopathological brain damage. At the same time, the TBI-evoked depletion of brain GSH was prevented by DMF treatment. However, nuclear factor erythroid 2-related factor 2 target gene mRNA expression involved in antioxidant and detoxifying pathways was increased in both treatment groups at 4 dal. Blood brain barrier leakage, as assessed by immunoglobulin G extravasation, inflammatory marker mRNA expression, and CD45 + leukocyte infiltration into the perilesional brain tissue was induced by TBI but not significantly altered by DMF treatment. Collectively, our data demonstrate that post-traumatic DMF treatment improves neurological outcome and reduces brain tissue loss in a clinically relevant model of TBI. Our findings suggest that DMF treatment confers neuroprotection after TBI via preservation of brain GSH levels rather than by modulating neuroinflammation. © 2017 International Society for Neurochemistry.

  7. Investigations of primary blast-induced traumatic brain injury (United States)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.


    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  8. Iatrogenic traumatic brain injury during tooth extraction. (United States)

    Troxel, Mark


    An 8 yr old spayed female Yorkshire terrier was referred for evaluation of progressive neurological signs after a routine dental prophylaxis with tooth extractions. The patient was circling to the left and blind in the right eye with right hemiparesis. Neurolocalization was to the left forebrain. MRI revealed a linear tract extending from the caudal oropharynx, through the left retrobulbar space and frontal lobe, into the left parietal lobe. A small skull fracture was identified in the frontal bone through which the linear tract passed. Those findings were consistent with iatrogenic trauma from slippage of a dental elevator during extraction of tooth 210. The dog was treated empirically with clindamycin. The patient regained most of its normal neurological function within the first 4 mo after the initial injury. Although still not normal, the dog has a good quality of life. Traumatic brain injury is a rarely reported complication of extraction. Care must be taken while performing dental cleaning and tooth extraction, especially of the maxillary premolar and molar teeth to avoid iatrogenic damage to surrounding structures.

  9. Diabetes Insipidus after Traumatic Brain Injury (United States)

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki


    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  10. Targeting Dopamine in Acute Traumatic Brain Injury (United States)

    Bales, James W.; Kline, Anthony E.; Wagner, Amy K.; Dixon, C. Edward


    In addition to the initial mechanical damage, traumatic brain injury (TBI) induces a series of secondary insults, such as, but not limited to, excitotoxicity, metabolic disruption, and oxidative stress. Neuroprotective strategies after TBI have traditionally focused on cellular preservation as the measurable endpoint although multiple lines of evidence indicate that even with significant neuronal sparing deficits remain at both the cellular and behavioral level. As such, the development of therapies that can effectively confer both neuronal sparing and post-injury functional benefit is critical to providing the best treatment options for clinical TBI. Targeting dopaminergic signaling pathways is a novel approach in TBI that provides benefits to both neuronal survival and functional outcomes. Dopamine, like glutamate, can cause oxidative stress and significant cellular dysfunction when either depleted or over-expressed, and also plays an important role in central nervous system inflammation. The purpose of this review is to discuss dopamine in acute TBI and the role that dopaminergic therapies have as neuroprotective strategies. PMID:22308176

  11. How to use PRICE treatment for soft tissue injuries. (United States)

    Norton, Cormac


    Rationale and key points This article assists nurses to use the acronym PRICE (protection, rest, ice, compression and elevation) to guide the treatment of patients with uncomplicated soft tissue injuries to their upper or lower limbs. » Treatment of soft tissue injuries to limbs is important to reduce complications following injury, alleviate pain and ensure normal limb function is restored promptly. » Nurses should have an understanding of the rationale and evidence base supporting PRICE treatment of soft tissue injuries. » Providing accurate information to patients and carers about the management of soft tissue injuries and anticipated recovery time is an important aspect of treatment. » Further research is required to develop best practice in the treatment of soft tissue injuries. Reflective activity 'How to' articles can help you update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How this article might change your practice when managing patients with soft tissue injuries to upper or lower limbs. 2. Positive elements of your current practice and those that could be enhanced. Subscribers can upload their reflective accounts at:

  12. Visual agnosia and focal brain injury. (United States)

    Martinaud, O

    Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Clinical neurorestorative progress in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Huang H


    Full Text Available Huiling Huang,1 Lin Chen,2,3 Hongyun Huang4–61Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin Neurosurgical Institute, Tianjin, People's Republic of China; 2Medical Center, Tsinghua University, Beijing, People's Republic of China; 3Tsinghua University Yuquan Hospital, Beijing, People's Republic of China; 4General Hospital of Chinese people's Armed Police Forces, 5Beijing Rehabilitation Hospital of Capital Medical University, Beijing, People's Republic of China; 6Beijing Hongtianji Neuroscience Academy, Beijing, People's Republic of ChinaAbstract: Traumatic brain injury (TBI is a leading cause of death and disability from trauma to the central nervous system. Besides the surgical interventions and symptomatic management, the conventional therapies for TBI and its sequelae are still limited. Recently emerging evidence suggests that some neurorestorative treatments appear to have a potential therapeutic role for TBI and improving the patient's quality of life. The current clinical neurorestorative strategies available in TBI include pharmacological treatments (recombinant human interleukin-1 receptor antagonist, amantadine, lithium, and valproate, the neuromodulation treatments (repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and low-level laser therapy, cell transplantation (bone marrow stromal cells and umbilical cord stromal cells, and combined neurorehabilitation. In this review, we summarize the recent clinical neurorestorative progress in the management of neurodegeneration as well as cognitive and motor deficits after TBI; indeed further clinical trials are required to provide more robust evidence.Keywords: brain trauma, neurorestorative treatment, cell transplantation, clinical study

  14. Neuroprosthetics in amputee and brain injury rehabilitation. (United States)

    Eapen, Blessen C; Murphy, Douglas P; Cifu, David X


    The goals of rehabilitation medicine programs are to promote health, restore functional impairments and improve quality of life. The field of neuroprosthetics has evolved over the last decade given an improved understanding of neuroscience and the incorporation of advanced biotechnology and neuroengineering in the rehabilitation setting to develop adaptable applications to help facilitate recovery for individuals with amputations and brain injury. These applications may include a simple cognitive prosthetics aid for impaired memory in brain-injured individuals to myoelectric prosthetics arms with artificial proprioceptive feedback for those with upper extremity amputations. The integration of neuroprosthetics into the existing framework of current rehabilitation approaches not only improves quality-of-care and outcomes but help broadens current rehabilitation treatment paradigms. Although, we are in the infancy of the understanding the true benefit of neuroprosthetics and its clinical applications in the rehabilitation setting there is tremendous amount of promise for future research and development of tools to help facilitate recovery and improve quality of life in individuals with disabilities. Published by Elsevier Inc.

  15. Cognitive development after traumatic brain injury in young children


    GERRARD-MORRIS, AIMEE; Taylor, H. Gerry; Yeates, Keith Owen; Walz, Nicolay Chertkoff; Stancin, Terry; Minich, Nori; Wade, Shari L.


    The primary aims of this study were to examine post-injury cognitive development in young children with traumatic brain injury (TBI) and to investigate the role of the proximal family environment in predicting cognitive outcomes. Age at injury was 3–6 years, and TBI was classified as severe (n = 23), moderate (n = 21), and complicated mild (n = 43). A comparison group of children who sustained orthopedic injuries (OI, n = 117) was also recruited. Child cognitive assessments were administered ...

  16. Complement-mediated inflammation and injury in brain dead organ donors

    NARCIS (Netherlands)

    Poppelaars, Felix; Seelen, Marc A

    The importance of the complement system in renal ischemia-reperfusion injury and acute rejection is widely recognized, however its contribution to the pathogenesis of tissue damage in the donor remains underexposed. Brain-dead (BD) organ donors are still the primary source of organs for

  17. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury. (United States)

    Hay, Jennifer; Johnson, Victoria E; Smith, Douglas H; Stewart, William


    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.

  18. Sports-related brain injuries: connecting pathology to diagnosis. (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald


    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  19. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    Directory of Open Access Journals (Sweden)

    Michael A. Kiraly


    Full Text Available Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI and mild traumatic brain injury (MTBI. Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD and Parkinson's disease (PD. Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  20. [Changes of MDA, SOD, TNF-alpha, and IL-1beta in rat brain tissue after concussion]. (United States)

    Gao, Feng; Zhao, Li; Gu, Zhen-Yong; Cong, Bin


    To observe the changes of malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) in rat brain tissue and to explore the mechanism of secondary cerebral injury after brain concussion. The brain concussion model was established with the pathological changes of rat brain tissue by Weil stain. The expressions of MDA and SOD in brain tissue were examined by photochemical method. The expressions of TNF-alpha and IL-1beta in cerebral cortex and hippocampus were examined by immunochemistry. Nerve myelin sheath showed disorder, disruption, gryposis and swelling by Weil stain. Above changes were more severe at 12h. The quantity of MDA in rat brain tissue after concussion was significantly higher than that in the control group. The activity of SOD was significantly lower than that in the control group. The expressions of TNF-alpha and IL-1beta increased more significantly in cerebral cortex and hippocampus in rat brain tissue after concussion than that in the control group. Oxidative stress and inflammatory injury in the rat brain tissue, which may play an important role in secondary cerebral injury after concussion.

  1. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    Directory of Open Access Journals (Sweden)

    Rita eDe Gasperi


    Full Text Available Blast-induced traumatic brain injury (TBI has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI. The β-amyloid (Aβ peptide associated with the development of Alzheimer’s disease (AD is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain Aβ following experimental blast injury using enzyme-linked immunosorbent assays for Aβ 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain Aβ levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the β-secretase, BACE-1, and the γ-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering Aβ production may not be effective for treating acute blast injury to the brain.

  2. DARPA challenge: developing new technologies for brain and spinal injuries (United States)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey


    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  3. Epidemology of soft tissue injuries in road traffic accidents | Emedike ...

    African Journals Online (AJOL)

    A two year study of soft tissue injuries from road traffic accidents was undertaken at the Ebonyi State University Teaching Hospital. Males out-numbered females by a ratio of 2.5 to 1, the commonest types of injuries encountered were lacerations, contusions and abrasions, and the head and neck, the lower and upper ...

  4. Effect of taurine on chronic and acute liver injury: Focus on blood and brain ammonia

    Directory of Open Access Journals (Sweden)

    Reza Heidari


    Full Text Available Hyperammonemia is associated with chronic and acute liver injury. There is no promising therapeutic agent against ammonia-induced complications. Hence, finding therapeutic molecules with safe profile of administration has clinical value. The present study was conducted to evaluate the role of taurine (TA administration on plasma and brain ammonia and its consequent events in different models of chronic and acute liver injury and hyperammonemia. Bile duct ligated (BDL rats were used as a model of chronic liver injury. Thioacetamide and acetaminophen-induced acute liver failure were used as acute liver injury models. A high level of ammonia was detected in blood and brain of experimental groups. An increase in brain ammonia level coincided with a decreased total locomotor activity of animals and significant changes in the biochemistry of blood and also liver tissue. TA administration (500 and 1000 mg/kg, i.p, effectively alleviated liver injury and its consequent events including rise in plasma and brain ammonia and brain edema. The data suggested that TA is not only a useful and safe agent to preserve liver function, but also prevented hyperammonemia as a deleterious consequence of acute and chronic liver injury.

  5. Diffusion imaging of mild traumatic brain injury in the impact accelerated rodent model: A pilot study. (United States)

    Kikinis, Zora; Muehlmann, Marc; Pasternak, Ofer; Peled, Sharon; Kulkarni, Praveen; Ferris, Craig; Bouix, Sylvain; Rathi, Yogesh; Koerte, Inga K; Pieper, Steve; Yarmarkovich, Alexander; Porter, Caryn L; Kristal, Bruce S; Shenton, Martha E


    There is a need to understand pathologic processes of the brain following mild traumatic brain injury (mTBI). Previous studies report axonal injury and oedema in the first week after injury in a rodent model. This study aims to investigate the processes occurring 1 week after injury at the time of regeneration and degeneration using diffusion tensor imaging (DTI) in the impact acceleration rat mTBI model. Eighteen rats were subjected to impact acceleration injury, and three rats served as sham controls. Seven days post injury, DTI was acquired from fixed rat brains using a 7T scanner. Group comparison of Fractional Anisotropy (FA) values between traumatized and sham animals was performed using Tract-Based Spatial Statistics (TBSS), a method that we adapted for rats. TBSS revealed white matter regions of the brain with increased FA values in the traumatized versus sham rats, localized mainly to the contrecoup region. Regions of increased FA included the pyramidal tract, the cerebral peduncle, the superior cerebellar peduncle and to a lesser extent the fibre tracts of the corpus callosum, the anterior commissure, the fimbria of the hippocampus, the fornix, the medial forebrain bundle and the optic chiasm. Seven days post injury, during the period of tissue reparation in the impact acceleration rat model of mTBI, microstructural changes to white matter can be detected using DTI.

  6. The Acute Inflammatory Response in Trauma/Hemorrhage and Traumatic Brain Injury : Current State and Emerging Prospects

    NARCIS (Netherlands)

    Namas, R.; Ghuma, A.; Hermus, L.; Zamora, R.; Okonkwo, D. O.; Billiar, T. R.; Vodovotz, Y.


    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury

  7. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study. (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R


    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Return to school after brain injury. (United States)

    Hawley, C A; Ward, A B; Magnay, A R; Mychalkiw, W


    To examine return to school and classroom performance following traumatic brain injury (TBI). This cross-sectional study set in the community comprised a group of 67 school-age children with TBI (35 mild, 13 moderate, 19 severe) and 14 uninjured matched controls. Parents and children were interviewed and children assessed at a mean of 2 years post injury. Teachers reported on academic performance and educational needs. The main measures used were classroom performance, the Children's Memory Scale (CMS), the Wechsler Intelligence Scale for Children-third edition UK (WISC-III) and the Weschler Objective Reading Dimensions (WORD). One third of teachers were unaware of the TBI. On return to school, special arrangements were made for 18 children (27%). Special educational needs were identified for 16 (24%), but only six children (9%) received specialist help. Two thirds of children with TBI had difficulties with school work, half had attention/concentration problems and 26 (39%) had memory problems. Compared to other pupils in the class, one third of children with TBI were performing below average. On the CMS, one third of the severe group were impaired/borderline for immediate and delayed recall of verbal material, and over one quarter were impaired/borderline for general memory. Children in the severe group had a mean full-scale IQ significantly lower than controls. Half the TBI group had a reading age > or =1 year below their chronological age, one third were reading > or =2 years below their chronological age. Schools rely on parents to inform them about a TBI, and rarely receive information on possible long-term sequelae. At hospital discharge, health professionals should provide schools with information about TBI and possible long-term impairments, so that children returning to school receive appropriate support.

  9. Early rehabilitation: benefits in patients with severe acquired brain injury. (United States)

    Formisano, Rita; Azicnuda, Eva; Sefid, Maryam Khan; Zampolini, Mauro; Scarponi, Federico; Avesani, Renato


    Establish the best time to start rehabilitation by means of scientific evidence. Observational study in patients with a diagnosis of Severe Brain Injury who received intensive inpatient rehabilitation after acute care. 1470 subjects enrolled: 651 with Traumatic Brain Injury (TBI) and 819 with Non-TBI. Male gender was prevalent in the population study, but sex distribution was not different among groups, with a prevalence of male gender in both populations. This project involved 29 rehabilitation facilities for Severe ABI. The registry was an electronic database, remained active only during the period of data collection. The patients were divided into three different categories according to the time interval from brain injury to inpatient rehabilitation admission and demographic and clinical data were collected. Etiology, time interval from injury to inpatient rehabilitation, disability severity, the presence of tracheostomy at admission to the rehabilitation facility, rehabilitation length of stay and transfer back to acute care wards because of medical, surgical or neurosurgical complications. The interval from brain injury to rehabilitation facilities admission increases along with age, brain injury severity according to DRS scores, the presence of a tracheal tube and the percentage of transfers back to acute care wards from rehabilitation facilities, because of medical, surgical or neurosurgical complications. The better recovery and more positive outcomes, reported as resulting from early rehabilitation, may be due more to less severity of brain injury and fewer complications in the acute and post-acute phase than to when the rehabilitation starts.

  10. Robotic multimodality stereotactic brain tissue identification: work in progress (United States)

    Andrews, R.; Mah, R.; Galvagni, A.; Guerrero, M.; Papasin, R.; Wallace, M.; Winters, J.


    Real-time identification of tissue would improve procedures such as stereotactic brain biopsy (SBX), functional and implantation neurosurgery, and brain tumor excision. To standard SBX equipment has been added: (1) computer-controlled stepper motors to drive the biopsy needle/probe precisely; (2) multiple microprobes to track tissue density, detect blood vessels and changes in blood flow, and distinguish the various tissues being penetrated; (3) neural net learning programs to allow real-time comparisons of current data with a normative data bank; (4) three-dimensional graphic displays to follow the probe as it traverses brain tissue. The probe can differentiate substances such as pig brain, differing consistencies of the 'brain-like' foodstuff tofu, and gels made to simulate brain, as well as detect blood vessels imbedded in these substances. Multimodality probes should improve the safety, efficacy, and diagnostic accuracy of SBX and other neurosurgical procedures.

  11. Persuasive discourse impairments in traumatic brain injury. (United States)

    Ghayoumi, Zahra; Yadegari, Fariba; Mahmoodi-Bakhtiari, Behrooz; Fakharian, Esmaeil; Rahgozar, Mehdi; Rasouli, Maryam


    Considering the cognitive and linguistic complexity of discourse production, it is expected that individuals with traumatic brain injury (TBI) should face difficulties in this task. Therefore, clinical examination of discourse has become a useful tool for studying and assessment of communication skills of people suffering from TBI. Among different genres of discourse, persuasive discourse is considered as a more cognitively demanding task. However, little is known about persuasive discourse in individuals suffering from TBI. The purpose of this study was to evaluate the performance of adults with TBI on a task of spoken persuasive discourse to determine the impaired linguistic measures. Thirteen TBI nonaphasic Persian speaking individuals, ranged between 19 to 40 years (Mean = 25.64 years; SD = 6.10) and 59 healthy adults matched by age, were asked to perform the persuasive discourse task. The task included asking the participants to express their opinion on a topic, and after the analysis of the produced discourse, the two groups were compared on the basis of their language productivity, sentential complexity, maze ratio and cohesion ratio. The TBI group produced discourses with less productivity, sentential complexity, cohesion ratio and more maze ratio compared the control group. As it is important to consider acquired communication disorders particularly discourse impairment of brain injured patients along with their other clinical impairments and regarding the fact that persuasive discourse is crucial in academic and social situations, the persuasive discourse task presented in this study could be a useful tool for speech therapists, intending to evaluate communication disorders in patients with TBI.

  12. Metallic gold reduces TNFalpha expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Ostergaard; Larsen, Agnete; Pedersen, Dan Sonne


    -45 microm in size or the vehicle (placebo) were implanted in the cortical tissue followed by a cortical freeze-lesioning. At 1-2 weeks post-injury, brains were analyzed by using immunohistochemistry and markers of inflammation, oxidative stress and apoptosis. This study shows that gold treatment......Brain injury represents a major health problem and may result in chronic inflammation and neurodegeneration. Due to antiinflammatory effects of gold, we have investigated the cerebral effects of metallic gold particles following a focal brain injury (freeze-lesion) in mice. Gold particles 20...

  13. Music therapy for acquired brain injury. (United States)

    Bradt, Joke; Magee, Wendy L; Dileo, Cheryl; Wheeler, Barbara L; McGilloway, Emer


    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, sensory processing and emotional disturbances. This may severely reduce a survivor's quality of life. Music therapy has been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions and sensory perceptions. A systematic review is needed to gauge the efficacy of music therapy as a rehabilitation intervention for people with ABI. To examine the effects of music therapy with standard care versus standard care alone or standard care combined with other therapies on gait, upper extremity function, communication, mood and emotions, social skills, pain, behavioral outcomes, activities of daily living and adverse events. We searched the Cochrane Stroke Group Trials Register (February 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 2, 2009), MEDLINE (July 2009), EMBASE (August 2009), CINAHL (March 2010), PsycINFO (July 2009), LILACS (August 2009), AMED (August 2009) and Science Citation Index (August 2009). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted experts and music therapy associations. There was no language restriction. Randomized and quasi-randomized controlled trials that compared music therapy interventions and standard care with standard care alone or combined with other therapies for people older than 16 years of age who had acquired brain damage of a non-degenerative nature and were participating in treatment programs offered in hospital, outpatient or community settings. Two review authors independently assessed methodological quality and extracted data. We present results using mean differences (using post-test scores) as all outcomes were measured with the same scale. We included seven studies (184 participants). The results suggest that rhythmic

  14. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  15. Prevalence and Predictors of Personality Change After Severe Brain Injury

    DEFF Research Database (Denmark)

    Norup, Anne; Mortensen, Erik Lykke


    Objectives To investigate the prevalence of personality change after severe brain injury; to identify predictors of personality change; and to investigate whether personality change is associated with distress in family members. Design A longitudinal study of personality change. Setting Rehabilit...

  16. Traumatic Brain Injury: Effects on the Endocrine System (United States)

    ... goes through the skull and into the brain. Causes include • Falls • Motor vehicle accidents • Violence, such as gunshot wounds, child abuse, or beatings • Injuries from sports or during combat ( ...

  17. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O


    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  18. Tissue Engineered Strategies for Skeletal Muscle Injury

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo


    Full Text Available Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression, and elevation, nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.

  19. Burn Injury: A Challenge for Tissue Engineers

    Directory of Open Access Journals (Sweden)

    Yerneni LK


    Full Text Available Ever since man invented fire he has been more frequently burning himself by this creation than by the naturally occurring bushfires. It is estimated that over 1.152 million people in India suffer from burn injuries requiring treatment every year and majority of them are women aged between 16-40 years and most of them occur in the kitchen. The treatment for burns basically involves autologous skin grafting, which originated in India more than two thousand years ago (Sushruta Samhita, is still the gold standard for the wound resurfacing, although, autografting is difficult where graftable donor sites are limited. Although, Cadaver skin, porcine or bovine xenografts are used alternatively over the past thirty years, modern approaches like the Bioengineering of skin substitutes emerged during the past 20 years as advanced wound management technologies with no social impediment. They can be broadly categorized as Acellular and Cellular biotechnological products. The acellular products like Alloderm (LifeCell Corporation, Integra (Integra Life Sciences act like template and depend on natural regeneration, while the cellular ones are either ‘Off-the-Shelf’ products like Apligraf (Organogenesis Inc and Orcel (Ortec International have allogenic elements and ‘home grown’ autologous cell products like Cultured Epithelial Autograft (CEA and epidermal-dermal composite skin use synthetic or natural non-human matrices. The CEA is based on the ex-vivo epidermal stem cell-expansion and our laboratory has been engaged in CEA technique development with innovative cost-effective approach and yielded promising preliminary clinical success. The basic methodological approach in CEA technique which is still clinically adopted by several developed countries involves the use of growth arrested mouse dermal fibroblasts as growth supportive matrix and is thus considered a drawback as a whole. Additionally, there is no superior enough method available to augment the

  20. Visual problems associated with traumatic brain injury. (United States)

    Armstrong, Richard A


    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  1. Epidemiology of traumatic brain injury in Austria. (United States)

    Mauritz, Walter; Brazinova, Alexandra; Majdan, Marek; Leitgeb, Johannes


    Traumatic brain injury (TBI) is an important cause of preventable deaths. The goal of this study was to provide data on epidemiology of TBI in Austria. Data on all hospital discharges, outpatients, and extra- as well as in-hospital deaths due to TBI were collected from various sources for the years 2009-2011. Population data (number of male/female people per age-group, population of Austrian cities, towns, and villages) for 2009-2011 were collected from the national statistical office. Incidence, case fatality rate(s) (CFR), and mortality rate(s) (MR) were calculated for the whole population and for age groups. Incidence (303/100,000/year), CFR (3.6 %), and MR (11/100,000/year) of TBI in Austria are comparable with those from other European countries. We found a high rate of geriatric TBI. The ratio between male and female cases was 1.4:1 for all cases, and was 2.2:1 for fatal cases. The most common mechanism was falls; traffic accidents accounted for only 7 % of the cases. Males died more frequently from traffic accidents and suicides, and females died more frequently from falls. CFRs and MRs increased with increasing age. CFRs were higher in patients from less populated areas, and MRs were lower in cases who lived closer to hospitals that admitted TBI. The high rate of geriatric TBI warrants better prevention of falls in this age group.

  2. [Prolonged symptoms following mild traumatic brain injury]. (United States)

    Rasmussen, Mikkel Mylius; Clemmensen, Dorte; Jensen, Steffen Skov


    Patients with mild traumatic brain injury (MTBI) do not undergo consistent follow-up in Denmark and the risk factors for long-term symptoms are not fully known. The purpose of this study was to look into symptom frequency, sick-leave frequency and to try to identify risk factors for long-term symptoms following MTBI. Patients were recruited from the emergency room at Viborg Hospital. Initial data were registered and telephone interviews were conducted one month and one year after trauma. 60% were asymptomatic within the first month; an additional 11% became asymptomatic within the next year, leaving 29% with residual symptoms one year after trauma. 70% reported a sick leave period one month and 2% > one year. The average trauma-to-emergency room contact reached 158 min (median 65 min). Gender, age, blood pressure (BP), pulse, Glasgow coma score (GCS), admission to hospital, unconsciousness, amnesia, alcohol intake, time or type of trauma were not associated with long term symptoms. Even patients with minor head trauma have a relatively high risk of long-term symptoms regardless of gender, age, BP, pulse, GCS, admission to hospital, unconsciousness, amnesia, alcohol intake, time or type of trauma. Nevertheless, the risk of long-term sick leave is relatively small.

  3. Cooking breakfast after a brain injury

    Directory of Open Access Journals (Sweden)

    Annick N. Tanguay


    Full Text Available Acquired brain injury (ABI often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients’ difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik & Bialystok, 2006 as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task and the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003. Patients also prepared actual meals, and were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on relative to controls. Surprisingly, however, patients’ Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency.

  4. Traumatic brain injury, boredom and depression. (United States)

    Goldberg, Yael; Danckert, James


    Traumatic brain injury (TBI) often presents with co-morbid depression and elevated levels of boredom. We explored the relationship between boredom and depression in a group of mild (n = 38), moderate-to-severe TBI patients (n = 14) and healthy controls (n = 88), who completed the Beck Depression Inventory and Boredom Proneness Scales as part of a larger study. Results showed that the relationship between boredom and depression was strongest in moderate-to-severe TBI patients. We explored two boredom proneness factors that index an individual's need for external or internal stimulation. Results indicated that the need for external stimulation was the critical driver in the relation between boredom and depression. Once again, this relationship was strongest in the moderate-to-severe TBI group. These results suggest that one common factor underlying boredom and depression is the need for stimulation from the external environment and, presumably, a failure to satisfy that need-a disconnection felt most strongly in moderate-to-severe TBI.

  5. Traumatic Brain Injury, Boredom and Depression

    Directory of Open Access Journals (Sweden)

    James Danckert


    Full Text Available Traumatic brain injury (TBI often presents with co-morbid depression and elevated levels of boredom. We explored the relationship between boredom and depression in a group of mild (n = 38, moderate-to-severe TBI patients (n = 14 and healthy controls (n = 88, who completed the Beck Depression Inventory and Boredom Proneness Scales as part of a larger study. Results showed that the relationship between boredom and depression was strongest in moderate-to-severe TBI patients. We explored two boredom proneness factors that index an individual’s need for external or internal stimulation. Results indicated that the need for external stimulation was the critical driver in the relation between boredom and depression. Once again, this relationship was strongest in the moderate-to-severe TBI group. These results suggest that one common factor underlying boredom and depression is the need for stimulation from the external environment and, presumably, a failure to satisfy that need—a disconnection felt most strongly in moderate-to-severe TBI.

  6. Autonomic Dysfunction after Mild Traumatic Brain Injury (United States)

    Esterov, Dmitry; Greenwald, Brian D.


    A mild traumatic brain injury (mTBI) is a complex pathophysiologic process that has a systemic effect on the body aside from solely an impairment in cognitive function. Dysfunction of the autonomic nervous system (ANS) has been found to induce abnormalities in organ systems throughout the body, and may contribute to cardiovascular dysregulation and increased mortality. Autonomic dysfunction, also known as dysautonomia, has been studied in moderate and severe TBI, and has emerged as a major contributing factor in the symptomatology in mTBI as well. Analysis of the ANS has been studied through changes in heart rate variability (HRV), pupillary dynamics, eye pressure, and arterial pulse wave in those with mild TBI. Graded exercise testing has been studied as both a method of diagnosis and as a means of recovery in those with mild TBI, especially in those with persistent symptoms. Given the studies showing persistence of autonomic dysfunction after symptomatic resolution of concussions, further research is needed to establish return to play protocols PMID:28800081

  7. Participation in leisure activities during brain injury rehabilitation. (United States)

    Fleming, Jennifer; Braithwaite, Helen; Gustafsson, Louise; Griffin, Janelle; Collier, Ann Maree; Fletcher, Stephanie


    To describe and compare pre- and post-injury leisure activities of individuals receiving brain injury rehabilitation and explore levels of leisure participation and satisfaction. Cross-sectional descriptive study incorporating a survey of current and past leisure activities. Questionnaires were completed by 40 individuals with an acquired brain injury receiving inpatient or outpatient rehabilitation. Shortened Version of the Nottingham Leisure Questionnaire and Changes in Leisure Questionnaire (developed for this study). Leisure participation declined following injury, particularly in social leisure activities. Pre-injury activities with high rates of discontinued or decreased participation were driving, going to pubs and parties, do-it-yourself activities and attending sports events. Inpatient participants generally attributed decreased participation to the hospital environment, whereas outpatient participants reported this predominantly as a result of disability. Post-injury levels of perceived leisure satisfaction were significantly lower for the inpatient group compared to pre-injury, but not for the outpatient group. Uptake of some new leisure activities was reported post-injury, however not at the rate to which participation declined. Leisure participation decreases during brain injury rehabilitation compared to pre-injury levels. Re-engagement in relevant, age-appropriate leisure activities needs to be addressed during rehabilitation to improve participation in this domain.

  8. Big for small: Validating brain injury guidelines in pediatric traumatic brain injury. (United States)

    Azim, Asad; Jehan, Faisal S; Rhee, Peter; O'Keeffe, Terence; Tang, Andrew; Vercruysse, Gary; Kulvatunyou, Narong; Latifi, Rifat; Joseph, Bellal


    Brain injury guidelines (BIG) were developed to reduce overutilization of neurosurgical consultation (NC) as well as computed tomography (CT) imaging. Currently, BIG have been successfully applied to adult populations, but the value of implementing these guidelines among pediatric patients remains unassessed. Therefore, the aim of this study was to evaluate the established BIG (BIG-1 category) for managing pediatric traumatic brain injury (TBI) patients with intracranial hemorrhage (ICH) without NC (no-NC). We prospectively implemented the BIG-1 category (normal neurologic examination, ICH ≤ 4 mm limited to one location, no skull fracture) to identify pediatric TBI patients (age, ≤ 21 years) that were to be managed no-NC. Propensity score matching was performed to match these no-NC patients to a similar cohort of patients managed with NC before the implementation of BIG in a 1:1 ratio for demographics, severity of injury, and type as well as size of ICH. Our primary outcome measure was need for neurosurgical intervention. A total of 405 pediatric TBI patients were enrolled, of which 160 (NC, 80; no-NC, 80) were propensity score matched. The mean age was 9.03 ± 7.47 years, 62.1% (n = 85) were male, the median Glasgow Coma Scale score was 15 (13-15), and the median head Abbreviated Injury Scale score was 2 (2-3). A subanalysis based on stratifying patients by age groups showed a decreased in the use of repeat head CT (p = 0.02) in the no-NC group, with no difference in progression (p = 0.34) and the need for neurosurgical intervention (p = 0.9) compared with the NC group. The BIG can be safely and effectively implemented in pediatric TBI patients. Reducing repeat head CT in pediatric patients has long-term sequelae. Likewise, adhering to the guidelines helps in reducing radiation exposure across all age groups. Therapeutic/care management, level III.

  9. Epidemiology of mild traumatic brain injury and neurodegenerative disease


    Gardner, Raquel C.; Yaffe, Kristine


    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repet...

  10. Post-traumatic stress disorder vs traumatic brain injury


    Bryant, Richard


    Post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI) often coexist because brain injuries are often sustained in traumatic experiences. This review outlines the significant overlap between PTSD and TBI by commencing with a critical outline of the overlapping symptoms and problems of differential diagnosis. The impact of TBI on PTSD is then described, with increasing evidence suggesting that mild TBI can increase risk for PTSD. Several explanations are offered for this enhanc...

  11. Novel Treatment for Patients with Traumatic Brain Injury (TBI) (United States)


    currently valid 0MB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 12. REPORT TYPE 30-0 6-201 6... hypotension independently increases morbidity and mortality after traumatic brain injury. The goal of all treatments is avoid hypotension and maintain cerebral...perfusion pressure management in· patients with severe traumatic brain injury: preliminary results of a randomized controlled trial. J Trauma Acute Care

  12. Update in the management of severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Eva Esther Tejerina Alvarez


    Increased intracranial pressure is associated with mortality and with unfavorable functional outcomes is patients with severe traumatic brain injury. The main clinical practice guidelines recommend using a number of staggered therapeutic measures. However, although these measures seem to be efficient in reducing intracranial pressure, this effect is not often translated into clinical improvement. This review describes the essential principles of the management of patients with severe traumatic brain injury in intensive care units.

  13. [Brain injury knowledge in family members of neurosurgical patients]. (United States)

    Navarro-Main, Blanca; Castaño-León, Ana M; Munarriz, Pablo M; Gómez, Pedro A; Rios-Lago, Marcos; Lagares, Alfonso

    Several studies have shown misconceptions about brain injury in different populations. The aim of this study was to assess the knowledge and perceptions about brain injury of family members of neurosurgical patients in our hospital. The participants (n=81) were relatives of patients admitted to the neurosurgery department between February and August 2016. They voluntarily completed a 19-item true-false format survey about brain injury based on a translation of other questionnaires used in previous studies from other countries (USA, Canada, UK, Ireland and New Zealand). Also, some sociodemographic data were collected (age, sex, education level and the patient's pathology). Data analysis was developed through graphical modelling with a regularisation parameter plotted on a network representing the association of the items of the questionnaire from the response pattern of participants. Data analysis showed two conceptual areas with a high rate of wrong answers: behaviour and management of patients, and expectations about acquired brain injury recovery. The results obtained in this study would enable us to objectify misconceptions about acquired brain injury in patients' relatives attended in the neurosurgery department. This lack of knowledge could be a great obstacle in patients' recovery process. Therefore, we suggest placing the emphasis on the provision of information on brain injury to patients' families, especially with regard to its symptoms and course of development. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration. (United States)

    Bonar, Nicolle A; Petersen, Christian P


    Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema. © 2017. Published by The Company of Biologists Ltd.

  15. Traumatic Brain Injury in the Accident and Emergency Department of ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is a major public health problem in Nigeria, as it could be associated with long term and life long deficits. Unlike other parts of the world, in our country, motorcycles are possibly the main cause of this injury. Unfortunately, we do not have a national epidemiological data base yet. This study ...

  16. The Importance of Structural Anisotropy in Computational Models of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Rika W. Carlsen


    Full Text Available Understanding the mechanisms of injury might prove useful in assisting the development of methods for the management and mitigation of traumatic brain injury (TBI. Computational head models can provide valuable insight into the multi-length-scale complexity associated with the primary nature of diffuse axonal injury. It involves understanding how the trauma to the head (at the cm length scale translates to the white matter tissue (at the millimeter length scale, and even further down to the axonal-length scale, where physical injury to axons (e.g. axon separation may occur. However, to accurately represent the development of TBI, the biofidelity of these computational models is of utmost importance. There has been a focused effort to improve the biofidelity of computational models by including more sophisticated material definitions and implementing physiologically relevant measures of injury. This paper summarizes recent computational studies that have incorporated structural anisotropy in both the material definition of the white matter and the injury criterion as a means to improve the predictive capabilities of computational models for TBI. We discuss the role of structural anisotropy on both the mechanical response of the brain tissue and on the development of injury. We also outline future directions in the computational modeling of TBI.

  17. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. (United States)

    Sayeed, Iqbal; Stein, Donald G


    The search for a "magic bullet" drug targeting a single receptor for the treatment of stroke or traumatic brain injury (TBI) has failed thus far for a variety of reasons. The pathophysiology of ischemic brain injury and TBI involves a number of mechanisms leading to neuronal injury, including excitotoxicity, free radical damage, inflammation, necrosis, and apoptosis. Brain injury also triggers auto-protective mechanisms, including the up-regulation of anti-inflammatory cytokines and endogenous antioxidants. In these conditions an agent with pleiotropic consequences is more likely to provide effective neuroprotection and repair than one operating primarily on a single, or a small number of, injury mechanisms. There is growing evidence, including recently published clinical trials, that progesterone and perhaps its metabolite allopregnanolone exert neuroprotective effects on the injured central nervous system (CNS). Laboratories around the world have shown that progesterone and allopregnanolone act through numerous metabolic and physiological pathways that can affect the injury response in many different tissues and organ systems. Furthermore, progesterone is a natural hormone, synthesized in both males and females, that can act as a pro-drug for other metabolites with their own distinct mode of action in CNS repair. These properties make progesterone a unique and compelling natural agent to consider for testing in clinical trial for CNS injuries including TBI and stroke.

  18. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey


    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  19. Marital stability after brain injury: an investigation and analysis. (United States)

    Kreutzer, Jeffrey S; Marwitz, Jennifer H; Hsu, Nancy; Williams, Kelli; Riddick, Amy


    To examine rates of separation and divorce after traumatic brain injury and identify factors relating to risk of marital breakdown. 120 persons who sustained a mild, moderate, or severe traumatic brain injury and who were married at the time of injury. Survivors were contacted between 30 and 96 months postinjury when demographic and marital status information was solicited. Injury information was obtained from medical records. A majority of patients remained married. The rate of divorce was 17% and 8% was the separation rate. People who were married longer before their injury, victims of non-violent injuries, older persons, and persons with less severe injuries were more likely to remain married. Gender, ethnicity, educational level, time elapsed since injury, and postinjury employment status were unrelated to risk for marital breakdown. Research findings do not support contentions that persons with brain injury are at greater risk for divorce relative to the general population. Nor do findings suggest that males are more likely to leave injured female partners. More research is needed to assess marital quality and the potential benefits of intervention programs designed to develop and maintain mutually supportive relationships.

  20. Adding insult to brain injury: young adults' experiences of residing in nursing homes following acquired brain injury. (United States)

    Dwyer, Aoife; Heary, Caroline; Ward, Marcia; MacNeela, Pádraig


    There is general consensus that adults under age 65 with acquired brain injury residing in nursing homes is inappropriate, however there is a limited evidence base on the issue. Previous research has relied heavily on third-party informants and qualitative studies have been of questionable methodological quality, with no known study adopting a phenomenological approach. This study explored the lived experiences of young adults with brain injury residing in aged care facilities. Interpretative phenomenological analysis was employed to collect and analyze data from six semi-structured interviews with participants regarding their experiences of living in nursing homes. Two themes were identified, including "Corporeal prison of acquired brain injury: broken selves" and "Existential prison of the nursing home: stagnated lives". Results illustrated that young adults with acquired brain injury can experience aged care as an existential prison in which their lives feel at a standstill. This experience was characterized by feelings of not belonging in a terminal environment, confinement, disempowerment, emptiness and hope for greater autonomy through rehabilitation. It is hoped that this study will provide relevant professionals, services and policy-makers with insight into the challenges and needs of young adults with brain injury facing these circumstances. Implications for rehabilitation This study supports the contention that more home-like and age-appropriate residential rehabilitation services for young adults with acquired brain injury are needed. As development of alternative accommodation is a lengthy process, the study findings suggest that the interim implementation of rehabilitative care in nursing homes should be considered. Taken together with existing research, it is proposed that nursing home staff may require training to deliver evidence-based rehabilitative interventions to those with brain injury. The present findings add support to the call for systemic

  1. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study. (United States)

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  2. A family of hyperelastic models for human brain tissue (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain


    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  3. Complement and Immunoregulation in Tissue Injury (United States)


    transplantation, cardiovascular and autoimmune diseases . The complement system is an important mediator of IR injury in various organs including...on epithelial cells. Because of its ability to mobilize neutrophils, IL-17A is important in the pathogenesis of autoimmune diseases , and in chronic...intestine, kidney , liver, lungs and heart. In mesenteric IR complement activation and deposition have been recognized as key components for the initiation

  4. Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Lei Huang


    Full Text Available Repetitive mild traumatic brain injury (rmTBI is an important medical concern for adolescent athletes that can lead to long-term disabilities. Multiple mild injuries may exacerbate tissue damage resulting in cumulative brain injury and poor functional recovery. In the present study, we investigated the increased brain vulnerability to rmTBI and the effect of hyperbaric oxygen treatment using a juvenile rat model of rmTBI. Two episodes of mild cortical controlled impact (3 days apart were induced in juvenile rats. Hyperbaric oxygen (HBO was applied 1 hour/day × 3 days at 2 atmosphere absolute consecutively, starting at 1 day after initial mild traumatic brain injury (mTBI. Neuropathology was assessed by multi-modal magnetic resonance imaging (MRI and tissue immunohistochemistry. After repetitive mTBI, there were increases in T2-weighted imaging-defined cortical lesions and susceptibility weighted imaging-defined cortical microhemorrhages, correlated with brain tissue gliosis at the site of impact. HBO treatment significantly decreased the MRI-identified abnormalities and tissue histopathology. Our findings suggest that HBO treatment improves the cumulative tissue damage in juvenile brain following rmTBI. Such therapy regimens could be considered in adolescent athletes at the risk of repeated concussions exposures.

  5. Nanobubbles, cavitation, shock waves and traumatic brain injury. (United States)

    Adhikari, Upendra; Goliaei, Ardeshir; Berkowitz, Max L


    Collapse of bubbles, microscopic or nanoscopic, due to their interaction with the impinging pressure wave produces a jet of particles moving in the direction of the wave. If there is a surface nearby, the high-speed jet particles hit it, and as a result damage to the surface is produced. This cavitation effect is well known and intensely studied in case of microscopic sized bubbles. It can be quite damaging to materials, including biological tissues, but it can also be beneficial when controlled, like in case of sonoporation of biological membranes for the purpose of drug delivery. Here we consider recent simulation work performed to study collapse of nanobubbles exposed to shock waves, in order to understand the detailed mechanism of the cavitation induced damage to soft materials, such as biological membranes. We also discuss the connection of the cavitation effect with the traumatic brain injury caused by blasts. Specifically, we consider possible damage to model membranes containing lipid bilayers, bilayers with embedded ion channel proteins like the ones found in neural cells and also protein assemblies found in the tight junction of the blood brain barrier.

  6. Factors affecting blast traumatic brain injury. (United States)

    Kamnaksh, Alaa; Kovesdi, Erzsebet; Kwon, Sook-Kyung; Wingo, Daniel; Ahmed, Farid; Grunberg, Neil E; Long, Joseph; Agoston, Denes V


    The overlapping pathologies and functional outcomes of blast-induced TBI (bTBI) and stress-related neurobehavioral disorders like post-traumatic stress disorder (PTSD) are significant military health issues. Soldiers are exposed to multiple stressors with or without suffering bTBI, making diagnosis and treatment as well as experimental modeling of bTBI a challenge. In this study we compared anxiety levels of Naïve rats to ones that were exposed to each of the following conditions daily for 4 consecutive days: C I: transportation alone; C II: transportation and anesthesia; C III: transportation, anesthesia, and blast sounds; Injured: all three variables plus mild blast overpressure. Following behavioral testing we analyzed sera and select brain regions for protein markers and cellular changes. C I, C II, and C III animals exhibited increased anxiety, but serum corticosterone levels were only significantly elevated in C III and Injured rats. C III and Injured animals also had elevated interferon-γ (IFN-γ) and interleukin-6 (IL-6) levels in the amygdala (AD) and ventral hippocampus (VHC). Glial fibrillary acidic protein (GFAP) levels were only significantly elevated in the VHC, prefrontal cortex (PFC), and AD of Injured animals; they showed an apparent increase in ionized calcium-binding adapter molecule (Iba1) and GFAP immunoreactivity, as well as increased numbers of TUNEL-positive cells in the VHC. Our findings demonstrate that experimental conditions, particularly the exposure to blast acoustics, can increase anxiety and trigger specific behavioral and molecular changes without injury. These findings should be taken into consideration when designing bTBI studies, to better understand the role of stressors in the development of post-traumatic symptoms, and to establish a differential diagnosis for PTSD and bTBI.

  7. Brain injury forces of moderate magnitude elicit the fencing response. (United States)

    Hosseini, Ario H; Lifshitz, Jonathan


    Traumatic brain injury is heterogeneous, both in its induction and ensuing neurological sequelae. In this way, medical care depends on accurately identifying the severity of injury-related forces. Clinically, injury severity is determined by a combination of the Glasgow Coma Scale, length of unconsciousness, posttraumatic amnesia, and persistence of neurological sequelae. In the laboratory, injury severity is gauged by the biomechanical forces and the acute suppression of neurological reflexes. The present communication describes and validates the "fencing response" as an overt indicator of injury force magnitude and midbrain localization to aid in injury identification and classification. Using YouTube, the Internet video database, videos were screened for head injury resulting in unconsciousness and documented for the fencing response. Adult male rats were subjected to midline fluid percussion brain injury at two severities, observed for acute neurological reflexes and the midbrain evaluated histopathologically. Tonic posturing (fencing response) has been observed to precede convulsions in sports injuries at the moment of impact, where extension and flexion of opposite arms occurs despite body position or gravity. Of the 35 videos identified by an impact to the head and period of unconsciousness, 66% showed a fencing response at the moment of impact, regardless of the side of impact, without ensuing convulsion. Similarly, diffuse brain-injured rats demonstrate a fencing response upon injury at moderate (1.9 atm, 39/44 animals) but not mild severity (1.1 atm, 0/19 animals). The proximity of the lateral vestibular nucleus to the cerebellar peduncles makes it vulnerable to mechanical forces that initiate a neurochemical storm to elicit the neuromotor response, disrupt the blood-brain barrier, and alter the nuclear volume. Therefore, the fencing response likely indicates neurological disturbance unique from convulsion associated with mechanical forces of moderate

  8. Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites. (United States)

    Pischiutta, Francesca; Brunelli, Laura; Romele, Pietro; Silini, Antonietta; Sammali, Eliana; Paracchini, Lara; Marchini, Sergio; Talamini, Laura; Bigini, Paolo; Boncoraglio, Giorgio B; Pastorelli, Roberta; De Simoni, Maria-Grazia; Parolini, Ornella; Zanier, Elisa R


    To define the features of human amniotic mesenchymal stromal cell secretome and its protective properties in experimental models of acute brain injury. Prospective experimental study. Laboratory research. C57Bl/6 mice. Mice subjected to sham or traumatic brain injury by controlled cortical impact received human amniotic mesenchymal stromal cells or phosphate-buffered saline infused intracerebroventricularly or intravenously 24 hours after injury. Organotypic cortical brain slices exposed to ischemic injury by oxygen-glucose deprivation were treated with human amniotic mesenchymal stromal cells or with their secretome (conditioned medium) in a transwell system. Traumatic brain injured mice receiving human amniotic mesenchymal stromal cells intravenously or intracerebroventricularly showed early and lasting functional and anatomical brain protection. cortical slices injured by oxigen-glucose deprivation and treated with human amniotic mesenchymal stromal cells or conditioned medium showed comparable protective effects (neuronal rescue, promotion of M2 microglia polarization, induction of trophic factors) indicating that the exposure of human amniotic mesenchymal stromal cells to the injured tissue is not necessary for the release of bioactive factors. Using sequential size-exclusion and gel-filtration chromatography, we identified a conditioned medium subfraction, which specifically displays these highly protective properties and we found that this fraction was rich in bioactive molecules with molecular weight smaller than 700 Da. Quantitative RNA analysis and mass spectrometry-based peptidomics showed that the active factors are not proteins or RNAs. The metabolomic profiling of six metabolic classes identified a list of molecules whose abundance was selectively elevated in the active conditioned medium fraction. Human amniotic mesenchymal stromal cell-secreted factors protect the brain after acute injury. Importantly, a fraction rich in metabolites, and

  9. Philosophy of mind: coming to terms with traumatic brain injury. (United States)

    Buzan, Randall D; Kupfer, Jeff; Eastridge, Dixie; Lema-Hincapie, Andres


    Patients and their families struggle with accepting changes in personality after traumatic brain injury (TBI). A neuroanatomic understanding may assist with this process. We briefly review the history of the Western conceptualization of the Self, and discuss how neuroscience and changes in personality wrought by brain injuries modify and enrich our understanding of our selves and our patients. The sense of self, while conflated with the concept of a "soul" in Western thinking, is more rationally considered a construct derived from neurophysiologic structures. The self or personality therefore often changes when the brain changes. A neuroanatomic perspective can help patients, families, and clinicians accept and cope with the sequellae of TBI.

  10. Epsilon Aminocaproic Acid Pretreatment Provides Neuroprotection Following Surgically Induced Brain Injury in a Rat Model. (United States)

    Komanapalli, Esther S; Sherchan, Prativa; Rolland, William; Khatibi, Nikan; Martin, Robert D; Applegate, Richard L; Tang, Jiping; Zhang, John H


    Neurosurgical procedures can damage viable brain tissue unintentionally by a wide range of mechanisms. This surgically induced brain injury (SBI) can be a result of direct incision, electrocauterization, or tissue retraction. Plasmin, a serine protease that dissolves fibrin blood clots, has been shown to enhance cerebral edema and hemorrhage accumulation in the brain through disruption of the blood brain barrier. Epsilon aminocaproic acid (EAA), a recognized antifibrinolytic lysine analogue, can reduce the levels of active plasmin and, in doing so, potentially can preserve the neurovascular unit of the brain. We investigated the role of EAA as a pretreatment neuroprotective modality in a SBI rat model, hypothesizing that EAA therapy would protect brain tissue integrity, translating into preserved neurobehavioral function. Male Sprague-Dawley rats were randomly assigned to one of four groups: sham (n = 7), SBI (n = 7), SBI with low-dose EAA, 150 mg/kg (n = 7), and SBI with high-dose EAA, 450 mg/kg (n = 7). SBI was induced by partial right frontal lobe resection through a frontal craniotomy. Postoperative assessment at 24 h included neurobehavioral testing and measurement of brain water content. Results at 24 h showed both low- and high-dose EAA reduced brain water content and improved neurobehavioral function compared with the SBI groups. This suggests that EAA may be a useful pretherapeutic modality for SBI. Further studies are needed to clarify optimal therapeutic dosing and to identify mechanisms of neuroprotection in rat SBI models.

  11. Medical treatment and neuroprotection in traumatic brain injury. (United States)

    Clausen, T; Bullock, R


    The goal of this article is to give an overview about the established current treatment concepts of traumatic brain injury, as well as an outlook on possible future developments in pharmacological neuroprotection. Modern medical treatment modalities of traumatic brain injury (TBI), including the preclinical management of severely head-injured patients, are reviewed. Since an increased intracranial pressure represents the most common complication of severe traumatic brain injury, frequently associated with the development of secondary brain damage, special emphasis was given to an updated treatment algorithm for this important condition. New insight into the pathophysiology of severe traumatic brain injury, especially the realization that brain damage develops sequentially, initiated several new treatment approaches aiming at the interruption of pathophysiological mechanisms leading to secondary brain injury. A high number of pharmacological substances have been tested for their ability to ameliorate secondary damage after TBI, or are currently under clinical trial. Although no drug has achieved this goal so far, the most promising of these therapeutical approaches, glutamate receptor antagonists, calcium channel antagonists, free radical scavengers, and cyclosporin A will be discussed in this review. Although a "magical bullet" for the treatment of traumatic brain injury has not been developed yet, several of the currently investigated neuroprotective strategies seem to be encouraging. A promising future approach might be to evaluate treatment strategies that combine several pharmacological agents, and possibly other treatment modalities, such as mild hypothermia, "tailored" according to the special pathology of patient subgroups, or even to every single patient in order to achieve an improvement in outcome after TBI.

  12. Optical spectroscopy for the detection of ischemic tissue injury (United States)

    Demos, Stavros [Livermore, CA; Fitzgerald, Jason [Sacramento, CA; Troppmann, Christoph [Sacramento, CA; Michalopoulou, Andromachi [Athens, GR


    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  13. The Protective Effect of Omeprazole Against Traumatic Brain Injury: An Experimental Study. (United States)

    Özay, Rafet; Türkoğlu, Mehmet Erhan; Gürer, Bora; Dolgun, Habibullah; Evirgen, Oya; Ergüder, Berrin İmge; Hayırlı, Nazlı; Gürses, Levent; Şekerci, Zeki


    The development of secondary brain injury via oxidative stress after traumatic brain injury (TBI) is a well-known entity. Consequently, the aim of the present study was to evaluate the role of omeprazole (OM) on rat model of TBI. A total of 24 male rats were used and divided into 4 groups as follows; control, trauma, OM, and methylprednisolone (MP). The trauma, OM, and MP groups were subjected to closed-head contusive weight-drop injuries. Rats received treatment with saline, OM, or MP, respectively. All the animals were sacrificed at 24 hours after trauma and brain tissues were extracted. The oxidant/antioxidant parameters (malondialdehyde, glutathione peroxidase, superoxide dismutase, nitric oxide) and caspase-3 in the cerebral tissue were analyzed, and histomorphologic evaluation of the cerebral tissue was performed. Levels of MDA and activity of caspase-3 were significantly reduced in the OM and MP groups compared with the trauma group. Glutathione peroxidase and superoxide dismutase levels were increased both in the OM and MP groups compared with the trauma group. The pathology scores were statistically lower in the OM and MP groups than the trauma group. The results of the present study showed that OM was as effective as MP in protecting brain from oxidative stress, and apoptosis in the early phase of TBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Traumatic brain injury: the lag between diagnosis and treatment. (United States)

    Retsinas, J


    Ogburn described the "culture lag" between technology and attitudes, as people take time to assimilate new technologies, and new facts, into their worldviews. Traumatic brain injury is now a common diagnosis, thanks to neurosurgical expertise. Where thirty years ago mortality from head injuries was high, today mortality rates have improved dramatically; yet even while neurosurgeons spare thousands of people each year, our society struggles to develop appropriate rehabilitation protocols. To date, we are in the lag phase, between diagnosis and treatment. This paper discusses that lag, including reasons for the lack of an effective rehabilitation protocol (the paucity of funds for research, the nature of brain injuries per se), the reluctance of insurers to cover brain injury rehabilitation (the lengthy time involved in rehabilitation, the blurring between rehabilitation and long term care, the nature of experience-rated contracting to businesses for health care insurance, the burgeoning of proprietary brain injury rehabilitation centers), and the prospects for closing the gap in the near future. The paper concludes that preventive measures (seat belt laws, motorcycle helmet laws, laws for helmets in contact sports) allow policy-makers to confront the growing societal problem of the mounting census of head-injured, by avoiding that census and focusing instead on the prevention, or diminution, of future head injuries.

  15. Monitoring the Neuroinflammatory Response Following Acute Brain Injury (United States)

    Thelin, Eric Peter; Tajsic, Tamara; Zeiler, Frederick Adam; Menon, David K.; Hutchinson, Peter J. A.; Carpenter, Keri L. H.; Morganti-Kossmann, Maria Cristina; Helmy, Adel


    Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are major contributors to morbidity and mortality. Following the initial insult, patients may deteriorate due to secondary brain damage. The underlying molecular and cellular cascades incorporate components of the innate immune system. There are different approaches to assess and monitor cerebral inflammation in the neuro intensive care unit. The aim of this narrative review is to describe techniques to monitor inflammatory activity in patients with TBI and SAH in the acute setting. The analysis of pro- and anti-inflammatory cytokines in compartments of the central nervous system (CNS), including the cerebrospinal fluid and the extracellular fluid, represent the most common approaches to monitor surrogate markers of cerebral inflammatory activity. Each of these compartments has a distinct biology that reflects local processes and the cross-talk between systemic and CNS inflammation. Cytokines have been correlated to outcomes as well as ongoing, secondary injury progression. Alongside the dynamic, focal assay of humoral mediators, imaging, through positron emission tomography, can provide a global in vivo measurement of inflammatory cell activity, which reveals long-lasting processes following the initial injury. Compared to the innate immune system activated acutely after brain injury, the adaptive immune system is likely to play a greater role in the chronic phase as evidenced by T-cell-mediated autoreactivity toward brain-specific proteins. The most difficult aspect of assessing neuroinflammation is to determine whether the processes monitored are harmful or beneficial to the brain as accumulating data indicate a dual role for these inflammatory cascades following injury. In summary, the inflammatory component of the complex injury cascade following brain injury may be monitored using different modalities. Using a multimodal monitoring approach can potentially aid in the development of therapeutics

  16. Central diabetes insipidus in pediatric severe traumatic brain injury. (United States)

    Alharfi, Ibrahim M; Stewart, Tanya Charyk; Foster, Jennifer; Morrison, Gavin C; Fraser, Douglas D


    To determine the occurrence rate of central diabetes insipidus in pediatric patients with severe traumatic brain injury and to describe the clinical, injury, biochemical, imaging, and intervention variables associated with mortality. Retrospective chart and imaging review. Children's Hospital, level 1 trauma center. Severely injured (Injury Severity Score ≥ 12) pediatric trauma patients (>1 month and diabetes insipidus between January 2000 and December 2011. Of 818 severely injured trauma patients, 180 had severe traumatic brain injury with an overall mortality rate of 27.2%. Thirty-two of the severe traumatic brain injury patients developed acute central diabetes insipidus that responded to desamino-8-D-arginine vasopressin and/or vasopressin infusion, providing an occurrence rate of 18%. At the time of central diabetes insipidus diagnosis, median urine output and serum sodium were 6.8 ml/kg/hr (interquartile range = 5-11) and 154 mmol/L (interquartile range = 149-159), respectively. The mortality rate of central diabetes insipidus patients was 87.5%, with 71.4% declared brain dead after central diabetes insipidus diagnosis. Early central diabetes insipidus onset, within the first 2 days of severe traumatic brain injury, was strongly associated with mortality (p diabetes insipidus were more likely to have intracranial pressure monitoring (p = 0.03), have thiopental administered to induce coma (p = 0.04) and have received a decompressive craniectomy for elevated intracranial pressure (p = 0.04). The incidence of central diabetes insipidus in pediatric patients with severe traumatic brain injury is 18%. Mortality was associated with early central diabetes insipidus onset and cerebral edema on head computed tomography. Central diabetes insipidus nonsurvivors were less likely to have received intracranial pressure monitoring, thiopental coma and decompressive craniectomy.

  17. Measuring thrombin activity in frozen brain tissue. (United States)

    Reuveni, Gilad; Golderman, Valery; Shavit-Stein, Efrat; Rosman, Yossi; Shrot, Shai; Chapman, Joab; Harnof, Sagi


    Thrombin is a coagulation factor implicated in various pathological and physiological processes in the brain, exerting beneficial and deleterious effects in a concentration-dependent manner. Measurement of thrombin activity levels in pathological animal models is needed and in some cases, because of technical considerations, only frozen samples are available. In the current study, we used a quantitative method to evaluate thrombin activity in fresh and frozen brain sections of 43 male and female adult healthy mice. We stratified data per brain section, brain hemisphere, and mouse sex. We found lower thrombin activity in frozen sections compared with fresh sections, falling within levels considered central nervous system protective in previous studies. The results suggest that fresh section thrombin activity levels in healthy mice can be extrapolated from frozen brain sections. In addition, we found varying thrombin activity across the brain sections, with maximal activity in the olfactory system and hippocampus-containing sections. Thrombin activity did not vary between males and females, or between the right and the left hemispheres, in a statistically significantly manner.

  18. Chemical Probes for Visualizing Intact Animal and Human Brain Tissue. (United States)

    Lai, Hei Ming; Ng, Wai-Lung; Gentleman, Steve M; Wu, Wutian


    Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Resilience Following Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study. (United States)

    Kreutzer, Jeffrey S; Marwitz, Jennifer H; Sima, Adam P; Bergquist, Thomas F; Johnson-Greene, Douglas; Felix, Elizabeth R; Whiteneck, Gale G; Dreer, Laura E


    To examine resilience at 3 months after traumatic brain injury (TBI). Cross-sectional analysis of an ongoing observational cohort. Five inpatient rehabilitation centers, with 3-month follow-up conducted primarily by telephone. Persons with TBI (N=160) enrolled in the resilience module of the TBI Model System study with 3-month follow-up completed. Not applicable. Connor-Davidson Resilience Scale. Resilience scores were lower than those of the general population. A multivariable regression model, adjusting for other predictors, showed that higher education, absence of preinjury substance abuse, and less anxiety at follow-up were significantly related to greater resilience. Analysis suggests that lack of resilience may be an issue for some individuals after moderate to severe TBI. Identifying persons most likely at risk for low resilience may be useful in planning clinical interventions. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. (United States)

    Ghajari, Mazdak; Hellyer, Peter J; Sharp, David J


    Traumatic brain injury can lead to the neurodegenerative disease chronic traumatic encephalopathy. This condition has a clear neuropathological definition but the relationship between the initial head impact and the pattern of progressive brain pathology is poorly understood. We test the hypothesis that mechanical strain and strain rate are greatest in sulci, where neuropathology is prominently seen in chronic traumatic encephalopathy, and whether human neuroimaging observations converge with computational predictions. Three distinct types of injury were simulated. Chronic traumatic encephalopathy can occur after sporting injuries, so we studied a helmet-to-helmet impact in an American football game. In addition, we investigated an occipital head impact due to a fall from ground level and a helmeted head impact in a road traffic accident involving a motorcycle and a car. A high fidelity 3D computational model of brain injury biomechanics was developed and the contours of strain and strain rate at the grey matter-white matter boundary were mapped. Diffusion tensor imaging abnormalities in a cohort of 97 traumatic brain injury patients were also mapped at the grey matter-white matter boundary. Fifty-one healthy subjects served as controls. The computational models predicted large strain most prominent at the depths of sulci. The volume fraction of sulcal regions exceeding brain injury thresholds were significantly larger than that of gyral regions. Strain and strain rates were highest for the road traffic accident and sporting injury. Strain was greater in the sulci for all injury types, but strain rate was greater only in the road traffic and sporting injuries. Diffusion tensor imaging showed converging imaging abnormalities within sulcal regions with a significant decrease in fractional anisotropy in the patient group compared to controls within the sulci. Our results show that brain tissue deformation induced by head impact loading is greatest in sulcal locations

  1. Microstructural brain injury in post-concussion syndrome after minor head injury

    NARCIS (Netherlands)

    M. Smits (Marion); G.C. Houston (Gavin); D.W.J. Dippel (Diederik); P.A. Wielopolski (Piotr); M.W. Vernooij (Meike); P.J. Koudstaal (Peter Jan); M.G.M. Hunink (Myriam); A. van der Lugt (Aad)


    textabstractIntroduction: After minor head injury (MHI), post-concussive symptoms commonly occur. The purpose of this study was to correlate the severity of post-concussive symptoms in MHI patients with MRI measures of microstructural brain injury, namely mean diffusivity (MD) and fractional

  2. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem


    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  3. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury. (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate


    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  4. Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain. (United States)

    Semple, Bridgette D; O'Brien, Terence J; Gimlin, Kayleen; Wright, David K; Kim, Shi Eun; Casillas-Espinosa, Pablo M; Webster, Kyria M; Petrou, Steven; Noble-Haeusslein, Linda J


    Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1β and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility. SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments

  5. Pathophysiology and the Monitoring Methods for Cardiac Arrest Associated Brain Injury

    Directory of Open Access Journals (Sweden)

    Cesar Reis


    Full Text Available Cardiac arrest (CA is a well-known cause of global brain ischemia. After CA and subsequent loss of consciousness, oxygen tension starts to decline and leads to a series of cellular changes that will lead to cellular death, if not reversed immediately, with brain edema as a result. The electroencephalographic activity starts to change as well. Although increased intracranial pressure (ICP is not a direct result of cardiac arrest, it can still occur due to hypoxic-ischemic encephalopathy induced changes in brain tissue, and is a measure of brain edema after CA and ischemic brain injury. In this review, we will discuss the pathophysiology of brain edema after CA, some available techniques, and methods to monitor brain oxygen, electroencephalography (EEG, ICP (intracranial pressure, and microdialysis on its measurement of cerebral metabolism and its usefulness both in clinical practice and possible basic science research in development. With this review, we hope to gain knowledge of the more personalized information about patient status and specifics of their brain injury, and thus facilitating the physicians’ decision making in terms of which treatments to pursue.

  6. Astrocytic Calcium Waves Signal Brain Injury to Neural Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Anna Kraft


    Full Text Available Brain injuries, such as stroke or trauma, induce neural stem cells in the subventricular zone (SVZ to a neurogenic response. Very little is known about the molecular cues that signal tissue damage, even over large distances, to the SVZ. Based on our analysis of gene expression patterns in the SVZ, 48 hr after an ischemic lesion caused by middle cerebral artery occlusion, we hypothesized that the presence of an injury might be transmitted by an astrocytic traveling calcium wave rather than by diffusible factors or hypoxia. Using a newly established in vitro system we show that calcium waves induced in an astrocytic monolayer spread to neural stem and progenitor cells and increase their self-renewal as well as migratory behavior. These changes are due to an upregulation of the Notch signaling pathway. This introduces the concept of propagating astrocytic calcium waves transmitting brain injury signals over long distances.

  7. Magnetic resonance spectroscopy for assessment of brain injury in the rat model of sepsis. (United States)

    Wen, Miaoyun; Lian, Zhesi; Huang, Linqiang; Zhu, Senzhi; Hu, Bei; Han, Yongli; Deng, Yiyu; Zeng, Hongke


    The diagnostic value of magnetic resonance spectroscopy (MRS), T2-weighted imaging (T2WI) and serum markers of brain injury in a rat model of sepsis were investigated. Rats were randomly divided into the control group and 6, 12 and 24 h after lipopolysaccharide-injection groups. Brain morphology and metabolism were assessed with T2WI magnetic resonance imaging (MRI) and MRS. Serum and brain tissue samples were then collected to examine the concentrations of neuron-specific enolase (NSE) and S100-β protein. Brain T2WI showed no differences between the groups. N-acetylaspartate/choline (NAA/Cr) ratio measured by MRS showed different degrees of decrease in the sepsis groups, and serum NSE and S100-β concentrations were increased compared with the control group. Apoptosis rates were measured in the right hippocampal area, and there were statistically significant differences between the indicated groups and the control group (p<0.05). The correlation between apoptosis rate and NAA/Cr ratio was closer than that between apoptosis rate and NSE or S100-β (-0.925 vs. 0.434 vs. 0.517, respectively). In conclusion, MRS is a sensitive, non-invasive method to investigate complications of brain injury in septic rats, which may be utilized for the early diagnosis of brain injury caused by sepsis.

  8. Benefits and risks of anticoagulation resumption following traumatic brain injury. (United States)

    Albrecht, Jennifer S; Liu, Xinggang; Baumgarten, Mona; Langenberg, Patricia; Rattinger, Gail B; Smith, Gordon S; Gambert, Steven R; Gottlieb, Stephen S; Zuckerman, Ilene H


    The increased risk of hemorrhage associated with anticoagulant therapy following traumatic brain injury creates a serious dilemma for medical management of older patients: Should anticoagulant therapy be resumed after traumatic brain injury, and if so, when? To estimate the risk of thrombotic and hemorrhagic events associated with warfarin therapy resumption following traumatic brain injury. Retrospective analysis of administrative claims data for Medicare beneficiaries aged at least 65 years hospitalized for traumatic brain injury during 2006 through 2009 who received warfarin in the month prior to injury (n = 10,782). Warfarin use in each 30-day period following discharge after hospitalization for traumatic brain injury. The primary outcomes were hemorrhagic and thrombotic events following discharge after hospitalization for traumatic brain injury. Hemorrhagic events were defined on inpatient claims using International Classification of Diseases, Ninth Revision, Clinical Modification codes and included hemorrhagic stroke, upper gastrointestinal bleeding, adrenal hemorrhage, and other hemorrhage. Thrombotic events included ischemic stroke, pulmonary embolism, deep venous thrombosis, and myocardial infarction. A composite of hemorrhagic or ischemic stroke was a secondary outcome. Medicare beneficiaries with traumatic brain injury were predominantly female (64%) and white (92%), with a mean (SD) age of 81.3 (7.3) years, and 82% had atrial fibrillation. Over the 12 months following hospital discharge, 55% received warfarin during 1 or more 30-day periods. We examined the lagged effect of warfarin use on outcomes in the following period. Warfarin use in the prior period was associated with decreased risk of thrombotic events (relative risk [RR], 0.77 [95% CI, 0.67-0.88]) and increased risk of hemorrhagic events (RR, 1.51 [95% CI, 1.29-1.78]). Warfarin use in the prior period was associated with decreased risk of hemorrhagic or ischemic stroke (RR, 0.83 [95% CI, 0

  9. Maxillofacial soft tissue injuries in Nairobi, Kenya | Bernard | East ...

    African Journals Online (AJOL)

    Objectives: To determine the aetiological factors and pattern of occurrence of maxillofacial soft tissue injuries (MF-STIs) presenting at a Kenyan National Referral Hospital in Nairobi. Design: A cross-sectional study. Settings: The accident and emergency department of the Kenyatta National Hospital (KNH) between ...

  10. Recovery of stress response coincides with responsiveness to voluntary exercise after traumatic brain injury. (United States)

    Griesbach, Grace S; Tio, Delia L; Nair, Shyama; Hovda, David A


    We have recently shown that there is a heightened stress response after a mild traumatic brain injury (TBI) during the first 2 post-injury weeks. This corresponds to the same post-injury period when exercise does not increase brain-derived neurotrophic factor (BDNF) and autonomic dysfunction becomes evident with exercise. Here we determined stress and autonomic responses to voluntary and forced exercise at a post-injury time window when exercise has been found to elicit beneficial effects. Rats underwent a mild fluid percussion injury and were exercised at post-injury days 28-32 and 35-39. Cardiac and temperature autonomic function were evaluated. Hippocampal tissue was obtained immediately after exercise for analysis of BDNF. In contrast to the sub-acute period, corticosterone and adrenocorticotropic hormone responses to exercise were normalized in the TBI group. Irrespective of injury, forced exercise markedly stimulated the corticotrophic axis and did not increase BDNF. BDNF levels were increased with voluntary exercise in all animals. Rats exposed to forced exercise had lower activity levels during periods of non-exercise. This effect was more pronounced in the TBI rats. Cardiac and temperature autonomic responses to delayed exercise also recuperated. Rats with TBI that underwent forced exercise, however, had higher core body temperatures during experimental manipulations, thus suggesting that exposure to a potent stressor facilitates responsiveness to environmental stimulations.

  11. Brain-gut-adipose-tissue communication pathways at a glance. (United States)

    Yi, Chun-Xia; Tschöp, Matthias H


    One of the 'side effects' of our modern lifestyle is a range of metabolic diseases: the incidence of obesity, type 2 diabetes and associated cardiovascular diseases has grown to pandemic proportions. This increase, which shows no sign of reversing course, has occurred despite education and new treatment options, and is largely due to a lack of knowledge about the precise pathology and etiology of metabolic disorders. Accumulating evidence suggests that the communication pathways linking the brain, gut and adipose tissue might be promising intervention points for metabolic disorders. To maintain energy homeostasis, the brain must tightly monitor the peripheral energy state. This monitoring is also extremely important for the brain's survival, because the brain does not store energy but depends solely on a continuous supply of nutrients from the general circulation. Two major groups of metabolic inputs inform the brain about the peripheral energy state: short-term signals produced by the gut system and long-term signals produced by adipose tissue. After central integration of these inputs, the brain generates neuronal and hormonal outputs to balance energy intake with expenditure. Miscommunication between the gut, brain and adipose tissue, or the degradation of input signals once inside the brain, lead to the brain misunderstanding the peripheral energy state. Under certain circumstances, the brain responds to this miscommunication by increasing energy intake and production, eventually causing metabolic disorders. This poster article overviews current knowledge about communication pathways between the brain, gut and adipose tissue, and discusses potential research directions that might lead to a better understanding of the mechanisms underlying metabolic disorders.

  12. Omega-3 Fatty Acids Could Alleviate the Risks of Traumatic Brain Injury – A Mini Review

    Directory of Open Access Journals (Sweden)

    Parvathy R. Kumar


    Full Text Available Traumatic brain injury (TBI is an acquired brain trauma that occurs when any sudden trauma/injury causes damage to the brain. TBI is characterized by tissue damage and imbalance in the cerebral blood flow and metabolism. It has been established through laboratory experiments that the dietary supplementation of omega-3 fatty acids (FAs could reduce the oxidative stress developed in brain due to TBI. The inclusion of omega-3 FA in diet could normalize the levels of brain-derived neurotrophic factor (BDNF, and thus, it could restore the survival of neuronal cells. BDNF improves the synaptic transmission by regulating synapsin 1 and cyclic adenosine monophosphate (cAMP response element binding protein. The brain tissue analysis of TBI models supplemented with omega-3 polyunsaturated fatty acids (PUFAs showed significantly reduced lipid peroxidation, nucleic acid and protein oxidation, thereby promoting neuronal and glial cell survival. Thus, omega-3 FA intake could be considered as a therapeutic option to reduce the secondary neuronal damages initiated by TBI.

  13. Pesticide residues in brain tissues of dairy cattle in Lembang

    Directory of Open Access Journals (Sweden)



    Full Text Available The use of pesticides to control plant diseases may cause residual formation in crops, its byproduct and environmental. Furthermore, the use of agriculture byproduct as animal feed may cause poisoning or residual formation in animal products. The purpose of this study is to investigate of pesticide residues in brain tissues of dairy cattle in relation to animal feed as a contamination source. Samples consisted of animal feeds (19 samples of fodder and 6 samples of feed, 31 samples of sera and 25 samples of brain tissues of dairy cattle collected from Lembang, West Java. Feeds and fodders were collected from dairy farms located in Lembang. Sera were directly collected from 31 heads of Frisien Holstein (FH cattle from the same location, while brain tissues of FH cattle were collected from a local animal slaughtering house. Pesticide residues were analysed using gas chromatography (GC. Both residues of organochlorines and organophosphates were detected from brain tissues with average residue concentration OP was 22.7 ppb and OC was 5.1 ppb and a total residue was 27.8 ppb. The pesticide residues in brain tissues are new information that should be taken into consideration since the Indonesian consumed this tissues as an oval. Although pesticides residue concentration was low, pathological changes were noted microscopically from the brain tissues including extracellular vacuolisation, focal necrosis, haemorrhages, dilatation of basement membrane without cellular infiltration. Both pesticide residues were also detected in sera, where OP (9.0 ppb was higher than OC (4.9 ppb. These pesticides were also detected in animal feeds consisting fodders and feeds. Residues of OP (12.0 ppb were higher than OC (1.8 ppb in feeds, but residues of OP (16.8 ppb were lower than OC (18.7 ppb in fodders. Although, pesticide residues in sera and brain tissues were below the maximum residue limits (MRL of fat, the presence of pesticides in brain tissues should be taken

  14. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat (United States)

    Hanlon, Lauren A.; Huh, Jimmy W.


    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  15. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco


    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  16. BDNF polymorphism predicts general intelligence after penetrating traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Elham Rostami

    Full Text Available Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF, a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI. Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI (n = 109 and non-head injured controls (n = 38 for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT at three different time periods: pre-injury on induction into the military, Phase II (10-15 years post-injury, and Phase III (30-35 years post-injury. Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery.

  17. Serum sodium disorders in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Paiva WS


    Full Text Available Wellingson Silva Paiva, Douglas Alexandre França Bezerra, Robson Luis Oliveira Amorim, Eberval Gadelha Figueiredo, Wagner Malago Tavares, Almir Ferreira De Andrade, Manoel Jacobsen TeixeiraIntensive Care Unit, Division of Neurosurgery, Hospital Das Clinicas, University of São Paulo School of Medicine, São Paulo, BrazilAbstract: Sodium disorders are the most common and most poorly understood electrolyte disorders in neurological patients. The aim of this study was to determine the incidence of sodium disorders and its association with different traumatic brain injuries. This prospective study was conducted in 80 patients diagnosed with moderate and severe traumatic brain injuries. All patients underwent cerebral computed tomography. Incidence of sodium disorders, presence of injuries in the first computed tomography after traumatic brain injury, and level of consciousness were analyzed. Patients that presented other potential causes of sodium disorders and systemic trauma were excluded from the study. The incidence of sodium disturbances was 45%: 20 patients presented hypernatremia and 16 hyponatremia. Refers to all patients with sodium disturbances 53% were detected in the first sample. We recorded at least one measurement <125 mEq/L in 50% of the patients with hyponatremia. A greater incidence of sodium disorders was found in patients with subdural, intracerebral hematoma and with diffuse axonal injury. The incidence of sodium disorders among the patients with diffuse lesions was greater than in the group of patients with brain contusion (P = 0.022. The incidence of sodium disorders is higher in patients with diffuse traumatic brain injuries. No association was found between focal lesions and proportion of sodium disorders.Keywords: brain trauma, hypernatremia, hyponatremia

  18. The neuropathology and neurobiology of traumatic brain injury

    National Research Council Canada - National Science Library

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik


    ... both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE...

  19. The Effects of Creatine Supplementation and Physical Exercise on Traumatic Brain Injury. (United States)

    Freire Royes, Luiz Fernando; Cassol, Gustavo


    Traumatic brain injury (TBI) is a devastating disease frequently followed by significant behavioral disabilities and long-term medical complications that include a wide range of behavioral and emotional problems. TBI is characterized by a combination of immediate mechanical dysfunction of brain tissue and secondary damage developed over a longer period of time following the injury. The early inflammatory response after tissue injury can be triggered by several factors such as extravasated blood products and reactive oxygen species (ROS). It is important to note that energy generation and mitochondrial function are closely related to and interconnected with delayed secondary manifestations of brain injury, including early neuromotor dysfunction, cognitive impairment and post-traumatic epilepsy (PTE). Given the extent of post-traumatic changes in neuronal function and the possibility of amplifying secondary cascades, different therapies designed to minimize damage and retain/restore cellular function after TBI are currently being studied. In this context, the present review covers the preclinical and clinical literature investigating the role of inflammation and free radicals in secondary damage generated by several models of TBI. Furthermore, the present review aims to discuss the role of creatine, a guanidine compound popularly used as a performance-enhancing supplement for high-intensity athletic performance, in secondary damage induced by TBI. In this narrative review, we also discuss the beneficial effect of exercise performed in animal models of TBI and how the results from animal studies can be applied to clinical settings.

  20. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji


    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  1. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury

    DEFF Research Database (Denmark)

    Larsen, Agnete; Kolind, Kristian; Pedersen, Dan Sonne


    Traumatic brain injury results in loss of neurons caused as much by the resulting neuroinflammation as by the injury. Gold salts are known to be immunosuppressive, but their use are limited by nephrotoxicity. However, as we have proven that implants of pure metallic gold release gold ions which d...... a completely new medical concept that bypasses the blood-brain-barrier and allows direct drug delivery to inflamed brain tissue....

  2. Investigating the changes in Inhibitory Neurons following two different models of Traumatic Brain Injury


    Carron, Simone Francina


    Different forms of Traumatic brain injury (TBI) disrupt brain excitation/inhibition balance. This thesis examined changes in brain inhibition following two different types of brain injury and its consequences on behaviour. A key finding of this thesis is that particular forms of inhibition are altered after trauma confirming that susceptibility of brain inhibitory cells to trauma is brain area specific, injury type and time dependent. These findings have important implicatio...

  3. Digital tissue and what it may reveal about the brain. (United States)

    Morgan, Josh L; Lichtman, Jeff W


    Imaging as a means of scientific data storage has evolved rapidly over the past century from hand drawings, to photography, to digital images. Only recently can sufficiently large datasets be acquired, stored, and processed such that tissue digitization can actually reveal more than direct observation of tissue. One field where this transformation is occurring is connectomics: the mapping of neural connections in large volumes of digitized brain tissue.

  4. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain.


    Oliver, C N; Starke-Reed, P E; Stadtman, E. R.; Liu,G.J.; Carney, J M; Floyd, R A


    Free radical-mediated oxidative damage has been implicated in tissue injury resulting from ischemia/reperfusion events. Global cortical ischemia/reperfusion injury to Mongolian gerbil brains was produced by transient occlusion of both common carotid arteries. Protein oxidation, as measured by protein carbonyl content, increased significantly during the reperfusion phase that followed 10 min of ischemia. The activity of glutamine synthetase, an enzyme known to be inactivated by metal-catalyzed...

  5. Measurement of Steroid Concentrations in Brain Tissue: Methodological Considerations (United States)

    Taves, Matthew D.; Ma, Chunqi; Heimovics, Sarah A.; Saldanha, Colin J.; Soma, Kiran K.


    It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer’s disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for “steroid profiling.” Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels). We also present reference values for a variety of steroids in different brain regions of adult rats. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other steroidogenic tissues, such as thymus, breast, and prostate. PMID:22654806

  6. Carcinoma cells misuse the host tissue damage response to invade the brain (United States)

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias


    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis. PMID:23832647

  7. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury (United States)

    Hay, Jennifer; Johnson, Victoria E.; Smith, Douglas H.; Stewart, William


    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of non-boxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article. PMID:26772317

  8. Early Bifrontal Brain Injury: Disturbances in Cognitive Function Development

    Directory of Open Access Journals (Sweden)

    Christine Bonnier


    Full Text Available We describe six psychomotor, language, and neuropsychological sequential developmental evaluations in a boy who sustained a severe bifrontal traumatic brain injury (TBI at 19 months of age. Visuospatial, drawing, and writing skills failed to develop normally. Gradually increasing difficulties were noted in language leading to reading and spontaneous speech difficulties. The last two evaluations showed executive deficits in inhibition, flexibility, and working memory. Those executive abnormalities seemed to be involved in the other impairments. In conclusion, early frontal brain injury disorganizes the development of cognitive functions, and interactions exist between executive function and other cognitive functions during development.

  9. Misconceptions on neuropsychological rehabilitation and traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Alberto García- Molina


    Full Text Available There are many misconceptions about traumatic brain injuries, their recovery and outcome; misconceptions that have their origin in a lack of information influenced by the image that the media show of the brain damage. Development. Based on clinical experience, the authors of this essay sets out his personal view on some of the most frequent misconceptions in the field of neuropsychological rehabilitation of traumatic brain injury: 1 All deficits are evident; 2 The recovery depends mainly on the involvement of the patient: more effort, more rapid recovery; 3 Two years after traumatic brain injury there is no possibility of improvement and recovery; and 4 The “miracle” of recovery will occur when is found the appropriate professional or treatment. These and other beliefs may influence directly or indirectly on the recovery process and the expectations placed on it by the families and patients. Conclusions. Provide accurate, clear and honest information, at the right time, helps patients and their families to better understand the deficits, the course of recovery and to adapt to the new reality resulting from a traumatic brain injury.

  10. Comparison of brain perfusion SPECT abnormalities with anatomical imaging in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Majid Asadi


    Full Text Available Background: Trauma is the most common cause of morbidity and mortality in industrialized countries and also in Iran. Anatomical imaging (AI CT and MRI is helpful in the diagnosis of acute traumatic complications however it is not efficient in the diagnosis of disabling injury syndrome. In contrast, brain perfusion SPECT (Single Photon Emission Computed Tomography can be more useful for evaluation of microvascular structure. This study was designed to compare these two diagnostic methods. Methods: A total of 50 patients who had been suffering from traumatic brain injury for more than 1 year, and were followed as mild traumatic brain injury group according to “the Brain Injury Interdisciplinary Special Interest Group of the Ameri can Congress of Rehabilitation Medicine” criteria, were examined by brain perfusion SPECT and AI. The common anatomical classification of the lobes of brain was used. Results: The male to female ratio was 3:2. The mean age was 32.32±11.8 years and mean post-traumatic time was 1.48±0.65 years. The most common symptoms were headache (60%, agusia (36% and anosmia (32%. Among 400 examined brain lobes in this study, brain perfusion SPECT revealed remarkable abnormality in 76 lobes (19%, but AI determined abnormalities in 38 lobes (9.5% therefore, SPECT was twice sensitive than AI in mild traumatic brain injury (P<0.001. The correlation between SPECT and AI findings was 84%. SPECT was more sensitive than AI in demonstrating brain abnormalities in frontal lobe it was more obvious in the male group however, there was no significant difference between more and less than 30 years old groups. Conclusion: According to the findings of this study, we recommend using brain perfusion SPECT for all patients with chronic complications of head trauma, particularly those who have signs and symptoms of hypofrontalism, even though with some abnormalities in AI.

  11. Posttraumatic head injury resulting in spasticity disorders and oral injury: application of prosthodontic skills for tissue protection--a case report. (United States)

    Cohen, Harold V; Patel, Bhaven; DiPede, Louis A


    Patients who have experienced significant brain injury (such as hemorrhagic stroke or trauma) can suffer brain damage that leads to altered neurologic functioning. One such ill effect is the development of aberrant mandibular reflexes that may inflict serious trauma to oral and labial tissues. As primary oral health care providers, dental clinicians may be called upon to function as part of the medical team managing the patient. This case report reviews one such scenario in which the unique skills of trained specialists were used to provide a protective oral device to allow for tissue protection and healing.

  12. Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury

    NARCIS (Netherlands)

    F.K. Korley (Frederick K.); R. Diaz-Arrastia (Ramon); A.H.B. Wu (Alan H. B.); J.K. Yue (John); G. Manley (Geoffrey); H.I. Sair (Haris I.); J.E. van Eyk (Jennifer); A.D. Everett (Allen D.); D. Okonkwo (David); A.B. Valadka (Alex); W.A. Gordon (Wayne A.); A.I.R. Maas (Andrew I.R.); P. Mukherjee (Pratik); E.L. Yuh (Esther); H.F. Lingsma (Hester); A.M. Puccio (Ava); D.M. Schnyer (David)


    textabstractBrain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency

  13. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury.

    NARCIS (Netherlands)

    Shumskaya, E.; Andriessen, T.; Norris, David Gordon; Vos, P.E.


    Objectives: To evaluate the whole-brain resting-state networks in a homogeneous group of patients with acute mild traumatic brain injury (MTBI) and to identify alterations in functional connectivity induced by MTBI. Methods: Thirty-five patients with acute MTBI and 35 healthy control subjects,

  14. Brain network dysregulation, emotion, and complaints after mild traumatic brain injury

    NARCIS (Netherlands)

    van der Horn, Harm J.; Liemburg, Edith J.; Scheenen, Myrthe E.; de Koning, Myrthe E.; Marsman, Jan-Bernard C.; Spikman, Jacoba M.; van der Naalt, Joukje

    ObjectivesTo assess the role of brain networks in emotion regulation and post-traumatic complaints in the sub-acute phase after non-complicated mild traumatic brain injury (mTBI). Experimental designFifty-four patients with mTBI (34 with and 20 without complaints) and 20 healthy controls

  15. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang


    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  16. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha


    We have previously demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, can improve survival after hemorrhagic shock (HS), protect neurons from hypoxia-induced apoptosis, and attenuate the inflammatory response. We have also shown that administration of 6% hetastarch (Hextend [...... [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  17. Music interventions for acquired brain injury. (United States)

    Magee, Wendy L; Clark, Imogen; Tamplin, Jeanette; Bradt, Joke


    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, and sensory processing, and in emotional disturbances, which can severely reduce a survivor's quality of life. Music interventions have been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions, and sensory perceptions. An update of the systematic review published in 2010 was needed to gauge the efficacy of music interventions in rehabilitation for people with ABI. To assess the effects of music interventions for functional outcomes in people with ABI. We expanded the criteria of our existing review to: 1) examine the efficacy of music interventions in addressing recovery in people with ABI including gait, upper extremity function, communication, mood and emotions, cognitive functioning, social skills, pain, behavioural outcomes, activities of daily living, and adverse events; 2) compare the efficacy of music interventions and standard care with a) standard care alone, b) standard care and placebo treatments, or c) standard care and other therapies; 3) compare the efficacy of different types of music interventions (music therapy delivered by trained music therapists versus music interventions delivered by other professionals). We searched the Cochrane Stroke Group Trials Register (January 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 6), MEDLINE (1946 to June 2015), Embase (1980 to June 2015), CINAHL (1982 to June 2015), PsycINFO (1806 to June 2015), LILACS (1982 to January 2016), and AMED (1985 to June 2015). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted relevant experts and music therapy associations to identify unpublished research. We imposed no language restriction. We performed the original search in 2009. We included all randomised controlled trials

  18. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Abdolreza Babaee


    Full Text Available Objective(s:Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis, as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg. All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P

  19. Brain volume loss contributes to arousal and empathy dysregulation following severe traumatic brain injury. (United States)

    Rushby, Jacqueline A; McDonald, Skye; Fisher, Alana C; Kornfeld, Emma J; De Blasio, Frances M; Parks, Nicklas; Piguet, Olivier


    Severe traumatic brain injury (TBI) often leads to deficits in physiological arousal and empathy, which are thought to be linked. This study examined whether injury-related brain volume loss in key limbic system structures is associated with these deficits. Twenty-four adults with TBI and 24 matched Controls underwent MRI scans to establish grey matter volumes in the amygdala, thalamus, and hippocampus. EEG and skin conductance levels were recorded to index basal physiological arousal. Self-report emotional empathy levels were also assessed. The TBI group had reduced brain volumes, topographic alpha differences, and lower emotional empathy compared to Controls. Regional brain volumes were differentially correlated to arousal and self-report empathy. Importantly, lower volume in pertinent brain structures correlated with lower empathy, for participants with and without TBI. Overall we provide new insights into empathic processes after TBI and their relationship to brain volume loss.

  20. Brain volume loss contributes to arousal and empathy dysregulation following severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jacqueline A. Rushby


    Full Text Available Severe traumatic brain injury (TBI often leads to deficits in physiological arousal and empathy, which are thought to be linked. This study examined whether injury-related brain volume loss in key limbic system structures is associated with these deficits. Twenty-four adults with TBI and 24 matched Controls underwent MRI scans to establish grey matter volumes in the amygdala, thalamus, and hippocampus. EEG and skin conductance levels were recorded to index basal physiological arousal. Self-report emotional empathy levels were also assessed. The TBI group had reduced brain volumes, topographic alpha differences, and lower emotional empathy compared to Controls. Regional brain volumes were differentially correlated to arousal and self-report empathy. Importantly, lower volume in pertinent brain structures correlated with lower empathy, for participants with and without TBI. Overall we provide new insights into empathic processes after TBI and their relationship to brain volume loss.

  1. Brain stimulation: Neuromodulation as a potential treatment for motor recovery following traumatic brain injury. (United States)

    Clayton, E; Kinley-Cooper, S K; Weber, R A; Adkins, D L


    There is growing evidence that electrical and magnetic brain stimulation can improve motor function and motor learning following brain damage. Rodent and primate studies have strongly demonstrated that combining cortical stimulation (CS) with skilled motor rehabilitative training enhances functional motor recovery following stroke. Brain stimulation following traumatic brain injury (TBI) is less well studied, but early pre-clinical and human pilot studies suggest that it is a promising treatment for TBI-induced motor impairments as well. This review will first discuss the evidence supporting brain stimulation efficacy derived from the stroke research field as proof of principle and then will review the few studies exploring neuromodulation in experimental TBI studies. This article is part of a Special Issue entitled SI:Brain injury and recovery. Copyright © 2016. Published by Elsevier B.V.

  2. Assessing Metabolism and Injury in Acute Human Traumatic Brain Injury with Magnetic Resonance Spectroscopy: Current and Future Applications

    Directory of Open Access Journals (Sweden)

    Matthew G. Stovell


    Full Text Available Traumatic brain injury (TBI triggers a series of complex pathophysiological processes. These include abnormalities in brain energy metabolism; consequent to reduced tissue pO2 arising from ischemia or abnormal tissue oxygen diffusion, or due to a failure of mitochondrial function. In vivo magnetic resonance spectroscopy (MRS allows non-invasive interrogation of brain tissue metabolism in patients with acute brain injury. Nuclei with “spin,” e.g., 1H, 31P, and 13C, are detectable using MRS and are found in metabolites at various stages of energy metabolism, possessing unique signatures due to their chemical shift or spin–spin interactions (J-coupling. The most commonly used clinical MRS technique, 1H MRS, uses the great abundance of hydrogen atoms within molecules in brain tissue. Spectra acquired with longer echo-times include N-acetylaspartate (NAA, creatine, and choline. NAA, a marker of neuronal mitochondrial activity related to adenosine triphosphate (ATP, is reported to be lower in patients with TBI than healthy controls, and the ratio of NAA/creatine at early time points may correlate with clinical outcome. 1H MRS acquired with shorter echo times produces a more complex spectrum, allowing detection of a wider range of metabolites.31 P MRS detects high-energy phosphate species, which are the end products of cellular respiration: ATP and phosphocreatine (PCr. ATP is the principal form of chemical energy in living organisms, and PCr is regarded as a readily mobilized reserve for its replenishment during periods of high utilization. The ratios of high-energy phosphates are thought to represent a balance between energy generation, reserve and use in the brain. In addition, the chemical shift difference between inorganic phosphate and PCr enables calculation of intracellular pH.13 C MRS detects the 13C isotope of carbon in brain metabolites. As the natural abundance of 13C is low (1.1%, 13C MRS is typically performed following

  3. Brain-computer interface after nervous system injury. (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A


    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  4. Sports-related mild traumatic brain injury in female youths


    Keightley, Michelle L.; Yule, Ashley; Garland, Kimberley; Reed, Nicholas; McAuliffe, Jim; Garton, Janice; Green, Stephanie; Taha, Tim


    Sports-related concussion or mild-traumatic brain injury (mTBI) is common in children who participate in organised sports. We describe two case studies involving 14-year-old girls who each sustained a mTBI during ice hockey competition. Neurocognitive functioning post-injury is compared to baseline pre-injury assessment on the same measures. Results from Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), Conners' Continuous Performance Test II (CPT-II) and the Attention Netw...

  5. Traumatic Brain Injury: Hope Through Research (United States)

    ... disorder associated with a variety of symptoms, including cognition and communication problems, motor disorders, problems with impulse ... nerve cells in the brain causing strange sensations, emotions, and behavior, or sometimes convulsions, muscle spasms, and ...

  6. [The undetected brain lesion in sports. Minor traumatic brain injury and its sequelae]. (United States)

    Biasca, N; Lovell, M R; Collins, M W; Jordan, B D; Matser, E; Weber, J; Slemmer, J E; Piccininni, P; Maxwell, W; Agosti, R; Wirth, S; Schneider, T O


    The minor traumatic brain injury (mTBI) in sports is often looked at as a bagatelle. The treating physician underestimates the severity of the injury suspecting that a mTBI is a nonstructural lesion with an overall excellent prognosis in the majority of the cases. This paper shows that the minor traumatic brain injury may be a structural brain lesion with potentially life-threatening dangers. The therapy should follow exactly defined guidelines, e.g., stepwise protocol of the Concussion in Sports (CIS-) Group. Return to sports activities should happen only when all physical but also cognitive symptoms have subsided. All mTBIs that have been sustained prior to the actual injury have to be recorded properly because repeated mTBIs may cause chronic degenerative brain damage. Neuropsychological testing will aid in the correct diagnosis of a mTBI and is a useful parameter in the course of the injury. In the future biochemical markers may serve as indicators of the severity of the brain injury and may also aid in predicting the outcome after TBI. Today biochemical markers do not serve as a substitute for neuroimaging.

  7. Coronaviruses in brain tissue from patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Dessau, R B; Lisby, G; Frederiksen, J L


    Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E and ...... in the proportion of positive signals from the MS patients compared to controls. Evidence for a chronic infection with the human coronaviruses strain 229E or OC43 in brain tissue from patients with MS or controls has not been found in this study.......Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E...... and three PCR assays with primers specific for the nucleocapsid protein of human coronavirus strain OC43 were performed. Sporadic positive PCR assays were observed in both patients and controls in some of the PCR assays. However, these results were not reproducible and there was no difference...

  8. Definition of Traumatic Brain Injury, Neurosurgery, Trauma Orthopedics, Neuroimaging, Psychology, and Psychiatry in Mild Traumatic Brain Injury. (United States)

    Pervez, Mubashir; Kitagawa, Ryan S; Chang, Tiffany R


    Traumatic brain injury (TBI) disrupts the normal function of the brain. This condition can adversely affect a person's quality of life with cognitive, behavioral, emotional, and physical symptoms that limit interpersonal, social, and occupational functioning. Although many systems exist, the simplest classification includes mild, moderate, and severe TBI depending on the nature of injury and the impact on the patient's clinical status. Patients with TBI require prompt evaluation and multidisciplinary management. Aside from the type and severity of the TBI, recovery is influenced by individual patient characteristics, social and environmental factors, and access to medical and rehabilitation services. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Script generation and the dysexecutive syndrome in patients with brain injury

    NARCIS (Netherlands)

    Boelen, Danielle H. E.; Allain, Philippe; Spikman, Jacoba M.; Fasotti, Luciano


    Objective: The authors investigated whether patients with brain injury suffering from dysexecutive symptoms had difficulties with script generation. Method: Forty-eight patients with brain injury of various etiology with complaints of executive dysfunctioning and deficient scores on executive tests

  10. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury

    NARCIS (Netherlands)

    Kampen, P.J. van; Martina, J.D.; Vos, P.E.; Hoedemaekers, C.W.E.; Hendricks, H.T.


    BACKGROUND: Heterotopic ossification (HO) is a frequent complication after traumatic brain injury (TBI). The current preliminary study is intended to provide additional data on the potential roles that brain injury severity, concomitant orthopaedic trauma, and specific intensive care complicating

  11. Environmental Enrichment, Performance, and Brain Injury in Male and Female Rats (United States)


    brain resulting from externally-inflicted trauma. Traumatic brain injuries principally result from vehicular incidents, falls, and sports injuries (NIH...neurodevelopmental disorders characterized by deficits in processing novel information (e.g., autism ). 141 Table 8. Summary of Major

  12. Injury versus non-injury factors as predictors of post-concussive symptoms following mild traumatic brain injury in children (United States)

    McNally, Kelly A.; Bangert, Barbara; Dietrich, Ann; Nuss, Kathy; Rusin, Jerome; Wright, Martha; Taylor, H. Gerry; Yeates, Keith Owen


    Objective To examine the relative contributions of injury characteristics and non-injury child and family factors as predictors of postconcussive symptoms (PCS) following mild traumatic brain injury (TBI) in children. Methods Participants were 8- to 15-year-old children, 186 with mild TBI and 99 with mild orthopedic injuries (OI). Parents and children rated PCS shortly after injury and at 1, 3, and 12 months post-injury. Hierarchical regression analyses were conducted to predict PCS from (1) demographic variables; (2) pre-morbid child factors (WASI IQ; WRAT-3 Reading; Child Behavior Checklist; ratings of pre-injury PCS); (3) family factors (Family Assessment Device General Functioning Scale; Brief Symptom Inventory; and Life Stressors and Social Resources Inventory); and (4) injury group (OI, mild TBI with loss of consciousness [LOC] and associated injuries [AI], mild TBI with LOC but without AI, mild TBI without LOC but with AI, and mild TBI without LOC or AI) Results Injury group predicted parent and child ratings of PCS but showed a decreasing contribution over time. Demographic variables consistently predicted symptom ratings across time. Premorbid child factors, especially retrospective ratings of premorbid symptoms, accounted for the most variance in symptom ratings. Family factors, particularly parent adjustment, consistently predicted parent, but not child, ratings of PCS. Conclusions Injury characteristics predict PCS in the first months following mild TBI but show a decreasing contribution over time. In contrast, non-injury factors are more consistently related to persistent PCS. PMID:23356592

  13. Psychiatric sequelae of traumatic brain injury: Retrospective ...

    African Journals Online (AJOL)

    Information obtained included the sociodemographic characteristics, type of injury, durations of unconsciousness (LOC) and posttraumatic amnesia (PTA), psychiatric and psychoactive substance use history. Psychiatric diagnosis was based on the criteria of the 10th edition of the International Classification of Diseases ...

  14. NINDS Traumatic Brain Injury Information Page (United States)

    ... understanding), and behavior or mental health (depression, anxiety, personality changes, aggression, acting out, and social inappropriateness). More serious head injuries may result in stupor, an unresponsive state, but one in which an individual can be aroused briefly by a strong stimulus, ...

  15. Traumatic Brain Injury (TBI) in Kids (United States)

    ... common form of TBI is concussion. 1 A concussion can happen when the head or body is moved back and forth quickly, such as during a motor vehicle accident or sports injury. Concussions are often called "mild TBI" because they are ...

  16. Cognitive Rehabilitation for Mild Traumatic Brain Injury (United States)


    controlled trial. Archives of Physical Medicine and Rehabilitation, 88, 1561-1573. Ehlhardt, L.A., Sohlberg, M.M., Glang, A., & Albin , R. (2005). TEACH... activities that could lead to secondary injury; and, using aggressive medical treatment to ameliorate symptoms (e.g., headache, sleep disturbance... physical therapists, physiatrists, neurologists, psychiatrists, general practitioners, clinical psychologists, audiologists, and nurses reflecting a

  17. Pathological and immunohistochemical study of lethal primary brain stem injuries

    Directory of Open Access Journals (Sweden)

    Rongchao Sun


    Full Text Available Abstract Background Many of the deaths that occur shortly after injury or in hospitals are caused by mild trauma. Slight morphological changes are often found in the brain stems of these patients during autopsy. The purpose of this study is to investigate the histopathological changes involved in primary brain stem injuries (PBSI and their diagnostic significance. Methods A total of 65 patients who had died of PBSI and other conditions were randomly selected. They were divided into 2 groups, an injury group (25 cases and a control group (20 cases. Slides of each patient’s midbrain, pons, and medulla oblongata were prepared and stained with HE, argentaffin, and immunohistochemical agents (GFAP, NF, amyloid-ß, MBP. Under low power (×100 and NF staining, the diameter of the thickest longitudinal axon was measured at its widest point. Ten such diameters were collected for each part of the brain (midbrain, pons, and medulla oblongata. Data were recorded and analyzed statistically. Results Brain stem contusions, astrocyte activity, edema, and pathological changes in the neurons were visibly different in the injury and control groups (P P  Conclusions These histopathological changes may prove beneficial to the pathological diagnosis of PBSI during autopsy. The measurement of axon diameters provides a referent quantitative index for the diagnosis of the specific causes of death involved in PBSI. Virtual Slides The virtual slide(s for this article can be found here:

  18. Ginsenoside Rg1 improves ischemic brain injury by balancing ...

    African Journals Online (AJOL)

    autophagy inhibitors decreased the mitochondrial protective effects exerted by Rg1 in OGD SK-N-SH cells. Conclusion: Rg1 improves mitochondrial dysfunction by regulating autophagy in mitochondria. Thus, it may offer protection from brain injuries ... in imbalance in intracellular redox metabolism and eventually extensive ...

  19. Misconceptions about traumatic brain injuries among South African ...

    African Journals Online (AJOL)

    Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs) harboured by university students. Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered ...

  20. Oxidative stress following traumatic brain injury: enhancement of ...

    African Journals Online (AJOL)

    Background: Management of brain injury can pose enormous challenges to the health team. There are many studies aimed at discovering or developing pharmacotherapeutic agents targeted at improving outcome of head-injured patients. This paper reviews the role of oxidative stress in neuronal loss following traumatic ...

  1. [Scandinavian guidelines for prehospital management of severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sollid, S.; Sundstrom, T.; Kock-Jensen, C.


    . Evidence-based guidelines already exist that focus on all steps in the process. In the present article members of the Scandinavian Neurotrauma Committee present recommendations on prehospital management of traumatic brain injury adapted to the infrastructure of the Nordic region Udgivelsesdato: 2008/6/26...

  2. School-Based Traumatic Brain Injury and Concussion Management Program (United States)

    Davies, Susan C.


    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  3. Recovery from mild traumatic brain injury: a focus on fatigue.

    NARCIS (Netherlands)

    Stulemeijer, M.; Werf, S.P. van der; Bleijenberg, G.; Biert, J.; Brauer, J.; Vos, P.E.


    BACKGROUND: Fatigue is one of the most frequently reported symptoms after Mild Traumatic Brain Injury (MTBI). To date, systematic and comparative studies on fatigue after MTBI are scarce, and knowledge on causal mechanisms is lacking. OBJECTIVES: To determine the severity of fatigue six months after

  4. Traumatic Brain Injury and Metabolic Dysfunction Among Head ...

    African Journals Online (AJOL)

    Traumatic Brain Injury (TBI) is a common health problem which is one of the main causes of chronic disability and it is associated with hormonal and metabolic disorders. This work was carried out to investigate the relationship between some stress hormones (i.e. prolactin and cortisol) and plasma glucose level in TBI.

  5. Effective protection of rabbits' explosive brain injury through blocking ...

    African Journals Online (AJOL)

    Background: The gap junction plays an important role in spreading of apoptotic and necrotic signals from injured and stressed cells to the neighboring viable cells. The present study was performed to investigate the important role of gap junction communication on rabbits' explosive brain injury. Methods: Explosion of paper ...

  6. Adolescents\\' experience of a parental traumatic brain injury | Harris ...

    African Journals Online (AJOL)

    This study explores the experiences of four adolescents, each living with a parent who has sustained a traumatic brain injury, against the theoretical backdrop of existential-phenomenological psychology. In-depth interviews were conducted and analysed within the context of the existential phenomenology, in an attempt to ...

  7. Demographic profile of severe traumatic brain injury admissions to ...

    African Journals Online (AJOL)

    2 School of Child and Adolescent Health, Division of Neurosurgery, Department of Surgery, Red Cross War Memorial Children's Hospital,. Cape Town, South Africa. Corresponding author: L E Schrieff ( Background. Paediatric traumatic brain injury (PTBI) is a major public health problem. However ...

  8. Social dysfunction after pediatric traumatic brain injury: a translational perspective (United States)

    Ryan, Nicholas P.; Catroppa, Cathy; Godfrey, Celia; Noble-Haeusslein, Linda J.; Shultz, Sandy R.; O'Brien, Terence J.; Anderson, Vicki; Semple, Bridgette D.


    Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the emergence, development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI. PMID:26949224

  9. Brain injury and severe eating difficulties at admission

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette; Kaae Kristensen, Hanne

    with acquired brain injury were interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Results: Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating...

  10. Traumatic Brain Injury and Special Education: An Information Resource Guide. (United States)

    Stevens, Alice M.

    This resource guide of annotated references on traumatic brain injury (TBI) was created to help educators locate information from such disciplines as neurology, neuropsychology, rehabilitation, and pediatric medicine. Twenty-four resources published from 1990 to 1994 are listed, with annotations. The resources include research reports/reviews,…

  11. Issues of cultural diversity in acquired brain injury (ABI) rehabilitation. (United States)

    Lequerica, Anthony; Krch, Denise


    With the general population in the United States becoming increasingly diverse, it is important for rehabilitation professionals to develop the capacity to provide culturally sensitive treatment. This is especially relevant when working with minority populations who have a higher risk for brain injury and poorer rehabilitation outcomes. This article presents a number of clinical vignettes to illustrate how cultural factors can influence behavior in patients recovering from brain injury, as well as rehabilitation staff. The main objectives are to raise awareness among clinicians and stimulate research ideas by highlighting some real world examples of situations where a specialized, patient-centered approach needs to consider factors of cultural diversity. Because one's own world view impacts the way we see the world and interpret behavior, it is important to understand one's own ethnocentrism when dealing with a diverse population of patients with brain injury where behavioral sequelae are often expected. Being able to see behavior after brain injury with an open mind and taking into account cultural and contextual factors is an important step in developing culturally competent rehabilitation practices.

  12. Headache in traumatic brain injuries from blunt head trauma


    Chelse, Ana B.; Epstein, Leon G.


    Investigators from New York Presbyterian Morgan Stanley Children’s Hospital examined whether having an isolated headache following minor blunt head trauma was suggestive of traumatic brain injury (TBI) among a large cohort of children 2-18 years of age.

  13. Fluoxetine as a treatment for emotional lability after brain injury. (United States)

    Sloan, R L; Brown, K W; Pentland, B


    Emotional lability or emotionalism is a relatively common phenomenon and frequently occurs following vascular or traumatic brain injury. It is distressing and embarrassing to sufferers and their families, and often interferes with rehabilitation. At present there is no satisfactory or reliable treatment for this condition. We describe an open trial using fluoxetine, a newer antidepressant with a specific serotonergic action, in the treatment of emotional lability due to brain injury. Six consecutive cases of emotional lability attending a rehabilitation unit were studied (five cases of cerebrovascular accident and one of traumatic brain injury). Response to treatment was measured using a modification of the scale described by Lawson and MacLeod [1]. All showed a marked improvement within one week of commencing fluoxetine and the drug was well tolerated with no reported side-effects. The speed of onset and degree of improvement suggest that fluoxetine may be a useful agent in the treatment of emotional lability due to brain injury. Our observations indicate that further investigation of the role of fluoxetine in the treatment of emotional lability is warranted.

  14. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton


    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  15. Psychosocial consequences of mild traumatic brain injury in children

    DEFF Research Database (Denmark)

    Keightley, Michelle L; Côté, Pierre; Rumney, Peter


    OBJECTIVE: To synthesize the best available evidence regarding psychosocial consequences of mild traumatic brain injury (MTBI) in children. DATA SOURCES: MEDLINE, Embase, CINAHL, PsycINFO, and SPORTDiscus were searched (2001-2012). Inclusion criteria included published peer-reviewed reports...

  16. Assisting Students with a Traumatic Brain Injury in School Interventions (United States)

    Aldrich, Erin M.; Obrzut, John E.


    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  17. Swallowing Disorders in Severe Brain Injury in the Arousal Phase. (United States)

    Bremare, A; Rapin, A; Veber, B; Beuret-Blanquart, F; Verin, E


    The objective of this study was to determine the clinical characteristics of swallowing disorders in severe brain injury in the arousal phase after coma. Between December 1, 2013 and June 30, 2014, eleven patients with severe acquired brain injury who were admitted to rehabilitation center (Male 81.8 %; 40.7 ± 14.6 years) were included in the study. Evaluation of swallowing included a functional examination, clinical functional swallowing test, and naso-endoscopic swallowing test. All patients had swallowing disorders at admission. The first functional swallowing test showed oral (77.8 %) and pharyngeal (66.7 %) food bolus transport disorders; and alterations in airway protection mechanisms (80 %). Swallowing test under endoscopic control showed a disorder in swallowing coordination in 55.6 % of patients tested. Seven (63.6 %) patients resumed oral feeding within an average of 6 weeks after admission to rehabilitation center and 14 weeks after acquired brain injury. Six (85.7 %) of these seven patients continued to require modified solid and liquid textures. Swallowing disorders are a major concern in severe brain injury in the arousal phase. Early bedside assessment of swallowing is essential for detection of swallowing disorders to propose appropriate medical rehabilitation care to these patients in a state of altered consciousness.

  18. Traumatic Brain Injury and Metabolic Dysfunction Among Head ...

    African Journals Online (AJOL)

    Traumatic Brain Injury (TBI) is a common health problem which is one of the main causes of chronic disability and it is associated with hormonal and metabolic disorders. This work was carried out to investigate the relationship between some stress hormones (i.e. prolactin and cortisol) and plasma glucose level in TBI ...

  19. Assessment of Cerebral Hemodynamics in Traumatic Brain Injury (United States)


    haemorrhage, and 6 with subarach- noid hemorrhage from ruptured aneurysm . There were 4 cases of cerebral contusions and a single case of traumatic...B. Goldstein, 2003: Significance of Intracranial Pressure Pulse Morphology in Pediatric Traumatic Brain Injury. IEEE, 2491-2494. Anile, C., H. D

  20. Cognitive Task Demands and Discourse Performance after Traumatic Brain Injury (United States)

    Byom, Lindsey; Turkstra, Lyn S.


    Background: Social communication problems are common in adults with traumatic brain injury (TBI), particularly problems in spoken discourse. Social communication problems are thought to reflect underlying cognitive impairments. Aims: To measure the contribution of two cognitive processes, executive functioning (EF) and theory of mind (ToM), to the…

  1. Sex, Gender, and Traumatic Brain Injury: A Commentary. (United States)

    Colantonio, Angela


    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. The spectrum and outcome of paediatric traumatic brain injury in ...

    African Journals Online (AJOL)

    ... of traumatic brain injury (TBI) in children and adolescents and to compare it with previous audits from our local environment and from other developing world centres. All TBI patients admitted to hospital were included in this study. We reviewed the age, gender, outcomes, radiological findings and treatment of the patients.

  3. Misconceptions about traumatic brain injuries among South African ...

    African Journals Online (AJOL)

    TBIs relate to the use of seatbelts, the effects of unconsciousness, what individuals with TBIs are ... Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs) harboured by university students. Method. .... students from the psychology honours class to determine which. Table 1.

  4. A patients perspective on eating difficulties following brain injury

    DEFF Research Database (Denmark)

    Kjaersgaard, Annette; Kristensen, Hanne Kaae; Borg, Tove

    Purpose: The aim of this study is to explore and interpret how persons with acquired brain injury (ABI) experience and adapt to reduced abilities to swallowing and eating - and clinical implications. Method: Explorative multiple-case study with qualitative interviews of six persons following ABI ...

  5. Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury. (United States)

    Sala, Nathalie; Suys, Tamarah; Zerlauth, Jean-Baptiste; Bouzat, Pierre; Messerer, Mahmoud; Bloch, Jocelyne; Levivier, Marc; Magistretti, Pierre J; Meuli, Reto; Oddo, Mauro


    Growing evidence suggests that endogenous lactate is an important substrate for neurons. This study aimed to examine cerebral lactate metabolism and its relationship with brain perfusion in patients with severe traumatic brain injury (TBI). A prospective cohort of 24 patients with severe TBI monitored with cerebral microdialysis (CMD) and brain tissue oxygen tension (PbtO2) was studied. Brain lactate metabolism was assessed by quantification of elevated CMD lactate samples (>4 mmol/L); these were matched to CMD pyruvate and PbtO2 values and dichotomized as glycolytic (CMD pyruvate >119 μmol/L vs. low pyruvate) and hypoxic (PbtO2 <20 mm Hg vs. nonhypoxic). Using perfusion computed tomography (CT), brain perfusion was categorized as oligemic, normal, or hyperemic, and was compared with CMD and PbtO2 data. Samples with elevated CMD lactate were frequently observed (41±8%), and we found that brain lactate elevations were predominantly associated with glycolysis and normal PbtO2 (73±8%) rather than brain hypoxia (14±6%). Furthermore, glycolytic lactate was always associated with normal or hyperemic brain perfusion, whereas all episodes with hypoxic lactate were associated with diffuse oligemia. Our findings suggest predominant nonischemic cerebral extracellular lactate release after TBI and support the concept that lactate may be used as an energy substrate by the injured human brain.

  6. Crash Simulator: Brain-and-Spine Injury Mechanics (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.


    Recently, the first author has proposed a new coupled loading-rate hypothesis as a unique cause of both brain and spinal injuries, which states that they are both caused by a Euclidean jolt, an impulsive loading that strikes head and spine (or, any other part of the human body)- in several coupled degrees-of-freedom simultaneously. Injury never happens in a single direction only, nor is it ever caused by a static force. It is always an impulsive translational plus rotational force. The Euclidean jolt causes two basic forms of brain, spine and other musculo-skeletal injuries: (i) localized translational dislocations; and (ii) localized rotational disclinations. In the present Chapter, we first review this unique mechanics of a general human mechanical injury, and then describe how it can be predicted and controlled by a crash simulator toolbox. This rigorous Matlab toolbox has been developed using an existing thirdparty toolbox DiffMan, for accurately solving differential equations on smooth manifolds and mechanical Lie groups. The present crash simulator toolbox performs prediction/control of brain and spinal injuries within the framework of the Euclidean group SE(3) of rigid motions in our natural 3-dimensional space.

  7. The use of accident reconstruction for the analysis of traumatic brain injury due to head impacts arising from falls. (United States)

    Doorly, M C; Gilchrist, M D


    Brain injury is the leading cause of death in those aged under 45 years in both Europe and the USA. The objective of this research is to reconstruct and analyse real world cases of accidental head injury, thereby providing accurate data, which can be used subsequently to develop clinical tolerance levels associated with particular traumatic injuries and brain lesions. This paper looks at using numerical modelling techniques, namely multibody body dynamics and finite element methods, to reconstruct two real-life accident cases arising from falls. Preliminary results show the levels of acceleration of the head and deformation of brain tissue correspond well to those found by other researchers, suggesting that this method is suitable for modeling head-injury accidents.

  8. ‘Repair’ Treg Cells in Tissue Injury

    Directory of Open Access Journals (Sweden)

    Chaoqi Zhang


    Full Text Available Studies in mice and humans have elucidated an important role for Tregs in promoting tissue repair and restoring tissue integrity. Emerging evidence has revealed that Tregs promoted wound healing and repair processes at multiple tissue sites, such as the heart, liver, kidney, muscle, lung, bone and central nervous system. The localization of repair Tregs in the lung, muscle and liver exhibited unique phenotypes and functions. Epidermal growth factor receptor, amphiregulin, CD73/CD39 and keratinocyte growth factor are important repair factors that are produced or expressed by repair Tregs; these factors coordinate with parenchymal cells to limit injury and promote repair. In addition, repair Tregs can be modulated by IL-33/ST2, TCR signals and other cytokines in the context of injured microenvironment cues. In this review, we provide an overview of the emerging knowledge about Treg-mediated repair in damaged tissues and organs.

  9. Consequences of traumatic brain injury for human vergence dynamics. (United States)

    Tyler, Christopher W; Likova, Lora T; Mineff, Kristyo N; Elsaid, Anas M; Nicholas, Spero C


    Traumatic brain injury involving loss of consciousness has focal effects in the human brainstem, suggesting that it may have particular consequences for eye movement control. This hypothesis was investigated by measurements of vergence eye movement parameters. Disparity vergence eye movements were measured for a population of 123 normally sighted individuals, 26 of whom had suffered diffuse traumatic brain injury (dTBI) in the past, while the remainder served as controls. Vergence tracking responses were measured to sinusoidal disparity modulation of a random-dot field. Disparity vergence step responses were characterized in terms of their dynamic parameters separately for the convergence and divergence directions. The control group showed notable differences between convergence and divergence dynamics. The dTBI group showed significantly abnormal vergence behavior on many of the dynamic parameters. The results support the hypothesis that occult injury to the oculomotor control system is a common residual outcome of dTBI.

  10. Penetrating brain injury with a bike key: a case report. (United States)

    Das, Joe M; Chandra, Satheesh; Prabhakar, Rajmohan B


    Penetrating brain injury (PBI) may be caused by low-velocity or high-velocity objects. Several objects are known to cause such injury ranging from knives to rooster pecks. However, an assault with the key of a bike causing PBI has not been reported in the literature. The objective of this study was to report the case of a 21-year-old male patient, who presented after an assault with a bike key. The key was impacted in the left parietal region. Left parietal craniotomy was done and the key was removed. There was an underlying parenchymal contusion, which was excised. On post-operative day two, the patient developed motor aphasia, which subsided in subsequent days with antiedema measures. At the first month follow-up, the patient was having normal speech and consciousness. Prompt treatment of penetrating brain injury is important and angiography is not always necessary for PBI.

  11. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen


    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  12. The paradox of the neutrophil's role in tissue injury. (United States)

    Segel, George B; Halterman, Marc W; Lichtman, Marshall A


    The neutrophil is an essential component of the innate immune system, and its function is vital to human life. Its production increases in response to virtually all forms of inflammation, and subsequently, it can accumulate in blood and tissue to varying degrees. Although its participation in the inflammatory response is often salutary by nature of its normal interaction with vascular endothelium and its capability to enter tissues and respond to chemotactic gradients and to phagocytize and kill microrganisms, it can contribute to processes that impair vascular integrity and blood flow. The mechanisms that the neutrophil uses to kill microorganisms also have the potential to injure normal tissue under special circumstances. Its paradoxical role in the pathophysiology of disease is particularly, but not exclusively, notable in seven circumstances: 1) diabetic retinopathy, 2) sickle cell disease, 3) TRALI, 4) ARDS, 5) renal microvasculopathy, 6) stroke, and 7) acute coronary artery syndrome. The activated neutrophil's capability to become adhesive to endothelium, to generate highly ROS, and to secrete proteases gives it the potential to induce local vascular and tissue injury. In this review, we summarize the evidence for its role as a mediator of tissue injury in these seven conditions, making it or its products potential therapeutic targets.

  13. Development of Experimental Tissue Models for Blast Injury (United States)

    Butler, Benjamin; Bo, Chiara; Williams, Alun; Jardine, Andy; Brown, Katherine


    There is a pressing need to better understand the relationship between the intensity of a blast wave and the clinical consequences for victims of an explosion. In order to quantitatively study how these factors correlate with one another, blast injury tissue models are being developed. Sections of larynx, trachea and pulmonary tissue were excised from a recently sacrificed pig and maintained on ice prior to testing. The samples were subjected to strain rates of between 0.001 s-1 and 1000 s-1 in the laboratory by using a Split Hopkinson Pressure Bar and quasi-static testing apparatus. During high strain rate testing, samples were housed in a polycarbonate chamber which permitted experimentation on tissue held in fluid. Data were analysed using 1, 2 and 3 wave analysis software in Matlab to yield information about the material properties of both undamaged and damaged tissues. In addition, macroscopic changes in tissue organization were also visualized using histopathological techniques. This work is being extended to cellular and animal models to derive more detailed information about the underlying molecular changes relating to blast-induced damage and repair. The Royal British Legion Centre for Blast Injury Studies.

  14. Decompressive craniectomy following brain injury: factors important ...

    African Journals Online (AJOL)


    Jan 7, 2010 ... important to patient outcome. Patrick O. Eghwrudjakpor* and Akaribari B. Allison. Department of Surgery, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria. Background: Decompressive craniectomy (DC) is often performed as an empirical lifesaving measure to protect the injured brain ...

  15. Decompressive craniectomy following brain injury: factors important ...

    African Journals Online (AJOL)

    Background: Decompressive craniectomy (DC) is often performed as an empirical lifesaving measure to protect the injured brain from the damaging effects of propagating oedema and intracranial hypertension. However, there are no clearly defined indications or specified guidelines for patient selection for the procedure.

  16. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams


    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  17. Misconceptions about traumatic brain injury among probation services. (United States)

    O'Rourke, Conall; Linden, Mark A; Lohan, Maria


    The prevalence of traumatic brain injury (TBI) among offender populations is significantly higher than among the general population. Despite this, no study has yet assessed the knowledge of members of the probation service surrounding TBI. Knowledge was assessed among members of the Probation Board for Northern Ireland (PBNI) using a cross-sectional online version of the Common Misconceptions about TBI (CM-TBI) questionnaire. Mean total misconception scores, along with scores on four subdomains (recovery, sequelae, insight, and hidden injury) were calculated. Analysis of variance was used to explore differences in misconceptions based on the collected demographic information. The overall mean percentage of misconceptions for the group was 22.37%. The subdomain with the highest rate of misconceptions (38.21%) was insight into injury which covered misconceptions around offenders' self-awareness of injuries. Those who knew someone with a brain injury scored significantly higher in the CM-TBI total score, F(1,63) = 6.639, p = 0.012, the recovery subdomain, F(1,63) = 10.080, p = 0.002, and the insight subdomain, F(1,63) = 5.834, p = 0.019. Additionally, significant training deficits around TBI were observed among the probation service. This study is the first of its kind to examine the level of understanding around TBI within probation services. The findings reflect potential barriers to identification and rehabilitation of TBI for offenders coming into contact with the criminal justice system. A lack of identification coupled with misconceptions about TBI could lead to inaccurate court reporting with a subsequent impact on sentencing. Implications for Rehabilitation Despite being one of the first points of contact for offenders entering the criminal justice system, members of the probation service reported having no formal training on traumatic brain injury (TBI). The subdomain with the highest rate of misconceptions (insight into injury

  18. Aluminium in brain tissue in familial Alzheimer's disease. (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher


    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. Brain tissue banking for stem cells for our future. (United States)

    Palmero, Emily; Palmero, Sheryl; Murrell, Wayne


    In our lab we study neurogenesis and the development of brain tumors. We work towards treatment strategies for glioblastoma and towards using autologous neural stem cells for tissue regeneration strategies for brain damage and neurodegenerative disorders. It has been our policy to try to establish living cell cultures from all human biopsy material that we obtain. We hypothesized that small pieces of brain tissue could be cryopreserved and that live neural stem cells could be recovered at a later time. DMSO has been shown to possess a remarkable ability to diffuse through cell membranes and pass into cell interiors. Its chemical properties prevent the formation of damaging ice crystals thus allowing cell storage at or below -180 C. We report here a protocol for successful freezing of small pieces of tissue derived from human brain and human brain tumours. Virtually all specimens could be successfully revived. Assays of phenotype and behaviour show that the cell cultures derived were equivalent to those cultures previously derived from fresh tissue.

  20. A simple rat model of mild traumatic brain injury: a device to reproduce anatomical and neurological changes of mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ho Jeong Kim


    Full Text Available Mild traumatic brain injury typically involves temporary impairment of neurological function. Previous studies used water pressure or rotational injury for designing the device to make a rat a mild traumatic brain injury model. The objective of this study was to make a simple model of causing mild traumatic brain injury in rats. The device consisted of a free-fall impactor that was targeted onto the rat skull. The weight (175 g was freely dropped 30 cm to rat’s skull bregma. We installed a safety device made of acrylic panel. To confirm a mild traumatic brain injury in 36 Sprague-Dawley rats, we performed magnetic resonance imaging (MRI of the brain within 24 h after injury. We evaluated behavior and chemical changes in rats before and after mild traumatic brain injury. The brain MRI did not show high or low signal intensity in 34 rats. The mobility on grid floor was decreased after mild traumatic brain injury. The absolute number of foot-fault and foot-fault ratio were decreased after mild traumatic brain injury. However, the difference of the ratio was a less than absolute number of foot-fault. These results show that the device is capable of reproducing mild traumatic brain injury in rats. Our device can reduce the potential to cause brain hemorrhage and reflect the mechanism of real mild traumatic brain injury compared with existing methods and behaviors. This model can be useful in exploring physiology and management of mild traumatic brain injury.

  1. The Field of Tissue Injury in the Lung and Airway


    Steiling, Katrina; Ryan, John; Brody, Jerome S.; Spira, Avrum


    The concept of field cancerization was first introduced over six decades ago in the setting of oral cancer. Later, field cancerization involving histologic and molecular changes of neoplasms and adjacent tissue began to be characterized in smokers with or without lung cancer. Investigators also described a diffuse, non-neoplastic field of molecular injury throughout the respiratory tract that is attributable to cigarette smoking and susceptibility to smoking-induced lung disease. The potentia...

  2. Family burden after traumatic brain injury in children. (United States)

    Aitken, Mary E; McCarthy, Melissa L; Slomine, Beth S; Ding, Ru; Durbin, Dennis R; Jaffe, Kenneth M; Paidas, Charles N; Dorsch, Andrea M; Christensen, James R; Mackenzie, Ellen J


    Traumatic brain injury has a substantial impact on caregivers. This study describes the burden experienced by caregivers of children with traumatic brain injury and examines the relationship between child functioning and family burden during the first year after injury. Children aged 5 to 15 years hospitalized for traumatic brain injury at 4 participating trauma centers were eligible. Caregivers completed baseline and 3- and 12-month telephone interviews measuring the child's health-related quality of life using the Pediatric Quality of Life Inventory. The emotional impact scale of the Child Health Questionnaire was used to identify caregivers with substantial distress, including general worry or interference with family routine. Caregiver perceptions of whether health care needs were met or unmet and days missed from work were also measured. A total of 330 subjects enrolled; follow-up was conducted with 312 at 3 months and 288 at 12 months. Most subjects were white (68%) and male (69%). Abnormal Pediatric Quality of Life Inventory subscores were related to substantial caregiver burden (either general worry or interference in routine). These abnormalities were reported by >75% of patients at 3 months and persisted to 1 year in some patients. Parental perception of unmet health care needs was strongly related to family burden outcomes, with up to 69% of this subset of parents reporting substantial worry, and nearly one quarter reporting interference with daily routine/concentration 1 year after injury. Child dysfunction predicted parental burden at 3 and 12 months. Burden was greater when health care need was unmet. Abnormalities on the Pediatric Quality of Life Inventory predicted the amount of work missed by parents, especially in the presence of unmet needs. Caregivers are more likely to report family burden problems when child functioning is poorer and health care needs are unmet. Improved identification and provision of services is a potentially modifiable

  3. Blast-induced Mild Traumatic Brain Injury (United States)


    TBI, in particular the distinction between mild TBI and posttraumatic stress disorder (PTSD). The problem of distinguishing between the 2 disorders ...shock. The disorder became so common during WWI that 10% of British battle casualties were diagnosed with shell shock, accounting for one-seventh of...shock represented a physical injury or was the result of psychic trauma. The debate ended without any clear resolution, but with most clinicians prob

  4. Profiles of Executive Function Across Children with Distinct Brain Disorders: Traumatic Brain Injury, Stroke, and Brain Tumor. (United States)

    Araujo, Gabriel C; Antonini, Tanya N; Anderson, Vicki; Vannatta, Kathryn A; Salley, Christina G; Bigler, Erin D; Taylor, H Gerry; Gerhardt, Cynthia; Rubin, Kenneth; Dennis, Maureen; Lo, Warren; Mackay, Mark T; Gordon, Anne; Hajek Koterba, Christine; Gomes, Alison; Greenham, Mardee; Owen Yeates, Keith


    This study examined whether children with distinct brain disorders show different profiles of strengths and weaknesses in executive functions, and differ from children without brain disorder. Participants were children with traumatic brain injury (N=82; 8-13 years of age), arterial ischemic stroke (N=36; 6-16 years of age), and brain tumor (N=74; 9-18 years of age), each with a corresponding matched comparison group consisting of children with orthopedic injury (N=61), asthma (N=15), and classmates without medical illness (N=68), respectively. Shifting, inhibition, and working memory were assessed, respectively, using three Test of Everyday Attention: Children's Version (TEA-Ch) subtests: Creature Counting, Walk-Don't-Walk, and Code Transmission. Comparison groups did not differ in TEA-Ch performance and were merged into a single control group. Profile analysis was used to examine group differences in TEA-Ch subtest scaled scores after controlling for maternal education and age. As a whole, children with brain disorder performed more poorly than controls on measures of executive function. Relative to controls, the three brain injury groups showed significantly different profiles of executive functions. Importantly, post hoc tests revealed that performance on TEA-Ch subtests differed among the brain disorder groups. Results suggest that different childhood brain disorders result in distinct patterns of executive function deficits that differ from children without brain disorder. Implications for clinical practice and future research are discussed. (JINS, 2017, 23, 529-538).

  5. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping. (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y


    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  6. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can


    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  7. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue. (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R


    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  8. Isolation of Borna Disease Virus from Human Brain Tissue (United States)

    Nakamura, Yurie; Takahashi, Hirokazu; Shoya, Yuko; Nakaya, Takaaki; Watanabe, Makiko; Tomonaga, Keizo; Iwahashi, Kazuhiko; Ameno, Kiyoshi; Momiyama, Noriko; Taniyama, Hiroyuka; Sata, Tetsutaro; Kurata, Takeshi; de la Torre, Juan Carlos; Ikuta, Kazuyoshi


    Serological and molecular epidemiological studies indicate that Borna disease virus (BDV) can infect humans and is possibly associated with certain neuropsychiatric disorders. We examined brain tissue collected at autopsy from four schizophrenic patients and two healthy controls for the presence of BDV markers in 12 different brain regions. BDV RNA and antigen was detected in four brain regions of a BDV-seropositive schizophrenic patient (P2) with a very recent (2 years) onset of disease. BDV markers exhibited a regionally localized distribution. BDV RNA was found in newborn Mongolian gerbils intracranially inoculated with homogenates from BDV-positive brain regions of P2. Human oligodendroglia (OL) cells inoculated with brain homogenates from BDV-positive gerbils allowed propagation and isolation of BDVHuP2br, a human brain-derived BDV. Virus isolation was also possible by transfection of Vero cells with ribonucleoprotein complexes prepared from BDV-positive human and gerbil brain tissues. BDVHuP2br was genetically closely related to but distinct from previously reported human- and animal-derived BDV sequences. PMID:10775596

  9. Further validation of the Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) in patients with acquired brain injury

    NARCIS (Netherlands)

    Boosman, Hileen; van Heugten, Caroline M.; Winkens, Ieke; Smeets, Sanne M J; Visser-Meily, Anne


    The Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) evaluates motivation for rehabilitation in four subscales: Interest in rehabilitation, Lack of anger, Lack of denial, and Reliance on professional help. The objective of this study was to further validate the MOT-Q in 122

  10. Coagulopathy in the Setting of Mild Traumatic Brain Injury: Truths and Consequences

    Directory of Open Access Journals (Sweden)

    Joseph P. Herbert


    Full Text Available Mild traumatic brain injury (mTBI is a common, although poorly-defined clinical entity. Despite its initially mild presentation, patients with mTBI can rapidly deteriorate, often due to significant expansion of intracranial hemorrhage. TBI-associated coagulopathy is the topic of significant clinical and basic science research. Unlike trauma-induced coagulopathy (TIC, TBI-associated coagulopathy does not generally follow widespread injury or global hypoperfusion, suggesting a distinct pathogenesis. Although the fundamental mechanisms of TBI-associated coagulopathy are far from clearly elucidated, several candidate molecules (tissue plasminogen activator (tPA, urokinase plasminogen activator (uPA, tissue factor (TF, and brain-derived microparticles (BDMP have been proposed which might explain how even minor brain injury can induce local and systemic coagulopathy. Here, we review the incidence, proposed mechanisms, and common clinical tests relevant to mTBI-associated coagulopathy and briefly summarize our own institutional experience in addition to identifying areas for further research.

  11. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination. (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen


    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  12. A New Ultra-Small Volume Fluid for Far-Forward, Non-Compressible Hemorrhage and Traumatic Brain Injury (United States)


    improve cardiac function, correct coagulopathy, blunt systemic inflammation and improve tissue oxygenation. In the second study, ALM treatment...resuscitation, hypotensive, non-compressible, truncal, hemorrhage, TBI, coagulopathy, inflammation , ALM, adenosine, lidocaine, magnesium, ROTEM, cardiac...traumatic brain injury (TBI) is a major cause of death on the battlefield. Over 30 years ago, Col. Ronald Bellamy reported in his landmark article The

  13. Sports-related mild traumatic brain injury in female youths (United States)

    Keightley, Michelle L; Yule, Ashley; Garland, Kimberley; Reed, Nicholas; McAuliffe, Jim; Garton, Janice; Green, Stephanie; Taha, Tim


    Sports-related concussion or mild-traumatic brain injury (mTBI) is common in children who participate in organised sports. We describe two case studies involving 14-year-old girls who each sustained a mTBI during ice hockey competition. Neurocognitive functioning post-injury is compared to baseline pre-injury assessment on the same measures. Results from Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), Conners' Continuous Performance Test II (CPT-II) and the Attention Network Test (ANT) revealed decreased performance in attention, memory functioning and reaction time. Furthermore, some measures had not returned to baseline at midseason testing sessions approximately 30–40 days post-injury. The results are discussed with respect to the difference in recovery profiles and the need for thorough and ongoing evaluation following mTBI in the paediatric population, and for girls in particular. PMID:22791784

  14. Brain contusion with aphasia following an ice hockey injury. (United States)

    Degen, Ryan M; Fink, Matthew E; Callahan, Lisa; Fibel, Kenton H; Ramsay, Jim; Kelly, Bryan T


    Head injuries are relatively common in ice hockey, with the majority represented by concussions, a form of mild traumatic brain injury. More severe head injuries are rare since the implementation of mandatory helmet use in the 1960s. We present a case of a 27 year-old male who sustained a traumatic intraparenchymal hemorrhage with an associated subdural hematoma resulting after being struck by a puck shot at high velocity. The patient presented with expressive aphasia, with no other apparent neurologic deficits. Acutely, he was successfully treated with observation and serial neuroimaging studies ensuring an absence of hematoma expansion. After a stable clinical picture following 24 hours of observation, the patient was discharged and managed with outpatient speech therapy with full resolution of symptoms and return to play 3 months later. We will outline the patient presentation and pertinent points in the management of acute head injuries in athletes.

  15. Sex-related differences in effects of progesterone following neonatal hypoxic brain injury. (United States)

    Peterson, Bethany L; Won, Soonmi; Geddes, Rastafa I; Sayeed, Iqbal; Stein, Donald G


    There is no satisfactory therapeutic intervention for neonatal hypoxic-ischemic (HI) encephalopathy. Progesterone is known to be effective in treating traumatic brain injury in adult animals but its effects in neonatal brains have not been reported. Brain injuries were induced by a unilateral common carotid artery ligation plus hypoxia exposure. Progesterone was administered immediately after hypoxia and daily for 5 days at 8 mg/kg, followed by a tapered dose for two days. At six weeks post-injury, lesion size and inflammatory factors were evaluated. Progesterone-treated, HI-injured male animals, but not females, showed significant long-term tissue protection compared to vehicle, suggesting an important sex difference in neuroprotection. Progesterone-treated, HI-injured male rats had fewer activated microglia in the cortex and hippocampus compared to controls. The rats were tested for neurological reflexes, motor asymmetry, and cognitive performance at multiple time points. The injured animals exhibited few detectable motor deficits, suggesting a high level of age- and injury-related neuroplasticity. There were substantial sex differences on several behavioral tests, indicating that immature males and females should be analyzed separately. Progesterone-treated animals showed modest beneficial effects in both sexes compared to vehicle-treated injured animals. Sham animals given progesterone did not behave differently from vehicle-treated sham animals on any measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Localized cortical chronic traumatic encephalopathy pathology after single, severe axonal injury in human brain. (United States)

    Shively, Sharon B; Edgerton, Sarah L; Iacono, Diego; Purohit, Dushyant P; Qu, Bao-Xi; Haroutunian, Vahram; Davis, Kenneth L; Diaz-Arrastia, Ramon; Perl, Daniel P


    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild impact traumatic brain injury from contact sports. Recently, a consensus panel defined the pathognomonic lesion for CTE as accumulations of abnormally hyperphosphorylated tau (p-tau) in neurons (neurofibrillary tangles), astrocytes and cell processes distributed around small blood vessels at sulcal depths in irregular patterns within the cortex. The pathophysiological mechanism for this lesion is unknown. Moreover, a subset of CTE cases harbors cortical β-amyloid plaques. In this study, we analyzed postmortem brain tissues from five institutionalized patients with schizophrenia and history of surgical leucotomy with subsequent survival of at least another 40 years. Because leucotomy involves severing axons bilaterally in prefrontal cortex, this surgical procedure represents a human model of single traumatic brain injury with severe axonal damage and no external impact. We examined cortical tissues at the leucotomy site and at both prefrontal cortex rostral and frontal cortex caudal to the leucotomy site. For comparison, we analyzed brain tissues at equivalent neuroanatomical sites from non-leucotomized patients with schizophrenia, matched in age and gender. All five leucotomy cases revealed severe white matter damage with dense astrogliosis at the axotomy site and also neurofibrillary tangles and p-tau immunoreactive neurites in the overlying gray matter. Four cases displayed p-tau immunoreactivity in neurons, astrocytes and cell processes encompassing blood vessels at cortical sulcal depths in irregular patterns, similar to CTE. The three cases with apolipoprotein E ε4 haplotype showed scattered β-amyloid plaques in the overlying gray matter, but not the two cases with apolipoprotein E ε3/3 genotype. Brain tissue samples from prefrontal cortex rostral and frontal cortex caudal to the leucotomy site, and all cortical samples from the non-leucotomized patients

  17. CD47 deficiency improves neurological outcomes of traumatic brain injury in mice. (United States)

    Zhao, Song; Yu, Zhanyang; Liu, Yu; Bai, Yang; Jiang, Yinghua; van Leyen, Klaus; Yang, Yong-Guang; Lok, Josephine M; Whalen, Michael J; Lo, Eng H; Wang, Xiaoying


    CD47 is a receptor for signal-regulatory protein alpha (SIRPα) in self-recognition by the innate immune system, and a receptor of thrombospondin-1 (TSP-1) contributing to vascular impairment in response to stress. However, the roles of CD47 in traumatic brain injury (TBI) have not been investigated. In this study we aimed to test our hypothesis that CD47 mediates early neutrophil brain infiltration and late brain vascular remodeling after TBI. Mice were subjected to TBI using a controlled cortical impact (CCI) device. We examined early phase neutrophil infiltration, and late phase brain vessel density, pro-angiogenic markers VEGF and Ang-1 protein expression, neurological function deficits and lesion volumes for up to three weeks after TBI. Our results show that mice deficient in CD47 (CD47 Knockout) had significantly less brain neutrophil infiltration at 24h, upregulated VEGF expression in peri-lesion cortex at 7 and 14days, and increased blood vessel density at 21days after TBI, compared to wild type (WT) mice. CD47 knockout also significantly decreased sensorimotor function deficits and reduced brain lesion volume at 21days after TBI. We conclude that CD47 may play pathological roles in brain neutrophil infiltration, progression of brain tissue damage, impairment of cerebrovascular remodeling and functional recovery after TBI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Normobaric oxygen worsens outcome after a moderate traumatic brain injury. (United States)

    Talley Watts, Lora; Long, Justin Alexander; Manga, Venkata Hemanth; Huang, Shiliang; Shen, Qiang; Duong, Timothy Q


    Traumatic brain injury (TBI) is a multifaceted injury and a leading cause of death in children, young adults, and increasingly in Veterans. However, there are no neuroprotective agents clinically available to counteract damage or promote repair after brain trauma. This study investigated the neuroprotective effects of normobaric oxygen (NBO) after a controlled cortical impact in rats. The central hypothesis was that NBO treatment would reduce lesion volume and functional deficits compared with air-treated animals after TBI by increasing brain oxygenation thereby minimizing ischemic injury. In a randomized double-blinded design, animals received either NBO (n = 8) or normal air (n = 8) after TBI. Magnetic resonance imaging (MRI) was performed 0 to 3 hours, and 1, 2, 7, and 14 days after an impact to the primary forelimb somatosensory cortex. Behavioral assessments were performed before injury induction and before MRI scans on days 2, 7, and 14. Nissl staining was performed on day 14 to corroborate the lesion volume detected from MRI. Contrary to our hypothesis, we found that NBO treatment increased lesion volume in a rat model of moderate TBI and had no positive effect on behavioral measures. Our results do not promote the acute use of NBO in patients with moderate TBI.

  19. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Katharine Eakin

    Full Text Available In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI. For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.

  20. Progression of thanatophagy in cadaver brain and heart tissues

    Directory of Open Access Journals (Sweden)

    Gulnaz T. Javan


    Full Text Available Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully elucidated whether postmortem autophagy, also known as thanatophagy, occurs in dead bodies is a function of the time of death. In this study, we tested the hypothesis that thanatophagy would increase in proportion to time elapsed since death for tissues collected from cadavers. Brain and heart tissue from corpses at different time intervals after death were analyzed by Western blot. Densitometry analysis demonstrated that thanatophagy occurred in a manner that was dependent on the time of death. The autophagy-associated proteins, LC3 II, p62, Beclin-1 and Atg7, increased in a time-dependent manner in heart tissues. A potent inducer of autophagy, BNIP3, decreased in the heart tissues as time of death increased, whereas the protein levels increased in brain tissues. However, there was no expression of BNIP3 at extended postmortem intervals in both brain and heart samples. Collectively, the present study demonstrates for the first time that thanatophagy occurs in brain and heart tissues of cadavers in a time-dependent manner. Further, our data suggest that cerebral thanatophagy may occur in a Beclin-1- independent manner. This unprecedented study provides potential insight into thanatophagy as a novel method for the estimation of the time of death in criminal investigationsAbstract: Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully

  1. Functional brain network modularity predicts response to cognitive training after brain injury. (United States)

    Arnemann, Katelyn L; Chen, Anthony J-W; Novakovic-Agopian, Tatjana; Gratton, Caterina; Nomura, Emi M; D'Esposito, Mark


    We tested the value of measuring modularity, a graph theory metric indexing the relative extent of integration and segregation of distributed functional brain networks, for predicting individual differences in response to cognitive training in patients with brain injury. Patients with acquired brain injury (n = 11) participated in 5 weeks of cognitive training and a comparison condition (brief education) in a crossover intervention study design. We quantified the measure of functional brain network organization, modularity, from functional connectivity networks during a state of tonic attention regulation measured during fMRI scanning before the intervention conditions. We examined the relationship of baseline modularity with pre- to posttraining changes in neuropsychological measures of attention and executive control. The modularity of brain network organization at baseline predicted improvement in attention and executive function after cognitive training, but not after the comparison intervention. Individuals with higher baseline modularity exhibited greater improvements with cognitive training, suggesting that a more modular baseline network state may contribute to greater adaptation in response to cognitive training. Brain network properties such as modularity provide valuable information for understanding mechanisms that influence rehabilitation of cognitive function after brain injury, and may contribute to the discovery of clinically relevant biomarkers that could guide rehabilitation efforts. © 2015 American Academy of Neurology.

  2. IL-17F Promotes Tissue Injury in Autoimmune Kidney Diseases. (United States)

    Riedel, Jan-Hendrik; Paust, Hans-Joachim; Krohn, Sonja; Turner, Jan-Eric; Kluger, Malte A; Steinmetz, Oliver M; Krebs, Christian F; Stahl, Rolf A K; Panzer, Ulf


    The TH17 immune response has a central role in the pathogenesis of autoimmune diseases, implicating the TH17 master cytokine, IL-17A, as the critical mediator of diseases such as human and experimental crescentic GN. However, the relative importance of additional TH17 effector cytokines, including IL-17F, in immune-mediated tissue injury remains to be fully elucidated. Here, using a mouse model of acute crescentic GN (nephrotoxic nephritis), we identified CD4+ T cells and γδ T cells as the major cellular source of IL-17F in the inflamed kidney. Interventional studies using IL-17F gene-deficient mice, IL-17F-neutralizing antibodies, and adoptive transfer experiments into Rag1-/- mice demonstrated that CD4+ T cell-derived IL-17F drives renal tissue injury in acute crescentic GN. Notably, IL-17F-deficient nephritic mice had fewer renal infiltrating neutrophils than wild-type nephritic mice, and neutrophil depletion did not affect the course of GN in IL-17F-deficient mice. Moreover, in the chronic model of pristane-induced SLE, IL-17F-deficient mice developed less severe disease than wild-type mice, with respect to survival and renal injury. Finally, we show that IL-17F induced expression of the neutrophil-attracting chemokines CXCL1 and CXCL5 in kidney cells. The finding that IL-17F has a nonredundant function in the development of renal tissue injury in experimental GN might be of great importance for the development of anti-IL-17 cytokine therapies in TH17-mediated human autoimmune diseases. Copyright © 2016 by the American Society of Nephrology.

  3. Misconceptions about traumatic brain injuries among South African university students

    Directory of Open Access Journals (Sweden)

    Chrisma Pretorius


    Full Text Available Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs harboured by university students.  Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered students at Stellenbosch University. The participants had to complete the Common Misconceptions about Traumatic Brain Injury (CM-TBI questionnaire.  Results. The findings of this study suggest that the students subscribe to misconceptions from each of the 7 categories of misconceptions about TBIs. The mean percentages of misconceptions about TBIs were calculated and the amnesia (mean 49.7% and unconsciousness (mean 46.1% categories were identified as the categories about which the respondents had the most misconceptions, while the mean percentages of misconceptions were lower for the categories of recovery (mean 27.6%, rehabilitation (mean 26.56%, prevention (mean 20.8%, brain injury sequelae (mean 18.7% and brain damage (mean 8.4%.  Conclusion. Generally, these findings appear to be in keeping with previous literature, which suggests that misconceptions about TBIs are common among the general population. This study’s identification of these misconceptions could help create awareness, provide a focus for information provision, and contribute to the development of educational intervention programmes tailored for the South African context.

  4. Metallothionein (MT -I and MT-II expression are induced and cause zinc sequestration in the liver after brain injury.

    Directory of Open Access Journals (Sweden)

    Michael W Pankhurst

    Full Text Available UNLABELLED: Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR and enzyme-linked immunosorbent assay (ELISA with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II(-/- mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II(-/- mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. CONCLUSION: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver.

  5. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats. (United States)

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E


    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  6. Discovery of Undescribed Brain Tissue Changes Around Implanted Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Himanshi Desai


    Full Text Available Brain-implantable microelectrode arrays are devicesdesigned to record or electrically stimulate the activity ofneurons in the brain. These devices hold the potential tohelp treat epilepsy, paralysis, blindness, and deafness, andalso provide researchers with insights into a varietyof neural processes, such as memory formation.While these devices have a very promising future,researchers are discovering that their long-termfunctionality is greatly limited by the brain’s naturalimmune response to foreign objects. To improve thefunctional lifetime of these devices, one solution lies infully characterizing and understanding this tissue response.Roles for microglia and astrocytes in this biologicalresponse have been characterized. However, changesto oligodendrocytes, cells that myelinate axons, remainpoorly understood. These cells provide insulationto the axons, which is required for proper neuralfunctioning. Here we report on the changes that occurwith oligodendrocyte processes in tissue aroundmicroelectrode implants in the brain.Six rats were surgically implanted with microelectrodearrays and allowed to recover for 1, 2, or 4 weeks.Subjects were then sacrificed and the brain tissue wasprocessed using our recently developed method, Device-Capture Histology. Immunohistochemistry and confocalmicroscopy was employed to assess the responsearound the device. Results indicated a decrease inoligodendrocyte density and a loss in typical directionalorientation of oligodendrocyte processes in tissue near thedevice. These results suggest alterations in the underlyingneuronal networks around these devices, which maygreatly impact the current functional utility of thesepromising devices.

  7. Histopathological changes in the Brain Tissue of Africa Catfish ...

    African Journals Online (AJOL)

    ... post juvenile African catfish C. gariepinus as characterized by severe degeneration of dark-stained purkinje neurons, oedema, vacuolar changes with empty spaces which appeared as moth eaten area and showed proliferation of glial cells. There is need for more research work on the histopathology of brain tissue of fish ...

  8. Detection of Rabies Antigen in the Brain Tissues of Apparetly ...

    African Journals Online (AJOL)

    Rabies is a serious public health hazard and recently outbreaks of the disease have been reported in three local government areas in Cross River State. Detection of rabies antigen in the brain tissues of apparently healthy dogs indicates the presence of rabies virus and this is a significant factor in the transmission and ...

  9. Altering leukocyte recruitment following traumatic brain injury with ghrelin therapy. (United States)

    Lee, Jisook; Costantini, Todd W; D'Mello, Ryan; Eliceiri, Brian P; Coimbra, Raul; Bansal, Vishal


    Traumatic brain injury (TBI)-induced cerebral inflammation involves several mediators including activation of resident microglia, infiltration of leukocytes, and release of proinflammatory cytokines and chemokines at the site of injury. Invading leukocytes, mainly neutrophil and inflammatory monocytes, contribute to ongoing post-TBI cerebral edema and neuronal injury. Based on the beneficial effect of ghrelin hormone treatment following TBI, we hypothesized that ghrelin may alter the infiltrating inflammatory cell profile. A weight drop model was used to create severe TBI. C57 mice were divided into three groups: sham, no TBI or ghrelin treatment; TBI, TBI only; TBI/ghrelin, animals were treated with ghrelin 20 μg (intraperitoneally) immediately following TBI and again 1 hour later. Seven days after injury, brain sections were immunostained with Iba-1 and CD11b to assess the recruitment and activation of resident microglia and infiltrated leukocytes. Alternatively, brain dissociates were isolated, and flow cytometry was used to gate for microglia (CD11b, CD45 cells), monocytes (CD11b, CD45, F4/80 cells), and neutrophils (CD11b, CD45, F4/80 cells) to measure their recruitment to injury site. TBI resulted in a rapid invasion (16-fold) of inflammatory leukocytes to the site of injury, which persisted for at least 1 week. Ghrelin treatment significantly reduced infiltration of peripheral leukocytes (2.8-fold). In particular, recruitment of CD11bCD45 inflammatory monocytes (2.4-fold) and CD11bCD45F4/80 neutrophils (1.7-fold) was reduced following ghrelin treatment. There were no observed ghrelin-mediated changes in either the number of CD11bCD45 resident microglia or its activation state. Together, our data demonstrate that ghrelin attenuated leukocyte recruitment, which correlates with improved histologic outcome following TBI.

  10. Serum electrolyte derangements in patients with traumatic brain injury. (United States)

    Rafiq, Mirza Faisal Ahmed; Ahmed, Noor; Khan, Adil Aziz


    Electrolyte derangements are common sequel of traumatic brain injury. Use of intravenous fluids, diuretics, syndrome of inappropriate ADH secretion and cerebral salt washing are some of the factors responsible for this. Proper in time detection followed by appropriate treatment not only improves neurological status but also decrease morbidity and mortality. This study was conducted to know serum derangements of different electrolytes in patients with traumatic brain injury. This cross-sectional study was conducted in Pakistan Institute of Medical Sciences. Islamabad, Pakistan from Feb 2009 to Feb 2010. All adult patients with traumatic brain injury who presented to Neurosurgical department with severe head injury (GCS < 8) and who need monitoring in high dependency unit, were included in this study. Initially twice daily serum electrolyte monitoring for one week then once daily for remaining period of hospital stay was carried out. All samples were sent to Pathology department of Pakistan Institute of Medical Sciences, Islamabad. Patients who need corrective measures for imbalance had repetition of sampling after giving appropriate therapy. Statistical analysis was performed on SPSS-16. Total 215 patients presented with severe head injury that were managed in high dependency unit. Out of which 127 (59.1%) were male and 88 (40.9%) were females. Most of them were adults between 21-40) years of age (21.4%; 24.7%). Sodium was the main electrolyte that underwent change & out of which hyper-natremia was major abnormality that occurred in 140 (65.1%) of patients. This is followed by hypo-kalemia that occurred in 79 (36.7%) of patients. Serum calcium & magnesium levels show little derangements. Electrolyte imbalance following traumatic head injury is an important cause to look for in patient monitoring. Sodium is the chief electrolytes of concern. Serum potassium and calcium levels also under goes notable changes.

  11. Diverging volumetric trajectories following pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis


    Full Text Available Traumatic brain injury (TBI is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI cohort, assessed at two time points. Children were first assessed 2–5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8–18 years old and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT, with significant structural disruption of the white matter (WM at 2–5 months post injury. We investigated how this subgroup (TBI-slow, N = 11 differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10 with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.

  12. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test

    Directory of Open Access Journals (Sweden)

    Sharma Pushpa


    Full Text Available Objectives: The present study was designed to investigate the role of a mitochondrial enzyme pyruvate dehydrogenase (PDH on the severity of brain injury, and the effects of pyruvate treatment in rats with traumatic brain injury (TBI. Materials and Methods: We examined rats subjected to closed head injury using a fluid percussion device, and treated with sodium pyruvate (antioxidant and substrate for PDH enzyme. At 72 h post injury, blood was analyzed for blood gases, acid-base status, total PDH enzyme using a dipstick test and malondialdehyde (MDA levels as a marker of oxidative stress. Brain homogenates from right hippocampus (injured area were analyzed for PDH content, and immunostained hippocampus sections were used to determine the severity of gliosis and PDH E1-∞ subunit. Results: Our data demonstrate that TBI causes a significant reduction in PDH enzyme, disrupt-acid-base balance and increase oxidative stress in blood. Also, lower PDH enzyme in blood is related to the increased gliosis and loss of its PDH E1-∞ subunit PDH in brain tissue, and these effects of TBI were prevented by pyruvate treatment. Conclusion: Lower PDH enzyme levels in blood are related to the global oxidative stress, increased gliosis in brain, and severity of brain injury following TBI. These effects can be prevented by pyruvate through the protection of PDH enzyme and its subunit E-1.

  13. [The effects of dancing on the brain and possibilities as a form of rehabilitation in severe brain injuries]. (United States)

    Kullberg-Turtiainen, Marjo


    Very little research has been done on the effect of dancing on the rehabilitation of patients having a severe brain injury. In addition to motor problems, the symptom picture of the sequelae of severe brain injuries often involves strong fatigability, reduced physiological arousal, disturbances of coordination of attention, difficulties of emotional control and impairment of memory. This review deals with the neural foundation of dancing and the possibilities of dancing in the rehabilitation of severe brain injuries.

  14. A novel three-phase model of brain tissue microstructure.

    Directory of Open Access Journals (Sweden)

    Jana L Gevertz

    Full Text Available We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.

  15. Hyperthermia-induced vascular injury in normal and neoplastic tissue. (United States)

    Badylak, S F; Babbs, C F; Skojac, T M; Voorhees, W D; Richardson, R C


    The sequential morphologic alterations in normal skeletal muscle in rats, Walker 256 tumors in rats, and transmissible venereal tumors (TVT) in dogs following microwave-induced hyperthermia (43 degrees C and 45 degrees C for 20 minutes), were studied by histologic and ultrastructural examination. Normal muscle and Walker 256 tumors showed edema, congestion, and hemorrhage at 5 minutes post-heating (PH), followed by suppuration, macrophage infiltration, and thrombosis at 6 and 48 hours PH, and finally by regeneration and repair by 7 days PH. Vascular endothelial damage and parenchymal degeneration were present 5 minutes PH. Progressive injury occurred for at least 48 hours PH. Two hyperthermia treatments separated by a 30- or 60-min cooling interval, were applied to Walker 256 tumors in a subsequent study. Increased selective heating of tumor tissue versus surrounding normal tissue, and increased intratumoral steady state temperatures were found during the second hyperthermia treatment. Canine TVTs were resistant to hyperthermia damage. These results suggest that vascular damage contributes to the immediate and latent cytotoxic effects of hyperthermia in normal tissue and some types of neoplastic tissue, and that selective heating of neoplastic tissue occurs in tumor tissue with disrupted microvasculature.

  16. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge


    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  17. Medical management of noncognitive sequelae of minor traumatic brain injury. (United States)

    McIntosh, G C


    Mild traumatic brain injury (TBI) encompasses the postconcussion syndrome characterized by symptoms that include a variety of physical symptoms as well as cognitive and behavioral impairments. The focus of this discussion is on the medical management of posttraumatic headaches, posttraumatic seizures, dizziness, auditory impairments, anosmia, tremor, paraspinal pain, and visual symptoms. Adjustment disorders with disturbances of affect and emotion lability also may accompany mild TBI. All of these conditions may be approached with medications or a variety of therapy techniques or both. The approach to concussion in sports-related injuries is also reviewed.

  18. Association football injuries to the brain. A preliminary report.


    Tysvaer, A.; Storli, O.


    In 1975 the authors sent a questionnaire to all players in the Norwegian First Division League Clubs to record the incidence of head injuries due to heading. The conclusion of the questionnaire is that there seems to be a low percentage of serious head injuries. None of the players had been operated on for epi- or subdural hematoma or other brain damage and only a few have had concussion due to heading. In sixty per cent of the players a full neurological examination and EEG recording was und...

  19. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. (United States)

    Ganpule, S; Alai, A; Plougonven, E; Chandra, N


    Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave-head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue-material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.

  20. A case of lethal soft tissue injuries due to assault

    Directory of Open Access Journals (Sweden)

    Yanagawa Y


    Full Text Available Youichi Yanagawa,1 Yoshimasa Kanawaku,2 Jun Kanetake21Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, 2Department of Forensic Medicine, National Defense Medical College, Saitama, JapanAbstract: A 42-year-old male had been assaulted by his family over the two previous days and went into a deep coma. When the emergency technician arrived, the patient was in a state of cardiopulmonary arrest. On arrival, his electrocardiogram showed asystole. His body showed swelling with subcutaneous hemorrhage, suggesting multiple contusional wounds. Serum biochemistry evaluation revealed blood urea nitrogen of 80 mg/dL, creatinine of 5.99 mg/dL, creatine phosphokinase of 10,094 IU/L, and potassium of 11.0 mEq/L. Advanced cardiopulmonary resuscitation failed to obtain a return of spontaneous circulation. Laboratory findings revealed rhabdomyolysis, renal failure, and hyperkalemia. Autopsy did not indicate the direct cause of death to be traumatic organ injuries. Because trauma was not the direct reason of death, we speculated that the patient died of hyperkalemia induced by multiple contusional soft tissue injuries, following rhabdomyolysis, hemolysis, and acute renal failure. The physician should maintain a high index of suspicion for hyperkalemia induced by rhabdomyolysis and acute renal failure, especially in patients presenting with symptoms of multiple soft tissue injuries with massive subcutaneous hemorrhaging.Keywords: contusion, rhabdomyolysis, renal failure, hyperkalemia

  1. Increased brain activation during working memory processing after pediatric mild traumatic brain injury (mTBI) (United States)

    Westfall, Daniel R.; West, John D.; Bailey, Jessica N.; Arnold, Todd W.; Kersey, Patrick A.; Saykin, Andrew J.; McDonald, Brenna C.


    Purpose The neural substrate of post-concussive symptoms following the initial injury period after mild traumatic brain injury (mTBI) in pediatric populations remains poorly elucidated. This study examined neuropsychological, behavioral, and brain functioning in adolescents post-mTBI to assess whether persistent differences were detectable up to a year post-injury. Methods Nineteen adolescents (mean age 14.7 years) who experienced mTBI 3–12 months previously (mean 7.5 months) and 19 matched healthy controls (mean age 14.0 years) completed neuropsychological testing and an fMRI auditory-verbal N-back working memory task. Parents completed behavioral ratings. Results No between-group differences were found for cognition, behavior, or N-back task performance, though the expected decreased accuracy and increased reaction time as task difficulty increased were apparent. However, the mTBI group showed significantly greater brain activation than controls during the most difficult working memory task condition. Conclusion Greater working memory task-related activation was found in adolescents up to one year post-mTBI relative to controls, potentially indicating compensatory activation to support normal task performance. Differences in brain activation in the mTBI group so long after injury may indicate residual alterations in brain function much later than would be expected based on the typical pattern of natural recovery, which could have important clinical implications. PMID:26684070

  2. Reactive oxygen species-activated nanoprodrug of Ibuprofen for targeting traumatic brain injury in mice.

    Directory of Open Access Journals (Sweden)

    Morgan A Clond

    Full Text Available Traumatic brain injury (TBI is an enormous public health problem, with 1.7 million new cases of TBI recorded annually by the Centers for Disease Control. However, TBI has proven to be an extremely challenging condition to treat. Here, we apply a nanoprodrug strategy in a mouse model of TBI. The novel nanoprodrug contains a derivative of the nonsteroidal anti-inflammatory drug (NSAID ibuprofen in an emulsion with the antioxidant α-tocopherol. The ibuprofen derivative, Ibu2TEG, contains a tetra ethylene glycol (TEG spacer consisting of biodegradable ester bonds. The biodegradable ester bonds ensure that the prodrug molecules break down hydrolytically or enzymatically. The drug is labeled with the fluorescent reporter Cy5.5 using nonbiodegradable bonds to 1-octadecanethiol, allowing us to reliably track its accumulation in the brain after TBI. We delivered a moderate injury using a highly reproducible mouse model of closed-skull controlled cortical impact to the parietal region of the cortex, followed by an injection of the nanoprodrug at a dose of 0.2 mg per mouse. The blood brain barrier is known to exhibit increased permeability at the site of injury. We tested for accumulation of the fluorescent drug particles at the site of injury using confocal and bioluminescence imaging of whole brains and brain slices 36 hours after administration. We demonstrated that the drug does accumulate preferentially in the region of injured tissue, likely due to an enhanced permeability and retention (EPR phenomenon. The use of a nanoprodrug approach to deliver therapeutics in TBI represents a promising potential therapeutic modality.

  3. General solutions to poroviscoelastic model of hydrocephalic human brain tissue. (United States)

    Mehrabian, Amin; Abousleiman, Younane


    Hydrocephalus is a well-known disorder of brain fluidic system. It is commonly associated with complexities in cerebrospinal fluid (CSF) circulation in brain. In this paper, hydrocephalus and shunting surgery which is used in its treatment are modeled. Brain tissues are considered to follow a poroviscoelastic constitutive model in order to address the effects of time dependence of mechanical properties of soft tissues and fluid flow hydraulics. Our solution draws from Biot's theory of poroelasticity, generalized to account for viscoelastic effects through the correspondence principle. Geometrically, the brain is conceived to be spherically symmetric, where the ventricles are assumed to be a hollow concentric space filled with cerebrospinal fluid. A generalized Kelvin model is considered for the rheological properties of brain tissues. The solution presented is useful in the analysis of the disorder of hydrocephalus as well as the treatment associated with it, namely, ventriclostomy surgery. The sensitivity of the solution to various factors such as aqueduct blockage level and trabeculae stiffness is thoroughly analyzed using numerical examples. Results indicate that partial aqueduct stenosis may be a cause of hydrocephalus. However, only severe occlusion of the aqueduct can cause a significant increase in the ventricle and brain's extracellular fluid pressure. Ventriculostomy shunts are commonly used as a remedy to hydrocephalus. They serve to reduce the ventricular pressure to the normal level. However, sensitivity analysis on the shunt's fluid deliverability parameter has shown that inappropriate design or selection of design shunt may cause under-drainage or over-drainage of the ventricles. Excessive drainage of CSF may increase the normal tensile stress on trabeculae. It can cause rupture of superior cerebral veins or damage to trabeculae or even brain tissues which in turn may lead to subdural hematoma, a common side-effect of the surgery. These Post

  4. Neuroinflammation in traumatic brain injury: A chronic response to an acute injury

    Directory of Open Access Journals (Sweden)

    Samantha J Schimmel


    Full Text Available Every year, approximately 1.4 million US citizens visit emergency rooms for traumatic brain injuries. Formerly known as an acute injury, chronic neurodegenerative symptoms such as compromised motor skills, decreased cognitive abilities, and emotional and behavioral changes have caused the scientific community to consider chronic aspects of the disorder. The injury causing impact prompts multiple cell death processes, starting with neuronal necrosis, and progressing to various secondary cell death mechanisms. Secondary cell death mechanisms, including excitotoxicity, oxidative stress, mitochondrial dysfunction, blood–brain barrier disruption, and inflammation accompany chronic traumatic brain injury (TBI and often contribute to long-term disabilities. One hallmark of both acute and chronic TBI is neuroinflammation. In acute stages, neuroinflammation is beneficial and stimulates an anti-inflammatory response to the damage. Conversely, in chronic TBI, excessive inflammation stimulates the aforementioned secondary cell death. Converting inflammatory cells from pro-inflammatory to anti-inflammatory may expand the therapeutic window for treating TBI, as inflammation plays a role in all stages of the injury. By expanding current research on the role of inflammation in TBI, treatment options and clinical outcomes for afflicted individuals may improve. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

  5. Early brain injury after aneurysmal subarachnoid hemorrhage: a multimodal neuromonitoring study. (United States)

    Helbok, Raimund; Schiefecker, Alois Josef; Beer, Ronny; Dietmann, Anelia; Antunes, Ana Patrícia; Sohm, Florian; Fischer, Marlene; Hackl, Werner Oskar; Rhomberg, Paul; Lackner, Peter; Pfausler, Bettina; Thomé, Claudius; Humpel, Christian; Schmutzhard, Erich


    There is a substantial amount of evidence from animal models that early brain injury (EBI) may play an important role for secondary brain injury after aneurysmal subarachnoid hemorrhage (aSAH). Cerebral microdialysis (CMD) allows online measurement of brain metabolites, including the pro-inflammatory cytokine interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9), which is indicative for disruption of the blood-brain barrier. Twenty-six consecutive poor-grade aSAH patients with multimodal neuromonitoring were analyzed for brain hemodynamic and metabolic changes, including CMD-IL-6 and CMD-MMP-9 levels. Statistical analysis was performed by using a generalized estimating equation with an autoregressive function. The baseline cerebral metabolic profile revealed brain metabolic distress and an excitatory response which improved over the following 5 days (P <0.001). Brain tissue hypoxia (brain tissue oxygen tension of less than 20 mm Hg) was common (more than 60% of patients) in the first 24 hours of neuromonitoring and improved thereafter (P <0.05). Baseline CMD-IL-6 and CMD-MMP-9 levels were elevated in all patients (median = 4,059 pg/mL, interquartile range (IQR) = 1,316 to 12,456 pg/mL and median = 851 pg/mL, IQR = 98 to 25,860 pg/mL) and significantly decreased over days (P <0.05). A higher pro-inflammatory response was associated with the development of delayed cerebral ischemia (P = 0.04), whereas admission disease severity and early brain tissue hypoxia were associated with higher CMD-MMP-9 levels (P <0.03). Brain metabolic distress and increased IL-6 levels were associated with poor functional outcome (modified Rankin Scale of more than 3, P ≤0.01). All models were adjusted for probe location, aneurysm securing procedure, and disease severity as appropriate. Multimodal neuromonitoring techniques allow insight into pathophysiologic changes in the early phase after aSAH. The results may be used as endpoints for future

  6. Antisense oligonucleotide for tissue factor inhibits hepatic ischemic reperfusion injury. (United States)

    Nakamura, Kenji; Kadotani, Yayoi; Ushigome, Hidetaka; Akioka, Kiyokazu; Okamoto, Masahiko; Ohmori, Yoshihiro; Yaoi, Takeshi; Fushiki, Shinji; Yoshimura, Rikio; Yoshimura, Norio


    Tissue factor (TF) is an initiation factor for blood coagulation and its expression is induced on endothelial cells during inflammatory or immune responses. We designed an antisense oligodeoxynucleotide (AS-1/TF) for rat TF and studied its effect on hepatic ischemic reperfusion injury. AS-1/TF was delivered intravenously to Lewis rats. After 10 h, hepatic artery and portal vein were partially clamped. Livers were reperfused after 180 min and harvested. TF expression was studied using immunohistochemical staining. One of 10 rats survived in a 5-day survival rate and TF was strongly stained on endothelial cells in non-treatment group. However, by treatment with AS-1/TF, six of seven survived and TF staining was significantly reduced. Furthermore, we observed that fluorescein-labeled AS-1/TF was absorbed into endothelial cells. These results suggest that AS-1/TF can strongly suppress the expression of TF and thereby inhibit ischemic reperfusion injury to the rat liver.

  7. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

    Directory of Open Access Journals (Sweden)

    Cristina Angeloni


    Full Text Available Traumatic brain injury (TBI represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox, ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS, have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.

  8. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kent Reifschneider


    Full Text Available Traumatic brain injuries (TBI are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  9. Return to work following mild traumatic brain injury. (United States)

    Wäljas, Minna; Iverson, Grant L; Lange, Rael T; Liimatainen, Suvi; Hartikainen, Kaisa M; Dastidar, Prasun; Soimakallio, Seppo; Ohman, Juha


    To examine factors relating to return to work (RTW) following mild traumatic brain injury (mTBI). One hundred and nine patients (Age: M = 37.4 years, SD = 13.2; 52.3% women) who sustained an mTBI. Inception cohort design with questionnaires and neuropsychological testing completed approximately 3 to 4 weeks postinjury. Emergency Department of Tampere University Hospital, Finland. Self-report (postconcussion symptoms, depression, fatigue, and general health) and neurocognitive measures (attention and memory). The cumulative RTW rates were as follows: 1 week = 46.8%, 2 weeks = 59.6%, 3 weeks = 67.0%, 4 weeks = 70.6%, 2 months = 91.7%, and 1 year = 97.2%. Four variables were significant predictors of the number of days to RTW: age, multiple bodily injuries, intracranial abnormality at the day of injury, and fatigue ratings (all P work fewer than 30 days after injury (n = 82, 75.2%) versus more than 30 days (n = 27, 24.8%) did not differ on demographic or neuropsychological variables. The vast majority of this cohort returned to work within 2 months. Predictors of slower RTW included age, multiple bodily injuries, intracranial abnormality at the day of injury, and fatigue.

  10. Secondary stroke in patients with polytrauma and traumatic brain injury treated in an Intensive Care Unit, Karlovac General Hospital, Croatia. (United States)

    Belavić, M; Jančić, E; Mišković, P; Brozović-Krijan, A; Bakota, B; Žunić, J


    Traumatic brain injury (TBI) is divided into primary and secondary brain injury. Primary brain injury occurs at the time of injury and is the direct consequence of kinetic energy acting on the brain tissue. Secondary brain injury occurs several hours or days after primary brain injury and is the result of factors including shock, systemic hypotension, hypoxia, hypothermia or hyperthermia, intracranial hypertension, cerebral oedema, intracranial bleeding or inflammation. The aim of this retrospective analysis of a prospective database was to determine the prevalence of secondary stroke and stroke-related mortality, causes of secondary stroke, treatment and length of stay in the ICU and hospital. This study included patients with TBI with or without other injuries who were hospitalised in a general ICU over a five-year period. The following parameters were assessed: demographics (age, sex), scores (Glasgow Coma Score, APACHE II, SOFA), secondary stroke (prevalence, time of occurrence after primary brain injury, causes of stroke and associated mortality), length of stay in the ICU and hospital, vital parameters (state of consciousness, cardiac function, respiration, circulation, thermoregulation, diuresis) and laboratory values (leukocytes, C-reactive protein [CRP], blood glucose, blood gas analysis, urea, creatinine). Medical data were analysed for 306 patients with TBI (median age 56 years, range 18-93 years) who were treated in the general ICU. Secondary stroke occurred in 23 patients (7.5%), 10 of whom died, which gives a mortality rate of 43.4%. Three patients were excluded as the cause of the injury was missile trauma. The study data indicate that inflammation is the most important cause of secondary insults. Levels of CRP were elevated in 65% of patients with secondary brain injury; leukocytosis was present in 87% of these patients, and blood glucose was elevated in 73%. The lungs and urinary tract were the most common sites of infection. In conclusion

  11. Traumatic brain injury neuropsychology in Cali, Colombia

    Directory of Open Access Journals (Sweden)

    Quijano María Cristina


    Full Text Available Objetive: comparative analysis between control group and patients with TBI to determine whetherthere neuropsychological differences at 6 months of evolution, to guide timely interventioncommensurate with the needs of this population. Materials and methods: a total of 79 patientswith a history of TBI with a minimum of 6 months of evolution and 79 control subjects were evaluated.Both groups with a mean age of 34 and without previous neurological or psychiatric disorders and an average schooling of 11 years for the control group and 9 years for the TBI group.The Glasgow Coma Scale in the TBI group was classified as moderate with 11 points. The BriefNeuropsychological Evaluation in Spanish Neuropsi was applied to both groups. Results: significantdifferences (p≤0.05 in the tasks of orientation, attention, memory, language, reading andwriting were found. Conclusions: TBI generates significant neuropsychological changes, even sixmonths after discharge from the health service. It suggests that patients with head injury requiretreatment after overcoming the initial stage.

  12. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS) (United States)


    GCS Glasgow Coma Scale GUI graphic user interface HMMWV Highly Mobile Multipurpose Wheeled Vehicle HSI Human Systems Integration ICU Intensive Care...It was originally designed to assess a patient’s level of consciousness in an Intensive Care Unit ( ICU ) setting though it is now widely used by...mild traumatic brain injury,” Journal of Rehabilitation Medicine, vol. 43, pp. 113–125, 2004. [14] National Institute of Justice, “Ballistic

  13. Adolescents’ experience of a parental traumatic brain injury

    Directory of Open Access Journals (Sweden)

    D Harris


    Full Text Available This study explores the experiences of four adolescents, each living with a parent who has sustained a traumatic brain injury, against the theoretical backdrop of existential-phenomenological psychology. Opsomming Hierdie navorsing verken die belewenisse van vier adolessente wat saam met ‘n ouer wat ‘n traumatiese breinbesering opgedoen het, leef. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  14. Investigation of Chronic Pain Following Traumatic Brain Injury (United States)


    Brain Injury: Non-invasive Imaging Approaches", Presented at 3rd Federal Interagency TBI Meeting, June 2011. Robin, DA, Parkinson , A, Manes J. Using...trials of cogniti ve behavioral therapy strate- gies have have found clinically significalll effects on pain and associated symptoms. such as. fatigue...111o rriss. R. K .. Dickens. C.. el al. (20 II ). Road lrJftic accidems. bmno1 01her physically 1raummic e1ems. predic1 1he o nset of chronic

  15. Prehospital Tranexamic Acid Use for Traumatic Brain Injury (United States)


    brushing your teeth . Your care giver or family member may respond to these questions for you. You have the right to refuse to answer any of the questions...guidelines emphasize the importance of early and effective hemodynamic resuscitation following TBI and stress the deleterious effects of hemorrhagic shock...and development of cerebral edema The development of cerebral edema is another important type of secondary brain injury. It is clear that the

  16. Guillain Barre Syndrome Following Traumatic Brain Injury: A Rare Case


    Kirac Unal; Karaca Umay; Tombak; Gundogdu; Erdem Sultanoglu; Aytul Cakci


    Introduction Guillain-Barre syndrome (GBS) is an immune-mediated acute inflammatory disorder of the peripheral nervous system. Infectious agents were usually accused of playing a role in the etiology of GBS. Guillain-Barre syndrome has rarely been reported following subdural and subarachnoid hemorrhage after head trauma. Case Presentation We report on a 63-year-old male patient presenting GBS following Traumatic Brain Injury (TBI)...

  17. Body representation in patients after vascular brain injuries


    Razmus, Magdalena


    Neuropsychological literature suggests that body representation is a multidimensional concept consisting of various types of representations. Previous studies have demonstrated dissociations between three types of body representation specified by the kind of data and processes, i.e. body schema, body structural description, and body semantics. The aim of the study was to describe the state of body representation in patients after vascular brain injuries and to provide evidence for the differe...

  18. [Autonomic dysfunction in children with traumatic brain injury]. (United States)

    Rodríguez, N; Febrer, A; Meléndez, M

    Autonomic dysfunction syndrome following traumatic brain injury is a situation involving adrenergic hyperactivity produced by the lack of control over the autonomous nervous system at a central level. The difficulties involved in its therapeutic management make it even more important. We report the cases of a boy and a girl aged 6 and 12 years, respectively, who had suffered a severe traumatic brain injury with important brain damage that included diencephalic and mesencephalic compromise and areas of diffuse axonal injury. From the acute phase onwards, they presented episodes of hypertension, tachycardia, excessive sweating and spasticity in the form of attacks that initially led to a differential diagnosis between sepsis, opiate and/or benzodiazepine withdrawal syndrome and epilepsy. The length of time spent in coma was very long and the attacks went on throughout the awakening phase almost until the moment they were discharged from hospital, despite trying different treatments. In our cases, orally administered baclofen and midazolam seemed to be the most effective. Autonomic dysfunction is difficult to manage. There are no standardised treatments and speculation continues with regard to its true promoter. We might think that the central injury is the cause of the process and that the autonomic dysfunction increases the secondary lesion and contributes to the functional worsening. If we take into account that the survival rate of the children is high despite the severity of the injuries and although the dysautonomia can be self-limiting with time, we believe that its treatment is essential if the ultimate aim is to minimise the sequelae.

  19. Predictors of global functioning and employment 10 years following traumatic brain injury compared with orthopaedic injury. (United States)

    Dahm, Jane; Ponsford, Jennie


    The aim of this study was to prospectively investigate predictors of global functioning and employment 10 years following traumatic brain injury (TBI) compared with orthopaedic trauma. Prospective cohort. Ninety-seven individuals with complicated mild-to-severe TBI and 91 with traumatic orthopaedic injury were followed-up at 10 years post-injury. Global functioning (GOS-E) and employment status were recorded. Groups did not differ on global functioning or employment status. Post-TBI, shorter PTA and less severe orthopaedic injuries were associated with better global functioning; and shorter PTA and younger age were associated with employment. Following traumatic orthopaedic injury, younger age was associated with employment, but not after excluding individuals no longer in the labour force. In this sample, demographic factors and injury severity contribute to long-term outcomes following TBI, but not orthopaedic trauma. PTA continues to influence outcomes 10 years following TBI. There is ongoing detrimental influence of orthopaedic injuries on global functioning for individuals with TBI, suggesting a potential benefit in greater clinical attention to these injuries. Further understanding of the complex interplay between these predictors and other personal and environmental factors will contribute to improving individualized rehabilitation.

  20. Pyrrolizidine alkaloid isoline-induced oxidative injury in various mouse tissues. (United States)

    Liu, Tian-Yu; Chen, Ying; Wang, Zai-Yong; Ji, Li-Li; Wang, Zheng-Tao


    Isoline is a retronecine-type pyrrolizidine alkaloid (PA) isolated from the traditional Chinese medicinal herb Ligularia duciformis. The present investigation was carried out to evaluate isoline-induced oxidative injury in various important mouse organs. Various tissue samples were collected after mice were administrated with 100mg/kg isoline for 36h, and then lipid peroxidation (LPO) level, total antioxidant capacity, glutathione-S-transferase (GST), glutathione peroxidase (GPx) and catalase (CAT) activities were determined to evaluate the oxidative injury. Our results showed that the total antioxidant capacity of liver, brain and lung were all decreased after given isoline, and the LPO level was increased in liver and heart of isoline-treated mice. Further antioxidant-related enzyme activity assays showed that isoline (100mg/kg) decreased GPx activity in liver and heart, increased CAT activity in liver, brain and heart, and decreased the GST activity in lung. Taken together, our results demonstrate that isoline can induce different oxidative injury in various important mouse organs, and of which liver is the most sensitive organ.

  1. Determination of Friction Coefficient in Unconfined Compression of Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.05.001


    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow for homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient mu of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that mu was equal to 0.09 +/- 0.03, 0.18 +/- 0.04, 0.18 +/- 0.04 and 0.20 +/- 0.02 at strain rates of...

  2. Aspiration-Induced Acute Lung Injury in Victims with Isolated Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Gorodovikova


    Full Text Available Objective: to determine the time and development rate of acute lung injury (ALI in severe brain injury (SBI complicated by aspiration of gastric contents or blood. Subjects and methods. Twenty-nine patients aged 19 to 70 years, who had isolated SBI, of whom there were 24 males and 5 females, were examined. The patients were divided into 2 groups: those with aspiration of gastric contents (n=9 or blood (n=10. A control group included 10 patients with SBI without aspiration. A PiCCO plus device was used to determine pulmonary extravascular fluid. ALI was diagnosed in accordance with the recommendations of the Research Institute of General Reanimatology, Russian Academy of Medical Sciences. Results. SBI patients with aspiration of gastric contents or blood were found to have significantly increased pulmonary extravascular water (p<0.01 and a lower oxygenation index (<300, which correlated with each other. ALI was recorded in the first hours after injury in about 50% of cases in both patients with gastric contents aspiration and those with blood aspiration. Conclusion. In patients with SBI complicated by aspiration of gastric contents or blood, pulmonary extravascular fluid accumulation concurrent with other signs of injury may be regarded as a criterion for acute lung injury. Key words: severe brain injury, aspiration, acute lung lesion.

  3. Monitoring intracranial pressure utilizing a novel pattern of brain multiparameters in the treatment of severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Sun H


    Full Text Available Hong-tao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The aim of the study was to evaluate the clinical value of multiple brain parameters on monitoring intracranial pressure (ICP procedures in the therapy of severe traumatic brain injury (sTBI utilizing mild hypothermia treatment (MHT alone or a combination strategy with other therapeutic techniques. A total of 62 patients with sTBI (Glasgow Coma Scale score <8 were treated using mild hypothermia alone or mild hypothermia combined with conventional ICP procedures such as dehydration using mannitol, hyperventilation, and decompressive craniectomy. The multiple brain parameters, which included ICP, cerebral perfusion pressure, transcranial Doppler, brain tissue partial pressure of oxygen, and jugular venous oxygen saturation, were detected and analyzed. All of these measures can control the ICP of sTBI patients to a certain extent, but multiparameters associated with brain environment and functions have to be critically monitored simultaneously because some procedures of reducing ICP can cause side effects for long-term recovery in sTBI patients. The result suggested that multimodality monitoring must be performed during the process of mild hypothermia combined with conventional ICP procedures in order to safely target different clinical methods to specific patients who may benefit from an individual therapy. Keywords: mild hypothermia treatment, cerebral perfusion pressure, brain tissue partial pressure of oxygen

  4. Brain White Matter Impairment in Patients with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Weimin Zheng


    Full Text Available It remains unknown whether spinal cord injury (SCI could indirectly impair or reshape the white matter (WM of human brain and whether these changes are correlated with injury severity, duration, or clinical performance. We choose tract-based spatial statistics (TBSS to investigate the possible changes in whole-brain white matter integrity and their associations with clinical variables in fifteen patients with SCI. Compared with the healthy controls, the patients exhibited significant decreases in WM fractional anisotropy (FA in the left angular gyrus (AG, right cerebellum (CB, left precentral gyrus (PreCG, left lateral occipital region (LOC, left superior longitudinal fasciculus (SLF, left supramarginal gyrus (SMG, and left postcentral gyrus (PostCG (p<0.01, TFCE corrected. No significant differences were found in all diffusion indices between the complete and incomplete SCI. However, significantly negative correlation was shown between the increased radial diffusivity (RD of left AG and total motor scores (uncorrected p<0.05. Our findings provide evidence that SCI can cause not only direct degeneration but also transneuronal degeneration of brain WM, and these changes may be irrespective of the injury severity. The affection of left AG on rehabilitation therapies need to be further researched in the future.

  5. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith


    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  6. Percutaneous dilatational tracheostomy for ICU patients with severe brain injury

    Directory of Open Access Journals (Sweden)

    Guo Dongyuan


    Full Text Available 【Abstract】Objective: To sum up our experience in percutaneous dilatational tracheostomy (PDT in ICU patient with severe brain injury. Methods: Between November 2011 and April 2014, PDTs were performed on 32 severe brain injury patients in ICU by a team of physicians and intensivists. The success rate, effi cacy, safety, and complications including stomal infection and bleeding, paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, as well as clinically significant tracheal stenosis were carefully monitored and recorded respectively. Results: The operations took 4-15 minutes (mean 9.1 minutes±4.2 minutes. Totally 4 cases suffered from complications in the operations: 3 cases of stomal bleeding, and 1 case of intratracheal bloody secretion, but none required intervention. Paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, or clinically signifi cant tracheal stenosis were not found in PDT patients. There was no procedure-related death occurring during or after PDT. Conclusion: Our study demonstrats that PDT is a safe, highly effective, and minimally invasive procedure. The appropriate sedation and airway management perioperatively help to reduce complication rates. PDT should be performed or supervised by a team of physicians with extensive experience in this procedure, and also an intensivist with experience in diffi cult airway management. Key words: Brain injuries; Percutaneous dilatational tracheostomy; ICU

  7. Speed of perceptual grouping in acquired brain injury. (United States)

    Kurylo, Daniel D; Larkin, Gabriella Brick; Waxman, Richard; Bukhari, Farhan


    Evidence exists that damage to white matter connections may contribute to reduced speed of information processing in traumatic brain injury and stroke. Damage to such axonal projections suggests a particular vulnerability to functions requiring integration across cortical sites. To test this prediction, measurements were made of perceptual grouping, which requires integration of stimulus components. A group of traumatic brain injury and cerebral vascular accident patients and a group of age-matched healthy control subjects viewed arrays of dots and indicated the pattern into which stimuli were perceptually grouped. Psychophysical measurements were made of perceptual grouping as well as processing speed. The patient group showed elevated grouping thresholds as well as extended processing time. In addition, most patients showed progressive slowing of processing speed across levels of difficulty, suggesting reduced resources to accommodate increased demands on grouping. These results support the prediction that brain injury results in a particular vulnerability to functions requiring integration of information across the cortex, which may result from dysfunction of long-range axonal connection.

  8. The clinical spectrum of sport-related traumatic brain injury. (United States)

    Jordan, Barry D


    Acute and chronic sports-related traumatic brain injuries (TBIs) are a substantial public health concern. Various types of acute TBI can occur in sport, but detection and management of cerebral concussion is of greatest importance as mismanagement of this syndrome can lead to persistent or chronic postconcussion syndrome (CPCS) or diffuse cerebral swelling. Chronic TBI encompasses a spectrum of disorders that are associated with long-term consequences of brain injury, including chronic traumatic encephalopathy (CTE), dementia pugilistica, post-traumatic parkinsonism, post-traumatic dementia and CPCS. CTE is the prototype of chronic TBI, but can only be definitively diagnosed at autopsy as no reliable biomarkers of this disorder are available. Whether CTE shares neuropathological features with CPCS is unknown. Evidence suggests that participation in contact-collision sports may increase the risk of neurodegenerative disorders such as Alzheimer disease, but the data are conflicting. In this Review, the spectrum of acute and chronic sport-related TBI is discussed, highlighting how examination of athletes involved in high-impact sports has advanced our understanding of pathology of brain injury and enabled improvements in detection and diagnosis of sport-related TBI.

  9. Treatment of metaphor interpretation deficits subsequent to traumatic brain injury. (United States)

    Brownell, Hiram; Lundgren, Kristine; Cayer-Meade, Carol; Milione, Janet; Katz, Douglas I; Kearns, Kevin


    To improve oral interpretation of metaphors by patients with traumatic brain injury (TBI). Both single subject experimental design and group analysis. Patients' homes. Eight adult patients with moderate to severe traumatic brain injury sustained 3 to 20 years before testing. The Metaphor Training Program consisted typically of 10 baseline sessions, 3 to 9 1-hour sessions of structured intervention, and 10 posttraining baseline sessions. Training used extensive practice with simple graphic displays to illustrate semantic associations. Quality of orally produced metaphor interpretation and accuracy of line orientation judgments served as dependent measures obtained during baseline, training, posttraining, and at a 3- to 4-month follow-up. Untrained line orientation judgments provided a control measure. Group data showed significant improvement in metaphor interpretation but not in line orientation. Six of 8 patients individually demonstrated significant improvement in metaphor interpretation. Gains persisted for 3 of the 6 patients at the 3- to 4-month follow-up. The Metaphor Training Program can improve cognitive-communication performance for individuals with moderate to severe traumatic brain injury. Results support the potential for treating patients' residual cognitive-linguistic deficits.

  10. Return to work after acquired brain injury: a patient perspective. (United States)

    Lundqvist, Anna; Samuelsson, Kersti


    To study significant factors supporting vocational rehabilitation after acquired brain injury from a patient perspective. Two focus group interviews were accomplished with former patients. One focus group interview with professional rehabilitation personnel was performed to review the correspondence between patients' and professionals' opinion. Fourteen informants with acquired brain injury (ABI) were interviewed. All were working at the time of the focus group interviews. Three occupational therapists and two psychologists participated in the professional group. Two themes were identified as significant for returning to work: Personal and Society factors. Identified meaningful units could be categorized into sub-categories, which were grouped into six main- and 14 sub-categories. The main categories were: Self-continuity, Coping, Social factors, Rehabilitation intervention, Professionalism and Health insurance. Length of treatment time was described as crucial for the rehabilitation process and for utilizing individual resources. The effects of various synergies and processes form the basis for a successful return to work, which are dependent on, influence and reinforce each other. Society factors support personal factors to be used for returning to work after acquired brain injury. The impact of individual resources and rehabilitation highlights that vocational rehabilitation is inseparable from the individual's capacity, society and the context in which the individual lives.

  11. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. (United States)

    Gyoneva, Stefka; Kim, Daniel; Katsumoto, Atsuko; Kokiko-Cochran, O Nicole; Lamb, Bruce T; Ransohoff, Richard M


    Millions of people experience traumatic brain injury (TBI) as a result of falls, car accidents, sports injury, and blast. TBI has been associated with the development of neurodegenerative conditions such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). In the initial hours and days, the pathology of TBI comprises neuronal injury, breakdown of the blood-brain barrier, and inflammation. At the cellular level, the inflammatory reaction consists of responses by brain-resident microglia, astrocytes, and vascular elements as well as infiltration of peripheral cells. After TBI, signaling by chemokine (C-C motif) ligand 2 (CCL2) to the chemokine (C-C motif) receptor 2 (CCR2) is a key regulator of brain infiltration by monocytes. We utilized mice with one or both copies of Ccr2 disrupted by red fluorescent protein (RFP, Ccr2 (RFP/+) and Ccr2 (RFP/RFP) ). We subjected these mice to the mild lateral fluid percussion model of TBI and examined several pathological outcomes 3 days later in order to determine the effects of altered monocyte entry into the brain. Ccr2 deletion reduced monocyte infiltration, diminished lesion cavity volume, and lessened axonal damage after mild TBI, but the microglial reaction to the lesion was not affected. We further examined phosphorylation of the microtubule-associated protein tau, which aggregates in brains of people with TBI, AD, and CTE. Surprisingly, Ccr2 deletion was associated with increased tau mislocalization to the cell body in the cortex and hippocampus by tissue staining and increased levels of phosphorylated tau in the hippocampus by Western blot. Disruption of CCR2 enhanced tau pathology and reduced cavity volume in the context of TBI. The data reveal a complex role for CCR2(+) monocytes in TBI, as monitored by cavity volume, axonal damage, and tau phosphorylation.

  12. Atypical moral judgment following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Angelica Muresan


    Full Text Available Previous research has shown an association between emotions, particularly social emotions, and moral judgments. Some studies suggested an association between blunted emotion and the utilitarian moral judgments observed in patients with prefrontal lesions. In order to investigate how prefrontal brain damage affects moral judgment, we asked a sample of 29 TBI patients (12 females and 17 males and 41 healthy participants (16 females and 25 males to judge 22 hypothetical dilemmas split into three different categories (non-moral, impersonal and personal moral. The TBI group presented a higher proportion of affirmative (utilitarian responses for personal moral dilemmas when compared to controls, suggesting an atypical pattern of utilitarian judgements. We also found a negative association between the performance on recognition of social emotions and the proportion of affirmative responses on personal moral dilemmas. These results suggested that the preference for utilitarian responses in this type of dilemmas is accompanied by difficulties in social emotion recognition. Overall, our findings suggest that deontological moral judgments are associated with normal social emotion processing and that frontal lobe plays an important role in both emotion and moral judgment.

  13. Exosome platform for diagnosis and monitoring of traumatic brain injury (United States)

    Taylor, Douglas D.; Gercel-Taylor, Cicek


    We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression. PMID:25135964

  14. Magnetic resonance electric property imaging of brain tissues. (United States)

    Zhang, Xiaotong; Zhu, Shanan; He, Bin


    The electric properties (EPs) of brain tissues, i.e., the electric conductivity and permittivity, can provide important information for diagnosis of various brain disorders. A high-field MRI system is accompanied by significant wave propagation effects, and the radio frequency (RF) radiation is dependent on EPs of the biological tissue. Based on the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we have developed a dual-excitation algorithm, which uses two sets of measured B1 data, to noninvasively reconstruct the biological tissue's electric properties. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3-D head model within a birdcage coil and a transverse electromagnetic coil. Compared with other B1-mapping based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results indicate good reconstruction of electric properties of brain tissues from noninvasive MRI B1 mapping.

  15. Headache after pediatric traumatic brain injury: a cohort study. (United States)

    Blume, Heidi K; Vavilala, Monica S; Jaffe, Kenneth M; Koepsell, Thomas D; Wang, Jin; Temkin, Nancy; Durbin, Dennis; Dorsch, Andrea; Rivara, Frederick P


    To determine the prevalence of headache 3 and 12 months after pediatric traumatic brain injury (TBI). This is a prospective cohort study of children ages 5 to 17 years in which we analyzed the prevalence of headache 3 and 12 months after mild TBI (mTBI; n = 402) and moderate/severe TBI (n = 60) compared with controls with arm injury (AI; n = 122). The prevalence of headache 3 months after injury was significantly higher after mTBI than after AI overall (43% vs 26%, relative risk [RR]: 1.7 [95% confidence interval (CI): 1.2-2.3]), in adolescents (13-17 years; 46% vs 25%, RR: 1.8 [95% CI: 1.1-3.1]), and in girls (59% vs 24%, RR: 2.4 [95% CI: 1.4-4.2]). The prevalence of headache at 3 months was also higher after moderate/severe TBI than AI in younger children (5-12 years; 60% vs 27%; RR: 2.0 [95% CI: 1.2-3.4]). Twelve months after injury, TBI was not associated with a significantly increased frequency of headache. However, girls with mTBI reported serious headache (≥ 5 of 10 pain scale rating) more often than controls (27% vs 10%, RR: 2.2 [95% CI: 0.9-5.6]). Pediatric TBI is associated with headache. A substantial number of children suffer from headaches months after their head injury. The prevalence of headache during the year after injury is related to injury severity, time after injury, age, and gender. Girls and adolescents appear to be at highest risk of headache in the months after TBI.

  16. Hypercoagulation following brain death cannot be reversed by the neutralization of systemic tissue factor. (United States)

    Hvas, Christine L; Fenger-Eriksen, Christian; Høyer, Søren; Sørensen, Benny; Tønnesen, Else


    Cerebral injury and brain death is associated with apparent hypercoagulation and poor organ outcome. This experimental study challenges the hypotheses that i) brain death causes hypercoagulation and microvascular thrombosis and that ii) neutralizing systemic tissue factor (TF) by in vitro addition of a TF inhibitor (recombinant active site-inhibited factor VIIa (ASIS)) can reverse the hypercoagulable profile. Using a validated pig model of intracranial hemorrhage and brain death, 20 pigs were randomized to either control or brain death. The primary endpoints were coagulation parameters measured with whole blood thromboelastometry (ROTEM), thrombin generation and a porcine TF-sensitive plasma clotting time assay. In vitro spiking experiments with ASIS were performed in parallel with the latter two assessments. The kidneys were examined histologically for microvascular thromboses. Brain death induced hypercoagulation, as demonstrated with ROTEM, thrombin generation, and reduced TF-sensitive plasma clotting time. In vitro inhibition of TF with ASIS did not reverse the hypercoagulation. No microvascular thromboses were found in the kidneys. Brain death causes hypercoagulation; however, inhibition of TF does not reverse the coagulopathy. Thus, TF release does not seem to be the primary cause of this hypercoagulation. Minor changes in the levels of protein C suggest that the protein C pathway may be linked to the observed coagulopathy. © 2013.

  17. [Neurotropic effects of heptapeptide mystixin studied on brain tissue sections]. (United States)

    Mokrushin, A A


    Neurotropic effects of heptapeptide mystixin have been studied on olfactory cortex neurons in rat brain tissue sections. The application of mystixin onto brain section produced a dose-dependent inhibition of AMPA- and NMDA-receptor-dependent processes. The peptide suppressed the activity of inhibitory processes only at small doses (10, 25, and 50 mg/ml) and potentiated these processes at greater doses (100 and 250 mg/ml). These effects of mystixin are reversible: after washing, the activities of both exciting (except for NMDA-related) and inhibitory mechanisms were restored.

  18. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago


    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell...

  19. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O


    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...

  20. Graph Analysis of Functional Brain Networks in Patients with Mild Traumatic Brain Injury

    NARCIS (Netherlands)

    van der Horn, Harm J.; Liemburg, Edith J.; Scheenen, Myrthe E.; de Koning, Myrthe E.; Spikman, Jacoba M.; van der Naalt, Joukje


    Mild traumatic brain injury (mTBI) is one of the most common neurological disorders worldwide. Posttraumatic complaints are frequently reported, interfering with outcome. However, a consistent neural substrate has not yet been found. We used graph analysis to further unravel the complex interactions

  1. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis. (United States)

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping


    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  2. Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation. (United States)

    Amen, Daniel G; Wu, Joseph C; Taylor, Derek; Willeumier, Kristen


    Brain injuries are common in professional American football players. Finding effective rehabilitation strategies can have widespread implications not only for retired players but also for patients with traumatic brain injury and substance abuse problems. An open label pragmatic clinical intervention was conducted in an outpatient neuropsychiatric clinic with 30 retired NFL players who demonstrated brain damage and cognitive impairment. The study included weight loss (if appropriate); fish oil (5.6 grams a day); a high-potency multiple vitamin; and a formulated brain enhancement supplement that included nutrients to enhance blood flow (ginkgo and vinpocetine), acetylcholine (acetyl-l-carnitine and huperzine A), and antioxidant activity (alpha-lipoic acid and n-acetyl-cysteine). The trial average was six months. Outcome measures were Microcog Assessment of Cognitive Functioning and brain SPECT imaging. In the retest situation, corrected for practice effect, there were statistically significant increases in scores of attention, memory, reasoning, information processing speed and accuracy on the Microcog. The brain SPECT scans, as a group, showed increased brain perfusion, especially in the prefrontal cortex, parietal lobes, occipital lobes, anterior cingulate gyrus and cerebellum. This study demonstrates that cognitive and cerebral blood flow improvements are possible in this group with multiple interventions.

  3. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Johansson, Pär I


    infusion speed increment NS (n¿=¿7). Hemodynamic variables over a 6-hour observation phase were recorded. Following euthanasia, brains were harvested and lesion size as well as brain swelling was measured.ResultsBolus FFP resuscitation resulted in greater brain swelling (22.36¿±¿1.03% vs. 15.58¿±¿2.52%, p...

  4. Hypothermia for neuroprotection in severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Sumit Sinha


    Full Text Available Traumatic brain injury (TBI is a common cause of morbidity and mortality worldwide. There has been a constant search for therapeutic modalities in an attempt to reduce this burden, but till date, none of them have proved to have a significant clinical impact. The interest in whole-body hypothermia as a treatment modality for severe TBI arose from enthusiastic experiences with the patients having anoxic brain damage after cardiac arrest. However, despite numerous randomised controlled trials (RCTs and systematic reviews, its role in improving the outcomes after TBI are still far from being certain to warrant its clinical usage. The concept that hypothermia may be beneficial in improving the outcomes after TBI evolved with the discovery that the final neuronal injury pattern after an ischemic event could be lessened by cooling the brain. Several subsequent animal studies and clinical trials have now been conducted, which have led the Brain Trauma Foundation to issue a Level III recommendation for the use of primary therapeutic hypothermia in the management of TBI. Induced hypothermia should logically be useful in improving the mortality and neurologic outcome after severe TBI. However, the beneficial, effect of hypothermia only exists in high-quality trials, and presently, there is no Level I or Level II evidence. The relative scarcity of high-quality data in this setting entails well-designed large multicentric RCT′s to prove any association if it exists.

  5. Peer relationships of children with traumatic brain injury. (United States)

    Yeates, Keith Owen; Gerhardt, Cynthia A; Bigler, Erin D; Abildskov, Tracy; Dennis, Maureen; Rubin, Kenneth H; Stancin, Terry; Taylor, H Gerry; Vannatta, Kathryn


    This study examined peer relationships in children with traumatic brain injury (TBI) relative to children with orthopedic injuries (OI), and explored whether differences in peer relationships correlated with white matter volumes. Classroom procedures were used to elicit peer perceptions of social behavior, acceptance, and friendships for eighty-seven 8- to 13-year-old children, 15 with severe TBI, 40 with complicated mild/moderate TBI, and 32 with OI. Magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) were used to investigate volumetric correlates of peer relationship measures. Children with severe TBI were rated higher in rejection-victimization than children with OI, and were less likely than children with OI to have a mutual friendship in their classroom (47% vs. 88%). Children with TBI without a mutual friend were rated lower than those with a mutual friend on sociability-popularity and prosocial behavior and higher on rejection-victimization, and had lower peer acceptance ratings. Mutual friendship ratings were related to white matter volumes in several posterior brain regions, but not to overall brain atrophy. Severe TBI in children is associated with detrimental peer relationships that are related to focal volumetric reductions in white matter within regions of the brain involved in social information-processing.

  6. The peculiar properties of the falx and tentorium in brain injury biomechanics. (United States)

    Ho, Johnson; Zhou, Zhou; Li, Xiaogai; Kleiven, Svein


    The influence of the falx and tentorium on brain injury biomechanics during impact was studied with finite element (FE) analysis. Three detailed 3D FE head models were created based on the images of a healthy, normal size head. Two of the models contained the addition of falx and tentorium with material properties from previously published experiments. Impact loadings from a reconstructed concussive case in a sport accident were applied to the two players involved. The results suggested that the falx and tentorium could induce large strains to the surrounding brain tissues, especially to the corpus callosum and brainstem. The tentorium seemed to constrain the motion of the cerebellum while inducing large strain in the brainstem in both players involved in the accident (one player had mainly coronal head rotation and the other had both coronal and transversal rotations). Since changed strain levels were observed in the brainstem and corpus callosum, which are classical sites for diffuse axonal injuries (DAI), we confirmed the importance of using accurate material properties for falx and tentorium in a FE head model when studying traumatic brain injuries. Copyright © 2017. Published by Elsevier Ltd.

  7. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. (United States)

    Rocha-Ferreira, Eridan; Hristova, Mariya


    Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

  8. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    Directory of Open Access Journals (Sweden)

    Eridan Rocha-Ferreira


    Full Text Available Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

  9. Application of Ultrasonic Techniques for Brain Injury Diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kasili, P.M.; Mobley, J.; Norton, S.J.; Vo-Dinh, T.


    In this work, we evaluate methods for detecting brain injury using ultrasound. We have used simulations of ultrasonic fields in the head to model the phase distortion of the skull. In addition we present experimental data from the crania of large animals. The experimental data help us understand and evaluate the performance of different transducers in acquiring the backscatter data from the brain through the skull. Both the simulations and acquired data illustrate the superiority of lower-frequency (<= 1 MHz) ultrasonic fields for transcranial acquisition of signals from inside the brain. Additionally, the experimental work shows that the higher-frequency (5 MHz) ultrasound can also be useful in acquiring clean nearfield data to help detect the position of the inner boundary of the skull.

  10. Nanofibrous gelatine scaffolds integrated with nerve growth factor-loaded alginate microspheres for brain tissue engineering. (United States)

    Büyüköz, Melda; Erdal, Esra; Alsoy Altinkaya, Sacide


    Neural regeneration research is designed in part to develop strategies for therapy after nerve damage due to injury or disease. In this study, a new gelatine-based biomimetic scaffold was fabricated for brain tissue engineering applications. A technique combining thermally induced phase separation and porogen leaching was used to create interconnected macropores and nanofibrous structure. To promote tissue regeneration processes, the scaffolds were integrated with nerve growth factor (NGF)-loaded alginate microspheres. The results showed that nanofibrous matrix could only be obtained when gelatine concentration was at least 7.5% (w/v). The scaffold with a modulus value (1.2 kPa) similar to that of brain tissue (0.5-1 kPa) was obtained by optimizing the heat treatment time, macropore size and gelatine concentration. The encapsulation efficiencies of NGF into 0.1% and 1% alginate microspheres were 85% and 100%, respectively. The release rate of NGF from the microspheres was controlled by the alginate concentration and the poly(L-lysine) coating. The immobilization of the microspheres in the scaffold reduced burst release and significantly extended the release period. The nanofibrous architecture and controlled release of NGF from the microspheres induced neurite extension of PC12 cells, demonstrating that the released NGF was in an active form. The results suggest that the scaffolds prepared in this study may have potential applications in brain tissue engineering due to topologic and mechanical properties similar to brain tissue and pore structure suitable for cell growth and differentiation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.


    Directory of Open Access Journals (Sweden)

    S. A. Valiulina


    Full Text Available Background: Currently, analyzing the economic losses caused by health problems in population is of particular importance since it stipulates calculations of the volumes invested in healthcare systems in order to improve population’s health. Objective: The aim of our study was to find out economic losses caused by traumatic brain injury (TBI in children. Methods: The given work has utilized governmental statistical reports for Russia, for federal regions as well as for individual subjects. Direct medical expenses (medical services and indirect expenses (losses due to a temporary disability of parents having a sick child were calculated both in general and per patient. Results: Among all the direct medical costs of treatment of children with TBI inpatient care costs account for 85%. In the Central and Volga Federal District accounted for half of nationwide spending in general, brain injury and to provide certain kinds of healthcare. The structure of Russian costs as a result of the incidence of TBI children Moscow accounts for 20%. In Moscow, the cost of treating cases of traumatic brain injury in children is 3.2 times higher than the average for Russia. The resulting calculations of the value of health care costs attributable to a case of child head injury, behind the cost of treatment of the case of a child with head trauma, calculated according to the standards of Russia and the territories. This difference in the whole RF is 23%. Conclusion: The obtained findings have shown that in 2010 in Russia the magnitude of losses caused by TBI incidence in children amounted to 3 billion roubles or 0.008% of the gross product 1.2 billion roubles of which were direct expenses. However, this figure is considerably lower of the real amount; it becomes evident after the analysis of direct medical expenses per one case of pediatric TBI. Our calculations have shown that in Russia and in its regions the amount of expenses per one TBI patient is a quarter less

  12. The relation between persistent coma and brain ischemia after severe brain injury. (United States)

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu


    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  13. Diffuse and Focal Brain Injury in a Large Animal Model of PTE: Mechanisms Underlying Epileptogenesis (United States)


    electrode technology , and wireless enclosure have significant interest and applications outside of PTE. There are many free roaming large animal...Electrophysiology Diffuse brain injury Focal brain injury Axonal pathology Epilepsy monitoring unit Chronic Implantation Wireless telemetry...Conclusions: A) Contusion injury validation and neuropathology B) Grid electrode development and testing C) Wireless Large Animal Custom Enclosure

  14. Semi-automated trajectory analysis of deep ballistic penetrating brain injury. (United States)

    Folio, Les; Solomon, Jeffrey; Biassou, Nadia; Fischer, Tatjana; Dworzak, Jenny; Raymont, Vanessa; Sinaii, Ninet; Wassermann, Eric M; Grafman, Jordan


    Penetrating head injuries (PHIs) are common in combat operations and most have visible wound paths on computed tomography (CT). We assess agreement between an automated trajectory analysis-based assessment of brain injury and manual tracings of encephalomalacia on CT. We analyzed 80 head CTs with ballistic PHI from the Institutional Review Board approved Vietnam head injury registry. Anatomic reports were generated from spatial coordinates of projectile entrance and terminal fragment location. These were compared to manual tracings of the regions of encephalomalacia. Dice's similarity coefficients, kappa, sensitivities, and specificities were calculated to assess agreement. Times required for case analysis were also compared. Results show high specificity of anatomic regions identified on CT with semiautomated anatomical estimates and manual tracings of tissue damage. Radiologist's and medical students' anatomic region reports were similar (Kappa 0.8, t-test p ballistic PHI with time-saving over manual methods. Results show potential for automated anatomical reporting as an adjunct to current practice of radiologist/neurosurgical review of brain injury by penetrating projectiles. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  15. Damage to Myelin and Oligodendrocytes: A Role in Chronic Outcomes Following Traumatic Brain Injury? (United States)

    Maxwell, William L.


    There is increasing evidence in the experimental and clinical traumatic brain injury (TBI) literature that loss of central myelinated nerve fibers continues over the chronic post-traumatic phase after injury. However, the biomechanism(s) of continued loss of axons is obscure. Stretch-injury to optic nerve fibers in adult guinea-pigs was used to test the hypothesis that damage to the myelin sheath and oligodendrocytes of the optic nerve fibers may contribute to, or facilitate, the continuance of axonal loss. Myelin dislocations occur within internodal myelin of larger axons within 1–2 h of TBI. The myelin dislocations contain elevated levels of free calcium. The volume of myelin dislocations increase with greater survival and are associated with disruption of the axonal cytoskeleton leading to secondary axotomy. Waves of Ca2+ depolarization or spreading depression extend from the initial locus injury for perhaps hundreds of microns after TBI. As astrocytes and oligodendrocytes are connected via gap junctions, it is hypothesized that spreading depression results in depolarization of central glia, disrupt axonal ionic homeostasis, injure axonal mitochondria and allow the onset of axonal degeneration throughout an increasing volume of brain tissue; and contribute toward post-traumatic continued loss of white matter. PMID:24961533

  16. Damage to myelin and oligodendrocytes: a role in chronic outcomes following traumatic brain injury? (United States)

    Maxwell, William L


    There is increasing evidence in the experimental and clinical traumatic brain injury (TBI) literature that loss of central myelinated nerve fibers continues over the chronic post-traumatic phase after injury. However, the biomechanism(s) of continued loss of axons is obscure. Stretch-injury to optic nerve fibers in adult guinea-pigs was used to test the hypothesis that damage to the myelin sheath and oligodendrocytes of the optic nerve fibers may contribute to, or facilitate, the continuance of axonal loss. Myelin dislocations occur within internodal myelin of larger axons within 1-2 h of TBI. The myelin dislocations contain elevated levels of free calcium. The volume of myelin dislocations increase with greater survival and are associated with disruption of the axonal cytoskeleton leading to secondary axotomy. Waves of Ca2+ depolarization or spreading depression extend from the initial locus injury for perhaps hundreds of microns after TBI. As astrocytes and oligodendrocytes are connected via gap junctions, it is hypothesized that spreading depression results in depolarization of central glia, disrupt axonal ionic homeostasis, injure axonal mitochondria and allow the onset of axonal degeneration throughout an increasing volume of brain tissue; and contribute toward post-traumatic continued loss of white matter.

  17. Damage to Myelin and Oligodendrocytes: A Role in Chronic Outcomes Following Traumatic Brain Injury?

    Directory of Open Access Journals (Sweden)

    William L. Maxwell


    Full Text Available There is increasing evidence in the experimental and clinical traumatic brain injury (TBI literature that loss of central myelinated nerve fibers continues over the chronic post-traumatic phase after injury. However, the biomechanism(s of continued loss of axons is obscure. Stretch-injury to optic nerve fibers in adult guinea-pigs was used to test the hypothesis that damage to the myelin sheath and oligodendrocytes of the optic nerve fibers may contribute to, or facilitate, the continuance of axonal loss. Myelin dislocations occur within internodal myelin of larger axons within 1–2 h of TBI. The myelin dislocations contain elevated levels of free calcium. The volume of myelin dislocations increase with greater survival and are associated with disruption of the axonal cytoskeleton leading to secondary axotomy. Waves of Ca2+ depolarization or spreading depression extend from the initial locus injury for perhaps hundreds of microns after TBI. As astrocytes and oligodendrocytes are connected via gap junctions, it is hypothesized that spreading depression results in depolarization of central glia, disrupt axonal ionic homeostasis, injure axonal mitochondria and allow the onset of axonal degeneration throughout an increasing volume of brain tissue; and contribute toward post-traumatic continued loss of white matter.

  18. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jace B. King


    Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.

  19. Impact of preinjury anticoagulation in patients with traumatic brain injury. (United States)

    Ahmed, Nasim; Bialowas, Christie; Kuo, Yen-Hong; Zawodniak, Leonard


    This study was undertaken to examine the impact of various anticoagulation agents in head injury patients. The medical records and trauma registry were used to analyze the data. All adult trauma patients using aspirin, clopidogrel bisulfate (Plavix), warfarin (Coumadin), or heparin and admitted to the hospital with computed tomography (CT) scan evidence of brain injuries were included in the study. Patients were classified into three groups based on medication used. From July 2004 through December 2006, 29 patients admitted to the trauma center were found to be on anticoagulation or antiplatelet agents. The control group consisted of 63 patients with CT evidence of head injury not on antiplatelet or anticoagulant medications. There were no significant differences among the groups regarding age, gender, Glasgow Coma Scale, Injury Severity Score, mortality (P = 0.65), ventilator days (P = 0.69), intensive care unit (ICU) days (P = 0.65), total hospital days (P = 0.41) or discharge disposition (P = 0.65). Pre-head injury anticoagulation did not have any significant impact on outcomes.

  20. Alteration of amino acid neurotransmitters in brain tissues of immature rats treated with realgar. (United States)

    Huo, Taoguang; Chang, Bei; Zhang, Yinghua; Chen, Zaixing; Li, Weikai; Jiang, Hong


    Realgar is a traditional Chinese medicine, which has been used for thousands of years and are claimed to have therapeutic effects. The toxicity from realgar or realgar-containing traditional medicines has raised public concern. However, the neurotoxicity induced by realgar is less reported. Amino acid neurotransmitters are closely linked to the vulnerability of the immature brain to neuronal injury. The investigation of amino acid neurotransmitters is important to understand the evolution of developmental brain damage. An improved HPLC-UV method was developed and applied to analyzing amino acid neurotransmitters of aspartate, glutamate, glutamine, homocysteine, serine, glycine, γ-aminobutyric acid and taurine in brain tissues of immature rats after the treatment of realgar. Significant changes of these amino acid neurotransmitters were observed in realgar treated groups. Negative correlations were found between the levels of some amino acids and the contents of arsenic in brain tissues. The result indicates that the neurotoxicity induced by realgar is associated with its effects on amino acid neurotransmitters. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.01.022


    Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression tests and stress relaxation tests at strain rates < 90/s. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the compressive nominal stress at 30% strain was 8.83 +/- 1.94, 12.8 +/- 3.10 and 16.0 +/- 1.41 kPa (mean +/- SD) at strain rates of 30, 60 and 90/s, respectively. Relaxation tests were also conducted at 10%-50% strain with the average rise time of 10 ms, which can be used to derive time dependent parameters. Numerical simulations were performed using one-term Ogden model with initial shear modulus mu_0 = 6.06 +/- 1.44, 9.44 +/-...

  2. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS) (United States)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je


    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  3. Therapies targeting lipid peroxidation in traumatic brain injury. (United States)

    Anthonymuthu, Tamil Selvan; Kenny, Elizabeth Megan; Bayır, Hülya


    Lipid peroxidation can be broadly defined as the process of inserting a hydroperoxy group into a lipid. Polyunsaturated fatty acids present in the phospholipids are often the targets for peroxidation. Phospholipids are indispensable for normal structure of membranes. The other important function of phospholipids stems from their role as a source of lipid mediators - oxygenated free fatty acids that are derived from lipid peroxidation. In the CNS, excessive accumulation of either oxidized phospholipids or oxygenated free fatty acids may be associated with damage occurring during acute brain injury and subsequent inflammatory responses. There is a growing body of evidence that lipid peroxidation occurs after severe traumatic brain injury in humans and correlates with the injury severity and mortality. Identification of the products and sources of lipid peroxidation and its enzymatic or non-enzymatic nature is essential for the design of mechanism-based therapies. Recent progress in mass spectrometry-based lipidomics/oxidative lipidomics offers remarkable opportunities for quantitative characterization of lipid peroxidation products, providing guidance for targeted development of specific therapeutic modalities. In this review, we critically evaluate previous attempts to use non-specific antioxidants as neuroprotectors and emphasize new approaches based on recent breakthroughs in understanding of enzymatic mechanisms of lipid peroxidation associated with specific death pathways, particularly apoptosis. We also emphasize the role of different phospholipases (calcium-dependent and -independent) in hydrolysis of peroxidized phospholipids and generation of pro- and anti-inflammatory lipid mediators. This article is part of a Special Issue entitled SI:Brain injury and recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Family impact of acquired brain injury in children and youth. (United States)

    de Kloet, Arend J; Lambregts, Suzanne A M; Berger, Monique A M; van Markus, Frederike; Wolterbeek, Ron; Vliet Vlieland, Thea P M


    To assess the parental view on the impact of pediatric traumatic brain injury (TBI) and nontraumatic brain injury (NTBI) on the family and its determinants. Follow-up study including parents of children with a hospital-based diagnosis of acquired brain injury (ABI) aged 4-20 years at onset of ABI. Parents completed the Pediatric Quality of Life Inventory Family Impact Module (PedsQL FIM), which measures Parent Health-Related Quality of Life, Family Functioning, Communication, and Worry. Additional assessments included the Pediatric Stroke Outcome Measure (PSOM), the Child & Family Follow-up Survey (CFFS), PedsQL General Core and Multiple Fatigue Scales, and sociodemographic and disease characteristics. Parents of 108 patients, median age 13 years (range 5-22), completed the questionnaires 24-30 months after diagnosis. There were 81 patients with TBI of whom 11 (14%) with moderate/severe TBI and 27 patients with NTBI of whom 5 (19%) with moderate/severe NTBI. The median PedsQL FIM Total Scale was 80.4 (SD 16.1). The PedsQL FIM Total Scale and 4 out of 5 Subscale Scores were statistically significantly better in the TBI group than in the NTBI group and in patients with severe NTBI than with mild/moderate NTBI. Moreover, in the total group, there were significant univariate associations between the FIM Total Scale and/or one or more Subscale Scores and age, preinjury patient health problems, and the PSOM, CFFS, PedsQL General Core, and Multiple Fatigue Scales. In the multivariable analysis, the FIM Total Scale was significantly associated with type and severity of injury and preinjury patient health problems. Two years after onset, the parent-reported that impact of ABI on the family as measured by the PedsQL FIM was considerable especially in patients with moderate/severe NTBI.

  5. Traumatic brain injury in mice and pentadecapeptide BPC 157 effect. (United States)

    Tudor, Mario; Jandric, Ivan; Marovic, Anton; Gjurasin, Miroslav; Perovic, Darko; Radic, Bozo; Blagaic, Alenka Boban; Kolenc, Danijela; Brcic, Luka; Zarkovic, Kamelija; Seiwerth, Sven; Sikiric, Predrag


    Gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, an anti-ulcer peptide, efficient in inflammatory bowel disease trials (PL 14736), no toxicity reported, improved muscle crush injury. After an induced traumatic brain injury (TBI) in mice by a falling weight, BPC 157 regimens (10.0microg, 10.0ng/kgi.p.) demonstrated a marked attenuation of damage with an improved early outcome and a minimal postponed mortality throughout a 24h post-injury period. Ultimately, the traumatic lesions (subarachnoidal and intraventricular haemorrhage, brain laceration, haemorrhagic laceration) were less intense and consecutive brain edema had considerably improved. Given prophylactically (30 min before TBI) the improved conscious/unconscious/death ratio in TBI-mice was after force impulses of 0.068 Ns, 0.093 Ns, 0.113 Ns, 0.130 Ns, 0.145 Ns, and 0.159 Ns. Counteraction (with a reduction of unconsciousness, lower mortality) with both microg- and ng-regimens included the force impulses of 0.068-0.145 Ns. A higher regimen presented effectiveness also against the maximal force impulse (0.159 Ns). Furthermore, BPC 157 application immediately prior to injury was beneficial in mice subjected to force impulses of 0.093 Ns-TBI. For a more severe force impulse (0.130 Ns, 0.145 Ns, or 0159 Ns), the time-relation to improve the conscious/unconscious/death ratio was: 5 min (0.130 Ns-TBI), 20 min (0.145 Ns-TBI) or 30 min (0.159 Ns-TBI). Copyright 2009 Elsevier B.V. All rights reserved.

  6. Assessing fibrinogen extravasation into Alzheimer's disease brain using high-content screening of brain tissue microarrays. (United States)

    Narayan, Pritika J; Kim, Sue-Ling; Lill, Claire; Feng, Sheryl; Faull, Richard L M; Curtis, Maurice A; Dragunow, Michael


    Tissue microarrays are commonly used to evaluate disease pathology however methods to automate and quantify pathological changes are limited. This article demonstrates the utility of the VSlide scanner (MetaSystems) for automated image acquisition from immunolabelled tissue microarray slides, and subsequent automated image analysis with MetaXpress (Molecular Devices) software to obtain objective, efficient and reproducible data from immunolabelled tissue microarray sections. Significant increases in fibrinogen immunolabelling were observed in 29 Alzheimer's disease cases compared to 28 control cases analysed from a single tissue microarray slide. Western blot analysis also demonstrated significant increases in fibrinogen immunolabelling in 6 Alzheimer's cases compared to 6 control cases. The observed changes were also validated with gold standard blinded manual H-scoring. VSlide Metafer software offers a 'tissue microarray acquisition' plugin for easy mapping of tissue cores with their original position on the tissue microarray map. High resolution VSlide images are compatible with MetaXpress image analysis software. This article details the coupling of these two technologies to accurately and reproducibly analyse immunolabelled tissue microarrays within minutes, compared to the gold standard method of manual counting using H-scores which is significantly slower and prone to inter-observer variation. Here, we couple brain tissue microarray technology with high-content screening and automated image analysis as a powerful way to address bottle necks in data generation and improve throughput, as well as sensitivity to study biological/pathological changes in brain disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Analysis of the cerebral transcriptome in mice subjected to traumatic brain injury: importance of IL-6

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Molinero, Amalia


    Traumatic brain injury is one of the leading causes of incapacity and death among young people. Injury to the brain elicits a potent inflammatory response, comprising recruitment of inflammatory cells, reactive astrogliosis and activation of brain macrophages. Under the influence of presumably se...

  8. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment (United States)

    Kline, Tori


    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  9. Using Functional Magnetic Resonance Imaging to Detect Preserved Function in a Preterm Infant with Brain Injury. (United States)

    Herzmann, Charlotte; Zubiaurre-Elorza, Leire; Wild, Conor J; Linke, Annika C; Han, Victor K; Lee, David S C; Cusack, Rhodri


    We studied developmental plasticity using functional magnetic resonance imaging (fMRI) in a preterm infant with brain injury on structural MRI. fMRI showed preserved brain function and subsequent neurodevelopment was within the normal range. Multimodal neuroimaging including fMRI can improve understanding of neural plasticity after preterm birth and brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Military-related traumatic brain injury and neurodegeneration (United States)

    McKee, Ann C.; Robinson, Meghan E.


    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and

  11. Optimizing sedation in patients with acute brain injury. (United States)

    Oddo, Mauro; Crippa, Ilaria Alice; Mehta, Sangeeta; Menon, David; Payen, Jean-Francois; Taccone, Fabio Silvio; Citerio, Giuseppe


    Daily interruption of sedative therapy and limitation of deep sedation have been shown in several randomized trials to reduce the duration of mechanical ventilation and hospital length of stay, and to improve the outcome of critically ill patients. However, patients with severe acute brain injury (ABI; including subjects with coma after traumatic brain injury, ischaemic/haemorrhagic stroke, cardiac arrest, status epilepticus) were excluded from these studies. Therefore, whether the new paradigm of minimal sedation can be translated to the neuro-ICU (NICU) is unclear. In patients with ABI, sedation has 'general' indications (control of anxiety, pain, discomfort, agitation, facilitation of mechanical ventilation) and 'neuro-specific' indications (reduction of cerebral metabolic demand, improved brain tolerance to ischaemia). Sedation also is an essential therapeutic component of intracranial pressure therapy, targeted temperature management and seizure control. Given the lack of large trials which have evaluated clinically relevant endpoints, sedative selection depends on the effect of each agent on cerebral and systemic haemodynamics. Titration and withdrawal of sedation in the NICU setting has to be balanced between the risk that interrupting sedation might exacerbate brain injury (e.g. intracranial pressure elevation) and the potential benefits of enhanced neurological function and reduced complications. In this review, we provide a concise summary of cerebral physiologic effects of sedatives and analgesics, the advantages/disadvantages of each agent, the comparative effects of standard sedatives (propofol and midazolam) and the emerging role of alternative drugs (ketamine). We suggest a pragmatic approach for the use of sedation-analgesia in the NICU, focusing on some practical aspects, including optimal titration and management of sedation withdrawal according to ABI severity.

  12. Erythropoietin in patients with traumatic brain injury and extracranial injury-A post hoc analysis of the erythropoietin traumatic brain injury trial. (United States)

    Skrifvars, Markus B; Bailey, Michael; French, Craig; Presneill, Jeffrey; Nichol, Alistair; Little, Lorraine; Duranteau, Jacques; Huet, Olivier; Haddad, Samir; Arabi, Yaseen; McArthur, Colin; Cooper, D James; Bellomo, Rinaldo


    Erythropoietin (EPO) may reduce mortality after traumatic brain injury (TBI). Secondary brain injury is exacerbated by multiple trauma, and possibly modifiable by EPO. We hypothesized that EPO decreases mortality more in TBI patients with multiple trauma, than in patients with TBI alone. A post hoc analysis of the EPO-TBI randomized controlled trial conducted in 2009 to 2014. To evaluate the impact of injuries outside the brain, we calculated an extracranial Injury Severity Score (ISS) that included the same components of the ISS, excluding head and face components. We defined multiple trauma as two injured body regions with an Abbreviated Injury Scale (AIS) score of 3 or higher. Cox regression analyses, allowing for potential differential responses per the presence or absence of extracranial injury defined by these injury scores, were used to assess the effect of EPO on time to mortality. Of 603 included patients, the median extracranial ISS was 6 (interquartile range, 1-13) and 258 (43%) had an AIS score of 3 or higher in at least two body regions. On Cox regression, EPO was associated with decreased mortality in patients with greater extracranial ISS (interaction p = 0.048) and weakly associated with differential mortality with multiple trauma (AIS score > 3 or in two regions, interaction p = 0.17). At 6 months in patients with extracranial ISS higher than 6, 10 (6.8%) of 147 EPO-treated patients compared with 26 (17%) of 154 placebo-treated patients died (risk reduction, 10%; 95% confidence interval, 2.9-17%; p = 0.007). In this post hoc analysis, EPO administration was associated with a potential differential improvement in 6-month mortality in TBI patients with more severe extracranial injury. These findings need confirmation in future clinical and experimental studies. Therapeutic study, level III.

  13. Distribution of opiate alkaloids in brain tissue of experimental animals (United States)

    Pilija, Vladimir; Mimica-Dukic, Neda; Budakov, Branislav; Cvjeticanin, Stanko


    The present study examined regional distribution of opiate alkaloids from seized heroin in brain regions of experimental animals in order to select parts with the highest content of opiates. Their analysis should contribute to resolve causes of death due to heroin intake. The tests were performed at different time periods (5, 15, 45 and 120 min) after male and female Wistar rats were treated with seized heroin. Opiate alkaloids (codeine, morphine, acetylcodeine, 6-acetylmorphine and 3,6-diacetylmorphine) were quantitatively determined in brain regions known for their high concentration of µ-opiate receptors: cortex, brainstem, amygdala and basal ganglia, by using gas chromatography–mass spectrometry (GC–MS). The highest content of opiate alkaloids in the brain tissue of female animals was found 15 min and in male animals 45 min after treatment. The highest content of opiates was determined in the basal ganglia of the animals of both genders, indicating that this part of brain tissue presents a reliable sample for identifying and assessing contents of opiates after heroin intake. PMID:23554560

  14. The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention

    Directory of Open Access Journals (Sweden)

    Giunta Brian


    Full Text Available Abstract A global health problem, traumatic brain injury (TBI is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD. The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.

  15. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)


    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  16. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Nikki; Donald, Cortny; Skora, Amanda [Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia); Reed, Warren, E-mail: [Medical Image Optimisation and Perception Group, Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia)


    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  17. Consequences of Traumatic Brain Injury for Human Vergence Dynamics

    Directory of Open Access Journals (Sweden)

    Christopher W Tyler


    Full Text Available Purpose: Traumatic brain injury involving loss of consciousness has focal effects in the human brainstem, suggesting that it may have particular consequences for eye movement control. This hypothesis was investigated by measurements of vergence eye movement parameters.Methods: Disparity vergence eye movements were measured for a population of 123 normally-sighted individuals, 26 of whom had suffered diffuse traumatic brain injury (dTBI in the past, while the remainder served as controls. Vergence tracking responses were measured to sinusoidal disparity modulation of a random-dot field. Disparity vergence step responses were characterized in terms of their dynamic parameters separately for the convergence and divergence directions.Results: The control group showed notable differences between convergence and divergence dynamics. The dTBI group showed significantly abnormal vergence behavior on many of the dynamic parameters.Conclusions: The support the hypothesis that occult injury to the oculomotor control system is a common residual outcome of dTBI.

  18. Fatal Hyperammonemic Brain Injury from Valproic Acid Exposure

    Directory of Open Access Journals (Sweden)

    Danny Bega


    Full Text Available Background: Hyperammonemia is known to cause neuronal injury, and can result from valproic acid exposure. Prompt reduction of elevated ammonia levels may prevent permanent neurological injury. We report a case of fatal hyperammonemic brain injury in a woman exposed to valproic acid. Case: A 38-year-old woman with schizoaffective disorder and recent increase in valproic acid dosage presented with somnolence and confusion and rapidly progressed to obtundation. Brain MRI showed diffuse bilateral restricted diffusion in nearly the entire cerebral cortex. She had normal liver function tests but serum ammonia level was severely elevated at 288 µmol/l. Genetic testing showed no mutation in urea cycle enzymes. Despite successful elimination of ammonia with hemodialysis she developed fatal cerebral edema. Conclusion: Cerebral edema secondary to hyperammonemia is potentially reversible if recognized early. Ammonia excretion can be facilitated by initiation of hemodialysis and administration of scavenging agents (sodium phenylacetate and sodium benzoate. Severe hyperammonemia can result from valproic acid exposure even in the absence of hepatotoxicity or inborn errors of metabolism. It is important to check serum ammonia in any patient with encephalopathy who has had recent valproic acid exposure.

  19. Sexual behavior and its correlates after traumatic brain injury. (United States)

    Turner, Daniel; Schöttle, Daniel; Krueger, Richard; Briken, Peer


    Traumatic brain injury (TBI) is one of the leading causes of permanent disability in young adults and is frequently accompanied by changes in sexual behaviors. Satisfying sexuality is an important factor for overall quality of life in people with disabilities. The purpose of this article is to review the studies evaluating the assessment, correlates and management of sexuality following TBI. The Brain Injury Questionnaire of Sexuality is the first validated questionnaire specifically developed for adults with TBI. A considerable amount of individuals with TBI show inappropriate sexual behaviors and sexual dysfunctions. Whereas inappropriate sexual behaviors are related to younger age, less social participation and more severe injuries, sexual dysfunctions show an association with higher fatigue, higher depression scores, less self-esteem and female sex. Healthcare professionals have suggested that because of discomfort at the individual or institutional level, sexual problems are often not sufficiently addressed and have suggested that a specialist should treat sexual problems. Although some important correlates of sexual problems could be identified, methodological differences across studies limit their comparability. Furthermore, there is an absence of evidence-based treatment strategies for addressing sexual problems. Therapeutic efforts should take into account the identified correlates of sexual problems following TBI.

  20. Effect of Helmet Use on Traumatic Brain Injuries and Other Head Injuries in Alpine Sport. (United States)

    Bailly, Nicolas; Laporte, Jean-Dominique; Afquir, Sanae; Masson, Catherine; Donnadieu, Thierry; Delay, Jean-Baptiste; Arnoux, Pierre-Jean


    Sport helmet effectiveness in preventing traumatic brain injury (TBI) has been repeatedly questioned. This study assesses the effect of helmet use on risk of TBI and other types of head injury (OTHI) in alpine sports. From 2012 to 2014, data on the injured population were collected by physicians in on-mountain clinics in 30 French ski resorts, and interviews were conducted on the slope to sample a noninjured control population. Two sets of cases (1425 participants with TBI and 1386 with OTHI) were compared with 2 sets of controls (2145 participants without injury and 40,288 with an injury to a body part other than the head). The effect of helmet use on the risk of TBI and OTHI was evaluated with a multivariate logistic regression adjusted for age, sex, sport, skill level, crash type, and crash location. Using participants without injury as control, we found that helmet wearers were less likely to sustain any head injury (odds ratio [OR] TBI = 0.65; OR OTHI = 0.42). When considering participants with an injury to another body part as control, the risk of OTHI was lower among helmet wearers (OR OTHI : 0.61). However, no significant effect was found for the risk of TBI. Participants with low skill levels, those aged 50 years, snowboarders, and those involved in collision and in snowpark accidents were at higher risk of head injury. This study confirms the effectiveness of helmets in protecting users from head injuries but questions their effects on TBI, especially concussion. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.