WorldWideScience

Sample records for brain tissue injury

  1. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  2. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca+2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca+2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  3. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  4. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  5. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  6. Dynamically monitoring tissue factor and tissue factor pathway inhibitor following secondary brain injury

    Institute of Scientific and Technical Information of China (English)

    吴雪海; 施小燕; 干建新; 卢兴国; 江观玉; 周君富

    2003-01-01

    Objective: To study the altering rule of coagulation function at molecular level in patients with secondary brain injury (SBI).Methods: Tissue factor (TF) and tissue factor pathway inhibitor (TFPI) were studied in 32 patients 1, 2, 3 and 7 days after craniocerebral injury. Repeated cranial CT scans and platelet counts were made simultaneously. Same measurements were done in 30 normal adults except CT scan.Results: No obvious difference was found in age, sex and platelet count between the injured and the normal groups. TFPI/TF decreased markedly in the first week after injury in patients with SBI, but only decreased on the 7th day in the patients without obvious SBI. For the patients who developed delayed intracranial hematoma (DIH) or hematoma enlargement, TF rose only 1 and 2 days after injury, but TFPI had a tendency to rise again after a fall on the 3rd day. For those patients who developed no DIH, TF rose all the time within the 1st week.Conclusions: Decrease of TFPI/TF for a long time, especially within 3 days after injury, may be one of the most important reasons for SBI. High expression of TF for a relative short time and increase of TFPI after a fall within 3 days may be one of the important reasons for DIH or hematoma enlargement.

  7. Protective effects of acupuncture on brain tissue following ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Mingshan Wang; Fuguo Ma; Huailong Chen

    2008-01-01

    BACKGROUND: In patients with cerebrovascular disease, by means of the neuroendocrine system, acupuncture supports the transformation of a local pathological status into a physiological status. Recently, great progress has been made in studying the protective effects of acupuncture on brain ischemia/reperfusion injury. OBJECTIVE: To summarize research advances in the protective effects of acupuncture on brain ischemia/reperfusion injury. RETRIEVAL STRATEGY: Using the terms "acupuncture, transcutaneous electrical acupoint stimulation, cerebral ischemia/reperfusion injury, and cerebral protection", we retrieved articles from the PubMed database published between January 1991 and June 1994. Meanwhile, we searched the China National Knowledge Infrastructure with the same terms. Altogether, 114 articles and their results were analyzed. Inclusive criteria: studies that were closely related to the protective effects of acupuncture on brain ischemia/reperfusion injury, or studies, whose contents were in the same study field and were published recently, or in the authorized journals. Exclusive criteria: repetitive studies. LITERATURE EVALUATION: Thirty articles that related to the protective effects of acupuncture on brain ischemia/reperfusion injury were included. Among them, 7 were clinical studies, and the remaining 23 articles were animal experimental studies. DATA SYNTHESIS: ① Animal experimental studies have demonstrated that acupuncture improves brain blood perfusion and brain electrical activity, influences pathomorphological and ultramicrostructural changes in ischemic brain tissue, is beneficial in maintaining the stability of intracellular and extracellular ions, resists free radical injury and lipid peroxidation, and influences cytokine, neurotransmitter, brain cell signal transduction, and apoptosis-regulating genes. ② Clinical studies have demonstrated that acupuncture not only promotes nutritional supply to local brain tissue in patients with cerebral

  8. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair.

    Science.gov (United States)

    Zhang, Zhen-Qiang; Song, Jun-Ying; Jia, Ya-Quan; Zhang, Yun-Ke

    2016-03-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury. PMID:27127482

  9. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair

    Directory of Open Access Journals (Sweden)

    Zhen-qiang Zhang

    2016-01-01

    Full Text Available Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days. These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  10. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  11. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  12. Nonfreezing Tissue Injuries

    Science.gov (United States)

    ... Wrist Extensor Stretch Additional Content Medical News Nonfreezing Tissue Injuries By Daniel F. Danzl, MD NOTE: This ... Cold Injuries Overview of Cold Injuries Hypothermia Nonfreezing Tissue Injuries Frostbite In nonfreezing tissue injuries, parts of ...

  13. Protective effect of DL-3-n-Butylphthalide on radiation injury of rat brain tissue

    International Nuclear Information System (INIS)

    Objective: To investigate the protective effect and its mechanism of DL-3-n-Butylphthalide on the brain damage in rats following whole brain irradiation. Methods: A total of 120 male Sprague Dawley rats were randomly divided into sham-irradiation group, irradiation group and DL-3-n-Butylphthalide group. The model of whole-brain irradiation was established by exposing rat brain to 4 MeV X-rays with a single-dose of 10 Gy. The rats were intraperitoneally injected with DL-3-n-Butylphthalide at the dosages of 0.3, 1.0, and 3.0 mg/kg once a day. The contents of malondialdehyde and super oxide dismutase activity were measured, while the expressions of apoptosis-associated genes and the ultrastructural changes in hippocampus were examined by immunohistochemistry staining and electron microscope, respectively. Results: After irradiation, the content of malondialdehyde and the expression of apoptosis gene bax in rat brain tissue increased while the activity of super oxide dismutase (SOD) and the expression of anti-apoptosis gene bcl-2 decreased. Apoptosis was also observed in the neurons of hippocampus CA1. Compared with irradiation group, the content of malondialdehyde and the expression of bax gene in the DL-3-n-Butylphthalide group wen significantly reduced (t=-3.89 - -1.96, 2.72-3.48, P<0.05), while the activity of SOD and bcl-2 gene were significantly elevated (t=2.94-3.76, -3.18 - -2.08, P<0.05), and the injury degree of neuron structure in the DL-3-n-Butylphthalide group was slighter than that in the irradiation group. Conclusions: DL-3-n-Butylphthalide executes protective effects in a dose-dependent manner against the radiation injury in rats brain by reducing the induction of malondialdehyde, raising the activity of SOD and inhibiting the generation of apoptosis. (authors)

  14. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  15. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that people ...

  16. SECONDARY BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Ida Ayu Basmatika

    2013-03-01

    Full Text Available Secondary brain injury is a condision that occurs at some times after the primary impact and can be largely prevented and treated. Most brain injury ends with deadly consequences which is caused by secondary damage to the brain. Traumatic brain injured still represents the leading cause of morbidity and mortality in individuals under the age of 45 years in the world. The classification of secondary brain injured is divided into extracranial and intracranial causes. The cause of extracranial such as hipoxia, hypotensi, hyponatremia, hypertermia, hypoglycemia or hyperglycemia. The cause of intracranial such as extradural, subdural, intraserebral, intraventrikular, dan subarachnoid hemorrhage. Beside that secondary injury can also be caused by edema and infection. Post-traumatic cerebral injured is characterized by direct tissue damage, impaired regulation of cerebral blood flow (cerebral blood flow / CBF, and disruption of metabolism. Manifestations of secondary brain injured include increased intracranial pressure, ischemic brain damage, cerebral hypoxia and hypercarbi, as well as disruption of cerebral autoregulation. The first priority is to stabilize the patient's cervical spine injury, relieve and maintain airway, ensure adequate ventilation (breathing, and making venous access for fluid resuscitation pathways (circulation and assessing the level of awareness and disability. This steps is crucial in patients with head injured to prevent hypoxia and hypotension, which is the main cause of secondary brain injury.

  17. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  18. Concentrations of Nitric Oxide in Rat Brain Tissues after Diffuse Brain Injury and Neuroprotection by the Selective Inducible Nitric Oxide Synthase Inhibitor Aminoguanidine

    Institute of Scientific and Technical Information of China (English)

    Yi-bao Wang; Shao-wu Ou; Guang-yu Li; Yun-hui Liu

    2005-01-01

    @@ To investigate the effects of nitric oxide (NO) and the selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) on trauma, we explored the concentrations of nitric oxide in rat brain tissues at different time stamps after diffuse brain injury (DBI) with or without AG treatment.

  19. Lack of X-linked inhibitor of apoptosis protein leads to increased apoptosis and tissue loss following neonatal brain injury

    Directory of Open Access Journals (Sweden)

    Tim West

    2009-04-01

    Full Text Available Neurological deficits caused by H-I (hypoxia-ischaemia) to the perinatal brain are often severely debilitating and lead to motor impairment, intellectual disability and seizures. Perinatal brain injury is distinct from adult brain injury in that the developing brain is undergoing the normal process of neuronal elimination by apoptotic cell death and thus the apoptotic machinery is more easily engaged and activated in response to injury. Thus cell death in response to neonatal H-I brain injury is partially due to mitochondrial dysfunction and activation of the apoptosome and caspase 3. An important regulator of the apoptotic response following mitochondrial dysfunction is XIAP (X-linked inhibitor of apoptosis protein). XIAP inhibits apoptosis at the level of caspase 9 and caspase 3 activation, and lack of XIAP in vitro has been shown to lead to increased apoptotic cell death. In the present study we show that mice lacking the gene encoding the XIAP protein have an exacerbated response to neonatal H-I injury as measured by tissue loss at 7 days following the injury. In addition, when the XIAP-deficient mice were studied at 24 h post-H-I we found that the increase in injury correlates with an increased apoptotic response in the XIAP-deficient mice and also with brain imaging changes in T2-weighted magnetic resonance imaging and apparent diffusion coefficient that correspond to the location of apoptotic cell death. These results identify a critical role of XIAP in regulating neuronal apoptosis in vivo and demonstrate the enhanced vulnerability of neurons to injury in the absence of XIAP in the developing brain.

  20. The quantitative analysis of S100 in the brain tissue and serum following diffuse brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Wang Qi; Huang Ping; Xing Bo; Tuo Ya; Zhang Yongpan; Tian Weiping; Wang Zhenyuan

    2007-01-01

    Objective To investigate the dynamics of the level of S100 in cerebrum, brainstem, and serum following the diffuse brain injury in rats and provide the experimental evidences for estimating injury time. Methods ELISA was used to determine whether S100 protein is changed after diffuse brain injury in rats. Forty rats were sacrificed at 0.5 hour, 2 hours, 4 hours, 12 hours, 24 hours, 3 d and 7 d after diffuse brain injury and normal rats as control. Results The level of S100 in cerebrum, brainstem, and serum increased, followed by a decrease, and then further increased. The level of S100 could be detected to increase at 30 minutes and reached the peak at 4 hours after DBI. The level decreased gradually to the normal at 1d and till 3 d formed the second peak. The level returned to the normal at 7d following injury again. In the postmortem injury groups, there were no significant changes compared to the control group. Conclusion The present study showed that the time-dependent expression of S100 is obvious following diffuse brain injury in rats and suggested that S100 will be a suitable marker for diffuse brain injury age determination.

  1. Brain Temperature: Physiology and Pathophysiology after Brain Injury

    OpenAIRE

    Ségolène Mrozek; Fanny Vardon; Thomas Geeraerts

    2012-01-01

    The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variatio...

  2. Effect of Short Periods of Normobaric Hyperoxia on Local Brain Tissue Oxygenation and Cerebrospinal Fluid Oxidative Stress Markers in Severe Traumatic Brain Injury

    OpenAIRE

    Puccio, Ava M.; Hoffman, Leslie A.; Bayir, Hülya; Zullo, Thomas G.; Fischer, Michael; Darby, Joseph; Alexander, Sheila; Dixon, C. Edward; Okonkwo, David O.; Kochanek, Patrick M.

    2009-01-01

    Preliminary evidence suggests local brain tissue oxygenation (PbtO2) values of ≤15 mm Hg following severe traumatic brain injury (TBI) represent brain tissue hypoxia. Accordingly, many neurotrauma units attempt to maintain PbtO2 ≥20 mm Hg to avoid hypoxia. This study tested the impact of a short (2 h) trial of normobaric hyperoxia on measures of oxidative stress. We hypothesized this treatment would positively affect cerebral oxygenation but negatively affect the cellular environment via oxid...

  3. Neuropathophysiology of Brain Injury.

    Science.gov (United States)

    Quillinan, Nidia; Herson, Paco S; Traystman, Richard J

    2016-09-01

    Every year in the United States, millions of individuals incur ischemic brain injury from stroke, cardiac arrest, or traumatic brain injury. These acquired brain injuries can lead to death or long-term neurologic and neuropsychological impairments. The mechanisms of ischemic and traumatic brain injury that lead to these deficiencies result from a complex interplay of interdependent molecular pathways, including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis. This article reviews several mechanisms of brain injury and discusses recent developments. Although much is known from animal models of injury, it has been difficult to translate these effects to humans. PMID:27521191

  4. Effect of MgSO4 on NMDA receptor in brain tissue and serum NSE in rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Objective: To explore the protection of magnesium sulfate (MgSO4) on radiation-induced acute brain injury. Methods Thirty six mature Sprague-Dawley rats were randomly divided into 3 groups: the blank control group, experimental control group and experimental therapy group. The whole brain of SD rats in the experimental control group and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. Magnesium sulfate was injected intraperitoneally into the rats in the experimental therapy group before and after irradiation for seven times. The blood and the brain tissue were taken on the 1st, 3rd and 14th day after irradiation. ELISA was used to measure the level of serum NSE. Western blot technique was used to detect the expression of NR1 and NR2B subunit protein in brain tissue. Results: Compared with the blank control group, the level of serum NSE in the experimental control group increased significantly (P4 used in early stage can inhibit the level of serum NSE and the expression of NR1 and NR2B after radiation-induced acute brain injury. It shows a protective effect on radiation-induced acute brain injury. (authors)

  5. SECONDARY BRAIN INJURY

    OpenAIRE

    Ida Ayu Basmatika

    2013-01-01

    Secondary brain injury is a condision that occurs at some times after the primary impact and can be largely prevented and treated. Most brain injury ends with deadly consequences which is caused by secondary damage to the brain. Traumatic brain injured still represents the leading cause of morbidity and mortality in individuals under the age of 45 years in the world. The classification of secondary brain injured is divided into extracranial and intracranial causes. The cause of extracranial s...

  6. Severe Traumatic Brain Injury

    Science.gov (United States)

    ... inflicted traumatic brain injury (ITBI), is a leading cause of child maltreatment deaths in the United States. Meeting the ... Awareness Additional Prevention Resources Childhood Injuries Concussion in Children and Teens Injuries from Violence Injuries from Motor Vehicle Crashes Teen Driver Safety ...

  7. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI. PMID:26247583

  8. HSF1 is essential for the resistance of zebrafish eye and brain tissues to hypoxia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Nathan R Tucker

    Full Text Available Ischemia and subsequent reperfusion (IR produces injury to brain, eye and other tissues, contributing to the progression of important clinical pathologies. The response of cells to IR involves activation of several signaling pathways including those activating hypoxia and heat shock responsive transcription factors. However, specific roles of these responses in limiting cell damage and preventing cell death after IR have not been fully elucidated. Here, we have examined the role of heat shock factor 1 (HSF1 in the response of zebrafish embryos to hypoxia and subsequent return to normoxic conditions (HR as a model for IR. Heat shock preconditioning elevated heat shock protein expression and protected zebrafish embryo eye and brain tissues against HR-induced apoptosis. These effects were inhibited by translational suppression of HSF1 expression. Reduced expression of HSF1 also increased cell death in brain and eye tissues of embryos subjected to hypoxia and reperfusion without prior heat shock. Surprisingly, reduced expression of HSF1 had only a modest effect on hypoxia-induced expression of Hsp70 and no effect on hypoxia-induced expression of Hsp27. These results establish the zebrafish embryo as a model for the study of ischemic injury in the brain and eye and reveal a critical role for HSF1 in the response of these tissues to HR. Our results also uncouple the role of HSF1 expression from that of Hsp27, a well characterized heat shock protein considered essential for cell survival after hypoxia. Alternative roles for HSF1 are considered.

  9. Sleep in traumatic brain injury.

    Science.gov (United States)

    Vermaelen, James; Greiffenstein, Patrick; deBoisblanc, Bennett P

    2015-07-01

    More than one-half million patients are hospitalized annually for traumatic brain injury (TBI). One-quarter demonstrate sleep-disordered breathing, up to 50% experience insomnia, and half have hypersomnia. Sleep disturbances after TBI may result from injury to sleep-regulating brain tissue, nonspecific neurohormonal responses to systemic injury, ICU environmental interference, and medication side effects. A diagnosis of sleep disturbances requires a high index of suspicion and appropriate testing. Treatment starts with a focus on making the ICU environment conducive to normal sleep. Treating sleep-disordered breathing likely has outcome benefits in TBI. The use of sleep promoting sedative-hypnotics and anxiolytics should be judicious. PMID:26118920

  10. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Chien-Min Lin

    2015-01-01

    Full Text Available The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP- guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg, and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg in the neurosurgical intensive care unit (NICU; demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.

  11. Mild traumatic brain injury.

    NARCIS (Netherlands)

    Vos, P.E.; Alekseenko, Y.; Battistin, L.; Ehler, E.; Gerstenbrand, F.; Muresanu, D.F.; Potapov, A.; Stepan, C.A.; Traubner, P.; Vecsei, L.; Wild, K. von

    2012-01-01

    Traumatic Brain Injury (TBI) is among the most frequent neurological disorders. Of all TBIs 90% are considered mild with an annual incidence of 100-300/100.000. Intracranial complications of Mild Traumatic Brain Injury (MTBI) are infrequent (10%), requiring neurosurgical intervention in a minority o

  12. Contents of myelin-basic protein and S-100 in serum and brain tissue of neonatal rats with intrauterine infection-caused brain injury

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Li; Hongying Li; Zhihai Lu

    2006-01-01

    BACKGROUND: The change of the content of myelin basic protein (MBP) in serum and brain tissue is the bio chemical diadynamic index of amyelination. S-100 is a specific and sensitive marker of central nervous system (CNS) injury. Whether or not the content of S-100 and MBP in blood and brain tissue can be used as the quan titative index for early diagnosing the intrauterine infection-caused brain injury still needs investigation. OBJECTIVE: To observe whether or not MBP and S-100 detection can be used as the biochemical indexes for early diagnosing the intrauterine infection-caused brain injury. DESIGN: Randomized controlled animal experiment. SETTING: Laboratory of Pediatric Neuro-rehabilitation, Medical College of Rehabilitation, Jiamusi University. MATERIALS: Sixty female and thirty male common Wistar rats, weighing from 180 to 240 g, were provided by the Experimental Animal Center of Jiamusi University. Reagent: Lipopolysaccharide(LPS, serological type 055: B5, SIGMA Company of USA); MBP enzyme linked immunosobent assay (ELISA) immunoreagent kit (Preclinicai Recombination DNA Laboratory, Chengdu Huaxi Medical Center, Sichuan Province); S-100 ELISA immunoreagent kit ( Department of Physiology, the Fourth Military Medical University of Chinese PLA) and bovine serum albumin(Haitaike Biotechnology Co.,Ltd.).METHODS: This experiment was carried out in the Laboratory of Pediatric Neuro-Rehabilitation, Experimental Animal Center, Department of Pathology and Central Laboratory of Jiamusi University from July 2005 to March 2006. ① Preparation of models and grouping: The female and male rats were placed in one cage at 2: 1 at 17:00 o'clock. Vaginal smear was checked at 8:00 on the next morning. Sperm was found and 0 day of pregnancy was recorded. Pregnant rats were bred in another cage. The pregnant 47 rats were randomly divided into 2 groups: control group (n =10) and experimental group (n =37). The experimental pregnant rats were intraperitoneally injected with LPS

  13. Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with moderate and severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Kebin Zheng

    2013-01-01

    Full Text Available Objective: In this study, we investigated matrix metalloproteinases (MMPs and tissue inhibitor of metalloproteinase (TIMPs in cerebrospinal fluid (CSF and plasma of traumatic brain injury (TBI patients. Patients and Methods: A total of 30 patients with moderate and severe TBI and 15 age-matched controls were enrolled in this study. Plasma and CSF samples were collected within 24 h (as the initial value, at 72 and 120 h post injury. CSF and plasma MMP-9, MMP-2, TIMP-1 and TIMP-2 were estimated using ELISA. Different levels of these indexes were compared in the two groups and further investigated the correlation between each other. Results: There was a significant elevation in the levels of the initial MMP-9 in the CSF (P < 0.05, which lasted for 72 h post injury. TIMP-1 kept increasing within 120 h post injury and it was different compared with TIMP-1 at 24 and 72 h post injury. Plasma levels of MMP-9, MMP-2, TIMP-1 and TIMP-2 in TBI patients were also significantly different from those in controls. Furthermore the CSF MMP-9 in patients with severe TBI was higher than that in patients with moderate TBI. In addition, there was a positive relationship between the initial MMP-9 and TIMP-1 at 120 h post injury (r = 0.614, P < 0.01. Conclusion: MMPs and TIMPs are increased in both CSF and plasma of TBI patients. TIMP-1 has a positive correlation with MMP-9 and the initial MMP-9 is associated with the neurological outcomes.

  14. Study on changes of partial pressure of brain tissue oxygen and brain temperature in acute phase of severe head injury during mild hypothermia therapy

    Institute of Scientific and Technical Information of China (English)

    朱岩湘; 姚杰; 卢尚坤; 章更生; 周关仁

    2003-01-01

    Objective: To study the changes of partial pressure of brain tissue oxygen (PbtO2) and brain temperature in acute phase of severe head injury during mild hypothermia therapy and the clinical significance.Methods: One hundred and sixteen patients with severe head injury were selected and divided into a mild hypothermia group (n=58), and a control group (n=58) according to odd and even numbers of hospitalization. While mild hypothermia therapy was performed PbtO2 and brain temperature were monitored for 1-7 days (mean=86 hours), simultaneously, the intracranial pressure, rectum temperature, cerebral perfusion pressure, PaO2 and PaCO2 were also monitored. The patients were followed up for 6 months and the prognosis was evaluated with GOS (Glasgow outcome scale).Results: The mean value of PbtO2 within 24 hour monitoring in the 116 patients was 13.7 mm Hg±4.94 mm Hg, lower than the normal value (16 mm Hg±40 mm Hg) The time of PbtO2 recovering to the normal value in the mild hypothermia group was shortened by 10±4.15 hours compared with the control group (P<0.05). The survival rate of the mild hypothermia group was 60.43%, higher than that of the control group (46.55%). After the recovery of the brain temperature, PbtO2 increased with the rise of the brain temperature. Conclusions: Mild hypothermia can improve the survival rate of severe head injury. The technique of monitoring PbtO2 and the brain temperature is safe and reliable, and has important clinical significance in judging disease condition and instructing clinical therapy.

  15. A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats.

    Science.gov (United States)

    Bao, Feng; Shultz, Sandy R; Hepburn, Jeff D; Omana, Vanessa; Weaver, Lynne C; Cain, Donald P; Brown, Arthur

    2012-09-20

    Traumatic brain injury (TBI) is an international health concern often resulting in chronic neurological abnormalities, including cognitive deficits, emotional disturbances, and motor impairments. An anti-CD11d monoclonal antibody that blocks the CD11d/CD18 integrin and vascular cell adhesion molecule (VCAM)-1 interaction following experimental spinal cord injury improves functional recovery, while reducing the intraspinal number of neutrophils and macrophages, oxidative activity, and tissue damage. Since the mechanisms of secondary injury in the brain and spinal cord are similar, we designed a study to evaluate fully the effects of anti-CD11d treatment after a moderate lateral fluid percussion TBI in the rat. Rats were treated at 2 h after TBI with either the anti-CD11d antibody or an isotype-matched control antibody 1B7, and both short (24- to 72-h) and long (4-week) recovery periods were examined. The anti-CD11d integrin treatment reduced neutrophil and macrophage levels in the injured brain, with concomitant reductions in lipid peroxidation, astrocyte activation, amyloid precursor protein accumulation, and neuronal loss. The reduced neuroinflammation seen in anti-CD11d-treated rats correlated with improved performance on a number of behavioral tests. At 24 h, the anti-CD11d group performed significantly better than the 1B7 controls on several water maze measures of spatial cognition. At 4 weeks post-injury the anti-CD11d-treated rats had better sensorimotor function as assessed by the beam task, and reduced anxiety-like behaviors, as evidenced by elevated-plus maze testing, compared to 1B7 controls. These findings suggest that neuroinflammation is associated with behavioral deficits after TBI, and that anti-CD11d antibody treatment is a viable strategy to improve neurological outcomes after TBI. PMID:22676851

  16. Expression of GLUT4 mRNA of peripheral tissues and insulin resistance in rats with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-qing; ZHU Lie-lie; LI Yong-ling

    2007-01-01

    Objective: To evaluate the expression of glucose transporter-4 (GLUT4) mRNA in skeletal muscle and subcutaneous adipose tissues and investigate the mechanism of posttraumatic insulin resistance.Methods: Sixteen adult male Wistar rats were randomly divided into 2 group (n=8 in each group), i.e., severe traumatic brain injury (TBI) group due to falls from a height and normal control group. Blood glucose and serum insulin were measured at 0.5 h before trauma and 3 h, 24 h, 72 h, 7 d after trauma, respectively. And insulin sensitivity was calculated by insulin activity index (IAI) formula. Skeletal muscle and subcutaneous adipose tissue samples were collected at the same time when blood was sampled. The changes of expression of GLUT4 mRNA were observed using reverse transcription-polymerase chain reaction (RT-PCR).Results: Accompanied by the decrease of insulin sensitivity, the expression of GLUT4 mRNA was significantly decreased in adipose tissues at 24 h and 72 h after trauma (P<0.01), however, such phenomena did not appear in skeletal muscle samples.Conclusions: To some extent, the development of posttraumatic insulin resistance is related to the abnormality of transcription activity of GLUT4 gene. Adipose tissues show some difference in the transcriptional level of GLUT4 gene after trauma as compared with skeletal muscle tissues.

  17. Brain injury - discharge

    Science.gov (United States)

    ... 5, 2014. Chuang K, Stroud, NL, Zafonte R. Rehabilitation of patients with traumatic brain injury. In: Winn HR, ed. Youman's Neurological Surgery . 6th ed. Philadelphia, PA: Elsevier Saunders; 2011: ...

  18. A correlation study of the expression of resistin and glycometabolism in muscle tissue after traumatic brain injury in rats

    Directory of Open Access Journals (Sweden)

    Jin Peng

    2014-06-01

    Full Text Available Objective:To investigate the expression pattern of resistin (RSTN in skeletal muscle tissue and its influence on glycometabolism in rats with traumatic brain injury (TBI. Methods:Seventy-eight SD rats were randomly divided into traumatic group (n=36, RSTN group (n=36 and sham operation group (n=6. Fluid percussion TBI model was developed in traumatic and RSTN groups and the latter received additional 1 mg RSTN antibody treatment for each rat. At respectively 12 h, 24 h, 72 h, 1 w, 2 w, and 4 w after operation, venous blood was collected and the right hind leg skeletal muscle tissue was sampled. We used real-time PCR to determine mRNA expression of RSTN in skeletal muscles, western blot to determine RSTN protein expression and ELISA to assess serum insulin as well as fasting blood glucose (FBG levels. Calculation of the quantitative insulin sensitivity check index (Q value was also conducted. The above mentioned indicators and their correction were statistically analyzed. Results:Compared with sham operation group, the RSTN expression in the skeletal muscle as well as serum insulin and FBG levels revealed significant elevation (P<0.05, and reduced Q value (P<0.05 in traumatic group. Single factor linear correlation analysis showed a significant negative correlation between RSTN expression and Q values (P<0.001 in traumatic group. Conclusion:The expression of RSTN has been greatly increased in the muscular tissue of TBI rats and it was closely related to the index of glycometabolism. RSTN may play an important role in the process of insulin resistance after TBI. Key words: Brain injuries; Resistin; Insulin resistance; Blood glucose; Insulin sensitivity

  19. Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Schaller, Alexandra L; Lakhani, Saquib A; Hsu, Benson S

    2015-10-01

    The purpose of this article is to provide a better understanding of pediatric traumatic brain injury and its management. Within the pediatric age group, ages 1 to 19, injuries are the number one cause of death with traumatic brain injury being involved in almost 50 percent of these cases. This, along with the fact that the medical system spends over $1 billion annually on pediatric traumatic brain injury, makes this issue both timely and relevant to health care providers. Over the course of this article the epidemiology, physiology, pathophysiology, and treatment of pediatric traumatic brain injury will be explored. Emphasis will be placed on the role of the early responder and the immediate interventions that should be considered and/or performed. The management discussed in this article follows the most recent recommendations from the 2012 edition of the Guidelines for the Acute Medical Management of Severe Traumatic Brain Injury in Infants, Children, and Adolescents. Despite the focus of this article, it is important not to lose sight of the fact that an ounce of prevention is worth a pound--or, to be more precise and use the average human's brain measurements, just above three pounds--of cure. PMID:26630835

  20. Effect of mild hypothermia on partial pressure of oxygen in brain tissue and brain temperature in patients with severe head injury

    Institute of Scientific and Technical Information of China (English)

    张赛; 只达石; 林欣; 尚彦国; 牛玉德

    2002-01-01

    Objective: To study the changes of partial pressure of oxygen in brain tissue (PbtO2) and brain temperature (BT) in patients in acute phase of severe head injury, and to study the effect of mild hypothermia on PbtO2 and BT.   Methods: The PbtO2 and the BT of 18 patients with severe head injury were monitored, and the patients were treated with mild hypothermia within 20 hours after injury. The rectal temperature (RT) of the patients was kept on 31.5-34.9℃ for 1-7 days (57.7 hours±28.4 hours averagely), simultaneously, the indexes of PbtO2 and BT were monitored for 1-5 days (with an average of 54.8 hours±27.0 hours). According to Glasgow Outcome Scale (GOS), the prognosis of the patients was evaluated at 6 months after injury.   Results: Within 24 hours after severe head injury, the PbtO2 was significantly lower (9.6 mm Hg±6.8 mm Hg, 1 mm Hg=0.133 kPa) than the normal value (16-40 mm Hg). After treatment of mild hypothermia, the mean PbtO2 increased to 28.7 mm Hg±8.8 mm Hg during the first 24 hours, and the PbtO2 was still maintained within the range of normal value at 3 days after injury. The BT was higher than the RT in the patients in acute phase of severe head injury, and the difference between the BT and the RT significantly increased after treatment of mild hypothermia. Hyperventilation (the partial pressure of carbon dioxide in artery (PaCO2)≈25 mm Hg) decreased the high intracranial pressure (ICP) and significantly decreased the PbtO2.   Conclusions: This study demonstrates that PptO2 and BT monitoring is a safe, reliable and sensitive diagnostic method to follow cerebral oxygenation. It might become an important tool in our treatment regime for patients in the acute phase of severe head injury requiring hypothermia and hyperventilation.

  1. Brain protection by magnesium ion against radioaction brain injury

    International Nuclear Information System (INIS)

    Radiation brain injury is a serious complication among the radiotherapy of brain tumors. It is demonstrated that the protective action of magnesium ion in the brain injury from some experimental studies recent years, which is the prospective neuro protective agents overall merits. This article is summarized the causes and the variance of magnesium ion in the brain tissue afterwards the radioactive brain injury, additionally the defense mechanism of magnesium ion from the aspects of inflammation reduction, encephaledema alleviation, anti-apoptosis and improvement of nerve function. (authors)

  2. Hysteria following brain injury.

    OpenAIRE

    Eames, P

    1992-01-01

    Of 167 patients referred to a unit treating severe behaviour disorders after brain injury, 54 showed clinical features closely resembling those of gross hysteria as described by Charcot. Close correlation was found with very diffuse insults (hypoxia and hypoglycaemia), but not with severity of injury or with family or personal history of hysterical or other psychiatric disorder. The findings may have implications for the understanding of the nature of hysteria.

  3. TRAUMATIC BRAIN INJURY (TBI) DATABASE

    Science.gov (United States)

    The Traumatic Brain Injury National Data Center (TBINDC) at Kessler Medical Rehabilitation Research and Education Center is the coordinating center for the research and dissemination efforts of the Traumatic Brain Injury Model Systems (TBIMS) program funded by the National Instit...

  4. Traumatic Brain Injury (TBI)

    Science.gov (United States)

    ... A. (2008). Mild traumatic brain injury in U.S. soldiers returning from Iraq. New England Journal of Medicine, 358, 453–463. ... and Spotlights U.S. hospitals miss followup for suspected child abuse Q&A with NICHD Acting Director Catherine ...

  5. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  6. Effects of realgar on stress proteins, inflammatory mediators, and complement in brain tissue and serum of rats with inflammatory brain injury

    Institute of Scientific and Technical Information of China (English)

    Yishan Tang; Ningsheng Wang; Yinqing Zhang; Shaomei Ye; Weiping Ou

    2008-01-01

    BACKGROUND: The Chinese herbal compound realgar exerts detoxification effects as an adjuvant. It is suggested that realgar exerts detoxification via the following pathways: in the pathological state, realgar corrects the oxidative stress state by increasing stress levels, activating some endogenous protective factors and antagonizing the excessive release of inflammatory factors, as well as inhibiting complement activation.OBJECTIVE: To observe the changes in stress proteins, inflammatory mediators, and complement in the brain tissue and serum of rats with inflammatory brain injury, which have been treated with thc Chinese herbal compound Angong Niuhuang, and to compare the efficacy of Angong Niuhuang with that of realgar,to verify the mechanism of action of realgar.DESIGN, TIME AND SETTING: Randomized, controlled, cytological experiment, performed in the Institute of Clinical Pharmacology, Guangzhou University of Traditional Chinese Medicine in March 2006.MATERIALS: Thirty-six healthy, male, Sprague Dawley rats received 250 U/kg Bordetella pertussis via the common carotid artery within 15 seconds to induce inflammatory brain injury. Reagents and kits were as follows: Realgar and Angong Niuhuang powder (Foshan Second Pharmaceutical Factory, China), Bordetella pertussis diagnostic antigen (National Institute for the Control of Pharmaceutical and Biological Products,China), heat shock protein 70 (HSP70) enzyme-labeled immunosorbent assay (ELISA) kit (Stressgen, USA),tumor necrosis factor-α (TNF-α) ELISA kit (Biosource, USA), nitric oxide synthase (NOS) kit,Coomassie brilliant blue protein kit (Nanjing Jiancheng Bioengineering Co.,Ltd., China), and complements C3 and C4 (Shanghai Kehua Dongling Diagnositic Products Co.,Ltd., China),METHODS: Thirty-six rats were randomly and evenly divided into the following six groups: normal control,model, high-, middle-, and low-dose realgar-treated, and Angong Niuhuang-treated groups. At one hour prior to establishing the model

  7. Manganese: Brain Species and Mechanisms of Brain Injury

    OpenAIRE

    Neth, Katharina

    2016-01-01

    Manganism is a Parkinson-related disease, which can arise by accumulation of the essential trace element manganese (Mn) in the brain by overexposure. Versatile Mn-species and imbalances of trace elements in serum and brain tissue of Mn-exposed rats were analyzed by methods of metallomics. Additionally, non-targeted metabolomics of brain tissue served for analysis of the multilateral mechanisms, which can lead to the neuronal injury. Finally, results from metallomics were correlated to the fin...

  8. Correlation between regional cerebral blood flow and degree of brain tissue injury of interictal epileptic activity in patients with epilepsy

    International Nuclear Information System (INIS)

    Objective: To explore the correlation between the change of regional cerebral blood flow (rCBF) and brain tissue injury from interictal epileptic activity in patients with epilepsy. Methods: Forty-eight patients with epilepsy and 30 healthy persons were included in the study from which the serum S100β protein levels were determined by double antibody sandwich ELISA method. SPECT rCBF imaging was performed in all patients. The visual and semi-quantitative analyses were used to analyze the epileptic foci. SPSS 11.0 was applied for variance and linear correlation analyses. Results: Serum S-100β in patients with interictal epileptic activity was significantly higher than that in control group ((0.572±0.163) μg/L vs (0.218±0.134) μg/L, t =9.96, P<0.01). According to epilepsy control criteria, 20 cases achieved complete control (CC), 18 cases achieved partial control (PR). However, 10 cases got no improvement,whose serum S-100β protein ((0.809±0.056) μg/L) and the percentage change of rCBF ((0.337±0.060) %) were significantly higher than those of CC ((0.443±0.083) μg/L, (0.035±0.038) %) and those of PC ((0.585±0.108) μg/L, (0.187±0.075)%), F=56. 740, 92. 316, P<0.01. There were high correlation between serum S-100β and the percentage change of rCBF in epilepsy patients (r =0.887, P<0.01). Conclusion: Serum S-100β protein assay combined with rCBF on SPECT imaging can make semi-quantitative diagnosis of epilepsy and help evaluate the brain damage from interictal epileptic activity. (authors)

  9. Soft tissue twisting injuries of the knee

    International Nuclear Information System (INIS)

    Twisting injuries occur as a result of differential motion of different tissue types in injuries with some rotational force. These injuries are well described in brain injuries but, to our knowledge, have not been described in the musculoskeletal literature. We correlated the clinical examination and MR findings of 20 patients with twisting injuries of the soft tissues around the knee. Design and patients: We prospectively followed the clinical courses of 20 patients with knee injuries who had clinical histories and MR findings to suggest twisting injuries of the subcutaneous tissues. Patients with associated internal derangement of the knee (i.e., meniscal tears, ligamentous or bone injuries) were excluded from this study. MR findings to suggest twisting injuries included linear areas of abnormal dark signal on T1-weighted sequences and abnormal bright signal on T2-weighted or short tau inversion recovery (STIR) sequences and/or signal to suggest hemorrhage within the subcutaneous tissues. These MR criteria were adapted from those established for indirect musculotendinous junction injuries. Results: All 20 patients presented with considerable pain that suggested internal derangement on physical examination by the referring orthopedic surgeons. All presented with injuries associated with rotational force. The patients were placed on a course of protected weight-bearing of the affected extremity for 4 weeks. All patients had pain relief by clinical examination after this period of protected weight-bearing. Twisting injuries of the soft tissues can result in considerable pain that can be confused with internal derangement of the knee on physical examination. Soft tissue twisting injuries need to be recognized on MR examinations as they may be the cause of the patient's pain despite no MR evidence of internal derangement of the knee. The demonstration of soft tissue twisting injuries in a patient with severe knee pain but no documented internal derangement on MR

  10. Association between serum tissue inhibitor of matrix metalloproteinase-1 levels and mortality in patients with severe brain trauma injury.

    Directory of Open Access Journals (Sweden)

    Leonardo Lorente

    Full Text Available OBJECTIVE: Matrix metalloproteinases (MMPs and tissue inhibitors of matrix metalloproteinases (TIMPs play a role in neuroinflammation after brain trauma injury (TBI. Previous studies with small sample size have reported higher circulating MMP-2 and MMP-9 levels in patients with TBI, but no association between those levels and mortality. Thus, the aim of this study was to determine whether serum TIMP-1 and MMP-9 levels are associated with mortality in patients with severe TBI. METHODS: This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. Patients with severe TBI defined as Glasgow Coma Scale (GCS lower than 9 were included, while those with Injury Severity Score (ISS in non-cranial aspects higher than 9 were excluded. Serum levels of TIMP-1, MMP-9 and tumor necrosis factor (TNF-alpha, and plasma levels of tissue factor (TF and plasminogen activator inhibitor (PAI-1 plasma were measured in 100 patients with severe TBI at admission. Endpoint was 30-day mortality. RESULTS: Non-surviving TBI patients (n = 27 showed higher serum TIMP-1 levels than survivor ones (n = 73. We did not find differences in MMP-9 serum levels. Logistic regression analysis showed that serum TIMP-1 levels were associated 30-day mortality (OR = 1.01; 95% CI = 1.001-1.013; P = 0.03. Survival analysis showed that patients with serum TIMP-1 higher than 220 ng/mL presented increased 30-day mortality than patients with lower levels (Chi-square = 5.50; P = 0.02. The area under the curve (AUC for TIMP-1 as predictor of 30-day mortality was 0.73 (95% CI = 0.624-0.844; P<0.001. An association between TIMP-1 levels and APACHE-II score, TNF- alpha and TF was found. CONCLUSIONS: The most relevant and new findings of our study, the largest series reporting data on TIMP-1 and MMP-9 levels in patients with severe TBI, were that serum TIMP-1 levels were associated with TBI mortality and could be used as a prognostic biomarker of mortality

  11. PERSONALITY CHANGES IN BRAIN INJURY

    OpenAIRE

    Garcia, Patricia Gracia; Mielke, Michelle M.; Rosenberg, Paul; Bergey, Alyssa; Rao, Vani

    2011-01-01

    Traumatic brain injury (TBI) is frequently complicated by alterations in mood and behaviour and changes in personality. We report mild personality changes post-TBI as a possible indicator of traumatic brain injury, but not of injury severity or psychiatric complications.

  12. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    OpenAIRE

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain s...

  13. On the consequences of non linear constitutive modelling of brain tissue for injury prediction with numerical head models

    NARCIS (Netherlands)

    Hrapko, M.; Dommelen, J.A.W. van; Peters, G.W.M.; Wismans, J.S.H.M.

    2009-01-01

    The objective of this work was to investigate the influences of constitutive non linearities of brain tissue in numerical head model simulations by comparing the performance of a recently developed non linear constitutive model [10, 11] with a simplified version, based on neo-Hookean elastic behavio

  14. Evaluation after Traumatic Brain Injury

    Science.gov (United States)

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  15. Serum Glial Fibrillary Acidic Protein Predicts Tissue Glial Fibrillary Acidic Protein Break-Down Products and Therapeutic Efficacy after Penetrating Ballistic-Like Brain Injury.

    Science.gov (United States)

    Boutté, Angela M; Deng-Bryant, Ying; Johnson, David; Tortella, Frank C; Dave, Jitendra R; Shear, Deborah A; Schmid, Kara E

    2016-01-01

    Acute traumatic brain injury (TBI) is associated with neurological dysfunction, changes in brain proteins, and increased serum biomarkers. However, the relationship between these brain proteins and serum biomarkers, and the ability of these serum biomarkers to indicate a neuroprotective/therapeutic response, remains elusive. Penetrating ballistic-like brain injury (PBBI) was used to systematically analyze several key TBI biomarkers, glial fibrillary acidic protein (GFAP) and its break-down products (BDPs)-ubiquitin C-terminal hydrolase-L1 (UCH-L1), α-II spectrin, and α-II spectrin BDPs (SBDPs)-in brain tissues and serum during an extended acute-subacute time-frame. In addition, neurological improvement and serum GFAP theranostic value was evaluated after neuroprotective treatment. In brain tissues, total GFAP increased more than three-fold 2 to 7 d after PBBI. However, this change was primarily due to GFAP-BDPs which increased to 2.7-4.8 arbitrary units (AU). Alpha-II spectrin was nearly ablated 3 d after PBBI, but somewhat recovered after 7 d. In conjunction with α-II spectrin loss, SBDP-145/150 increased approximately three-fold 2 to 7 d after PBBI (vs. sham, p<0.05). UCH-L1 protein levels were slightly decreased 7 d after PBBI but otherwise were unaffected. Serum GFAP was elevated by 3.2- to 8.8-fold at 2 to 4 h (vs. sham; p<0.05) and the 4 h increase was strongly correlated to 3 d GFAP-BDP abundance (r=0.66; p<0.05). Serum GFAP showed such a strong injury effect that it also was evaluated after therapeutic intervention with cyclosporin A (CsA). Administration of 2.5 mg/kg CsA significantly reduced serum GFAP elevation by 22.4-fold 2 h after PBBI (vs. PBBI+vehicle; p<0.05) and improved neurological function 1 d post-injury. Serum biomarkers, particularly GFAP, may be correlative tools of brain protein changes and feasible theranostic markers of TBI progression and recovery. PMID:25789543

  16. Controversies in preterm brain injury.

    Science.gov (United States)

    Penn, Anna A; Gressens, Pierre; Fleiss, Bobbi; Back, Stephen A; Gallo, Vittorio

    2016-08-01

    In this review, we highlight critical unresolved questions in the etiology and mechanisms causing preterm brain injury. Involvement of neurons, glia, endogenous factors and exogenous exposures is considered. The structural and functional correlates of interrupted development and injury in the premature brain are under active investigation, with the hope that the cellular and molecular mechanisms underlying developmental abnormalities in the human preterm brain can be understood, prevented or repaired. PMID:26477300

  17. Traumatic Brain Injury (TBI): Moderate or Severe

    Science.gov (United States)

    Traumatic Brain Injury (TBI) Moderate or Severe Definition A TBI is classified as moderate or severe when a patient experiences ... skull and enters the brain Defense and Veterans Brain Injury Center PATFIAE MN TI LSI ES Traumatic Brain ...

  18. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  19. Traumatic Brain Injury (TBI) Data and Statistics

    Science.gov (United States)

    ... Submit Search The CDC Injury Prevention & Control: Traumatic Brain Injury & Concussion Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Traumatic Brain Injury & Concussion Basic Information Get the Facts Signs and ...

  20. Pediatric minor traumatic brain injury.

    Science.gov (United States)

    Gordon, Kevin E

    2006-12-01

    The literature surrounding minor traumatic brain injury is complex, methodologically challenging, and controversial. Although we lack a consistent standardized definition, the annual rate is likely in excess of 200 per 100,000 children. The proportion of children with minor traumatic brain injury who will require neurosurgery is certainly return to play is currently recommended. The recurrence risk for subsequent concussions is elevated, but there is limited documentation of the effectiveness of preventative efforts. Much remains to be learned. PMID:17178354

  1. Traumatic Brain Injury Inpatient Rehabilitation

    Science.gov (United States)

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  2. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model

    OpenAIRE

    Seul Ki Min; Jun Sang Park; Lidan Luo; Yeo Seon Kwon; Hoo Cheol Lee; Hyun Jung Shim; Il-Doo Kim; Ja-Kyeong Lee; Hwa Sung Shin

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administrati...

  3. Traumatic brain injury-induced sleep disorders.

    Science.gov (United States)

    Viola-Saltzman, Mari; Musleh, Camelia

    2016-01-01

    Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%-70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. PMID:26929626

  4. Brain injury - discharge

    Science.gov (United States)

    ... injuries do not happen. This includes making the bathroom safe, for either a child or an adult , and protecting against falls . Family and caregivers may need to help the person with the following: Exercising ...

  5. Neurobiology of premature brain injury

    OpenAIRE

    Salmaso, Natalina; Jablonska, Beata; Scafidi, Joseph; Vaccarino, Flora M.; Gallo, Vittorio

    2014-01-01

    Every year in the United States, an estimated 500,000 babies are born preterm (before 37 completed weeks of gestation), and this number is rising, along with the recognition of brain injuries due to preterm delivery. A common underlying pathogenesis appears to be perinatal hypoxia induced by immature lung development, which causes injury to vulnerable neurons and glia. Abnormal growth and maturation of susceptible cell types, particularly neurons and oligodendrocytes, in preterm babies with v...

  6. Brain injury requires lung protection

    OpenAIRE

    Lopez-Aguilar, Josefina; Blanch, Lluis

    2015-01-01

    The paper entitled “The high-mobility group protein B1-Receptor for advanced glycation endproducts (HMGB1-RAGE) axis mediates traumatic brain injury (TBI)-induced pulmonary dysfunction in lung transplantation” published recently in Science Translational Medicine links lung failure after transplantation with alterations in the axis HMGB1-RAGE after TBI, opening a new field for exploring indicators for the early detection of patients at risk of developing acute lung injury (ALI). The lung is on...

  7. Missile injuries of the brain

    International Nuclear Information System (INIS)

    Data was analyzed relating to a consecutive series of 16 patients of penetrating brain injuries received at forward defense lines. Characteristics studied were the cause of injury, level of consciousness and various neurological deficits presented on initial examination, CT scan findings, the surgical procedures performed and the final outcome after one year of follow-up. One out of 16 patients, died due to severe associated injuries to abdominal viscera and major vessels. Meningitis occurred in one patient during the immediate postoperative period. All patients with motor weakness speech deficits and incontinence showed significant improvement. Hearing loss of one ear persisted in one patient. Two patients developed delayed onset seizures. It is concluded that, patients with penetrating brain injuries should be evacuated to the tertiary care neurosurgical centres as soon as possible. In operation only obviously necrotic brain and easily accessible metal and bone pieces should be removed. There is no need to explore the normal brain as it would only result in increased neurological deficits. The patients with such injuries should receive broad-spectrum antibiotics to prevent the infective complications. (author)

  8. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  9. Brain Injury Safety Tips and Prevention

    Science.gov (United States)

    ... this? Submit Button Brain Injury Safety Tips and Prevention Recommend on Facebook Tweet Share Compartir There are ... More HEADS UP Video: Brain Injury Safety and Prevention frame support disabled and/or not supported in ...

  10. Family needs after brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Perrin, Paul B; Cuberos-Urbano, Gustavo;

    2015-01-01

    OBJECTIVE: The objective of this study was to explore differences by country in the importance of family needs after traumatic brain injury (TBI), as well as differences in met/unmet needs. METHOD: Two hundred and seventy-one family members of an individual with TBI in Mexico, Colombia, Spain...

  11. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given the...

  12. Knowledge of Traumatic Brain Injury among Educators

    Science.gov (United States)

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  13. Assessment of Students with Traumatic Brain Injury

    Science.gov (United States)

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  14. Anemia and brain oxygen after severe traumatic brain injury

    OpenAIRE

    Oddo, Mauro; Levine, Joshua M.; Kumar, Monisha; Iglesias, Katia; Frangos, Suzanne; Maloney-Wilensky, Eileen; Le Roux, Peter D.

    2016-01-01

    Purpose To investigate the relationship between hemoglobin (Hgb) and brain tissue oxygen tension (PbtO2) after severe traumatic brain injury (TBI) and to examine its impact on outcome. Methods This was a retrospective analysis of a prospective cohort of severe TBI patients whose PbtO2 was monitored. The relationship between Hgb—categorized into four quartiles (≤9; 9–10; 10.1–11; >11 g/dl)—and PbtO2 was analyzed using mixed-effects models. Anemia with compromised PbtO2 was defined as episodes...

  15. Simvastatin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    Science.gov (United States)

    Mountney, Andrea; Bramlett, Helen M; Dixon, C Edward; Mondello, Stefania; Dietrich, W Dalton; Wang, Kevin K W; Caudle, Krista; Empey, Philip E; Poloyac, Samuel M; Hayes, Ronald L; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M; Shear, Deborah A

    2016-03-15

    Simvastatin, the fourth drug selected for testing by Operation Brain Trauma Therapy (OBTT), is a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor used clinically to reduce serum cholesterol. In addition, simvastatin has demonstrated potent antineuroinflammatory and brain edema reducing effects and has shown promise in promoting functional recovery in pre-clinical models of traumatic brain injury (TBI). The purpose of this study was to assess the potential neuroprotective effects of oral administration of simvastatin on neurobehavioral, biomarker, and histopathological outcome measures compared across three pre-clinical TBI animal models. Adult male Sprague-Dawley rats were exposed to either moderate fluid percussion injury (FPI), controlled cortical impact injury (CCI), or penetrating ballistic-like brain injury (PBBI). Simvastatin (1 or 5 mg/kg) was delivered via oral gavage at 3 h post-injury and continued once daily out to 14 days post-injury. Results indicated an intermediate beneficial effect of simvastatin on motor performance on the gridwalk (FPI), balance beam (CCI), and rotarod tasks (PBBI). No significant therapeutic benefit was detected, however, on cognitive outcome across the OBTT TBI models. In fact, Morris water maze (MWM) performance was actually worsened by treatment in the FPI model and scored full negative points for low dose in the MWM latency and swim distance to locate the hidden platform. A detrimental effect on cortical tissue loss was also seen in the FPI model, and there were no benefits on histology across the other models. Simvastatin also produced negative effects on circulating glial fibrillary acidic protein biomarker outcomes that were evident in the FPI and PBBI models. Overall, the current findings do not support the beneficial effects of simvastatin administration over 2 weeks post-TBI using the oral route of administration and, as such, it will not be further pursued by OBTT. PMID:26541177

  16. Astrocytes as therapeutic targets of estrogenic compounds following brain injuries

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-03-01

    Full Text Available For decades, astrocytes have been considered to be non-excitable support cells that are relatively resistant to brain injury. This view has changed radically during the past twenty years. Multiple essential functions are performed by astrocytes in normal brain. Astrocytes are dynamically involved in synaptic transmission, metabolic and ionic homeostasis, and inflammatory maintenance of the blood brain barrier. Advances in our understanding of astrocytes include new observations about their structure, organization, and function. Astrocytes play an active and important role in the pathophysiology of brain damage. Brain injury impairs mitochondrial function and this is accompanied by increased oxidative stress, leading to prominent astrogliosis, which involves changes in gene expression and morphology, and therefore glial scar formation. Recent works have demonstrated a protective role of reactive astrocytes after brain injury. Nevertheless, others have pointed to an inhibitory role of astrocytes in axonal regeneration after injury. Reactive astrogliosis is a complex phenomenon that includes a mixture of positive and negative responses for neuronal survival and regeneration. Reactive astroglia maintains the integrity of the blood-brain barrier and the survival of the perilesional tissue, but may prevent axonal and damaged tissue regeneration. Neuroprotective strategies aiming at reducing gliosis and enhance brain plasticity are of potential interest for translational neuroscience research in brain injuries. In this context, neurosteroids have shown to be a promising strategy to protect brain against injury, as their effects may rely on reducing gliosis, brain inflammation and potentially modulating recovery from brain injury by engaging mechanisms of neural plasticity. In conclusion, in this work we will consider particularly the two-edged sword role of reactive astrocytes, which is an experimental paradigm helpful in discriminating destructive

  17. Preconditioning for traumatic brain injury

    Science.gov (United States)

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  18. Inflammatory neuroprotection following traumatic brain injury.

    Science.gov (United States)

    Russo, Matthew V; McGavern, Dorian B

    2016-08-19

    Traumatic brain injury (TBI) elicits an inflammatory response in the central nervous system (CNS) that involves both resident and peripheral immune cells. Neuroinflammation can persist for years following a single TBI and may contribute to neurodegeneration. However, administration of anti-inflammatory drugs shortly after injury was not effective in the treatment of TBI patients. Some components of the neuroinflammatory response seem to play a beneficial role in the acute phase of TBI. Indeed, following CNS injury, early inflammation can set the stage for proper tissue regeneration and recovery, which can, perhaps, explain why general immunosuppression in TBI patients is disadvantageous. Here, we discuss some positive attributes of neuroinflammation and propose that inflammation be therapeutically guided in TBI patients rather than globally suppressed. PMID:27540166

  19. Temperature Effects on Brain Tissue in Compression

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.04.005

    2013-01-01

    Extensive research has been carried out for at least 50 years to understand the mechanical properties of brain tissue in order to understand the mechanisms of traumatic brain injury (TBI). The observed large variability in experimental results may be due to the inhomogeneous nature of brain tissue and to the broad range of test conditions. However, test temperature is also considered as one of the factors influencing the properties of brain tissue. In this research, the mechanical properties of porcine brain have been investigated at 22C (room temperature) and at 37C (body temperature) while maintaining a constant preservation temperature of approximately 4-5C. Unconfined compression tests were performed at dynamic strain rates of 30 and 50/s using a custom made test apparatus. There was no significant difference (p = 0.8559 - 0.9290) between the average engineering stresses of the brain tissue at the two different temperature conditions. The results of this study should help to understand the behavior of bra...

  20. AT2 Receptor and Tissue Injury

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Recarti, Chiara; Foulquier, Sébastien;

    2014-01-01

    The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well...... established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from and...... often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans...

  1. Endogenous lipoid pneumonia in a cachectic patient after brain injury

    OpenAIRE

    Zhang, Ji; Mu, Jiao; Lin, Wei; Dong, Hongmei

    2015-01-01

    Endogenous lipoid pneumonia (EnLP) is an uncommon non-life-threatening inflammatory lung disease that usually occurs in patients with conditions such as lung cancers, primary sclerosing cholangitis, and undifferentiated connective tissue disease. Here we report a case of EnLP in a paralytic and cachectic patient with bronchopneumonia after brain injury. A 40-year-old man experienced a severe brain injury in an automobile accident. He was treated for 1 month and his status plateaued. However, ...

  2. Dexmedetomidine Postconditioning Reduces Brain Injury after Brain Hypoxia-Ischemia in Neonatal Rats.

    Science.gov (United States)

    Ren, Xiaoyan; Ma, Hong; Zuo, Zhiyi

    2016-06-01

    Perinatal asphyxia can lead to death and severe disability. Brain hypoxia-ischemia (HI) injury is the major pathophysiology contributing to death and severe disability after perinatal asphyxia. Here, seven-day old Sprague-Dawley rats were subjected to left brain HI. Dexmedetomidine was given intraperitoneally after the brain HI. Yohimbine or atipamezole, two α2 adrenergic receptor antagonists, were given 10 min before the dexmedetomidine injection. Neurological outcome was evaluated 7 or 28 days after the brain HI. Frontal cerebral cortex was harvested 6 h after the brain HI. Left brain HI reduced the left cerebral hemisphere weight assessed 7 days after the brain HI. This brain tissue loss was dose-dependently attenuated by dexmedetomidine. Dexmedetomidine applied within 1 h after the brain HI produced this effect. Dexmedetomidine attenuated the brain HI-induced brain tissue and cell loss as well as neurological and cognitive dysfunction assessed from 28 days after the brain HI. Dexmedetomidine postconditioning-induced neuroprotection was abolished by yohimbine or atipamezole. Brain HI increased tumor necrosis factor α and interleukin 1β in the brain tissues. This increase was attenuated by dexmedetomidine. Atipamezole inhibited this dexmedetomidine effect. Our results suggest that dexmedetomidine postconditioning reduces HI-induced brain injury in the neonatal rats. This effect may be mediated by α2 adrenergic receptor activation that inhibits inflammation in the ischemic brain tissues. PMID:26932203

  3. Traumatic brain injury-induced sleep disorders

    Directory of Open Access Journals (Sweden)

    Viola-Saltzman M

    2016-02-01

    Full Text Available Mari Viola-Saltzman, Camelia Musleh Department of Neurology, NorthShore University HealthSystem, Evanston, IL, USA Abstract: Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%–70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. Keywords: traumatic brain injury, insomnia, hypersomnia, sleep apnea, periodic limb movement disorder, fatigue

  4. TRAUMATIC BRAIN INJURY SURVEILLANCE SYSTEM (TBISS)

    Science.gov (United States)

    The National Center for Injury Prevention and Control (NCIPC), Centers for Disease Control and Prevention (CDC) had developed and maintains a surveillance system to understand the magnitude and characteristics of hospitalized and fatal traumatic brain injuries in the United State...

  5. How woodpecker avoids brain injury?

    Science.gov (United States)

    Wu, C. W.; Zhu, Z. D.; Zhang, W.

    2015-07-01

    It has long been recognized that woodpecker is an excellent anti-shock organism, as its head and brain can bear high deceleration up to 1500 g under fast pecking. To investigate the mechanism of brain protection of woodpecker, we built a finite element model of a whole woodpecker using computed topography scanning technique and geometry modeling. Numerical results show that the periodical changing Young's modulus around the skull affects the stress wave propagation in head and makes the stress lowest at the position of the brain. Modal analysis reveals the application of pre-tension force to the hyoid bone can increase the natural frequency of woodpecker's head. The large gap between the natural and working frequencies enable the woodpecker to effectively protect its brain from the resonance injury. Energy analyses indicate the majority of the impact energy (99.7%) is stored in the bulk of body and is utilized in the next pecking. There is only a small fraction of it enters into the head (0.3%). The whole body of the woodpecker gets involved in the energy conversion and forms an efficient anti-shock protection system for the brain.

  6. [Mild brain injuries in emergency medicine].

    Science.gov (United States)

    Liimatainen, Suvi; Niskakangas, Tero; Ohman, Juha

    2011-01-01

    Diagnostics and correct classification of mild brain injuries is challenging. Problems caused by insufficient documentation at the acute phase become more obvious in situations in which legal insurance issues are to be considered. A small proportion of patients with mild brain injury suffer from prolonged symptoms. Medical recording and classification of the brain injury at the initial phase should therefore be carried out in a structured manner. The review deals with the diagnostic problems of mild brain injuries and presents a treatment protocol for adult patients at the acute phase, aiming at avoiding prolonged problems. PMID:22238915

  7. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    Science.gov (United States)

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  8. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  9. Increased leakage of brain antigens after traumatic brain injury and effect of immune tolerance induced by cells on traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YAN Hua; ZHANG Hong-wei; WU Qiao-li; ZHANG Guo-bin; LIU Kui; ZHI Da-shi; HU Zhen-bo; ZENG Xian-wei

    2012-01-01

    Background Although traumatic brain injury can lead to opening the blood-brain barrier and leaking of blood substances (including water) into brain tissue,few studies of brain antigens leaking into the blood and the pathways have been reported.Brain antigens result in damage to brain tissues by stimulating the immune system to produce anti-brain antibodies,but no treatment has been reported to reduce the production of anti-brain antibodies and protect the brain tissue.The aim of the study is to confirm the relationship between immune injury and arachnoid granulations following traumatic brain injury,and provide some new methods to inhibit the immune injury.Methods In part one,methylene blue was injected into the rabbits' cisterna magna after traumatic brain injury,and concentrations of methylene blue and tumor necrosis factor (TNF)-α in blood were detected to determine the permeability of arachnoid granulations.In part two,umbilical cord mesenchymal stem cells and immature dendritic cells were injected into veins,and concentrations of interleukin 1 (IL-1),IL-10,interferon (IFN)-y,transforming growth factor (TGF)-β,anti-brain antibodies (ABAb),and IL-12 were measured by ELISA on days 1,3,7,14 and 21 after injury,and the numbers of leukocytes in the blood were counted.Twenty-one days after injury,expression of glutamate in brain tissue was determined by immunohistochemical staining,and neuronal degeneration was detected by H&E staining.Results In part one,blood concentrations of methylene blue and TNF-α in the traumatic brain injury group were higher than in the control group (P <0.05).Concentrations of methylene blue and TNF-α in the trauma cerebrospinal fluid (CSF)injected group were higher than in the control cerebrospinal fluid injected group (P <0.05).In part two,concentrations of IL-1,IFN-y,ABAb,IL-12,expression of glutamate (Glu),neuronal degeneration and number of peripheral blood leukocytes were lower in the group with cell treatment compared to the

  10. Low Level Primary Blast Injury in Rodent Brain

    OpenAIRE

    Pun, Pamela B. L.; Kan, Enci Mary; Salim, Agus; Li, Zhaohui; Ng, Kian Chye; Moochhala, Shabbir M; Ling, Eng-Ang; Tan, Mui Hong; Lu, Jia

    2011-01-01

    The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross...

  11. Low level primary blast injury in rodent brain

    OpenAIRE

    Enci MaryKan; AgusSalim; Zhao HuiLi; Eng-AngLing

    2011-01-01

    The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histo...

  12. Support Network Responses to Acquired Brain Injury

    Science.gov (United States)

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  13. Treatment of very severe brain injuries

    Institute of Scientific and Technical Information of China (English)

    杨振九; 杨佳勇; 冯承宣; 宋伟健; 孙强

    2004-01-01

    Objective: To sum up the experience in treating very severe traumatic brain injuries.Methods: Retrospective analysis of 68 patients with very severe traumatic brain injuries treated in our hospital from 1997 to 2002 was done.Results: Forty-one (60%) patients died. In the 50 patients treated surgically 27 (40%) survived, 8 recovered well, 9 had moderate disability and 10 had sever deficits. The 18 patients treated non-operatively all died.Conclusions: Much attention should be given to the observation of the changes of severe brain injuries with cranial base injury. Timely operative decompression, basic life support, keeping effective brain blood perfusion and effective oxygen supply, improving cerebral microcirculation and preventing or controlling complications are the main methods to raise the successful rate of treating very severe brain injuries and the life quality of the patients.

  14. Neuronal regeneration in a zebrafish model of adult brain injury

    Directory of Open Access Journals (Sweden)

    Norihito Kishimoto

    2012-03-01

    Neural stem cells in the subventricular zone (SVZ of the adult mammalian forebrain are a potential source of neurons for neural tissue repair after brain insults such as ischemic stroke and traumatic brain injury (TBI. Recent studies show that neurogenesis in the ventricular zone (VZ of the adult zebrafish telencephalon has features in common with neurogenesis in the adult mammalian SVZ. Here, we established a zebrafish model to study injury-induced neurogenesis in the adult brain. We show that the adult zebrafish brain possesses a remarkable capacity for neuronal regeneration. Telencephalon injury prompted the proliferation of neuronal precursor cells (NPCs in the VZ of the injured hemisphere, compared with in the contralateral hemisphere. The distribution of NPCs, viewed by BrdU labeling and ngn1-promoter-driven GFP, suggested that they migrated laterally and reached the injury site via the subpallium and pallium. The number of NPCs reaching the injury site significantly decreased when the fish were treated with an inhibitor of γ-secretase, a component of the Notch signaling pathway, suggesting that injury-induced neurogenesis mechanisms are at least partly conserved between fish and mammals. The injury-induced NPCs differentiated into mature neurons in the regions surrounding the injury site within a week after the injury. Most of these cells expressed T-box brain protein (Tbr1, suggesting they had adopted the normal neuronal fate in this region. These results suggest that the telencephalic VZ contributes to neural tissue recovery following telencephalic injury in the adult zebrafish, and that the adult zebrafish is a useful model for regenerative medicine.

  15. Respiratory mechanics in brain injury: A review

    OpenAIRE

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G.; Rovina, Nikoletta

    2016-01-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case ...

  16. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  17. Cognitive impairments in patients with brain injury

    OpenAIRE

    Vladimir Vladimirovich Zakharov; E. A. Drozdova

    2013-01-01

    The paper gives the data of Russian and foreign authors and the results of this paper authors’ investigation of higher cerebral functions in patients who have sustained brain injury (BI). It shows their high prevalence, the predominance of cognitive impairments (CI) over neurological disorders in patients with mild and moderate injury, presents their quantitative and qualitative features (a preponderance of focal symptoms in severe injury and neurodynamic disorders in mild injury), describes ...

  18. Cyclosporine Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    Science.gov (United States)

    Dixon, C Edward; Bramlett, Helen M; Dietrich, W Dalton; Shear, Deborah A; Yan, Hong Q; Deng-Bryant, Ying; Mondello, Stefania; Wang, Kevin K W; Hayes, Ronald L; Empey, Philip E; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Operation Brain Trauma Therapy (OBTT) is a consortium of investigators using multiple pre-clinical models of traumatic brain injury (TBI) to bring acute therapies to clinical trials. To screen therapies, we used three rat models (parasagittal fluid percussion injury [FPI], controlled cortical impact [CCI], and penetrating ballistic-like brain injury [PBBI]). We report results of the third therapy (cyclosporin-A; cyclosporine; [CsA]) tested by OBTT. At each site, rats were randomized to treatment with an identical regimen (TBI + vehicle, TBI + CsA [10 mg/kg], or TBI + CsA [20 mg/kg] given intravenously at 15 min and 24 h after injury, and sham). We assessed motor and Morris water maze (MWM) tasks over 3 weeks after TBI and lesion volume and hemispheric tissue loss at 21 days. In FPI, CsA (10 mg/kg) produced histological protection, but 20 mg/kg worsened working memory. In CCI, CsA (20 mg/kg) impaired MWM performance; surprisingly, neither dose showed benefit on any outcome. After PBBI, neither dose produced benefit on any outcome, and mortality was increased (20 mg/kg) partly caused by the solvent vehicle. In OBTT, CsA produced complex effects with histological protection at the lowest dose in the least severe model (FPI), but only deleterious effects as model severity increased (CCI and PBBI). Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No positive treatment effects were seen on biomarker levels in any of the models, whereas significant increases in 24 h UCH-L1 levels were seen with CsA (20 mg/kg) after CCI and 24 h GFAP levels in both CsA treated groups in the PBBI model. Lack of behavioral protection in any model, indicators of toxicity, and a narrow therapeutic index reduce enthusiasm for clinical translation. PMID:26671075

  19. Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    Science.gov (United States)

    Bramlett, Helen M; Dietrich, W Dalton; Dixon, C Edward; Shear, Deborah A; Schmid, Kara E; Mondello, Stefania; Wang, Kevin K W; Hayes, Ronald L; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO

  20. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury

    OpenAIRE

    Nikolakopoulou, Angeliki M.; Koeppen, Jordan; Garcia, Michael; Leish, Joshua; Obenaus, Andre; Iryna M Ethell

    2016-01-01

    Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in ...

  1. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  2. Aquaporin 9 in rat brain after severe traumatic brain injury

    OpenAIRE

    Hui Liu; Mei Yang; Guo-ping Qiu; Fei Zhuo; Wei-hua Yu; Shan-quan Sun; Yun Xiu

    2012-01-01

    OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9) in rat brain, after severe traumatic brain injury (TBI). METHODS: Brain water content (BWC), tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC), immunofluorescence (IF), western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest) peaks at 6 and 72 hours, and the blood brain barrier (BBB) was severely destroyed at six hours after ...

  3. Cognitive impairments in patients with brain injury

    Directory of Open Access Journals (Sweden)

    Vladimir Vladimirovich Zakharov

    2013-01-01

    Full Text Available The paper gives the data of Russian and foreign authors and the results of this paper authors’ investigation of higher cerebral functions in patients who have sustained brain injury (BI. It shows their high prevalence, the predominance of cognitive impairments (CI over neurological disorders in patients with mild and moderate injury, presents their quantitative and qualitative features (a preponderance of focal symptoms in severe injury and neurodynamic disorders in mild injury, describes the predictors of their course and prognosis (the degree of injury is one of the most important predictors, and discusses current trends in the medical correction of detected abnormalities.

  4. Nonsurgical interventions after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Nygren-de Boussard, Catharina; Holm, Lena W; Cancelliere, Carol;

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence regarding the impact of nonsurgical interventions on persistent symptoms after mild traumatic brain injury (MTBI). DATA SOURCES: MEDLINE and other databases were searched (2001-2012) with terms including "rehabilitation." Inclusion criteria were...

  5. Traumatic brain injury and forensic neuropsychology.

    Science.gov (United States)

    Bigler, Erin D; Brooks, Michael

    2009-01-01

    As part of a special issue of The Journal of Head Trauma Rehabilitation, forensic neuropsychology is reviewed as it applies to traumatic brain injury (TBI) and other types of acquired brain injury in which clinical neuropsychologists and rehabilitation psychologists may be asked to render professional opinions about the neurobehavioral effects and outcome of a brain injury. The article introduces and overviews the topic focusing on the process of forensic neuropsychological consultation and practice as it applies to patients with TBI or other types of acquired brain injury. The emphasis is on the application of scientist-practitioner standards as they apply to legal questions about the status of a TBI patient and how best that may be achieved. This article introduces each topic area covered in this special edition. PMID:19333063

  6. Health psychology in brain injury rehabilitation services

    OpenAIRE

    Eldred, C.E.

    2006-01-01

    The work carried out in this portfolio was completed while working as a Health Psychologist in Training within a vocational rehabilitation service for adults with acquired brain injury All pieces of work were carried out within this setting expect for the consultancy unit which was carried out within a pilot service delivered by an Adult Disability Team ofa local Social Services. Individuals with acquired brain injury often do not have full understanding of the nature. degree or impact of the...

  7. Lateral fluid percussion: model of traumatic brain injury in mice.

    Science.gov (United States)

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific

  8. Traumatic Brain Injury: Looking Back, Looking Forward

    Science.gov (United States)

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  9. Plasticity and Inflammation following Traumatic Brain Injury

    OpenAIRE

    Hånell, Anders

    2011-01-01

    Traumatic Brain Injury (TBI) mainly affects young persons in traffic accidents and the elderly in fall accidents. Improvements in the clinical management have significantly improved the outcome following TBI but survivors still suffer from depression, memory problems, personality changes, epilepsy and fatigue. The initial injury starts a series of events that give rise to a secondary injury process and despite several clinical trials there is no drug available for clinical use that targets se...

  10. Functional level after Traumatic Brain Injury

    OpenAIRE

    Sandhaug, Maria

    2012-01-01

    Objectives: The objectives of the thesis were to describe the functional level (papers I and II) and self awareness of functional deficits (paper III) after moderate and severe Traumatic Brain Injury (TBI), and to evaluate the predictive impact of pre-injury and injury-related factors on functional level (papers I, II) and awareness of functional deficits (paper III). Material and methods: Papers I-II were cohort studies of 55 TBI patients (moderate = 21, severe = 34) and 65...

  11. 'Hidden' Brain Injury a Challenge for Military Doctors

    Science.gov (United States)

    ... nih.gov/medlineplus/news/fullstory_159316.html 'Hidden' Brain Injury a Challenge for Military Doctors Potentially fatal ... may suffer from a distinctive pattern of "hidden" brain injury, a small study finds. "Blast-related brain ...

  12. Spectroscopic Monitoring of Kidney Tissue Ischemic Injury

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Fitzgerald, J T; Michalopoulou, A P; Troppmann, C

    2004-03-11

    Noninvasive evaluation of tissue viability of donor kidneys used for transplantation is an issue that current technology is not able to address. In this work, we explore optical spectroscopy for its potential to assess the degree of ischemic damage in kidney tissue. We hypothesized that ischemic damage to kidney tissue will give rise to changes in its optical properties which in turn may be used to asses the degree of tissue injury. The experimental results demonstrate that the autofluorescence intensity of the injured kidney is decreasing as a function of time exposed to ischemic injury. Changes were also observed in the NIR light scattering intensities most probably arising from changes due to injury and death of the tissue.

  13. Traumatic brain injuries: Forensic and expertise aspects

    Directory of Open Access Journals (Sweden)

    Vuleković Petar

    2008-01-01

    Full Text Available Introduction. Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. Criminal-legal aspect of traumatic brain injuries and litigation. Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Competence and timing of expertise. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  14. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... an uptake area of 2.4 million in Denmark were included at admission to a regional brain injury unit (BIU), on average 19 days after injury. Patients in the retrospective study used for comparison were randomly chosen from the national hospital register. RESULTS AND CONCLUSIONS: Out of 117 patients in...

  15. Synaptic Mechanisms of Blast-Induced Brain Injury.

    Science.gov (United States)

    Przekwas, Andrzej; Somayaji, Mahadevabharath R; Gupta, Raj K

    2016-01-01

    Blast wave-induced traumatic brain injury (TBI) is one of the most common injuries to military personnel. Brain tissue compression/tension due to blast-induced cranial deformations and shear waves due to head rotation may generate diffuse micro-damage to neuro-axonal structures and trigger a cascade of neurobiological events culminating in cognitive and neurodegenerative disorders. Although diffuse axonal injury is regarded as a signature wound of mild TBI (mTBI), blast loads may also cause synaptic injury wherein neuronal synapses are stretched and sheared. This synaptic injury may result in temporary disconnect of the neural circuitry and transient loss in neuronal communication. We hypothesize that mTBI symptoms such as loss of consciousness or dizziness, which start immediately after the insult, could be attributed to synaptic injury. Although empirical evidence is beginning to emerge; the detailed mechanisms underlying synaptic injury are still elusive. Coordinated in vitro-in vivo experiments and mathematical modeling studies can shed light into the synaptic injury mechanisms and their role in the potentiation of mTBI symptoms. PMID:26834697

  16. Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    Science.gov (United States)

    Browning, Megan; Shear, Deborah A; Bramlett, Helen M; Dixon, C Edward; Mondello, Stefania; Schmid, Kara E; Poloyac, Samuel M; Dietrich, W Dalton; Hayes, Ronald L; Wang, Kevin K W; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Levetiracetam (LEV) is an antiepileptic agent targeting novel pathways. Coupled with a favorable safety profile and increasing empirical clinical use, it was the fifth drug tested by Operation Brain Trauma Therapy (OBTT). We assessed the efficacy of a single 15 min post-injury intravenous (IV) dose (54 or 170 mg/kg) on behavioral, histopathological, and biomarker outcomes after parasagittal fluid percussion brain injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI) in rats. In FPI, there was no benefit on motor function, but on Morris water maze (MWM), both doses improved latencies and path lengths versus vehicle (p < 0.05). On probe trial, the vehicle group was impaired versus sham, but both LEV treated groups did not differ versus sham, and the 54 mg/kg group was improved versus vehicle (p < 0.05). No histological benefit was seen. In CCI, there was a benefit on beam balance at 170 mg/kg (p < 0.05 vs. vehicle). On MWM, the 54 mg/kg dose was improved and not different from sham. Probe trial did not differ between groups for either dose. There was a reduction in hemispheric tissue loss (p < 0.05 vs. vehicle) with 170 mg/kg. In PBBI, there was no motor, cognitive, or histological benefit from either dose. Regarding biomarkers, in CCI, 24 h glial fibrillary acidic protein (GFAP) blood levels were lower in the 170 mg/kg group versus vehicle (p < 0.05). In PBBI, GFAP blood levels were increased in vehicle and 170 mg/kg groups versus sham (p < 0.05) but not in the 54 mg/kg group. No treatment effects were seen for ubiquitin C-terminal hydrolase-L1 across models. Early single IV LEV produced multiple benefits in CCI and FPI and reduced GFAP levels in PBBI. LEV achieved 10 points at each dose, is the most promising drug tested thus far by OBTT, and the only drug to improve cognitive outcome in any model. LEV has been advanced to testing in the micropig model in OBTT. PMID:26671550

  17. Recovery after Brain Injury: Mechanisms and Principles

    Directory of Open Access Journals (Sweden)

    Randolph J. Nudo

    2013-12-01

    Full Text Available The past 20 years have represented an important period in the development of principles underlying neuroplasticity, especially as they apply to recovery from neurological injury. It is now generally accepted that acquired brain injuries, such as occur in stroke or trauma, initiate a cascade of regenerative events that last for at least several weeks, if not months. Many investigators have pointed out striking parallels between post-injury plasticity and the molecular and cellular events that take place during normal brain development. As evidence for the principles and mechanisms underlying post-injury neuroplasticity has been gleaned from both animal models and human populations, novel approaches to therapeutic intervention have been proposed. One important theme has persisted as the sophistication of clinicians and scientists in their knowledge of neuroplasticity mechanisms has grown: Behavioral experience is the most potent modulator of brain plasticity. While there is substantial evidence for this principle in normal, healthy brains, the injured brain is particularly malleable. Based on the quantity and quality of motor experience, the brain can be reshaped after injury in either adaptive or maladaptive ways. This paper reviews selected studies that have demonstrated the neurophysiological and neuroanatomical changes that are triggered by motor experience, by injury, and the interaction of these processes. In addition, recent studies using new and elegant techniques are providing novel perspectives on the events that take place in the injured brain, providing a real-time window into post-injury plasticity. These new approaches are likely to accelerate the pace of basic research, and provide a wealth of opportunities to translate basic principles into therapeutic methodologies.

  18. Traumatic brain injury, neuroimaging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Erin D. Bigler

    2013-08-01

    Full Text Available Depending on severity, traumatic brain injury (TBI induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1 the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2 how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3 how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  19. Mathematical model of normal tissue injury in telegammatherapy

    Energy Technology Data Exchange (ETDEWEB)

    Belov, S.A.; Lyass, F.M.; Mamin, R.G.; Minakova, E.I.; Raevskaya, S.A. (Akademiya Meditsinskikh Nauk SSSR, Moscow. Inst. Nejrokhirurgii)

    1983-03-01

    A model of normal tissue injury as a result of exposure to ionizing radiation is based on an assumption that the degree of tissue injury is determined by the degree of destruction by certain critical cells. The dependence of the number of lethal injuries on a single dose is expressed by a trinomial-linear and quadratic parts and a constant, obtained as a result of the processing of experimental data. Quantitative correlations have been obtained for the skin and brain. They have been tested using clinical and experimental material. The results of the testing point out to the absence of time dependence on a single up to 6-week irradiation courses. Correlation with an irradiation field has been obtained for the skin. A conclusion has been made that the concept of isoefficacy of irradiation courses is conditional. Spatial-time fractionation is a promising direction in the development of radiation therapy.

  20. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p < 0.05). The co-injection of minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p < 0.01). Albumin, a marker of BBB disruption, was measured by Western blot analysis. Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p < 0.01). Iron-handling protein levels in the brain, including ceruloplasmin and transferrin, were reduced in the minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism. PMID:26463975

  1. The management of soft tissue ankle injuries.

    OpenAIRE

    Crean, D.

    1981-01-01

    The anatomy of the ankle, and the types of sporting injuries that occur in this joint, are described. Traditional treatment of soft tissue injuries involves immobilisation, and the value of this is questioned. An alternative treatment strategy is described, and involves immobilisation and compression for twenty-four hours, followed by rapid mobilisation using a balance board. This alternative strategy can bring about full functional mobility in 94% of patients within 14 days.

  2. A High Rate Tension Device for Characterizing Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1177/1754337112436900

    2013-01-01

    The mechanical characterization of brain tissue at high loading velocities is vital for understanding and modeling Traumatic Brain Injury (TBI). The most severe form of TBI is diffuse axonal injury (DAI) which involves damage to individual nerve cells (neurons). DAI in animals and humans occurs at strains > 10% and strain rates > 10/s. The mechanical properties of brain tissues at these strains and strain rates are of particular significance, as they can be used in finite element human head models to accurately predict brain injuries under different impact conditions. Existing conventional tensile testing machines can only achieve maximum loading velocities of 500 mm/min, whereas the Kolsky bar apparatus is more suitable for strain rates > 100/s. In this study, a custom-designed high rate tension device is developed and calibrated to estimate the mechanical properties of brain tissue in tension at strain rates < 90/s, while maintaining a uniform velocity. The range of strain can also be extended to 100% de...

  3. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment

    OpenAIRE

    Jean, Aurélie; Nyein, Michelle K.; Zheng, James Q.; Moore, David F.; Joannopoulos, John D.; Radovitzky, Raúl

    2014-01-01

    A physics-based animal-to-human scaling law for the effects of a blast wave on brain tissue is proposed. This scaling law, or transfer function, enables the translation of animal-based assessments of injury to the human, thus effectively enabling the derivation of human injury criteria based on animal tests. This is critical both in the diagnosis of traumatic brain injury as well as in the design of blast-protective helmets.

  4. Managing traumatic brain injury secondary to explosions

    Directory of Open Access Journals (Sweden)

    Burgess Paula

    2010-01-01

    Full Text Available Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  5. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  6. Prehospital Care of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    TVSP Murthy

    2008-01-01

    Full Text Available Traumatic brain injury (TBI occurs when a sudden trauma causes brain damage. Depending on the severity, outcome can be anything from complete recovery to permanent disability or death. Emergency medical services play a dominant role in provision of primary care at the site of injury. Since little can be done to reverse the initial brain damage due to trauma, attempts to prevent further brain damage and stabilize the patient before he can be brought to a specialized trauma care centre play a pivotal role in the final outcome. Recognition and early treatment of hypoten-sion, hypoxemia, and hypoglycemia, objective neurological assessment based on GCS and pupils, and safe transport to an optimal care centre are the key elements of prehospital care of a TBI patient.

  7. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  8. Progress in imaging of brain radiation injury

    International Nuclear Information System (INIS)

    The mechanisms of brain radiation injury mainly include three hypotheses: vascular injury, glial cells damage and immune response. Most scholars' studies have recently supported the former two ones. Vascular injury plays a major role in the effect of delayed radiation injury. Focal brain injury and diffuse white matter injury can be definitely diagnosed by CT and MRI. T2-weighted imaging (T2WI) in MRI shows high sensitivity in water contents, and is not affected by the beam hardening artifacts from the cranial base. Compared with CT, the sensitivity of MR for detecting white matter lesions is two to threefold higher. When lesions occurs at the site of an irradiated cerebral tumor, tumor recurrence and focal cerebral necrosis cannot be differentiated by CT or MR, PET and MRS now present a certain advantage of differential diagnosis. Tumor presents high metabolism and necrosis demonstrates low metabolism by utilizing PET scanning, however PET's sensitivity and specificity are far from satisfactory. The amount or ratio of metabolic products in the region of interest measured by MRS contributes to the deferential diagnosis. In addition, PET functional imaging and MRS can also predict the early asymptomatic reversible radiation injury so as to allow the early therapy of steroids and possibly other drugs, prior to the development of irreversible changes

  9. Resting Network Plasticity Following Brain Injury

    OpenAIRE

    Toru Nakamura; Hillary, Frank G.; Biswal, Bharat B.

    2009-01-01

    The purpose of this study was to examine neural network properties at separate time-points during recovery from traumatic brain injury (TBI) using graph theory. Whole-brain analyses of the topological properties of the fMRI signal were conducted in 6 participants at 3 months and 6 months following severe TBI. Results revealed alterations of network properties including a change in the degree distribution, reduced overall strength in connectivity, and increased "small-worldness" from 3 months ...

  10. Plasticity and Injury in the Developing Brain

    OpenAIRE

    Johnston, Michael V.; Ishida, Akira; ISHIDA, Wako Nakajima; MATSUSHITA, Hiroko Baber; NISHIMURA, Akira; Tsuji, Masahiro

    2008-01-01

    The child’s brain is more malleable or plastic than that of adults and this accounts for the ability of children to learn new skills quickly or recovery from brain injuries. Several mechanisms contribute to this ability including overproduction and deletion of neurons and synapses, and activity-dependent stabilization of synapses. The molecular mechanisms for activity dependent synaptic plasticity are being discovered and this is leading to a better understanding of the pathogenesis of severa...

  11. Modeling premature brain injury and recovery

    OpenAIRE

    Scafidi, Joey; Fagel, Devon M.; Ment, Laura R.; Vaccarino, Flora M.

    2009-01-01

    Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportu...

  12. Low level laser therapy for traumatic brain injury

    Science.gov (United States)

    Wu, Qiuhe; Huang, Ying-Ying; Dhital, Saphala; Sharma, Sulbha K.; Chen, Aaron C.-H.; Whalen, Michael J.; Hamblin, Michael R.

    2010-02-01

    Low level laser (or light) therapy (LLLT) has been clinically applied for many indications in medicine that require the following processes: protection from cell and tissue death, stimulation of healing and repair of injuries, and reduction of pain, swelling and inflammation. One area that is attracting growing interest is the use of transcranial LLLT to treat stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain would allow non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. LLLT may have beneficial effects in the acute treatment of brain damage injury by increasing respiration in the mitochondria, causing activation of transcription factors, reducing key inflammatory mediators, and inhibiting apoptosis. We tested LLLT in a mouse model of TBI produced by a controlled weight drop onto the skull. Mice received a single treatment with 660-nm, 810-nm or 980-nm laser (36 J/cm2) four hours post-injury and were followed up by neurological performance testing for 4 weeks. Mice with moderate to severe TBI treated with 660- nm and 810-nm laser had a significant improvement in neurological score over the course of the follow-up and histological examination of the brains at sacrifice revealed less lesion area compared to untreated controls. Further studies are underway.

  13. Endogenous lipoid pneumonia in a cachectic patient after brain injury.

    Science.gov (United States)

    Zhang, Ji; Mu, Jiao; Lin, Wei; Dong, Hongmei

    2015-01-01

    Endogenous lipoid pneumonia (EnLP) is an uncommon non-life-threatening inflammatory lung disease that usually occurs in patients with conditions such as lung cancers, primary sclerosing cholangitis, and undifferentiated connective tissue disease. Here we report a case of EnLP in a paralytic and cachectic patient with bronchopneumonia after brain injury. A 40-year-old man experienced a severe brain injury in an automobile accident. He was treated for 1 month and his status plateaued. However, he became paralyzed and developed cachexia and ultimately died 145 days after the accident. Macroscopically, multifocal yellowish firm nodules were visible on scattered gross lesions throughout the lungs. Histologically, many foam cells had accumulated within the alveoli and alveolar walls accompanied by a surrounding interstitial infiltration of lymphocytes. The findings were in accordance with a diagnosis of EnLP. Bronchopneumonia was also noted. To our knowledge, there have been few reports of EnLP associated with bronchopneumonia and cachexia after brain injury. This uncommon pathogenesis should be well recognized by clinicians and forensic pathologists. The case reported here should prompt medical staff to increase the nutritional status and fight pulmonary infections in patients with brain injury to prevent the development of EnLP. PMID:26097618

  14. Neuroprotective Therapies after Perinatal Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Enrique Hilario

    2013-03-01

    Full Text Available Hypoxic-ischemic (HI brain injury is one of the main causes of disabilities in term-born infants. It is the result of a deprivation of oxygen and glucose in the neural tissue. As one of the most important causes of brain damage in the newborn period, the neonatal HI event is a devastating condition that can lead to long-term neurological deficits or even death. The pattern of this injury occurs in two phases, the first one is a primary energy failure related to the HI event and the second phase is an energy failure that takes place some hours later. Injuries that occur in response to these events are often manifested as severe cognitive and motor disturbances over time. Due to difficulties regarding the early diagnosis and treatment of HI injury, there is an increasing need to find effective therapies as new opportunities for the reduction of brain damage and its long term effects. Some of these therapies are focused on prevention of the production of reactive oxygen species, anti-inflammatory effects, anti-apoptotic interventions and in a later stage, the stimulation of neurotrophic properties in the neonatal brain which could be targeted to promote neuronal and oligodendrocyte regeneration.

  15. Interleukin-1 and acute brain injury

    Directory of Open Access Journals (Sweden)

    Katie N Murray

    2015-02-01

    Full Text Available Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  16. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    OpenAIRE

    R, Namas; A, Ghuma; L, Hermus; R, Zamora; DO Okonkwo; TR, Billiar; Y, Vodovotz

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and rege...

  17. Brain injury biomechanics in closed-head impact : Studies on injury epidemiology, tolerance criteria, biomechanics and traffic injury prevention

    OpenAIRE

    Viano, David

    1997-01-01

    Permanent disability from traumatic brain injury is a devastating consequence of traffic crashes. Injury prevention is a fruitful approach to reduce the incidence and severity of disabling brain injury. However, the development of effective prevention techniques requires better knowledge on the mechanisms and biomechanics of brain injury in closed-head impact. The overall aim of this study is focused on brain injury mechanisms, biomechanics, and tolerances in closed-head ...

  18. An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Albert-Weißenberger Christiane

    2012-02-01

    Full Text Available Abstract Traumatic brain injury (TBI is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI.

  19. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  20. Cerebral Blood Flow and Autoregulation after Pediatric Traumatic Brain Injury

    OpenAIRE

    Udomphorn, Yuthana; Armstead, William M.; Vavilala, Monica S.

    2008-01-01

    Traumatic brain injury is a global health concern and is the leading cause of traumatic morbidity and mortality in children. Despite a lower overall mortality than in adult traumatic brain injury, the cost to society from the sequelae of pediatric traumatic brain injury is very high. Predictors of poor outcome after traumatic brain injury include altered systemic and cerebral physiology, including altered cerebral hemodynamics. Cerebral autoregulation is often impaired following traumatic bra...

  1. Working with Students with Traumatic Brain Injury

    Science.gov (United States)

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  2. Mild Traumatic Brain Injury: Facilitating School Success.

    Science.gov (United States)

    Hux, Karen; Hacksley, Carolyn

    1996-01-01

    A case study is used to demonstrate the effects of mild traumatic brain injury on educational efforts. Discussion covers factors complicating school reintegration, ways to facilitate school reintegration, identification of cognitive and behavioral consequences, minimization of educators' discomfort, reintegration program design, and family…

  3. Group Treatment in Acquired Brain Injury Rehabilitation

    Science.gov (United States)

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  4. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET i

  5. Narrative Language in Traumatic Brain Injury

    Science.gov (United States)

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  6. Traumatic Brain Injury and Personality Change

    Science.gov (United States)

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  7. Interviewing Children with Acquired Brain Injury (ABI)

    Science.gov (United States)

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  8. Monitoring Agitated Behavior After acquired Brain Injury

    DEFF Research Database (Denmark)

    Aadal, Lena; Mortensen, Jesper; Nielsen, Jørgen Feldbaek

    2015-01-01

    Purpose: To describe the onset, duration, intensity, and nursing shift variation of agitated behavior in patients with acquired brain injury (ABI) at a rehabilitation hospital. Design: Prospective descriptive study. Methods: A total of 11 patients with agitated behavior were included. Agitated...

  9. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    CesarVBorlongan

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  10. Relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Petersen, Janne; Lykke Mortensen, Erik

    2015-01-01

    PRIMARY OBJECTIVE: To investigate trajectories and predictors of trajectories of anxiety and depression in relatives of patients with a severe brain injury during the first year after injury. RESEARCH DESIGN: A prospective longitudinal study with four repeated measurements. SUBJECTS: Ninety...... relatives of patients with severe brain injury. METHODS: The relatives were assessed on the anxiety and depression scales from the Symptom Checklist-90-Revised and latent variable growth curve models were used to model the trajectories. The effects of patient's age, patient's Glasgow Coma Score, level of...... function and consciousness, gender and relationship of the relatives were modelled. RESULTS: Improvement was found in both symptoms of anxiety and depression during the 12-month study period. The analysis revealed different trajectories for symptoms of anxiety and depression, as anxiety had a more rapid...

  11. Resting network plasticity following brain injury.

    Directory of Open Access Journals (Sweden)

    Toru Nakamura

    Full Text Available The purpose of this study was to examine neural network properties at separate time-points during recovery from traumatic brain injury (TBI using graph theory. Whole-brain analyses of the topological properties of the fMRI signal were conducted in 6 participants at 3 months and 6 months following severe TBI. Results revealed alterations of network properties including a change in the degree distribution, reduced overall strength in connectivity, and increased "small-worldness" from 3 months to 6 months post injury. The findings here indicate that, during recovery from injury, the strength but not the number of network connections diminishes, so that over the course of recovery, the network begins to approximate what is observed in healthy adults. These are the first data examining functional connectivity in a disrupted neural system during recovery.

  12. Clinics in diagnostic imaging (153). Severe hypoxic ischaemic brain injury.

    OpenAIRE

    Chua, Wynne; Lim, Boon Keat; Lim, Tchoyoson Choie Cheio

    2014-01-01

    A 58-year-old Indian woman presented with asystole after an episode of haemetemesis, with a patient downtime of 20 mins. After initial resuscitation efforts, computed tomography of the brain, obtained to evaluate neurological injury, demonstrated evidence of severe hypoxic ischaemic brain injury. The imaging features of hypoxic ischaemic brain injury and the potential pitfalls with regard to image interpretation are herein discussed.

  13. Defense Centers of Excellence for Psychological Health & Traumatic Brain Injury

    Science.gov (United States)

    ... Defense Centers of Excellence For Psychological Health & Traumatic Brain Injury U.S. Department of Defense About DCoE Centers Leadership ... PTSD Suicide Prevention Provider Resources DCoE Resources Traumatic Brain Injury About Traumatic Brain Injury Tips for Treating mTBI ...

  14. Brain response to traumatic brain injury in wild-type and interleukin-6 knockout mice: a microarray analysis

    DEFF Research Database (Denmark)

    Poulsen, Christian Bjørn; Penkowa, Milena; Borup, Rehannah; Nielsen, Finn Cilius; Cáceres, Mario; Quintana, Albert; Molinero, Amalia; Carrasco, Javier; Giralt, Mercedes; Hidalgo, Juan

    2005-01-01

    Traumatic injury to the brain is one of the leading causes of injury-related death or disability. Brain response to injury is orchestrated by cytokines, such as interleukin (IL)-6, but the full repertoire of responses involved is not well known. We here report the results obtained with microarrays...... processes involved in the initial tissue injury and later regeneration of the parenchyma. IL-6 deficiency showed a dramatic effect in the expression of many genes, especially in the 1 day post-lesion timing, which presumably underlies the poor capacity of IL-6 knockout mice to cope with brain damage. The...... results highlight the importance of IL-6 controlling the response of the brain to injury as well as the suitability of microarrays for identifying specific targets worthy of further study....

  15. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident. PMID:27432348

  16. Chronic cerebrovascular dysfunction after traumatic brain injury.

    Science.gov (United States)

    Jullienne, Amandine; Obenaus, Andre; Ichkova, Aleksandra; Savona-Baron, Catherine; Pearce, William J; Badaut, Jerome

    2016-07-01

    Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc. PMID:27117494

  17. Clinical Outcomes after Traumatic Brain Injury.

    Science.gov (United States)

    Sandsmark, Danielle K

    2016-06-01

    Traumatic brain injury (TBI) is a major cause of death and disability that often affects young people. After injury, the degree of recovery can be highly variable, with some people regaining near complete function while others remain severely disabled. Understanding what factors influence recovery is important for counseling patients and families in the acute period after injury and can help guide therapeutic decisions in the acute period following injury. In this review, prognostic algorithms useful for clinicians are discussed. Tools for grading patient outcomes, their role in clinical care and research studies, and their limitations are reviewed. Ongoing work focusing on the development of biomarkers to track TBI recovery and the refinement of clinical outcome metrics is summarized. PMID:27072952

  18. Forensic Pathology of Traumatic Brain Injury.

    Science.gov (United States)

    Finnie, J W

    2016-09-01

    Traumatic brain injury constitutes a significant proportion of cases requiring forensic examination, and it encompasses (1) blunt, nonmissile head injury, especially involving motor vehicle accidents, and (2) penetrating, missile injury produced by a range of high- and lower-velocity projectiles. This review examines the complex pathophysiology and biomechanics of both types of neurotrauma and assesses the macroscopic and histologic features of component lesions, which may be used to determine the cause and manner of death resulting from an intentional assault or accident. Estimation of the survival time postinjury by pathologic examination is also important where malicious head injury is suspected, in an attempt to ascertain a time at which the traumatic event might have been committed, thereby evaluating the authenticity of statements made by the alleged perpetrator. PMID:26578643

  19. Change in tissue thromboplastin content of brain following trauma

    Directory of Open Access Journals (Sweden)

    Pathak Ashis

    2005-01-01

    Full Text Available Background: Tissue thromboplastin (TTP is an integral membrane protein contributing to coagulopathy after trauma of brain, which is a rich source of TTP. Aims: A study was undertaken to establish the TTP content of various areas of normal brain and estimate the changes in TTP activity of brain in response to varying degrees of trauma. Materials and Methods: Samples from different areas of brain of ten cadavers were used as controls and they were compared with contused brain tissue obtained after surgery in 25 head injury (HI patients of varying severity. Results: In the study group, the TTP activity of the frontal, parietal, and temporal lobes after HI was significantly raised in contrast to that of the control group. The TTP activity was also significantly higher in the severe HI patients than those having moderate HI. The mode of injury and the time lapse after HI had no significant bearing on the TTP activity. Subjects above 40 years of age demonstrated a higher mean TTP activity after HI, though it was not statistically significant. Conclusion: The study provides quantitative data on TTP activity of normal brain and highlights the role of TTP in coagulopathy following HI through its increased activity after HI, more so in the severe HI group.

  20. Respiratory mechanics in brain injury: A review.

    Science.gov (United States)

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients. PMID:26855895

  1. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  2. Magnetic resonance imaging in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo (Nippon Medical School, Tokyo (Japan))

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author).

  3. Soft tissue injuries of the tarsus

    International Nuclear Information System (INIS)

    Contrast radiography provides a clear survey of the size, shape, and location of extratendovaginal fluid-filled cavities, distended bursa, and tendon sheaths and demonstrates intersynovial communication. Ultrasonography effectively demonstrates Achilles tendon injury, slippage of the SDFT off the summit of the calcaneus, assorted ligamentous injuries, and cystic or solid extratendovaginal masses. It will also demonstrate distended bursae and tendon sheaths, but it is not as effective in demonstrating a synovial herniation, or a narrow synovial fistula. Contrast radiography may prove to be the imaging modality of choice for examination of fluctuating swellings, whereas ultrasonography is preferred for the assessment of firm swellings. Routine radiographic evaluation in the clinical assessment of soft tissue injuries in the hock region continues to play an invaluable diagnostic role

  4. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    PRIMARY OBJECTIVE: Olfactory functions are not systematically evaluated following traumatic brain injury (TBI). This study aimed at comparing two smell tests that are used in a clinical setting. RESEARCH DESIGN: The University of Pennsylvania Smell Identification Test (UPSIT) and the Alberta Smell....... RESULTS: The scores of the two smell tests were significantly correlated. Both tests indicated that patients with frontal lesion performed significantly worse than patients with other types of lesion. Mood and injury severity were not associated with olfactory impairment when age was taken into account...... Alberta Smell test. To refine their diagnosis, the UPSIT can also be used....

  5. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter;

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from The...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark and the...

  6. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    Science.gov (United States)

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women. PMID:27318135

  7. Characterization of pressure distribution in penetrating traumatic brain injuries.

    Science.gov (United States)

    Davidsson, Johan; Risling, Mårten

    2015-01-01

    Severe impacts to the head commonly lead to localized brain damage. Such impacts may also give rise to temporary pressure changes that produce secondary injuries in brain volumes distal to the impact site. Monitoring pressure changes in a clinical setting is difficult; detailed studies into the effect of pressure changes in the brain call for the development and use of animal models. The aim of this study is to characterize the pressure distribution in an animal model of penetrating traumatic brain injuries (pTBI). This data may be used to validate mathematical models of the animal model and to facilitate correlation studies between pressure changes and pathology. Pressure changes were measured in rat brains while subjected to pTBI for a variety of different probe velocities and shapes; pointy, blunt, and flat. Experiments on ballistic gel samples were carried out to study the formation of any temporary cavities. In addition, pressure recordings from the gel experiments were compared to values recorded in the animal experiments. The pTBI generated short lasting pressure changes in the brain tissue; the pressure in the contralateral ventricle (CLV) increased to 8 bar followed by a drop to 0.4 bar when applying flat probes. The pressure changes in the periphery of the probe, in the Cisterna Magna, and the spinal canal, were significantly less than those recorded in the CLV or the vicinity of the skull base. High-speed videos of the gel samples revealed the formation of spherically shaped cavities when flat and spherical probes were applied. Pressure changes in the gel were similar to those recorded in the animals, although amplitudes were lower in the gel samples. We concluded cavity expansion rate rather than cavity size correlated with pressure changes in the gel or brain secondary to probe impact. The new data can serve as validation data for finite element models of the trauma model and the animal and to correlate physical measurements with secondary injuries

  8. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin;

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... quality appraisal. Randomized control trial data will be treated as a cohort. The quality will be assessed using the criteria defined by Hayden and colleagues. The review will be conducted and reported in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines...

  9. Standardizing Data Collection in Traumatic Brain Injury

    OpenAIRE

    Maas, Andrew I.R.; Harrison-Felix, Cynthia L.; Menon, David; Adelson, P. David; Balkin, Tom; Bullock, Ross; Engel, Doortje C.; Gordon, Wayne; Langlois-Orman, Jean; Lew, Henry L.; Robertson, Claudia; Temkin, Nancy; Valadka, Alex; VERFAELLIE, MIEKE; Wainwright, Mark

    2011-01-01

    Collaboration among investigators, centers, countries, and disciplines is essential to advancing the care for traumatic brain injury (TBI). It is thus important that we “speak the same language.” Great variability, however, exists in data collection and coding of variables in TBI studies, confounding comparisons between and analysis across different studies. Randomized controlled trials can never address the many uncertainties concerning treatment approaches in TBI. Pooling data from differen...

  10. Traumatic Brain Injury, Boredom and Depression

    OpenAIRE

    James Danckert; Yael Goldberg

    2013-01-01

    Traumatic brain injury (TBI) often presents with co-morbid depression and elevated levels of boredom. We explored the relationship between boredom and depression in a group of mild (n = 38), moderate-to-severe TBI patients (n = 14) and healthy controls (n = 88), who completed the Beck Depression Inventory and Boredom Proneness Scales as part of a larger study. Results showed that the relationship between boredom and depression was strongest in moderate-to-severe TBI patients. We explored two ...

  11. Cooking breakfast after a brain injury

    OpenAIRE

    Tanguay, Annick N.; Davidson, Patrick S. R.; K. Vanessa eGuerrero Nuñez; Ferland, Mark B.

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients' difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we exam...

  12. Traumatic brain injury in modern war

    Science.gov (United States)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  13. Effect of pre-ischemia on hypoxia-inducible factor expression in the brain tissue of rats with cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Hypoxia-inducible factor 1 (HIF-1) can lead to the adaptative reaction of body for hypoxia and ischemia. HIF-1 plays an important role in the response of ischemia-hypoxia. At present, there has been no overall report on the significance for the expression of HIF-1 following experimental cerebral ischemia.OBJECTIVE: To observe the expression of HIF-1 after middle cerebral artery occlusion (MCAO) by immunohistochemical method.DESIGN: Completely randomly grouped controlled animal experiment.SETTING: Second Hospital, Xi'an Jiaotong University.MATERIALS: Thirty-six Sprague-Dawley healthy male rats, with body mass of 250 - 330 g, were used in this study. Thirty-six rats were randomized into 3 groups: pre-ischemia group, sham-operation group and control group, with 12 rats in each.METHODS: This study was carried out in the clinical laboratory, People's Hospital of Ningjin County of Shandong Province from March 2006 to January 2007. Rats in the pre-ischemia group were created into pre-ischemia models by two embolisms twice. Three days after ischemic preconditioning, middle cerebral artery (MCA) was occluded for 2 hours with the same method. After being perfused for 22 hours, the rats were euthanized. In the sham-operation group, rats were not given the treatment of pre-ischemia. In the first operation, only common carotid artery (CCA) and its crotch were exposed in the first operation, and MCA was not blocked by inserting embolism. At postoperative 3 days, rats were euthanized after being subjected to MCAO for 2 hours and reperfusion 22 hours by the same procedure as that in the pre-ischemia group. As for each rat in the control group, only CCA and its crotch were exposed, and no any other treatment was carried out on them.MAIN OUTCOME MEASURES: Brain tissue of each rat was performed immunohistochemical staining at reperfusion 22 hours after pre-ischemia, HIF-1 expression and brain infarct volume were detected.RESULTS: Thirty-six Sprague-Dawley rats were

  14. Neonatal ischemic brain injury: what every radiologist needs to know

    International Nuclear Information System (INIS)

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  15. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse, and se

  16. Assessment of traumatic brain injury degree in animal model

    Institute of Scientific and Technical Information of China (English)

    Jian-Qiang Chen; Cheng-Cheng Zhang; Hong Lu; Wei Wang

    2014-01-01

    Objective:To establish stable and controllable brain injury with accurate degree and good repeatability in rat model.Methods:Controlled cortical impact(CCI) device was used to prepare for the rat brain injury model by the impact head of different model(GroupANo.4,GroupBNo.5, GroupCNo.6) and the impact depth(GroupA:1.5-2.0 mm,GroupB:2.5-3.0 mm,GroupC:3.5-4.0 mm) with impact time of0.1 s and impact velocity of2.5 m/s.Twelve rats with three months of age were used in each group(the impact depth of every two rats was added1 mm respectively).After modeling for1 h, magnetic resonance imaging(MRI) was received and brain histopathology was observed to assess degree of injury by model parameters of three groups.Results:After modeling ofGroupA,MRI showed that the cortex structure was damaged with a small amount of bleeding in center and mild edema around, and the total volume of injury was(28.69±4.94) mm3.Pathology revealed the injury was confined to the superficial cortical with mild edema of nerve cell, which was assessed as mild cerebral contusion.While after modeling,MRI ofGroupB showed that the structure of cortex and medulla were damaged simultaneously and extended to cerebral nuclei zone, with4 cases of hematoma in the center and larger edema range around, and the total volume of injury was(78.38±9.28) mm3.Pathology revealed the injury range was reached nuclei zone, with swell of nerve cell and mitochondria, which was assessed to moderate cerebral contusion. After modeling ofGroupC,MRI showed that extensive tissue injury was appeared in cortex and medulla and deep nuclei, with9 cases of hematoma and large edema signal of surrounding tissue T2WI, while in5 cases, lateral nucleus of injury signal was increased, and the total volume of injury was(135.89±24.80) mm3.Pathology revealed the deep cerebral nuclei was damaged, with the disappearance of neuronal structure and vacuolization of mitochondria, which was assessed as severe cerebral contusion.MRI changes were

  17. Effects of Acanthopanax senticosus on learning and memory in a mouse model of Alzheimer's disease and protection against free radical injury to brain tissue

    Institute of Scientific and Technical Information of China (English)

    Yanji Xu; Chunji Han; Songji Xu; Xing Yu; Guozhe Jiang; Chunhua Nan

    2008-01-01

    BACKGROUND:Acanthopanax senticosus,a plant of the Araliaceae family,is used in traditional Chinese medicine.It can be used to replenish Qi,strengthen the spleen,tonify the kidney,and relieve mental strain.OBJECTIVE:To observe effects ofAcanthopanax senticosus on learning and memory in a mouse model of Alzheimer's disease and abnormal biochemical changes in the brain tissue.DESIGN:A completely randomized grouping,controlled animal experiment.SETTING:Department of Preventive Medicine,School of Basic Medical Sciences,Yanbian University.MATERIALS:A total of 50 Kunming mice,aged 1-1.5 months,equal numbers of males and females,were provided by the Laboratory Animal Center,Yanbian University Medical College.The study was performed in accordance with ethical guidelines for the use and care of animals.Acanthopanax was provided by Yanbian Chengda Pharmaceutical Co.,Ltd.Acanthopanax senticosus(0.5 kg)was soaked in water for 1 hour and transferred to 1.5 kg distilled water for extraction.It was boiled for 1 hour and extracted after 1 hour of boiling.The procedure was repeated 3 times.The extract was condensed to 500 mL and then adjusted to 500 and 1 000 g/L with water.Piracetam tablets were produced by Shandong Luoxin Pharmaceutical Corporation, China.Malonaldehyde(MDA),superoxide dismutase(SOD),and acetylcholinesterase(ACHE)kits were purchased from Nanjing Jiancheng Bioengineering Co.,Ltd.,China. METHODS:This study was performed at the Department of Preventive Medicine,School of Basic Medical Sciences,Yanbian University from January to June 2007.All mice were randomly divided into 5 groups with 10 mice in each:control group,model group,low-,and high-dose Acanthopanax senticosus-treated groups, and piracetam-treated group.All groups were administered 0.1 mL/10 g.In the control and model groups, mice were intragastrically administered saline each morning for 5 days prior to experimentation.Five days later,they were intraperitoneally perfused with saline and aluminum trichloride

  18. Imaging assessment of traumatic brain injury.

    Science.gov (United States)

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  19. Factors affecting radiation injury after interstitial brachytherapy for brain tumors

    International Nuclear Information System (INIS)

    The effects of brachytherapy on normal brain tissue are not easily delineated in the clinical setting because of the presence of concurrent radiation-induced changes in the coexistent brain tumor. Sequential morphologic studies performed after the implantation of radioactive sources into the brains of experimental animals have provided a better understanding of the character and magnitude of the structural changes produced by interstitial irradiation on normal brain tissue. Furthermore, the clinical experience accumulated thus far provides not only relevant information, but also some guidelines for future treatment policies. In this paper, the authors summarize the experimental findings and review the pathologic and clinical features of brain injury caused by interstitial brachytherapy. A number of studies in the older literature examined the effects of radioisotopes such as radium-226 (38--43), radon-22 (44--46), gold-198 (29,47--50), tantalum-182 (29,51,52) yttrium-9- (50,53,54), and cobalt-60 (29,50,55). This review is restricted to low- and high-activity encapsulated iodine-125 (125I) and iridium-192 (192Ir), the isotopes that are most commonly used in current clinical practice

  20. Early monitoring of PtiO2, PtiCO2, pH and brain temperat ure in patients with brain injuries and the clinical significanc e

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the regulation of early br ain tissue metabolic changing after brain injuries and the clinical significance .   Methods: There were 17 patients with brain injuries. Early dire ct monitoring of PtiO2, PtiCO2, pH and brain temperature, dynami c observation of the relation between various parameters and clinics after brai n injuries were performed.   Results: Early changes of PtiO2, PtiCO2 and pH we re closely correlated with outcome. The death rate obviously increased when P tiO2 was continuously lower than 9 mm?Hg within 24 hours after injuries. Secondary brain injury prolonged and aggravated brain tissue metabolic disturban ce. When intracerebral pressure was over 30 mm?Hg PtiO2 began to de crea se. The brain temperature in brain death patients was evidently lower than axill ary temperature.   Conclusions: The direct monitoring of PtiO2, PtiC O2, pH and brain temperature is safe and accurate and can find early anoxia da mage to brain tissue and provide reliable basis for clinical therapy. It ha s an instructive significance in selecting and studying a new treatment method i n brain injuries. And it can be taken as a criterion in clinical judging brain d eaths.

  1. Aquaporin 9 in rat brain after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2012-03-01

    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  2. Low level primary blast injury in rodent brain

    Directory of Open Access Journals (Sweden)

    Enci MaryKan

    2011-04-01

    Full Text Available The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure exposure of either 48.9 kPa (7.1 psi or 77.3 kPa (11.3 psi to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histopathology of the brains showed that cortical neurons were ‘darkened’ and shrunken with narrowed vasculature in the cerebral cortex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive cells were predominant in the white matter of the brain at day 1 after blast and double-labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity. There was also an increase in amyloid precursor protein immunoreactive cells in the white matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages or microglia was not different from control post-blast. Blast exposure altered the expression of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast. These genes were narrowed down to 10 overlapping genes after time-course evaluation and functional analyses. These genes pointed towards signs of repair at day 4 and 7 post-blast. Our findings suggest that the blast over pressure levels in the study resulted in mild cellular injury to the brain as evidenced by acute neuronal, cerebrovascular and white matter perturbations that showed signs of resolution. It is unclear whether these perturbations exist at a milder level or normalize completely and will need more investigation. Specific changes in gene expression may be further evaluated to understand the mechanism of blast

  3. Optical microangiography enabling visualization of change in meninges after traumatic brain injury in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Qin, Wan; Qi, Xiaoli; Wang, Ruikang K.

    2016-03-01

    Traumatic brain injury (TBI) is a form of brain injury caused by sudden impact on brain by an external mechanical force. Following the damage caused at the moment of injury, TBI influences pathophysiology in the brain that takes place within the minutes or hours involving alterations in the brain tissue morphology, cerebral blood flow (CBF), and pressure within skull, which become important contributors to morbidity after TBI. While many studies for the TBI pathophysiology have been investigated with brain cortex, the effect of trauma on intracranial tissues has been poorly studied. Here, we report use of high-resolution optical microangiography (OMAG) to monitor the changes in cranial meninges beneath the skull of mouse after TBI. TBI is induced on a brain of anesthetized mouse by thinning the skull using a soft drill where a series of drilling exert mechanical stress on the brain through the skull, resulting in mild brain injury. Intracranial OMAG imaging of the injured mouse brain during post-TBI phase shows interesting pathophysiological findings in the meningeal layers such as widening of subdural space as well as vasodilation of subarachnoid vessels. These processes are acute and reversible within hours. The results indicate potential of OMAG to explore mechanism involved following TBI on small animals in vivo.

  4. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  5. Cushing's ulcer in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Biteghe-bi-Nzeng Alain; WANG Yun-jie

    2008-01-01

    Traumatic brain injury(TBI)remains a complicated and urgent disease in our modernized cities. It becomes now a public health disease. We have got more and more patients in Neurosurgery Intensive Care Unit following motor vehicle accidents and others causes. TBI brings multiple disorders,from the primary injury to secondary injury. The body received the disturbances in the brain,in the hypothalamo-pituitary-adrenocortical(HPA)axis,in the gastric mucosa,in the immune and neuroendocrine systems.The mortality of TBI is more than 50 000 deaths/year, the third of the mortality of all iniuries. Cushing ulcer is one of the severe complications of TBI and its mortality rate is more than 50%. Many studies have improved the management of TBI and the associated complications to give patients a better outcome. Furthers studies need to be done based on the similar methodology to clarify the different steps of the HPA axis and the neuroendocrine change associated. The aim of the present review is to assess the clinical and endocrinal features of hypopituitarism and stress ulcer following TBI.

  6. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  7. Electrophysiologic monitoring in acute brain injury.

    Science.gov (United States)

    Claassen, Jan; Vespa, Paul

    2014-12-01

    To determine the optimal use and indications of electroencephalography (EEG) in critical care management of acute brain injury (ABI). An electronic literature search was conducted for articles in English describing electrophysiological monitoring in ABI from January 1990 to August 2013. A total of 165 studies were included. EEG is a useful monitor for seizure and ischemia detection. There is a well-described role for EEG in convulsive status epilepticus and cardiac arrest (CA). Data suggest EEG should be considered in all patients with ABI and unexplained and persistent altered consciousness and in comatose intensive care unit (ICU) patients without an acute primary brain condition who have an unexplained impairment of mental status. There remain uncertainties about certain technical details, e.g., the minimum duration of EEG studies, the montage, and electrodes. Data obtained from both EEG and EP studies may help estimate prognosis in ABI patients, particularly following CA and traumatic brain injury. Data supporting these recommendations is sparse, and high quality studies are needed. EEG is used to monitor and detect seizures and ischemia in ICU patients and indications for EEG are clear for certain disease states, however, uncertainty remains on other applications. PMID:25208668

  8. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago;

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO...... affected by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury....

  9. Mild Traumatic Brain Injuries : A 10-year follow-up

    OpenAIRE

    Elgmark Andersson, Elisabeth; Bedics, Beate Kärrdahl; Falkmer, Torbjörn

    2011-01-01

    Objective and design: Long-term consequences of mild traumatic brain injuries were investigated based on a 10-year follow-up of patients from a previously published randomized controlled study of mild traumatic brain injuries. One aim was to describe changes over time after mild traumatic brain injuries in terms of the extent of persisting post-concussion symptoms, life satisfaction, perceived health, activities of daily living, changes in life roles and sick leave. Another aim was to identif...

  10. Tissue Segmentation of Brain MRI

    Czech Academy of Sciences Publication Activity Database

    Dvořák, P.; Bartušek, Karel; Mikulka, J.

    Berlin: IEEE, 2014, s. 482-485. ISBN 978-80-214-4983-1. ISSN 1805-5435. [TSP 2014. International Conference on Telecommunications and Signal Processing /37./. Berlín (DE), 01.07.2014-03.07.2014] R&D Projects: GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : Brain * Gaussian Mixture Model * GMM * Image segmentation * Magnetic Resonance Subject RIV: BH - Optics, Masers, Lasers

  11. Biomechanical characterization of soft tissue injuries

    Science.gov (United States)

    Winnem, Andreas Meyer; Randeberg, Lise Lyngsnes; Larsen, Eivind L. P.; Lilledahl, Magnus B.; Haaverstad, Rune; Haugen, Olav A.; Skallerud, Bjørn; Svaasand, Lars O.

    2007-02-01

    Determining the cause of an injury and the force behind the impact may be of crucial importance in a court case. For non-penetrating soft tissue injuries there is a lack of information available in the literature. In this study controlled bruises were inflicted on an anesthetized pig by high speed, low-weight paintball projectiles (diameter 17.1 mm, weight 3.15 g). The speed of the object and the impact itself were monitored using a high speed camera. Punch biopsies (5 mm) were collected from the injury sites. A red and purple ring with a diameter of 1.5 cm appeared on the skin within 30 seconds after the paintball impact. The ring was visually fully established after 5-10 minutes. Numerical finite element simulations performed with ABAQUSExplicit showed a build up of shear stresses in the skin where the ring formed. Biopsies demonstrated severe dermal vessel damage in the same area. It is concluded that considerable shear stresses during the impact will create dermal vessel damage and thereby cause a visible bruise. Larger forces are required for compressive stresses to inflict equivalent vascular damage.

  12. Propagation of damage in brain tissue: coupling the mechanics of oedema and oxygen delivery.

    Science.gov (United States)

    Lang, Georgina E; Vella, Dominic; Waters, Sarah L; Goriely, Alain

    2015-11-01

    Brain tissue swelling, or oedema, is a dangerous consequence of traumatic brain injury and stroke. In particular, a locally swollen region can cause the injury to propagate further through the brain: swelling causes mechanical compression of the vasculature in the surrounding tissue and so can cut off that tissue's oxygen supply. We use a triphasic mathematical model to investigate this propagation, and couple tissue mechanics with oxygen delivery. Starting from a fully coupled, finite elasticity, model, we show that simplifications can be made that allow us to express the volume of the propagating region of damage analytically in terms of key parameters. Our results show that performing a craniectomy, to alleviate pressure in the brain and allow the tissue to swell outwards, reduces the propagation of damage; this finding agrees with experimental observations. PMID:25822263

  13. Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice

    OpenAIRE

    Ma, Yuanyuan; Li, Yaning; Jiang, Lu; Wang, Liping; Jiang, Zhen; Wang, Yongting; Zhang, Zhijun; Yang, Guo-Yuan

    2016-01-01

    Background Macrophages are involved in demyelination in many brain diseases. However, the role of macrophages in the recovery phase of the ischemic brain is unknown. The present study aims to explore the role of macrophages in the ischemic brain injury and tissue repair following a 90-min transient middle cerebral artery occlusion in mice. Methods Clodronate liposomes were injected into mice to deplete periphery macrophages. These mice subsequently underwent middle cerebral artery occlusion. ...

  14. A study of rotational brain injury.

    Science.gov (United States)

    Misra, J C; Chakravarty, S

    1984-01-01

    Of concern in the paper is an investigation on brain injuries which may occur owing to an input angular acceleration of the head. The study is based on the use of an improved mathematical model for the cranium. The eccentricity of the braincase is incorporated through the consideration of a prolate spheroidal shell as the representative of the skull. Also the dissipative mechanical behaviour of the brain material (as per the observations of experimenters) has been accounted for by considering the material contained in the shell as viscoelastic. The problem is formulated in terms of prolate spheroidal coordinates. The singularities of the governing equations of motion (when expressed in the prolate coordinate system) are removed by a suitable transformation of the concerned dependent variable, viz. the one that stands for the angular displacement of a representative point of the system. In the first place the solution of the boundary value problem is sought in the Laplace transform space, by employing a finite difference technique. Use of the alternating-direction-implicit method together with Thomas algorithm was made for obtaining the angular acceleration in the transformed space. The Laplace inversion is also carried out with the help of numerical procedures (Gauss quadrature formula is used for this purpose). The results of the parametric study are presented through graphs. The plots illustrate the shear stresses and strains in the brain medium. A meaningful comparison of the computational results with those of previous investigations indicate that the eccentricity of the braincase plays a significant role in causing injury to the brain. PMID:6480621

  15. Epileptogenesis after traumatic brain injury in Plaur-deficient mice.

    Science.gov (United States)

    Bolkvadze, Tamuna; Puhakka, Noora; Pitkänen, Asla

    2016-07-01

    Binding of the extracellular matrix proteinase urokinase-type plasminogen activator (uPA) to its receptor, uPAR, regulates tissue remodeling during development and after injury in different organs, including the brain. Accordingly, mutations in the Plaur gene, which encodes uPAR, have been linked to language deficits, autism, and epilepsy, both in mouse and human. Whether uPAR deficiency modulates epileptogenesis and comorbidogenesis after brain injury, however, is unknown. To address this question, we induced traumatic brain injury (TBI) by controlled cortical impact (CCI) in 10 wild-type (Wt-CCI) and 16 Plaur-deficient (uPAR-CCI) mice. Sham-operated mice served as controls (10 Wt-sham, 10 uPAR-sham). During the 4-month follow-up, the mice were neurophenotyped by assessing the somatomotor performance with the composite neuroscore test, emotional learning and memory with fear conditioning to tone and context, and epileptogenesis with videoelectroencephalography monitoring and the pentylenetetrazol (PTZ) seizure susceptibility test. At the end of the testing, the mice were perfused for histology to analyze cortical and hippocampal neurodegeneration and mossy fiber sprouting. Fourteen percent (1/7) of the mice in the Wt-CCI and 0% in the uPAR-CCI groups developed spontaneous seizures (p>0.05; chi-square). Both the Wt-CCI and uPAR-CCI groups showed increased seizure susceptibility in the PTZ test (plearning showed a genotype effect, being more impaired in uPAR-CCI than in Wt-CCI mice (p<0.05). The findings of the present study indicate that uPAR deficiency does not increase susceptibility to epileptogenesis after CCI injury but has an unfavorable comorbidity-modifying effect after TBI. PMID:27208924

  16. The History and Evolution of Experimental Traumatic Brain Injury Models.

    Science.gov (United States)

    Povlishock, John

    2016-01-01

    This narrative provides a brief history of experimental animal model development for the study of traumatic brain injury. It draws upon a relatively rich history of early animal modeling that employed higher order animals to assess concussive brain injury while exploring the importance of head movement versus stabilization in evaluating the animal's response to injury. These themes are extended to the development of angular/rotational acceleration/deceleration models that also exploited brain movement to generate both the morbidity and pathology typically associated with human traumatic brain injury. Despite the significance of these early model systems, their limitations and overall practicality are discussed. Consideration is given to more contemporary rodent animal models that replicate individual/specific features of human injury, while via various transgenic technologies permitting the evaluation of injury-mediated pathways. The narrative closes on a reconsideration of higher order, porcine animal models of injury and their implication for preclinical/translational research. PMID:27604709

  17. Robust whole-brain segmentation: application to traumatic brain injury.

    Science.gov (United States)

    Ledig, Christian; Heckemann, Rolf A; Hammers, Alexander; Lopez, Juan Carlos; Newcombe, Virginia F J; Makropoulos, Antonios; Lötjönen, Jyrki; Menon, David K; Rueckert, Daniel

    2015-04-01

    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to

  18. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  19. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population. PMID:26184082

  20. 人脑挫裂伤早期周围组织AQP4表达及血脑屏障超微结构观察%The expression of aquaporin-4 and the ultramicrostructure change of blood-brain barrier in human contusion brain tissue early after injury

    Institute of Scientific and Technical Information of China (English)

    李新军; 韩杨云; 徐宏; 孙中书; 周增俊; 龙晓东; 杨与敏; 邹林波

    2012-01-01

    Objective To observe the expression of aquaporin 4(AQP4) and the ultramicrostructure change of blood-brain barrier in human contusion brain tissue at different time points and investigate the mechanism of brain edema formation. Methods 60 cases brain contusion tissue (observation group) and 10 cases normal non-functional brain tissues (control group) were collected. The expression of AQP4 at different time point was detected by immunity histochemistry and image analytical technique at 2 ~72 h after injury,brain water contents, BBB index and ultramicrostructure were observed at the same time point. Results Compared with the normal control group, AQP4 expression increased in observation group at 2 h (P<0.05), obviously increased at 6 h ,8 h J2 h (P<0.01), reached peak at 24-72 h(P <0.01). The change of AQP4 expression and brain water content had same tendency (r = 0. 912, P < 0.01) which also was displayed between BBB index and brain water content(r =0.877,P <0.01). The change of AQP4 expression and BBB index had significant positive correlation(r =0.908, P <0.01). Blood-brain barrier structure changed early after injury, and then destroyed, severely damaged at 24 h, 72 h. Conclusions The expression of AQP4 and the permeability of BBB significantly increased after brain contusion which suggesting AQP4 may play an important role in the brain edema formation after brain contusion.%目的 观察人脑挫裂伤后AQP4和血脑屏障超微结构在脑水肿形成中不同时间点的变化特征,探讨脑水肿的形成机制.方法 取脑挫裂伤区组织标本60例(观察组),10例非功能区正常脑组织标本(对照组).采用免疫组化和图像分析技术测定正常组及观察组伤后2~72 h相应时间点水肿区AQP4的表达水平,同时观察脑水肿含水量,血脑屏障指数,血脑屏障超微结构的变化.结果 与正常组相比较,脑挫裂伤组在伤后2h后AQP4表达开始增加(P<0.05),6h、8h、12h明显增加(P<0.01),24~72 h

  1. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis

    2015-05-01

    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  2. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  3. Pediatric brain tumors of neuroepithelial tissue

    International Nuclear Information System (INIS)

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.)

  4. Incorporating Human Body Mass in Standards of Helmet Impact Protection against Traumatic Brain Injury

    CERN Document Server

    Blackman, Eric G

    2009-01-01

    Impact induced traumatic brain injury (ITBI) describes brain injury from head impact not necessarily accompanied by skull fracture. For sufficiently abrupt head impact decelerations, ITBI results from brain tissue stress incurred as the brain crashes into the inside of the skull wall, displacing the surrounding cerebral spinal fluid (CSF). Proper helmet cushioning can damp the impact force and reduce ITBI. But force is mass times acceleration and commonly used helmet blunt impact standards are based only on acceleration thresholds. Here I show how this implies that present standards overestimate the minimum acceleration onset for ITBI by implicitly assuming that the brain is mechanically decoupled from the body. I quantify how an arbitrary orientation of the body with respect to impact direction increases the effective mass that should be used in calculating the required damping force and injury threshold accelerations. I suggest a practical method to incorporate the body mass and impact angle into ITBI helme...

  5. Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size

    Science.gov (United States)

    Bharadwaj, Vimala N.; Lifshitz, Jonathan; Adelson, P. David; Kodibagkar, Vikram D.; Stabenfeldt, Sarah E.

    2016-01-01

    Nanoparticle (NP) based therapeutic and theranostic agents have been developed for various diseases, yet application to neural disease/injury is restricted by the blood-brain-barrier (BBB). Traumatic brain injury (TBI) results in a host of pathological alterations, including transient breakdown of the BBB, thus opening a window for NP delivery to the injured brain tissue. This study focused on investigating the spatiotemporal accumulation of different sized NPs after TBI. Specifically, animal cohorts sustaining a controlled cortical impact injury received an intravenous injection of PEGylated NP cocktail (20, 40, 100, and 500 nm, each with a unique fluorophore) immediately (0 h), 2 h, 5 h, 12 h, or 23 h after injury. NPs were allowed to circulate for 1 h before perfusion and brain harvest. Confocal microscopy demonstrated peak NP accumulation within the injury penumbra 1 h post-injury. An inverse relationship was found between NP size and their continued accumulation within the penumbra. NP accumulation preferentially occurred in the primary motor and somatosensory areas of the injury penumbra as compared to the parietal association and visual area. Thus, we characterized the accumulation of particles up to 500 nm at different times acutely after injury, indicating the potential of NP-based TBI theranostics in the acute period after injury. PMID:27444615

  6. Traumatic brain injury: advanced multimodal neuromonitoring from theory to clinical practice.

    Science.gov (United States)

    Cecil, Sandy; Chen, Patrick M; Callaway, Sarah E; Rowland, Susan M; Adler, David E; Chen, Jefferson W

    2011-04-01

    Traumatic brain injury accounts for nearly 1.4 million injuries and 52 000 deaths annually in the United States. Intensive bedside neuromonitoring is critical in preventing secondary ischemic and hypoxic injury common to patients with traumatic brain injury in the days following trauma. Advancements in multimodal neuromonitoring have allowed the evaluation of changes in markers of brain metabolism (eg, glucose, lactate, pyruvate, and glycerol) and other physiological parameters such as intracranial pressure, cerebral perfusion pressure, cerebral blood flow, partial pressure of oxygen in brain tissue, blood pressure, and brain temperature. This article highlights the use of multimodal monitoring in the intensive care unit at a level I trauma center in the Pacific Northwest. The trends in and significance of metabolic, physiological, and hemodynamic factors in traumatic brain injury are reviewed, the technical aspects of the specific equipment used to monitor these parameters are described, and how multimodal monitoring may guide therapy is demonstrated. As a clinical practice, multimodal neuromonitoring shows great promise in improving bedside therapy in patients with traumatic brain injury, ultimately leading to improved neurological outcomes. PMID:20592189

  7. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  8. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  9. Referral decision support in patients with subacute brain injury

    DEFF Research Database (Denmark)

    Pedersen, Asger R; Nielsen, Jørgen F; Jensen, Jim;

    2016-01-01

    support in the RCS-E and the item specific threshold model, when patients with acquired brain injury are to be referred to CSS or DSS as their primary rehabilitation. Implications for Rehabilitation Efficient rehabilitation after acquired brain injury requires rehabilitation settings that meet patient...

  10. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Bodsch, W.; Huerter, T.; Hossmann, K.A. (Max-Planck-Institut fuer Hirnforschung, Koeln (Germany, F.R.). Forschungsstelle fuer Hirnkreislauf-Forschung)

    1982-10-07

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema.

  11. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    International Nuclear Information System (INIS)

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema. (Auth.)

  12. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  13. Serious brain injury coexisting with multiple injuries caused by traffic accidents in 69 cases

    Institute of Scientific and Technical Information of China (English)

    张浚; 张鹤飞; 等

    1999-01-01

    Objective To explore the speciality,diagnosis,cure principle of serious brain injury coexisting with nultiple injuries caused by traffic accidents.Methods To analyze the clinic data of 69 cases of serious rain injury combined by oter parts of injuries caused by traffic accidents received from January 1998 to April 1999.Results This type of injury took up 11.5 percent of brain injuries in the same term and 33.6 percent of serious brain injuries.The specialities of the injury are that most of them were pedestrians crashed by vehicles.Coesisting injuries including chest injury and limb fractures accounted for a large part.The brain injury usally presented profound disturbance of consciousness,being dangerous and complicated,and a high ISS value.After treatment 13 cases died,9 cases was heavily crippled,11 cases lightly crippled,and 36 cases recovered.The death was usually caused by brain injury.Conclusions Road traffic accidents increased substantially every year.Most of them are related with violating drive rules and regulations.It is important to decrease the road traffic accidents by strengthening propaganda on traffic safety and traffic management.The main principles for salvage should emphasize the importance of pre-hospital emergency rescue and the accurate diagnosis rate,especially the distinction between coma and shock.The priority should be put on those injuries threatening to life.

  14. Brain and head injury in infancy and childhood

    International Nuclear Information System (INIS)

    This article describes typical head injuries in infants and children. In comparison with adults there are distinct differences in the etiology of trauma and in the kind of reaction of the skull and brain. In infants and children there are three different types of trauma: birth trauma, accidental and non-accidental injury. The typical injuries in these three groups are described. (orig.)

  15. Patterns of Brain Injury in Inborn Errors of Metabolism

    OpenAIRE

    Gropman, Andrea L.

    2012-01-01

    Many inborn errors of metabolism (IEMs) are associated with irreversible brain injury. For many, it is unclear how metabolite intoxication or substrate depletion accounts for the specific neurologic findings observed. IEM-associated brain injury patterns are characterized by whether the process involves gray matter, white matter, or both, and beyond that, whether subcortical or cortical gray matter nuclei are involved. Despite global insults, IEMs may result in selective injury to deep gray m...

  16. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  17. Genetic susceptibility to traumatic brain injury and apolipoprotein E gene

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-chuan; JIANG Yong

    2008-01-01

    @@ Traumatic brain injury (TBI) is defined as an injury caused by a blow or jolt to the head or a penetrating head injury that disrupts the normal function of the brain. It is a common emergency and severe case in neurosurgery field. Nowadays, there are more and more evidences showing that TBI, which is apparently similar in pathology and severity in the acute stage, may have different outcomes.

  18. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    OpenAIRE

    Engel, Doortje Caroline

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse, and several rare causes e.g. the use of nail guns or lawn mowers have all been described as causes of TBI. The pathology of TBI can be classified by mechanism (closed versus penetrating); clinical severi...

  19. Routine and quantitative EEG in mild traumatic brain injury.

    Science.gov (United States)

    Nuwer, Marc R; Hovda, David A; Schrader, Lara M; Vespa, Paul M

    2005-09-01

    This article reviews the pathophysiology of mild traumatic brain injury, and the findings from EEG and quantitative EEG (QEEG) testing after such an injury. Research on the clinical presentation and pathophysiology of mild traumatic brain injury is reviewed with an emphasis on details that may pertain to EEG or QEEG and their interpretation. Research reports on EEG and QEEG in mild traumatic brain injury are reviewed in this setting, and conclusions are drawn about general diagnostic results that can be determined using these tests. QEEG strengths and weaknesses are reviewed in the context of factors used to determine the clinical usefulness of proposed diagnostic tests. Clinical signs, symptoms, and the pathophysiologic axonal injury and cytotoxicity tend to clear over weeks or months after a mild head injury. Loss of consciousness might be similar to a non-convulsive seizure and accompanied subsequently by postictal-like symptoms. EEG shows slowing of the posterior dominant rhythm and increased diffuse theta slowing, which may revert to normal within hours or may clear more slowly over many weeks. There are no clear EEG or QEEG features unique to mild traumatic brain injury. Late after head injury, the correspondence is poor between electrophysiologic findings and clinical symptoms. Complicating factors are reviewed for the proposed commercial uses of QEEG as a diagnostic test for brain injury after concussion or mild traumatic brain injury. The pathophysiology, clinical symptoms and electrophysiological features tend to clear over time after mild traumatic brain injury. There are no proven pathognomonic signatures useful for identifying head injury as the cause of signs and symptoms, especially late after the injury. PMID:16029958

  20. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  1. 78 FR 37834 - Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury...

    Science.gov (United States)

    2013-06-24

    ... Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request SUMMARY: Under the... Collection: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data...

  2. Surgical management of traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Vidgeon, Steven; Strong, Anthony J;

    2014-01-01

    for TBI were enrolled in the Co-Operative Studies on Brain Injury Depolarizations (COSBID) at King's College Hospital (KCH, n = 27) and Virginia Commonwealth University (VCU, n = 24) from July 2004 to March 2010. Subdural electrode strips were placed at the time of surgery for subsequent...... contusions: 48%-52%), signs of mass effect (midline shift ≥ 5 mm: 43%-52%), and preoperative intracranial pressure (ICP). At VCU, however, surgeries were performed earlier (median 0.51 vs 0.83 days posttrauma, p < 0.05), bone flaps were larger (mean 82 vs 53 cm(2), p < 0.001), and craniectomies were more......-effectiveness study provides evidence for major practice variation in surgical management of severe TBI. Although ages differed between the 2 cohorts, the results suggest that a more aggressive approach, including earlier surgery, larger craniotomy, and removal of bone flap, may reduce ICP, prevent cortical spreading...

  3. Accommodation in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Wesley Green, MS

    2010-05-01

    Full Text Available Accommodative dysfunction in individuals with mild traumatic brain injury (mTBI can have a negative impact on quality of life, functional abilities, and rehabilitative progress. In this study, we used a range of dynamic and static objective laboratory and clinical measurements of accommodation to assess 12 adult patients (ages 18-40 years with mTBI. The results were compared with either 10 control subjects with no visual impairment or normative literature values where available. Regarding the dynamic parameters, responses in those with mTBI were slowed and exhibited fatigue effects. With respect to static parameters, reduced accommodative amplitude and abnormal accommodative interactions were found in those with mTBI. These results provide further evidence for the substantial impact of mTBI on accommodative function. These findings suggest that a range of accommodative tests should be included in the comprehensive vision examination of individuals with mTBI.

  4. Investigation of blast-induced traumatic brain injury

    OpenAIRE

    Taylor, Paul A.; Ludwigsen, John S.; Ford, Corey C.

    2014-01-01

    Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain in...

  5. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion) are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    OpenAIRE

    Michael A. Kiraly; Kiraly, Stephen J.

    2007-01-01

    Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI) and mild traumatic brain injury (MTBI). Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzh...

  6. Inhomogeneous Deformation of Brain Tissue During Tension Tests

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael D; 10.1016/j.commatsci.2012.05.030

    2013-01-01

    Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI). In this research, we present the design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0-14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters (mu = 4395.0 Pa, alpha = -2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine Young's modulus (E= 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S < 1.0 are required to minimise the effects of inhomogeneous...

  7. Mild traumatic brain injuries in adults

    Directory of Open Access Journals (Sweden)

    Dhaval Shukla

    2010-01-01

    Full Text Available Mild traumatic brain injury (mTBI is the commonest form of TBI. Though the name implies, it may not be mild in certain cases. There is a lot of heterogeneity in nomenclature, classification, evaluation and outcome of mTBI. We have reviewed the relevant articles on mTBI in adults, particularly its definition, evaluation and outcome, published in the last decade. The aspects of mTBI like pediatric age group, sports concussion, and postconcussion syndrome were not reviewed. There is general agreement that Glasgow coma score (GCS of 13 should not be considered as mTBI as the risk of intracranial lesion is higher than in patients with GCS 14-15. All patients with GCS of <15 should be evaluated with a computed tomography (CT scan. Patients with GCS 15 and risk factors or neurological symptoms should also be evaluated with CT scan. The outcome of mTBI depends on the combination of preinjury, injury and postinjury factors. Overall outcome of mTBI is good with mortality around 0.1% and disability around 10%.

  8. Diabetes Insipidus after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Cristina Capatina

    2015-07-01

    Full Text Available Traumatic brain injury (TBI is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI and the syndrome of inappropriate antidiuretic hormone secretion (SIADH are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH or of the posterior pituitary gland causing post-traumatic DI (PTDI. PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI.

  9. Sexual changes associated with traumatic brain injury.

    Science.gov (United States)

    Ponsford, Jennie

    2003-01-01

    Findings from numerous outcome studies have suggested that people with traumatic brain injuries (TBI) experience relationship difficulties and changes in sexuality. However, there have been few investigations of these problems. This paper reports the results of a study of sexuality following TBI, which aimed to identify changes in sexual behaviour, affect, self-esteem, and relationship quality, and their inter-relationships. Two hundred and eight participants with moderate-to-severe TBI (69% males) completed a questionnaire 1-5 years post-injury. Their responses were compared with those of 150 controls, matched for age, gender, and education. Of TBI participants 36-54% reported: (1) A decrease in the importance of sexuality, opportunities, and frequency of engaging in sexual activities; (2) reduced sex drive; (3) a decline in their ability to give their partner sexual satisfaction and to engage in sexual intercourse; and (4) decreased enjoyment of sexual activity and ability to stay aroused and to climax. The frequencies of such negative changes were significantly higher than those reported by controls and far outweighed the frequency of increases on these dimensions. A significant proportion of TBI participants also reported decreased self-confidence, sex appeal, higher levels of depression, and decreased communication levels and relationship quality with their sexual partner. Factors associated with sexual problems in the TBI group are explored and implications of all findings discussed. PMID:21854338

  10. Effort test performance in clinical acute brain injury, community brain injury, and epilepsy populations.

    Science.gov (United States)

    Hampson, Natalie E; Kemp, Steven; Coughlan, Anthony K; Moulin, Chris J A; Bhakta, Bipin B

    2014-01-01

    Effort tests have become commonplace within medico-legal and forensic contexts and their use is rising within clinical settings. It is recognized that some patients may fail effort tests due to cognitive impairment and not because of poor effort. However, investigation of the base rate of failure among clinical populations other than dementia is limited. Forty-seven clinical participants were recruited and comprised three subgroups: acute brain injury (N = 11), community brain injury (N = 20), and intractable epilepsy (N = 16). Base rates of failure on the Word Memory Test (WMT; Green, 2003 ) and six other less well-validated measures were investigated. A significant minority of patients failed effort tests according to standard cutoff scores, particularly patients with severe traumatic brain injury and marked frontal-executive features. The WMT was able to identify failures associated with significant cognitive impairment through the application of profile analysis and/or lowered cutoff levels. Implications for clinical assessment, effort test interpretation, and future research are discussed. PMID:25084843

  11. Altered expression of metabotropic glutamate receptor 1 alpha after acute diffuse brain injury Effect of the competitive antagonist 1-aminoindan-1, 5-dicarboxylic acid

    Institute of Scientific and Technical Information of China (English)

    Fei Cao; Mantao Chen; Gu Li; Ke Ye; Xin Huang; Xiujue Zheng

    2012-01-01

    The diffuse brain injury model was conducted in Sprague-Dawley rats, according to Marmarou's free-fall attack. The water content in brain tissue, expression of metabotropic glutamate receptor 1α mRNA and protein were significantly increased after injury, reached a peak at 24 hours, and then gradually decreased. After treatment with the competitive antagonist of metabotropic glutamate receptor 1α, (RS)-1-aminoindan-1, 5-dicarboxylic acid, the water content of brain tissues decreased between 12-72 hours after injury, and neurological behaviors improved at 2 weeks. These experimental findings suggest that the 1-aminoindan-1, 5-dicarboxylic acid may result in marked neuroprotection against diffuse brain injury.

  12. Association of hemoglobin concentration and mortality in critically ill patients with severe traumatic brain injury

    OpenAIRE

    Sekhon, Mypinder S; McLean, Nielson; Henderson, William R.; Chittock, Dean R; Griesdale, Donald EG

    2012-01-01

    Introduction The critical care management of traumatic brain injury focuses on preventing secondary ischemic injury. Cerebral oxygen delivery is dependent upon the cerebral perfusion pressure and the oxygen content of blood, which is principally determined by hemoglobin. Despite its importance to the cerebral oxygen delivery, the precise hemoglobin concentration to provide adequate oxygen delivery to injured neuronal tissue in TBI patients is controversial with limited evidence to provide tra...

  13. Ischemic brain injury in hemodialysis patients: which is more dangerous, hypertension or intradialytic hypotension?

    Science.gov (United States)

    McIntyre, Christopher W; Goldsmith, David J

    2015-06-01

    Abnormalities of cognitive function and high levels of depression incidence are characteristic of hemodialysis patients. Although previously attributed to the humoral effects of uremia, it is becoming increasingly appreciated that many elements of the overall disease state in CKD patients contribute to functional disturbances and physical brain injury. These factors range from those associated with the underlying primary diseases (cardiovascular, diabetes etc.) to those specifically associated with the requirement for dialysis (including consequences of the hemodialysis process itself). They are, however, predominantly ischemic threats to the integrity of brain tissue. These evolving insights are starting to allow nephrologists to appreciate the potential biological basis of dependency and depression in our patients, as well as develop and test new therapeutic approaches to this increasingly prevalent and important issue. This review aims to summarize the current understanding of brain injury in this setting, as well as examine recent advances being made in the modification of dialysis-associated brain injury. PMID:25853331

  14. Clinical neurorestorative progress in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Huang H

    2015-03-01

    Full Text Available Huiling Huang,1 Lin Chen,2,3 Hongyun Huang4–61Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin Neurosurgical Institute, Tianjin, People's Republic of China; 2Medical Center, Tsinghua University, Beijing, People's Republic of China; 3Tsinghua University Yuquan Hospital, Beijing, People's Republic of China; 4General Hospital of Chinese people's Armed Police Forces, 5Beijing Rehabilitation Hospital of Capital Medical University, Beijing, People's Republic of China; 6Beijing Hongtianji Neuroscience Academy, Beijing, People's Republic of ChinaAbstract: Traumatic brain injury (TBI is a leading cause of death and disability from trauma to the central nervous system. Besides the surgical interventions and symptomatic management, the conventional therapies for TBI and its sequelae are still limited. Recently emerging evidence suggests that some neurorestorative treatments appear to have a potential therapeutic role for TBI and improving the patient's quality of life. The current clinical neurorestorative strategies available in TBI include pharmacological treatments (recombinant human interleukin-1 receptor antagonist, amantadine, lithium, and valproate, the neuromodulation treatments (repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and low-level laser therapy, cell transplantation (bone marrow stromal cells and umbilical cord stromal cells, and combined neurorehabilitation. In this review, we summarize the recent clinical neurorestorative progress in the management of neurodegeneration as well as cognitive and motor deficits after TBI; indeed further clinical trials are required to provide more robust evidence.Keywords: brain trauma, neurorestorative treatment, cell transplantation, clinical study

  15. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury.

    Science.gov (United States)

    Hay, Jennifer; Johnson, Victoria E; Smith, Douglas H; Stewart, William

    2016-05-23

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article. PMID:26772317

  16. The role of markers of inflammation in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Thomas eWoodcock

    2013-03-01

    Full Text Available Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (IL-1, TNF, IL-6, the anti-inflammatory cytokines (IL-4, IL-10 and TGF-beta and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following TBI, the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair.Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and

  17. Novel roles for metallothionein-I + II (MT-I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: insights from global gene expression profiling in wild-type and MT-I + II knockout mice

    DEFF Research Database (Denmark)

    Penkowa, Milena; Cáceres, Mario; Borup, Rehannah;

    2006-01-01

    Traumatic injury to the brain is one of the leading causes of injury-related death or disability, especially among young people. Inflammatory processes and oxidative stress likely underlie much of the damage elicited by injury, but the full repertoire of responses involved is not well known. A...... genomic approach, such as the use of microarrays, provides much insight in this regard, especially if combined with the use of gene-targeted animals. We report here the results of one of these studies comparing wild-type and metallothionein-I + II knockout mice subjected to a cryolesion of the...... opened new avenues that were confirmed by immunohistochemistry. Data in KO, MT-I-overexpressing, and MT-II-injected mice strongly suggest a role of these proteins in postlesional activation of neural stem cells....

  18. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    Directory of Open Access Journals (Sweden)

    GregoryAElder

    2012-12-01

    Full Text Available Blast-induced traumatic brain injury (TBI has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI. The β-amyloid (Aβ peptide associated with the development of Alzheimer’s disease (AD is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain Aβ following experimental blast injury using enzyme-linked immunosorbent assays for Aβ 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain Aβ levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the β-secretase, BACE-1, and the γ-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering Aβ production may not be effective for treating acute blast injury to the brain.

  19. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    Directory of Open Access Journals (Sweden)

    Michael A. Kiraly

    2007-01-01

    Full Text Available Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI and mild traumatic brain injury (MTBI. Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD and Parkinson's disease (PD. Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  20. DARPA challenge: developing new technologies for brain and spinal injuries

    Science.gov (United States)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  1. Modelling Brain Tissue using Magnetic Resonance Imaging

    OpenAIRE

    Dyrby, Tim Bjørn; Hansen, Lars Kai

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visu...

  2. Inhibitory effect of MgSO4 on calcium overload after radiation-induced brain injuries

    International Nuclear Information System (INIS)

    Objective: To explore the neuroprotective effect of magnesium sulfate (MgSO4 ) on radiation-induced acute brain injuries. Methods: A total of 60 mature Sprague-Dawley rats were randomly divided into 3 groups: blank control group, experimental control group and experimental therapy group. The whole brain of SD rats of experimental control group and experimental therapy group was irradiated to a dose of 20 Gy using 6 MeV electrons. Magnesium sulfate was injected intraperitoneally into the rats of experimental therapy group before and after irradiation for five times. At different time points (24 h, 7 days, 14 days, 30 days after irradiation), the brain tissue was taken. Plasma direct reading spectrography was used to measure the contents of Ca2+, Mg2+ in brain tissue, and the percentage of brain water content was calculated with the wet-dry weight formula. Results: Compared with the blank control group, the percentage of brain water and content of Ca2+ in brain of the experimental control group increased markedly (P2+ decreased significantly (P2+ in brain of the experimental therapy group were significantly lower than those of the experimental control group (P<0.05). Conclusion: Magnesium sulfate used in the early stage after irradiation can inhibit the calcium overload in rat brain , and attenuate brain edema and injuries. (authors)

  3. Mental Trauma Experienced by Caregivers of patients with Diffuse Axonal Injury or Severe Traumatic Brain Injury

    OpenAIRE

    Syed Tajuddin Syed Hassan; Husna Jamaludin; Rosna Abd Raman; Haliza Mohd Riji; Khaw Wan Fei

    2013-01-01

    Context: As with care giving and rehabilitation in chronic illnesses, the concern with traumatic brain injury (TBI), particularly with diffuse axonal injury (DAI), is that the caregivers are so overwhelmingly involved in caring and rehabilitation of the victim that in the process they become traumatized themselves. This review intends to shed light on the hidden and silent trauma sustained by the caregivers of severe brain injury survivors. Motor vehicle accident (MVA) is the highest contribu...

  4. Brain injury tolerance limit based on computation of axonal strain.

    Science.gov (United States)

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. PMID:27038501

  5. Proton spectroscopy of radiation-induced injury to the brain

    International Nuclear Information System (INIS)

    This paper reports on the role of hydrogen MR spectroscopy (HMRS) in differentiating radiation-injured brain from normal brain and neoplasm, the authors performed HMRS on five cat brains with iatrogenically produced radiation injury. Reductions in N-acetyl aspartate (NAA/choline, and NAA/creatine-phosphocreatine (CR)) resonances were demonstrated in voxels from the five irradiated hemispheres compared with normal hemispheres (P < .01). NAA/CR ratios below 1.21 were always associated with radiation injury; ratios above 1.30 demarcated normal hemispheres. Large unassigned amino acid resonances from 2.0 to 2.5 ppm were also present. Results of autopsy examination confirmed radiation-induced white matter injury. Using NAA/CR ratios, one can separate normal brain from radiation-injured brain. Differentiating residual tumor from radiation-injured and normal brain may be possible with HMRS

  6. Association of HIF- expression and cell apoptosis after traumatic brain injury in the rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the expression of hypoxia inducible factor-1α (HIF-1~) and the correlation between HIF-1α and apoptosis after traumatic brain injury.Methods: Using experimental traumatic brain injury in the rats, the expression of HIF-1α was studied by immunohisto-chemistry in cerebral tissue, apoptotic cell death was evaluated with TUNEL (transferase-mediated XdUTP nick end labeling ), and double-labeled immunohistochemistry and TUNEL methods were used to investigate the relationship between HIF-1α and apoptosis.Results: There was remarkable difference in the expression of HIF-1α between the experimental groups and the control groups (P < 0.01), in the experimental groups,the expression of HIF-1α at 48 hours was highest; the evidence of apoptotic cell death after experimental traumatic brain injury was found by TUNEL; the apoptotic percentage increased or decreased according to the changes of the positive expression of HIF-1α (r = 0.99).Conclusions: The results suggest that secondary brain ischemia plays a crucial role in apoptotic cell death after traumatic brain injury; HIF-1α can prompt apoptotic cell death after experimental traumatic brain injury.e expres

  7. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    Science.gov (United States)

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-01-01

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans. PMID:25942688

  8. Dementia Resulting From Traumatic Brain Injury

    Science.gov (United States)

    Shively, Sharon; Scher, Ann I.; Perl, Daniel P.; Diaz-Arrastia, Ramon

    2013-01-01

    Traumatic brain injury (TBI) is among the earliest illnesses described in human history and remains a major source of morbidity and mortality in the modern era. It is estimated that 2% of the US population lives with long-term disabilities due to a prior TBI, and incidence and prevalence rates are even higher in developing countries. One of the most feared long-term consequences of TBIs is dementia, as multiple epidemiologic studies show that experiencing a TBI in early or midlife is associated with an increased risk of dementia in late life. The best data indicate that moderate and severe TBIs increase risk of dementia between 2-and 4-fold. It is less clear whether mild TBIs such as brief concussions result in increased dementia risk, in part because mild head injuries are often not well documented and retrospective studies have recall bias. However, it has been observed for many years that multiple mild TBIs as experienced by professional boxers are associated with a high risk of chronic traumatic encephalopathy (CTE), a type of dementia with distinctive clinical and pathologic features. The recent recognition that CTE is common in retired professional football and hockey players has rekindled interest in this condition, as has the recognition that military personnel also experience high rates of mild TBIs and may have a similar syndrome. It is presently unknown whether dementia in TBI survivors is pathophysiologically similar to Alzheimer disease, CTE, or some other entity. Such information is critical for developing preventive and treatment strategies for a common cause of acquired dementia. Herein, we will review the epidemiologic data linking TBI and dementia, existing clinical and pathologic data, and will identify areas where future research is needed. PMID:22776913

  9. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    an ongoing chemical reaction due to the fixative used. Short-term instabilities within the first 15 hours of DWI scanning were observed and found likely to be caused by the preparation of the postmortem tissue prior to MR scanning. This artefact can be avoided e.g. by simply excluding DW......Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... environment differs from that of in vivo both due to a lowered environmental temperature and due to the fixation process itself. We argue that the perfusion fixation procedure employed in this thesis ensures that the postmortem tissue is as close to that of in vivo as possible. Different fibre reconstruction...

  10. Correlating learning and memory improvements to long-term potentiation in patients with brain injury

    Institute of Scientific and Technical Information of China (English)

    Xingfu Peng; Qian Yu

    2008-01-01

    patients clinically present with various manifestations,such as paralysis and sensory disability,which closely correlate to injured regions.In addition,learning and memory abilities decrease in brain injury patients and LTP decreases following brain injury.Brain tissue injury will lead to brain functional deficits. Hippocampal LTP is very sensitive.Difficulties in LTP induction are apparent even prior to morphological changes in brain tissue.There are no specific treatments for learning and memory functional deficits following brain injury.At present,behavioral and compensative therapies are the typical forms of rehabilitation.These results indicate that rehabilitation promotes learning and memory functional recovery in brain injury patients by speeding up LTP formation in the hippocampal CA3 region.CONCLUSION:Rehabilitation intervention increases LTP formation in the hippocampal CA3 region and recovers learning and memory functions in brain injury patients.

  11. The Acute Inflammatory Response in Trauma/Hemorrhage and Traumatic Brain Injury : Current State and Emerging Prospects

    NARCIS (Netherlands)

    Namas, R.; Ghuma, A.; Hermus, L.; Zamora, R.; Okonkwo, D. O.; Billiar, T. R.; Vodovotz, Y.

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury

  12. Detection and outcome of mild traumatic brain injury in patients and sportsmen : persisting symptoms, disabilities and life satisfaction in relation to S-100B, NSE and cortisol

    OpenAIRE

    Stålnacke, Britt-Marie

    2004-01-01

    Traumatic brain injuries are common (hospitalization incidence: 250-300 per 100.000 inhabitants/year) and a great majority of these injuries (80-85%) are classified as mild traumatic brain injury (MTBI/concussion). Many patients with MTBI (20-80%) suffer from subsequent persistent and often disabling symptoms. In previous studies serum levels of biochemical markers of brain tissue damage (S-100B and neuron-specific enolase, NSE) have been propounded to serve as predictors of persisting sympto...

  13. Time Series Analysis of Spontaneous Upper-Extremity Movements of Premature Infants With Brain Injuries

    OpenAIRE

    Ohgi, Shohei; Morita, Satoru; Loo, Kek Khee; Mizuike, Chihiro

    2008-01-01

    Background and Purpose: Comparisons of spontaneous movements of premature infants with brain injuries and those without brain injuries can provide insights into normal and abnormal processes in the ontogeny of motor development. In this study, the characteristics of spontaneous upper-extremity movements of premature infants with brain injuries and those without brain injuries were examined with time series analysis.

  14. Money, Language Barriers Can Affect Kids' Brain Injury Care

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_159124.html Money, Language Barriers Can Affect Kids' Brain Injury Care Those ... included providers of physical and occupational therapy; speech, language and cognitive therapy; and mental health services. The ...

  15. Money, Language Barriers Can Affect Kids' Brain Injury Care

    Science.gov (United States)

    ... nih.gov/medlineplus/news/fullstory_159124.html Money, Language Barriers Can Affect Kids' Brain Injury Care Those ... included providers of physical and occupational therapy; speech, language and cognitive therapy; and mental health services. The ...

  16. Spreading depolarizations and late secondary insults after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Strong, Anthony J; Fabricius, Martin;

    2009-01-01

    Here we investigated the incidence of cortical spreading depolarizations (spreading depression and peri-infarct depolarization) after traumatic brain injury (TBI) and their relationship to systemic physiologic values during neurointensive care. Subdural electrode strips were placed on peri...

  17. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O;

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  18. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  19. Effects of ganglioside GM1 on reduction of brain edema and amelioration of cerebral metabolism after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    陈志刚; 卢亦成; 朱诚; 张光霁; 丁学华; 江基尧

    2003-01-01

    Objective: To observe the effects of ganglioside GM1 on reduction of brain edema and amelioration of cerebral metabolism after traumatic brain injury (TBI).Methods: An acute experimental closed TBI model in rats was induced by a fluid-percussion brain injury model. At five and sixty minutes after TBI, the animals were intraperitoneally injected by ganglioside GM1 (30 mg/kg) or the same volume of saline. At the 6th hour after TBI, effects of ganglioside GM1 or saline on changes of mean arterial pressure (MAP), contents of water, lactic acid (LA) and lipid peroxidation (LPO) in the injured cerebral tissues were observed.Results: After TBI, MAP decreased and contents of water, LA and LPO increased in brain injury group; however, MAP was back to normal levels and contents of water, LA and LPO decreased in ganglioside GM1 treated group, compared with those in brain injury group (P0.05) was observed.Conclusions: Ganglioside GM1 does have obvious neuroprotective effect on early TBI.

  20. SDF-1α induces angiogenesis after traumatic brain injury.

    Science.gov (United States)

    Li, Shenghui; Wei, Ming; Zhou, Ziwei; Wang, Bin; Zhao, Xinliang; Zhang, Jianning

    2012-03-20

    This study aimed to investigate the effects of SDF-1α on brain angiogenesis and neurological functional recovery in rats after traumatic brain injury (TBI) and the potentially involved mechanisms. Youth male Wistar rats were injured via lateral fluid percussion injury and then randomly divided into one of 3 groups: I. vehicle treated group; II. SDF-1α neutralizing antibody treated group and III. rhSDF-1α treated group. rhSDF-1α and its neutralizing antibody or normal saline were administered to the brain penumbra via stereotactic injection 30min after TBI. Modified neurological severity score (mNSS) and Morris water maze (MWM) test were used to assess the neurologic functional recovery (n=6/group). 14days after injury, animals were euthanized and brain tissues were collected for quantitative real time polymerase chain reaction (qRT-PCR) (n=6/group) and immunohistochemistry (n=6/group) analysis. mNSS and MWM test indicated distinct amelioration of neurological disability in rhSDF-1α group(P<0.05). Microvessel density (MVD) of rhSDF-1α treated animals was remarkably increased around the injured area. On the contrary, MVD of the SDF-1α antibody administrated group was significantly decreased compared to that of vehicle treated animals (P<0.05). The mNSS and MVD had significant negative correlation as tested by Spearman rank correlation coefficient. Immunofluorescence staining showed that CD34 and CXCR4 co-expressed on microvessels. The rhSDF-1α treated animals had greater, contrarily, the SDF-1α antibody treated animals had lesser number of double positive microvessels compared to that of vehicle treated animals. The mRNA expression of CD34 and CXCR4 was obviously elevated in the rhSDF-1α administration group, conversely, declined in SDF-1α antibody treated animals around the injured area compared with that of the vehicle treatment group (P<0.05). These data indicated that SDF-1α could induce angiogenesis after TBI, potentially via SDF-1/CXCR4 axis. PMID

  1. Metallic gold reduces TNFalpha expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Ostergaard; Larsen, Agnete; Pedersen, Dan Sonne;

    2009-01-01

    Brain injury represents a major health problem and may result in chronic inflammation and neurodegeneration. Due to antiinflammatory effects of gold, we have investigated the cerebral effects of metallic gold particles following a focal brain injury (freeze-lesion) in mice. Gold particles 20......-45 microm in size or the vehicle (placebo) were implanted in the cortical tissue followed by a cortical freeze-lesioning. At 1-2 weeks post-injury, brains were analyzed by using immunohistochemistry and markers of inflammation, oxidative stress and apoptosis. This study shows that gold treatment...

  2. Soft Tissue Injuries in Hungarian and Austrian Clinical Diagnostic Reports

    Directory of Open Access Journals (Sweden)

    Fogarasi-Nuber Katalin

    2013-04-01

    Full Text Available Introduction: In addition to providing first aid, primary treating doctors are required to describe and register injuries acquired in accidents and assaults. They should do this with the highest possible accuracy, as this official document is often the only documentary evidence of soft tissue injuries in case a lawsuit is filed later. Characteristics of injuries may disappear faster with the healing process of the soft tissue, making it impossible for forensic experts to deduce the weapon involved. Consequently, terminological accuracy is a prerequisite for the appropriate reconstruction of the type and severity of injuries. This study aims at analysing reports on soft tissue injuries in Hungary and Austria from the terminological point of view. It is meant to reveal inaccuracies in the use of noun phrases impairing objective and accurate forensic assessment.

  3. MR imaging of late radiation brain injury

    International Nuclear Information System (INIS)

    One hundred and four patients treated with radiotherapy for intracranial tumors and their related conditions were reviewed to evaluate the usefulness of magnetic resonance (MR) imaging in demonstrating increased signal intensity areas on T2-weighted images that were considered to be late adverse effects of irradiation of the brain. High signal intensity areas of the white matter were divided into five patterns according to their size and extension. Severity was found to increase with age and irradiation doses of more than 50 Gy. In patients with irradiation doses of more than 60 Gy, the severity of increased with shorter interval after radiotherapy than in those given low irradiation doses. Clinical findings such as mental deterioration, motor abnormality, and visual defect were observed in 12 patients. These findings were closely correlated with the severity of the MR pattern. In most patients, high signal intensity areas were stable or progressive during the course of follow-up. However, these areas were regressive in three patients. Imaging with Gd-DTPA was performed in 36 patients, six of whom showed enhancement. Pathological findings on enhancement included astrocyte proliferation and coalescing vacuoles in neural tissue. MR imaging is an excellent method with which to monitor the adverse effects of radiotherapy of the brain. (author)

  4. Cooking breakfast after a brain injury

    Science.gov (United States)

    Tanguay, Annick N.; Davidson, Patrick S. R.; Guerrero Nuñez, Karla V.; Ferland, Mark B.

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients' difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik and Bialystok, 2006) as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task. Patients also completed the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003) and prepared actual meals that were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on) relative to controls. Surprisingly, however, patients' Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency. PMID:25228863

  5. Cooking breakfast after a brain injury

    Directory of Open Access Journals (Sweden)

    Annick N. Tanguay

    2014-09-01

    Full Text Available Acquired brain injury (ABI often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients’ difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik & Bialystok, 2006 as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task and the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003. Patients also prepared actual meals, and were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on relative to controls. Surprisingly, however, patients’ Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency.

  6. The psychosocial outcome of anoxic brain injury following cardiac arrest

    OpenAIRE

    Wilson, Michelle

    2012-01-01

    Aim of the study The psychosocial outcome of anoxic brain injury following cardiac arrest is a relatively under researched, but clinically important area. The aim of the current study was to add to the limited existing literature exploring the psychosocial outcome for cardiac arrest survivors, but specifically explore if there is a greater impact on psychosocial outcome in individuals experiencing anoxic brain injury as a result. Methods A range of self report measures were used to c...

  7. Psychotherapy after acquired brain injury: Is less more?

    Directory of Open Access Journals (Sweden)

    Rudi Coetzer

    2014-02-01

    Full Text Available This paper considers the challenges and dilemmas facing psychotherapists working with neurological patients, and in particular those who work in the context of under-resourced brain injury rehabilitation healthcare systems. Through the subjective process of reflective practice integral to clinical supervision, the author attempts to identify five core aspects of psychotherapy intended to augment post-acute long- term rehabilitation programmes and interventions after acquired brain injury.

  8. Cognitive functions in drivers with brain injury : Anticipation and adaption

    OpenAIRE

    Lundqvist, Anna

    2001-01-01

    The purpose of this thesis was to improve the understanding of what cognitive functions are important for driving performance, investigate the impact of impaired cognitive functions on drivers with brain injury, and study adaptation strategies relevant for driving performance after brain injury. Finally, the predictive value of a neuropsychological test battery was evaluated for driving performance. Main results can be summarized in the following conclusions: (a) Cognitive functions in terms ...

  9. Antagonism of purinergic signalling improves recovery from traumatic brain injury

    OpenAIRE

    Choo, Anthony M.; William J. Miller; Chen, Yung-Chia; Nibley, Philip; Patel, Tapan P.; Goletiani, Cezar; Morrison, Barclay; Kutzing, Melinda K.; Firestein, Bonnie L.; Sul, Jai-Yoon; Haydon, Philip G.; Meaney, David F.

    2013-01-01

    The recent public awareness of the incidence and possible long-term consequences of traumatic brain injury only heightens the need to develop effective approaches for treating this neurological disease. In this report, we identify a new therapeutic target for traumatic brain injury by studying the role of astrocytes, rather than neurons, after neurotrauma. We use in vivo multiphoton imaging and show that mechanical forces during trauma trigger intercellular calcium waves throughout the astroc...

  10. Optimizing sedation in patients with acute brain injury

    OpenAIRE

    Oddo, Mauro; Crippa, Ilaria Alice; Mehta, Sangeeta; Menon, David; Payen, Jean-Francois; Taccone, Fabio Silvio; Citerio, Giuseppe

    2016-01-01

    Daily interruption of sedative therapy and limitation of deep sedation have been shown in several randomized trials to reduce the duration of mechanical ventilation and hospital length of stay, and to improve the outcome of critically ill patients. However, patients with severe acute brain injury (ABI; including subjects with coma after traumatic brain injury, ischaemic/haemorrhagic stroke, cardiac arrest, status epilepticus) were excluded from these studies. Therefore, whether the new paradi...

  11. Transcranial amelioration of inflammation and cell death after brain injury

    Science.gov (United States)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  12. Retinochoroidal changes after severe brain impact injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate retinochoroidal changes and establisheye damage model after brain impact injury.Methods: An eye damage model after brain impact injury was established by striking the frontoparietal zone in rabbits with BIM-Ⅱ bioimpact machine. Seventeen rabbits were killed at 4 different intervals after injury. The pathological characteristics of the retinal and choroid damages were observed.Results: All the rabbits had severe brain injury with subarachnoid hemorrhage and brain contusion. The eye damage occurred in all of the 17 rabbits. Hemorrhage in optic nerve sheaths was observed and retinal edema and bleeding was discovered with ophthalmoscope. Histopathologic study displayed subarachnoid hemorrhage in the retrobulbar portion of the retinal nerve, general choroid blood vessel dilatation, retinal nerve fibre swelling within 6 hours after injury, and flat retinal detachment with subretinal proteinoid exudation, and degeneration and disappearance of the outer segment of the optic cell over 6 hours after injury.Conclusions: The pathological characteristic of the eye damage at early stage following brain impact injury is local circulation disturbance. At late stage, it features in retinal detachment, and optic cellular degeneration and necrosis.

  13. Brain Abscess After Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Akoz A et al.

    2013-06-01

    Full Text Available The brain abscess, which is a focal intracerebral infection, is one of the serious complications of the head infections. It generally occurs in the immunocompromised patients due to the spreading from another infection focus on the body. It can be seen with the findings such as fever, headache, nausea, vomiting, diplopia, dysarthria and paralysis. Imaging methods are used in the diagnosis. In its treatment, antibiotherapy and surgical methods can be used. Sometimes, as in our case, brain abscess can appear in a case which is thought to be a simple soft tissue infection. We think that especially, at the diagnosis and treatment stage of infections in head and neck region, physicians must be more careful and diligent.

  14. Adult axolotls can regenerate original neuronal diversity in response to brain injury.

    Science.gov (United States)

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. PMID:27156560

  15. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  16. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    Science.gov (United States)

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  17. Neuroprotective effect of Pycnogenol® following traumatic brain injury

    OpenAIRE

    Scheff, Stephen W.; Ansari, Mubeen A.; Roberts, Kelly N.

    2012-01-01

    Traumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Oxidative stress is one of the most celebrated secondary injury mechanisms. A close relationship exists between levels of oxidative stress and the pathogenesis of TBI. However, other cascades, such as an increase in proinflammatory cytokines, also play important roles in the overall response to the trauma. Pharmacologic intervention, in order to be successful, requ...

  18. Head motions while riding roller coasters: Implications for brain injury

    OpenAIRE

    Pfister, Bryan J.; Chickola, Larry; Smith, Douglas H.

    2009-01-01

    The risk of traumatic brain injury (TBI) while riding roller coasters has received substantial attention. Case reports of TBI around the time of riding roller coasters have led many medical professionals to assert that the high gravitational forces (G-forces) induced by roller coasters pose a significant TBI risk. Head injury research, however, has shown that G-forces alone cannot predict TBI. Established head injury criterions and procedures were employed to compare the potential of TBI betw...

  19. Aluminum accumulation in human brain tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, R.; Takeuchi, T.; Ohta, T. [Dept. of Psychiatry, Nagoya University School of Medicine, Nagoya, Aichi (Japan); Ektessabi, A.M. [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Hanaichi, T.; Ishihara, Y. [Hanaichi Ultrastructure Research Institute Co. Okazaki, Okazaki, Aichi (Japan); Fujita, Y. [Equipment Center for Research and Education, Nagoya, Aichi (Japan)

    1999-07-01

    Normal cell functions of the brain are often impaired by an excess accumulation of metal ions. There have been increasing efforts in recent years to measure and quantify excessive accumulations of biological constituent elements (such as Fe, Zn, Cu, and Ca), as well as the presence and distribution of contaminating elements (such as Al) in the brain tissues. Since Al might be associated with cases of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amiotrophic lateral screlosis (ALS), it is very important to measure and quantify Al levels using precise analytical techniques. The aim of this investigation is to measure the Al contents present in the temporal cortices for three cases. The specimens concerned were taken from unfixed autopsy brains, which have been preserved in a deep freezer at -80degC. A tandem type accelerator of 2 MeV energy was used to measure the concentrations of Al in these specimen tissues. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorber was removed. The results show that peak intensity depends on the site measured. In certain cases, however, an extremely high concentration of Al was observed in PIXE spectra, with an intensity higher than those of the other major elements present in the brain. Samples from the same subjects were also analyzed using EPMA-EDX. X-ray maps produced by EPMA-EDX showed the presence of extremely high concentrations of Al. The results yielded by PIXE analysis was in good qualitative agreement with those from EPMA-EDX. (author)

  20. Changes in T lymphocyte subsets after severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Yulu Miao; Mingxia Zhang; Yulin Nie; Wan Zhao; Bin Huang; Zhengming Jiang; Shaoxiong Yu; Zhibin Huang; Hongjin Fu

    2007-01-01

    BACKGROUND: Besides local changes of cranial parenchymal cells, hemorrhage, etc., severe traumatic brain injuries also cause the changes of total body fluid and various functions, and the changes of lymphocytes and T lymphocyte subsets should be paid more attention to.OBJECTIVE: To reveal the changing laws of T lymphocyte subsets after severe traumatic brain injury, and compare with mild to moderate brain injury.DESIGN: A comparative observation.SETTINGS: Department of Neurosurgery, Longgang District Buji People's Hospital of Shenzhen City;Central Laboratory of Shenzhen Hospital of Prevention and Cure for Chronic Disease.PARTICIPANTS: All the subjects were selected from the Department of Neurosurgery, Longgang District Buji People's Hospital of Shenzhen City from August 2002 to August 2005. Thirty patients with severe brain injury, whose Glasgow coma score (GCS) was ≤ 8 points, were taken as the experimental group, including 21 males and 9 females, aging 16 - 62 years. Meanwhile, 30 patients with mild traumatic brain injury were taken as the control group (GCS ranged 14 - 15 points), including 18 males and 12 females, aging 15 - 58 years. All the subjects were in admission at 6 hours after injury, without disease of major organs before injury.Informed consents were obtained from all the patients or their relatives.conditions of pulmonaryinfections were observed at 4 days after injury. The differences of measurement data were compared with the t test.MAIN OUTCOME MEASURES: Changes of T lymphocytes subsets at 1 - 14 days after severe and mild or moderate traumatic injury.RESULTS: Finally, 28 and 25 patients with mild to moderate traumatic brain injury, whereas 25 and 21 patients with severe traumatic brain injury were analyzed at 7 and 14 days respectively, and the missed ones CD3, CD4, CD8, CD4/CD8 began to decrease, whereas CD8 increased in the experimental group, which were very significantly different from those in the control group (t =2.77 - 3.26, P < 0

  1. Assessment of brain retraction injury from tumor operation with 99Tcm-ECD brain SPECT imaging

    International Nuclear Information System (INIS)

    Objective: To evaluate the rCBF of brain retraction injury by 99Tcm-ECD SPECT imaging. Methods: The 99Tcm-ECD SPECT brain imaging was performed in 21 patients with brain tumor before and after operation. To compare the rCBF of peripheral tumor region with that of retraction injury region by semi-quantitative analysis. The rCBF levels of the central and peripheral areas of brain retraction injury were also studied. Results: Both the peripheral tumor region before operation and retraction region after operation were ischemic, but the difference between them was significant (P99Tcm-ECD SPECT brain imaging is a useful technique in detecting retraction injury come from brain tumor operation

  2. Targeting different pathophysiological events after traumatic brain injury in mice: Role of melatonin and memantine.

    Science.gov (United States)

    Kelestemur, Taha; Yulug, Burak; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Kilic, Ulkan; Caglayan, Berrak; Yalcin, Esra; Gundogdu, Reyhan Zeynep; Kilic, Ertugrul

    2016-01-26

    The tissue damage that emerges during traumatic brain injury (TBI) is a consequence of a variety of pathophysiological events, including free radical generation and over-activation of N-methyl-d-aspartate-type glutamate receptors (NMDAR). Considering the complex pathophysiology of TBI, we hypothesized that combination of neuroprotective compounds, targeting different events which appear during injury, may be a more promising approach for patients. In this context, both NMDAR antagonist memantine and free radical scavenger melatonin are safe in humans and promising agents for the treatment of TBI. Herein, we examined the effects of melatonin administered alone or in combination with memantine on the activation of signaling pathways, injury development and DNA fragmentation. Both compounds reduced brain injury moderately and the density of DNA fragmentation significantly. Notably, melatonin/memantine combination decreased brain injury and DNA fragmentation significantly, which was associated with reduced p38 and ERK-1/2 phosphorylation. As compared with melatonin and memantine groups, SAPK/JNK-1/2 phosphorylation was also reduced in melatonin/memantine combined animals. In addition, melatonin, memantine and their combination decreased iNOS activity significantly. Here, we provide evidence that melatonin/memantine combination protects brain from traumatic injury, which was associated with decreased DNA fragmentation, p38 phosphorylation and iNOS activity. PMID:26639427

  3. Tissue Injury and Related Mediators of Pain Exacerbation

    OpenAIRE

    Amaya, Fumimasa; Izumi, Yuta; Matsuda, Megumi; Sasaki, Mika

    2013-01-01

    Tissue injury and inflammation result in release of various mediators that promote ongoing pain or pain hypersensitivity against mechanical, thermal and chemical stimuli. Pro-nociceptive mediators activate primary afferent neurons directly or indirectly to enhance nociceptive signal transmission to the central nervous system. Excitation of primary afferents by peripherally originating mediators, so-called “peripheral sensitization”, is a hallmark of tissue injury-related pain. Many kinds of p...

  4. Diffusion-weighted MRI in diffuse axonal injury of the brain

    International Nuclear Information System (INIS)

    The goal of this study was to identify and describe the different types and patterns of tissue injury which are encountered by diffusion-weighted imaging (DWI) in diffuse axonal injury (DAI) of the brain. The DWI data sets of 98 patients who suffered from a closed-head injury were retrospectively evaluated. Medical records were reviewed to rule out pre-existing neurological diseases. Lesions were studied for their DWI signal characteristics and lesion size or extension. Traumatic lesions were classified into three categories depending on their signal characteristica on DWI and apparent diffusion coefficient (ADC) maps: type 1, DWI- and ADC-hyperintense most likely representing lesions with vasogenic edema; type 2, DWI-hyperintense, ADC-hypointense indicating cytotoxic edema; type 3, central hemorrhagic lesion surrounded by an area of increased diffusion. According to the size and extent of lesions, injury was classified into three groups: group A, focal injury; group B, regional/confluent injury; and group C, extensive/diffuse injury. Our study showed that diffusion-weighted imaging differentiates between lesions with decreased and increased diffusion in patients with DAI. Different degrees of tissue injury extent were noticed. Future prospective studies should study if this additional information can be used as a predictor of injury reversibility, final outcome and prognosis. (orig.)

  5. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    Science.gov (United States)

    Papadimitriou, Konstantinos I.; Wang, Chu; Rogers, Michelle L.; Gowers, Sally A. N.; Leong, Chi L.; Boutelle, Martyn G.; Drakakis, Emmanuel M.

    2016-01-01

    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation.

  6. The tissue injury and repair in cancer radiotherapy

    International Nuclear Information System (INIS)

    One of the difficulties in cancer radiotherapy arises from the fact that the tissue tolerance dose is much smaller than the tumor lethal dose. In our opinion the former depends upon the tolerance of the endothelial cell of the blood vessel in the normal tissue. In this introduction, a new concept regarding the estimation of tissue radiosensitivity was described, and the possible significance of the mode of radiation injury and the repair capability of normal tissue in the cancer radiotheraphy was discussed. (author)

  7. Treatment for delayed brain injury after pituitary irradiation

    International Nuclear Information System (INIS)

    Treatment for delayed brain injury after pituitary irradiation is discussed. Six cases with delayed brain injury were treated with a combination of dexamethasone or betamethasone, with heparin, glycerol, dextran 40 and some vasodilators. Two cases with temporal lobe syndrome were treated in the early stages of brain injury for a period of over 12 months were almost completely cured, another two cases with chiasma syndrome were treated in the relatively late stages, showed a partial improvement. One case which was irradiated 120 GY during 13 years did not improve. The final case treated with steroids for a short period also resulted in failure and the patient underwent an operation for the removal of the necrotic mass three years after the radiotherapy. Steroid therapy started in the early stages of brain injury after irradiation for over the 12 months is thought to be effective. Heparin therapy was also effective in one out of three cases, but in one of the cases subarachnoid hemorrhage from a traumatic aneurysm occurred during the therapy. In an acute phase, showing edematous change of the injured brain, the administration of glycerol is also thought to be useful. But the effectiveness of the other medicines containing some vasodilators was obscure or doubtful. We propose the following : (1) A meticulous observation is essential for the patients who received high doses of irradiation to diagnose brain injury in the early reversible stage. (2) Steroids should be given immediately in this reversible stage of brain injury before the irreversible ''necrosis'' occurs. (3) Steroids should be maintained for a long period over 12 months. (4) Heparin therapy is also thought to be effective, but careful precautions to avoid hemorrhagic complications before the therapy should be scheduled. This recommended plan may also be used for the treatment of brain injuries after cranial irradiation for other intracranial tumors. (author)

  8. Treatment for delayed brain injury after pituitary irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Takashi; Misumi, Shuzoh; Shibasaki, Takashi; Tamura, Masaru; Kunimine, Hideo; Hayakawa, Kazushige; Niibe, Hideo; Miyazaki, Mizuho; Miyagi, Osamu.

    1988-03-01

    Treatment for delayed brain injury after pituitary irradiation is discussed. Six cases with delayed brain injury were treated with a combination of dexamethasone or betamethasone, with heparin, glycerol, dextran 40 and some vasodilators. Two cases with temporal lobe syndrome were treated in the early stages of brain injury for a period of over 12 months were almost completely cured, another two cases with chiasma syndrome were treated in the relatively late stages, showed a partial improvement. One case which was irradiated 120 GY during 13 years did not improve. The final case treated with steroids for a short period also resulted in failure and the patient underwent an operation for the removal of the necrotic mass three years after the radiotherapy. Steroid therapy started in the early stages of brain injury after irradiation for over the 12 months is thought to be effective. Heparin therapy was also effective in one out of three cases, but in one of the cases subarachnoid hemorrhage from a traumatic aneurysm occurred during the therapy. In an acute phase, showing edematous change of the injured brain, the administration of glycerol is also thought to be useful. But the effectiveness of the other medicines containing some vasodilators was obscure or doubtful. We propose the following : (1) A meticulous observation is essential for the patients who received high doses of irradiation to diagnose brain injury in the early reversible stage. (2) Steroids should be given immediately in this reversible stage of brain injury before the irreversible ''necrosis'' occurs. (3) Steroids should be maintained for a long period over 12 months. (4) Heparin therapy is also thought to be effective, but careful precautions to avoid hemorrhagic complications before the therapy should be scheduled. This recommended plan may also be used for the treatment of brain injuries after cranial irradiation for other intracranial tumors.

  9. The Minimal Energetic Requirement of Sustained Awareness after Brain Injury.

    Science.gov (United States)

    Stender, Johan; Mortensen, Kristian Nygaard; Thibaut, Aurore; Darkner, Sune; Laureys, Steven; Gjedde, Albert; Kupers, Ron

    2016-06-01

    Differentiation of the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS) is a persistent clinical challenge [1]. Based on positron emission tomography (PET) studies with [(18)F]-fluorodeoxyglucose (FDG) during sleep and anesthesia, the global cerebral metabolic rate of glucose has been proposed as an indicator of consciousness [2, 3]. Likewise, FDG-PET may contribute to the clinical diagnosis of disorders of consciousness (DOCs) [4, 5]. However, current methods are non-quantitative and have important drawbacks deriving from visually guided assessment of relative changes in brain metabolism [4]. We here used FDG-PET to measure resting state brain glucose metabolism in 131 DOC patients to identify objective quantitative metabolic indicators and predictors of awareness. Quantitation of images was performed by normalizing to extracerebral tissue. We show that 42% of normal cortical activity represents the minimal energetic requirement for the presence of conscious awareness. Overall, the cerebral metabolic rate accounted for the current level, or imminent return, of awareness in 94% of the patient population, suggesting a global energetic threshold effect, associated with the reemergence of consciousness after brain injury. Our data further revealed that regional variations relative to the global resting metabolic level reflect preservation of specific cognitive or sensory modules, such as vision and language comprehension. These findings provide a simple and objective metabolic marker of consciousness, which can readily be implemented clinically. The direct correlation between brain metabolism and behavior further suggests that DOCs can fundamentally be understood as pathological neuroenergetic conditions and provide a unifying physiological basis for these syndromes. PMID:27238279

  10. Neuroprotective levels of IGF-1 exacerbate epileptogenesis after brain injury.

    Science.gov (United States)

    Song, Yu; Pimentel, Corrin; Walters, Katherine; Boller, Lauren; Ghiasvand, Shabnam; Liu, Jing; Staley, Kevin J; Berdichevsky, Yevgeny

    2016-01-01

    Exogenous Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective in animal models of brain injury, and has been considered as a potential therapeutic. Akt-mTOR and MAPK are downstream targets of IGF-1 signaling that are activated after brain injury. However, both brain injury and mTOR are linked to epilepsy, raising the possibility that IGF-1 may be epileptogenic. Here, we considered the role of IGF-1 in development of epilepsy after brain injury, using the organotypic hippocampal culture model of post-traumatic epileptogenesis. We found that IGF-1 was neuroprotective within a few days of injury but that long-term IGF-1 treatment was pro-epileptic. Pro-epileptic effects of IGF-1 were mediated by Akt-mTOR signaling. We also found that IGF-1 - mediated increase in epileptic activity led to neurotoxicity. The dualistic nature of effects of IGF-1 treatment demonstrates that anabolic enhancement through IGF-1 activation of mTOR cascade can be beneficial or harmful depending on the stage of the disease. Our findings suggest that epilepsy risk may need to be considered in the design of neuroprotective treatments for brain injury. PMID:27561791

  11. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  12. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    OpenAIRE

    GregoryAElder; MiguelA.Gama Sosa; RitaDe Gasperi; MichaelCShaughness; StevenTDeKosky; SamGandy; MadhusoodanaPNambiar; JohnWSteele

    2012-01-01

    Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The β-amyloid (Aβ) peptide associated with the development of Alzheimer’s disease (AD) is elevated acutely following TBI in humans as well as in ...

  13. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    OpenAIRE

    De Gasperi, Rita; Gama Sosa, Miguel A; Kim, Soong Ho; Steele, John W.; Shaughness, Michael C; Maudlin-Jeronimo, Eric; Hall, Aaron A.; DeKosky, Steven T.; McCarron, Richard M; Nambiar, Madhusoodana P.; Gandy, Sam; Ahlers, Stephen T.; Elder, Gregory A.

    2012-01-01

    Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The β-amyloid (Aβ) peptide associated with the development of Alzheimer’s disease is elevated acutely following TBI in humans as well as in exper...

  14. Emergency treatment options for pediatric traumatic brain injury

    OpenAIRE

    Exo, J; Smith, C.; Smith, R.; Bell, MJ

    2009-01-01

    Traumatic brain injury is a leading killer of children and is a major public health problem around the world. Using general principles of neurocritical care, various treatment strategies have been developed to attempt to restore homeostasis to the brain and allow brain healing, including mechanical factors, cerebrospinal fluid diversion, hyperventilation, hyperosmolar therapies, barbiturates and hypothermia. Careful application of these therapies, normally in a step-wise fashion as intracrani...

  15. Astrocytes mediate the neuroprotective effects of Tibolone following brain injury

    OpenAIRE

    Luis Miguel Garcia-Segura; Barreto, George E.

    2015-01-01

    Recently, astrocytes have become a key central player in mediating important functions in the brain. These physiological processes include neurotransmitter recycling, energy management, metabolic shuttle, immune sensing, K+ buffer, antioxidant supply and release of neurotrophic factors and gliotransmitters. These astrocytic roles are somehow altered upon brain injury, therefore strategies aimed at better protecting astrocytes are an essential asset to maintain brain homeostasis. In this cont...

  16. A prospective study to evaluate a new residential community reintegration programme for severe chronic brain injury: the Brain Integration Programme.

    NARCIS (Netherlands)

    Geurtsen, G.J.; Martina, J.D.; Heugten, C.M. van; Geurts, A.C.H.

    2008-01-01

    PURPOSE: To assess the effectiveness of a residential community reintegration programme for participants with chronic sequelae of severe acquired brain injury that hamper community functioning. DESIGN: Prospective cohort study. SUBJECTS: Twenty-four participants with acquired brain injury (traumatic

  17. Therapeutic effect of nimodipine on experimental brain injury

    Institute of Scientific and Technical Information of China (English)

    杨树源; 王增光

    2003-01-01

    Objective: To study the therapeutic effect of nimodipine on experimental brain injury.Methods: Experimental and control rabbits were subjected to a closed head injury. In one group nimodipine was given intravenously and the effect evaluated by electron microscopy, brain water content, calcium levels, transcranial Doppler, and intracranial pressure monitoring.Results: In rabbits treated with nimodipine the level of neuronal cytosolic free calcium was markedly decreased. There were less cellular damage and less spasm of the middle cerebral artery seen on electron microscopy. No difference regarding intracranial pressure changes between the two groups was noted. Conclusions: Nimodipine has a protective action on brain injury by blocking a series of pathological reactions induced by neuronal calcium overload, and by reducing the spasm of brain vessels and improving cerebral blood flow.

  18. Translational Research for Blast-Induced Traumatic Brain Injury: Injury Mechanism to Development of Medical Instruments

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.

    1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.

  19. Estrogen treatment following severe burn injury reduces brain inflammation and apoptotic signaling

    Directory of Open Access Journals (Sweden)

    Idris Ahamed H

    2009-10-01

    Full Text Available Abstract Background Patients with severe burn injury experience a rapid elevation in multiple circulating pro-inflammatory cytokines, with the levels correlating with both injury severity and outcome. Accumulations of these cytokines in animal models have been observed in remote organs, however data are lacking regarding early brain cytokine levels following burn injury, and the effects of estradiol on these levels. Using an experimental animal model, we studied the acute effects of a full-thickness third degree burn on brain levels of TNF-α, IL-1β, and IL-6 and the protective effects of acute estrogen treatment on these levels. Additionally, the acute administration of estrogen on regulation of inflammatory and apoptotic events in the brain following severe burn injury were studied through measuring the levels of phospho-ERK, phospho-Akt, active caspase-3, and PARP cleavage in the placebo and estrogen treated groups. Methods In this study, 149 adult Sprague-Dawley male rats received 3rd degree 40% total body surface area (TBSA burns. Fifteen minutes following burn injury, the animals received a subcutaneous injection of either placebo (n = 72 or 17 beta-estradiol (n = 72. Brains were harvested at 0.5, 1, 2, 4, 6, 8, 12, 18, and 24 hours after injury from the control (n = 5, placebo (n = 8/time point, and estrogen treated animals (n = 8/time point. The brain cytokine levels were measured using the ELISA method. In addition, we assessed the levels of phosphorylated-ERK, phosphorylated-Akt, active caspase-3, and the levels of cleaved PARP at the 24 hour time-point using Western blot analysis. Results In burned rats, 17 beta-estradiol significantly decreased the levels of brain tissue TNF-α (~25%, IL-1β (~60%, and IL-6 (~90% when compared to the placebo group. In addition, we determined that in the estrogen-treated rats there was an increase in the levels of phospho-ERK (p p p p Conclusion Following severe burn injury, estrogens decrease both

  20. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-08-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.

  1. Proton MR spectroscopy in mild traumatic brain injury

    International Nuclear Information System (INIS)

    To assess the role of 1H MRS in the detection of changes in cerebral metabolite levels in pyramidal tracts after mild traumatic brain injury (MTBI) and to compare metabolite alterations to the clinical status (Glasgow Coma Scale). Study group consisted of 25 patients after mild traumatic brain injury, with a score of 11 to 15 in GCS. The MR studies were performed with a 1.5 T scanner. The results of spectra approximation (presented as metabolite ratios: NAA/Cr, NAA/Cho, Cho/Cr, lac/Cr, lip/Cr, Glx/Cr) were subjected to statistical analysis. MR spectra were recorded from a normal-appearing brain region: internal capsules and cerebral peduncles. Spectra from traumatic patients were compared with a control group including 34 healthy volunteers recorded with the same techniques. The statistical analysis revealed significant differences between the data obtained from various brain regions of the same patients after an MTBI and between the study and the control group. Proton MR spectroscopy detects changes in cerebral metabolite levels in apparently normal regions. In pyramidal tracts (internal capsules, cerebral peduncles), we noticed a significant reduction of NAA /Cho, lip/Cr, lac/Cr and Glx/Cr. In patients with mild brain injury, we can detect some metabolite abnormalities in normal-appearing brain structures. Proton MRS is a very useful tool for evaluation of major changes in metabolite levels in pyramidal tracts after mild traumatic brain injury

  2. Tissue Engineered Strategies for Skeletal Muscle Injury

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression, and elevation, nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.

  3. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  4. Human neuronal apoptosis secondary to traumatic brain injury and the regulative role of apoptosis-related genes

    Institute of Scientific and Technical Information of China (English)

    杨树源; 雪亮

    2004-01-01

    Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes.Methods: Specimens of brain were collected from cases of traumatic brain injury in humans. The histological and cellular morphology was examined by light and electron microscopy. The extent of DNA injury to cortical neurons was detected by using TUNEL. By in situ hybridisation and immunohistochemistry the mRNA changes and protein expression of Bcl-2, Bax, p53, and caspase 3 p20 subunit were observed.Results: Apoptotic neurons appeared following traumatic brain injury, peaked at 24 hours and lasted for 7 days. In normal brain tissue activated caspase 3 was rare,but a short time after trauma it became activated. The activity peaked at 20-28 hours and remained higher than normal for 5-7 days. There was no expression of Bcl-2 mRNA and Bcl-2 protein in normal brain tissue but 8 hours after injury their expression became evident and then increased, peaked at 2-3 days and remained higher than normal for 5-7 days. The primary expression of Bax-mRNA and Bax protein was high in normal brain tissue. At 20-28 hours they increased and remained high for 2-3 days; on the 7th days they returned to a normal level. In normal brain tissue, p53mRNA and P53 were minimally expressed.Increased expression was detected at the 8th hour, and decreased at 20-28 hours but still remained higher than normal on the 5th day.Conclusions: Following traumatic injury to the human brain, apoptotic neurons appear around the focus of trauma. The mRNA and protein expression of Bcl-2, Bax and p53 and the activity of caspase 3 enzyme are increased.

  5. Burn Injury: A Challenge for Tissue Engineers

    Directory of Open Access Journals (Sweden)

    Yerneni LK

    2009-01-01

    Full Text Available Ever since man invented fire he has been more frequently burning himself by this creation than by the naturally occurring bushfires. It is estimated that over 1.152 million people in India suffer from burn injuries requiring treatment every year and majority of them are women aged between 16-40 years and most of them occur in the kitchen. The treatment for burns basically involves autologous skin grafting, which originated in India more than two thousand years ago (Sushruta Samhita, is still the gold standard for the wound resurfacing, although, autografting is difficult where graftable donor sites are limited. Although, Cadaver skin, porcine or bovine xenografts are used alternatively over the past thirty years, modern approaches like the Bioengineering of skin substitutes emerged during the past 20 years as advanced wound management technologies with no social impediment. They can be broadly categorized as Acellular and Cellular biotechnological products. The acellular products like Alloderm (LifeCell Corporation, Integra (Integra Life Sciences act like template and depend on natural regeneration, while the cellular ones are either ‘Off-the-Shelf’ products like Apligraf (Organogenesis Inc and Orcel (Ortec International have allogenic elements and ‘home grown’ autologous cell products like Cultured Epithelial Autograft (CEA and epidermal-dermal composite skin use synthetic or natural non-human matrices. The CEA is based on the ex-vivo epidermal stem cell-expansion and our laboratory has been engaged in CEA technique development with innovative cost-effective approach and yielded promising preliminary clinical success. The basic methodological approach in CEA technique which is still clinically adopted by several developed countries involves the use of growth arrested mouse dermal fibroblasts as growth supportive matrix and is thus considered a drawback as a whole. Additionally, there is no superior enough method available to augment the

  6. The aetiology of deep tissue injury: a literature review.

    Science.gov (United States)

    Peart, Joanna

    2016-08-11

    Deep tissue injury affects patients of all ages in a variety of healthcare settings. It is therefore essential that nurses are aware of the underlying pathogenesis, in order to accurately assess the pressure ulcer risk of vulnerable patients, and to subsequently reduce patient harm. The majority of pressure ulcers are avoidable, however, a variety of intrinsic and extrinsic factors can contribute towards the development of deep tissue injury. Understanding the body's internal responses to external pressure will enable nurses to recognise that a visual assessment alone may not necessarily identify patients at risk of deep tissue damage. This article reviews the evidence for the internal causative mechanisms of deep tissue injury, while linking to clinical practice and pressure ulcer prevention. PMID:27523755

  7. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  8. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury:mechanisms of brain tissue repair

    Institute of Scientific and Technical Information of China (English)

    Zhen-qiang Zhang; Jun-ying Song; Ya-quan Jia; Yun-ke Zhang

    2016-01-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically givenBuyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reper-fusion injury was established by middle cerebral artery occlusion. In rats administeredBuyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrinαvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects ofBuyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest thatBuyanghuanwu de-coction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  9. Development of a new biomechanical indicator for primary blast-induced brain injury

    Institute of Scientific and Technical Information of China (English)

    Feng Zhu; Cliff C.Chou; King H.Yang; Albert I.King

    2015-01-01

    Primary blast-induced traumatic brain injury (bTBI) has been observed at the boundary of brain tissue and cerebrospinal fluid (CSF).Such injury can hardly be explained by using the theory of compressive wave propagation,since both the solid and fluid materials have similar compressibility and thus the intracranial pressure (ICP) has a continuous distribution across the boundary.Since they have completely different shear properties,it is hypothesized the injury at the interface is caused by shear wave.In the present study,a preliminary combined numerical and theoretical analysis was conducted based on the theory of shear wave propagation]reflection.Simulation results show that higher lateral acceleration of brain tissue particles is concentrated in the boundary region.Based on this finding,a new biomechanical vector,termed as strain gradient,was suggested for primary bTBI.The subsequent simple theoretical analysis reveals that this parameter is proportional to the value of lateral acceleration.At the boundary of lateral ventricles,high spatial strain gradient implies that the brain tissue in this area (where neuron cells may be contained) undergo significantly different strains and large velocity discontinuity,which may result in mechanical damage of the neuron cells.

  10. Development of a new biomechanical indicator for primary blast-induced brain injury

    Directory of Open Access Journals (Sweden)

    Zhu Feng

    2015-07-01

    Full Text Available Primary blast-induced traumatic brain injury (bTBI has been observed at the boundary of brain tissue and cerebrospinal fluid (CSF. Such injury can hardly be explained by using the theory of compressive wave propagation, since both the solid and fluid materials have similar compressibility and thus the intracranial pressure (ICP has a continuous distribution across the boundary. Since they have completely different shear properties, it is hypothesized the injury at the interface is caused by shear wave. In the present study, a preliminary combined numerical and theoretical analysis was conducted based on the theory of shear wave propagation/reflection. Simulation results show that higher lateral acceleration of brain tissue particles is concentrated in the boundary region. Based on this finding, a new biomechanical vector, termed as strain gradient, was suggested for primary bTBI. The subsequent simple theoretical analysis reveals that this parameter is proportional to the value of lateral acceleration. At the boundary of lateral ventricles, high spatial strain gradient implies that the brain tissue in this area (where neuron cells may be contained undergo significantly different strains and large velocity discontinuity, which may result in mechanical damage of the neuron cells.

  11. The Role of Cytokines and Inflammatory Cells in Perinatal Brain Injury

    OpenAIRE

    McAdams, Ryan M.; Juul, Sandra E.

    2012-01-01

    Perinatal brain injury frequently complicates preterm birth and leads to significant long-term morbidity. Cytokines and inflammatory cells are mediators in the common pathways associated with perinatal brain injury induced by a variety of insults, such as hypoxic-ischemic injury, reperfusion injury, toxin-mediated injury, and infection. This paper examines our current knowledge regarding cytokine-related perinatal brain injury and specifically discusses strategies for attenuating cytokine-med...

  12. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  13. The role of autophagic and lysosomal pathways in ischemic brain injury******

    Institute of Scientific and Technical Information of China (English)

    Zhaohua Gu; Nan Shi; Qian Zhang; Wei Zhang; Meizhen Zhao; Xiaojiang Sun; Yinyi Sun; Kangyong Liu; Fen Wang; Ting Zhang; Qiang Li; Liwei Shen; Ling Zhou; Liang Dong

    2013-01-01

    Autophagy is involved in neural cel death after cerebral ischemia. Our previous studies showed that rapamycin-induced autophagy decreased the rate of apoptosis, but the rate of apoptosis was creased after the autophagy inhibitor, 3-methyladenine, was used. In this study, a suture-occluded method was performed to generate a rat model of brain ischemia. Under a transmission electron microscope, autophagic bodies and autophagy lysosomes were markedly accumulated in neurons at 4 hours post brain ischemic injury, with their numbers gradual y reducing over time. Western blotting demonstrated that protein levels of light chain 3-II and cathepsin B were significantly in-creased within 4 hours of ischemic injury, but these levels were not persistently upregulated over time. Confocal microscopy showed that autophagy was mainly found in neurons with positive light chain 3 signal. Injection of rapamycin via tail vein promoted the occurrence of autophagy in rat brain tissue after cerebral ischemia and elevated light chain 3 and cathepsin B expression. However, in-jection of 3-methyladenine significantly diminished light chain 3-II and cathepsin B expression. Results verified that autophagic and lysosomal activity is increased in ischemic neurons. Abnormal components in cel s can be eliminated through upregulating cel autophagy or inhibiting autophagy after ischemic brain injury, resulting in a dynamic balance of substances in cel s. Moreover, drugs that interfere with autophagy may be potential therapies for the treatment of brain injury.

  14. [Treatment of delayed brain injury after pituitary irradiation].

    Science.gov (United States)

    Fujii, T; Misumi, S; Shibasaki, T; Tamura, M; Kunimine, H; Hayakawa, K; Niibe, H; Miyazaki, M; Miyagi, O

    1988-03-01

    Treatment for delayed brain injury after pituitary irradiation is discussed. Six cases with delayed brain injury were treated with a combination of dexamethasone or betamethasone, with heparin, glycerol, dextran 40 and some vasodilators. Two cases with temporal lobe syndrome were treated in the early stages of brain injury for a period of over 12 months were almost completely cured, another two cases with chiasma syndrome were treated in the relatively late stages, showed a partial improvement. One case which was irradiated 120 GY during 13 years did not improve. The final case treated with steroids for a short period also resulted in failure and the patient underwent an operation for the removal of the necrotic mass three years after the radiotherapy. Steroid therapy started in the early stages of brain injury after irradiation for over the 12 months is thought to be effective. Heparin therapy was also effective in one out of three cases, but in one of the cases subarachnoid hemorrhage from a traumatic aneurysm occurred during the therapy. In an acute phase, showing edematous change of the injured brain, the administration of glycerol is also thought to be useful. But the effectiveness of the other medicines containing some vasodilators was obscure or doubtful. We propose the following: (1) A meticulous observation is essential for the patients who received high doses of irradiation to diagnose brain injury in the early reversible stage. (2) Steroids should be given immediately in this reversible stage of brain injury before the irreversible "necrosis" occurs. (3) Steroids should be maintained for a long period over 12 months.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2453809

  15. Measurement of steroid concentrations in brain tissue: methodological considerations

    OpenAIRE

    MatthewDTaves; ColinJSaldanha; KiranKSoma

    2011-01-01

    It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, behavior, neuroplasticity, and inflammation. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection an...

  16. Mechanisms of tissue injury in lupus nephritis

    OpenAIRE

    Tamara K Nowling; Gilkeson, Gary S.

    2011-01-01

    Systemic lupus erythematosus is a prototypic autoimmune disease characterized by autoantibody production and immune complex formation/deposition in target organs such as the kidney. Resultant local inflammation then leads to organ damage. Nephritis, a major cause of morbidity and mortality in patients with lupus, occurs in approximately 50% of lupus patients. In the present review, we provide an overview of the current research and knowledge concerning mechanisms of renal injury in both lupus...

  17. Acute decrease in alkaline phosphatase after brain injury: A potential mechanism for tauopathy.

    Science.gov (United States)

    Arun, Peethambaran; Oguntayo, Samuel; Albert, Stephen Van; Gist, Irene; Wang, Ying; Nambiar, Madhusoodana P; Long, Joseph B

    2015-11-16

    Dephosphorylation of phosphorylated Tau (pTau) protein, which is essential for the preservation of neuronal microtubule assemblies and for protection against trauma-induced tauopathy and chronic traumatic encephalopathy (CTE), is primarily achieved in brain by tissue non-specific alkaline phosphatase (TNAP). Paired helical filaments (PHFs) and Tau isolated from Alzheimer's disease (AD) patients' brains have been shown to form microtubule assemblies with tubulin only after treatment with TNAP or protein phosphatase-2A, 2B and -1, suggesting that Tau protein in the PHFs of neurons in AD brain is hyperphosphorylated, which prevents microtubule assembly. Using blast or weight drop models of traumatic brain injury (TBI) in rats, we observed pTau accumulation in the brain as early as 6h post-injury and further accumulation which varied regionally by 24h post-injury. The pTau accumulation was accompanied by reduced TNAP expression and activity in these brain regions and a significantly decreased plasma total alkaline phosphatase activity after the weight drop. These results reveal that both blast- and impact acceleration-induced head injuries cause an acute decrease in the level/activity of TNAP in the brain, which potentially contributes to trauma-induced accumulation of pTau and the resultant tauopathy. The regional changes in the level/activity of TNAP or accumulation of pTau after these injuries did not correlate with the accumulation of amyloid precursor protein, suggesting that the basic mechanism underlying tauopathy in TBI might be distinct from that associated with AD. PMID:26483321

  18. Suicide after traumatic brain injury: a population study

    DEFF Research Database (Denmark)

    Teasdale, T W; Engberg, A W

    2001-01-01

    OBJECTIVES: To determine the rates of suicide among patients who have had a traumatic brain injury. METHODS: From a Danish population register of admissions to hospital covering the years 1979-93 patients were selected who had had either a concussion (n=126 114), a cranial fracture (n=7560), or a......). There was, however, no evidence of a specific risk period for suicide after injury. CONCLUSION: The increased risk of suicide among patients who had a mild traumatic brain injury may result from concomitant risk factors such as psychiatric conditions and psychosocial disadvantage. The greater risk among...... the more serious cases implicates additionally the physical, psychological, and social consequences of the injuries as directly contributing to the suicides....

  19. Expression and antioxidation of Nrf2/ARE pathway in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Zhen-Guo Cheng; Guo-Dong Zhang; Peng-Qiang Shi; Bao-Shun Du

    2013-01-01

    Objective: To explore the expression of Nrf2/ARE pathway in hindbrain tissue after the traumatic brain injury (TBI) and its anti-oxidative stress effect in the secondary nerve injury. Methods:The mice with Nrf2 gene knockout were used for the establishment of brain injury model. The experimental animals were divided into four groups: (Nrf2+/+) sham-operation group, (Nrf2+/+) brain injury group, (Nrf2-/-) sham-operation group and (Nrf2-/-) brain injury group. The specimen 24 h after cerebral trauma was selected. Then RT-PCR method was adopted to detect the expression of Nrf2 mRNA in brain; Western blotting method was adopted to detect the levels of Nrf2, HO-1 and NQO1 proteins in brain; ELISA method was adopted to detect the oxidative stress indicators:protein carbonyls, 4-hydroxy-2-nonenal (4-HNE) and 8-hydroxy-2’-deoxyguanosine (8-OHdG). Results: The Nrf2 mRNA and protein of Nrf2-/- mice were not expressed, and the difference of the relative amount of Nrf2 mRNA between Nrf2+/+ TBI group and Nrf2+/+ sham-operation group was not statistically significant (P>0.05); the level of Nrf2 protein in Nrf2+/+ TBI group increased significantly compared with the Nrf2+/+ sham-operation group (P0.05); there was only a little amount of expression of protein carbonyls, 4-HNE and 8-OHdG proteins in brain tissues in the Nrf2+/+ and Nrf2-/- sham-operation groups, and the difference was not statistically significant (P>0.05); after brain injury, the three oxidative stress indicators were significantly up-regulated in the Nrf2+/+ and Nrf2-/-groups, and the up-regulation of the latter group was more significant (P<0.01). Conclusions:After TBI the Nrf2/ARE pathway is activated and the activity of Nrf2 transcription regulation increases. However, the regulation dose not occur in the gene transcription level and only could increase the Nrf2 protein level, while the mRNA expression level has no obvious change. The nerve cell protective effect of Nrf2/ARE pathway in TBI achieves through

  20. Detecting Behavioral Deficits Post Traumatic Brain Injury in Rats.

    Science.gov (United States)

    Awwad, Hibah O

    2016-01-01

    Traumatic brain injury (TBI), ranging from mild to severe, almost always elicits an array of behavioral deficits in injured subjects. Some of these TBI-induced behavioral deficits include cognitive and vestibulomotor deficits as well as anxiety and other consequences. Rodent models of TBI have been (and still are) fundamental in establishing many of the pathophysiological mechanisms of TBI. Animal models are also utilized in screening and testing pharmacological effects of potential therapeutic agents for brain injury treatment. This chapter details validated protocols for each of these behavioral deficits post traumatic brain injury in Sprague-Dawley male rats. The elevated plus maze (EPM) protocol is described for assessing anxiety-like behavior; the Morris water maze protocol for assessing cognitive deficits in learning memory and spatial working memory and the rotarod test for assessing vestibulomotor deficits. PMID:27604739

  1. Fractures and Soft Tissue Injuries of the Feet and Ankle

    OpenAIRE

    English, Edward

    1985-01-01

    An accurate clinical diagnosis of foot and ankle pain can be made by a history, physical examination and routine X-rays of the affected part. Each problem has a specific treatment; however, fractures and dislocations around the foot and ankle can be thought of in an organized fashion by proper physical examination and then the appropriate treatment. Fractures and soft tissue injuries can be treated rationally by understanding the mechanism of injury and the possibility of subsequent deformity...

  2. Radiologic Determination of Corpus Callosum Injury in Patients with Mild Traumatic Brain Injury and Associated Clinical Characteristics

    OpenAIRE

    Kim, Dong Shin; Choi, Hyuk Jai; Yang, Jin Seo; Cho, Yong Jun; Kang, Suk Hyung

    2015-01-01

    Objective To investigate the incidence of corpus callosum injury (CCI) in patients with mild traumatic brain injury (TBI) using brain MRI. We also performed a review of the clinical characteristics associated with this injury. Methods A total of 356 patients in the study were diagnosed with TBI, with 94 patients classified as having mild TBI. We included patients with mild TBI for further evaluation if they had normal findings via brain computed tomography (CT) scans and also underwent brain ...

  3. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    Science.gov (United States)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  4. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat.

    Science.gov (United States)

    Hanlon, Lauren A; Huh, Jimmy W; Raghupathi, Ramesh

    2016-03-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  5. Propofol Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats.

    Science.gov (United States)

    Shi, Song-sheng; Zhang, Hua-bin; Wang, Chun-hua; Yang, Wei-zhong; Liang, Ri-sheng; Chen, Ye; Tu, Xian-kun

    2015-12-01

    Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1β in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation. PMID:26342279

  6. The profile of head injuries and traumatic brain injury deaths in Kashmir

    Directory of Open Access Journals (Sweden)

    Tabish Amin

    2008-06-01

    Full Text Available Abstract This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI deaths were also studied retrospectively for a period of eight years (1996 to 2003. The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21–30 years (18.8%, followed by 11–20 years age group (17.8% and 31–40 years (14.3%. The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas. To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients

  7. Outcome from Complicated versus Uncomplicated Mild Traumatic Brain Injury

    OpenAIRE

    Iverson, Grant L.; Lange, Rael T.; Minna Wäljas; Suvi Liimatainen; Prasun Dastidar; Hartikainen, Kaisa M.; Seppo Soimakallio; Juha Öhman

    2012-01-01

    Objective. To compare acute outcome following complicated versus uncomplicated mild traumatic brain injury (MTBI) using neurocognitive and self-report measures. Method. Participants were 47 patients who presented to the emergency department of Tampere University Hospital, Finland. All completed MRI scanning, self-report measures, and neurocognitive testing at 3-4 weeks after injury. Participants were classified into the complicated MTBI or uncomplicated MTBI group based on the presence/absenc...

  8. Energy Drinks, Alcohol, Sports and Traumatic Brain Injuries among Adolescents

    OpenAIRE

    Ilie, Gabriela; Boak, Angela; Mann, Robert E.; Adlaf, Edward M.; Hamilton, Hayley; Asbridge, Mark; Rehm, Jürgen; Cusimano, Michael D.

    2015-01-01

    Importance The high prevalence of traumatic brain injuries (TBI) among adolescents has brought much focus to this area in recent years. Sports injuries have been identified as a main mechanism. Although energy drinks, including those mixed with alcohol, are often used by young athletes and other adolescents they have not been examined in relation to TBI. Objective We report on the prevalence of adolescent TBI and its associations with energy drinks, alcohol and energy drink mixed in with alco...

  9. Abnormal Corticospinal Excitability in Traumatic Diffuse Axonal Brain Injury

    OpenAIRE

    Bernabeu, Montse; Demirtas-Tatlidede, Asli; Opisso, Eloy; Lopez, Raquel; Tormos, Jose Mª; Pascual-Leone, Alvaro

    2009-01-01

    This study aimed to investigate the cortical motor excitability characteristics in diffuse axonal injury (DAI) due to severe traumatic brain injury (TBI). A variety of excitatory and inhibitory transcranial magnetic stimulation (TMS) paradigms were applied to primary motor cortices of 17 patients and 11 healthy controls. The parameters of testing included resting motor threshold (MT), motor evoked potential (MEP) area under the curve, input-output curves, MEP variability, and silent period (S...

  10. Trial of Oral Metoclopramide on Diurnal Bruxism of Brain Injury

    OpenAIRE

    Yi, Ho Sung; Kim, Hyoung Seop; Seo, Mi Ri

    2013-01-01

    Bruxism is a diurnal or nocturnal parafunctional activity that includes tooth clenching, bracing, gnashing, and grinding. The dopaminergic system seems to be the key pathophysiology of bruxism and diminution of dopaminergic transmission at the prefrontal cortex seems to induce it. We report two patients with diurnal bruxism in whom a bilateral frontal lobe injury resulted from hemorrhagic stroke or traumatic brain injury. These patients' bruxism was refractory to bromocriptine but responded t...

  11. New means to assess neonatal inflammatory brain injury

    OpenAIRE

    Jin, Chen; Londono, Irene; Mallard, Carina; Lodygensky, Gregory A

    2015-01-01

    Preterm infants are especially vulnerable to infection-induced white matter injury, associated with cerebral palsy, cognitive and psychomotor impairment, and other adverse neurological outcomes. The etiology of such lesions is complex and multifactorial. Furthermore, timing and length of exposure to infection also influence neurodevelopmental outcomes. Different mechanisms have been posited to mediate the observed brain injury including microglial activation followed by subsequent release of ...

  12. Dysautonomia after traumatic brain injury: a forgotten syndrome?

    OpenAIRE

    Baguley, I.; Nicholls, J; Felmingham, K.; Crooks, J; Gurka, J.; Wade, L.

    1999-01-01

    OBJECTIVES—To better establish the clinical features, natural history, clinical management, and rehabilitation implications of dysautonomia after traumatic brain injury, and to highlight difficulties with previous nomenclature.
METHODS—Retrospective file review on 35 patients with dysautonomia and 35 sex and Glasgow coma scale score matched controls. Groups were compared on injury details, CT findings, physiological indices, and evidence of infections over the first 28 da...

  13. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  14. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    Science.gov (United States)

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. PMID:25589747

  15. Early Bifrontal Brain Injury: Disturbances in Cognitive Function Development

    Directory of Open Access Journals (Sweden)

    Christine Bonnier

    2010-01-01

    Full Text Available We describe six psychomotor, language, and neuropsychological sequential developmental evaluations in a boy who sustained a severe bifrontal traumatic brain injury (TBI at 19 months of age. Visuospatial, drawing, and writing skills failed to develop normally. Gradually increasing difficulties were noted in language leading to reading and spontaneous speech difficulties. The last two evaluations showed executive deficits in inhibition, flexibility, and working memory. Those executive abnormalities seemed to be involved in the other impairments. In conclusion, early frontal brain injury disorganizes the development of cognitive functions, and interactions exist between executive function and other cognitive functions during development.

  16. [Scandinavian guidelines for prehospital management of severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sollid, S.; Sundstrom, T.; Kock-Jensen, C.;

    2008-01-01

    Head trauma is the cause the death for many young persons. The number of fatalities can be reduced through systematic management. Prevention of secondary brain injury combined with the fastest possible transport to a neurosurgical unit, have been shown to effectively reduce mortality and morbidity....... Evidence-based guidelines already exist that focus on all steps in the process. In the present article members of the Scandinavian Neurotrauma Committee present recommendations on prehospital management of traumatic brain injury adapted to the infrastructure of the Nordic region Udgivelsesdato: 2008/6/26...

  17. Do metals that translocate to the brain exacerbate traumatic brain injury?

    Science.gov (United States)

    Kalinich, John F; Kasper, Christine E

    2014-05-01

    Metal translocation to the brain is strictly controlled and often prevented by the blood-brain barrier. For the most part, only those metals required to maintain normal function are transported into the brain where they are under tight metabolic control. From the literature, there are reports that traumatic brain injury disrupts the blood-brain barrier. This could allow the influx of metals that would normally have been excluded from the brain. We also have preliminary data showing that metal pellets, surgically-implanted into the leg muscle of a rat to simulate a shrapnel wound, solubilize and the metals comprising the pellet can enter the brain. Surprisingly, rats implanted with a military-grade tungsten alloy composed of tungsten, nickel, and cobalt also showed significantly elevated uranium levels in their brains as early as 1 month after pellet implantation. The only source of uranium was low levels that are naturally found in food and water. Conversely, rats implanted with depleted uranium pellets demonstrated elevated uranium levels in brain resulting from degradation of the implanted pellets. However, when cobalt levels were measured, there were no significant increases in the brain until the rats had reached old age. The only source of cobalt for these rats was the low levels found in their food and water. These data suggest that some metals or metal mixtures (i.e., tungsten alloy), when embedded into muscle, can enhance the translocation of other, endogenous metals (e.g., uranium) across the blood-brain barrier. For other embedded metals (i.e., depleted uranium), this effect is not observed until the animal is of advanced age. This raises the possibility that metal body-burdens can affect blood-brain barrier permeability in a metal-specific and age-dependent manner. This possibility is disconcerting when traumatic brain injury is considered. Traumatic brain injury has been called the "signature" wound of the conflicts in Iraq and Afghanistan, often, an

  18. Misconceptions on neuropsychological rehabilitation and traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Alberto García- Molina

    2013-12-01

    Full Text Available There are many misconceptions about traumatic brain injuries, their recovery and outcome; misconceptions that have their origin in a lack of information influenced by the image that the media show of the brain damage. Development. Based on clinical experience, the authors of this essay sets out his personal view on some of the most frequent misconceptions in the field of neuropsychological rehabilitation of traumatic brain injury: 1 All deficits are evident; 2 The recovery depends mainly on the involvement of the patient: more effort, more rapid recovery; 3 Two years after traumatic brain injury there is no possibility of improvement and recovery; and 4 The “miracle” of recovery will occur when is found the appropriate professional or treatment. These and other beliefs may influence directly or indirectly on the recovery process and the expectations placed on it by the families and patients. Conclusions. Provide accurate, clear and honest information, at the right time, helps patients and their families to better understand the deficits, the course of recovery and to adapt to the new reality resulting from a traumatic brain injury.

  19. Hyperbaric oxygen therapy improves cognitive functioning after brain injury

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Guangyu Shen; Shukun Deng; Xiubin Wang; Qinfeng Wu; Aisong Guo

    2013-01-01

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury;however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney’s free fal ing method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig-nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibril ary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im-proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me-diated by metabolic changes and nerve cellrestoration in the hippocampal CA3 region.

  20. Optical spectroscopy for the detection of ischemic tissue injury

    Science.gov (United States)

    Demos, Stavros; Fitzgerald, Jason; Troppmann, Christoph; Michalopoulou, Andromachi

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  1. Texture analysis of MR images of patients with Mild Traumatic Brain Injury

    OpenAIRE

    Wäljas Minna; Dastidar Prasun; Harrison Lara; Holli Kirsi K; Liimatainen Suvi; Luukkaala Tiina; Öhman Juha; Soimakallio Seppo; Eskola Hannu

    2010-01-01

    Abstract Background Our objective was to study the effect of trauma on texture features in cerebral tissue in mild traumatic brain injury (MTBI). Our hypothesis was that a mild trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection but could be detected with texture analysis (TA). Methods We imaged 42 MTBI patients by using 1.5 T MRI within three weeks of onset of trauma. TA was performed on the area of mesencephalon, cerebral white matter at the ...

  2. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  3. Animal models of traumatic brain injury : a critical evaluation

    OpenAIRE

    O'Connor, William; Smyth, Aoife; Gilchrist, M. D.

    2011-01-01

    Animal models are necessary to elucidate changes occurring after brain injury and to establish new therapeutic strategies towards a stage where drug efficacy in brain injured patients (against all classes of symptoms) can be predicted. In this review, six established animal models of head trauma, namely fluid percussion, rigid indentation, inertial acceleration, impact acceleration, weight-drop and dynamic cortical deformation are evaluated. While no single animal model is entirely successful...

  4. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha;

    2012-01-01

    We have previously demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, can improve survival after hemorrhagic shock (HS), protect neurons from hypoxia-induced apoptosis, and attenuate the inflammatory response. We have also shown that administration of 6% hetastarch (Hextend [...... [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  5. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  6. Continuous measurement of boron-10 concentration in rabbit brain tissue and blood using prompt gamma-ray spectrometry

    International Nuclear Information System (INIS)

    One of the important factors which influence the efficacy of boron neutron capture therapy (BNCT) in patients with malignant brain tumor is the boron-10 concentrations in tumors. The boron-10 concentration in normal brain tissue and the tumor/blood concentration in normal brain tissue and the tumor/blood concentration ratio are also valuable factors to decide the irradiation time and protect the normal tissue from radiation injury. Therefore, it is valuable to know the boron-10 concentration in the tumor, normal brain tissue and blood just before and during neutron irradiation. In this study the authors investigated continuously the boron-10 concentrations in the normal brain tissue of living rabbits and blood for 5-24 hours after injection of boron-10 compound using prompt gamma-ray spectrometry

  7. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Abdolreza Babaee

    2015-09-01

    Full Text Available Objective(s:Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis, as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg. All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P

  8. Deep tissue injury from a bioengineering point of view.

    Science.gov (United States)

    Gefen, Amit

    2009-04-01

    The phrasing of the National Pressure Ulcer Advisory Panel's (NPUAP) definition of deep tissue injury (DTI) was based on case reports, clinical observations, and experience. Although etiological studies of DTI, primarily related to characterizing biomechanical factors affecting onset and progression, support and strengthen parts of the NPUAP's definition, some recent findings suggest a need to re-evaluate the wording and perhaps refine future definitions of DTI. Application of existing bioengineering research to underlying biological, physical, biomechanical, and biochemical mechanisms involved in the definition of DTI suggests the following: 1) changes in skin color - ie, deviation of the local skin color from the surroundings - may indicate a DTI might be present, but color is not useful for quantifying the severity of injury; 2) the pressure and/or shear definition is inaccurate because it creates an artificial distinction between pressure and shear, which are physically coupled, and because it ignores tensional loads; 3) palpating tissue firmness at the wound site provides limited assessment information because tissue firmness will depend on the point in time along the course of DTI development. Damaged tissues might appear stiffer than surrounding tissues if examined when muscle tissue is locally contracted due to local rigor mortis but at a later stage damage might manifest as tissues that are softer than their surroundings when digestive enzymes start decomposing necrotic tissues; 4) skin temperature changes near the DTI site may reflect inflammatory response, causing local heating, or ischemic perfusion, causing local cooling; and 5) rapid deterioration of DTI is likely occurring due to muscle tissue stiffening at the rigor mortis phase; stiffened tissues abnormally deform adjacent tissues and this effect is amplified if muscles are atrophied. The application of interdisciplinary research may help clinicians and researchers move from evolving jargons

  9. Implementation of magnetic resonance elastography for the investigation of traumatic brain injuries

    Science.gov (United States)

    Boulet, Thomas

    Magnetic resonance elastography (MRE) is a potentially transformative imaging modality allowing local and non-invasive measurement of biological tissue mechanical properties. It uses a specific phase contrast MR pulse sequence to measure induced vibratory motion in soft material, from which material properties can be estimated. Compared to other imaging techniques, MRE is able to detect tissue pathology at early stages by quantifying the changes in tissue stiffness associated with diseases. In an effort to develop the technique and improve its capabilities, two inversion algorithms were written to evaluate viscoelastic properties from the measured displacements fields. The first one was based on a direct algebraic inversion of the differential equation of motion, which decouples under certain simplifying assumptions, and featured a spatio-temporal multi-directional filter. The second one relies on a finite element discretization of the governing equations to perform a direct inversion. Several applications of this technique have also been investigated, including the estimation of mechanical parameters in various gel phantoms and polymers, as well as the use of MRE as a diagnostic tools for brain disorders. In this respect, the particular interest was to investigate traumatic brain injury (TBI), a complex and diverse injury affecting 1.7 million Americans annually. The sensitivity of MRE to TBI was first assessed on excised rat brains subjected to a controlled cortical impact (CCI) injury, before execution of in vivo experiments in mice. MRE was also applied in vivo on mouse models of medulloblastoma tumors and multiple sclerosis. These studies showed the potential of MRE in mapping the brain mechanically and providing non-invasive in vivo imaging markers for neuropathology and pathogenesis of brain diseases. Furthermore, MRE can easily be translatable to clinical settings; thus, while this technique may not be used directly to diagnose different abnormalities in

  10. Brain stimulation: Neuromodulation as a potential treatment for motor recovery following traumatic brain injury.

    Science.gov (United States)

    Clayton, E; Kinley-Cooper, S K; Weber, R A; Adkins, D L

    2016-06-01

    There is growing evidence that electrical and magnetic brain stimulation can improve motor function and motor learning following brain damage. Rodent and primate studies have strongly demonstrated that combining cortical stimulation (CS) with skilled motor rehabilitative training enhances functional motor recovery following stroke. Brain stimulation following traumatic brain injury (TBI) is less well studied, but early pre-clinical and human pilot studies suggest that it is a promising treatment for TBI-induced motor impairments as well. This review will first discuss the evidence supporting brain stimulation efficacy derived from the stroke research field as proof of principle and then will review the few studies exploring neuromodulation in experimental TBI studies. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26855256

  11. Glucocorticoids aggravate retrograde memory deficiency associated with traumatic brain injury in rats.

    Science.gov (United States)

    Chen, Xin; Zhang, Ke-Li; Yang, Shu-Yuan; Dong, Jing-Fei; Zhang, Jian-Ning

    2009-02-11

    Administration of glucocorticoid to patients with head injury has previously been demonstrated to impair memory. We hypothesize that glucocorticoids promote post-traumatic hippocampal apoptosis, resulting in retrograde memory deficiency associated with traumatic brain injury (TBI). In the present study, we tested this hypothesis by measuring spatial memory deficiency in rats subjected to fluid percussion injury (FPI) and receiving dexamethasone (DXM at 0.5-10 mg/kg) or methylprednisolone (MP at 5-30 mg/kg); we also examined neuronal apoptosis in hippocampus. Adult male Wistar rats were trained for the acquisition of spatial memory, then subjected to FPI and tested for spatial reference memory on post-injury days 7 and 14 using the Morris Water Maze. Brain tissue from injured rats was examined 24 h to 2 weeks after injury. The percent time in the goal quadrant, which measures spatial reference memory, was significantly lower in injured rats receiving either high-dose DXM or MP than in control groups. TUNEL-positive cells in hippocampus were first detected 24 h post-injury, plateauing at 48h. The number of TUNEL-positive cells was significantly higher in injured rats treated with either DXM or MP. The data suggest that glucocorticoid therapy for TBI may increase neuronal apoptosis in hippocampus and, as a result, aggravate retrograde memory deficits induced by TBI. PMID:19236166

  12. Human plasma DNP level after severe brain injury

    Institute of Scientific and Technical Information of China (English)

    GAO Yi-lu; XIN Hui-ning; FENG Yi; FAN Ji-wei

    2006-01-01

    Objective: To determine the relationship between DNP level after human severe brain injury and hyponatremia as well as isorrhea.Methods: The peripheral venous plasma as control was collected from 8 volunteers. The peripheral venous plasma from 14 severe brain injury patients were collected in the 1, 3, 7 days after injury. Radioimmunoassay was used to detect the DNP concentration. Meanwhile, daily plasma and urine electrolytes, osmotic pressure as well as 24 h liquid intake and output volume were detected.Results: The normal adult human plasma DNP level was 62. 46 pg/ml ± 27. 56 pg/ml. In the experimental group, the plasma DNP levels were higher from day 1 today 3 in 8 of the 14 patients than those in the control group (P1 =0.05, P3 =0.03). Negative fluid balance occurred in 8 patients and hyponatremia in 7 patients. The increase of plasma DNP level was significantly correlated with the development of a negative fluid balance (r=-0.69,P<0.01) and hyponatremia (x2 =4.38, P<0.05).Conclusions: The increase of plasma DNP level is accompanied by the enhancement of natriuretic and diuretic responses in severe brain-injured patients, which is associated with the development of a negative fluid balance and hyponatremia after brain injury.

  13. Integration of Neuropsychology in Educational Planning Following Traumatic Brain Injury

    Science.gov (United States)

    Stavinoha, Peter L.

    2005-01-01

    Traumatic brain injuries (TBIs) have the potential to significantly disrupt a student's cognitive, academic, social, emotional, behavioral, and physical functioning. It is important for educators to appreciate the array of difficulties students with TBI may experience in order to appropriately assess needs and create an educational plan that…

  14. Cognitive Rehabilitation for Children with Acquired Brain Injury

    Science.gov (United States)

    Slomine, Beth; Locascio, Gianna

    2009-01-01

    Cognitive deficits are frequent consequences of acquired brain injury (ABI) and often require intervention. We review the theoretical and empirical literature on cognitive rehabilitation in a variety of treatment domains including attention, memory, unilateral neglect, speech and language, executive functioning, and family involvement/education.…

  15. Practitioner Review: Cognitive Rehabilitation for Children with Acquired Brain Injury

    Science.gov (United States)

    Limond, Jenny; Leeke, Rachel

    2005-01-01

    Background: The need to address acquired cognitive impairments is increasing in child populations seen across a range of settings. However, current clinical practice following brain injury in children does not necessarily incorporate the use of cognitive rehabilitation models or techniques. The aim of this paper is to review the literature in this…

  16. Swallowing Disorders in Severe Brain Injury in the Arousal Phase.

    Science.gov (United States)

    Bremare, A; Rapin, A; Veber, B; Beuret-Blanquart, F; Verin, E

    2016-08-01

    The objective of this study was to determine the clinical characteristics of swallowing disorders in severe brain injury in the arousal phase after coma. Between December 1, 2013 and June 30, 2014, eleven patients with severe acquired brain injury who were admitted to rehabilitation center (Male 81.8 %; 40.7 ± 14.6 years) were included in the study. Evaluation of swallowing included a functional examination, clinical functional swallowing test, and naso-endoscopic swallowing test. All patients had swallowing disorders at admission. The first functional swallowing test showed oral (77.8 %) and pharyngeal (66.7 %) food bolus transport disorders; and alterations in airway protection mechanisms (80 %). Swallowing test under endoscopic control showed a disorder in swallowing coordination in 55.6 % of patients tested. Seven (63.6 %) patients resumed oral feeding within an average of 6 weeks after admission to rehabilitation center and 14 weeks after acquired brain injury. Six (85.7 %) of these seven patients continued to require modified solid and liquid textures. Swallowing disorders are a major concern in severe brain injury in the arousal phase. Early bedside assessment of swallowing is essential for detection of swallowing disorders to propose appropriate medical rehabilitation care to these patients in a state of altered consciousness. PMID:27090424

  17. Brain injury and severe eating difficulties at admission

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette; Kaae Kristensen, Hanne

    acquired brain injury were interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Results: Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating...

  18. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  19. Risks of Brain Injury after Blunt Head Trauma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-06-01

    Full Text Available The association of loss of consciousness (LOC and/or amnesia with traumatic brain injury (TBI identified on CT and TBI requiring acute intervention was evaluated in 2043 children <18 years old enrolled prospectively in a level 1 trauma center ED at University of California, Davis School of Medicine, CA.

  20. Sex, Gender, and Traumatic Brain Injury: A Commentary.

    Science.gov (United States)

    Colantonio, Angela

    2016-02-01

    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. PMID:26804988

  1. School-Based Traumatic Brain Injury and Concussion Management Program

    Science.gov (United States)

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  2. Blissfully unaware: Anosognosia and anosodiaphoria after acquired brain injury.

    Science.gov (United States)

    Gasquoine, Philip Gerard

    2016-01-01

    Historically, anosognosia referred to under-report of striking symptoms of acquired brain injury (e.g., hemiplegia) with debilitating functional consequences and was linked with anosodiaphoria, an emotional reaction of indifference. It was later extended to include under-report of all manner of symptoms of acquired brain injury by the patient compared to clinicians, family members, or functional performance. Anosognosia is related to time since onset of brain injury but not consistently to demographic variables, lesion location (except that it is more common after unilateral right than left hemispheric injury), or specific neuropsychological test scores. This review considers all manifestations of anosognosia as a unitary phenomenon with differing clinical characteristics dictated by variability in linked cognitive impairments. It is concluded that anosognosia has three chief contributing factors: (1) procedural: measurement differences across studies in terms of symptom selection and the designation of a "gold standard" of patient symptomatology; (2) psychological: a tendency towards positive self-evaluation and the avoidance of adverse information, that also occurs in neurologically intact individuals; and (3) neuropathological: an increased likelihood of error recognition failure from disconnections that disrupt feedback between injured brain regions governing specific behaviours (symptoms) and anterior cingulate/insular cortex. Anosodiaphoria is considered as an associated symptom, resulting from the same psychological and neuropathological factors. PMID:25686381

  3. Traumatic Brain Injury and Its Effect on Students

    Science.gov (United States)

    Rosenthal, Stacy B.

    2012-01-01

    Over one million people suffer a traumatic brain injury every year, many of whom are students between the ages of 5 and 18. Using a qualitative case study approach, I wanted to discover the specific factors that both impede and help the school re-entry process for students in grades kindergarten through twelve so that these students can return to…

  4. Evaluation of a Health Education Programme about Traumatic Brain Injury

    Science.gov (United States)

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  5. Spoken Persuasive Discourse Abilities of Adolescents with Acquired Brain Injury

    Science.gov (United States)

    Moran, Catherine; Kirk, Cecilia; Powell, Emma

    2012-01-01

    Purpose: The aim of this study was to examine the performance of adolescents with acquired brain injury (ABI) during a spoken persuasive discourse task. Persuasive discourse is frequently used in social and academic settings and is of importance in the study of adolescent language. Method: Participants included 8 adolescents with ABI and 8 peers…

  6. Neurogenesis and gliogenesis in brain injury and learning

    Czech Academy of Sciences Publication Activity Database

    Šimonová, Zuzana; Náměstková, Kateřina; Jendelová, Pavla; Syková, Eva

    Fyziologický ústav AV ČR, v. v. i.. s. 37 ISSN 0862-8408. [Fyziologické dny /80./. 03.02.2004-05.02.2004, Praha] R&D Projects: GA MŠk LN00A065; GA ČR GA304/03/1189 Keywords : neurogenesis * gliogenesis * brain injury Subject RIV: FH - Neurology

  7. Hypofibrinogenemia in isolated traumatic brain injury in Indian patients

    Directory of Open Access Journals (Sweden)

    Chhabra Gaurav

    2010-12-01

    Full Text Available Coagulation abnormalities are common in patients with head injuries. However, the effect of brain injury on fibrinogen levels has not been well studied prospectively to assess coagulation abnormalities in patients with moderate and severe head injuries and correlate these abnormalities with the neurologic outcome. Consecutive patients with moderate (Glasgow Comma Scale (GCS,9-12 and severe (GCS≤8 head injuries were the subjects of this pilot study, All patients had coagulation parameters, including plasma fibrinogen levels measured. Clinical and computed tomography (CT scan findings and immediate clinical outcome were analyzed. Of the 100 patients enrolled, only seven (7% patients had hypofibrinogenemia (fibrinogen ≤200 mg/dL. The head injury was moderate in two patients and severe in five patients. Fibrinogen levels showed a progressively increasing trend in four patients (three with severe head injuries and one with moderate head injury. CT scan revealed subdural hematoma in five patients; extradural hematoma in one; and subarachnoid hemorrhage in another patient. Of the seven patients, two patients died during hospital. Large-scale prospective studies are needed to assess the fibrinogen level in patients with head injury and its impact on outcome.

  8. Signs and Strategies for Educating Students with Brain Injuries: A Practical Guide for Teachers and Schools.

    Science.gov (United States)

    Wolcott, Gary; And Others

    This resource guide offers strategies for working with children having mild to severe brain injuries. Chapter 1 corrects common misunderstandings about brain injuries and gives suggestions and illustrative case examples. Chapter 2 discusses 12 common changes in students with brain injuries such as tiredness, irritability, passivity, depression,…

  9. Study of pathogenesis and the change of immune system of radiation brain injury

    International Nuclear Information System (INIS)

    Radiation brain injury is a severe complication of the pate tumour after radiotherapy. Review the pathogenesis of radiation brain injury and ion irradiation and the change of immune system then conclude the change of immune system that radiation brain injury can cause. (authors)

  10. 77 FR 73366 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2012-12-10

    ... Traumatic Brain Injury AGENCY: Department of Veterans Affairs. ACTION: Proposed rule. SUMMARY: The... Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury, regarding the association between traumatic brain injury (TBI) and five diagnosable illnesses. The...

  11. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  12. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams

    2014-07-01

    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  13. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  14. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    International Nuclear Information System (INIS)

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  15. Epileptogenesis after traumatic brain injury in Plau-deficient mice.

    Science.gov (United States)

    Bolkvadze, Tamuna; Rantala, Jukka; Puhakka, Noora; Andrade, Pedro; Pitkänen, Asla

    2015-10-01

    Several components of the urokinase-type plasminogen activator receptor (uPAR)-interactome, including uPAR and its ligand sushi-repeat protein 2, X-linked (SRPX2), are linked to susceptibility to epileptogenesis in animal models and/or humans. Recent evidence indicates that urokinase-type plasminogen activator (uPA), a uPAR ligand with focal proteinase activity in the extracellular matrix, contributes to recovery-enhancing brain plasticity after various epileptogenic insults such as traumatic brain injury (TBI) and status epilepticus. Here, we examined whether deficiency of the uPA-encoding gene Plau augments epileptogenesis after TBI. Traumatic brain injury was induced by controlled cortical impact in the somatosensory cortex of adult male wild-type and Plau-deficient mice. Development of epilepsy and seizure susceptibility were assessed with a 3-week continuous video-electroencephalography monitoring and a pentylenetetrazol test, respectively. Traumatic brain injury-induced cortical or hippocampal pathology did not differ between genotypes. The pentylenetetrazol test revealed increased seizure susceptibility after TBI (p<0.05) in injured mice. Epileptogenesis was not exacerbated, however, in Plau-deficient mice. Taken together, Plau deficiency did not worsen controlled cortical impact-induced brain pathology or epileptogenesis caused by TBI when assessed at chronic timepoints. These data expand previous observations on Plau deficiency in models of status epilepticus and suggest that inhibition of focal extracellular proteinase activity resulting from uPA-uPAR interactions does not modify epileptogenesis after TBI. PMID:26253597

  16. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  17. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats

    Directory of Open Access Journals (Sweden)

    Das Mahasweta

    2011-10-01

    Full Text Available Abstract Background Traumatic brain injury (TBI evokes a systemic immune response including leukocyte migration into the brain and release of pro-inflammatory cytokines; however, the mechanisms underlying TBI pathogenesis and protection are poorly understood. Due to the high incidence of head trauma in the sports field, battlefield and automobile accidents identification of the molecular signals involved in TBI progression is critical for the development of novel therapeutics. Methods In this report, we used a rat lateral fluid percussion impact (LFPI model of TBI to characterize neurodegeneration, apoptosis and alterations in pro-inflammatory mediators at two time points within the secondary injury phase. Brain histopathology was evaluated by fluoro-jade (FJ staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL assay, polymerase chain reaction (qRT PCR, enzyme linked immunosorbent assay (ELISA and immunohistochemistry were employed to evaluate the CCL20 gene expression in different tissues. Results Histological analysis of neurodegeneration by FJ staining showed mild injury in the cerebral cortex, hippocampus and thalamus. TUNEL staining confirmed the presence of apoptotic cells and CD11b+ microglia indicated initiation of an inflammatory reaction leading to secondary damage in these areas. Analysis of spleen mRNA by PCR microarray of an inflammation panel led to the identification of CCL20 as an important pro-inflammatory signal upregulated 24 h after TBI. Although, CCL20 expression was observed in spleen and thymus after 24h of TBI, it was not expressed in degenerating cortex or hippocampal neurons until 48 h after insult. Splenectomy partially but significantly decreased the CCL20 expression in brain tissues. Conclusion These results demonstrate that the systemic inflammatory reaction to TBI starts earlier than the local brain response and suggest that spleen- and/ or thymus-derived CCL20 might play a role in

  18. Brain plasticity and recovery from early cortical injury.

    Science.gov (United States)

    Kolb, Bryan; Mychasiuk, Richelle; Williams, Preston; Gibb, Robbin

    2011-09-01

    Neocortical development represents more than a simple unfolding of a genetic blueprint: rather, it represents a complex dance of genetic and environmental events that interact to adapt the brain to fit a particular environmental context. Most cortical regions are sensitive to a wide range of experiential factors during development and later in life, but the injured cortex appears to be unusually sensitive to perinatal experiences. This paper reviews the factors that influence how normal and injured brains (both focal and ischemic injuries) develop and adapt into adulthood. Such factors include prenatal experiences in utero as well as postnatal experiences throughout life. Examples include the effects of sensory and motor stimulation, psychoactive drugs (including illicit and prescription drugs), maternal and postnatal stress, neurotrophic factors, and pre- and postnatal diet. All these factors influence cerebral development and influence recovery from brain injury during development. PMID:21950386

  19. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury

    OpenAIRE

    Haus, DL; Lopez-Velazquez, L; Gold, EM; Cunningham, KM; Perez, H; Anderson, AJ; Cummings, BJ

    2016-01-01

    Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically

  20. Measurement of steroid concentrations in brain tissue: methodological considerations.

    Science.gov (United States)

    Taves, Matthew D; Ma, Chunqi; Heimovics, Sarah A; Saldanha, Colin J; Soma, Kiran K

    2011-01-01

    It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer's disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for "steroid profiling." Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels). We also present reference values for a variety of steroids in different brain regions of adult rats. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other steroidogenic tissues, such as thymus, breast, and prostate. PMID:22654806

  1. OCT-based in vivo tissue injury mapping

    Science.gov (United States)

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2016-03-01

    Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.

  2. Does Caspase-6 Have a Role in Perinatal Brain Injury?

    Science.gov (United States)

    Baburamani, Ana A.; Miyakuni, Yasuka; Vontell, Regina; Supramaniam, Veena G.; Svedin, Pernilla; Rutherford, Mary; Gressens, Pierre; Mallard, Carina; Takeda, Satoru; Thornton, Claire; Hagberg, Henrik

    2015-01-01

    Apoptotic mechanisms are centre stage for the development of injury in the immature brain, and caspases have been shown to play a pivotal role during brain development and in response to injury. The inhibition of caspases using broad-spectrum agents such as Q-VD-OPh is neuroprotective in the immature brain. Caspase-6, an effector caspase, has been widely researched in neurodevelopmental disorders and found to be important following adult stroke, but its function in the neonatal brain has yet to be detailed. Furthermore, caspases may be important in microglial activation; microglia are required for optimal brain development and following injury, and their close involvement during neuronal cell death suggests that apoptotic cues such as caspase activation may be important in microglial activation. Therefore, in this study we aimed to investigate the possible apoptotic and non-apoptotic functions caspase-6 may have in the immature brain in response to hypoxia-ischaemia. We examined whether caspases are involved in microglial activation. We assessed cleaved caspase-6 expression following hypoxia-ischaemia and conducted primary microglial cultures to assess whether the broad-spectrum inhibitor Q-VD-OPh or caspase-6 gene deletion affected lipopolysaccharide (LPS)-mediated microglial activation and phenotype. We observed cleaved caspase-6 expression to be low but present in the cell body and cell processes in both a human case of white matter injury and 72 h following hypoxia-ischaemia in the rat. Gene deletion of caspase-6 did not affect the outcome of brain injury following mild (50 min) or severe (60 min) hypoxia-ischaemia. Interestingly, we did note that cleaved caspase-6 was co-localised with microglia that were not of apoptotic morphology. We observed that mRNA of a number of caspases was modulated by low-dose LPS stimulation of primary microglia. Q-VD-OPh treatment and caspase-6 gene deletion did not affect microglial activation but modified slightly the M2b

  3. Neural Bases of Recovery after Brain Injury

    Science.gov (United States)

    Nudo, Randolph J.

    2011-01-01

    Substantial data have accumulated over the past decade indicating that the adult brain is capable of substantial structural and functional reorganization after stroke. While some limited recovery is known to occur spontaneously, especially within the first month post-stroke, there is currently significant optimism that new interventions based on…

  4. A new antigen retrieval technique for human brain tissue.

    Directory of Open Access Journals (Sweden)

    Raúl Alelú-Paz

    Full Text Available Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times.

  5. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  6. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    International Nuclear Information System (INIS)

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  7. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Science.gov (United States)

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G; Zindel, Ofra; Balaban, Carey D; Hoffer, Michael E; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man. PMID:24740427

  8. Efficacy of N-Acetyl Cysteine in Traumatic Brain Injury

    Science.gov (United States)

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G.; Zindel, Ofra; Balaban, Carey D.; Hoffer, Michael E.; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J.

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30–60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man. PMID:24740427

  9. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Katharine Eakin

    Full Text Available In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI. For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.

  10. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    Science.gov (United States)

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  11. Effect of naloxone hydrochloride on c-fos protein expression in brain and plasma beta-endorphin level in rats with diffuse brain injury and secondary brain insult

    Directory of Open Access Journals (Sweden)

    Jun-jie JING

    2012-09-01

    Full Text Available Objective To observe the changes of c-fos protein expression in brain and beta-endorphin (β-EP level in blood plasma in rats with diffuse brain injury (DBI and secondary brain insult (SBI after intraperitoneal injection of naloxone hydrochloride, and explore the role of c-fos andβ-EP in development of SBI in rats. Methods Seventy health male SD rats were enrolled in the present study and randomly divided into group A (intraperitoneally injected with 0.9% saline after DBI and SBI model was reproduced, group B (injected intraperitoneally with 1.0mg/kg naloxone hydrochloride after DBI and SBI model was reproduced, and group C (intraperitoneally injected with 1.0mg/kg naloxone hydrochloride after DBI and before SBI model was reproduced. The animals were sacrificed 3, 24 and 48 hours after injury, and the number of c-fos positive cells in brain and content of β-EP in blood plasma were determined by immunohistochemistry and radioimmunoassay respectively, the water content and number of injured neurons in brain tissue were measured by pathomorphological observation of the brain tissue. Results No significant difference was observed between group B and C for all the detection parameters. In group B and C, the water content in brain tissue at 3h and 24h was found to be decreased, while the number of injured neurons at 24h and 48h increased, number of c-fos positive cells in brain at 3h, 24h and 48h decreased, and content of β-EP in blood plasma at 3h and 24h decreased when compared with group A(P < 0.05. Conclusion Naloxone hydrochloride could decrease the c-fos expression in brain and β-EP level in blood plasma, alleviate the nerve injury, and protect neural function. The therapeutic effect of naloxone administered either after DBI and SBI or after DBI and before SBI was similar.

  12. Measurement of steroid concentrations in brain tissue: methodological considerations

    Directory of Open Access Journals (Sweden)

    MatthewDTaves

    2011-09-01

    Full Text Available It is well recognized that steroids are synthesized de novo in the brain (neurosteroids. In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, behavior, neuroplasticity, and inflammation. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for “steroid profiling.” Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other tissues.

  13. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  14. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. PMID:23830688

  15. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge

    2013-12-01

    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  16. Association football injuries to the brain. A preliminary report.

    OpenAIRE

    Tysvaer, A.; Storli, O.

    1981-01-01

    In 1975 the authors sent a questionnaire to all players in the Norwegian First Division League Clubs to record the incidence of head injuries due to heading. The conclusion of the questionnaire is that there seems to be a low percentage of serious head injuries. None of the players had been operated on for epi- or subdural hematoma or other brain damage and only a few have had concussion due to heading. In sixty per cent of the players a full neurological examination and EEG recording was und...

  17. Metallothionein (MT -I and MT-II expression are induced and cause zinc sequestration in the liver after brain injury.

    Directory of Open Access Journals (Sweden)

    Michael W Pankhurst

    Full Text Available UNLABELLED: Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR and enzyme-linked immunosorbent assay (ELISA with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II(-/- mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II(-/- mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. CONCLUSION: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver.

  18. Protective effects of hydroxysaffor yellow A on brain injury in mice irradiated by 300 MeV/n 12C6+ ions

    International Nuclear Information System (INIS)

    Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction, to which no ideal prevention method is available until now. Hydroxysaffor yellow A (HSYA) is the main active ingredient of the traditional Chinese medicine safflower, with protective effects against cerebral ischemic injury. In this work, we investigated the protective effects of HSYA on brain injury in mice irradiated by 300 MeV/u 12C6+ ion beam. The whole head of male Kunming mouse was irradiated to 4.0 Gy after receiving daily intra-peritoneal injection HSYA for 3 d. One month later, the Morris water maze test was used to detect the spatial memory in mice. The Evans blue was used as the tracer to evaluate the permeability of blood-brain barrier. The SOD activity and MDA content in brain tissue were assayed by test kits. The results showed that the 12C6+ irradiation significantly impaired the spatial learning and memory in mice, increased the permeability of blood-brain barrier and the MDA content in brain tissue, whereas decreased the SOD activity in brain tissue. The pretreatment with HSYA could improve the spatial memory deficits and inhibit the changes of the blood-brain barrier, the SOD activity and the MDA content in brain tissue in mice. All these demonstrate that HSYA possesses the protective effect against brain injury induced by 12C6+ particle therapy. (authors)

  19. Dissociated Horizontal Deviation after Traumatic Brain Injury

    OpenAIRE

    Lee, Tae-Eun; Cha, Deok-Sun; Koh, Seong-Beom; Kim, Seung-Hyun

    2010-01-01

    A 4-year-old boy visited the hospital with exotropia after brain hemorrhage caused by trauma. He had undergone decompressive craniectomy and cranioplasty 18 months prior to presentation at our hospital. An alternate prism cover test showed more than 50 prism diopters (PD) of left exotropia when he was fixing with the right eye and 30 PD of right exotropia when he was fixing with the left eye at near and far distance. On the Hirschberg test, 60 PD of left exotropia was noted in the primary pos...

  20. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test

    Directory of Open Access Journals (Sweden)

    Sharma Pushpa

    2009-01-01

    Full Text Available Objectives: The present study was designed to investigate the role of a mitochondrial enzyme pyruvate dehydrogenase (PDH on the severity of brain injury, and the effects of pyruvate treatment in rats with traumatic brain injury (TBI. Materials and Methods: We examined rats subjected to closed head injury using a fluid percussion device, and treated with sodium pyruvate (antioxidant and substrate for PDH enzyme. At 72 h post injury, blood was analyzed for blood gases, acid-base status, total PDH enzyme using a dipstick test and malondialdehyde (MDA levels as a marker of oxidative stress. Brain homogenates from right hippocampus (injured area were analyzed for PDH content, and immunostained hippocampus sections were used to determine the severity of gliosis and PDH E1-∞ subunit. Results: Our data demonstrate that TBI causes a significant reduction in PDH enzyme, disrupt-acid-base balance and increase oxidative stress in blood. Also, lower PDH enzyme in blood is related to the increased gliosis and loss of its PDH E1-∞ subunit PDH in brain tissue, and these effects of TBI were prevented by pyruvate treatment. Conclusion: Lower PDH enzyme levels in blood are related to the global oxidative stress, increased gliosis in brain, and severity of brain injury following TBI. These effects can be prevented by pyruvate through the protection of PDH enzyme and its subunit E-1.

  1. Coated-Platelet Levels Increase with Number of Injuries in Patients with Mild Traumatic Brain Injury.

    Science.gov (United States)

    Prodan, Calin I; Vincent, Andrea S; Dale, George L

    2016-05-01

    Coated-platelets are procoagulant platelets that are elevated in stroke and are associated with stroke recurrence. In a previous study, prompted by data showing an increased risk for stroke following traumatic brain injury (TBI), we found that coated-platelet levels are elevated in patients with combat-related mild TBI (mTBI) several years after the injury, compared with controls. We now investigate in an expanded patient population whether parameters commonly recorded in mTBI are related to increased coated-platelet potential. Coated-platelet levels were assayed in 120 mTBI patients at intervals ranging from 6 months to 10 years from the last injury. Correlations were calculated between coated-platelet levels and age, gender, race/ethnicity, loss of consciousness, alteration in consciousness, post-traumatic amnesia, number of injuries, mechanism of injury, time since first and last injury, smoking, medications that may influence coated-platelet levels, and pertinent comorbid conditions. Significant correlations were detected between coated-platelet levels and number of injuries (p = 0.026), gender (p = 0.01), and time since last injury (p = 0.04). A multi-variable linear model analysis, including these three parameters and an additional three parameters (race/ethnicity, smoking, and mechanism of injury) that reached a p value of <0.2, showed that the number of injuries were predictive of coated-platelet levels (p = 0.004). These results support a mechanistic link between increased coated-platelet levels and repeated injuries in mTBI. Long-term studies will be required to determine the impact of increased prothrombotic potential in mTBI patients. PMID:26414016

  2. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  3. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kent Reifschneider

    2015-07-01

    Full Text Available Traumatic brain injuries (TBI are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  4. Subacute Changes in Cleavage Processing of Amyloid Precursor Protein and Tau following Penetrating Traumatic Brain Injury

    Science.gov (United States)

    Mountney, Andrea; Hwang, Hye; Swiercz, Adam; Rammelkamp, Zoe; Boutte, Angela M.; Shear, Deborah A.; Tortella, Frank C.; Schmid, Kara E.

    2016-01-01

    Traumatic brain injury (TBI) is an established risk factor for the development of Alzheimer’s disease (AD). Here the effects of severe penetrating TBI on APP and tau cleavage processing were investigated in a rodent model of penetrating ballistic-like brain injury (PBBI). PBBI was induced by stereotactically inserting a perforated steel probe through the right frontal cortex of the anesthetized rat and rapidly inflating/deflating the probe’s elastic tubing into an elliptical shaped balloon to 10% of total rat brain volume causing temporary cavitation injury. Separate animals underwent probe injury (PrI) alone without balloon inflation. Shams underwent craniectomy. Brain tissue was collected acutely (4h, 24h, 3d) and subacutely (7d) post-injury and analyzed by immunoblot for full length APP (APP-FL) and APP beta c-terminal fragments (βCTFs), full length tau (tau-FL) and tau truncation fragments and at 7d for cytotoxic Beta amyloid (Aβ) peptides Aβ40 and Aβ42 analysis. APP-FL was significantly decreased at 3d and 7d following PBBI whereas APP βCTFs were significantly elevated by 4h post-injury and remained elevated through 7d post-injury. Effects on βCTFs were mirrored with PrI, albeit to a lesser extent. Aβ40 and Aβ42 were significantly elevated at 7d following PBBI and PrI. Tau-FL decreased substantially 3d and 7d post-PBBI and PrI. Importantly, a 22 kDa tau fragment (tau22), similar to that found in AD, was significantly elevated by 4h and remained elevated through 7d post-injury. Thus both APP and tau cleavage was dramatically altered in the acute and subacute periods post-injury. As cleavage of these proteins has also been implicated in AD, TBI pathology shown here may set the stage for the later development of AD or other tauopathies. PMID:27428544

  5. Traumatic brain injury in children: acute care management.

    Science.gov (United States)

    Geyer, Kristen; Meller, Karen; Kulpan, Carol; Mowery, Bernice D

    2013-01-01

    The care of the pediatric patient with a severe traumatic brain injury (TBI) is an all-encompassing nursing challenge. Nursing vigilance is required to maintain a physiological balance that protects the injured brain. From the time a child and family first enter the hospital, they are met with the risk of potential death and an uncertain future. The family is subjected to an influx of complex medical and nursing terminology and interventions. Nurses need to understand the complexities of TBI and the modalities of treatment, as well as provide patients and families with support throughout all phases of care. PMID:24640314

  6. The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat.

    Science.gov (United States)

    Clausen, Fredrik; Marklund, Niklas; Lewén, Anders; Hillered, Lars

    2008-12-01

    Reactive oxygen species (ROS) are important contributors to the secondary injury cascade following traumatic brain injury (TBI), and ROS inhibition has consistently been shown to be neuroprotective following experimental TBI. NXY-059, a nitrone free radical trapping compound, has been shown to be neuroprotective in models of ischemic stroke but has not been evaluated in experimental TBI. In the present study, a continuous 24-h intravenous infusion of NXY-059 or vehicle was initiated 30 min following a severe lateral fluid percussion brain injury (FPI) in adult rats (n=22), and histological and behavioral outcomes were evaluated. Sham-injured animals (n=22) receiving identical drug infusion were used as controls. Visuospatial learning was evaluated in the Morris water maze at post-injury days 11-14, followed by a probe trial (memory test) at day 18. The animals were sacrificed at day 18, and loss of hemispheric brain tissue was measured in microtubule-associated protein (MAP)-2 stained sections. Brain-injured, NXY-059-treated animals showed a significant reduction of visuospatial learning deficits when compared to the brain-injured, vehicle-treated control animals (p < 0.05). NXY-059-treated animals significantly reduced the loss of hemispheric tissue compared to brain-injured controls (43.0 +/- 11 mm3 versus 74.4 +/- 19 mm3, respectively; p < 0.01). The results show that post-injury treatment with NXY-059 significantly attenuated the loss of injured brain tissue and improved cognitive outcome, suggesting a major role for ROS in the pathophysiology of TBI. PMID:19118455

  7. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  8. Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress.

    Science.gov (United States)

    Ji, Xituan; Liu, Wenbo; Xie, Keliang; Liu, Weiping; Qu, Yan; Chao, Xiaodong; Chen, Tao; Zhou, Jun; Fei, Zhou

    2010-10-01

    Traumatic brain injury (TBI) is a leading cause of mortality and disability among the young population. It has been shown that hydrogen gas (H(2)) exerts a therapeutic antioxidant activity by selectively reducing hydroxyl radical (OH, the most cytotoxic ROS). Recently, we have found that H(2) inhalation significantly improved the survival rate and organ damage of septic mice. In the present study, we investigated the effectiveness of H(2) therapy on brain edema, blood-brain barrier (BBB) breakdown, neurological dysfunction and injury volume in TBI-challenged rats. In addition, we investigated the effects of H(2) treatment on the changes of oxidative products and antioxidant enzymes in brain tissue of TBI-challenged rats. Hydrogen treatment was given by exposure to 2% H(2) from 5 min to 5h after sham or TBI operation, respectively. Here, we found that TBI-challenged rats showed significant brain injuries characterized by the increase of BBB permeability, brain edema and lesion volume as well as neurological dysfunction, which was significantly attenuated by 2% H(2) treatment. In addition, we found that the decrease of oxidative products and the increase of endogenous antioxidant enzymatic activities in the brain tissue may be associated with the protective effects of H(2) treatment in TBI-challenged rats. The present study supports that H(2) inhalation may be a more effective therapeutic strategy for patients with TBI. PMID:20654594

  9. Sigma-1 Receptor Modulates Neuroinflammation After Traumatic Brain Injury.

    Science.gov (United States)

    Dong, Hui; Ma, Yunfu; Ren, Zengxi; Xu, Bin; Zhang, Yunhe; Chen, Jing; Yang, Bo

    2016-07-01

    Traumatic brain injury (TBI) remains a significant clinical problem and contributes to one-third of all injury-related deaths. Activated microglia-mediated inflammatory response is a distinct characteristic underlying pathophysiology of TBI. Here, we evaluated the effect and possible mechanisms of the selective Sigma-1 receptor agonist 2-(4-morpholinethyl)-1-phenylcyclohexanecarboxylate (PRE-084) in mice TBI model. A single intraperitoneal injection 10 μg/g PRE-084, given 15 min after TBI significantly reduced lesion volume, lessened brain edema, attenuated modified neurological severity score, increased the latency time in wire hang test, and accelerated body weight recovery. Moreover, immunohistochemical analysis with Iba1 staining showed that PRE-084 lessened microglia activation. Meanwhile, PRE-084 reduced nitrosative and oxidative stress to proteins. Thus, Sigma-1 receptors play a major role in inflammatory response after TBI and may serve as useful target for TBI treatment in the future. PMID:26228028

  10. Minding and Caring about Ethics in Brain Injury.

    Science.gov (United States)

    Gillett, Grant

    2016-05-01

    Joseph Fins's book Rights Come to Mind: Brain Injury, Ethics, and the Struggle for Consciousness (Cambridge UP, 2015) is a considerable addition to the literature on disorders of consciousness and the murky area of minimally conscious states. Fins brings to this fraught area of clinical practice and neuroethical analysis a series of stories and reflections resulting in a pressing and sustained ethical challenge both to clinicians and to health care systems. The challenge is multifaceted, with diagnostic and therapeutic demands to be met by clinicians and a mix of moral, scientific-economic, and political resonances for health care analysts. Everything in the book resonates with my own clinical experience and the often messy and emotionally wrenching business of providing ongoing care for patients with severe brain injuries and disorders, people who frequently resist the categorizations that well-organized health care systems prefer and that can dictate terms of patient management. PMID:27150418

  11. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  12. Roles of fatty acid ethanolamides (FAE) in traumatic and ischemic brain injury.

    Science.gov (United States)

    Esposito, Emanuela; Cordaro, Marika; Cuzzocrea, Salvatore

    2014-08-01

    Ethanolamides of long-chain fatty acids are a class of endogenous lipid mediators generally referred to as N-acylethanolamines (NAEs). NAEs include anti-inflammatory and analgesic palmitoylethanolamide, anorexic oleoylethanolamide, stearoylethanolamide, and the endocannabinoid anandamide. Traumatic brain injury (TBI), associated with a high morbidity and mortality and no specific therapeutic treatment, has become a pressing public health and medical problem. TBI is a complex process evoking systemic immune responses as well as direct local responses in the brain tissues. The direct (primary) damage disrupts the blood-brain barrier (BBB), injures the neurons and initiates a cascade of inflammatory reactions including chemokine production and activation of resident immune cells. The effect of TBI is not restricted to the brain; it can cause multi-organ damage and evoke systemic immune response with cytokine and chemokine production. This facilitates the recruitment of immune cells to the site of injury and progression of the inflammatory reaction. Depending on severity, TBI induces immediate neuropathologic effects that, for the mildest form, may be transient; however, with increasing severity, these injuries cause cumulative neural damage and degeneration. Moreover, TBI leads to increased catabolism of phospholipids, resulting in a series of phospholipid breakdown products, some of which have potent biological activity. Ischemia-reperfusion (I/R) injury resulting from stroke leads to metabolic distress, oxidative stress and neuroinflammation, making it likely that multiple therapeutic intervention strategies may be needed for successful treatment. Current therapeutic strategies for stroke need complimentary neuroprotective treatments to provide a better outcome. Prior studies on NAEs have demonstrated neurotrophic/neuroprotective activities across a broad spectrum of cellular and animal models of neurodegenerative and acute cerebrovascular disorders. The present

  13. Quantitative Brain Electrical Activity in the Initial Screening of Mild Traumatic Brain Injuries

    OpenAIRE

    O'Neil, Brian; Prichep, Leslie S.; Naunheim, Roseanne; Chabot, Robert

    2012-01-01

    Introduction: The incidence of emergency department (ED) visits for Traumatic Brain Injury (TBI) in the United States exceeds 1,000,000 cases/year with the vast majority classified as mild (mTBI). Using existing computed tomography (CT) decision rules for selecting patients to be referred for CT, such as the New Orleans Criteria (NOC), approximately 70% of those scanned are found to have a negative CT. This study investigates the use of quantified brain electrical activity to assess its possi...

  14. Feasibility of computerized brain plasticity-based cognitive training after traumatic brain injury

    OpenAIRE

    Matthew S. Lebowitz, AB; Kristen Dams-O’Connor, PhD; Joshua B. Cantor, PhD

    2013-01-01

    The present study investigates the feasibility and utility of using a computerized brain plasticity-based cognitive training (BPCT) program as an intervention for community-dwelling individuals with traumatic brain injury (TBI). In a pre-post pilot study, 10 individuals with mild to severe TBI who were 6 mo to 22 yr postinjury were asked to use a computerized BPCT intervention—designed to improve cognitive functioning through a graduated series of structured exercises—at their homes in an urb...

  15. Undifferentiated connective tissue diseases-related hepatic injury

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Fu-Kui Zhang; Xiao-Ning Wu; Tai-Ling Wang; Ji-Dong Jia; Bao-En Wang

    2008-01-01

    Hepatic injury is rarely associated with undifferentiated connective tissue diseases (UCTD).We report,here,a case of a middle-aged woman with UCTD-related hepatic injury,including its case history,clinical manifestations,laboratory findings,treatment and its short-term effect.The patient was admitted to the hospital with symptoms of fatigue,anorexia,low-grade fever and skin rashes.She had a past history of left knee joint replacement.Laboratory tests showed elevated levels of serum transaminase,IgG and globulin,accelerated erythrocyte sedimentation rate,eosinophilia and a high titer of antinuclear antibodies (1:320).Imaging studies showed interstitial pneumonitis and hydropericardium.Liver biopsy showed the features which were consistent with those of connective tissue diseases-related polyangitis.After treatment with a low-dose of oral prednisone,both symptoms and laboratory findings were significantly improved.UCTD-related hepatic injury should be considered in the differential diagnosis of connective tissue diseases with abnormal liver function tests.Lowdose prednisone may effectively improve both symptoms and laboratory tests.

  16. Hypothalamic-Pituitary Autoimmunity and Traumatic Brain Injury

    OpenAIRE

    Federica Guaraldi; Silvia Grottoli; Emanuela Arvat; Ezio Ghigo

    2015-01-01

    Background: Traumatic brain injury (TBI) is a leading cause of secondary hypopituitarism in children and adults, and is responsible for impaired quality of life, disabilities and compromised development. Alterations of pituitary function can occur at any time after the traumatic event, presenting in various ways and evolving during time, so they require appropriate screening for early detection and treatment. Although the exact pathophysiology is unknown, several mechanisms have been hypoth...

  17. Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury

    OpenAIRE

    Meyer, Kimberly S.

    2014-01-01

    Background: Paroxysmal sympathetic hyperactivity (PSH) is a condition occurring in a small percentage of patients with severe traumatic brain injury (TBI). It is characterized by a constellation of symptoms associated with excessive adrenergic output, including tachycardia, hypertension, tachypnea, and diaphoresis. Diagnosis is one of exclusion and, therefore, is often delayed. Treatment is aimed at minimizing triggers and pharmacologic management of symptoms. Methods: A literature review...

  18. Cognitive rehabilitation in children with acquired brain injuries

    OpenAIRE

    Hagberg-van't Hooft, Ingrid

    2005-01-01

    Deficits in attention, memory and executive functions are the most common cognitive dysfunctions after acquired brain injuries (ABI) and may have a major negative influence on academic and social adjustment. Neuropsychological measures can assess these dysfunctions and shortcomings in academic and social life, but there is a great need for new efficacious cognitive treatment programmes. The main aims of this thesis were to evaluate the direct and maintained effects of a ...

  19. Rehabilitation Outcome of Unconscious Traumatic Brain Injury Patients

    OpenAIRE

    Klein, Anke-Maria; Howell, Kaitlen; Vogler, Jana; Grill, Eva; Straube, Andreas; Bender, Andreas

    2013-01-01

    Outcome prediction of traumatic brain injury (TBI) patients with severe disorders of consciousness (DOC) at the end of their time in an intensive care setting is important for clinical decision making and counseling of relatives, and constitutes a major challenge. Even the question of what constitutes an improved outcome is controversially discussed. We have conducted a retrospective cohort study for the rehabilitation dynamics and outcome of TBI patients with DOC. Out of 188 patients, 37.2% ...

  20. Cost-effectiveness of early rehabilitation after Traumatic brain injury

    OpenAIRE

    2013-01-01

    Traumatic brain injury (TBI) is a craniocerebral trauma which causes long-term physical, cognitive and emotional impairment and adds substantially to the healthcare burden. The cost of TBIs is believed to be huge in Norway. Moderate and severe TBIs require rehabilitation, which helps reduce disability and improves the quality of life of patients. It is important to determine the efficacy of early rehabilitation as a form of treatment after severe TBI both in terms of its costs and effectivene...

  1. Adolescents’ experience of a parental traumatic brain injury

    Directory of Open Access Journals (Sweden)

    D Harris

    2006-04-01

    Full Text Available This study explores the experiences of four adolescents, each living with a parent who has sustained a traumatic brain injury, against the theoretical backdrop of existential-phenomenological psychology. Opsomming Hierdie navorsing verken die belewenisse van vier adolessente wat saam met ‘n ouer wat ‘n traumatiese breinbesering opgedoen het, leef. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  2. Inhibitory Control after Traumatic Brain Injury in Children

    OpenAIRE

    Sinopoli, Katia J.; Dennis, Maureen

    2011-01-01

    Inhibitory control describes a number of distinct processes. Effortless inhibition refers to acts of control that are automatic and reflexive. Effortful inhibition refers to voluntary, goal-directed acts of control such as response flexibility, interference control, cancellation inhibition, and restraint inhibition. Disruptions to a number of inhibitory control processes occur as a consequence of childhood traumatic brain injury (TBI). This paper reviews the current knowledge of inhibition de...

  3. Deficits in analogical reasoning in adolescents with traumatic brain injury

    OpenAIRE

    Krawczyk, Daniel C.; Gerri Hanten; Elisabeth A. Wilde; Levin, Harvey S.

    2010-01-01

    Individuals with traumatic brain injury (TBI) exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically-developing (TD) controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems), distraction (distractor item present or absent), and animacy (living or non-li...

  4. Deficits in Analogical Reasoning in Adolescents with Traumatic Brain Injury

    OpenAIRE

    Krawczyk, Daniel C.; Hanten, Gerri; Elisabeth A. Wilde; Li, Xiaoqi; Schnelle, Kathleen P.; Merkley, Tricia L.; Vasquez, Ana C.; Cook, Lori G.; McClelland, Michelle; Chapman, Sandra B.; Levin, Harvey S.

    2010-01-01

    Individuals with traumatic brain injury (TBI) exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically developing (TD) controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems), distraction (distractor item present or absent), and animacy (living or non-li...

  5. Could Cord Blood Cell Therapy Reduce Preterm Brain Injury?

    OpenAIRE

    Li, Jingang; McDonald, Courtney A.; Fahey, Michael C.; Jenkin, Graham; Miller, Suzanne L.

    2014-01-01

    Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matt...

  6. Persistent giant U wave inversion with anoxic brain injury

    OpenAIRE

    Peters, Matthew N.; Katz, Morgan J.; Howell, Lucius A.; Moscona, John C.; Turnage, Thomas A.; Delafontaine, Patrice

    2013-01-01

    Various electrocardiographic changes have been reported in the setting of acute neurological events, among them large, upright U waves. In contrast, the occurrence of inverted U waves is strongly suggestive of cardiovascular disease, most commonly hypertension, coronary artery disease, or valvular abnormalities. Presented herein is the case of a 29-year-old man with previous anoxic brain injury (but without apparent cardiovascular disease) whose electrocardiogram demonstrated persistent giant...

  7. The Relationship between Mid-face Fractures and Brain Injuries

    OpenAIRE

    Khalighi Sigaroudi A.; Vadiati Saberi B.; Yousefzadeh Chabok Sh.

    2012-01-01

    Statement of Problem: Although advances in technology have led to improvements in man’s life in different aspects, statistics show that the incidence of fractures is increasing in different regions of the body. Recent studies show that midface fractures are strongly associated with patient's death. The exact relationship between different types of facial fractures and brain injuries is still controversial. Purpose: To evaluate individuals with midface fractures from different causes and deter...

  8. Common astrocytic programs during brain development, injury and cancer

    OpenAIRE

    Silver, Daniel J.; Steindler, Dennis A.

    2009-01-01

    In addition to radial glial cells of neurohistogenesis, immature astrocytes with stem-cell-like properties cordon off emerging functional patterns in the developing brain. Astrocytes also can be stem cells during adult neurogenesis, and a proposed potency of injury-associated reactive astrocytes has recently been substantiated. Astrocytic cells might additionally be involved in cancer stem cell-associated gliomagenesis. Thus, there are distinguishing roles for stem-cell-like astrocytes during...

  9. Mechanisms of gender-linked ischemic brain injury

    OpenAIRE

    Liu, Mingyue; Dziennis, Suzan; Hurn, Patricia D.; Alkayed, Nabil J.

    2009-01-01

    Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent ad...

  10. Clinical Traumatic Brain Injury in the Preclinical Setting.

    Science.gov (United States)

    Berkner, Justin; Mannix, Rebekah; Qiu, Jianhua

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability for people under 45 years of age. Clinical TBI is often the result of disparate forces resulting in heterogeneous injuries. Preclinical modeling of TBI is a vital tool for studying the complex cascade of metabolic, cellular, and molecular post-TBI events collectively termed secondary injury. Preclinical models also provide an important platform for studying therapeutic interventions. However, modeling TBI in the preclinical setting is challenging, and most models replicate only certain aspects of clinical TBI. This chapter details the most widely used models of preclinical TBI, including the controlled cortical impact, fluid percussion, blast, and closed head models. Each of these models replicates particular critical aspects of clinical TBI. Prior to selecting a preclinical TBI model, it is important to address what aspect of human TBI is being sought to evaluate. PMID:27604710

  11. Predictors of Personality Change Due to Traumatic Brain Injury in Children and Adolescents in the First Six Months after Injury.

    Science.gov (United States)

    Max, Jeffrey E.; Levin, Harvey S.; Landis, Julie; Schachar, Russell; Saunders, Ann; Ewing-Cobbs, Linda; Chapman, Sandra B.; Dennis, Maureen

    2005-01-01

    Objective: To assess the phenomenology and predictive factors of personality change due to traumatic brain injury. Method: Children (N = 177), aged 5 to 14 years with traumatic brain injury from consecutive admissions to five trauma centers, were followed prospectively at baseline and 6 months with semistructured psychiatric interviews. Injury…

  12. Study the efficacy of neuroprotective drugs on brain physiological properties during focal head injury using optical spectroscopy data analysis

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel

    2016-03-01

    We present a comparative evaluation of five different neuroprotective drugs in the early phase following focal traumatic brain injury (TBI) in mouse intact head. The effectiveness of these drugs in terms of changes in brain tissue morphology and hemodynamic properties was experimentally evaluated through analysis of the optical absorption coefficient and spectral reduced scattering parameters in the range of 650-1000 nm. Anesthetized male mice (n=50 and n=10 control) were subjected to weight drop model mimics real life focal head trauma. Monitoring the effect of injury and neuroprotective drugs was obtained by using a diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. Result indicates that administration of minocycline improve hemodynamic and reduced the level of tissue injury at an early phase post-injury while hypertonic saline treatment decrease brain water content. These findings highlight the heterogeneity between neuroprotective drugs and the ongoing controversy among researchers regarding which drug therapy is preferred for treatment of TBI. On the other hand, our results show the capability of optical spectroscopy technique to noninvasively study brain function following injury and drug therapy.

  13. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury.

    Science.gov (United States)

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S; Mohapatra, Subhra

    2014-10-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body. PMID:24486465

  14. Effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    许民辉; 代文光; 邓洵鼎

    2002-01-01

    Objective: To study the effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury and the possible mechanism.Methods: The middle degree brain injury in rats was made by BIM-III multi-function impacting machine. The brain mitochondrial respiratory function was measured with oxygen electrode and the ultra-structural changes were observed with transmission electron microscope (TEM).Results: 1. The brain mitochondrial respiratory stage III and respiration control rate reduced significantly in the untreated groups within 24 and 72 hours. But treated Group A showed certain degree of recovery of respiratory function; treated Group B showed further improvement. 2. Untreated Group, treated Groups A and B had different degrees of mitochondrial ultra-structural damage respectively, which could be attenuated after the treatment with magnesium sulfate.Conclusions: The mitochondrial respiratory function decreases significantly after traumatic brain injury. But it can be apparently improved after magnesium sulfate management along with the attenuated damage of mitochondria discovered by TEM. The longer course of treatment can obtain a better improvement of mitochondrial respiratory function.

  15. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  16. Cognitive and psychopathological sequelae of pediatric traumatic brain injury.

    Science.gov (United States)

    Beauchamp, M H; Anderson, V

    2013-01-01

    Childhood traumatic brain injury (TBI) is a frequent cause of acquired disability in childhood and can have a serious impact on development across the lifespan. The consequences of early TBI vary according to injury severity, with severe injuries usually resulting in more serious physical, cognitive and behavioral sequelae. Both clinical and research reports document residual deficits in a range of skills, including intellectual function, attention, memory, learning, and executive function. In addition, recent investigations suggest that early brain injury also affects psychological and social development and that problems in these domains may increase in the long term postinjury. Together, these deficits affect children's ability to function effectively at school, in the home, and in their social environment, resulting in impaired acquisition of knowledge, psychological and social problems, and overall reduced quality of life. Ultimately, recovery from childhood TBI depends on a range of complex biological, developmental, and psychosocial factors making prognosis difficult to predict. This chapter will detail the cognitive (intellectual, attentional, mnesic, executive, educational, and vocational) and psychopathological (behavioral, adaptive, psychological, social) sequelae of childhood TBI with a particular focus on postinjury recovery patterns in the acute, short-, and long-term phases, as well as into adulthood. PMID:23622301

  17. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  18. Speed of perceptual grouping in acquired brain injury.

    Science.gov (United States)

    Kurylo, Daniel D; Larkin, Gabriella Brick; Waxman, Richard; Bukhari, Farhan

    2014-09-01

    Evidence exists that damage to white matter connections may contribute to reduced speed of information processing in traumatic brain injury and stroke. Damage to such axonal projections suggests a particular vulnerability to functions requiring integration across cortical sites. To test this prediction, measurements were made of perceptual grouping, which requires integration of stimulus components. A group of traumatic brain injury and cerebral vascular accident patients and a group of age-matched healthy control subjects viewed arrays of dots and indicated the pattern into which stimuli were perceptually grouped. Psychophysical measurements were made of perceptual grouping as well as processing speed. The patient group showed elevated grouping thresholds as well as extended processing time. In addition, most patients showed progressive slowing of processing speed across levels of difficulty, suggesting reduced resources to accommodate increased demands on grouping. These results support the prediction that brain injury results in a particular vulnerability to functions requiring integration of information across the cortex, which may result from dysfunction of long-range axonal connection. PMID:24820289

  19. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the organic aggressive syndrome:. The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  20. Percutaneous dilatational tracheostomy for ICU patients with severe brain injury

    Directory of Open Access Journals (Sweden)

    Guo Dongyuan

    2014-12-01

    Full Text Available 【Abstract】Objective: To sum up our experience in percutaneous dilatational tracheostomy (PDT in ICU patient with severe brain injury. Methods: Between November 2011 and April 2014, PDTs were performed on 32 severe brain injury patients in ICU by a team of physicians and intensivists. The success rate, effi cacy, safety, and complications including stomal infection and bleeding, paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, as well as clinically significant tracheal stenosis were carefully monitored and recorded respectively. Results: The operations took 4-15 minutes (mean 9.1 minutes±4.2 minutes. Totally 4 cases suffered from complications in the operations: 3 cases of stomal bleeding, and 1 case of intratracheal bloody secretion, but none required intervention. Paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, or clinically signifi cant tracheal stenosis were not found in PDT patients. There was no procedure-related death occurring during or after PDT. Conclusion: Our study demonstrats that PDT is a safe, highly effective, and minimally invasive procedure. The appropriate sedation and airway management perioperatively help to reduce complication rates. PDT should be performed or supervised by a team of physicians with extensive experience in this procedure, and also an intensivist with experience in diffi cult airway management. Key words: Brain injuries; Percutaneous dilatational tracheostomy; ICU

  1. Male pituitary-gonadal dysfunction following severe traumatic brain injury.

    Science.gov (United States)

    Lee, S C; Zasler, N D; Kreutzer, J S

    1994-01-01

    A prospective study was conducted to evaluate pituitary-gonadal function and correlated parameters in 21 adult males with severe traumatic brain injury during acute inpatient rehabilitation. Serum concentrations of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were measured within 1 week after the patient was transferred to the rehabilitation unit. Fourteen of 21 patients (67%) had abnormally low testosterone levels. One of 21 patients had a subnormal FSH level and one had a supranormal level. Three of 21 patients had subnormal LH levels and two had supranormal levels. There was no correlation between the severity of brain injury and the levels of testosterone, FSH or LH. The presence of increased intracranial pressure, hypoxia, skull fracture or abnormal CT findings had no significant influence on the levels of testosterone, FSH or LH. The high incidence of hypotestosteronaemia in survivors of severe traumatic brain injury is seemingly more related to accompanying physiological stressors rather than structural or neurochemical disruption of the hypothalamic-pituitary-gonadal axis. Early identification is important relative to the potential neuromedical and rehabilitative consequences of prolonged hypotestosteronaemia in this patient population. PMID:7987293

  2. Differentiation between glioma recurrence and radiation-induced brain injuries using perfusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Objective: To evaluate the feasibility of perfusion weighted imaging (PWI) in the differentiation of recurrent glioma and radiation-induced brain injuries. Methods: Fifteen patients with previously resected and irradiated glioma, presenting newly developed abnormal enhancement, were included in the study. The final diagnosis was determined either histologically or clinicoradiologically. PWI was obtained with a gradient echo echo-planar-imaging (GRE-EPI) sequence. The normalized rCBV ratio [CBV (abnormal enhancement)/CBV (contralateral tissue)], rCBF ratio [CBF (abnormal enhancement)/CBF (contralateral tissue)] and rMTT ratio [(MTT abnormal enhancement)/MTT (contralateral tissue)] were calculated, respectively. The regions of interest (ROIs) consisting of 20-40 mm2 were placed in the abnormal enhanced areas on postcontrast T1-weighted images. Ten to fifteen ROIs measurements were performed in each lesion and the mean value was obtained. Mann-Whitney test was used to determine whether there was a difference in the rCBV/rCBF/MTT ratios between glioma recurrence and radiated injuries. Results: Nine of the 15 patients were proved recurrent glioma, 6 were proved radiation-induced brain injuries. The mean rCBV ratio [2.87 (0.70-4.91)] in glioma recurrence was markedly higher than that [0.70 (0.12-1.62)] in radiation injuries (Z=-2.55, P<0.05). The mean rCBF ratio [1.89 (0.64-3.96)] in glioma recurrence was markedly higher than that [0.56 (0.12-2.08)] in radiation injuries (Z=-2.08, P<0.05). The areas under rCBV and rCBF ROC curve were 0.893 and 0.821. If the rCBV ratio ≤ 0.77, the diagnosis sensitivity of radiation-induced brain injuries was 100.0%; If ≥ 2.44, the diagnosis specificity of recurrent glioma was 100.0%. Conclusion: PWI was an effective technique in distinguishing glioma recurrence from radiation injuries and rCBV and rCBF ratios were of great value in the differentiation. (authors)

  3. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    Science.gov (United States)

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  4. Risk factors for cervical spine injury among patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Tomoko Fujii

    2013-01-01

    Full Text Available Background: Diagnosis of cervical spine injury (CSI is difficult in patients with an altered level of consciousness as a result of a traumatic brain injury (TBI. Patients with TBI and older adults are at increased risk for CSI. This study examined the various risk factors for CSI among trauma patients with TBI and whether adults who were older (≥55 years were at higher risk for CSI when they sustained a fall-related TBI. Materials and Methods: Data used was the 2007 National Trauma Data Bank (NTDB, National Sample Project (NSP for adults who sustained a TBI. This dataset contains 2007 admission records from 82 level I and II trauma centers. Logistic regression was used to identify potential risk factors for CSI and to test for interaction between age and injury mechanism. Additional model variables included gender, race, Glasgow Coma Score, multiple severe injuries, hypotension and respiratory distress. Results: An analysis of the NTDB NSP identified 187,709 adults with TBI, of which 16,078 were diagnosed with a concomitant CSI. In motor vehicle traffic injuries, the older age group had significantly higher odds of CSI (odds ratio [OR] = 1.26 [1.15-1.39]. In fall-related injuries the older age group did not have a higher odds of CSI compared to the younger age group. Skull/face fracture, other spine fracture/dislocation, upper limb injury, thorax injury, and hypotension were significantly associated with CSI. Pelvic injuries had an inverse association with CSI (OR = 0.60 [0.54-0.67]. Black had significantly higher odds of CSI compared to Whites (OR = 1.25 [1.07-1.46]. Conclusion: The identification of associated injuries and factors may assist physicians in evaluating CSI in patients with TBI.

  5. Bcl-2 gene therapy for apoptosis following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; ZHENG Xue-sheng; LIU Wei-guo; FENG Jun-feng

    2006-01-01

    Objective: To investigate the therapeutic effect of Bcl- 2 fusion protein on apoptosis in brain following traumatic brain injury.Methods: Bcl-2 gene was cloned by RT-PCR. Bcl-2 and EGFP genes were linked together and inserted into pAdeno-X vector. This recombinant vector was packaged into infectious adenovirus in HEK293 cells. Ninety Wistar rats were assigned randomly into experimental group(n=45) and control group (n=45). All rats were subjected to traumatic brain injury. Then recombinant adenovirus (for experimental group) or saline (for control group) was injected into the traumatic brain. The expression of Bcl-2 fusion protein was investigated by Western blotting, immunohistochemistry and fluorescence microscopy. Apoptosis in the injured brain was studied by TUNEL. Animals' behavior capacity was evaluated by tiltboard test.Results: In the experimental group, many fluorescent cells were found around the traumatic locus,which were also proven to be Bcl-2-positive by immunohistochemistry. On the contrary, few Bcl-2-positive cells and no fluorescent cell were detected in the control group. Bcl-2 expression of experimental group was much higher than that of control group, which was illustrated by Western blotting. The apoptosis index of experimental group was 0.027 ± 0.005, and that of control group was 0.141±0.025 (P<0.01). Two weeks after injury, animals of the experimental group behaved better than those of the control group.Conclusions: A recombinant adenovirus vector expressing Bcl-2 fusion protein has been constructed. Bcl-2 fusion protein can suppress apoptosis and promote cell survival. Moreover, the behavior recovery of the injured animal is promoted. Bcl-2 fusion protein provides a way to track the target cells in vivo.

  6. Atypical moral judgment following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Angelica Muresan

    2012-07-01

    Full Text Available Previous research has shown an association between emotions, particularly social emotions, and moral judgments. Some studies suggested an association between blunted emotion and the utilitarian moral judgments observed in patients with prefrontal lesions. In order to investigate how prefrontal brain damage affects moral judgment, we asked a sample of 29 TBI patients (12 females and 17 males and 41 healthy participants (16 females and 25 males to judge 22 hypothetical dilemmas split into three different categories (non-moral, impersonal and personal moral. The TBI group presented a higher proportion of affirmative (utilitarian responses for personal moral dilemmas when compared to controls, suggesting an atypical pattern of utilitarian judgements. We also found a negative association between the performance on recognition of social emotions and the proportion of affirmative responses on personal moral dilemmas. These results suggested that the preference for utilitarian responses in this type of dilemmas is accompanied by difficulties in social emotion recognition. Overall, our findings suggest that deontological moral judgments are associated with normal social emotion processing and that frontal lobe plays an important role in both emotion and moral judgment.

  7. Focal perinatal acquired brain injury - a sonographic study of the course

    International Nuclear Information System (INIS)

    A case of a perinatal acquired focal brain lesion is reported, and the process of resorption and healing demonstrated by ultrasound. Within four weeks a cortical area of increased echogenicity was resorbed. After two months, the resulting porencephalic cyst had been transformed into glial tissue of very high echogenicity. The neurologic development of two children with such glial focus was good. These cases demonstrate that porencephalic cysts are not always the final state after resorption of a focal brain lesion. They are no reliable prognostic indicator of poor neurological outcome. Traumatic and complicated delivery, asphyxia and coagulopathy are conditions which have been found several times in connection with a focal brain lesion. In contrast to periventricular injury, prematurity does not seem to be a factor of higher risk. (orig.)

  8. Mesenchymal Stem Cells Regulate Blood Brain Barrier Integrity in Traumatic Brain Injury Through Production of the Soluble Factor TIMP3

    Science.gov (United States)

    Menge, Tyler; Zhao, Yuhai; Zhao, Jing; Wataha, Kathryn; Geber, Michael; Zhang, Jianhu; Letourneau, Phillip; Redell, John; Shen, Li; Wang, Jing; Peng, Zhalong; Xue, Hasen; Kozar, Rosemary; Cox, Charles S.; Khakoo, Aarif Y.; Holcomb, John B.; Dash, Pramod K.; Pati, Shibani

    2013-01-01

    Mesenchymal stem cells (MCSs) have been shown to have therapeutic potential in multiple disease states associated with vascular instability including traumatic brain injury (TBI). In the present study, Tissue Inhibitor of Matrix Metalloproteinase-3 (TIMP3) is identified as the soluble factor produced by MSCs that can recapitulate the beneficial effects of MSCs on endothelial function and blood brain barrier (BBB) compromise in TBI. Attenuation of TIMP3 expression in MSCs completely abrogates the effect of MSCs on BBB permeability and stability, while intravenous administration of rTIMP3 alone can inhibit BBB permeability in TBI. Our results demonstrate that MSCs increase circulating levels of soluble TIMP3, which inhibits VEGF-A induced breakdown of endothelial AJs in vitro and in vivo. These findings elucidate a clear molecular mechanism for the effects of MSCs on the BBB in TBI, and directly demonstrate a role for TIMP3 in regulation of BBB integrity. PMID:23175708

  9. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    Science.gov (United States)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  10. The thresholds and mechanisms of tissue injury by focused ultrasound

    Science.gov (United States)

    Simon, Julianna

    Therapeutic ultrasound is used in clinics around the world to treat ailments such as uterine fibroids, kidney stones, and plantar fasciitis. While many of the therapeutic effects of ultrasound are elicited by hyperthermia, bubbles can also interact with tissue to produce beneficial effects. For example, bubbles are used in boiling histotripsy to de-bulk tissue and are used in shock wave lithotripsy to break kidney stones. However, the same bubbles that break the kidney stones also damage the kidney, which is why bubble damage is a concern in every ultrasound application including fetal imaging. Whether the aim is to emulsify a tumor or image a fetus, understanding the thresholds and mechanisms of tissue injury by bubbles in an ultrasound field is important for all ultrasound applications and was the goal of this dissertation. One specific application of therapeutic ultrasound, known as boiling histotripsy, uses shock wave heating to explosively expand a millimeter-size boiling bubble at the transducer focus and fractionate bulk tissue. Yet it was unclear how the millimeter-size boiling or vapor bubble broke down the tissue into its submicron components. In this dissertation, we experimentally tested the hypothesis that ultrasonic atomization, or the emission of fine droplets from an acoustically excited liquid film, is the mechanism by which the millimeter-size boiling bubble in boiling histotripsy fractionates tissue into its submicron components. Using high speed photography, we showed that tissue can behave as a liquid such that a miniature acoustic fountain forms and atomization occurs within a millimeter-size cavity that approximates the boiling or vapor bubble produced by boiling histotripsy. The end result of tissue atomization was a hole in the tissue surface. After showing that tissue can be eroded by atomization, a series of experiments were conducted to determine the tissue properties that influence atomization. The results indicated that highly

  11. Spatiotemporal changes in blood-brain barrier permeability, cerebral blood flow, T2 and diffusion following mild traumatic brain injury.

    Science.gov (United States)

    Li, Wei; Watts, Lora; Long, Justin; Zhou, Wei; Shen, Qiang; Jiang, Zhao; Li, Yunxia; Duong, Timothy Q

    2016-09-01

    The blood-brain barrier (BBB) can be impaired following traumatic brain injury (TBI), however the spatiotemporal dynamics of BBB leakage remain incompletely understood. In this study, we evaluated the spatiotemporal evolution of BBB permeability using dynamic contrast-enhanced MRI and measured the volume transfer coefficient (K(trans)), a quantitative measure of contrast agent leakage across the blood and extravascular compartment. Measurements were made in a controlled cortical impact (CCI) model of mild TBI in rats from 1h to 7 days following TBI. The results were compared with cerebral blood flow, T2 and diffusion MRI from the same animal. Spatially, K(trans) changes were localized to superficial cortical layers within a 1mm thickness, which was dramatically different from the changes in cerebral blood flow, T2 and diffusion, which were localized to not only the superficial layers but also to brain regions up to 2.2mm from the cortical surface. Temporally, K(trans) changes peaked at day 3, similar to CBF and ADC changes, but differed from T2 and FA, whose changes peaked on day 2. The pattern of superficial cortical layer localization of K(trans) was consistent with patterns revealed by Evans Blue extravasation. Collectively, these results suggest that BBB disruption, edema formation, blood flow disturbance and diffusion changes are related to different components of the mechanical impact, and may play different roles in determining injury progression and tissue fate processes following TBI. PMID:27208495

  12. Application of Ultrasonic Techniques for Brain Injury Diagnosis

    International Nuclear Information System (INIS)

    In this work, we evaluate methods for detecting brain injury using ultrasound. We have used simulations of ultrasonic fields in the head to model the phase distortion of the skull. In addition we present experimental data from the crania of large animals. The experimental data help us understand and evaluate the performance of different transducers in acquiring the backscatter data from the brain through the skull. Both the simulations and acquired data illustrate the superiority of lower-frequency (<= 1 MHz) ultrasonic fields for transcranial acquisition of signals from inside the brain. Additionally, the experimental work shows that the higher-frequency (5 MHz) ultrasound can also be useful in acquiring clean nearfield data to help detect the position of the inner boundary of the skull

  13. Application of Ultrasonic Techniques for Brain Injury Diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kasili, P.M.; Mobley, J.; Norton, S.J.; Vo-Dinh, T.

    1999-09-19

    In this work, we evaluate methods for detecting brain injury using ultrasound. We have used simulations of ultrasonic fields in the head to model the phase distortion of the skull. In addition we present experimental data from the crania of large animals. The experimental data help us understand and evaluate the performance of different transducers in acquiring the backscatter data from the brain through the skull. Both the simulations and acquired data illustrate the superiority of lower-frequency (<= 1 MHz) ultrasonic fields for transcranial acquisition of signals from inside the brain. Additionally, the experimental work shows that the higher-frequency (5 MHz) ultrasound can also be useful in acquiring clean nearfield data to help detect the position of the inner boundary of the skull.

  14. [A case of a penetrating brain injury due to an explosion of a construction machine].

    Science.gov (United States)

    Ibayashi, Kenji; Tsutsumi, Kazuo; Yoshikawa, Gakushi; Uno, Takeshi; Shimada, Shiko; Kawashima, Mariko; Koizumi, Satoshi; Ochiai, Yushi

    2012-05-01

    Penetrating brain injury caused by a high speed projectile is rather rare in Japan, known for its strict gun-control laws. We report a case of a 55-year-old male, who was transferred to our hospital with a foreign body in the brain due to penetrating head injury, which was caused by an explosion of a construction machine. Neurological examination demonstrated severe motor aphagia with no apparent motor paresis. The patient had a scalp laceration on his left forehead with exposed cerebral tissue and CSF leakage. Head CT scan and plain skull X-ray revealed a 20 mm×25 mm bolt which had penetrated due to the explosion of the machine. The anterior wall of the left frontal sinus was fractured resulting in dural laceration, and scattered bone fragments were seen along the trajectory of the bolt. Digital subtraction angiography showed no significant vascular injuries including superior sagittal sinus. We performed open surgery, and successfully removed the bolt along with the damaged frontal lobe. The patient had no infection or seizure after the surgery, and was transferred for further rehabilitation therapy. We performed a cosmetic cranioplasty six months later. Surgical debridement of the damaged cerebral tissue along the trajectory led to successful removal of the bolt with no further neurological deficit. PMID:22538284

  15. Adult axolotls can regenerate original neuronal diversity in response to brain injury

    Science.gov (United States)

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001 PMID:27156560

  16. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Johansson, Pär I;

    2014-01-01

    infusion speed increment NS (n¿=¿7). Hemodynamic variables over a 6-hour observation phase were recorded. Following euthanasia, brains were harvested and lesion size as well as brain swelling was measured.ResultsBolus FFP resuscitation resulted in greater brain swelling (22.36¿±¿1.03% vs. 15.58¿±¿2.52%, p...

  17. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    Directory of Open Access Journals (Sweden)

    Eridan Rocha-Ferreira

    2016-01-01

    Full Text Available Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

  18. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury.

    Science.gov (United States)

    Rocha-Ferreira, Eridan; Hristova, Mariya

    2016-01-01

    Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity. PMID:27047695

  19. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  20. Damage to Myelin and Oligodendrocytes: A Role in Chronic Outcomes Following Traumatic Brain Injury?

    Directory of Open Access Journals (Sweden)

    William L. Maxwell

    2013-09-01

    Full Text Available There is increasing evidence in the experimental and clinical traumatic brain injury (TBI literature that loss of central myelinated nerve fibers continues over the chronic post-traumatic phase after injury. However, the biomechanism(s of continued loss of axons is obscure. Stretch-injury to optic nerve fibers in adult guinea-pigs was used to test the hypothesis that damage to the myelin sheath and oligodendrocytes of the optic nerve fibers may contribute to, or facilitate, the continuance of axonal loss. Myelin dislocations occur within internodal myelin of larger axons within 1–2 h of TBI. The myelin dislocations contain elevated levels of free calcium. The volume of myelin dislocations increase with greater survival and are associated with disruption of the axonal cytoskeleton leading to secondary axotomy. Waves of Ca2+ depolarization or spreading depression extend from the initial locus injury for perhaps hundreds of microns after TBI. As astrocytes and oligodendrocytes are connected via gap junctions, it is hypothesized that spreading depression results in depolarization of central glia, disrupt axonal ionic homeostasis, injure axonal mitochondria and allow the onset of axonal degeneration throughout an increasing volume of brain tissue; and contribute toward post-traumatic continued loss of white matter.

  1. Demonstration of blood brain barrier injury by computed tomography

    International Nuclear Information System (INIS)

    Blood brain barrier (BBB) injury was evoked by the injection of hypertonic solution, 50% glucose or 80% sodium iothalamate, through the catheter placed in the common carotid artery of the adult mongrel dogs. Plain CT and then contrast CT were performed at 30 minutes intervals until 3 hours to determine the relationship between the degrees of contrast enhancement (CE) and the amount of injected hypertonic solution, and to examine the diminishing rates of CE according to time elapsed after the intravenous contrast injection. Another four groups of dogs received contrast CT immediately, at 1, 2 and 3 hours after the injection of hypertonic solution to examine the degree of repair of BBB injury. Contrast media, which was leaked through BBB injured by the injection of hypertonic solution, was recognized by CT, and the area of CE coincided exactly with the dyed area by Evans blue, injected intravenously after induction of BBB injury. Degrees of CE were found to correlate linearly to the amount of hypertonic solution within a certain range. These results indicate that CT can demonstrate BBB injury qualitatively and quantitatively. In sequential CT after the artificial injury of BBB, degree of CE diminished linearly with a half life of about 3 hours. Hydrocortisone accelerated this washout of leaked contrast media. Repair of BBB itself, determined by contrast CT which were performed at 1, 2 and 3 hours after the induction of BBB injury, has been accomplished until 3 hours, and not affected by the administration of hydrocortisone. These experimental results suggest that CT is the most promising method to detect quantitatively and non-invasively the degree and the extent of BBB injury in clinical cases. (J.P.N.)

  2. Protective effects and time course of Huangqion early-stage free radical injury following brain trauma in rats

    Institute of Scientific and Technical Information of China (English)

    Hongjie Wang; Xingbo Liu; Xun Wang

    2008-01-01

    BACKGROUND: Huangqi (Astragalus mongholicus), a Chinese herb, has already been included in the "Chinese Pharmacopoeia" for the treatment of ischemic cerebrovascular disease. Secondary injury following brain injury is associated with free radical production, and Huangqi possesses the ability to ameliorate free radical-mediated injury. OBJECTIVE: This study was designed to observe the correlation between anti-free-radical properties of Huangqi and early histological changes of brain tissues following traumatic brain injury. DESIGN, TIME AND SETTING: This study, a randomized, controlled, animal experiment, was performed from May 2006 to June 2007 at the Experimental Center of Science and Technology, School of Basic Science, Liaoning Medical University, Jinzhou City, Liaoning Province, China. MATERIALS: Healthy, adult, Sprague Dawley rats of either gender were included. Huangqi injection was purchased from Heilongjiang Provincial Zhenbaodao Pharmaceutical Co., Ltd., China (National License Medical Number: Z23020781). Na+-K+-adenosine triphosphatase (ATPase), Ca2+-ATPase, and Mg2+-ATPase, as well as kits to measure superoxide dismutase (SOD) activity and malondialdehyde (MDA) content, were purchased from Nanjing Jiancheng Biological Reagent Company, China. METHODS: Seventy-two rats were randomly divided into three groups, with 24 rats in each group: (1) sham-operated group: rats were only exposed, but not injured; (2) model group: brain focal laceration rat models were established by free-falling. These groups were intraperitoneally injected with saline, once every 10 hours; (3) Huangqi group: rats were intraperitoneally injected with 4 mL/kg Huangqi (2 g/mL), once every 10 hours, following brain focal laceration by free-falling. MAIN OUTCOME MEASURES: Ultrastructural changes in brain tissue were observed under an electron microscope 24 hours after injury. The water content of brain tissue was measured using the dry-wet weight method. In addition, the activity of ATPase

  3. A case of lethal soft tissue injuries due to assault

    Directory of Open Access Journals (Sweden)

    Yanagawa Y

    2012-05-01

    Full Text Available Youichi Yanagawa,1 Yoshimasa Kanawaku,2 Jun Kanetake21Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, 2Department of Forensic Medicine, National Defense Medical College, Saitama, JapanAbstract: A 42-year-old male had been assaulted by his family over the two previous days and went into a deep coma. When the emergency technician arrived, the patient was in a state of cardiopulmonary arrest. On arrival, his electrocardiogram showed asystole. His body showed swelling with subcutaneous hemorrhage, suggesting multiple contusional wounds. Serum biochemistry evaluation revealed blood urea nitrogen of 80 mg/dL, creatinine of 5.99 mg/dL, creatine phosphokinase of 10,094 IU/L, and potassium of 11.0 mEq/L. Advanced cardiopulmonary resuscitation failed to obtain a return of spontaneous circulation. Laboratory findings revealed rhabdomyolysis, renal failure, and hyperkalemia. Autopsy did not indicate the direct cause of death to be traumatic organ injuries. Because trauma was not the direct reason of death, we speculated that the patient died of hyperkalemia induced by multiple contusional soft tissue injuries, following rhabdomyolysis, hemolysis, and acute renal failure. The physician should maintain a high index of suspicion for hyperkalemia induced by rhabdomyolysis and acute renal failure, especially in patients presenting with symptoms of multiple soft tissue injuries with massive subcutaneous hemorrhaging.Keywords: contusion, rhabdomyolysis, renal failure, hyperkalemia

  4. The brain-mind quiddity: ethical issues in the use of human brain tissue for therapeutic and scientific purposes.

    OpenAIRE

    Burd, L; Gregory, J.M.; Kerbeshian, J

    1998-01-01

    The use of human brain tissue in neuroscience research is increasing. Recent developments include transplanting neural tissue, growing or maintaining neural tissue in laboratories and using surgically removed tissue for experimentation. Also, it is likely that in the future there will be attempts at partial or complete brain transplants. A discussion of the ethical issues of using human brain tissue for research and brain transplantation has been organized around nine broadly defined topic ar...

  5. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment

    Science.gov (United States)

    Kline, Tori

    2016-01-01

    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  6. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  7. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury.

    Science.gov (United States)

    King, Jace B; Lopez-Larson, Melissa P; Yurgelun-Todd, Deborah A

    2016-01-01

    In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI) has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral). Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05). These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05). These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature. PMID:26909332

  8. Optimizing sedation in patients with acute brain injury.

    Science.gov (United States)

    Oddo, Mauro; Crippa, Ilaria Alice; Mehta, Sangeeta; Menon, David; Payen, Jean-Francois; Taccone, Fabio Silvio; Citerio, Giuseppe

    2016-01-01

    Daily interruption of sedative therapy and limitation of deep sedation have been shown in several randomized trials to reduce the duration of mechanical ventilation and hospital length of stay, and to improve the outcome of critically ill patients. However, patients with severe acute brain injury (ABI; including subjects with coma after traumatic brain injury, ischaemic/haemorrhagic stroke, cardiac arrest, status epilepticus) were excluded from these studies. Therefore, whether the new paradigm of minimal sedation can be translated to the neuro-ICU (NICU) is unclear. In patients with ABI, sedation has 'general' indications (control of anxiety, pain, discomfort, agitation, facilitation of mechanical ventilation) and 'neuro-specific' indications (reduction of cerebral metabolic demand, improved brain tolerance to ischaemia). Sedation also is an essential therapeutic component of intracranial pressure therapy, targeted temperature management and seizure control. Given the lack of large trials which have evaluated clinically relevant endpoints, sedative selection depends on the effect of each agent on cerebral and systemic haemodynamics. Titration and withdrawal of sedation in the NICU setting has to be balanced between the risk that interrupting sedation might exacerbate brain injury (e.g. intracranial pressure elevation) and the potential benefits of enhanced neurological function and reduced complications. In this review, we provide a concise summary of cerebral physiologic effects of sedatives and analgesics, the advantages/disadvantages of each agent, the comparative effects of standard sedatives (propofol and midazolam) and the emerging role of alternative drugs (ketamine). We suggest a pragmatic approach for the use of sedation-analgesia in the NICU, focusing on some practical aspects, including optimal titration and management of sedation withdrawal according to ABI severity. PMID:27145814

  9. Oxidative burst of circulating neutrophils following traumatic brain injury in human.

    Directory of Open Access Journals (Sweden)

    Yiliu Liao

    Full Text Available Besides secondary injury at the lesional site, Traumatic brain injury (TBI can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91(phox in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected

  10. Histogram analysis with automated extraction of brain-tissue region from whole-brain CT images

    OpenAIRE

    Kondo, Masatoshi; Yamashita, Koji; Yoshiura, Takashi; Hiwatash, Akio; Shirasaka, Takashi; Arimura, Hisao; Nakamura, Yasuhiko; Honda, Hiroshi

    2015-01-01

    To determine whether an automated extraction of the brain-tissue region from CT images is useful for the histogram analysis of the brain-tissue region was studied. We used the CT images of 11 patients. We developed an automatic brain-tissue extraction algorithm. We evaluated the similarity index of this automated extraction method relative to manual extraction, and we compared the mean CT number of all extracted pixels and the kurtosis and skewness of the distribution of CT numbers of all ext...

  11. Are boys and girls that different? An analysis of traumatic brain injury in children.

    LENUS (Irish Health Repository)

    Collins, Niamh C

    2013-08-01

    The Phillips Report on traumatic brain injury (TBI) in Ireland found that injury was more frequent in men and that gender differences were present in childhood. This study determined when gender differences emerge and examined the effect of gender on the mechanism of injury, injury type and severity and outcome.

  12. Antisense oligonucleotide for tissue factor inhibits hepatic ischemic reperfusion injury.

    Science.gov (United States)

    Nakamura, Kenji; Kadotani, Yayoi; Ushigome, Hidetaka; Akioka, Kiyokazu; Okamoto, Masahiko; Ohmori, Yoshihiro; Yaoi, Takeshi; Fushiki, Shinji; Yoshimura, Rikio; Yoshimura, Norio

    2002-09-27

    Tissue factor (TF) is an initiation factor for blood coagulation and its expression is induced on endothelial cells during inflammatory or immune responses. We designed an antisense oligodeoxynucleotide (AS-1/TF) for rat TF and studied its effect on hepatic ischemic reperfusion injury. AS-1/TF was delivered intravenously to Lewis rats. After 10 h, hepatic artery and portal vein were partially clamped. Livers were reperfused after 180 min and harvested. TF expression was studied using immunohistochemical staining. One of 10 rats survived in a 5-day survival rate and TF was strongly stained on endothelial cells in non-treatment group. However, by treatment with AS-1/TF, six of seven survived and TF staining was significantly reduced. Furthermore, we observed that fluorescein-labeled AS-1/TF was absorbed into endothelial cells. These results suggest that AS-1/TF can strongly suppress the expression of TF and thereby inhibit ischemic reperfusion injury to the rat liver. PMID:12270110

  13. Brain Abscess After Soft Tissue Infection

    OpenAIRE

    Akoz A et al.

    2013-01-01

    The brain abscess, which is a focal intracerebral infection, is one of the serious complications of the head infections. It generally occurs in the immunocompromised patients due to the spreading from another infection focus on the body. It can be seen with the findings such as fever, headache, nausea, vomiting, diplopia, dysarthria and paralysis. Imaging methods are used in the diagnosis. In its treatment, antibiotherapy and surgical methods can be used. S...

  14. Neuroendocrine abnormalities in patients with traumatic brain injury

    Science.gov (United States)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture

  15. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Nikki; Donald, Cortny; Skora, Amanda [Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia); Reed, Warren, E-mail: warren.reed@sydney.edu.au [Medical Image Optimisation and Perception Group, Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia)

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  16. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    International Nuclear Information System (INIS)

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings

  17. The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention

    Directory of Open Access Journals (Sweden)

    Giunta Brian

    2012-08-01

    Full Text Available Abstract A global health problem, traumatic brain injury (TBI is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD. The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.

  18. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices

    Institute of Scientific and Technical Information of China (English)

    Qing-shengXUE; Bu-weiYU; Ze-jianWANG; Hong-zhuanCHEN

    2004-01-01

    AIM: To compare the effects of ketamine, midazolam, thiopental, and propofol on brain ischemia by the model of oxygen-glucose deprivation (OGD) in rat cerebral cortical slices. METHODS: Cerebral cortical slices were incu-bated in 2 % 2,3,5-triphenyltetrazolium chloride (TTC) solution after OGD, the damages and effects of ketamine,midazolam, thiopental, and propofol were quantitativlye evaluated by ELISA reader of absorbance (A) at 490 nm,which indicated the red formazan extracted from slices, lactic dehydrogenase (LDH) releases in the incubated supernate were also measured. RESULTS: Progressive prolongation of OGD resulted in decreases of TTC staining.The percentage of tissue injury had a positive correlation with LDH releases, r=0.9609, P<0.01. Two hours of reincubation aggravated the decrease of TTC staining compared with those slices stained immediately after OGD(P<0.01). These four anesthetics had no effects on the TTC staining of slices. Ketamine completely inhibited thedecrease of A value induced by 10 min of OGD injury. High concentrations of midazolam (10 μmol/L) and thiopental (400μmol/L) partly attenuated this decrease. Propofol at high concentration (100 μmol/L) enhanced the decrease of A value induced by 10 min of OGD injury (P<0.01). CONCLUSION; Ketamine, high concentration of midazolam and thiopental have neuroprotective effects against OGD injury in rat cerebral cortical slices, while high concentration of propofol augments OGD injury in rat cerebral cortical slices.

  19. A Prospective Pilot Investigation of Brain Volume, White Matter Hyperintensities, and Hemorrhagic Lesions after Mild Traumatic Brain Injury

    OpenAIRE

    Jarrett, Michael; Tam, Roger; Hernández-Torres, Enedino; Martin, Nancy; Perera, Warren; Zhao, Yinshan; Shahinfard, Elham; Dadachanji, Shiroy; Taunton, Jack; Li, David K.B.; Rauscher, Alexander

    2016-01-01

    Traumatic brain injury (TBI) is among the most common neurological disorders. Hemorrhagic lesions and white matter hyperintensities (WMH) are radiological features associated with moderate and severe TBI. Brain volume reductions have also been observed during the months following injury. In concussion, no signs of injury are observed on conventional magnetic resonance imaging (MRI), which may be a true feature of concussion or merely due to the limited sensitivity of imaging techniques used s...

  20. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury

    OpenAIRE

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G.; Hovda, David A.; Sutton, Richard L.

    2013-01-01

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients’ remains under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose ...

  1. Lateral (Parasagittal) Fluid Percussion Model of Traumatic Brain Injury.

    Science.gov (United States)

    Van, Ken C; Lyeth, Bruce G

    2016-01-01

    Fluid percussion was first conceptualized in the 1940s and has evolved into one of the leading laboratory methods for studying experimental traumatic brain injury (TBI). Over the decades, fluid percussion has been used in numerous species and today is predominantly applied to the rat. The fluid percussion technique rapidly injects a small volume of fluid, such as isotonic saline, through a circular craniotomy onto the intact dura overlying the brain cortex. In brief, the methods involve surgical production of a circular craniotomy, attachment of a fluid-filled conduit between the dura overlying the cortex and the outlet port of the fluid percussion device. A fluid pulse is then generated by the free-fall of a pendulum striking a piston on the fluid-filled cylinder of the device. The fluid enters the cranium, producing a compression and displacement of the brain parenchyma resulting in a sharp, high magnitude elevation of intracranial pressure that is propagated diffusely through the brain. This results in an immediate and transient period of traumatic unconsciousness as well as a combination of focal and diffuse damage to the brain, which is evident upon histological and behavioral analysis. Numerous studies have demonstrated that the rat fluid percussion model reproduces a wide range of pathological features associated with human TBI. PMID:27604722

  2. Astrocytes mediate the neuroprotective effects of Tibolone following brain injury

    Directory of Open Access Journals (Sweden)

    Luis Miguel Garcia-Segura

    2015-04-01

    Full Text Available Recently, astrocytes have become a key central player in mediating important functions in the brain. These physiological processes include neurotransmitter recycling, energy management, metabolic shuttle, immune sensing, K+ buffer, antioxidant supply and release of neurotrophic factors and gliotransmitters. These astrocytic roles are somehow altered upon brain injury, therefore strategies aimed at better protecting astrocytes are an essential asset to maintain brain homeostasis. In this context, estrogenic compounds, such as Tibolone, have attracted attention for their beneficial effects in acute and chronic degenerative diseases. Tibolone may act through binding to estrogen, androgen or progesterone receptors and exert protective effects by reducing astrocytes cell death and oxidative stress signaling mechanisms. Although Tibolone has a multifactorial effect in the brain, its mechanisms of action are not completely understood. In this work, we highlight the role of Tibolone in brain protection upon damage, how astrocytes might mediate part of its neuroprotective actions and discuss the effects of Tibolone in diminishing the harmful consequences of a metabolic insult and energy failure in the setting of a pathological event.

  3. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    Directory of Open Access Journals (Sweden)

    Y Vodovotz

    2009-01-01

    Full Text Available Traumatic injury/hemorrhagic shock (T/HS elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI. Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherentlydetrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partiallypropagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s.DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and nonhumanprimates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS andTBI in the near future.

  4. Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury

    OpenAIRE

    Chien-Cheng Chen; Tai-Ho Hung; Chao Yu Lee; Liang-Fei Wang; Chun-Hu Wu; Chia-Hua Ke; Szu-Fu Chen

    2014-01-01

    Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg(-1)) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain ba...

  5. Personality Change due to Traumatic Brain Injury in Children and Adolescents: Neurocognitive Correlates

    OpenAIRE

    Wilde, Elisabeth A.; Bigler, Erin D; Hanten, Gerri; Dennis, Maureen; Schachar, Russell J.; Saunders, Ann E.; Ewing-Cobbs, Linda; Chapman, Sandra B.; Wesley K. Thompson; Yang, Tony T.; Levin, Harvey S.

    2015-01-01

    Personality Change due to traumatic brain injury (PC) in children is an important psychiatric complication of injury and is a form of severe affective dysregulation. The aim of the study was to examine neurocognitive correlates of PC. The sample included children (n=177) aged 5-14 years with traumatic brain injury from consecutive admissions to 5 trauma centers were followed prospectively at baseline and 6 months with semi-structured psychiatric interviews. Injury severity, socioeconomic stat...

  6. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury

    OpenAIRE

    Piao, Chun-Shu; Stoica, Bogdan A.; Wu, Junfang; Sabirzhanov, Boris; Zhao, Zaorui; Cabatbat, Rainier; Loane, David J.; Faden, Alan I.

    2013-01-01

    Delayed secondary biochemical and cellular changes after traumatic brain injury continue for months to years, and are associated with chronic neuroinflammation and progressive neurodegeneration. Physical activity can reduce inflammation and facilitate recovery after brain injury. Here, we investigated the time-dependent effects, and underlying mechanisms of post-traumatic exercise initiation on outcome after moderate traumatic brain injury using a well-characterized mouse controlled cortical ...

  7. Impaired Cerebral Autoregulation during Head Up Tilt in Patients with Severe Brain Injury

    OpenAIRE

    Riberholt, Christian Gunge; Olesen, Niels Damkjær; Thing, Mira; Juhl, Carsten Bogh; Mehlsen, Jesper; Petersen, Tue Hvass

    2016-01-01

    Early mobilization is of importance for improving long-term outcome for patients after severe acquired brain injury. A limiting factor for early mobilization by head-up tilt is orthostatic intolerance. The purpose of the present study was to examine cerebral autoregulation in patients with severe acquired brain injury and a low level of consciousness. Fourteen patients with severe acquired brain injury and orthostatic intolerance and fifteen healthy volunteers were enrolled. Blood pressure wa...

  8. Deep tissue injury rat model for pressure ulcer research on spinal cord injury

    OpenAIRE

    Lin, Fang; Pandya, Atek; Cichowski, Andrew; Modi, Mauli; Reprogle, Briana; Lee, Dongkeun; Kadono, Norio; Makhsous, Mohsen

    2009-01-01

    Many rat/mouse pressure ulcer (PU) models have been developed to test different hypotheses to gain deeper understanding of various causative risk factors, the progress of PUs, and assessing effectiveness of potential treatment modalities. The recently emphasized deep tissue injury (DTI) mechanisms for PU formation has received increased attention and several studies reported findings on newly developed DTI animal models. However, concerns exist for the clinical relevance and validity of these...

  9. Outcome from Complicated versus Uncomplicated Mild Traumatic Brain Injury.

    Science.gov (United States)

    Iverson, Grant L; Lange, Rael T; Wäljas, Minna; Liimatainen, Suvi; Dastidar, Prasun; Hartikainen, Kaisa M; Soimakallio, Seppo; Ohman, Juha

    2012-01-01

    Objective. To compare acute outcome following complicated versus uncomplicated mild traumatic brain injury (MTBI) using neurocognitive and self-report measures. Method. Participants were 47 patients who presented to the emergency department of Tampere University Hospital, Finland. All completed MRI scanning, self-report measures, and neurocognitive testing at 3-4 weeks after injury. Participants were classified into the complicated MTBI or uncomplicated MTBI group based on the presence/absence of intracranial abnormality on day-of-injury CT scan or 3-4 week MRI scan. Results. There was a large statistically significant difference in time to return to work between groups. The patients with uncomplicated MTBIs had a median of 6.0 days (IQR = 0.75-14.75, range = 0-77) off work compared to a median of 36 days (IQR = 13.5-53, range = 3-315) for the complicated group. There were no significant differences between groups for any of the neurocognitive or self-report measures. There were no differences in the proportion of patients who (a) met criteria for ICD-10 postconcussional disorder or (b) had multiple low scores on the neurocognitive measures. Conclusion. Patients with complicated MTBIs took considerably longer to return to work. They did not perform more poorly on neurocognitive measures or report more symptoms, at 3-4 weeks after injury compared to patients with uncomplicated MTBIs. PMID:22577556

  10. Outcome from Complicated versus Uncomplicated Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Grant L. Iverson

    2012-01-01

    Full Text Available Objective. To compare acute outcome following complicated versus uncomplicated mild traumatic brain injury (MTBI using neurocognitive and self-report measures. Method. Participants were 47 patients who presented to the emergency department of Tampere University Hospital, Finland. All completed MRI scanning, self-report measures, and neurocognitive testing at 3-4 weeks after injury. Participants were classified into the complicated MTBI or uncomplicated MTBI group based on the presence/absence of intracranial abnormality on day-of-injury CT scan or 3-4 week MRI scan. Results. There was a large statistically significant difference in time to return to work between groups. The patients with uncomplicated MTBIs had a median of 6.0 days (IQR = 0.75–14.75, range = 0–77 off work compared to a median of 36 days (IQR = 13.5–53, range = 3–315 for the complicated group. There were no significant differences between groups for any of the neurocognitive or self-report measures. There were no differences in the proportion of patients who (a met criteria for ICD-10 postconcussional disorder or (b had multiple low scores on the neurocognitive measures. Conclusion. Patients with complicated MTBIs took considerably longer to return to work. They did not perform more poorly on neurocognitive measures or report more symptoms, at 3-4 weeks after injury compared to patients with uncomplicated MTBIs.

  11. Molecular Mechanisms of Cognitive Dysfunction following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kendall Rae Walker

    2013-07-01

    Full Text Available Traumatic brain injury (TBI results in significant disability due to cognitive deficits particularly in attention, learning and memory and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer’s disease (AD, Parkinson’s disease (PD, Amyotrophic Lateral Sclerosis (ALS and most recently chronic traumatic encephalopathy (CTE is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  12. Traumatic brain injury impairs synaptic plasticity in hippocampus in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-liang; CHEN Xin; TAN Tao; YANG Zhuo; CARLOS Dayao; JIANG Rong-cai; ZHANG Jian-ning

    2011-01-01

    Background Traumatic brain injury (TBl) often causes cognitive deficits and remote symptomatic epilepsy.Hippocampal regional excitability is associated with the cognitive function. However, little is known about injury-induced neuronal loss and subsequent alterations of hippocampal regional excitability. The present study was designed to determine whether TBl may impair the cellular circuit in the hippocampus.Methods Forty male Wistar rats were randomized into control (n=20) and TBl groups (n=20). Long-term potentiation,extracellular input/output curves, and hippocampal parvalbumin-immunoreactive and cholecystokinin-immunoreactive interneurons were compared between the two groups.Results TBI resulted in a significantly increased excitability in the dentate gyrus (DG), but a significantly decreased excitability in the cornu ammonis 1 (CA1) area. Using design-based stereological injury procedures, we induced interneuronal loss in the DG and CA3 subregions in the hippocampus, but not in the CA1 area.Conclusions TBl leads to the impairment of hippocampus synaptic plasticity due to the changing of interneuronal interaction. The injury-induced disruption of synaptic efficacy within the hippocampal circuit may underlie the observed cognitive deficits and symptomatic epilepsy.

  13. Head motions while riding roller coasters: implications for brain injury.

    Science.gov (United States)

    Pfister, Bryan J; Chickola, Larry; Smith, Douglas H

    2009-12-01

    The risk of traumatic brain injury (TBI) while riding roller coasters has received substantial attention. Case reports of TBI around the time of riding roller coasters have led many medical professionals to assert that the high gravitational forces (G-forces) induced by roller coasters pose a significant TBI risk. Head injury research, however, has shown that G-forces alone cannot predict TBI. Established head injury criterions and procedures were employed to compare the potential of TBI between daily activities and roller coaster riding. Three-dimensional head motions were measured during 3 different roller coaster rides, a pillow fight, and car crash simulations. Data was analyzed and compared with published data, using similar analyses of head motions. An 8.05 m/s car crash lead to the largest head injury criterion measure of 28.1 and head impact power of 3.41, over 6 times larger than the roller coaster rides of 4.1 and 0.36. Notably, the linear and rotational components of head acceleration during roller coaster rides were milder than those induced by many common activities. As such, there appears to be an extremely low risk of TBI due to the head motions induced by roller coaster rides. PMID:19901817

  14. Structural Neuroimaging Findings in Mild Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D; Abildskov, Tracy J; Goodrich-Hunsaker, Naomi J; Black, Garrett; Christensen, Zachary P; Huff, Trevor; Wood, Dawn-Marie G; Hesselink, John R; Wilde, Elisabeth A; Max, Jeffrey E

    2016-09-01

    Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI. PMID:27482782

  15. Structural changes in the brain according to CT findings in children with long-term consequences of closed brain injury

    International Nuclear Information System (INIS)

    Long-term structural changes in the brain substance after closed brain injury (CBI) in children using computerized tomography was studied. 30 patients aged 11-18 with CBI with favourable and unfavourable course was examined. The obtained findings suggest a complicated picture of the reaction of the involved brain. The degree of neurologic signs and the type of traumatic injuries depend on the degree of structural changes

  16. Etanercept Attenuates Traumatic Brain Injury in Rats by Reducing Brain TNF-α Contents and by Stimulating Newly Formed Neurogenesis

    OpenAIRE

    Chong-Un Cheong; Ching-Ping Chang; Chien-Ming Chao; Bor-Chih Cheng; Chung-Zhing Yang; Chung-Ching Chio

    2013-01-01

    It remains unclear whether etanercept penetrates directly into the contused brain and improves the outcomes of TBI by attenuating brain contents of TNF- α and/or stimulating newly formed neurogenesis. Rats that sustained TBI are immediately treated with etanercept. Acute neurological and motor injury is assessed in all rats the day prior to and 7 days after surgery. The numbers of the colocalizations of 5-bromodeoxyuridine and doublecortin specific markers in the contused brain injury that oc...

  17. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Institute of Scientific and Technical Information of China (English)

    Quan Jiang

    2016-01-01

    Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance im-aging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  18. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  19. Monitoring intracranial pressure utilizing a novel pattern of brain multiparameters in the treatment of severe traumatic brain injury

    Science.gov (United States)

    Sun, Hong-tao; Zheng, Maohua; Wang, Yanmin; Diao, Yunfeng; Zhao, Wanyong; Wei, Zhengjun

    2016-01-01

    The aim of the study was to evaluate the clinical value of multiple brain parameters on monitoring intracranial pressure (ICP) procedures in the therapy of severe traumatic brain injury (sTBI) utilizing mild hypothermia treatment (MHT) alone or a combination strategy with other therapeutic techniques. A total of 62 patients with sTBI (Glasgow Coma Scale score pressure, transcranial Doppler, brain tissue partial pressure of oxygen, and jugular venous oxygen saturation, were detected and analyzed. All of these measures can control the ICP of sTBI patients to a certain extent, but multiparameters associated with brain environment and functions have to be critically monitored simultaneously because some procedures of reducing ICP can cause side effects for long-term recovery in sTBI patients. The result suggested that multimodality monitoring must be performed during the process of mild hypothermia combined with conventional ICP procedures in order to safely target different clinical methods to specific patients who may benefit from an individual therapy. PMID:27382294

  20. Accelerated recovery from acute brain injuries: clinical efficacy of neurotrophic treatment in stroke and traumatic brain injuries.

    Science.gov (United States)

    Bornstein, N; Poon, W S

    2012-04-01

    Stroke is one of the most devastating vascular diseases in the world as it is responsible for almost five million deaths per year. Almost 90% of all strokes are ischemic and mainly due to atherosclerosis, cardiac embolism and small-vessel disease. Intracerebral or subarachnoid hemorrhage can lead to hemorrhagic stroke, which usually has the poorest prognosis. Cerebrolysin is a peptide preparation which mimics the action of a neurotrophic factor, protecting stroke-injured neurons and promoting neuroplasticity and neurogenesis. Cerebrolysin has been widely studied as a therapeutic tool for both ischemic and hemorrhagic stroke, as well as traumatic brain injury. In ischemic stroke, Cerebrolysin given as an adjuvant therapy to antiplatelet and rheologically active medication resulted in accelerated improvement in global, neurological and motor functions, cognitive performance and activities of daily living. Cerebrolysin was also safe and well tolerated when administered in patients suffering from hemorrhagic stroke. Traumatic brain injury leads to transient or chronic impairments in physical, cognitive, emotional and behavioral functions. This is associated with deficits in the recognition of basic emotions, the capacity to interpret the mental states of others, and executive functioning. Pilot clinical studies with adjuvant Cerebrolysin in the acute and postacute phases of the injury have shown faster recovery, which translates into an earlier onset of rehabilitation and shortened hospitalization time. PMID:22514794