WorldWideScience

Sample records for brain size gut

  1. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  2. Comparative gut physiology symposium: The microbe-gut-brain axis

    Science.gov (United States)

    The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...

  3. Gut-Brain Axis and Behavior.

    Science.gov (United States)

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  4. Microbiota-gut-brain axis and the central nervous system

    OpenAIRE

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-01-01

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated ...

  5. Microbiota-gut-brain axis and the central nervous system.

    Science.gov (United States)

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  6. [Glucose homeostasis and gut-brain connection].

    Science.gov (United States)

    De Vadder, Filipe; Mithieux, Gilles

    2015-02-01

    Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.

  7. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.

    Science.gov (United States)

    Kim, Namhee; Yun, Misun; Oh, Young Joon; Choi, Hak-Jong

    2018-03-01

    It is increasingly evident that bidirectional interactions exist among the gastrointestinal tract, the enteric nervous system, and the central nervous system. Recent preclinical and clinical trials have shown that gut microbiota plays an important role in these gut-brain interactions. Furthermore, alterations in gut microbiota composition may be associated with pathogenesis of various neurological disorders, including stress, autism, depression, Parkinson's disease, and Alzheimer's disease. Therefore, the concepts of the microbiota-gut-brain axis is emerging. Here, we review the role of gut microbiota in bidirectional interactions between the gut and the brain, including neural, immune-mediated, and metabolic mechanisms. We highlight recent advances in the understanding of probiotic modulation of neurological and neuropsychiatric disorders via the gut-brain axis.

  8. [Gut microbiome and psyche: paradigm shift in the concept of brain-gut axis].

    Science.gov (United States)

    Konturek, Peter C; Zopf, Yurdagül

    2016-05-25

    The concept of the brain-gut axis describes the communication between the central and enteric nervous system. The exchange of information takes place in both directions. The great advances in molecular medicine in recent years led to the discovery of an enormous number of microorganisms in the intestine (gut microbiome), which greatly affect the function of the brain-gut axis. Overview Numerous studies indicate that the dysfunction of the brain-gut axis could lead to both inflammatory and functional diseases of the gastrointestinal tract. Moreover, it was shown that a faulty composition of the gut microbiota in childhood influences the maturation of the central nervous system and thus may favor the development of mental disorders such as autism, depression, or other. An exact causal relationship between psyche and microbiome must be clarified by further studies in order to find new therapeutic options.

  9. The microbiome-gut-brain axis in health and disease

    OpenAIRE

    Dinan, Timothy G.; Cryan, John F.

    2017-01-01

    Gut microbes are capable of producing most neurotransmitters found in the human brain. While these neurotransmitters primarily act locally in the gut, modulating the enteric nervous system, evidence is now accumulating to support the view that gut microbes through multiple mechanisms can influence central neurochemistry and behavior. This has been described as a fundamental paradigm shift in neuroscience. Bifidobacteria for example can produce and increase plasma levels of the serotonin precu...

  10. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    Science.gov (United States)

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  11. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  12. Gut microbiota’s effect on mental health: The gut-brain axis

    Directory of Open Access Journals (Sweden)

    Megan Clapp

    2017-09-01

    Full Text Available The bidirectional communication between the central nervous system and gut microbiota, referred to as the gut-brain-axis, has been of significant interest in recent years. Increasing evidence has associated gut microbiota to both gastrointestinal and extragastrointestinal diseases. Dysbiosis and inflammation of the gut have been linked to causing several mental illnesses including anxiety and depression, which are prevalent in society today. Probiotics have the ability to restore normal microbial balance, and therefore have a potential role in the treatment and prevention of anxiety and depression. This review aims to discuss the development of the gut microbiota, the linkage of dysbiosis to anxiety and depression, and possible applications of probiotics to reduce symptoms.

  13. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    Science.gov (United States)

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  14. Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System.

    Science.gov (United States)

    Cong, Xiaomei; Henderson, Wendy A; Graf, Joerg; McGrath, Jacqueline M

    2015-10-01

    Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.

  15. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  16. The brain-gut interaction: the conversation and the implications ...

    African Journals Online (AJOL)

    Bi-directional interactions between the gut and the brain play a role in health and disease. It is involved in glucose homeostasis, satiety and obesity, functional gastrointestinal disorders and possibly in inflammatory disorders such as inflammatory bowel disease. Data is starting to elucidate the conversation between the mini ...

  17. The brain-gut interaction: the conversation and the implications

    African Journals Online (AJOL)

    experience? If we look ... hormonal system.3 The brain-gut axis can be compared with a complex ... efferent neurons.11 The part of the nervous system that is connected with the .... habits.16,22 In addition, there is a substantial psychological co-morbidity .... Research focusing on the role of anxiety in the exacerbation of IBS.

  18. Brain-Gut-Microbe Communication in Health and Disease

    OpenAIRE

    Sue eGrenham; Gerard eClarke; Gerard eClarke; John F Cryan; John F Cryan; Timothy G Dinan; Timothy G Dinan

    2011-01-01

    Bidirectional signalling between the gastrointestinal tract and the brain is regulated at neural, hormonal and immunological levels. This construct is known as the brain-gut axis and is vital for maintaining homeostasis. Bacterial colonisation of the intestine plays a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signalling. Recent research advances have seen a tremendous i...

  19. The gut-brain interaction in opioid tolerance.

    Science.gov (United States)

    Akbarali, Hamid I; Dewey, William L

    2017-12-01

    The prevailing opioid crisis has necessitated the need to understand mechanisms leading to addiction and tolerance, the major contributors to overdose and death and to develop strategies for developing drugs for pain treatment that lack abuse liability and side-effects. Opioids are commonly used for treatment of pain and symptoms of inflammatory bowel disease. The significant effect of opioids in the gut, both acute and chronic, includes persistent constipation and paradoxically may also worsen pain symptoms. Recent work has suggested a significant role of the gastrointestinal microbiome in behavioral responses to opioids, including the development of tolerance to its pain-relieving effects. In this review, we present current concepts of gut-brain interaction in analgesic tolerance to opioids and suggest that peripheral mechanisms emanating from the gut can profoundly affect central control of opioid function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals.

    Science.gov (United States)

    Sarkar, Amar; Lehto, Soili M; Harty, Siobhán; Dinan, Timothy G; Cryan, John F; Burnet, Philip W J

    2016-11-01

    Psychobiotics were previously defined as live bacteria (probiotics) which, when ingested, confer mental health benefits through interactions with commensal gut bacteria. We expand this definition to encompass prebiotics, which enhance the growth of beneficial gut bacteria. We review probiotic and prebiotic effects on emotional, cognitive, systemic, and neural variables relevant to health and disease. We discuss gut-brain signalling mechanisms enabling psychobiotic effects, such as metabolite production. Overall, knowledge of how the microbiome responds to exogenous influence remains limited. We tabulate several important research questions and issues, exploration of which will generate both mechanistic insights and facilitate future psychobiotic development. We suggest the definition of psychobiotics be expanded beyond probiotics and prebiotics to include other means of influencing the microbiome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Irritable bowel syndrome: A microbiome-gut-brain axis disorder?

    Science.gov (United States)

    Kennedy, Paul J; Cryan, John F; Dinan, Timothy G; Clarke, Gerard

    2014-01-01

    Irritable bowel syndrome (IBS) is an extremely prevalent but poorly understood gastrointestinal disorder. Consequently, there are no clear diagnostic markers to help diagnose the disorder and treatment options are limited to management of the symptoms. The concept of a dysregulated gut-brain axis has been adopted as a suitable model for the disorder. The gut microbiome may play an important role in the onset and exacerbation of symptoms in the disorder and has been extensively studied in this context. Although a causal role cannot yet be inferred from the clinical studies which have attempted to characterise the gut microbiota in IBS, they do confirm alterations in both community stability and diversity. Moreover, it has been reliably demonstrated that manipulation of the microbiota can influence the key symptoms, including abdominal pain and bowel habit, and other prominent features of IBS. A variety of strategies have been taken to study these interactions, including probiotics, antibiotics, faecal transplantations and the use of germ-free animals. There are clear mechanisms through which the microbiota can produce these effects, both humoral and neural. Taken together, these findings firmly establish the microbiota as a critical node in the gut-brain axis and one which is amenable to therapeutic interventions. PMID:25339800

  2. Brain-Gut-Microbe Communication in Health and Disease

    Directory of Open Access Journals (Sweden)

    Sue eGrenham

    2011-12-01

    Full Text Available Bidirectional signalling between the gastrointestinal tract and the brain is regulated at neural, hormonal and immunological levels. This construct is known as the brain-gut axis and is vital for maintaining homeostasis. Bacterial colonisation of the intestine plays a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS signalling. Recent research advances have seen a tremendous improvement in our understanding of the scale, diversity and importance of the gut microbiome. This has been reflected in the form of a revised nomenclature to the more inclusive brain-gut-enteric microbiota axis and a sustained research effort to establish how communication along this axis contributes to both normal and pathological conditions. In this review, we will briefly discuss the critical components of this axis and the methodological challenges that have been presented in attempts to define what constitutes a normal microbiota and chart its temporal development. Emphasis is placed on the new research narrative that confirms the critical influence of the microbiota on mood and behaviour. Mechanistic insights are provided with examples of both neural and humoral routes through which these effects can be mediated. The evidence supporting a role for the enteric flora in brain-gut axis disorders is explored with the spotlight on the clinical relevance for irritable bowel syndrome (IBS, a stress-related functional gastrointestinal disorder. We also critically evaluate the therapeutic opportunities arising from this research and consider in particular whether targeting the microbiome might represent a valid strategy for the management of CNS disorders and ponder the pitfalls inherent in such an approach. Despite the considerable challenges that lie ahead, this is an exciting area of research and one that is destined to remain the centre of focus for some

  3. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?

    Science.gov (United States)

    Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2016-03-01

    The gut-brain axis is a bi-directional integrated system composed by immune, endocrine, and neuronal components by which the gap between the gut microbiota and the brain is significantly impacted. An increasing number of different gut microbial species are now postulated to regulate brain function in health and disease. The westernized diet is hypothesized to be the cause of the current obesity levels in many countries, a major socio-economical health problem. Experimental and epidemiological evidence suggest that the gut microbiota is responsible for significant immunologic, neuronal, and endocrine changes that lead to obesity. We hypothesize that the gut microbiota, and changes associated with diet, affect the gut-brain axis and may possibly contribute to the development of mental illness. In this review, we discuss the links between diet, gut dysbiosis, obesity, and immunologic and neurologic diseases that impact brain function and behavior.

  4. Gut-Brain Glucose Signaling in Energy Homeostasis.

    Science.gov (United States)

    Soty, Maud; Gautier-Stein, Amandine; Rajas, Fabienne; Mithieux, Gilles

    2017-06-06

    Intestinal gluconeogenesis is a recently identified function influencing energy homeostasis. Intestinal gluconeogenesis induced by specific nutrients releases glucose, which is sensed by the nervous system surrounding the portal vein. This initiates a signal positively influencing parameters involved in glucose control and energy management controlled by the brain. This knowledge has extended our vision of the gut-brain axis, classically ascribed to gastrointestinal hormones. Our work raises several questions relating to the conditions under which intestinal gluconeogenesis proceeds and may provide its metabolic benefits. It also leads to questions on the advantage conferred by its conservation through a process of natural selection. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis.

    Science.gov (United States)

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G; Cryan, John F

    2016-04-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult. © The Author(s) 2016.

  6. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    Science.gov (United States)

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  7. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice.

    Science.gov (United States)

    Ma, Elise L; Smith, Allen D; Desai, Neemesh; Cheung, Lumei; Hanscom, Marie; Stoica, Bogdan A; Loane, David J; Shea-Donohue, Terez; Faden, Alan I

    2017-11-01

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Neurophysiology of the "Celiac Brain": Disentangling Gut-Brain Connections.

    Science.gov (United States)

    Pennisi, Manuela; Bramanti, Alessia; Cantone, Mariagiovanna; Pennisi, Giovanni; Bella, Rita; Lanza, Giuseppe

    2017-01-01

    Celiac disease (CD) can be considered a complex multi-organ disorder with highly variable extra-intestinal, including neurological, involvement. Cerebellar ataxia, peripheral neuropathy, seizures, headache, cognitive impairment, and neuropsychiatric diseases are complications frequently reported. These manifestations may be present at the onset of the typical disease or become clinically evident during its course. However, CD subjects with subclinical neurological involvement have also been described, as well as patients with clear central and/or peripheral nervous system and intestinal histopathological disease features in the absence of typical CD manifestations. Based on these considerations, a sensitive and specific diagnostic method that is able to detect early disease process, progression, and complications is desirable. In this context, neurophysiological techniques play a crucial role in the non-invasive assessment of central nervous system (CNS) excitability and conductivity. Moreover, some of these tools are known for their valuable role in early diagnosis and follow-up of several neurological diseases or systemic disorders, such as CD with nervous system involvement, even at the subclinical level. This review provides an up-to-date summary of the neurophysiological basis of CD using electroencephalography (EEG), multimodal evoked potentials, and transcranial magnetic stimulation (TMS). The evidence examined here seems to converge on an overall profile of "hyperexcitable celiac brain," which partially recovers after institution of a gluten-free diet (GFD). The main translational correlate is that in case of subclinical neurological involvement or overt unexplained symptoms, neurophysiology could contribute to the diagnosis, assessment, and monitoring of a potentially underlying CD.

  9. Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis.

    Science.gov (United States)

    Chen, Xiyue; Eslamfam, Shabnam; Fang, Luoyun; Qiao, Shiyan; Ma, Xi

    2017-01-01

    Gastrointestinal homeostasis is a dynamic balance under the interaction between the host, GI tract, nutrition and energy metabolism. Glucose is the main energy source in living cells. Thus, glucose metabolic disorders can impair normal cellular function and endanger organisms' health. Diseases that are associated with glucose metabolic disorders such as obesity, diabetes, hypertension, and other metabolic syndromes are in fact life threatening. Digestive system is responsible for food digestion and nutrient absorption. It is also involved in neuronal, immune, and endocrine pathways. In addition, the gut microbiota plays an essential role in initiating signal transduction, and communication between the enteric and central nervous system. Gut-brain axis is composed of enteric neural system, central neural system, and all the efferent and afferent neurons that are involved in signal transduction between the brain and gut-brain. Gut-brain axis is influenced by the gut-microbiota as well as numerous neurotransmitters. Properly regulated gut-brain axis ensures normal digestion, absorption, energy production, and subsequently maintenance of glucose homeostasis. Understanding the underlying regulatory mechanisms of gut-brain axis involved in gluose homeostasis would enable us develop more efficient means of prevention and management of metabolic disease such as diabetic, obesity, and hypertension. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  11. Gut

    DEFF Research Database (Denmark)

    Muscogiuri, Giovanna; Balercia, Giancarlo; Barrea, Luigi

    2017-01-01

    The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes...... which may be related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal microbiota includes trillions of microorganisms but its composition and function may be adversely affected in type 2 diabetes. The intestinal microbiota may be responsible...... metabolism. Thus, the aim of this manuscript is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes, taking into account both hormonal and microbiological aspects....

  12. Irritable bowel syndrome, the microbiota and the gut-brain axis

    DEFF Research Database (Denmark)

    Raskov, Hans; Burcharth, Jakob; Pommergaard, Hans-Christian

    2016-01-01

    Irritable bowel syndrome is a common functional gastrointestinal disorder and it is now evident that irritable bowel syndrome is a multi-factorial complex of changes in microbiota and immunology. The bidirectional neurohumoral integrated communication between the microbiota and the autonomous...... nervous system is called the gut-brain-axis, which integrates brain and GI functions, such as gut motility, appetite and weight. The gut-brain-axis has a central function in the perpetuation of irritable bowel syndrome and the microbiota plays a critical role. The purpose of this article is to review...... recent research concerning the epidemiology of irritable bowel syndrome, influence of microbiota, probiota, gut-brain-axis, and possible treatment modalities on irritable bowel syndrome....

  13. Aging, Brain Size, and IQ.

    Science.gov (United States)

    Bigler, Erin D.; And Others

    1995-01-01

    Whether cross-sectional rates of decline for brain volume and the Performance Intellectual Quotient of the Wechsler Adult Intelligence Scale-Revised were equivalent over the years 16 to 65 was studied with 196 volunteers. Results indicate remarkably similar rates of decline in perceptual-motor functions and aging brain volume loss. (SLD)

  14. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors.

    Science.gov (United States)

    Sylvia, Kristyn E; Demas, Gregory E

    2018-03-01

    The expression of a wide range of social and affective behaviors, including aggression and investigation, as well as anxiety- and depressive-like behaviors, involves interactions among many different physiological systems, including the neuroendocrine and immune systems. Recent work suggests that the gut microbiome may also play a critical role in modulating behavior and likely functions as an important integrator across physiological systems. Microbes within the gut may communicate with the brain via both neural and humoral pathways, providing numerous avenues of research in the area of the gut-brain axis. We are now just beginning to understand the intricate relationships among the brain, microbiome, and immune system and how they work in concert to influence behavior. The effects of different forms of experience (e.g., changes in diet, immune challenge, and psychological stress) on the brain, gut microbiome, and the immune system have often been studied independently. Though because these systems do not work in isolation, it is essential to shift our focus to the connections among them as we move forward in our investigations of the gut-brain axis, the shaping of behavioral phenotypes, and the possible clinical implications of these interactions. This review summarizes the recent progress the field has made in understanding the important role the gut microbiome plays in the modulation of social and affective behaviors, as well as some of the intricate mechanisms by which the microbiome may be communicating with the brain and immune system. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain.

    Science.gov (United States)

    Kotrschal, Alexander; Rogell, Björn; Bundsen, Andreas; Svensson, Beatrice; Zajitschek, Susanne; Brännström, Ioana; Immler, Simone; Maklakov, Alexei A; Kolm, Niclas

    2013-01-21

    The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the "expensive-tissue hypothesis"). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence, and the theory remains controversial. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis, and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Dynamics of Gut-Brain Communication Underlying Hunger.

    Science.gov (United States)

    Beutler, Lisa R; Chen, Yiming; Ahn, Jamie S; Lin, Yen-Chu; Essner, Rachel A; Knight, Zachary A

    2017-10-11

    Communication between the gut and brain is critical for homeostasis, but how this communication is represented in the dynamics of feeding circuits is unknown. Here we describe nutritional regulation of key neurons that control hunger in vivo. We show that intragastric nutrient infusion rapidly and durably inhibits hunger-promoting AgRP neurons in awake, behaving mice. This inhibition is proportional to the number of calories infused but surprisingly independent of macronutrient identity or nutritional state. We show that three gastrointestinal signals-serotonin, CCK, and PYY-are necessary or sufficient for these effects. In contrast, the hormone leptin has no acute effect on dynamics of these circuits or their sensory regulation but instead induces a slow modulation that develops over hours and is required for inhibition of feeding. These findings reveal how layers of visceral signals operating on distinct timescales converge on hypothalamic feeding circuits to generate a central representation of energy balance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Gut's Little Brain in Control of Intestinal Immunity

    NARCIS (Netherlands)

    de Jonge, Wouter J.

    2013-01-01

    The gut immune system shares many mediators and receptors with the autonomic nervous system. Good examples thereof are the parasympathetic (vagal) and sympathetic neurotransmitters, for which many immune cell types in a gut context express receptors or enzymes required for their synthesis. For some

  18. Effects of Wen Dan Tang on insomnia-related anxiety and levels of the brain-gut peptide Ghrelin

    OpenAIRE

    Wang, Liye; Song, Yuehan; Li, Feng; Liu, Yan; Ma, Jie; Mao, Meng; Wu, Fengzhi; Wu, Ying; Li, Sinai; Guan, Binghe; Liu, Xiaolan

    2014-01-01

    Ghrelin, a brain-gut peptide that induces anxiety and other abnormal emotions, contributes to the effects of insomnia on emotional behavior. In contrast, the traditional Chinese Medicine remedy Wen Dan Tang reduces insomnia-related anxiety, which may perhaps correspond to changes in the brain-gut axis. This suggests a possible relationship between Wen Dan Tang's pharmacological mechanism and the brain-gut axis. Based on this hypothesis, a sleep-deprived rat model was induced and Wen Dan Tang ...

  19. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.

    Science.gov (United States)

    Sandhu, Kiran V; Sherwin, Eoin; Schellekens, Harriët; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-01-01

    The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The redox interplay between nitrite and nitric oxide: From the gut to the brain

    Directory of Open Access Journals (Sweden)

    Cassilda Pereira

    2013-01-01

    We here discuss the implications of the redox conversion of nitrite to ·NO in the gut, how nitrite-derived ·NO may signal from the digestive to the central nervous system, influencing brain function, as well as a putative ascorbate-driven nitrite/NO pathway occurring in the brain.

  1. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-10-01

    Full Text Available Objectives: To comprehensively review the scientific knowledge on the gut–brain axis. Methods: Various publications on the gut–brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: “gut-brain axis”, “gut-microbiota-brain axis”, “nutrition microbiome/microbiota”, “enteric nervous system”, “enteric glial cells/network”, “gut-brain pathways”, “microbiome immune system”, “microbiome neuroendocrine system” and “intestinal/gut/enteric neuropeptides”. Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium–enteric nervous, endocrine and immune systems and the brain. The basis of the gut–brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons, the neuroendocrine–hypothalamic–pituitary–adrenal (HPA axis (represented by the gut hormones, immune routes (represented by multiple cytokines, microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and

  2. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders; Pape; M?ller; Johannes; Erritz?e

    2015-01-01

    Background: Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains.Methods: Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size.Results: There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains.Conclusions: These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  3. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders Pape Mller; Johannes Erritze

    2015-01-01

    Background:Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains. Methods:Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size. Results:There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains. Conclusions:These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  4. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Jared D. Hoffman

    2017-09-01

    Full Text Available Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD. However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF, gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age and compared those to old mice (18–20 months of age by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to

  5. From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation.

    Science.gov (United States)

    Bajic, Juliana E; Johnston, Ian N; Howarth, Gordon S; Hutchinson, Mark R

    2018-01-01

    The central nervous system and gastrointestinal tract form the primary targets of chemotherapy-induced toxicities. Symptoms associated with damage to these regions have been clinically termed chemotherapy-induced cognitive impairment and mucositis. Whilst extensive literature outlines the complex etiology of each pathology, to date neither chemotherapy-induced side-effect has considered the potential impact of one on the pathogenesis of the other disorder. This is surprising considering the close bidirectional relationship shared between each organ; the gut-brain axis. There are complex multiple pathways linking the gut to the brain and vice versa in both normal physiological function and disease. For instance, psychological and social factors influence motility and digestive function, symptom perception, and behaviors associated with illness and pathological outcomes. On the other hand, visceral pain affects central nociception pathways, mood and behavior. Recent interest highlights the influence of functional gut disorders, such as inflammatory bowel diseases and irritable bowel syndrome in the development of central comorbidities. Gut-brain axis dysfunction and microbiota dysbiosis have served as key portals in understanding the potential mechanisms associated with these functional gut disorders and their effects on cognition. In this review we will present the role gut-brain axis dysregulation plays in the chemotherapy setting, highlighting peripheral-to-central immune signaling mechanisms and their contribution to neuroimmunological changes associated with chemotherapy exposure. Here, we hypothesize that dysregulation of the gut-brain axis plays a major role in the intestinal, psychological and neurological complications following chemotherapy. We pay particular attention to evidence surrounding microbiota dysbiosis, the role of intestinal permeability, damage to nerves of the enteric and peripheral nervous systems and vagal and humoral mediated changes.

  6. Explaining brain size variation: from social to cultural brain.

    Science.gov (United States)

    van Schaik, Carel P; Isler, Karin; Burkart, Judith M

    2012-05-01

    Although the social brain hypothesis has found near-universal acceptance as the best explanation for the evolution of extensive variation in brain size among mammals, it faces two problems. First, it cannot account for grade shifts, where species or complete lineages have a very different brain size than expected based on their social organization. Second, it cannot account for the observation that species with high socio-cognitive abilities also excel in general cognition. These problems may be related. For birds and mammals, we propose to integrate the social brain hypothesis into a broader framework we call cultural intelligence, which stresses the importance of the high costs of brain tissue, general behavioral flexibility and the role of social learning in acquiring cognitive skills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment

    Directory of Open Access Journals (Sweden)

    Youhua Xu

    2017-04-01

    Full Text Available Progressive cognitive dysfunction is a central characteristic of diabetic encephalopathy (DE. With an aging population, the incidence of DE is rising and it has become a major threat that seriously affects public health. Studies within this decade have indicated the important role of risk factors such as oxidative stress and inflammation on the development of cognitive impairment. With the recognition of the two-way communication between gut and brain, recent investigation suggests that “microbiota-gut-brain axis” also plays a pivotal role in modulating both cognition function and endocrine stability. This review aims to systemically elucidate the underlying impact of diabetes on cognitive impairment.

  8. Brain gut microbiome interactions and functional bowel disorders

    Science.gov (United States)

    Alterations in the bidirectional interactions between the intestine and the nervous system have important roles in the pathogenesis of irritable bowel syndrome (IBS). A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. A small and poorly defined r...

  9. The problem with brain GUTs: conflation of different senses of "prediction" threatens metaphysical disaster.

    Science.gov (United States)

    Anderson, Michael L; Chemero, Tony

    2013-06-01

    Clark appears to be moving toward epistemic internalism, which he once rightly rejected. This results from a double over-interpretation of predictive coding's significance. First, Clark argues that predictive coding offers a Grand Unified Theory (GUT) of brain function. Second, he over-reads its epistemic import, perhaps even conflating causal and epistemic mediators. We argue instead for a plurality of neurofunctional principles.

  10. Serotonin: A mediator of the gut-brain axis in multiple sclerosis.

    Science.gov (United States)

    Malinova, Tsveta S; Dijkstra, Christine D; de Vries, Helga E

    2017-11-01

    The significance of the gut microbiome for the pathogenesis of multiple sclerosis (MS) has been established, although the underlying signaling mechanisms of this interaction have not been sufficiently explored. We address this point and use serotonin (5-hydroxytryptamine (5-HT))-a microbial-modulated neurotransmitter (NT) as a showcase to demonstrate that NTs regulated by the gut microbiome are potent candidates for mediators of the gut-brain axis in demyelinating disorders. Methods, Results, and Conclusion: Our comprehensive overview of literature provides evidence that 5-HT levels in the gut are controlled by the microbiome, both via secretion and through regulation of metabolites. In addition, we demonstrate that the gut microbiome can influence the formation of the serotonergic system (SS) in the brain. We also show that SS alterations have been related to MS directly-altered expression of 5-HT transporters in central nervous system (CNS) and indirectly-beneficial effects of 5-HT modulating drugs on the course of the disease and higher prevalence of depression in patients with MS. Finally, we discuss briefly the role of other microbiome-modulated NTs such as γ-aminobutyric acid and dopamine in MS to highlight a new direction for future research aiming to relate microbiome-regulated NTs to demyelinating disorders.

  11. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome.

    Science.gov (United States)

    Moloney, Rachel D; Johnson, Anthony C; O'Mahony, Siobhain M; Dinan, Timothy G; Greenwood-Van Meerveld, Beverley; Cryan, John F

    2016-02-01

    Visceral pain is a global term used to describe pain originating from the internal organs of the body, which affects a significant proportion of the population and is a common feature of functional gastrointestinal disorders (FGIDs) such as irritable bowel syndrome (IBS). While IBS is multifactorial, with no single etiology to completely explain the disorder, many patients also experience comorbid behavioral disorders, such as anxiety or depression; thus, IBS is described as a disorder of the gut-brain axis. Stress is implicated in the development and exacerbation of visceral pain disorders. Chronic stress can modify central pain circuitry, as well as change motility and permeability throughout the gastrointestinal (GI) tract. More recently, the role of the gut microbiota in the bidirectional communication along the gut-brain axis, and subsequent changes in behavior, has emerged. Thus, stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviors. This review will highlight the evidence by which stress and the gut microbiota interact in the regulation of visceral nociception. We will focus on the influence of stress on the microbiota and the mechanisms by which microbiota can affect the stress response and behavioral outcomes with an emphasis on visceral pain. © 2015 John Wiley & Sons Ltd.

  12. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease.

    Science.gov (United States)

    Sundman, Mark H; Chen, Nan-Kuei; Subbian, Vignesh; Chou, Ying-Hui

    2017-11-01

    As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral

  13. Brain-gut axis and mucosal immunity: a perspective on mucosal psychoneuroimmunology.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    The role of the brain-gut axis has traditionally been investigated in relation to intestinal motility, secretion, and vascularity. More recently, the concept of brain-gut dialogue has extended to the relationship between the nervous system and mucosal immune function. There is compelling evidence for a reciprocal or bi-directional communication between the immune system and the neuroendocrine system. This is mediated, in part, by shared ligands (chemical messengers) and receptors that are common to the immune and nervous systems. Although the concept of psychoneuroimmunology and neuroimmune cross-talk has been studied primarily in the context of the systemic immune system, it is likely to have special significance in the gut. The mucosal immune system is anatomically, functionally, and operationally distinct from the systemic immune system and is subject to independent regulatory signals. Furthermore, the intestinal mucosal immune system operates in a local milieu that depends on a dense innervation for its integrity, with juxtaposition of neuroendocrine cells and mucosal immune cells. An overview of evidence for the biologic plausibility of a brain-gut-immune axis is presented and its potential relevance to mucosal inflammatory disorders is discussed.

  14. Intestinal microbiome-gut-brain axis and irritable bowel syndrome.

    Science.gov (United States)

    Moser, Gabriele; Fournier, Camille; Peter, Johannes

    2018-03-01

    Psychological comorbidity is highly present in irritable bowel syndrome (IBS). Recent research points to a role of intestinal microbiota in visceral hypersensitivity, anxiety, and depression. Increased disease reactivity to psychological stress has been described too. A few clinical studies have attempted to identify features of dysbiosis in IBS. While animal studies revealed strong associations between stress and gut microbiota, studies in humans are rare. This review covers the most important studies on intestinal microbial correlates of psychological and clinical features in IBS, including stress, anxiety, and depression.

  15. Relative brain size and morphology of some South African bats ...

    African Journals Online (AJOL)

    Measures of relative brain size and brain macromorphology are described for four species of Microchiroptera, two from the Vespertilionidae and two from the Rhinolophidae, and two species from the Pteropodidae (Megachiroptera). Four brain parameters (brain length, hemisphere length, brain width and brain height) were ...

  16. Importance of the gut-brain axis in the control of glucose homeostasis.

    Science.gov (United States)

    Migrenne, Stéphanie; Marsollier, Nicolas; Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2006-12-01

    Adult mammals finely match glucose production to glucose utilization, thus allowing glycaemia to be maintained in a physiological range of 0.8-1.2mg/dl whatever the energetic status of the mammal (i.e. fed or fasted, rested or exercised). To accomplish this, peripheral signals originating from the gut 'inform' the central nervous system, which in turn is able to monitor the status of both peripheral glucose stores and ongoing fuel availability. Indeed, both secretion and action of hormones regulating endogenous glucose production and utilization are regulated by the autonomic nervous system. These gut signals are either hormonal (e.g. glucagon-like peptide-1, ghrelin and cholecystokinine) or neuronal (e.g. afferent vagus nerve fibres). Recent data, combined with the development of incretin analogues for treatment of diabetes, highlight the importance of the gut-brain axis, especially glucagon-like peptide-1 and ghrelin, in the control of glucose homeostasis.

  17. Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse.

    Science.gov (United States)

    Scott, Karen A; Ida, Masayuki; Peterson, Veronica L; Prenderville, Jack A; Moloney, Gerard M; Izumo, Takayuki; Murphy, Kiera; Murphy, Amy; Ross, R Paul; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-10-01

    Over the last decade, there has been increased interest in the role of the gut microbiome in health including brain health. This is by no means a new theory; Elie Metchnikoff proposed over a century ago that targeting the gut by consuming lactic acid bacteria such as those in yogurt, could improve or delay the onset of cognitive decline associated with ageing. However, there is limited information characterising the relationship between the behavioural and physiological sequelae of ageing and alterations in the gut microbiome. To this end, we assessed the behavioural, physiological and caecal microbiota profile of aged male mice. Older mice (20-21months old) exhibited deficits in spatial memory and increases in anxiety-like behaviours compared to younger mice (2-3months old). They also exhibited increased gut permeability, which was directly correlated with elevations in peripheral pro-inflammatory cytokines. Furthermore, stress exacerbated the gut permeability of aged mice. Examination of the caecal microbiota revealed significant increases in phylum TM7, family Porphyromonadaceae and genus Odoribacter of aged mice. This represents a shift of aged microbiota towards a profile previously associated with inflammatory disease, particularly gastrointestinal and liver disorders. Furthermore, Porphyromonadaceae, which has also been associated with cognitive decline and affective disorders, was directly correlated with anxiety-like behaviour in aged mice. These changes suggest that changes in the gut microbiota and associated increases in gut permeability and peripheral inflammation may be important mediators of the impairments in behavioural, affective and cognitive functions seen in ageing. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation.

    Science.gov (United States)

    Petra, Anastasia I; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M; Conti, Pio; Theoharides, Theoharis C

    2015-05-01

    Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  19. Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids.

    Science.gov (United States)

    Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Séverine D; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2015-01-01

    The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirements of encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerning how energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment into other costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been tested in homeothermic animals and the existing data are inconclusive. However, there are good reasons to believe that energetic limitations might play a role in large-scale patterns of brain size evolution also in ectothermic vertebrates. Here, we test these hypotheses in a group of ectothermic vertebrates, the Lake Tanganyika cichlid fishes. After controlling for the effect of shared ancestry and confounding ecological variables, we find a negative association between brain size and gut size. Furthermore, we find that the evolution of a larger brain is accompanied by increased reproductive investment into egg size and parental care. Our results indicate that the energetic costs of encephalization may be an important general factor involved in the evolution of brain size also in ectothermic vertebrates. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. Maternal separation as a model of brain-gut axis dysfunction.

    LENUS (Irish Health Repository)

    O'Mahony, Siobhain M

    2011-03-01

    Early life stress has been implicated in many psychiatric disorders ranging from depression to anxiety. Maternal separation in rodents is a well-studied model of early life stress. However, stress during this critical period also induces alterations in many systems throughout the body. Thus, a variety of other disorders that are associated with adverse early life events are often comorbid with psychiatric illnesses, suggesting a common underlying aetiology. Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is thought to involve a dysfunctional interaction between the brain and the gut. Essential aspects of the brain-gut axis include spinal pathways, the hypothalamic pituitary adrenal axis, the immune system, as well as the enteric microbiota. Accumulating evidence suggest that stress, especially in early life, is a predisposing factor to IBS.

  1. [Regulatory effect of Erbao granules on brain-gut peptide in juvenile animal model of anorexia].

    Science.gov (United States)

    Zhang, Y; Du, Y; Wang, S

    2000-10-01

    To study the regulatory effect of Erbao granules (EBG) on central and peripheral brain-gut peptide in juvenile animal model of anorexia. Juvenile rat model of anorexia was established by imitating the major cause of infantile anorexia and treated with EBG. The cholocystokinin-octapeptide (CCK-8) and beta-endorphin (beta-EP) concentration in hypothalamus, antrum pyloricum and peripheral blood were examined by radioimmunoassay. CCK-8 concentration in hypothalamus and plasma in the model rats increased (P anorexia model.

  2. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study.

    Science.gov (United States)

    Koloski, N A; Jones, M; Talley, N J

    2016-09-01

    Traditionally, functional gastrointestinal disorders (FGIDs) are conceptualised as originating in the brain via stress pathways (brain-to-gut). It is uncertain how many with irritable bowel syndrome (IBS) and functional dyspepsia (FD) have a gut origin of symptoms (gut-to-brain pathway). To determine if there is a distinct brain-to-gut FGID (where psychological symptoms begin first) and separately a distinct gut-to-brain FGID (where gut symptoms start first). A prospective random population sample from Newcastle, Australia who responded to a validated survey in 2012 and completed a 1-year follow-up survey (n = 1900). The surveys contained questions on Rome III IBS and FD and the Hospital Anxiety and Depression Scale. We found that higher levels of anxiety and depression at baseline were significant predictors of developing IBS (OR = 1.31; 95% CI 1.06-1.61, P = 0.01; OR = 1.54; 95% CI 1.29-1.83, P intestinal features in many cases. © 2016 John Wiley & Sons Ltd.

  3. Ecological correlates of relative brain size in some South African ...

    African Journals Online (AJOL)

    Relative brain size (size of the brain once body size effects have been removed) has been calculated for 16 species of rodent from South Africa and is shown to vary with six species having a positive RBS (that is a brain larger than expected) and 10 a negative RBS. Arboreal species such as Paraxerus cepapi and ...

  4. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis

    OpenAIRE

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G.; Cryan, John F.

    2016-01-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focu...

  5. Neuroimmunomodulation of the young brain. Nutrition, a gut feeling

    OpenAIRE

    de Theije, C.G.M.

    2014-01-01

    Neurodevelopmental disorders, such as autism spectrum disorder (ASD), are heterogeneous conditions, in which both genetic predisposition and environmental factors play a role. Prenatal environmental factors such as maternal immune activation, deficient nutrition, and drugs use during pregnancy increase the risk of neurodevelopmental disorders in the newborn. Also during postnatal development, environmental factors can have a persistent impact on brain development. It is hypothesized that (all...

  6. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders.

    Science.gov (United States)

    Luan, Hemi; Wang, Xian; Cai, Zongwei

    2017-11-12

    Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the

  7. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  8. Zinc in Gut-Brain Interaction in Autism and Neurological Disorders

    Science.gov (United States)

    Vela, Guillermo; Stark, Peter; Socha, Michael; Sauer, Ann Katrin; Hagmeyer, Simone; Grabrucker, Andreas M.

    2015-01-01

    A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life. PMID:25878905

  9. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?

    Science.gov (United States)

    Bourassa, Megan W; Alim, Ishraq; Bultman, Scott J; Ratan, Rajiv R

    2016-06-20

    As interest in the gut microbiome has grown in recent years, attention has turned to the impact of our diet on our brain. The benefits of a high fiber diet in the colon have been well documented in epidemiological studies, but its potential impact on the brain has largely been understudied. Here, we will review evidence that butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, can improve brain health. Butyrate has been extensively studied as a histone deacetylase (HDAC) inhibitor but also functions as a ligand for a subset of G protein-coupled receptors and as an energy metabolite. These diverse modes of action make it well suited for solving the wide array of imbalances frequently encountered in neurological disorders. In this review, we will integrate evidence from the disparate fields of gastroenterology and neuroscience to hypothesize that the metabolism of a high fiber diet in the gut can alter gene expression in the brain to prevent neurodegeneration and promote regeneration. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration

    Science.gov (United States)

    Dinan, Timothy G.

    2016-01-01

    Abstract There is a growing realisation that the gut–brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age‐related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long‐term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics. PMID:27641441

  11. Optimizing full-brain coverage in human brain MRI through population distributions of brain size

    NARCIS (Netherlands)

    Mennes, M.; Jenkinson, M.; Valabregue, R.; Buitelaar, J.K.; Beckmann, C.F.; Smith, S.

    2014-01-01

    When defining an MRI protocol, brain researchers need to set multiple interdependent parameters that define repetition time (TR), voxel size, field-of-view (FOV), etc. Typically, researchers aim to image the full brain, making the expected FOV an important parameter to consider. Especially in 2D-EPI

  12. Gut Microbiota Profiling and Gut-Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections.

    Science.gov (United States)

    Quagliariello, Andrea; Del Chierico, Federica; Russo, Alessandra; Reddel, Sofia; Conte, Giulia; Lopetuso, Loris R; Ianiro, Gianluca; Dallapiccola, Bruno; Cardona, Francesco; Gasbarrini, Antonio; Putignani, Lorenza

    2018-01-01

    Pediatric acute-onset neuropsychiatric syndrome (PANS) and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections syndrome (PANDAS) are conditions that impair brain normal neurologic function, resulting in the sudden onset of tics, obsessive-compulsive disorder, and other behavioral symptoms. Recent studies have emphasized the crosstalk between gut and brain, highlighting how gut composition can influence behavior and brain functions. Thus, the present study investigates the relationship between PANS/PANDAS and gut microbiota ecology. The gut composition of a cohort of 30 patients with PANS/PANDAS was analyzed and compared to control subjects using 16S rRNA-based metagenomics. Data were analyzed for their α- and β-diversity; differences in bacterial distribution were detected by Wilcoxon and LEfSe tests, while metabolic profile was predicted via PICRUSt software. These analyses demonstrate the presence of an altered bacterial community structure in PANS/PANDAS patients with respect to controls. In particular, ecological analysis revealed the presence of two main clusters of subjects based on age range. Thus, to avoid age bias, data from patients and controls were split into two groups: 4-8 years old and >9 years old. The younger PANS/PANDAS group was characterized by a strong increase in Bacteroidetes; in particular, Bacteroides , Odoribacter , and Oscillospira were identified as potential microbial biomarkers of this composition type. Moreover, this group exhibited an increase of several pathways concerning the modulation of the antibody response to inflammation within the gut as well as a decrease in pathways involved in brain function (i.e., SCFA, D-alanine and tyrosine metabolism, and the dopamine pathway). The older group of patients displayed a less uniform bacterial profile, thus impairing the identification of distinct biomarkers. Finally, Pearson's analysis between bacteria and anti-streptolysin O titer reveled a

  13. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality

    Directory of Open Access Journals (Sweden)

    Augusto Jacobo Montiel-Castro

    2013-10-01

    Full Text Available Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called ´microbiota-gut-vagus-brain axis,´ is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile.

  14. Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis".

    Science.gov (United States)

    Dou, Yannong; Luo, Jinque; Wu, Xin; Wei, Zhifeng; Tong, Bei; Yu, Juntao; Wang, Ting; Zhang, Xinyu; Yang, Yan; Yuan, Xusheng; Zhao, Peng; Xia, Yufeng; Hu, Huijuan; Dai, Yue

    2018-01-06

    Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin. The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund's adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording. Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA. Our results demonstrate that curcumin attenuates CIA through the "gut-brain axis" by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.

  15. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis

    Science.gov (United States)

    Moya-Pérez, Angela; Luczynski, Pauline; Renes, Ingrid B.; Wang, Shugui; Borre, Yuliya; Anthony Ryan, C.; Knol, Jan; Stanton, Catherine; Dinan, Timothy G.

    2017-01-01

    Microbial colonization of the gastrointestinal tract is an essential process that modulates host physiology and immunity. Recently, researchers have begun to understand how and when these microorganisms colonize the gut and the early-life factors that impact their natural ecological establishment. The vertical transmission of maternal microbes to the offspring is a critical factor for host immune and metabolic development. Increasing evidence also points to a role in the wiring of the gut-brain axis. This process may be altered by various factors such as mode of delivery, gestational age at birth, the use of antibiotics in early life, infant feeding, and hygiene practices. In fact, these early exposures that impact the intestinal microbiota have been associated with the development of diseases such as obesity, type 1 diabetes, asthma, allergies, and even neurodevelopmental disorders. The present review summarizes the impact of cesarean birth on the gut microbiome and the health status of the developing infant and discusses possible preventative and restorative strategies to compensate for early-life microbial perturbations. PMID:28379454

  16. Bridging meta-analysis and the comparative method: a test of seed size effect on germination after frugivores' gut passage.

    Science.gov (United States)

    Verdú, Miguel; Traveset, Anna

    2004-02-01

    Most studies using meta-analysis try to establish relationships between traits across taxa from interspecific databases and, thus, the phylogenetic relatedness among these taxa should be taken into account to avoid pseudoreplication derived from common ancestry. This paper illustrates, with a representative example of the relationship between seed size and the effect of frugivore's gut on seed germination, that meta-analytic procedures can also be phylogenetically corrected by means of the comparative method. The conclusions obtained in the meta-analytical and phylogenetical approaches are very different. The meta-analysis revealed that the positive effects that gut passage had on seed germination increased with seed size in the case of gut passage through birds whereas decreased in the case of gut passage through non-flying mammals. However, once the phylogenetic relatedness among plant species was taken into account, the effects of gut passage on seed germination did not depend on seed size and were similar between birds and non-flying mammals. Some methodological considerations are given to improve the bridge between the meta-analysis and the comparative method.

  17. The Expensive-Tissue Hypothesis in Vertebrates: Gut Microbiota Effect, a Review

    Directory of Open Access Journals (Sweden)

    Chun Hua Huang

    2018-06-01

    Full Text Available The gut microbiota is integral to an organism’s digestive structure and has been shown to play an important role in producing substrates for gluconeogenesis and energy production, vasodilator, and gut motility. Numerous studies have demonstrated that variation in diet types is associated with the abundance and diversity of the gut microbiota, a relationship that plays a significant role in nutrient absorption and affects gut size. The Expensive-Tissue Hypothesis states (ETH that the metabolic requirement of relatively large brains is offset by a corresponding reduction of the other tissues, such as gut size. However, how the trade-off between gut size and brain size in vertebrates is associated with the gut microbiota through metabolic requirements still remains unexplored. Here, we review research relating to and discuss the potential influence of gut microbiota on the ETH.

  18. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis

    Science.gov (United States)

    Jenkins, Trisha A.; Nguyen, Jason C. D.; Polglaze, Kate E.; Bertrand, Paul P.

    2016-01-01

    The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis. PMID:26805875

  19. Food matters: how the microbiome and gut-brain interaction might impact the development and course of anorexia nervosa.

    Science.gov (United States)

    Herpertz-Dahlmann, Beate; Seitz, Jochen; Baines, John

    2017-09-01

    Anorexia nervosa (AN) is one of the most common chronic illnesses in female adolescents and exhibits the highest mortality risk of all psychiatric disorders. Evidence for the effectiveness of psychotherapeutic or psychopharmacological interventions is weak. Mounting data indicate that the gut microbiome interacts with the central nervous system and the immune system by neuroendocrine, neurotransmitter, neurotrophic and neuroinflammatory afferent and efferent pathways. There is growing evidence that the gut microbiota influences weight regulation and psychopathology, such as anxiety and depression. This article reviews how the gut-brain interaction may impact the development and course of AN. A "leaky gut", characterized by antigens traversing the intestinal wall, was demonstrated in an animal model of AN, and could underlie the low-grade inflammation and increased risk of autoimmune diseases found in AN. Moreover, starvation has a substantial impact on the gut microbiome, and diets used for re-nutrition based on animal products may support the growth of bacteria capable of triggering inflammation. As there is currently no empirically derived agreement on therapeutic re-nourishment in AN, this review discusses how consideration of gut-brain interactions may be important for treatment regarding the determination of target weight, rapidity of weight gain, refeeding methods and composition of the diet which might all be of importance to improve long-term outcome of one of the most chronic psychiatric disorders of adolescence.

  20. The Blood-Brain Barrier: Connecting the Gut and the Brain

    OpenAIRE

    Banks, William A.

    2008-01-01

    The BBB prevents the unrestricted exchange of substances between the central nervous system (CNS) and the blood. The blood-brain barrier (BBB) also conveys information between the CNS and the gastrointestinal (GI) tract through several mechanisms. Here, we review three of those mechanisms. First, the BBB selectively transports some peptides and regulatory proteins in the blood-to-brain or the brain-to-blood direction. The ability of GI hormones to affect functions of the BBB, as illustrated b...

  1. Sexual selection and the evolution of brain size in primates.

    Science.gov (United States)

    Schillaci, Michael A

    2006-12-20

    Reproductive competition among males has long been considered a powerful force in the evolution of primates. The evolution of brain size and complexity in the Order Primates has been widely regarded as the hallmark of primate evolutionary history. Despite their importance to our understanding of primate evolution, the relationship between sexual selection and the evolutionary development of brain size is not well studied. The present research examines the evolutionary relationship between brain size and two components of primate sexual selection, sperm competition and male competition for mates. Results indicate that there is not a significant relationship between relative brain size and sperm competition as measured by relative testis size in primates, suggesting sperm competition has not played an important role in the evolution of brain size in the primate order. There is, however, a significant negative evolutionary relationship between relative brain size and the level of male competition for mates. The present study shows that the largest relative brain sizes among primate species are associated with monogamous mating systems, suggesting primate monogamy may require greater social acuity and abilities of deception.

  2. Sexual selection and the evolution of brain size in primates.

    Directory of Open Access Journals (Sweden)

    Michael A Schillaci

    Full Text Available Reproductive competition among males has long been considered a powerful force in the evolution of primates. The evolution of brain size and complexity in the Order Primates has been widely regarded as the hallmark of primate evolutionary history. Despite their importance to our understanding of primate evolution, the relationship between sexual selection and the evolutionary development of brain size is not well studied. The present research examines the evolutionary relationship between brain size and two components of primate sexual selection, sperm competition and male competition for mates. Results indicate that there is not a significant relationship between relative brain size and sperm competition as measured by relative testis size in primates, suggesting sperm competition has not played an important role in the evolution of brain size in the primate order. There is, however, a significant negative evolutionary relationship between relative brain size and the level of male competition for mates. The present study shows that the largest relative brain sizes among primate species are associated with monogamous mating systems, suggesting primate monogamy may require greater social acuity and abilities of deception.

  3. Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis

    Science.gov (United States)

    Tsang, S.W.; Auyeung, K.K.W.; Bian, Z.X.; Ko, J.K.S.

    2016-01-01

    Background Although the precise pathophysiology of irritable bowel syndrome (IBS) remains unknown, it is generally considered to be a disorder of the brain-gut axis, representing the disruption of communication between the brain and the digestive system. The present review describes advances in understanding the pathophysiology and experimental approaches in studying IBS, as well as providing an update of the therapies targeting brain-gut axis in the treatment of the disease. Methods Causal factors of IBS are reviewed. Following this, the preclinical experimental models of IBS will be introduced. Besides, both current and future therapeutic approaches of IBS will be discussed. Results When signal of the brain-gut axis becomes misinterpreted, it may lead to dysregulation of both central and enteric nervous systems, altered intestinal motility, increased visceral sensitivity and consequently contributing to the development of IBS. Interference of the brain-gut axis can be modulated by various psychological and environmental factors. Although there is no existing animal experiment that can represent this complex multifactorial disease, these in vivo models are clinically relevant readouts of gastrointestinal functions being essential to the identification of effective treatments of IBS symptoms as well as their molecular targets. Understanding the brain-gut axis is essential in developing the effective therapy for IBS. Therapies include improvement of GI motor functions, relief of visceral hypersensitivity and pain, attenuation of autonomic dysfunctions and suppression of mucosal immune activation. Conclusion Target-oriented therapies that provide symptomatic, psychological and physiological benefits could surely help to improve the quality of life of IBS patients. PMID:27009115

  4. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain.

    Science.gov (United States)

    Jašarević, Eldin; Howerton, Christopher L; Howard, Christopher D; Bale, Tracy L

    2015-09-01

    The neonate is exposed to the maternal vaginal microbiota during parturition, providing the primary source for normal gut colonization, host immune maturation, and metabolism. These early interactions between the host and microbiota occur during a critical window of neurodevelopment, suggesting early life as an important period of cross talk between the developing gut and brain. Because perturbations in the prenatal environment such as maternal stress increase neurodevelopmental disease risk, disruptions to the vaginal ecosystem could be a contributing factor in significant and long-term consequences for the offspring. Therefore, to examine the hypothesis that changes in the vaginal microbiome are associated with effects on the offspring gut microbiota and on the developing brain, we used genomic, proteomic and metabolomic technologies to examine outcomes in our mouse model of early prenatal stress. Multivariate modeling identified broad proteomic changes to the maternal vaginal environment that influence offspring microbiota composition and metabolic processes essential for normal neurodevelopment. Maternal stress altered proteins related to vaginal immunity and abundance of Lactobacillus, the prominent taxa in the maternal vagina. Loss of maternal vaginal Lactobacillus resulted in decreased transmission of this bacterium to offspring. Further, altered microbiota composition in the neonate gut corresponded with changes in metabolite profiles involved in energy balance, and with region- and sex-specific disruptions of amino acid profiles in the developing brain. Taken together, these results identify the vaginal microbiota as a novel factor by which maternal stress may contribute to reprogramming of the developing brain that may predispose individuals to neurodevelopmental disorders.

  5. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit.

    Science.gov (United States)

    Li, Zhuang; Yi, Chun-Xia; Katiraei, Saeed; Kooijman, Sander; Zhou, Enchen; Chung, Chih Kit; Gao, Yuanqing; van den Heuvel, José K; Meijer, Onno C; Berbée, Jimmy F P; Heijink, Marieke; Giera, Martin; Willems van Dijk, Ko; Groen, Albert K; Rensen, Patrick C N; Wang, Yanan

    2017-11-03

    Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate. To study the contribution of satiety to the metabolic benefits of butyrate, mice were fed a high-fat diet with butyrate, and an additional pair-fed group was included. Mechanistic involvement of the gut-brain neural circuit was investigated in vagotomised mice. Acute oral, but not intravenous, butyrate administration decreased food intake, suppressed the activity of orexigenic neurons that express neuropeptide Y in the hypothalamus, and decreased neuronal activity within the nucleus tractus solitarius and dorsal vagal complex in the brainstem. Chronic butyrate supplementation prevented diet-induced obesity, hyperinsulinaemia, hypertriglyceridaemia and hepatic steatosis, largely attributed to a reduction in food intake. Butyrate also modestly promoted fat oxidation and activated brown adipose tissue (BAT), evident from increased utilisation of plasma triglyceride-derived fatty acids. This effect was not due to the reduced food intake, but explained by an increased sympathetic outflow to BAT. Subdiaphragmatic vagotomy abolished the effects of butyrate on food intake as well as the stimulation of metabolic activity in BAT. Butyrate acts on the gut-brain neural circuit to improve energy metabolism via reducing energy intake and enhancing fat oxidation by activating BAT. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Relative brain size and morphology of some South African bats

    African Journals Online (AJOL)

    1987-04-03

    Apr 3, 1987 ... closely related to basal metabolic rate than ecological factors (Hofman 1983 .... CBS values for the two rhinolophid species, and a single value for the ..... Relative brain size and demographic strategies in didelphid marsupials.

  7. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes.

    Science.gov (United States)

    Clark, Allison; Mach, Núria

    2016-01-01

    Fatigue, mood disturbances, under performance and gastrointestinal distress are common among athletes during training and competition. The psychosocial and physical demands during intense exercise can initiate a stress response activating the sympathetic-adrenomedullary and hypothalamus-pituitary-adrenal (HPA) axes, resulting in the release of stress and catabolic hormones, inflammatory cytokines and microbial molecules. The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including metabolism, endocrine, neuronal and immune function. The gut microbiome and its influence on host behavior, intestinal barrier and immune function are believed to be a critical aspect of the brain-gut axis. Recent evidence in murine models shows that there is a high correlation between physical and emotional stress during exercise and changes in gastrointestinal microbiota composition. For instance, induced exercise-stress decreased cecal levels of Turicibacter spp and increased Ruminococcus gnavus, which have well defined roles in intestinal mucus degradation and immune function. Diet is known to dramatically modulate the composition of the gut microbiota. Due to the considerable complexity of stress responses in elite athletes (from leaky gut to increased catabolism and depression), defining standard diet regimes is difficult. However, some preliminary experimental data obtained from studies using probiotics and prebiotics studies show some interesting results, indicating that the microbiota acts like an endocrine organ (e.g. secreting serotonin, dopamine or other neurotransmitters) and may control the HPA axis in athletes. What is troubling is that dietary recommendations for elite athletes are primarily based on a low consumption of plant polysaccharides, which is associated with reduced microbiota diversity and functionality (e.g. less synthesis of byproducts such as short chain fatty acids and neurotransmitters). As more

  8. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?

    Science.gov (United States)

    Stilling, Roman M; van de Wouw, Marcel; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2016-10-01

    Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders. Indeed, it is clear that host energy metabolism and immune functions critically depend on butyrate as a potent regulator, highlighting butyrate as a key mediator of host-microbe crosstalk. In addition to specific receptors (GPR43/FFAR2; GPR41/FFAR3; GPR109a/HCAR2) and transporters (MCT1/SLC16A1; SMCT1/SLC5A8), its effects are mediated by utilisation as an energy source via the β-oxidation pathway and as an inhibitor of histone deacetylases (HDACs), promoting histone acetylation and stimulation of gene expression in host cells. The latter has also led to the use of butyrate as an experimental drug in models for neurological disorders ranging from depression to neurodegenerative diseases and cognitive impairment. Here we provide a critical review of the literature on butyrate and its effects on multiple aspects of host physiology with a focus on brain function and behaviour. We find fundamental differences in natural butyrate at physiological concentrations and its use as a neuropharmacological agent at rather high, supraphysiological doses in brain research. Finally, we hypothesise that butyrate and other volatile SCFAs produced by microbes may be involved in regulating the impact of the microbiome on behaviour including social communication. Copyright © 2016 Elsevier Ltd. All

  9. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): Influence of body size and temperature.

    Science.gov (United States)

    Hani, Younes Mohamed Ismail; Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile

    2018-01-01

    Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler's index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass.

  10. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): Influence of body size and temperature

    Science.gov (United States)

    Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile

    2018-01-01

    Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler’s index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass. PMID:29614133

  11. Treating autism spectrum disorder with gluten-free and casein-free diet: the underlying microbiota-gut-brain axis mechanisms

    NARCIS (Netherlands)

    Ciéslińska, Anna; Kostyra, Elzbieta; Savelkoul, H.F.J.

    2017-01-01

    There is a rising interest in the use of dietary interventions to
    ameliorate prevalent brain diseases, including Autism Spectrum
    Disorder (ASD). Nowadays, the existence of communication between
    gut and brain is well accepted and thus diet can influence
    brain functioning. A well-known

  12. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health.

    Science.gov (United States)

    Wiley, N C; Dinan, T G; Ross, R P; Stanton, C; Clarke, G; Cryan, J F

    2017-07-01

    The brain-gut-microbiota axis comprises an extensive communication network between the brain, the gut, and the microbiota residing there. Development of a diverse gut microbiota is vital for multiple features of behavior and physiology, as well as many fundamental aspects of brain structure and function. Appropriate early-life assembly of the gut microbiota is also believed to play a role in subsequent emotional and cognitive development. If the composition, diversity, or assembly of the gut microbiota is impaired, this impairment can have a negative impact on host health and lead to disorders such as obesity, diabetes, inflammatory diseases, and even potentially neuropsychiatric illnesses, including anxiety and depression. Therefore, much research effort in recent years has focused on understanding the potential of targeting the intestinal microbiota to prevent and treat such disorders. This review aims to explore the influence of the gut microbiota on host neural function and behavior, particularly those of relevance to stress-related disorders. The involvement of microbiota in diverse neural functions such as myelination, microglia function, neuronal morphology, and blood-brain barrier integrity across the life span, from early life to adolescence to old age, will also be discussed. Nurturing an optimal gut microbiome may also prove beneficial in animal science as a means to manage stressful situations and to increase productivity of farm animals. The implications of these observations are manifold, and researchers are hopeful that this promising body of preclinical work can be successfully translated to the clinic and beyond.

  13. The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain.

    Science.gov (United States)

    Kanji, S; Fonseka, T M; Marshe, V S; Sriretnakumar, V; Hahn, M K; Müller, D J

    2018-02-01

    With the emergence of knowledge implicating the human gut microbiome in the development and regulation of several physiological systems, evidence has accumulated to suggest a role for the gut microbiome in psychiatric conditions and drug response. A complex relationship between the enteric nervous system, the gut microbiota and the central nervous system has been described which allows for the microbiota to influence and respond to a variety of behaviors and psychiatric conditions. Additionally, the use of pharmaceuticals may interact with and alter the microbiota to potentially contribute to adverse effects of the drug. The gut microbiota has been described in several psychiatric disorders including depression and anxiety, but only a few reports have discussed the role of the microbiome in schizophrenia. The following review examines the evidence surrounding the gut microbiota in behavior and psychiatric illness, the role of the microbiota in schizophrenia and the potential for antipsychotics to alter the gut microbiota and promote adverse metabolic events.

  14. A biometric analysis of brain size in micrencephalics.

    Science.gov (United States)

    Hofman, M A

    1984-01-01

    Brain weight and head circumference in micrencephalic patients were analysed as a function of age, height and sex in relation to normal human standards. A quantitative definition of micrencephaly is proposed, which is based on these analyses. Evidence is presented, furthermore, that micrencephalics have a significantly lower brain weight in adolescence than in early childhood, and that this cerebral dystrophy continues throughout adulthood, leading to death in more than 85% of the males and 78% of the females before they reach the age of 30 years. Since this decline in brain weight after approximately 3-5 years of age is not accompanied by a similar reduction in head circumference, the brains of elderly micrencephalic patients no longer occupy the entire cranial cavity. It is evident, therefore, that head circumference in the case of micrencephaly is an unsuitable parameter for estimating brain size.

  15. Sleeve Gastrectomy and Roux-en-Y Gastric Bypass Alter the Gut-Brain Communication

    Directory of Open Access Journals (Sweden)

    L. A. Ballsmider

    2015-01-01

    Full Text Available This study investigated the anatomical integrity of vagal innervation of the gastrointestinal tract following vertical sleeve gastrectomy (VSG and Roux-en-Y gastric bypass (RYGB operations. The retrograde tracer fast blue (FB was injected into the stomach to label vagal neurons originating from nodose ganglion (NG and dorsal motor nucleus of the vagus (DMV. Microglia activation was determined by quantifying changes in the fluorescent staining of hindbrain sections against an ionizing calcium adapter binding molecule 1 (Iba1. Reorganization of vagal afferents in the hindbrain was studied by fluorescent staining against isolectin 4 (IB4. The density of Iba1- and IB4-immunoreactivity was analyzed using Nikon Elements software. There was no difference in the number of FB-labeled neurons located in NG and DMV between VSG and VSG-sham rats. RYGB, but not RYGB-sham rats, showed a dramatic reduction in number of FB-labeled neurons located in the NG and DMV. VSG increased, while the RYGB operation decreased, the density of vagal afferents in the nucleus tractus solitarius (NTS. The RYGB operation, but not the VSG procedure, significantly activated microglia in the NTS and DMV. Results of this study show that the RYGB, but not the VSG procedure, triggers microglia activation in vagal structures and remodels gut-brain communication.

  16. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    Science.gov (United States)

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  17. Mapping glucose-mediated gut-to-brain signalling pathways in humans☆

    Science.gov (United States)

    Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.

    2014-01-01

    Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436

  18. Interactions Between Stress and Sex in Microbial Responses Within the Microbiota-Gut-Brain Axis in a Mouse Model.

    Science.gov (United States)

    Tsilimigras, Matthew C B; Gharaibeh, Raad Z; Sioda, Michael; Gray, Laura; Fodor, Anthony A; Lyte, Mark

    2018-05-01

    Animal models are frequently used to examine stress response, but experiments seldom include females. The connection between the microbiota-gut-brain axis and behavioral stress response is investigated here using a mixed-sex mouse cohort. CF-1 mice underwent alternating days of restraint and forced swim for 19 days (male n = 8, female n = 8) with matching numbers of control animals at which point the 16S rRNA genes of gut microbiota were sequenced. Mixed linear models accounting for stress status and sex with individuals nested in cage to control for cage effects evaluated these data. Murine behaviors in elevated plus-maze, open-field, and light/dark box were investigated. Community-level associations with sex, stress, and their interaction were significant. Males had higher microbial diversity than females (p = .025). Of the 638 operational taxonomic units detected in at least 25% of samples, 94 operational taxonomic units were significant: 31 (stress), 61 (sex), and 34 (sex-stress interaction). Twenty of the 39 behavioral measures were significant for stress, 3 for sex, and 6 for sex-stress. However, no significant associations between behavioral measures and specific microbes were detected. These data suggest sex influences stress response and the microbiota-gut-brain axis and that studies of behavior and the microbiome therefore benefit from consideration of how sex differences drive behavior and microbial community structure. Host stress resilience and absence of associations between stress-induced behaviors with specific microbes suggests that hypothalamic-pituitary-adrenal axis activation represents a threshold for microbial influence on host behavior. Future studies are needed in examining the intersection of sex, stress response, and the microbiota-gut-brain axis.

  19. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection.

    Directory of Open Access Journals (Sweden)

    Jennifer H Campbell

    2014-12-01

    Full Text Available Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab once a week for three weeks beginning on 28 days post-infection (late. Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS, and decreased numbers of monocytes/macrophages and productive infection (SIV p28+, RNA+ in brain and gut. Antibody treatment of six SIV infected monkeys at the time of infection (early for 3 weeks blocked monocyte/macrophage traffic and infection in the CNS, and significantly decreased leukocyte traffic and infection in the gut. SIV - RNA and p28 was absent in the CNS and the gut. SIV DNA was undetectable in brains of five of six early treated macaques, but proviral DNA in guts of treated and control animals was equivalent. Early treated animals had low-to-no plasma LPS and sCD163. These results support the notion that monocyte/macrophage traffic late in infection drives neuronal injury and maintains CNS viral reservoirs and lesions. Leukocyte traffic early in infection seeds the CNS with virus and contributes to productive infection in the gut. Leukocyte traffic early contributes to gut pathology, bacterial translocation, and activation of innate immunity.

  20. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection.

    Science.gov (United States)

    Campbell, Jennifer H; Ratai, Eva-Maria; Autissier, Patrick; Nolan, David J; Tse, Samantha; Miller, Andrew D; González, R Gilberto; Salemi, Marco; Burdo, Tricia H; Williams, Kenneth C

    2014-12-01

    Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab) once a week for three weeks beginning on 28 days post-infection (late). Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS), and decreased numbers of monocytes/macrophages and productive infection (SIV p28+, RNA+) in brain and gut. Antibody treatment of six SIV infected monkeys at the time of infection (early) for 3 weeks blocked monocyte/macrophage traffic and infection in the CNS, and significantly decreased leukocyte traffic and infection in the gut. SIV - RNA and p28 was absent in the CNS and the gut. SIV DNA was undetectable in brains of five of six early treated macaques, but proviral DNA in guts of treated and control animals was equivalent. Early treated animals had low-to-no plasma LPS and sCD163. These results support the notion that monocyte/macrophage traffic late in infection drives neuronal injury and maintains CNS viral reservoirs and lesions. Leukocyte traffic early in infection seeds the CNS with virus and contributes to productive infection in the gut. Leukocyte traffic early contributes to gut pathology, bacterial translocation, and activation of innate immunity.

  1. Targeting the ecology within: The role of the gut-brain axis and human microbiota in drug addiction.

    Science.gov (United States)

    Skosnik, Patrick D; Cortes-Briones, Jose A

    2016-08-01

    Despite major advances in our understanding of the brain using traditional neuroscience, reliable and efficacious treatments for drug addiction have remained elusive. Hence, the time has come to utilize novel approaches, particularly those drawing upon contemporary advances in fields outside of established neuroscience and psychiatry. Put another way, the time has come for a paradigm shift in the addiction sciences. Apropos, a revolution in the area of human health is underway, which is occurring at the nexus between enteric microbiology and neuroscience. It has become increasingly clear that the human microbiota (the vast ecology of bacteria residing within the human organism), plays an important role in health and disease. This is not surprising, as it has been estimated that bacteria living in the human body (approximately 1kg of mass, roughly equivalent to that of the human brain) outnumber human cells 10 to 1. While advances in the understanding of the role of microbiota in other areas of human health have yielded intriguing results (e.g., Clostridium difficile, irritable bowel syndrome, autism, etc.), to date, no systematic programs of research have examined the role of microbiota in drug addiction. The current hypothesis, therefore, is that gut dysbiosis plays a key role in addictive disorders. In the context of this hypothesis, this paper provides a rationale for future research to target the "gut-brain axis" in addiction. A brief background of the gut-brain axis is provided, along with a series of hypothesis-driven ideas outlining potential treatments for addiction via manipulations of the "ecology within." Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.

    Science.gov (United States)

    Bercik, P; Park, A J; Sinclair, D; Khoshdel, A; Lu, J; Huang, X; Deng, Y; Blennerhassett, P A; Fahnestock, M; Moine, D; Berger, B; Huizinga, J D; Kunze, W; McLean, P G; Bergonzelli, G E; Collins, S M; Verdu, E F

    2011-12-01

    The probiotic Bifidobacterium longum NCC3001 normalizes anxiety-like behavior and hippocampal brain derived neurotrophic factor (BDNF) in mice with infectious colitis. Using a model of chemical colitis we test whether the anxiolytic effect of B. longum involves vagal integrity, and changes in neural cell function. Methods  Mice received dextran sodium sulfate (DSS, 3%) in drinking water during three 1-week cycles. Bifidobacterium longum or placebo were gavaged daily during the last cycle. Some mice underwent subdiaphragmatic vagotomy. Behavior was assessed by step-down test, inflammation by myeloperoxidase (MPO) activity and histology. BDNF mRNA was measured in neuroblastoma SH-SY5Y cells after incubation with sera from B. longum- or placebo-treated mice. The effect of B. longum on myenteric neuron excitability was measured using intracellular microelectrodes. Chronic colitis was associated with anxiety-like behavior, which was absent in previously vagotomized mice. B. longum normalized behavior but had no effect on MPO activity or histological scores. Its anxiolytic effect was absent in mice with established anxiety that were vagotomized before the third DSS cycle. B. longum metabolites did not affect BDNF mRNA expression in SH-SY5Y cells but decreased excitability of enteric neurons. In this colitis model, anxiety-like behavior is vagally mediated. The anxiolytic effect of B. longum requires vagal integrity but does not involve gut immuno-modulation or production of BDNF by neuronal cells. As B. longum decreases excitability of enteric neurons, it may signal to the central nervous system by activating vagal pathways at the level of the enteric nervous system. © 2011 Blackwell Publishing Ltd.

  3. The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS

    Directory of Open Access Journals (Sweden)

    Eamonn M.M. Quigley

    2018-01-01

    Full Text Available Irritable bowel syndrome (IBS is one of the most common of all medical disorders worldwide and, while for some it represents no more than a nuisance, for others it imposes significant negative impacts on daily life and activities. IBS is a heterogeneous disorder and may well have a number of causes which may lie anywhere from the external environment to the contents of the gut lumen and from the enteric neuromuscular apparatus and the gut immune system to the central nervous system. Consequently, the paradigm of the gut-brain axis, which includes the participation of these various factors, has proven a useful model to assist clinicians and patients alike in understanding the genesis of symptoms in IBS. Now, given the widespread interest in the gut microbiome in health and disease, in general, reports of disordered enteric bacterial communities in IBS, and experimental data to indicate that components of the gut microbiota can influence brain morphology and function, as well as behavior and cognition, this concept has been extended to encompass the microbiota-gut-brain axis. The implications of this novel concept to the assessment and management of IBS will be explored in this review.

  4. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    Science.gov (United States)

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Brain size is correlated with endangerment status in mammals.

    Science.gov (United States)

    Abelson, Eric S

    2016-02-24

    Increases in relative encephalization (RE), brain size after controlling for body size, comes at a great metabolic cost and is correlated with a host of cognitive traits, from the ability to count objects to higher rates of innovation. Despite many studies examining the implications and trade-offs accompanying increased RE, the relationship between mammalian extinction risk and RE is unknown. I examine whether mammals with larger levels of RE are more or less likely to be at risk of endangerment than less-encephalized species. I find that extant species with large levels of encephalization are at greater risk of endangerment, with this effect being strongest in species with small body sizes. These results suggest that RE could be a valuable asset in estimating extinction vulnerability. Additionally, these findings suggest that the cost-benefit trade-off of RE is different in large-bodied species when compared with small-bodied species. © 2016 The Author(s).

  6. Serotonin: A mediator of the gut-brain axis in multiple sclerosis

    NARCIS (Netherlands)

    Malinova, Tsveta S.; Dijkstra, Christine D.; de Vries, Helga E.

    2017-01-01

    The significance of the gut microbiome for the pathogenesis of multiple sclerosis (MS) has been established, although the underlying signaling mechanisms of this interaction have not been sufficiently explored. We address this point and use serotonin (5-hydroxytryptamine (5-HT))-a

  7. Brain Size, IQ, and Racial-Group Differences: Evidence from Musculoskeletal Traits.

    Science.gov (United States)

    Rushton, J. Philippe; Rushton, Elizabeth W.

    2003-01-01

    Correlated brain size differences with 37 musculoskeletal variables shown in evolutionary textbooks to change with brain size. Findings from a sample of more than 6,000 U.S. military personnel indicate that racial differences in brain size are securely established and are the most likely biological mediators of race differences in intelligence.…

  8. Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis

    Directory of Open Access Journals (Sweden)

    Diling Chen

    2017-12-01

    Full Text Available Gut microbiota influences the central nervous system disorders such as Alzheimer’s disease (AD. The prebiotics and probiotics can improve the host cognition. A previous study demonstrated that fructooligosaccharides from Morinda officinalis (OMO exert effective memory improvements in AD-like animals, thereby considered as potential prebiotics; however, the underlying mechanism still remains enigma. Thus, the present study investigated whether OMO is effective in alleviating AD by targeting the microbiota-gut-brain axis. OMO was administered in rats with AD-like symptoms (D-galactose- and Aβ1-42-induced deficient rats. Significant and systematic deterioration in AD-like animals were identified, including learning and memory abilities, histological changes, production of cytokines, and microbial community shifts. Behavioral experiments demonstrated that OMO administration can ameliorate the learning and memory abilities in both AD-like animals significantly. AD parameters showed that OMO administration cannot only improve oxidative stress and inflammation disorder, but also regulate the synthesis and secretion of neurotransmitter. Histological changes indicated that OMO administration ameliorates the swelling of brain tissues, neuronal apoptosis, and down-regulation of the expression of AD intracellular markers (Tau and Aβ1-42. 16S rRNA sequencing of gut microbiota indicated that OMO administration maintains the diversity and stability of the microbial community. In addition, OMO regulated the composition and metabolism of gut microbiota in inflammatory bowel disease (IBD mice model treated by overdosed antibiotics and thus showed the prebiotic potential. Moreover, gut microbiota plays a major role in neurodevelopment, leading to alterations in gene expression in critical brain and intestinal regions, thereby resulting in perturbation to the programming of normal cognitive behaviors. Taken together, our findings suggest that the therapeutic

  9. The microbiota and the gut-brain axis: insights from the temporal and spatial mucosal alterations during colonisation of the germfree mouse intestine.

    NARCIS (Netherlands)

    Aidy, El S.F.; Kunze, W.; Bienenstock, J.; Kleerebezem, M.

    2012-01-01

    The influence of the gut microbiota on the nervous system, brain development and behaviour, in particular during microbial colonisation of the host, has recently been receiving profound interest. Our time-resolved mining of combined data analyses of the ex-germfree mouse intestine during a 30-day

  10. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function

    Science.gov (United States)

    Agustí, Ana; García-Pardo, Maria P.; López-Almela, Inmaculada; Campillo, Isabel; Maes, Michael; Romaní-Pérez, Marina; Sanz, Yolanda

    2018-01-01

    Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function. PMID:29615850

  11. Fatty acid-induced gut-brain signaling attenuates neural and behavioral effects of sad emotion in humans.

    Science.gov (United States)

    Van Oudenhove, Lukas; McKie, Shane; Lassman, Daniel; Uddin, Bilal; Paine, Peter; Coen, Steven; Gregory, Lloyd; Tack, Jan; Aziz, Qasim

    2011-08-01

    Although a relationship between emotional state and feeding behavior is known to exist, the interactions between signaling initiated by stimuli in the gut and exteroceptively generated emotions remain incompletely understood. Here, we investigated the interaction between nutrient-induced gut-brain signaling and sad emotion induced by musical and visual cues at the behavioral and neural level in healthy nonobese subjects undergoing functional magnetic resonance imaging. Subjects received an intragastric infusion of fatty acid solution or saline during neutral or sad emotion induction and rated sensations of hunger, fullness, and mood. We found an interaction between fatty acid infusion and emotion induction both in the behavioral readouts (hunger, mood) and at the level of neural activity in multiple pre-hypothesized regions of interest. Specifically, the behavioral and neural responses to sad emotion induction were attenuated by fatty acid infusion. These findings increase our understanding of the interplay among emotions, hunger, food intake, and meal-induced sensations in health, which may have important implications for a wide range of disorders, including obesity, eating disorders, and depression.

  12. Molecular cloning of a functional allatostatin gut/brain receptor and an allatostatin preprohormone from the silkworm Bombyx mori

    DEFF Research Database (Denmark)

    Secher, Thomas; Lenz, C; Cazzamali, G

    2001-01-01

    in the DAR-1 and DAR-2 genes, showing that the three receptors are not only structurally but also evolutionarily related. Furthermore, we have cloned a Bombyx allatostatin preprohormone that contains eight different A-type allatostatins. Chinese hamster ovary cells permanently transfected with BAR DNA react......The cockroach-type or A-type allatostatins are inhibitory insect neuropeptides with the C-terminal sequence Tyr/Phe-X-Phe-Gly-Leu-NH(2). Here, we have cloned an A-type allatostatin receptor from the silkworm Bombyx mori (BAR). BAR is 361 amino acid residues long, has seven transmembrane domains....... Northern blots and quantitative reverse transcriptase-polymerase chain reaction of different larval tissues show that BAR mRNA is mainly expressed in the gut and to a much lesser extent in the brain. To our knowledge, this is the first report on the molecular cloning and functional expression of an insect...

  13. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis.

    Science.gov (United States)

    De Vadder, F; Plessier, F; Gautier-Stein, A; Mithieux, G

    2015-03-01

    Intestinal gluconeogenesis (IGN) promotes metabolic benefits through activation of a gut-brain neural axis. However, the local mediator activating gluconeogenic genes in the enterocytes remains unknown. We show that (i) vasoactive intestinal peptide (VIP) signaling through VPAC1 receptor activates the intestinal glucose-6-phosphatase gene in vivo, (ii) the activation of IGN by propionate is counteracted by VPAC1 antagonism, and (iii) VIP-positive intrinsic neurons in the submucosal plexus are increased under the action of propionate. These data support the role of VIP as a local neuromodulator released by intrinsic enteric neurons and responsible for the induction of IGN through a VPAC1 receptor-dependent mechanism in enterocytes. © 2015 John Wiley & Sons Ltd.

  14. Maternal effects and the evolution of brain size in birds: overlooked developmental constraints.

    Science.gov (United States)

    Garamszegi, L Z; Biard, C; Eens, M; Møller, A P; Saino, N; Surai, P

    2007-01-01

    A central dogma for the evolution of brain size posits that the maintenance of large brains incurs developmental costs, because they need prolonged periods to grow during the early ontogeny. Such constraints are supported by the interspecific relationship between ontological differences and relative brain size in birds and mammals. Given that mothers can strongly influence the development of the offspring via maternal effects that potentially involve substances essential for growing brains, we argue that such effects may represent an important but overlooked component of developmental constraints on brain size. To demonstrate the importance of maternal effect on the evolution of brains, we investigated the interspecific relationship between relative brain size and maternal effects, as reflected by yolk testosterone, carotenoids, and vitamins A and E in a phylogenetic study of birds. Females of species with relatively large brains invested more in eggs in terms of testosterone and vitamin E than females of species with small brains. The effects of carotenoid and vitamin A levels on the evolution of relative brain size were weaker and non-significant. The association between relative brain size and yolk testosterone was curvilinear, suggesting that very high testosterone levels can be suppressive. However, at least in moderate physiological ranges, the positive relationship between components of maternal effects and relative brain size may imply one aspect of developmental costs of large brains. The relationship between vitamin E and relative brain size was weakened when we controlled for developmental mode, and thus the effect of this antioxidant may be indirect. Testosterone-enhanced neurogenesis and vitamin E-mediated defence against oxidative stress may have key functions when the brain of the embryo develops, with evolutionary consequences for relative brain size.

  15. Microbiome-Gut-Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS-A Novel Hypothesis.

    Science.gov (United States)

    Praveen, Vijayakumar; Praveen, Shama

    2016-01-01

    Sudden infant death syndrome (SIDS) continues to be a major public health issue. Following its major decline since the "Back to Sleep" campaign, the incidence of SIDS has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United States and thousands more throughout the world. The etiology of SIDS, the major cause of postneonatal mortality in the western world, is still poorly understood. Although sleeping in prone position is a major risk factor, SIDS continues to occur even in the supine sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction between a susceptible infant during a critical developmental period and stressor/s in the pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control to findings of altered neurochemistry, especially the serotonergic system that plays an important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem serotonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower in SIDS, supporting the evidence that defects in the medullary serotonergic system play a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associated with SIDS, although no direct evidence has been established. We present a new hypothesis that the infant's gut microbiome, and/or its metabolites, by its direct effects on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT levels through the microbiome-gut-brain axis, thus playing a significant role in SIDS during the critical period of gut flora development and vulnerability to SIDS. The shared similarities between various risk factors for SIDS and their relationship with the infant gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are required to test our hypothesis.

  16. Gut-Brain Interactions in Inflammatory Bowel Disease: A Clinician’s Perspective

    Directory of Open Access Journals (Sweden)

    Theodore M Bayless

    1995-01-01

    Full Text Available While most physicians and some patients consider psychosocial factors important in aggravating already existing inflammatory bowel disease (IBD, most of the information is based on a few recent scientific studies, varied anecdotal observations and a tendency for patients and some physicians to view psychosocial and stress-related issues with speculation, bias and some stigmatization. Patients with proctitis who have experienced recrudescence of mucosal friability and rectal bleeding within a day of a severe life stress provide a dramatic example of such anecdotes. Time-lag studies have indicated that stress, especially major life events, precedes illness aggravation in patients with IBD but that stress is not disease-specific. The symptoms studied, pain and diarrhea, were more likely to be physiological responses to acute stress rather than reflections of increased disease activity. Current scientific research supposes the prospect that environmental factors influence disease susceptibility through the central nervous system. Stress is associated with alterations in both humoral and cellular immune mechanisms in humans and in experimental animals. While psychosocial factors may not initiate inflammation in IBD, it is possible that they lead to alterations in the immune response and thereby alter disease activity. Mind-gut interactions affect salivation, gastric secretion, gastric motility and colonic motility, as well as numerous other gastrointestinal functions. These ‘physiological’ responses are expected in the IBD patient and perhaps will be accentuated by inflammation and its multiple effects on gut function. Because 10 to 13% of the general population have a tendency to suffer from irritable bowel syndrome (IBS, it is expected that the same percentage of IBD patients will have both IBD and IBS. An example of clinically relevant alterations in pathophysiology is the association of acute proctosigmoiditis with an increase in IBS symptoms

  17. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior

    Science.gov (United States)

    Leclercq, Sophie; Mian, Firoz M.; Stanisz, Andrew M.; Bindels, Laure B.; Cambier, Emmanuel; Ben-Amram, Hila; Koren, Omry; Forsythe, Paul; Bienenstock, John

    2017-01-01

    There is increasing concern about potential long-term effects of antibiotics on children's health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with Lactobacillus rhamnosus JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria. PMID:28375200

  18. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: the brain-gut connection begins in utero

    Directory of Open Access Journals (Sweden)

    Luca eGarzoni

    2013-08-01

    Full Text Available Necrotizing enterocolitis (NEC is an acute neonatal inflammatory disease that affects the intestine and may result in necrosis, systemic sepsis and multisystem organ failure. NEC affects 5-10% of all infants with birth weight ≤ 1500 g or gestational age less than 30 weeks. Chorioamnionitis (CA is the main manifestation of pathological inflammation in the fetus and is strongly associated with NEC. CA affects 20% of full-term pregnancies and up to 60% of preterm pregnancies and, notably, is often an occult finding. Intrauterine exposure to inflammatory stimuli may switch innate immunity cells such as macrophages to a reactive phenotype (‘priming’. Confronted with renewed inflammatory stimuli during labour or postnatally, such sensitized cells can sustain a chronic or exaggerated production of proinflammatory cytokines associated with NEC (two-hit hypothesis. Via the cholinergic anti-inflammatory pathway, a neurally mediated innate anti-inflammatory mechanism, higher levels of vagal activity are associated with lower systemic levels of proinflammatory cytokines. This effect is mediated by the α7 subunit nicotinic acetylcholine receptor (α7nAChR on macrophages. The gut is the most extensive organ innervated by the vagus nerve; it is also the primary site of innate immunity in the newborn. Here we review the mechanisms of possible neuroimmunological brain-gut interactions involved in the induction and control of antenatal intestinal inflammatory response and priming. We propose a neuroimmunological framework to 1 study the long-term effects of perinatal intestinal response to infection and 2 to uncover new targets for preventive and therapeutic intervention.

  19. The Gut-Brain Axis in Healthy Females: Lack of Significant Association between Microbial Composition and Diversity with Psychiatric Measures.

    Directory of Open Access Journals (Sweden)

    Susan C Kleiman

    Full Text Available This study examined associations between the composition and diversity of the intestinal microbiota and measures of depression, anxiety, eating disorder psychopathology, stress, and personality in a group of healthy adult females.Female participants (n = 91 ages 19-50 years with BMI 18.5-25 kg/m2 were recruited from central North Carolina between July 2014 and March 2015. Participants provided a single fecal sample and completed an online psychiatric questionnaire that included five measures: (i Beck Anxiety Inventory; (ii Beck Depression Inventory-II; (iii Eating Disorder Examination-Questionnaire; (iv Perceived Stress Scale; and (v Mini International Personality Item Pool. Bacterial composition and diversity were characterized by Illumina sequencing of the 16S rRNA gene, and associations were examined using Kendall's tau-b correlation coefficient, in conjunction with Benjamini and Hochberg's False Discovery Rate procedure.We found no significant associations between microbial markers of gut composition and diversity and scores on psychiatric measures of anxiety, depression, eating-related thoughts and behaviors, stress, or personality in a large cohort of healthy adult females.This study was the first specifically to examine associations between the intestinal microbiota and psychiatric measures in healthy females, and based on 16S rRNA taxonomic abundances and diversity measures, our results do not suggest a strong role for the enteric microbe-gut-brain axis in normal variation on responses to psychiatric measures in this population. However, the role of the intestinal microbiota in the pathophysiology of psychiatric illness may be limited to more severe psychopathology.

  20. Diabetic Autonomic Neuropathy Affects Symptom Generation and Brain-Gut Axis

    DEFF Research Database (Denmark)

    Brock, Christina; Søfteland, Eirik; Gunterberg, Veronica

    2013-01-01

    electrostimulations, and brain activity was modeled by brain electrical source analysis. Self-reported gastrointestinal symptoms (per the Patient Assessment of Upper Gastrointestinal Disorder Severity Symptom Index) and quality of life (per short-form health survey with 36 questions) were collected...... symptoms.RESEARCH DESIGN AND METHODSFifteen healthy volunteers and 15 diabetic patients (12 with type 1 diabetes) with severe gastrointestinal symptoms and clinical suspicion of autonomic neuropathy were included. Psychophysics and evoked brain potentials were assessed after painful rectosigmoid...... component in evoked potentials (P = 0.01). There was a caudoanterior shift of the insular brain source (P = 0.01) and an anterior shift of the cingulate generator (P = 0.01). Insular source location was associated with HRV assessments (all P

  1. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    Science.gov (United States)

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  2. Predator-driven brain size evolution in natural populations of Trinidadian killifish (Rivulus hartii)

    Science.gov (United States)

    Walsh, Matthew R.; Broyles, Whitnee; Beston, Shannon M.; Munch, Stephan B.

    2016-01-01

    Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278

  3. Diet, gut microbiota and cognition.

    Science.gov (United States)

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  4. Changes in brain size during the menstrual cycle.

    Directory of Open Access Journals (Sweden)

    Georg Hagemann

    Full Text Available BACKGROUND: There is increasing evidence for hormone-dependent modification of function and behavior during the menstrual cycle, but little is known about associated short-term structural alterations of the brain. Preliminary studies suggest that a hormone-dependent decline in brain volume occurs in postmenopausal, or women receiving antiestrogens, long term. Advances in serial MR-volumetry have allowed for the accurate detection of small volume changes of the brain. Recently, activity-induced short-term structural plasticity of the brain was demonstrated, challenging the view that the brain is as rigid as formerly believed. METHODOLOGY/PRINCIPAL FINDINGS: We used MR-volumetry to investigate short-term brain volume changes across the menstrual cycle in women or a parallel 4 week period in men, respectively. We found a significant grey matter volume peak and CSF loss at the time of ovulation in females. This volume peak did not correlate with estradiol or progesterone hormone levels. Men did not show any significant brain volume alterations. CONCLUSIONS/SIGNIFICANCE: These data give evidence of short-term hormone-dependent structural brain changes during the menstrual cycle, which need to be correlated with functional states and have to be considered in structure-associated functional brain research.

  5. The art of being small : brain-body size scaling in minute parasitic wasps

    NARCIS (Netherlands)

    Woude, van der Emma

    2017-01-01

    Haller’s rule states that small animals have relatively larger brains than large animals. This brain-body size relationship may enable small animals to maintain similar levels of brain performance as large animals. However, it also causes small animals to spend an exceptionally large proportion

  6. Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic.

    Science.gov (United States)

    Davis, Shannon C; Yadav, Jagjit S; Barrow, Stephanie D; Robertson, Boakai K

    2017-08-01

    Human gut microbiome dysbiosis has been associated with the onset of metabolic diseases and disorders. However, the critical factors leading to dysbiosis are poorly understood. In this study, we provide increasing evidence of the association of diet type and body mass index (BMI) and how they relatively influence the taxonomic structure of the gut microbiota with respect to the causation of gut microbiome dysbiosis. The study included randomly selected Alabama residents (n = 81), including females (n = 45) and males (n = 36). The demographics data included age (33 ± 13.3 years), height (1.7 ± 0.11 meters), and weight (82.3 ± 20.6 kg). The mean BMI was 28.3 ± 7.01, equating to an overweight BMI category. A cross-sectional case-control design encompassing the newly recognized effect size approach to bioinformatics analysis was used to analyze data from donated stool samples and accompanying nutrition surveys. We investigated the microbiome variations in the Bacteroidetes-Firmicutes ratio relative to BMI, food categories, and dietary groups at stratified abundance percentages of gut microbiota diversity than an increased BMI with an effect size of 0.16. This implied Westernized diet as a critical factor in causing dysbiosis as compared to an overweight or obese body mass index. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Comments on "Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Mental Retardation and Down Syndrome."

    Science.gov (United States)

    Willerman, Lee; Schultz, Robert T.

    1995-01-01

    The relationship between mental retardation and brain size is discussed. Research suggests that a common path for many otherwise idiopathic mild retardation cases (genetic or environmental) could be small brain size, indicating reduced information processing capacity. Suggestions are made for further research on neuron number. (SLD)

  8. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  9. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice.

    Science.gov (United States)

    Burokas, Aurelijus; Arboleya, Silvia; Moloney, Rachel D; Peterson, Veronica L; Murphy, Kiera; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-10-01

    The realization that the microbiota-gut-brain axis plays a critical role in health and disease, including neuropsychiatric disorders, is rapidly advancing. Nurturing a beneficial gut microbiome with prebiotics, such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), is an appealing but underinvestigated microbiota manipulation. Here we tested whether chronic prebiotic treatment modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior. C57BL/6J male mice were administered FOS, GOS, or a combination of FOS+GOS for 3 weeks prior to testing. Plasma corticosterone, microbiota composition, and cecal short-chain fatty acids were measured. In addition, FOS+GOS- or water-treated mice were also exposed to chronic psychosocial stress, and behavior, immune, and microbiota parameters were assessed. Chronic prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic effects. Moreover, the administration of GOS and the FOS+GOS combination reduced stress-induced corticosterone release. Prebiotics modified specific gene expression in the hippocampus and hypothalamus. Regarding short-chain fatty acid concentrations, prebiotic administration increased cecal acetate and propionate and reduced isobutyrate concentrations, changes that correlated significantly with the positive effects seen on behavior. Moreover, FOS+GOS reduced chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels and depression-like and anxiety-like behavior in addition to normalizing the effects of stress on the microbiota. Taken together, these data strongly suggest a beneficial role of prebiotic treatment for stress-related behaviors. These findings strengthen the evidence base supporting therapeutic targeting of the gut microbiota for brain-gut axis disorders, opening new avenues in the field of nutritional neuropsychopharmacology. Copyright © 2017 Society of Biological Psychiatry. Published by

  10. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Michael P O'Donnell

    2018-02-01

    Full Text Available Animals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2 controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via a PDF-2/PDFR-1 neuropeptide signaling-dependent pathway. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL associated with these traits. Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state.

  11. Social intelligence, innovation, and enhanced brain size in primates

    NARCIS (Netherlands)

    Reader, S.M.; Laland, K.N.

    2002-01-01

    Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and ‘‘intelligence’’ are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social

  12. Ecological correlates of relative brain size in some South African ...

    African Journals Online (AJOL)

    1992-07-02

    Jul 2, 1992 ... species of rodent from South Africa and is shown to vary with six species having a positive RBS (that is a ... Arboreal species such as Paraxerus cepapi and ... large brains can be linked to the complex behavioural patterns ...

  13. Smart Moves: Effects of Relative Brain Size on Establishment Success of Invasive Amphibians and Reptiles

    Science.gov (United States)

    Amiel, Joshua J.; Tingley, Reid; Shine, Richard

    2011-01-01

    Brain size relative to body size varies considerably among animals, but the ecological consequences of that variation remain poorly understood. Plausibly, larger brains confer increased behavioural flexibility, and an ability to respond to novel challenges. In keeping with that hypothesis, successful invasive species of birds and mammals that flourish after translocation to a new area tend to have larger brains than do unsuccessful invaders. We found the same pattern in ectothermic terrestrial vertebrates. Brain size relative to body size was larger in species of amphibians and reptiles reported to be successful invaders, compared to species that failed to thrive after translocation to new sites. This pattern was found in six of seven global biogeographic realms; the exception (where relatively larger brains did not facilitate invasion success) was Australasia. Establishment success was also higher in amphibian and reptile families with larger relative brain sizes. Future work could usefully explore whether invasion success is differentially associated with enlargement of specific parts of the brain (as predicted by the functional role of the forebrain in promoting behavioural flexibility), or with a general size increase (suggesting that invasion success is facilitated by enhanced perceptual and motor skills, as well as cognitive ability). PMID:21494328

  14. Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles.

    Directory of Open Access Journals (Sweden)

    Joshua J Amiel

    2011-04-01

    Full Text Available Brain size relative to body size varies considerably among animals, but the ecological consequences of that variation remain poorly understood. Plausibly, larger brains confer increased behavioural flexibility, and an ability to respond to novel challenges. In keeping with that hypothesis, successful invasive species of birds and mammals that flourish after translocation to a new area tend to have larger brains than do unsuccessful invaders. We found the same pattern in ectothermic terrestrial vertebrates. Brain size relative to body size was larger in species of amphibians and reptiles reported to be successful invaders, compared to species that failed to thrive after translocation to new sites. This pattern was found in six of seven global biogeographic realms; the exception (where relatively larger brains did not facilitate invasion success was Australasia. Establishment success was also higher in amphibian and reptile families with larger relative brain sizes. Future work could usefully explore whether invasion success is differentially associated with enlargement of specific parts of the brain (as predicted by the functional role of the forebrain in promoting behavioural flexibility, or with a general size increase (suggesting that invasion success is facilitated by enhanced perceptual and motor skills, as well as cognitive ability.

  15. Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles.

    Science.gov (United States)

    Amiel, Joshua J; Tingley, Reid; Shine, Richard

    2011-04-06

    Brain size relative to body size varies considerably among animals, but the ecological consequences of that variation remain poorly understood. Plausibly, larger brains confer increased behavioural flexibility, and an ability to respond to novel challenges. In keeping with that hypothesis, successful invasive species of birds and mammals that flourish after translocation to a new area tend to have larger brains than do unsuccessful invaders. We found the same pattern in ectothermic terrestrial vertebrates. Brain size relative to body size was larger in species of amphibians and reptiles reported to be successful invaders, compared to species that failed to thrive after translocation to new sites. This pattern was found in six of seven global biogeographic realms; the exception (where relatively larger brains did not facilitate invasion success) was Australasia. Establishment success was also higher in amphibian and reptile families with larger relative brain sizes. Future work could usefully explore whether invasion success is differentially associated with enlargement of specific parts of the brain (as predicted by the functional role of the forebrain in promoting behavioural flexibility), or with a general size increase (suggesting that invasion success is facilitated by enhanced perceptual and motor skills, as well as cognitive ability).

  16. Neurophysiology of the “Celiac Brain”: Disentangling Gut-Brain Connections

    Directory of Open Access Journals (Sweden)

    Manuela Pennisi

    2017-09-01

    Full Text Available Celiac disease (CD can be considered a complex multi-organ disorder with highly variable extra-intestinal, including neurological, involvement. Cerebellar ataxia, peripheral neuropathy, seizures, headache, cognitive impairment, and neuropsychiatric diseases are complications frequently reported. These manifestations may be present at the onset of the typical disease or become clinically evident during its course. However, CD subjects with subclinical neurological involvement have also been described, as well as patients with clear central and/or peripheral nervous system and intestinal histopathological disease features in the absence of typical CD manifestations. Based on these considerations, a sensitive and specific diagnostic method that is able to detect early disease process, progression, and complications is desirable. In this context, neurophysiological techniques play a crucial role in the non-invasive assessment of central nervous system (CNS excitability and conductivity. Moreover, some of these tools are known for their valuable role in early diagnosis and follow-up of several neurological diseases or systemic disorders, such as CD with nervous system involvement, even at the subclinical level. This review provides an up-to-date summary of the neurophysiological basis of CD using electroencephalography (EEG, multimodal evoked potentials, and transcranial magnetic stimulation (TMS. The evidence examined here seems to converge on an overall profile of “hyperexcitable celiac brain,” which partially recovers after institution of a gluten-free diet (GFD. The main translational correlate is that in case of subclinical neurological involvement or overt unexplained symptoms, neurophysiology could contribute to the diagnosis, assessment, and monitoring of a potentially underlying CD.

  17. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    Science.gov (United States)

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  18. Breaking Haller's rule: brain-body size isometry in a minute parasitic wasp.

    NARCIS (Netherlands)

    Woude, van der E.; Smid, H.M.; Chittka, L.; Huigens, M.E.

    2013-01-01

    Throughout the animal kingdom, Haller's rule holds that smaller individuals have larger brains relative to their body than larger-bodied individuals. Such brain-body size allometry is documented for all animals studied to date, ranging from small ants to the largest mammals. However, through

  19. Anti-α4 Antibody Treatment Blocks Virus Traffic to the Brain and Gut Early, and Stabilizes CNS Injury Late in Infection

    OpenAIRE

    Campbell, Jennifer H.; Ratai, Eva-Maria; Autissier, Patrick; Nolan, David J.; Tse, Samantha; Miller, Andrew D.; González, R. Gilberto; Salemi, Marco; Burdo, Tricia H.; Williams, Kenneth C.

    2014-01-01

    Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab) once a week for three weeks beginning on 28 days post-infection (late). Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS), and decreased numbers of monocytes/macrophages a...

  20. Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota.

    Science.gov (United States)

    Wall, Rebecca; Marques, Tatiana M; O'Sullivan, Orla; Ross, R Paul; Shanahan, Fergus; Quigley, Eamonn M; Dinan, Timothy G; Kiely, Barry; Fitzgerald, Gerald F; Cotter, Paul D; Fouhy, Fiona; Stanton, Catherine

    2012-05-01

    We previously showed that microbial metabolism in the gut influences the composition of bioactive fatty acids in host adipose tissue. This study compared the effect of dietary supplementation for 8 wk with human-derived Bifidobacterium breve strains on fat distribution and composition and the composition of the gut microbiota in mice. C57BL/6 mice (n = 8 per group) received B. breve DPC 6330 or B. breve NCIMB 702258 (10(9) microorganisms) daily for 8 wk or no supplement (controls). Tissue fatty acid composition was assessed by gas-liquid chromatography while 16S rRNA pyrosequencing was used to investigate microbiota composition. Visceral fat mass and brain stearic acid, arachidonic acid, and DHA were higher in mice supplemented with B. breve NCIMB 702258 than in mice in the other 2 groups (P breve DPC 6330 and B. breve NCIMB 702258 supplementation resulted in higher propionate concentrations in the cecum than did no supplementation (P breve DPC 6330 than in mice supplemented with B. breve NCIMB 702258 and unsupplemented controls, respectively. The response of fatty acid metabolism to administration of bifidobacteria is strain-dependent, and strain-strain differences are important factors that influence modulation of the gut microbial community by ingested microorganisms.

  1. GUTs without guts

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.nl [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2014-06-15

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts.

  2. GUTs without guts

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2014-01-01

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts

  3. Neuromodulators for Functional Gastrointestinal Disorders (Disorders of Gut-Brain Interaction): A Rome Foundation Working Team Report.

    Science.gov (United States)

    Drossman, Douglas A; Tack, Jan; Ford, Alexander C; Szigethy, Eva; Törnblom, Hans; Van Oudenhove, Lukas

    2018-03-01

    Central neuromodulators (antidepressants, antipsychotics, and other central nervous system-targeted medications) are increasingly used for treatment of functional gastrointestinal disorders (FGIDs), now recognized as disorders of gut-brain interaction. However, the available evidence and guidance for the use of central neuromodulators in these conditions is scanty and incomplete. In this Rome Foundation Working Team report, a multidisciplinary team summarized available research evidence and clinical experience to provide guidance and treatment recommendations. The working team summarized the literature on the pharmacology of central neuromodulators and their effects on gastrointestinal sensorimotor function and conducted an evidence-based review on their use for treating FGID syndromes. Because of the paucity of data for FGIDs, we included data for non-gastrointestinal painful disorders and specific symptoms of pain, nausea, and vomiting. This information was combined into a final document comprising a synthesis of available evidence and recommendations for clinical use guided by the research and clinical experience of the experts on the committee. The evidence-based review on neuromodulators in FGID, restricted by the limited available controlled trials, was integrated with open-label studies and case series, along with the experience of experts to create recommendations using a consensus (Delphi) approach. Due to the diversity of conditions and complexity of treatment options, specific recommendations were generated for different FGIDs. However, some general recommendations include: (1) low to modest dosages of tricyclic antidepressants provide the most convincing evidence of benefit for treating chronic gastrointestinal pain and painful FGIDs and serotonin noradrenergic reuptake inhibitors can also be recommended, though further studies are needed; (2) augmentation, that is, adding a second treatment (adding quetiapine, aripiprazole, buspirone α2δ ligand

  4. Re-evaluating the link between brain size and behavioural ecology in primates.

    Science.gov (United States)

    Powell, Lauren E; Isler, Karin; Barton, Robert A

    2017-10-25

    Comparative studies have identified a wide range of behavioural and ecological correlates of relative brain size, with results differing between taxonomic groups, and even within them. In primates for example, recent studies contradict one another over whether social or ecological factors are critical. A basic assumption of such studies is that with sufficiently large samples and appropriate analysis, robust correlations indicative of selection pressures on cognition will emerge. We carried out a comprehensive re-examination of correlates of primate brain size using two large comparative datasets and phylogenetic comparative methods. We found evidence in both datasets for associations between brain size and ecological variables (home range size, diet and activity period), but little evidence for an effect of social group size, a correlation which has previously formed the empirical basis of the Social Brain Hypothesis. However, reflecting divergent results in the literature, our results exhibited instability across datasets, even when they were matched for species composition and predictor variables. We identify several potential empirical and theoretical difficulties underlying this instability and suggest that these issues raise doubts about inferring cognitive selection pressures from behavioural correlates of brain size. © 2017 The Author(s).

  5. Female brain size affects the assessment of male attractiveness during mate choice.

    Science.gov (United States)

    Corral-López, Alberto; Bloch, Natasha I; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D; Mank, Judith E; Kolm, Niclas

    2017-03-01

    Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.

  6. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.

    Science.gov (United States)

    Samini, Fariborz; Samarghandian, Saeed; Borji, Abasalt; Mohammadi, Gholamreza; bakaian, Mahdi

    2013-09-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow coloring principle in turmeric, is a polyphenolic and a major active constituent. Besides anti-inflammatory, thrombolytic and anti-carcinogenic activities, curcumin also possesses strong antioxidant property. The neuroprotective effects of curcumin were evaluated in a weight drop model of cortical contusion trauma in rat. Male Wistar rats (350-400 g, n=9) were anesthetized with sodium pentobarbital (60 mg/kg i.p.) and subjected to head injury. Five days before injury, animals randomly received an i.p. bolus of either curcumin (50 and 100 mg/kg/day, n=9) or vehicle (n=9). Two weeks after the injury and drug treatment, animals were sacrificed and a series of brain sections, stained with hematoxylin and eosin (H&E) were evaluated for quantitative brain lesion volume. Two weeks after the injury, oxidative stress parameter (malondialdehyde) was also measured in the brain. Curcumin (100 mg/kg) significantly reduced the size of brain injury-induced lesions (Pcurcumin (100 mg/kg). Curcumin treatment significantly improved the neurological status evaluated during 2 weeks after brain injury. The study demonstrates the protective efficacy of curcumin in rat traumatic brain injury model. © 2013 Elsevier Inc. All rights reserved.

  7. Effects of Isometric Brain-Body Size Scaling on the Complexity of Monoaminergic Neurons in a Minute Parasitic Wasp

    NARCIS (Netherlands)

    Woude, van der Emma; Smid, Hans M.

    2017-01-01

    Trichogramma evanescens parasitic wasps show large phenotypic plasticity in brain and body size, resulting in a 5-fold difference in brain volume among genetically identical sister wasps. Brain volume scales linearly with body volume in these wasps. This isometric brain scaling forms an exception to

  8. FTY720/Fingolimod Reduces Synucleinopathy and Improves Gut Motility in A53T Mice: CONTRIBUTIONS OF PRO-BRAIN-DERIVED NEUROTROPHIC FACTOR (PRO-BDNF) AND MATURE BDNF.

    Science.gov (United States)

    Vidal-Martínez, Guadalupe; Vargas-Medrano, Javier; Gil-Tommee, Carolina; Medina, David; Garza, Nathan T; Yang, Barbara; Segura-Ulate, Ismael; Dominguez, Samantha J; Perez, Ruth G

    2016-09-23

    Patients with Parkinson's disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Nasonia Parasitic Wasps Escape from Haller's Rule by Diphasic, Partially Isometric Brain-Body Size Scaling and Selective Neuropil Adaptations

    NARCIS (Netherlands)

    Groothuis, Jitte; Smid, Hans M.

    2017-01-01

    Haller's rule states that brains scale allometrically with body size in all animals, meaning that relative brain size increases with decreasing body size. This rule applies both on inter- and intraspecific comparisons. Only 1 species, the extremely small parasitic wasp Trichogramma evanescens, is

  10. Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents.

    Directory of Open Access Journals (Sweden)

    Jeanie L Y Cheong

    Full Text Available OBJECTIVES: Extremely preterm (EP survivors have smaller brains, lower IQ, and worse educational achievement than their term-born peers. The contribution of smaller brain size to the IQ and educational disadvantages of EP is unknown. This study aimed (i to compare brain volumes from multiple brain tissues and structures between EP-born (< 28 weeks and term-born (≥ 37 weeks control adolescents, (ii to explore the relationships of brain tissue volumes with IQ and basic educational skills and whether this differed by group, and (iii to explore how much total brain tissue volume explains the underperformance of EP adolescents compared with controls. METHODS: Longitudinal cohort study of 148 EP and 132 term controls born in Victoria, Australia in 1991-92. At age 18, magnetic resonance imaging-determined brain volumes of multiple tissues and structures were calculated. IQ and educational skills were measured using the Wechsler Abbreviated Scale of Intelligence (WASI and the Wide Range Achievement Test(WRAT-4, respectively. RESULTS: Brain volumes were smaller in EP adolescents compared with controls (mean difference [95% confidence interval] of -5.9% [-8.0, -3.7%] for total brain tissue volume. The largest relative differences were noted in the thalamus and hippocampus. The EP group had lower IQs(-11.9 [-15.4, -8.5], spelling(-8.0 [-11.5, -4.6], math computation(-10.3 [-13.7, -6.9] and word reading(-5.6 [-8.8, -2.4] scores than controls; all p-values<0.001. Volumes of total brain tissue and other brain tissues and structures correlated positively with IQ and educational skills, a relationship that was similar for both the EP and controls. Total brain tissue volume explained between 20-40% of the IQ and educational outcome differences between EP and controls. CONCLUSIONS: EP adolescents had smaller brain volumes, lower IQs and poorer educational performance than controls. Brain volumes of multiple tissues and structures are related to IQ and

  11. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size.

    Directory of Open Access Journals (Sweden)

    Rotem Kadir

    2016-03-01

    Full Text Available Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.

  12. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis.

    Science.gov (United States)

    Toti, Luca; Travagli, R Alberto

    2014-11-15

    Idiopathic Parkinson's disease (PD) is a late-onset, chronic, and progressive motor dysfunction attributable to loss of nigrostriatal dopamine neurons. Patients with PD experience significant gastrointestinal (GI) issues, including gastroparesis. We aimed to evaluate whether 6-hydroxy-dopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) induces gastric dysmotility via dysfunctions of the brain-gut axis. 6-OHDA microinjection into the SNpc induced a >90% decrease in tyrosine hydroxylase-immunoreactivity (IR) on the injection site. The [13C]-octanoic acid breath test showed a delayed gastric emptying 4 wk after the 6-OHDA treatment. In control rats, microinjection of the indirect sympathomimetic, tyramine, in the dorsal vagal complex (DVC) decreased gastric tone and motility; this inhibition was prevented by the fourth ventricular application of either a combination of α1- and α2- or a combination of D1 and D2 receptor antagonists. Conversely, in 6-OHDA-treated rats, whereas DVC microinjection of tyramine had reduced effects on gastric tone or motility, DVC microinjection of thyrotropin-releasing hormone induced a similar increase in motility as in control rats. In 6-OHDA-treated rats, there was a decreased expression of choline acetyl transferase (ChAT)-IR and neuronal nitric oxide synthase (NOS)-IR in DVC neurons but an increase in dopamine-β-hydroxylase-IR in the A2 area. Within the myenteric plexus of the esophagus, stomach, and duodenum, there were no changes in the total number of neurons; however, the percentage of NOS-IR neurons increased, whereas that of ChAT-IR decreased. Our data suggest that the delayed gastric emptying in a 6-OHDA rat model of PD may be caused by neurochemical and neurophysiological alterations in the brain-gut axis. Copyright © 2014 the American Physiological Society.

  13. Brain size and brain/intracranial volume ratio in major mental illness

    Directory of Open Access Journals (Sweden)

    Teale Peter

    2010-10-01

    Full Text Available Abstract Background This paper summarizes the findings of a long term study addressing the question of how several brain volume measure are related to three major mental illnesses in a Colorado subject group. It reports results obtained from a large N, collected and analyzed by the same laboratory over a multiyear period, with visually guided MRI segmentation being the primary initial analytic tool. Methods Intracerebral volume (ICV, total brain volume (TBV, ventricular volume (VV, ventricular/brain ratio (VBR, and TBV/ICV ratios were calculated from a total of 224 subject MRIs collected over a period of 13 years. Subject groups included controls (C, N = 89, and patients with schizophrenia (SZ, N = 58, bipolar disorder (BD, N = 51, and schizoaffective disorder (SAD, N = 26. Results ICV, TBV, and VV measures compared favorably with values obtained by other research groups, but in this study did not differ significantly between groups. TBV/ICV ratios were significantly decreased, and VBR increased, in the SZ and BD groups compared to the C group. The SAD group did not differ from C on any measure. Conclusions In this study TBV/ICV and VBR ratios separated SZ and BD patients from controls. Of interest however, SAD patients did not differ from controls on these measures. The findings suggest that the gross measure of TBV may not reliably differ in the major mental illnesses to a degree useful in diagnosis, likely due to the intrinsic variability of the measures in question; the differences in VBR appear more robust across studies. Differences in some of these findings compared to earlier reports from several laboratories finding significant differences between groups in VV and TBV may relate to phenomenological drift, differences in analytic techniques, and possibly the "file drawer problem".

  14. Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters

    International Nuclear Information System (INIS)

    Emmer, B.J.; Rijkee, M.; Walderveen, M.A.A. van; Niesten, J.M.; Velthuis, B.K.; Wermer, M.J.H.

    2014-01-01

    Our aim was to compare infarct core volume on whole brain CT perfusion (CTP) with several limited coverage sizes (i.e., 3, 4, 6, and 8 cm), as currently used in routine clinical practice. In total, 40 acute ischemic stroke patients with non-contrast CT (NCCT) and CTP imaging of anterior circulation ischemia were included. Imaging was performed using a 320-multislice CT. Average volumes of infarct core of all simulated partial coverage sizes were calculated. Infarct core volume of each partial brain coverage was compared with infarct core volume of whole brain coverage and expressed using a percentage. To determine the optimal starting position for each simulated CTP coverage, the percentage of infarct coverage was calculated for every possible starting position of the simulated partial coverage in relation to Alberta Stroke Program Early CT Score in Acute Stroke Triage (ASPECTS 1) level. Whole brain CTP coverage further increased the percentage of infarct core volume depicted by 10 % as compared to the 8-cm coverage when the bottom slice was positioned at the ASPECTS 1 level. Optimization of the position of the region of interest (ROI) in 3 cm, 4 cm, and 8 cm improved the percentage of infarct depicted by 4 % for the 8-cm, 7 % for the 4-cm, and 13 % for the 3-cm coverage size. This study shows that whole brain CTP is the optimal coverage for CTP with a substantial improvement in accuracy in quantifying infarct core size. In addition, our results suggest that the optimal position of the ROI in limited coverage depends on the size of the coverage. (orig.)

  15. Brain size and encephalization in early to Mid-Pleistocene Homo.

    Science.gov (United States)

    Rightmire, G Philip

    2004-06-01

    Important changes in the brain have occurred during the course of human evolution. Both absolute and relative size increases can be documented for species of Homo, culminating in the appearance of modern humans. One species that is particularly well-represented by fossil crania is Homo erectus. The mean capacity for 30 individuals is 973 cm(3). Within this group there is substantial variation, but brain size increases slightly in specimens from later time periods. Other Middle Pleistocene crania differ from those of Homo erectus. Characters of the facial skeleton, vault, and cranial base suggest that fossils from sites such as Arago Cave in France, the Sima de los Huesos in Spain, Bodo in Ethiopia, Broken Hill in Zambia, and perhaps Dali in China belong to the taxon Homo heidelbergensis. Ten of these mid-Quaternary hominins have brains averaging 1,206 cm(3) in volume, and many fall beyond the limits of size predicted for Homo erectus of equivalent age. When orbit height is used to construct an index of relative brain size, it is apparent that the (significant) increase in volume documented for the Middle Pleistocene individuals is not simply a consequence of larger body mass. Encephalization quotient values confirm this finding. These changes in absolute and relative brain size can be taken as further corroborative evidence for a speciation event, in which Homo erectus produced a daughter lineage. It is probable that Homo heidelbergensis originated in Africa or western Eurasia and then ranged widely across the Old World. Archaeological traces indicate that these populations differed in their technology and behavior from earlier hominins. Copyright 2003 Wiley-Liss, Inc.

  16. Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters

    Energy Technology Data Exchange (ETDEWEB)

    Emmer, B.J. [Erasmus Medical Centre, Department of Radiology, Postbus 2040, Rotterdam (Netherlands); Rijkee, M.; Walderveen, M.A.A. van [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Niesten, J.M.; Velthuis, B.K. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Wermer, M.J.H. [Leiden University Medical Centre, Department of Neurology, Leiden (Netherlands)

    2014-12-15

    Our aim was to compare infarct core volume on whole brain CT perfusion (CTP) with several limited coverage sizes (i.e., 3, 4, 6, and 8 cm), as currently used in routine clinical practice. In total, 40 acute ischemic stroke patients with non-contrast CT (NCCT) and CTP imaging of anterior circulation ischemia were included. Imaging was performed using a 320-multislice CT. Average volumes of infarct core of all simulated partial coverage sizes were calculated. Infarct core volume of each partial brain coverage was compared with infarct core volume of whole brain coverage and expressed using a percentage. To determine the optimal starting position for each simulated CTP coverage, the percentage of infarct coverage was calculated for every possible starting position of the simulated partial coverage in relation to Alberta Stroke Program Early CT Score in Acute Stroke Triage (ASPECTS 1) level. Whole brain CTP coverage further increased the percentage of infarct core volume depicted by 10 % as compared to the 8-cm coverage when the bottom slice was positioned at the ASPECTS 1 level. Optimization of the position of the region of interest (ROI) in 3 cm, 4 cm, and 8 cm improved the percentage of infarct depicted by 4 % for the 8-cm, 7 % for the 4-cm, and 13 % for the 3-cm coverage size. This study shows that whole brain CTP is the optimal coverage for CTP with a substantial improvement in accuracy in quantifying infarct core size. In addition, our results suggest that the optimal position of the ROI in limited coverage depends on the size of the coverage. (orig.)

  17. Calcitonin gene-related peptide: neuroendocrine communication between the pancreas, gut, and brain in regulation of blood glucose.

    Science.gov (United States)

    Pendharkar, Sayali A; Walia, Monika; Drury, Marie; Petrov, Maxim S

    2017-11-01

    Calcitonin gene-related peptide (CGRP), a ubiquitous neuropeptide, plays a diverse and intricate role in chronic low-grade inflammation, including conditions such as obesity, type 2 diabetes, and diabetes of the exocrine pancreas. Diabetes of exocrine pancreas is characterised by chronic hyperglycemia and is associated with persistent low-grade inflammation and altered secretion of certain pancreatic and gut hormones. While CGRP may regulate glucose homeostasis and the secretion of pancreatic and gut hormones, its role in chronic hyperglycemia after acute pancreatitis (CHAP) is not known. The aim of this study was to investigate the association between CGRP and CHAP. Fasting blood samples were collected to measure insulin, HbA1c, CGRP, amylin, C-peptide, glucagon, pancreatic polypeptide (PP), somatostatin, gastric inhibitory peptide, glicentin, glucagon-like peptide-1 and 2, and oxyntomodulin. Modified Poisson regression analysis and linear regression analyses were conducted. Five statistical models were used to adjust for demographic, metabolic, and pancreatitis-related risk factors. A total of 83 patients were recruited. CGRP was significantly associated with CHAP in all five models (P-trend <0.005). Further, it was significantly associated with oxyntomodulin (P<0.005) and glucagon (P<0.030). Oxyntomodulin and glucagon independently contributed 9.7% and 7%, respectively, to circulating CGRP variance. Other pancreatic and gut hormones were not significantly associated with CGRP. CGRP is involved in regulation of blood glucose in individuals after acute pancreatitis. This may have translational implications in prevention and treatment of diabetes of the exocrine pancreas.

  18. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  19. Island Rule, quantitative genetics and brain-body size evolution in Homo floresiensis.

    Science.gov (United States)

    Diniz-Filho, José Alexandre Felizola; Raia, Pasquale

    2017-06-28

    Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis , a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60-90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus , which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. © 2017 The Author(s).

  20. Effect of reducing portion size at a compulsory meal on later energy intake, gut hormones, and appetite in overweight adults.

    OpenAIRE

    Lewis, HB; Ahern, AL; Solis-Trapala, I; Walker, CG; Reimann, F; Gribble, FM; Jebb, SA

    2015-01-01

    OBJECTIVE: Larger portion sizes (PS) are associated with greater energy intake (EI), but little evidence exists on the appetitive effects of PS reduction. This study investigated the impact of reducing breakfast PS on subsequent EI, postprandial gastrointestinal hormone responses, and appetite ratings. METHODS: In a randomized crossover design (n = 33 adults; mean BMI 29 kg/m(2) ), a compulsory breakfast was based on 25% of gender-specific estimated daily energy requirements; PS was reduced b...

  1. Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry

    Science.gov (United States)

    Ateca-Cabarga, Juan C.; Cosa, Alejandro; Pallarés, Vicente; López-Atalaya, José P.; Barco, Ángel; Canals, Santiago; Moratal, David

    2015-11-01

    The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p < 0.05), white matter volume (-16.00%, p < 0.05), and corpus callosum (-12.40%, p < 0.05). Furthermore, they provide new insight into the developmental origin of the disease. By comparing brain tissues in a region by region basis between cbp+/- and cbp+/+ littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.

  2. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    International Nuclear Information System (INIS)

    Hartford, Alan C.; Paravati, Anthony J.; Spire, William J.; Li, Zhongze; Jarvis, Lesley A.; Fadul, Camilo E.; Rhodes, C. Harker; Erkmen, Kadir; Friedman, Jonathan; Gladstone, David J.; Hug, Eugen B.; Roberts, David W.; Simmons, Nathan E.

    2013-01-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  3. The use of magnetic resonance imaging to study the brain size of young children with autism

    Directory of Open Access Journals (Sweden)

    Farah Ashrafzadeh

    2016-07-01

    Full Text Available Introduction: Autism spectrum disorder (ASD is a syndrome of social communication deficits and repetitive behaviors or restricted interests. While the impairments associated with ASD tend to deteriorate from childhood into adulthood, it is of critical importance that the syndrome is diagnosed at an early age. One means of facilitating this is through understanding how the brain of people with ASD develops from early childhood. Magnetic resonance imaging (MRI is the method of choice for in vivo and non-invasive investigations of the morphology of the human brain, especially when the subjects are children. In this study, we conducted a systematic review of existing structural MRI studies that have investigated brain size in ASD children of up to 5 years old. Methods: In this study, we systematically reviewed published papers that describe research studies in which the brain size of ASD children has been examined. PubMed and Scopus databases were searched for all relevant original articles that described the use of MRI techniques to study ASD patients who were between 1 and 5 years old. To be included in the review, all studies needed to be cohort and case series that involved at least 10 patients. No time limitations were placed on the searched articles within the inclusion criteria. The exclusion criteria were non-English articles, case reports, and articles that described research involving subjects that were not within the qualifying age range of 1-5 years old.Result: After an initial screening process through which the title, abstracts, and full text of the articles were reviewed to confirm they met the inclusion criteria, a total of 10 relevant articles were studied in depth. All studies found that children with ASD who were within the selected age range had a larger brain size than children without ASD.Discussion: The findings of recent studies indicate that the vast majority of ASD patients exhibit an enlarged brain; however, the extent of

  4. The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish, Gambusia holbrooki

    Directory of Open Access Journals (Sweden)

    Mischa P. Turschwell

    2016-03-01

    Full Text Available It has long been hypothesised that there is a functional correlation between brain size and metabolic rate in vertebrates. The present study tested this hypothesis in wild-caught adult mosquitofish Gambusia holbrooki by testing for an intra-specific association between resting metabolic rate (RMR and brain size while controlling for variation in body size, and through the examination of the effects of spatial enrichment and laboratory housing on body mass-independent measures of brain size and RMR. Controlling for body mass, there was no relationship between brain size and RMR in wild-caught fish. Contrary to predictions, spatial enrichment caused a decrease in mass-independent brain size, highlighting phenotypic plasticity in the adult brain. As expected, after controlling for differences in body size, wild-caught fish had relatively larger brains than fish that had been maintained in the laboratory for a minimum of six weeks, but wild-caught fish also had significantly lower mass-independent RMR. This study demonstrates that an organisms' housing environment can cause significant plastic changes to fitness related traits including brain size and RMR. We therefore conclude that current standard laboratory housing conditions may cause captive animals to be non-representative of their wild counterparts, potentially undermining the transferability of previous laboratory-based studies of aquatic ectothermic vertebrates to wild populations.

  5. Effect of reducing portion size at a compulsory meal on later energy intake, gut hormones, and appetite in overweight adults.

    Science.gov (United States)

    Lewis, Hannah B; Ahern, Amy L; Solis-Trapala, Ivonne; Walker, Celia G; Reimann, Frank; Gribble, Fiona M; Jebb, Susan A

    2015-07-01

    Larger portion sizes (PS) are associated with greater energy intake (EI), but little evidence exists on the appetitive effects of PS reduction. This study investigated the impact of reducing breakfast PS on subsequent EI, postprandial gastrointestinal hormone responses, and appetite ratings. In a randomized crossover design (n = 33 adults; mean BMI 29 kg/m(2) ), a compulsory breakfast was based on 25% of gender-specific estimated daily energy requirements; PS was reduced by 20% and 40%. EI was measured at an ad libitum lunch (240 min) and snack (360 min) and by weighed diet diaries until bed. Blood was sampled until lunch in 20 participants. Appetite ratings were measured using visual analogue scales. EI at lunch (control: 2,930 ± 203; 20% reduction: 2,853 ± 198; 40% reduction: 2,911 ± 179 kJ) and over the whole day except breakfast (control: 7,374 ± 361; 20% reduction: 7,566 ± 468; 40% reduction: 7,413 ± 417 kJ) did not differ. Postprandial PYY, GLP-1, GIP, insulin, and fullness profiles were lower and hunger, desire to eat, and prospective consumption higher following 40% reduction compared to control. Appetite ratings profiles, but not hormone concentrations, were associated with subsequent EI. Smaller portions at breakfast led to reductions in gastrointestinal hormone secretion but did not affect subsequent energy intake, suggesting small reductions in portion size may be a useful strategy to constrain EI. © 2015 The Obesity Society.

  6. Corrigendum to "Acute and repeated exposure to social stress reduces gut microbiota diversity in Syrian hamsters" [Behav. Brain Res. 345 (2018) 39-48].

    Science.gov (United States)

    Partrick, Katherine A; Chassaing, Benoit; Beach, Linda Q; McCann, Katharine E; Gewirtz, Andrew T; Huhman, Kim L

    2018-08-01

    Social stress can promote a variety of neuropsychiatric illnesses, many of which have a high co-morbidity with gastrointestinal disorders. Recent data indicate that gastrointestinal microbiota can affect their host's brain and behavior. Syrian hamsters are ideal subjects for social stress research because they are territorial, aggressive, and rapidly form dominant/subordinate relationships. The purpose of this study was to determine if exposure to social stress in hamsters alters gut microbiota in dominants and subordinates after an agonistic encounter and if pre-stress gut microbiota composition is correlated with the outcome of such a conflict. Microbiota composition was assessed via 16S mRNA Illumina sequencing on fecal samples. One agonistic encounter caused a decrease in alpha diversity in both dominant and subordinate animals with a more pronounced decrease after repeated encounters. PERMANOVA analysis of the unweighted unifrac distance revealed a distinct change in beta diversity after one and nine encounters in both dominants and subordinates. Linear discriminant analysis (LEfSE) showed bacteria from the order Lactobacillales were significantly reduced following social stress in both dominants and subordinates, and both groups exhibited increases in phyla Bacteroidetes and decreases in phyla Firmicutes following repeated encounters. LEfSE analysis on samples collected prior to social interaction revealed that some microbial taxa were correlated with a hamster achieving dominant or subordinate status. These data suggest that even an acute exposure to social stress can impact gastrointestinal microbiota and that the state of the microbial community before social stress may predict dominant/subordinate status following a subsequent agonistic encounter. Copyright © 2018.

  7. Positive correlation between occlusion rate and nidus size of proton beam treated brain arteriovenous malformations (AVMs)

    DEFF Research Database (Denmark)

    Blomquist, Erik; Ronne Engström, Elisabeth; Borota, Ljubisa

    2016-01-01

    symptoms, clinical course, the size of AVM nidus and rate of occlusion was collected. Outcome parameters were the occlusion of the AVM, clinical outcome and side effects.Results. The rate of total occlusion was overall 68%. For target volume 0-2cm3 it was 77%, for 3-10 cm3 80%, for 11-15 cm3 50% and for 16...... of these had no effect and the other only partial occlusion from proton beams. Two thirds of those presenting with seizures reported an improved seizure situation after treatment.Conclusion. Our observations agree with earlier results and show that proton beam irradiation is a treatment alternative for brain......Background. Proton beam radiotherapy of arteriovenous malformations (AVM) in the brain has been performed in Uppsala since 1991. An earlier study based on the first 26 patients concluded that proton beam can be used for treating large and medium sized AVMs that were considered difficult to treat...

  8. A simple non-invasive method for measuring gross brain size in small live fish with semi-transparent heads

    Directory of Open Access Journals (Sweden)

    Joacim Näslund

    2014-09-01

    Full Text Available This paper describes a non-invasive method for estimating gross brain size in small fish with semi-transparent heads, using system camera equipment. Macro-photographs were taken from above on backlit free-swimming fish undergoing light anaesthesia. From the photographs, the width of the optic tectum was measured. This measure (TeO-measure correlates well with the width of the optic tectum as measured from out-dissected brains in both brown trout fry and zebrafish (Pearson r > 0.90. The TeO-measure also correlates well with overall brain wet weight in brown trout fry (r = 0.90, but less well for zebrafish (r = 0.79. A non-invasive measure makes it possible to quickly assess brain size from a large number of individuals, as well as repeatedly measuring brain size of live individuals allowing calculation of brain growth.

  9. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections.

    Science.gov (United States)

    Smith, Alex J; Verkman, Alan S

    2015-12-15

    The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4(-/-) astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution. Copyright © 2015 Biophysical Society

  10. Brain response to food cues varying in portion size is associated with individual differences in the portion size effect in children

    NARCIS (Netherlands)

    Keller, Kathleen L.; English, Laural K.; Fearnbach, S.N.; Lasschuijt, Marlou; Anderson, Kaitlin; Bermudez, Maria; Fisher, Jennifer O.; Rolls, Barbara J.; Wilson, Stephen J.

    2018-01-01

    Large portions promote intake of energy dense foods (i.e., the portion size effect–PSE), but the neurobiological drivers of this effect are not known. We tested the association between blood oxygen level dependent (BOLD) brain response to food images varied by portion size (PS) and energy density

  11. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides.

    Science.gov (United States)

    Lach, Gilliard; Schellekens, Harriet; Dinan, Timothy G; Cryan, John F

    2018-01-01

    The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.

  12. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxu, E-mail: dongxu-wang@uiowa.edu; Dirksen, Blake; Hyer, Daniel E.; Buatti, John M.; Sheybani, Arshin; Dinges, Eric; Felderman, Nicole; TenNapel, Mindi; Bayouth, John E.; Flynn, Ryan T. [Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242 (United States)

    2014-12-15

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems.

  13. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    International Nuclear Information System (INIS)

    Wang, Dongxu; Dirksen, Blake; Hyer, Daniel E.; Buatti, John M.; Sheybani, Arshin; Dinges, Eric; Felderman, Nicole; TenNapel, Mindi; Bayouth, John E.; Flynn, Ryan T.

    2014-01-01

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems

  14. Mammalian collection on Noah's Ark: the effects of beauty, brain and body size.

    Directory of Open Access Journals (Sweden)

    Daniel Frynta

    Full Text Available The importance of today's zoological gardens as the so-called "Noah's Ark" grows as the natural habitat of many species quickly diminishes. Their potential to shelter a large amount of individuals from many species gives us the opportunity to reintroduce a species that disappeared in nature. However, the selection of animals to be kept in zoos worldwide is highly selective and depends on human decisions driven by both ecological criteria such as population size or vulnerability and audience-driven criteria such as aesthetic preferences. Thus we focused our study on the most commonly kept and bred animal class, the mammals, and we asked which factors affect various aspects of the mammalian collection of zoos. We analyzed the presence/absence, population size, and frequency per species of each of the 123 mammalian families kept in the worldwide zoo collection. Our aim was to explain these data using the human-perceived attractiveness of mammalian families, their body weight, relative brain size and species richness of the family. In agreement with various previous studies, we found that the body size and the attractiveness of mammals significantly affect all studied components of the mammalian collection of zoos. There is a higher probability of the large and attractive families to be kept. Once kept, these animals are presented in larger numbers in more zoos. On the contrary, the relative mean brain size only affects the primary selection whether to keep the family or not. It does not affect the zoo population size or the number of zoos that keep the family.

  15. Relationship between apathy and tumor location, size, and brain edema in patients with intracranial meningioma

    Directory of Open Access Journals (Sweden)

    Peng Y

    2015-07-01

    Full Text Available Yihua Peng,1,* Chunhong Shao,1,* Ye Gong,2 Xuehai Wu,2 Weijun Tang,3 Shenxun Shi1 1Psychiatry Department, 2Neurosurgery Department, 3Radiology Department, Huashan Hospital, Fudan University, People’s Republic of China *These authors contributed equally to this work Background: The purpose of this study is to assess the relationship between apathy and tumor location, size, and brain edema in patients with intracranial meningioma. Methods: We enrolled 65 consecutive patients with meningioma and 31 normal controls matched for age, gender, and education. The patients were divided into frontal or non-frontal (NF meningioma groups based on magnetic resonance imaging; the frontal group was then subdivided to dorsolateral frontal (DLF, medial frontal (MF, and ventral frontal (VF groups. Tumor size and brain edema were also recorded. Apathy was assessed by the Apathy Evaluation Scale (AES. Assessments were carried out 1 week before and 3 months after surgery, respectively. Logistic regression analysis was performed to identify the predictive effect of tumor size, location, and brain edema on apathy. Analysis of variance and chi-square analysis were applied to compare apathy scores and apathy rates among the frontal, NF, and normal control groups, and all subgroups within the frontal group. Results: Compared with the NF and control groups, the mean AES score was much higher in the frontal group (34.0±8.3 versus 28.63±6.0, P=0.008, and 26.8±4.2, P<0.001. Subgroup analysis showed that AES scores in the MF group (42.1±6.6 and VF group (34.7±8.0 were higher than in the DLF group (28.5±4.36, NF group, and control group (P<0.05. The apathy rate was 63.6% in the MF group and 25% in the VF group, and significantly higher than in the DLF (5.6%, NF (5.3%, and control (0% groups (P<0.001. A moderate correlation was found between AES score and mean diameter of the meningioma in all patient groups. Further analysis demonstrated that the correlation existed in

  16. Dietary 2'-Fucosyllactose Enhances Operant Conditioning and Long-Term Potentiation via Gut-Brain Communication through the Vagus Nerve in Rodents.

    Directory of Open Access Journals (Sweden)

    Enrique Vazquez

    Full Text Available 2´-fucosyllactose (2´-FL is an abundant human milk oligosaccharide (HMO in human milk with diverse biological effects. We recently reported ingested 2´-FL stimulates central nervous system (CNS function, such as hippocampal long term potentiation (LTP and learning and memory in rats. Conceivably the effect of 2´-FL on CNS function may be via the gut-brain axis (GBA, specifically the vagus nerve, and L-fucose (Fuc may play a role. This study had two aims: (1 determine if the effect of ingested 2´-FL on the modulation of CNS function is dependent on the integrity of the molecule; and (2 confirm if oral 2´-FL modified hippocampal LTP and associative learning related skills in rats submitted to bilateral subdiaphragmatic vagotomy. Results showed that 2´-FL but not Fuc enhanced LTP, and vagotomy inhibited the effects of oral 2´-FL on LTP and associative learning related paradigms. Taken together, the data show that dietary 2´-FL but not its Fuc moiety affects cognitive domains and improves learning and memory in rats. This effect is dependent on vagus nerve integrity, suggesting GBA plays a role in 2´-FL-mediated cognitive benefits.

  17. Evidence for PMAT- and OCT-like biogenic amine transporters in a probiotic strain of Lactobacillus: Implications for interkingdom communication within the microbiota-gut-brain axis.

    Directory of Open Access Journals (Sweden)

    Mark Lyte

    Full Text Available The ability of prokaryotic microbes to produce and respond to neurochemicals that are more often associated with eukaryotic systems is increasingly recognized through the concept of microbial endocrinology. Most studies have described the phenomena of neurochemical production by bacteria, but there remains an incomplete understanding of the mechanisms by which microbe- or host-derived neuroactive substances can be recognized by bacteria. Based on the evolutionary origins of eukaryotic solute carrier transporters, we hypothesized that bacteria may possess an analogous uptake function for neuroactive biogenic amines. Using specific fluorescence-based assays, Lactobacillus salivarius biofilms appear to express both plasma membrane monoamine transporter (PMAT- and organic cation transporter (OCT-like uptake of transporter-specific fluorophores. This phenomenon is not distributed throughout the genus Lactobacillus as L. rhamnosus biofilms did not take up these fluorophores. PMAT probe uptake into L. salivarius biofilms was attenuated by the protonophore CCCP, the cation transport inhibitor decynium-22, and the natural substrates norepinephrine, serotonin and fluoxetine. These results provide the first evidence, to our knowledge, for the existence of PMAT- and OCT-like uptake systems in a bacterium. They also suggest the existence of a hitherto unrecognized mechanism by which a probiotic bacterium may interact with host signals and may provide a means to examine microbial endocrinology-based interactions in health and disease that are part of the larger microbiota-gut-brain axis.

  18. [Differentiation Study of Chinese Medical Syndrome Typing for Diarrhea-predominant Irritable Bowel Syndrome Based on Information of Four Chinese Medical Diagnostic Methods and Brain-gut Peptides].

    Science.gov (United States)

    Wu, Hao-meng; Xu, Zhi-wei; Ao, Hai-qing; Shi, Ya-fei; Hu, Hai-yan; Ji, Yun-peng

    2015-10-01

    To establish discriminant functions of diarrhea-predominant irritable bowel syndrome (IBS-D) by studying it from quantitative diagnosis angle, hoping to reduce interference of subjective factors in diagnosing and differentially diagnosing Chinese medical syndromes of IBS-D. A Chinese medical clinical epidemiological survey was carried out in 439 IBS-D patients using Clinical Information Collection Table of IBS. Initial syndromes were obtained by cluster analysis. They were analyzed using step-by-step discrimination by taking information of four Chinese medical diagnostic methods and serum brain-gut peptides (BGP) as variables. Clustering results were Gan stagnation Pi deficiency syndrome (GSPDS), Pi-Wei weakness syndrome (PWWS), Gan stagnation qi stasis syndrome (GSQSS), Pi-Shen yang deficiency syndrome (PSYDS), Pi-Wei damp-heat syndrome (PWDHS), cold-damp disturbing Pi syndrome (CDDPS). Of them, GSPDS was mostly often seen with effective percentage of 34. 2%, while CDDPS was the least often seen with effective percentage of 5.5%. A total of 5 discriminant functions for GSPDS, PWWS, GSQSS, PSYDS, and PWDHS were obtained by step-by-step dis- crimination method. The retrospective misjudgment rate was 4.1% (16/390), while the cross-validation misjudgment rate was 15.4% (60/390). The establishment of discriminant functions is of value in objectively diagnosing and differentially diagnosing Chinese medical syndromes of IBS-D.

  19. Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models.

    Science.gov (United States)

    Takada, M; Nishida, K; Kataoka-Kato, A; Gondo, Y; Ishikawa, H; Suda, K; Kawai, M; Hoshi, R; Watanabe, O; Igarashi, T; Kuwano, Y; Miyazaki, K; Rokutan, K

    2016-07-01

    This study aimed to examine the effects of Lactobacillus casei strain Shirota (LcS) on gut-brain interactions under stressful conditions. Three double-blind, placebo-controlled trials were conducted to examine the effects of LcS on psychological and physiological stress responses in healthy medical students under academic examination stress. Subjects received LcS-fermented milk or placebo daily for 8 weeks prior to taking a national standardized examination. Subjective anxiety scores, salivary cortisol levels, and the presence of physical symptoms during the intervention were pooled and analyzed. In the animal study, rats were given feed with or without LcS for 2 weeks, then submitted to water avoidance stress (WAS). Plasma corticosterone concentration and the expression of cFos and corticotropin releasing factor (CRF) in the paraventricular nucleus (PVN) were measured immediately after WAS. In an electrophysiological study, gastric vagal afferent nerve activity was monitored after intragastric administration of LcS to urethane-anesthetized rats. Academic stress-induced increases in salivary cortisol levels and the incidence rate of physical symptoms were significantly suppressed in the LcS group compared with the placebo group. In rats pretreated with LcS, WAS-induced increases in plasma corticosterone were significantly suppressed, and the number of CRF-expressing cells in the PVN was reduced. Intragastric administration of LcS stimulated gastric vagal afferent activity in a dose-dependent manner. These findings suggest that LcS may prevent hypersecretion of cortisol and physical symptoms under stressful conditions, possibly through vagal afferent signaling to the brain and reduced stress reactivity in the PVN. © 2016 John Wiley & Sons Ltd.

  20. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  1. Extreme sexual brain size dimorphism in sticklebacks: a consequence of the cognitive challenges of sex and parenting?

    Directory of Open Access Journals (Sweden)

    Alexander Kotrschal

    Full Text Available Selection pressures that act differently on males and females produce numerous differences between the sexes in morphology and behaviour. However, apart from the controversial report that males have slightly heavier brains than females in humans, evidence for substantial sexual dimorphism in brain size is scarce. This apparent sexual uniformity is surprising given that sexually distinct selection pressures are ubiquitous and that brains are one of the most plastic vertebrate organs. Here we demonstrate the highest level of sexual brain size dimorphism ever reported in any vertebrate: male three-spined stickleback of two morphs in an Icelandic lake have 23% heavier brains than females. We suggest that this dramatic sexual size dimorphism is generated by the many cognitively demanding challenges that males are faced in this species, such as an elaborate courtship display, the construction of an ornate nest and a male-only parental care system. However, we consider also alternative explanations for smaller brains in females, such as life-history trade-offs. Our demonstration of unprecedented levels of sexual dimorphism in brain size in the three-spined stickleback implies that behavioural and life-history differences among the sexes can have strong effects also on neural development and proposes new fields of research for understanding brain evolution.

  2. Larger ATV engine size correlates with an increased rate of traumatic brain injury.

    Science.gov (United States)

    Butts, C Caleb; Rostas, Jack W; Lee, Y L; Gonzalez, Richard P; Brevard, Sidney B; Frotan, M Amin; Ahmed, Naveed; Simmons, Jon D

    2015-04-01

    Since the introduction of all-terrain vehicles (ATV) to the United States in 1971, injuries and mortalities related to their use have increased significantly. Furthermore, these vehicles have become larger and more powerful. As there are no helmet requirements or limitations on engine-size in the State of Alabama, we hypothesised that larger engine size would correlate with an increased incidence of traumatic brain injury (TBI) in patients following an ATV crash. Patient and ATV data were prospectively collected on all ATV crashes presenting to a level one trauma centre from September 2010 to May 2013. Collected data included: demographics, age of driver, ATV engine size, presence of helmet, injuries, and outcomes. The data were grouped according to the ATV engine size in cubic centimetres (cc). For the purposes of this study, TBI was defined as any type of intracranial haemorrhage on the initial computed tomography scan. There were 61 patients identified during the study period. Two patients (3%) were wearing a helmet at the time of injury. Patients on an ATV with an engine size of 350 cc or greater had higher Injury Severity Scores (13.9 vs. 7.5, p ≤ 0.05) and an increased incidence of TBI (26% vs. 0%, p ≤ 0.05) when compared to patients on ATV's with an engine size less than 350 cc. Patients on an ATV with an engine size of 350 cc or greater were more likely to have a TBI. The use of a helmet was rarely present in this cohort. Legislative efforts to implement rider protection laws for ATVs are warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development.

    Science.gov (United States)

    Inglis-Broadgate, Suzanne L; Thomson, Rachel E; Pellicano, Francesca; Tartaglia, Michael A; Pontikis, Charlie C; Cooper, Jonathan D; Iwata, Tomoko

    2005-03-01

    Mice with the K644E kinase domain mutation in fibroblast growth factor receptor 3 (Fgfr3) (EIIa;Fgfr3(+/K644E)) exhibited a marked enlargement of the brain. The brain size was increased as early as E11.5, not secondary to the possible effect of Fgfr3 activity in the skeleton. Furthermore, the mutant brains showed a dramatic increase in cortical thickness, a phenotype opposite to that in FGF2 knockout mice. Despite this increased thickness, cortical layer formation was largely unaffected and no cortical folding was observed during embryonic days 11.5-18.5 (E11.5-E18.5). Measurement of cortical thickness revealed an increase of 38.1% in the EIIa;Fgfr3(+/K644E) mice at E14.5 and the advanced appearance of the cortical plate was frequently observed at this stage. Unbiased stereological analysis revealed that the volume of the ventricular zone (VZ) was increased by more than two fold in the EIIa;Fgfr3(+/K644E) mutants at E14.5. A relatively mild increase in progenitor cell proliferation and a profound decrease in developmental apoptosis during E11.5-E14.5 most likely accounts for the dramatic increase in total telecephalic cell number. Taken together, our data suggest a novel function of Fgfr3 in controlling the development of the cortex, by regulating proliferation and apoptosis of cortical progenitors.

  4. Effects of dietary energy concentration, nonstarch polysaccharide concentration, and particle sizes of nonstarch polysaccharides on digesta mean retention time and gut development in laying hens

    NARCIS (Netherlands)

    Krimpen, van M.M.; Kwakkel, R.P.; Peet-Schwering, van der C.M.C.; Hartog, den L.A.; Verstegen, M.W.A.

    2011-01-01

    1. From an experiment with 504 laying hens (ISA Brown strain, 18–40 weeks of age), 90 40-week old hens were used for determining digesta mean retention time (MRT) and gut weight development. This experiment comprised 6 dietary treatments according to a 2¿×¿3 factorial design. Factors were dietary

  5. Smaller brain size likely in young adults (<40 years old) with depressive symptoms compared to healthy controls. A retrospective study

    International Nuclear Information System (INIS)

    Adachi, Michito; Sato, Takamichi; Kawaguchi, Etsuko; Shibata, Akiko

    2011-01-01

    The aim of this study was to determine whether the brain size of young patients with depressive symptoms is smaller than that of healthy controls using magnetic resonance imaging (MRI). We retrospectively evaluated brain size by calculating the ratio of the brain area to that of the skull (the brain-to-skull ratio) on routine MRI scans including the splenium of the corpus callosum obtained from 19 patients <40 years old with depressive symptoms in 2009. The controls were 12 healthy individuals <40 years old who underwent MRI for medical examinations. The mean brain-to-skull ratio of the control group was 0.850±0.022 (range 0.822-0.889), and that of the patient group was 0.819±0.041 (range 0.756-0.878). An unpaired t-test showed a significant difference in the brain-to-skull ratios between these groups (P=0.011). In particular, in 7 of the 19 patients with longer duration of illness and more severe symptoms, the brain-to-skull ratio was 89%-92% of the mean ratio of the control group. The brain size of young patients with depressive symptoms appears to be smaller than that of healthy controls. (author)

  6. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system.

    Science.gov (United States)

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik; Hallén, Anna; Bäckhed, Fredrik; Jansson, John-Olov

    2013-10-01

    The gut microbiota contributes to fat mass and the susceptibility to obesity. However, the underlying mechanisms are not completely understood. To investigate whether the gut microbiota affects hypothalamic and brainstem body fat-regulating circuits, we compared gene expression of food intake-regulating neuropeptides between germ-free and conventionally raised (CONV-R) mice. We found that CONV-R mice had decreased expression of the antiobesity neuropeptide glucagon-like peptide-1 (GLP-1) precursor proglucagon (Gcg) in the brainstem. Moreover, in both the hypothalamus and the brainstem, CONV-R mice had decreased expression of the antiobesity neuropeptide brain-derived neurotrophic factor (Bdnf). CONV-R mice had reduced expression of the pro-obesity peptides neuropeptide-Y (Npy) and agouti-related protein (Agrp), and increased expression of the antiobesity peptides proopiomelanocortin (Pomc) and cocaine- and amphetamine-regulated transcript (Cart) in the hypothalamus. The latter changes in neuropeptide expression could be secondary to elevated fat mass in CONV-R mice. Leptin treatment caused less weight reduction and less suppression of orexigenic Npy and Agrp expression in CONV-R mice compared with germ-free mice. The hypothalamic expression of leptin resistance-associated suppressor of cytokine signaling 3 (Socs-3) was increased in CONV-R mice. In conclusion, the gut microbiota reduces the expression of 2 genes coding for body fat-suppressing neuropeptides, Gcg and Bdnf, an alteration that may contribute to fat mass induction by the gut microbiota. Moreover, the presence of body fat-inducing gut microbiota is associated with hypothalamic signs of Socs-3-mediated leptin resistance, which may be linked to failed compensatory body fat reduction.

  7. String GUTs

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1995-01-01

    Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)

  8. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut.

    Science.gov (United States)

    Essner, Jeffrey J; Amack, Jeffrey D; Nyholm, Molly K; Harris, Erin B; Yost, H Joseph

    2005-03-01

    Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.

  9. Mesenchymal Stem Cells of Dental Origin-Their Potential for Antiinflammatory and Regenerative Actions in Brain and Gut Damage.

    Science.gov (United States)

    Földes, Anna; Kádár, Kristóf; Kerémi, Beáta; Zsembery, Ákos; Gyires, Klára; S Zádori, Zoltán; Varga, Gábor

    2016-01-01

    Alzheimer's disease, Parkinson's disease, traumatic brain and spinal cord injury and neuroinflammatory multiple sclerosis are diverse disorders of the central nervous system. However, they are all characterized by various levels of inappropriate inflammatory/immune response along with tissue destruction. In the gastrointestinal system, inflammatory bowel disease (IBD) is also a consequence of tissue destruction resulting from an uncontrolled inflammation. Interestingly, there are many similarities in the immunopathomechanisms of these CNS disorders and the various forms of IBD. Since it is very hard or impossible to cure them by conventional manner, novel therapeutic approaches such as the use of mesenchymal stem cells, are needed. Mesenchymal stem cells have already been isolated from various tissues including the dental pulp and periodontal ligament. Such cells possess transdifferentiating capabilities for different tissue specific cells to serve as new building blocks for regeneration. But more importantly, they are also potent immunomodulators inhibiting proinflammatory processes and stimulating anti-inflammatory mechanisms. The present review was prepared to compare the immunopathomechanisms of the above mentioned neurodegenerative, neurotraumatic and neuroinflammatory diseases with IBD. Additionally, we considered the potential use of mesenchymal stem cells, especially those from dental origin to treat such disorders. We conceive that such efforts will yield considerable advance in treatment options for central and peripheral disorders related to inflammatory degeneration.

  10. When problem size matters: differential effects of brain stimulation on arithmetic problem solving and neural oscillations.

    Directory of Open Access Journals (Sweden)

    Bruno Rütsche

    Full Text Available The problem size effect is a well-established finding in arithmetic problem solving and is characterized by worse performance in problems with larger compared to smaller operand size. Solving small and large arithmetic problems has also been shown to involve different cognitive processes and distinct electroencephalography (EEG oscillations over the left posterior parietal cortex (LPPC. In this study, we aimed to provide further evidence for these dissociations by using transcranial direct current stimulation (tDCS. Participants underwent anodal (30min, 1.5 mA, LPPC and sham tDCS. After the stimulation, we recorded their neural activity using EEG while the participants solved small and large arithmetic problems. We found that the tDCS effects on performance and oscillatory activity critically depended on the problem size. While anodal tDCS improved response latencies in large arithmetic problems, it decreased solution rates in small arithmetic problems. Likewise, the lower-alpha desynchronization in large problems increased, whereas the theta synchronization in small problems decreased. These findings reveal that the LPPC is differentially involved in solving small and large arithmetic problems and demonstrate that the effects of brain stimulation strikingly differ depending on the involved neuro-cognitive processes.

  11. Influence of gut microbiota on neuropsychiatric disorders.

    Science.gov (United States)

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  12. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

    Science.gov (United States)

    Sun, Meng-Fei; Shen, Yan-Qin

    2018-04-26

    Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed. Copyright © 2018. Published by Elsevier B.V.

  13. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis.

    Science.gov (United States)

    Sanctuary, Megan R; Kain, Jennifer N; Angkustsiri, Kathleen; German, J Bruce

    2018-01-01

    Children with autism spectrum disorders (ASD), characterized by a range of behavioral abnormalities and social deficits, display high incidence of gastrointestinal (GI) co-morbidities including chronic constipation and diarrhea. Research is now increasingly able to characterize the "fragile gut" in these children and understand the role that impairment of specific GI functions plays in the GI symptoms associated with ASD. This mechanistic understanding is extending to the interactions between diet and ASD, including food structure and protein digestive capacity in exacerbating autistic symptoms. Children with ASD and gut co-morbidities exhibit low digestive enzyme activity, impaired gut barrier integrity and the presence of antibodies specific for dietary proteins in the peripheral circulation. These findings support the hypothesis that entry of dietary peptides from the gut lumen into the vasculature are associated with an aberrant immune response. Furthermore, a subset of children with ASD exhibit high concentrations of metabolites originating from microbial activity on proteinaceous substrates. Taken together, the combination of specific protein intakes poor digestion, gut barrier integrity, microbiota composition and function all on a background of ASD represents a phenotypic pattern. A potential consequence of this pattern of conditions is that the fragile gut of some children with ASD is at risk for GI symptoms that may be amenable to improvement with specific dietary changes. There is growing evidence that shows an association between gut dysfunction and dysbiosis and ASD symptoms. It is therefore urgent to perform more experimental and clinical research on the "fragile gut" in children with ASD in order to move toward advancements in clinical practice. Identifying those factors that are of clinical value will provide an evidence-based path to individual management and targeted solutions; from real time sensing to the design of diets with personalized

  14. The correlated evolution of antipredator defences and brain size in mammals.

    Science.gov (United States)

    Stankowich, Theodore; Romero, Ashly N

    2017-01-11

    Mammals that possess elaborate antipredator defences such as body armour, spines and quills are usually well protected, intermediate in size, primarily insectivorous and live in simple open environments. The benefits of such defences seem clear and may relax selection on maintaining cognitive abilities that aid in vigilance and predator recognition, and their bearers may accrue extensive production and maintenance costs. Here, in this comparative phylogenetic analysis of measurements of encephalization quotient and morphological defence scores of 647 mammal species representing nearly every order, we found that as lineages evolve stronger defences, they suffer a correlated reduction in encephalization. The only exceptions were those that live in trees-a complex three-dimensional world probably requiring greater cognitive abilities. At the proximate level, because brain tissue is extremely energetically expensive to build, mammals may be trading off spending more on elaborate defences and saving by building less powerful brains. At the ultimate level, having greater defences may also reduce the need for advanced cognitive abilities for constant assessment of environmental predation risk, especially in simple open environments. © 2017 The Author(s).

  15. The correlated evolution of antipredator defences and brain size in mammals

    Science.gov (United States)

    Romero, Ashly N.

    2017-01-01

    Mammals that possess elaborate antipredator defences such as body armour, spines and quills are usually well protected, intermediate in size, primarily insectivorous and live in simple open environments. The benefits of such defences seem clear and may relax selection on maintaining cognitive abilities that aid in vigilance and predator recognition, and their bearers may accrue extensive production and maintenance costs. Here, in this comparative phylogenetic analysis of measurements of encephalization quotient and morphological defence scores of 647 mammal species representing nearly every order, we found that as lineages evolve stronger defences, they suffer a correlated reduction in encephalization. The only exceptions were those that live in trees—a complex three-dimensional world probably requiring greater cognitive abilities. At the proximate level, because brain tissue is extremely energetically expensive to build, mammals may be trading off spending more on elaborate defences and saving by building less powerful brains. At the ultimate level, having greater defences may also reduce the need for advanced cognitive abilities for constant assessment of environmental predation risk, especially in simple open environments. PMID:28077771

  16. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke

    Science.gov (United States)

    2011-01-01

    Background Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage. Methods We sequentially enrolled acute ischemic stroke patients, who admitted between April 2003 and March 2004, into the edaravone(-) group (n = 83) and, who admitted between April 2004 and March 2005, into the edaravone(+) group (n = 93). Because, edaravone has been used as the standard treatment after April 2004 in our hospital. To assess the temporal profile of the stroke lesion size, the ratio of the area [T2-weighted magnetic resonance images (T2WI)/iffusion-weighted magnetic resonance images (DWI)] were calculated. Observations on T2WI were continued beyond one year, and observational times were classified into subacute (1-2 months after the onset), early chronic (3-6 month), late chronic (7-12 months) and old (≥13 months) stages. Neurological deficits were assessed by the National Institutes of Health Stroke Scale upon admission and at discharge and by the modified Rankin Scale at 1 year following stroke onset. Results Stroke lesion size was significantly attenuated in the edaravone(+) group compared with the edaravone(-) group in the period of early and late chronic observational stages. However, this reduction in lesion size was significant within a year and only for the small-vessel occlusion stroke patients treated with edaravone. Moreover, patients with small-vessel occlusion strokes that were treated with edaravone showed significant neurological improvement during their hospital stay, although there were no significant differences in outcome one year after the stroke. Conclusion Edaravone treatment reduced the volume of the infarct and improved neurological deficits during the subacute period, especially

  17. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke

    Directory of Open Access Journals (Sweden)

    Suzuki Akifumi

    2011-03-01

    Full Text Available Abstract Background Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage. Methods We sequentially enrolled acute ischemic stroke patients, who admitted between April 2003 and March 2004, into the edaravone(- group (n = 83 and, who admitted between April 2004 and March 2005, into the edaravone(+ group (n = 93. Because, edaravone has been used as the standard treatment after April 2004 in our hospital. To assess the temporal profile of the stroke lesion size, the ratio of the area [T2-weighted magnetic resonance images (T2WI/iffusion-weighted magnetic resonance images (DWI] were calculated. Observations on T2WI were continued beyond one year, and observational times were classified into subacute (1-2 months after the onset, early chronic (3-6 month, late chronic (7-12 months and old (≥13 months stages. Neurological deficits were assessed by the National Institutes of Health Stroke Scale upon admission and at discharge and by the modified Rankin Scale at 1 year following stroke onset. Results Stroke lesion size was significantly attenuated in the edaravone(+ group compared with the edaravone(- group in the period of early and late chronic observational stages. However, this reduction in lesion size was significant within a year and only for the small-vessel occlusion stroke patients treated with edaravone. Moreover, patients with small-vessel occlusion strokes that were treated with edaravone showed significant neurological improvement during their hospital stay, although there were no significant differences in outcome one year after the stroke. Conclusion Edaravone treatment reduced the volume of the infarct and improved neurological deficits during the subacute

  18. Unusual developmental pattern of brain lateralization in young boys with autism spectrum disorder: Power analysis with child-sized magnetoencephalography.

    Science.gov (United States)

    Hiraishi, Hirotoshi; Kikuchi, Mitsuru; Yoshimura, Yuko; Kitagawa, Sachiko; Hasegawa, Chiaki; Munesue, Toshio; Takesaki, Natsumi; Ono, Yasuki; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Asada, Minoru; Minabe, Yoshio

    2015-03-01

    Autism spectrum disorder (ASD) is often described as comprising an unusual brain growth pattern and aberrant brain lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, examples of physiological brain lateralization in young children with ASD have yet to be well examined. Thirty-eight boys with ASD (aged 3-7 years) and 38 typically developing (TD) boys (aged 3-8 years) concentrated on video programs and their brain activities were measured non-invasively. We employed a customized child-sized magnetoencephalography system in which the sensors were located as close to the brain as possible for optimal recording in young children. To produce a credible laterality index of the brain oscillations, we defined two clusters of sensors corresponding to the right and left hemispheres. We focused on the laterality index ([left - right]/[left+right]) of the relative power band in seven frequency bands. The TD group displayed significantly rightward lateralized brain oscillations in the theta-1 frequency bands compared to the ASD group. This is the first study to demonstrate unusual brain lateralization of brain oscillations measured by magnetoencephalography in young children with ASD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  19. The size and burden of mental disorders and other disorders of the brain in Europe 2010.

    Science.gov (United States)

    Wittchen, H U; Jacobi, F; Rehm, J; Gustavsson, A; Svensson, M; Jönsson, B; Olesen, J; Allgulander, C; Alonso, J; Faravelli, C; Fratiglioni, L; Jennum, P; Lieb, R; Maercker, A; van Os, J; Preisig, M; Salvador-Carulla, L; Simon, R; Steinhausen, H-C

    2011-09-01

    , early retirement and treatment rates due to mental disorders, rates in the community have not increased with a few exceptions (i.e. dementia). There were also no consistent indications of improvements with regard to low treatment rates, delayed treatment provision and grossly inadequate treatment. Disability: Disorders of the brain and mental disorders in particular, contribute 26.6% of the total all cause burden, thus a greater proportion as compared to other regions of the world. The rank order of the most disabling diseases differs markedly by gender and age group; overall, the four most disabling single conditions were: depression, dementias, alcohol use disorders and stroke. In every year over a third of the total EU population suffers from mental disorders. The true size of "disorders of the brain" including neurological disorders is even considerably larger. Disorders of the brain are the largest contributor to the all cause morbidity burden as measured by DALY in the EU. No indications for increasing overall rates of mental disorders were found nor of improved care and treatment since 2005; less than one third of all cases receive any treatment, suggesting a considerable level of unmet needs. We conclude that the true size and burden of disorders of the brain in the EU was significantly underestimated in the past. Concerted priority action is needed at all levels, including substantially increased funding for basic, clinical and public health research in order to identify better strategies for improved prevention and treatment for disorders of the brain as the core health challenge of the 21st century. Copyright © 2011. Published by Elsevier B.V.

  20. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Christina; Arsic, Milan; Boucard, Christine C.; Biberacher, Viola; Nunnemann, Sabine; Muehlau, Mark [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center, Klinikum rechts der Isar, Munich (Germany); Schmidt, Paul [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Ludwig-Maximilians-University Muenchen, Department of Statistics, Munich (Germany); Roettinger, Michael [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Muenchner Institut fuer Neuroradiologie, Munich (Germany); Etgen, Thorleif [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Klinikum Traunstein, Department of Neurology, Traunstein (Germany); Koutsouleris, Nikolaos; Meisenzahl, Eva M. [Ludwig-Maximilians-Universitaet Muenchen, Department of Psychiatry and Psychotherapy, Munich (Germany); Reiser, Maximilian [Ludwig-Maximilians-Universitaet, Department of Radiology, Munich (Germany)

    2013-08-15

    Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts. (orig.)

  1. Comparing brain networks of different size and connectivity density using graph theory.

    Directory of Open Access Journals (Sweden)

    Bernadette C M van Wijk

    Full Text Available Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes (N and the average degree (k of the network. The explicit form of that influence depends on the type of network topology, which is usually unknown for experimental data. Direct comparisons of graph measures between empirical networks with different N and/or k can therefore yield spurious results. We list benefits and pitfalls of various approaches that intend to overcome these difficulties. We discuss the initial graph definition of unweighted graphs via fixed thresholds, average degrees or edge densities, and the use of weighted graphs. For instance, choosing a threshold to fix N and k does eliminate size and density effects but may lead to modifications of the network by enforcing (ignoring non-significant (significant connections. Opposed to fixing N and k, graph measures are often normalized via random surrogates but, in fact, this may even increase the sensitivity to differences in N and k for the commonly used clustering coefficient and small-world index. To avoid such a bias we tried to estimate the N,k-dependence for empirical networks, which can serve to correct for size effects, if successful. We also add a number of methods used in social sciences that build on statistics of local network structures including exponential random graph models and motif counting. We show that none of the here-investigated methods allows for a reliable and fully unbiased comparison, but some perform better than others.

  2. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    International Nuclear Information System (INIS)

    Joseph, Bertrand; Hermanson, Ola

    2010-01-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  3. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Bertrand [Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden)

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  4. Hypothesis: brain size and skull shape as criteria for a new hominin family tree.

    Science.gov (United States)

    Chardin, Pierre

    2014-10-01

    Today, gorillas and chimpanzees live in tropical forests, where acid soils do not favor fossilization. It is thus widely believed that there are no fossils of chimpanzees or gorillas. However, four teeth of a 0.5-million-year (Ma)-old chimpanzee were discovered in the rift valley of Kenya (McBrearty and Jablonski, 2005), and a handful of teeth of a 10-Ma-old gorilla-like creature were found in Ethiopia (Suwa et al., 2007), close to the major sites of Homo discoveries. These discoveries indicate that chimpanzees and gorillas once shared their range with early Homo. However, the thousands of hominin fossils discovered in the past century have all been attributed to the Homo line. Thus far, our family tree looks like a bush with many dead-branches. If one admits the possibility that the australopithecines can also be the ancestors of African great apes, one can place Paranthropus on the side of gorilla ancestors and divide the remaining Australopithecus based on the brain size into the two main lines of humans and chimpanzees, thereby resulting in a coherent family tree. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. The brain sizes of living elasmobranchii as their organization level indicator. I. General analysis.

    Science.gov (United States)

    Myagkov, N A

    1991-01-01

    The relationship between brain and body masses of 64 species and subspecies of modern sharks and skates was investigated. It was established that the level of their encephalization in terms of the polygons of encephalization and the allometry coefficient (alpha), shows quite obviously the general organization level of one or another taxon of sharks and skates. Alpha = 0.56 for the class of cartilaginous fishes, and for the superorder of sharks and skates alpha = 0.54 and 0.61, accordingly. For several orders alpha constitutes: sharks--common for relict Hexanchiformes and Heterodontiformes 0.44, Squaliformes 0.43 and Carcharhiniformes 0.52 and skates--Rajiformes 0.44 and Dasyatiformes 0.52. All values are similar to those of other vertebrates and the theoretically calculated value of alpha (0.67). It was established the "place" of present-day Elasmobranchii and all cartilaginous fishes in the evolutionary row of Gnathostomata and Craniata on the developing and relative sizes of CNS, and the corrected alpha value for this particular vertebrate class was specified which was found to be sensationally high also in the works of foreign and native authors (Bauchot et al., 1976; Northcutt, 1978; Ebbesson, 1980; Kreps, 1980).

  6. Rutile TiO₂ particles exert size and surface coating dependent retention and lesions on the murine brain.

    Science.gov (United States)

    Zhang, Lili; Bai, Ru; Li, Bai; Ge, Cuicui; Du, Jiangfeng; Liu, Ying; Le Guyader, Laurent; Zhao, Yuliang; Wu, Yanchuan; He, Shida; Ma, Yongmei; Chen, Chunying

    2011-11-10

    The rising commercial use and large-scale production of engineered nanoparticles (NPs) may lead to unintended exposure to humans. The central nervous system (CNS) is a potential susceptible target of the inhaled NPs, but so far the amount of studies on this aspect is limited. Here, we focus on the potential neurological lesion in the brain induced by the intranasally instilled titanium dioxide (TiO₂) particles in rutile phase and of various sizes and surface coatings. Female mice were intranasally instilled with four different types of TiO₂ particles (i.e. two types of hydrophobic particles in micro- and nano-sized without coating and two types of water-soluble hydrophilic nano-sized particles with silica surface coating) every other day for 30 days. Inductively coupled plasma mass spectrometry (ICP-MS) were used to determine the titanium contents in the sub-brain regions. Then, the pathological examination of brain tissues and measurements of the monoamine neurotransmitter levels in the sub-brain regions were performed. We found significant up-regulation of Ti contents in the cerebral cortex and striatum after intranasal instillation of hydrophilic TiO₂ NPs. Moreover, TiO₂ NPs exposure, in particular the hydrophilic NPs, caused obvious morphological changes of neurons in the cerebral cortex and significant disturbance of the monoamine neurotransmitter levels in the sub-brain regions studied. Thus, our results indicate that the surface modification of the NPs plays an important role on their effects on the brain. In addition, the difference in neurotoxicity of the two types of hydrophilic NPs may be induced by the shape differences of the materials. The present results suggest that physicochemical properties like size, shape and surface modification of the nanomaterials should be considered when evaluating their neurological effects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. When larger brains do not have more neurons: Increased numbers of cells are compensated by decreased average cell size across mouse individuals

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2015-06-01

    Full Text Available There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.

  8. MicroCT and microMRI imaging of a prenatal mouse model of increased brain size

    Science.gov (United States)

    López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.

    2008-08-01

    There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.

  9. Targeting gut microbiome: A novel and potential therapy for autism.

    Science.gov (United States)

    Yang, Yongshou; Tian, Jinhu; Yang, Bo

    2018-02-01

    Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice.

    Science.gov (United States)

    de Sousa Rodrigues, Maria Elizabeth; Bekhbat, Mandakh; Houser, Madelyn C; Chang, Jianjun; Walker, Douglas I; Jones, Dean P; Oller do Nascimento, Claudia M P; Barnum, Christopher J; Tansey, Malú G

    2017-01-01

    The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The Role of “Mixed” Orexigenic and Anorexigenic Signals and Autoantibodies Reacting with Appetite-Regulating Neuropeptides and Peptides of the Adipose Tissue-Gut-Brain Axis: Relevance to Food Intake and Nutritional Status in Patients with Anorexia Nervosa and Bulimia Nervosa

    Science.gov (United States)

    Papezova, Hana; Vondra, Karel; Hill, Martin; Hainer, Vojtech; Nedvidkova, Jara

    2013-01-01

    Eating disorders such as anorexia (AN) and bulimia nervosa (BN) are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT) peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY), peptide YY (PYY), cholecystokinin (CCK), leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE), serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice. PMID:24106499

  12. The role of "mixed" orexigenic and anorexigenic signals and autoantibodies reacting with appetite-regulating neuropeptides and peptides of the adipose tissue-gut-brain axis: relevance to food intake and nutritional status in patients with anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Smitka, Kvido; Papezova, Hana; Vondra, Karel; Hill, Martin; Hainer, Vojtech; Nedvidkova, Jara

    2013-01-01

    Eating disorders such as anorexia (AN) and bulimia nervosa (BN) are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT) peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY), peptide YY (PYY), cholecystokinin (CCK), leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE), serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice.

  13. The Role of “Mixed” Orexigenic and Anorexigenic Signals and Autoantibodies Reacting with Appetite-Regulating Neuropeptides and Peptides of the Adipose Tissue-Gut-Brain Axis: Relevance to Food Intake and Nutritional Status in Patients with Anorexia Nervosa and Bulimia Nervosa

    Directory of Open Access Journals (Sweden)

    Kvido Smitka

    2013-01-01

    Full Text Available Eating disorders such as anorexia (AN and bulimia nervosa (BN are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY, peptide YY (PYY, cholecystokinin (CCK, leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE, serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice.

  14. Structure and function of the healthy pre-adolescent pediatric gut microbiome

    Science.gov (United States)

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limite...

  15. High-fat feeding impairs nutrient sensing and gut brain integration in the caudomedial nucleus of the solitary tract in mice.

    Directory of Open Access Journals (Sweden)

    Althea R Cavanaugh

    Full Text Available Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS, remain poorly understood. In this paper, we assessed the consequences of high-fat (HF feeding and diet-induced obesity (DIO on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1. We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size.

  16. Tail gut cyst.

    Science.gov (United States)

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  17. SUSY GUT Model Building

    International Nuclear Information System (INIS)

    Raby, Stuart

    2008-01-01

    In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E 8 xE 8 heterotic string.

  18. On the Relationships of Postcanine Tooth Size with Dietary Quality and Brain Volume in Primates: Implications for Hominin Evolution

    Directory of Open Access Journals (Sweden)

    Juan Manuel Jiménez-Arenas

    2014-01-01

    Full Text Available Brain volume and cheek-tooth size have traditionally been considered as two traits that show opposite evolutionary trends during the evolution of Homo. As a result, differences in encephalization and molarization among hominins tend to be interpreted in paleobiological grounds, because both traits were presumably linked to the dietary quality of extinct species. Here we show that there is an essential difference between the genus Homo and the living primate species, because postcanine tooth size and brain volume are related to negative allometry in primates and show an inverse relationship in Homo. However, when size effects are removed, the negative relationship between encephalization and molarization holds only for platyrrhines and the genus Homo. In addition, there is no general trend for the relationship between postcanine tooth size and dietary quality among the living primates. If size and phylogeny effects are both removed, this relationship vanishes in many taxonomic groups. As a result, the suggestion that the presence of well-developed postcanine teeth in extinct hominins should be indicative of a poor-quality diet cannot be generalized to all extant and extinct primates.

  19. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery

    NARCIS (Netherlands)

    Hoefnagels, Friso W. A.; de Witt Hamer, Philip C.; Pouwels, Petra J. W.; Barkhof, Frederik; Vandertop, W. Peter

    2017-01-01

    To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with

  20. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum.

    Science.gov (United States)

    Luders, Eileen; Toga, Arthur W; Thompson, Paul M

    2014-01-01

    Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum. © 2013.

  1. New Therapeutic Drugs from Bioactive Natural Molecules: the Role of Gut Microbiota Metabolism in Neurodegenerative Diseases.

    Science.gov (United States)

    Di Meo, Francesco; Donato, Stella; Di Pardo, Alba; Maglione, Vittorio; Filosa, Stefania; Crispi, Stefania

    2018-04-03

    The gut-brain axis is considered a neuroendocrine system, which connects brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for healthy conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. Gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Recent advances in gut microbiota analyses indicate that the gut bacterial community plays a key role in maintaining normal brain functions. Recent metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both gut bacterial composition and brain biochemistry. Modifications of microbiota composition by natural bioactive molecules could be used to restore the altered brain functions, which characterize neurodegenerative diseases, leading to consider these compounds as novel therapeutic strategies for the treatment of neuropathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. SO(10) GUT baryogenesis

    International Nuclear Information System (INIS)

    Gu Peihong; Sarkar, Utpal

    2008-01-01

    Baryogenesis, through the decays of heavy bosons, was considered to be one of the major successes of the grand unified theories (GUTs). It was then realized that the sphaleron processes erased any baryon asymmetry from the GUT-baryogenesis at a later stage. In this Letter, we discuss the idea of resurrecting GUT-baryogenesis [M. Fukugita, T. Yanagida, Phys. Rev. Lett. 89 (2002) 131602] in a large class of SO(10) GUTs. Our analysis shows that fast lepton number violating but baryon number conserving processes can partially wash out the GUT-baryogenesis produced lepton and/or baryon asymmetry associated with or without the sphaleron and/or Yukawa interactions

  3. Gut metabolome meets microbiome

    DEFF Research Database (Denmark)

    Lamichhane, Santosh; Sen, Partho; Dickens, Alex M

    2018-01-01

    It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We...... highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding...

  4. Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia.

    LENUS (Irish Health Repository)

    Rose, Emma Jane

    2013-05-01

    Genetic variants associated with increased risk for schizophrenia (SZ) are hypothesized to be more penetrant at the level of brain structure and function than at the level of behavior. However, to date the relative sensitivity of imaging vs cognitive measures of these variants has not been quantified. We considered effect sizes associated with cognitive and imaging studies of 9 robust SZ risk genes (DAOA, DISC1, DTNBP1, NRG1, RGS4, NRGN, CACNA1C, TCF4, and ZNF804A) published between January 2005-November 2011. Summary data was used to calculate estimates of effect size for each significant finding. The mean effect size for each study was categorized as small, medium, or large and the relative frequency of each category was compared between modalities and across genes. Random effects meta-analysis was used to consider the impact of experimental methodology on effect size. Imaging studies reported mostly medium or large effects, whereas cognitive investigations commonly reported small effects. Meta-analysis confirmed that imaging studies were associated with larger effects. Effect size estimates were negatively correlated with sample size but did not differ as a function of gene nor imaging modality. These observations support the notion that SZ risk variants show larger effects, and hence greater penetrance, when characterized using indices of brain structure and function than when indexed by cognitive measures. However, it remains to be established whether this holds true for individual risk variants, imaging modalities, or cognitive functions, and how such effects may be mediated by a relationship with sample size and other aspects of experimental variability.

  5. The size, burden and cost of disorders of the brain in the UK

    Science.gov (United States)

    Haddad, Peter M; Carpenter, Lewis; Gannon, Brenda; Sharpe, Rachel; Young, Allan H; Joyce, Eileen; Rowe, James; Wellsted, David; Nutt, David J; Sahakian, Barbara J

    2013-01-01

    Aim: The aim of this paper is to increase awareness of the prevalence and cost of psychiatric and neurological disorders (brain disorders) in the UK. Method: UK data for 18 brain disorders were extracted from a systematic review of European epidemiological data and prevalence rates and the costs of each disorder were summarized (2010 values). Results: There were approximately 45 million cases of brain disorders in the UK, with a cost of €134 billion per annum. The most prevalent were headache, anxiety disorders, sleep disorders, mood disorders and somatoform disorders. However, the five most costly disorders (€ million) were: dementia: €22,164; psychotic disorders: €16,717; mood disorders: €19,238; addiction: €11,719; anxiety disorders: €11,687. Apart from psychosis, these five disorders ranked amongst those with the lowest direct medical expenditure per subject (<€3000). The approximate breakdown of costs was: 50% indirect costs, 25% direct non-medical and 25% direct healthcare costs. Discussion: The prevalence and cost of UK brain disorders is likely to increase given the ageing population. Translational neurosciences research has the potential to develop more effective treatments but is underfunded. Addressing the clinical and economic challenges posed by brain disorders requires a coordinated effort at an EU and national level to transform the current scientific, healthcare and educational agenda. PMID:23884863

  6. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury.

    Science.gov (United States)

    Gyoneva, Stefka; Kim, Daniel; Katsumoto, Atsuko; Kokiko-Cochran, O Nicole; Lamb, Bruce T; Ransohoff, Richard M

    2015-12-03

    Millions of people experience traumatic brain injury (TBI) as a result of falls, car accidents, sports injury, and blast. TBI has been associated with the development of neurodegenerative conditions such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). In the initial hours and days, the pathology of TBI comprises neuronal injury, breakdown of the blood-brain barrier, and inflammation. At the cellular level, the inflammatory reaction consists of responses by brain-resident microglia, astrocytes, and vascular elements as well as infiltration of peripheral cells. After TBI, signaling by chemokine (C-C motif) ligand 2 (CCL2) to the chemokine (C-C motif) receptor 2 (CCR2) is a key regulator of brain infiltration by monocytes. We utilized mice with one or both copies of Ccr2 disrupted by red fluorescent protein (RFP, Ccr2 (RFP/+) and Ccr2 (RFP/RFP) ). We subjected these mice to the mild lateral fluid percussion model of TBI and examined several pathological outcomes 3 days later in order to determine the effects of altered monocyte entry into the brain. Ccr2 deletion reduced monocyte infiltration, diminished lesion cavity volume, and lessened axonal damage after mild TBI, but the microglial reaction to the lesion was not affected. We further examined phosphorylation of the microtubule-associated protein tau, which aggregates in brains of people with TBI, AD, and CTE. Surprisingly, Ccr2 deletion was associated with increased tau mislocalization to the cell body in the cortex and hippocampus by tissue staining and increased levels of phosphorylated tau in the hippocampus by Western blot. Disruption of CCR2 enhanced tau pathology and reduced cavity volume in the context of TBI. The data reveal a complex role for CCR2(+) monocytes in TBI, as monitored by cavity volume, axonal damage, and tau phosphorylation.

  7. The psyche and the gut

    Institute of Scientific and Technical Information of China (English)

    Paul Enck; Ute Martens; Sibylle Klosterhalfen

    2007-01-01

    Research on gut-brain interactions has increased over the last decade and has brought about a number of new topics beyond "classical" subjects, such as "stress" and "personality", which have dominated the psychosomatic literature on gastrointestinal disorders over the past century. These novel topics include brain imaging of intestinal functions, placebo responses in gastroenterology, learning of gastrointestinal symptoms, quality of life in patients with intestinal complaints, and psychotherapy and familial aggregation of functional intestinal disorders. Currently, these new topics appear with a frequency of 1% to 3% in leading gastroenterological journals, either as data presentation or review papers. Increasing focus underlines the importance of enhancing our understanding on how the psyche and the brain communicate in order to better meet the needs of our patients.

  8. The psyche and the gut

    Science.gov (United States)

    Enck, Paul; Martens, Ute; Klosterhalfen, Sibylle

    2007-01-01

    Research on gut-brain interactions has increased over the last decade and has brought about a number of new topics beyond "classical" subjects, such as "stress" and "personality", which have dominated the psychosomatic literature on gastrointestinal disorders over the past century. These novel topics include brain imaging of intestinal functions, placebo responses in gastroenterology, learning of gastrointestinal symptoms, quality of life in patients with intestinal complaints, and psychotherapy and familial aggregation of functional intestinal disorders. Currently, these new topics appear with a frequency of 1% to 3% in leading gastroenterological journals, either as data presentation or review papers. Increasing focus underlines the importance of enhancing our understanding on how the psyche and the brain communicate in order to better meet the needs of our patients. PMID:17659685

  9. Prenatal famine exposure has sex-specific effects on brain size

    NARCIS (Netherlands)

    de Rooij, Susanne R.; Caan, Matthan W. A.; Swaab, Dick F.; Nederveen, Aart J.; Majoie, Charles B.; Schwab, Matthias; Painter, Rebecca C.; Roseboom, Tessa J.

    2016-01-01

    Early nutritional deprivation might cause irreversible damage to the brain. Prenatal exposure to undernutrition has been shown to be associated with increased central nervous system anomalies at birth and decreased cognitive function in adulthood. Little is known about the potential effect on the

  10. Protein-truncating mutations in ASPM cause variable reduction in brain size

    NARCIS (Netherlands)

    Bond, Jacquelyn; Scott, Sheila; Hampshire, Daniel J.; Springell, Kelly; Corry, Peter; Abramowicz, Marc J.; Mochida, Ganesh H.; Hennekam, Raoul C. M.; Maher, Eamonn R.; Fryns, Jean-Pierre; Alswaid, Abdulrahman; Jafri, Hussain; Rashid, Yasmin; Mubaidin, Ammar; Walsh, Christopher A.; Roberts, Emma; Woods, C. Geoffrey

    2003-01-01

    Mutations in the ASPM gene at the MCPH5 locus are expected to be the most common cause of human autosomal recessive primary microcephaly (MCPH), a condition in which there is a failure of normal fetal brain development, resulting in congenital microcephaly and mental retardation. We have performed

  11. Prenatal famine exposure has sex-specific effects on brain size

    NARCIS (Netherlands)

    de Rooij, Susanne R; Caan, Matthan W A; Swaab, Dick F; Nederveen, Aart J; Majoie, Charles B; Schwab, Matthias; Painter, Rebecca C; Roseboom, Tessa J

    Early nutritional deprivation might cause irreversible damage to the brain. Prenatal exposure to undernutrition has been shown to be associated with increased central nervous system anomalies at birth and decreased cognitive function in adulthood. Little is known about the potential effect on the

  12. The human gut resistome.

    Science.gov (United States)

    van Schaik, Willem

    2015-06-05

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.

  13. The neural processing of musical instrument size information in the brain investigated by magnetoencephalography

    Science.gov (United States)

    Rupp, Andre; van Dinther, Ralph; Patterson, Roy D.

    2005-04-01

    The specific cortical representation of size was investigated by recording auditory evoked fields (AEFs) elicited by changes of instrument size and pitch. In Experiment 1, a French horn and one scaled to double the size played a three note melody around F3 or its octave, F4. Many copies of these four melodies were played in random order and the AEF was measured continuously. A similar procedure was applied to saxophone sounds in a separate run. In Experiment 2, the size and type of instrument (French horn and saxophone) were varied without changing the octave. AEFs were recorded in five subjects using magnetoencephalography and evaluated by spatio-temporal source analysis with one equivalent dipole in each hemisphere. The morphology of the source waveforms revealed that each note within the melody elicits a well-defined P1-N1-P2 AEF-complex with adaptation for the 2nd and 3rd note. At the transition of size, pitch, or both, a larger AEF-complex was evoked. However, size changes elicited a stronger N1 than pitch changes. Furthermore, this size-related N1 enhancement was larger for French horn than saxophone. The results indicate that the N1 plays an important role in the specific representation of instrument size.

  14. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  15. Brain regions implicated in inhibitory control and appetite regulation are activated in response to food portion size and energy density in children

    NARCIS (Netherlands)

    English, L.K.; Fearnbach, S.N.; Lasschuijt, M.; Schlegel, A.; Anderson, K.; Harris, S.; Fisher, J.O.; Savage, J.S.; Rolls, B.J.; Keller, K.L.

    2016-01-01

    Objective:Large portions of energy-dense foods drive energy intake but the brain mechanisms underlying this effect are not clear. Our main objective was to investigate brain function in response to food images varied by portion size (PS) and energy density (ED) in children using functional

  16. On the Importance of Accounting for Competing Risks in Pediatric Brain Cancer: II. Regression Modeling and Sample Size

    International Nuclear Information System (INIS)

    Tai, Bee-Choo; Grundy, Richard; Machin, David

    2011-01-01

    Purpose: To accurately model the cumulative need for radiotherapy in trials designed to delay or avoid irradiation among children with malignant brain tumor, it is crucial to account for competing events and evaluate how each contributes to the timing of irradiation. An appropriate choice of statistical model is also important for adequate determination of sample size. Methods and Materials: We describe the statistical modeling of competing events (A, radiotherapy after progression; B, no radiotherapy after progression; and C, elective radiotherapy) using proportional cause-specific and subdistribution hazard functions. The procedures of sample size estimation based on each method are outlined. These are illustrated by use of data comparing children with ependymoma and other malignant brain tumors. The results from these two approaches are compared. Results: The cause-specific hazard analysis showed a reduction in hazards among infants with ependymoma for all event types, including Event A (adjusted cause-specific hazard ratio, 0.76; 95% confidence interval, 0.45-1.28). Conversely, the subdistribution hazard analysis suggested an increase in hazard for Event A (adjusted subdistribution hazard ratio, 1.35; 95% confidence interval, 0.80-2.30), but the reduction in hazards for Events B and C remained. Analysis based on subdistribution hazard requires a larger sample size than the cause-specific hazard approach. Conclusions: Notable differences in effect estimates and anticipated sample size were observed between methods when the main event showed a beneficial effect whereas the competing events showed an adverse effect on the cumulative incidence. The subdistribution hazard is the most appropriate for modeling treatment when its effects on both the main and competing events are of interest.

  17. Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    KAUST Repository

    Berumen, Michael L.; Pratchett, Morgan S.; Goodman, Brett Alexander

    2011-01-01

    Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors. © 2011 Springer-Verlag.

  18. Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    KAUST Repository

    Berumen, Michael L.

    2011-06-17

    Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors. © 2011 Springer-Verlag.

  19. Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi; Hayashi, Toshiyuki; Kato, Toshinori; Okada, Eiji

    2004-01-01

    Near-infrared (NIR) topography can obtain a topographical distribution of the activated region in the brain cortex. Near-infrared light is strongly scattered in the head, and the volume of tissue sampled by a source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. In this study, a one-dimensional distribution of absorption change in a head model is calculated by mapping and reconstruction methods to evaluate the effect of the image reconstruction algorithm and the interval of measurement points for topographic imaging on the accuracy of the topographic image. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The measurement points are one-dimensionally arranged on the surface of the model, and the distance between adjacent measurement points is varied from 4 mm to 28 mm. Small intervals of the measurement points improve the topographic image calculated by both the mapping and reconstruction methods. In the conventional mapping method, the limit of the spatial resolution depends upon the interval of the measurement points and spatial sensitivity profile for source-detector pairs. The reconstruction method has advantages over the mapping method which improve the results of one-dimensional analysis when the interval of measurement points is less than 12 mm. The effect of overlapping of spatial sensitivity profiles indicates that the reconstruction method may be effective to improve the spatial resolution of a two-dimensional reconstruction of topographic image obtained with larger interval of measurement points. Near-infrared topography with the reconstruction method potentially obtains an accurate distribution of absorption change in the brain even if the size of absorption change is less than 10 mm

  20. Brain size and neuropsychological functioning in long-term survivors of pediatric acute lymphoblastic leukemia.

    Science.gov (United States)

    Mulcahy Levy, Jean M; Hunger, Stephen P

    2013-10-01

    With the increased survival of pediatric cancer patients the interest in the late effects of treatments is rapidly increasing. Long-term survival rates for children with acute lymphoblastic leukemia (ALL) now approach 90%. Treatment for ALL includes intensified central nervous system (CNS)-directed therapy, which is associated with risks for long-term neurocognitive effects. It is becoming clear that current therapies can have not only a detrimental effect on IQ, processing speed, and memory, but also on structural changes that lead to permanent alterations of the organization of the CNS. Understanding how the CNS is affected by the treatments is a critical step in evaluating current therapies and developing interventions to decrease the incidence and severity of long-term changes in brain anatomy and function.

  1. Gut microbiota sustains hematopoiesis

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim

    2017-01-01

    In this issue of Blood, Josefsdottir et al provide substantial evidence that commensal gut microbes regulate and sustain normal steady-state hematopoiesis.1......In this issue of Blood, Josefsdottir et al provide substantial evidence that commensal gut microbes regulate and sustain normal steady-state hematopoiesis.1...

  2. Gut microbiome and bone.

    Science.gov (United States)

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  3. Building GUTs from strings

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1996-01-01

    We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 45- or 54-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10) GUTs, only a single GUT Higgs, either a 54 or a 45, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed. (orig.)

  4. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery.

    Science.gov (United States)

    Hoefnagels, Friso W A; de Witt Hamer, Philip C; Pouwels, Petra J W; Barkhof, Frederik; Vandertop, W Peter

    2017-09-01

    To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with intracerebral lesions who had 2 different DTI scans, 3 DTI series were reconstructed to compare the effects of NGD and SR. Tractographies for 4 clinically relevant tracts (corticospinal tract, superior longitudinal fasciculus, optic radiation, and inferior fronto-occipital fasciculus) were constructed with a probabilistic tracking algorithm and automated region of interest placement and compared for 3 quantitative measurements: tract volume, median fiber density, and mean fractional anisotropy, using linear mixed-effects models. The mean tractography volume and intersubject reliability were visually compared across scanning protocols, to assess the clinical relevance of the quantitative differences. Both NGD and SR significantly influenced tract volume, median fiber density, and mean fractional anisotropy, but not to the same extent. In particular, higher NGD increased tract volume and median fiber density. More importantly, these effects further increased when tracts were affected by disease. The effects were tract specific, but not dependent on threshold. The superior longitudinal fasciculus and inferior fronto-occipital fasciculus showed the most significant differences. Qualitative assessment showed larger tract volumes given a fixed confidence level, and better intersubject reliability for the higher NGD protocol. SR in the range we considered seemed less relevant than NGD. This study indicates that, under time constraints of clinical imaging, a higher number of diffusion gradients is more important than spatial resolution for superior DTI probabilistic tractography in patients undergoing brain tumor surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The correlated evolution of antipredator defences and brain size in mammals

    OpenAIRE

    Stankowich, Theodore; Romero, Ashly N.

    2017-01-01

    Mammals that possess elaborate antipredator defences such as body armour, spines and quills are usually well protected, intermediate in size, primarily insectivorous and live in simple open environments. The benefits of such defences seem clear and may relax selection on maintaining cognitive abilities that aid in vigilance and predator recognition, and their bearers may accrue extensive production and maintenance costs. Here, in this comparative phylogenetic analysis of measurements of encep...

  6. The Effect of Antibiotics in Early Life on Brain Function and Behaviour

    International Development Research Centre (IDRC) Digital Library (Canada)

    Recent evidence in animal models suggests that gut microbiota can influence ... of the microbiota-gut-brain axis related to antibiotic effects on brain function and behaviour ... IDRC and DHSC partner to fight antimicrobial resistance in animals.

  7. Molecules of various pharmacologically-relevant sizes can cross the ultrasound-induced blood-brain barrier opening in vivo.

    Science.gov (United States)

    Choi, James J; Wang, Shougang; Tung, Yao-Sheng; Morrison, Barclay; Konofagou, Elisa E

    2010-01-01

    Focused ultrasound (FUS) is hereby shown to noninvasively and selectively deliver compounds at pharmacologically relevant molecular weights through the opened blood-brain barrier (BBB). A complete examination on the size of the FUS-induced BBB opening, the spatial distribution of the delivered agents and its dependence on the agent's molecular weight were imaged and quantified using fluorescence microscopy. BBB opening in mice (n=13) was achieved in vivo after systemic administration of microbubbles and subsequent application of pulsed FUS (frequency: 1.525MHz, peak-rarefactional pressure in situ: 570 kPa) to the left murine hippocampus through the intact skin and skull. BBB-impermeant, fluorescent-tagged dextrans at three distinct molecular weights spanning over several orders of magnitude were systemically administered and acted as model therapeutic compounds. First, dextrans of 3 and 70 kDa were delivered trans-BBB while 2000 kDa dextran was not. Second, compared with 70 kDa dextran, a higher concentration of 3 kDa dextran was delivered through the opened BBB. Third, the 3 and 70 kDa dextrans were both diffusely distributed throughout the targeted brain region. However, high concentrations of 70 kDa dextran appeared more punctated throughout the targeted region. In conclusion, FUS combined with microbubbles opened the BBB sufficiently to allow passage of compounds of at least 70 kDa, but not greater than 2000 kDa into the brain parenchyma. This noninvasive and localized BBB opening technique could, thus, provide a unique means for the delivery of compounds of several magnitudes of kDa that include agents with shown therapeutic promise in vitro but whose in vivo translation has been hampered by their associated BBB impermeability. (E-mail: ek2191@columbia.edu).

  8. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics.

    Science.gov (United States)

    Geurts, L; Neyrinck, A M; Delzenne, N M; Knauf, C; Cani, P D

    2014-03-01

    Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and

  9. Size distribution of air bubbles entering the brain during cardiac surgery.

    Directory of Open Access Journals (Sweden)

    Emma M L Chung

    Full Text Available Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data.Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature.Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm. Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85% were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles.Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful.

  10. Supersymmetric GUTs and cosmology

    International Nuclear Information System (INIS)

    Lazarides, G.; Shafi, Q.

    1982-06-01

    By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)

  11. Low calorie sweeteners: Evidence remains lacking for effects on human gut function.

    Science.gov (United States)

    Bryant, Charlotte; Mclaughlin, John

    2016-10-01

    The importance of nutrient induced gut-brain signalling in the regulation of human food intake has become an increasing focus of research. Much of the caloric excess consumed comes from dietary sugars, but our knowledge about the mechanisms mediating the physiological and appetitive effects of sweet tastants in the human gut and gut-brain axis is far from complete. The comparative effects of natural sugars vs low calorie sweeteners are also poorly understood. Research in animal and cellular models has suggested a key functional role in gut endocrine cells for the sweet taste receptors previously well described in oral taste. However human studies to date have very consistently failed to show that activation of the sweet taste receptor by low calorie sweeteners placed in the human gut fails to replicate any of the effects on gastric motility, gut hormones or appetitive responses evoked by caloric sugars. Copyright © 2016. Published by Elsevier Inc.

  12. The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: involvement of 5-HT-dependent signaling.

    Science.gov (United States)

    Yu, Yingcong; Wu, Shujuan; Li, Jianxin; Wang, Renye; Xie, Xupei; Yu, Xuefeng; Pan, Jianchun; Xu, Ying; Zheng, Liang

    2015-02-01

    Irritable bowel syndrome (IBS) is induced by dysfunction of central nervous and peripheral intestinal systems, which affects an estimated 10-15% population worldwide annually. Stress-related psychiatric disorders including depression and anxiety are often comorbid with gastrointestinal function disorder, such as IBS. However, the mechanism of IBS still remains unknown. Curcumin is a biologically active phytochemical presents in turmeric and has pharmacological actions that benefit patients with depression and anxiety. Our study found that IBS rats showed depression- and anxiety-like behaviors associated with decreased 5-HT (serotonin), BDNF (Brain-derived neurotrophic factor) and pCREB (phosphorylation of cAMP response element-binding protein) expression in the hippocampus after chronic acute combining stress (CAS). However, these decreased parameters were obviously increased in the colonic after CAS. Curcumin (40 mg/kg) reduced the immobility time of forced swimming and the number of buried marbles in behavioral tests of CAS rats. Curcumin also decreased the number of fecal output and abdominal withdrawal reflex (AWR) scores in response to graded distention. Moreover, curcumin increased serotonin, BDNF and pCREB levels in the hippocampus, but they were decreased in the colonic of CAS rats. 5-HT(1A) receptor antagonist NAN-190 reversed the effects of curcumin on behaviors and the changes of intestine, pCREB and BDNF expression, which are related to IBS. These results suggested that curcumin exerts the effects on IBS through regulating neurotransmitters, BDNF and CREB signaling both in the brain and peripheral intestinal system.

  13. Radiation and Gut

    International Nuclear Information System (INIS)

    Potten, C.S.; Hendry, J.H.

    1995-08-01

    Texts on gut with reference to radiation (or other cytotoxic and carcinogenic agents) consist of primary research papers, review articles, or books which are now very out-of-date. With this in mind, the present book was conceived. Here, with chapters by experts in the field, we cover the basic structure and cell replacement process in the gut, the physical situation relevant for gut radiation exposure and a description of some of the techniques used to study radiation effects, in particular the clonal regeneration assay that assesses stem cell functional capacity. Chapters comprehensively cover the effects of radiation in experimental animal model systems and clinical experiences. The effects of radiation on the supportive tissue of the gut is also reviewed. The special radiation situation involving ingested radionuclides is reviewed and the most important late response-carcinogenesis-within the gut is considered. This book follows a volume on 'Radiation and Skin' (1985) and another on 'Radiation and Bone Marrow' is in preparation. The present volume is intended to cover the anatomy and renewal characteristics of the gut, and its response in terms of carcinogenicity and tissue injury in mammalian species including in particular man. The book is expected to be useful to students and teachers in these topics, as well as clinical oncologists (radiotherapists) and medical oncologists, and industrial health personnel. 70 figs., 20 tabs., 869 refs

  14. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  15. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    Science.gov (United States)

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  16. Gut microbiota in patients with Parkinson's disease in southern China.

    Science.gov (United States)

    Lin, Aiqun; Zheng, Wenxia; He, Yan; Tang, Wenli; Wei, Xiaobo; He, Rongni; Huang, Wei; Su, Yuying; Huang, Yaowei; Zhou, Hongwei; Xie, Huifang

    2018-05-16

    Accumulating evidence has revealed alterations in the communication between the gut and brain in patients with Parkinson's disease (PD), and previous studies have confirmed that alterations in the gut microbiome play an important role in the pathogenesis of numerous diseases, including PD. The aim of this study was to determine whether the faecal microbiome of PD patients in southern China differs from that of control subjects and whether the gut microbiome composition alters among different PD motor phenotypes. We compared the gut microbiota composition of 75 patients with PD and 45 age-matched controls using 16S rRNA next-generation-sequencing. We observed significant increases in the abundance of four bacterial families and significant decreases in the abundance of seventeen bacterial families in patients with PD compared to those of the controls. In particular, the abundance of Lachnospiraceae was reduced by 42.9% in patients with PD, whereas Bifidobacteriaceae was enriched in patients with PD. We did not identify a significant difference in the overall microbial composition among different PD motor phenotypes, but we identified the association between specific taxas and different PD motor phenotypes. PD is accompanied by alterations in the abundance of specific gut microbes. The abundance of certain gut microbes was altered depending on clinical motor phenotypes. Based on our findings, the gut microbiome may be a potential PD biomarker. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Gut Microbiome and Obesity: A Plausible Explanation for Obesity.

    Science.gov (United States)

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A

    2015-06-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host's adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity.

  18. Gut Microbiome and Obesity: A Plausible Explanation for Obesity

    Science.gov (United States)

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A.

    2015-01-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host’s adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity. PMID:26029487

  19. Healthy human gut phageome.

    Science.gov (United States)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T; van der Oost, John; de Vos, Willem M; Young, Mark J

    2016-09-13

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20-50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health.

  20. GUTs and supersymmetric GUTs in the very early universe

    International Nuclear Information System (INIS)

    Ellis, J.

    1983-01-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. It starts with a review of the present theoretical and phenomenological status of GUTs and then goes on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. (author)

  1. Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice.

    Science.gov (United States)

    Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee

    2017-12-30

    In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.

  2. Philosophy with Guts

    Science.gov (United States)

    Sherman, Robert R.

    2014-01-01

    Western philosophy, from Plato on, has had the tendency to separate feeling and thought, affect and cognition. This article argues that a strong philosophy (metaphorically, with "guts") utilizes both in its work. In fact, a "complete act of thought" also will include action. Feeling motivates thought, which formulates ideas,…

  3. GUT FERMENTATION SYNDROME

    African Journals Online (AJOL)

    boaz

    individuals who became intoxicated after consuming carbohydrates, which became fermented in the gastrointestinal tract. These claims of intoxication without drinking alcohol, and the findings on endogenous alcohol fermentation are now called Gut. Fermentation Syndrome. This review will concentrate on understanding ...

  4. Healthy human gut phageome

    NARCIS (Netherlands)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; Oost, van der John; Vos, de Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of

  5. Gut microbiota and malnutrition.

    Science.gov (United States)

    Million, Matthieu; Diallo, Aldiouma; Raoult, Didier

    2017-05-01

    Malnutrition is the leading cause of death worldwide in children under the age of five, and is the focus of the first World Health Organization (WHO) Millennium Development Goal. Breastfeeding, food and water security are major protective factors against malnutrition and critical factors in the maturation of healthy gut microbiota, characterized by a transient bifidobacterial bloom before a global rise in anaerobes. Early depletion in gut Bifidobacterium longum, a typical maternal probiotic, known to inhibit pathogens, represents the first step in gut microbiota alteration associated with severe acute malnutrition (SAM). Later, the absence of the Healthy Mature Anaerobic Gut Microbiota (HMAGM) leads to deficient energy harvest, vitamin biosynthesis and immune protection, and is associated with diarrhea, malabsorption and systemic invasion by microbial pathogens. A therapeutic diet and infection treatment may be unable to restore bifidobacteria and HMAGM. Besides refeeding and antibiotics, future trials including non-toxic missing microbes and nutrients necessary to restore bifidobacteria and HMAGM, including prebiotics and antioxidants, are warranted in children with severe or refractory disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Human Gut Microbiota

    NARCIS (Netherlands)

    Harmsen, Hermie J. M.; de Goffau, Marcus. C.; Schwiertz, A

    2016-01-01

    The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very

  7. Genomics: A gut prediction

    NARCIS (Netherlands)

    Vos, de W.M.; Nieuwdorp, M.

    2013-01-01

    Microbial cells make up the majority of cells in the human body, and most of these reside in the intestinal tract. Researchers have long recognized that some intestinal microorganisms are associated with health, but the beneficial impact of most of the gut's microbes on human metabolism has been

  8. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  9. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives

    Science.gov (United States)

    Lang, Yue

    2018-01-01

    The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS. PMID:29805314

  10. Cholecystokinin-From Local Gut Hormone to Ubiquitous Messenger

    DEFF Research Database (Denmark)

    Rehfeld, Jens F

    2017-01-01

    pancreatic enzyme secretion and growth, gallbladder contraction, and gut motility, satiety and inhibit acid secretion from the stomach. Moreover, they are major neurotransmitters in the brain and the periphery. CCK peptides also stimulate calcitonin, insulin, and glucagon secretion, and they may act...

  11. Initial brain aging: heterogeneity of mitochondrial size is associated with decline in complex I-linked respiration in cortex and hippocampus.

    Science.gov (United States)

    Thomsen, Kirsten; Yokota, Takashi; Hasan-Olive, Md Mahdi; Sherazi, Niloofar; Fakouri, Nima Borhan; Desler, Claus; Regnell, Christine Elisabeth; Larsen, Steen; Rasmussen, Lene Juel; Dela, Flemming; Bergersen, Linda Hildegard; Lauritzen, Martin

    2018-01-01

    Brain aging is accompanied by declining mitochondrial respiration. We hypothesized that mitochondrial morphology and dynamics would reflect this decline. Using hippocampus and frontal cortex of a segmental progeroid mouse model lacking Cockayne syndrome protein B (CSB m/m ) and C57Bl/6 (WT) controls and comparing young (2-5 months) to middle-aged mice (13-14 months), we found that complex I-linked state 3 respiration (CI) was reduced at middle age in CSB m/m hippocampus, but not in CSB m/m cortex or WT brain. In hippocampus of both genotypes, mitochondrial size heterogeneity increased with age. Notably, an inverse correlation between heterogeneity and CI was found in both genotypes, indicating that heterogeneity reflects mitochondrial dysfunction. The ratio between fission and fusion gene expression reflected age-related alterations in mitochondrial morphology but not heterogeneity. Mitochondrial DNA content was lower, and hypoxia-induced factor 1α mRNA was greater at both ages in CSB m/m compared to WT brain. Our findings show that decreased CI and increased mitochondrial size heterogeneity are highly associated and point to declining mitochondrial quality control as an initial event in brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Gastroenterology issues in schizophrenia: why the gut matters.

    Science.gov (United States)

    Severance, Emily G; Prandovszky, Emese; Castiglione, James; Yolken, Robert H

    2015-05-01

    Genetic and environmental studies implicate immune pathologies in schizophrenia. The body's largest immune organ is the gastrointestinal (GI) tract. Historical associations of GI conditions with mental illnesses predate the introduction of antipsychotics. Current studies of antipsychotic-naïve patients support that gut dysfunction may be inherent to the schizophrenia disease process. Risk factors for schizophrenia (inflammation, food intolerances, Toxoplasma gondii exposure, cellular barrier defects) are part of biological pathways that intersect those operant in the gut. Central to GI function is a homeostatic microbial community, and early reports show that it is disrupted in schizophrenia. Bioactive and toxic products derived from digestion and microbial dysbiosis activate adaptive and innate immunity. Complement C1q, a brain-active systemic immune component, interacts with gut-related schizophrenia risk factors in clinical and experimental animal models. With accumulating evidence supporting newly discovered gut-brain physiological pathways, treatments to ameliorate brain symptoms of schizophrenia should be supplemented with therapies to correct GI dysfunction.

  13. Gut Microbiota and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kyu Yeon Hur

    2015-06-01

    Full Text Available Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.

  14. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders.

    Science.gov (United States)

    Lam, Yan Y; Maguire, Sarah; Palacios, Talia; Caterson, Ian D

    2017-06-14

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut-brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  15. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  16. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Size-exclusion chromatographic reconstitution of the bovine brain benzodiazepine receptor : Effects of lipid environment on the binding characteristics

    NARCIS (Netherlands)

    Viel, G.T; Yang, Q; Lundahl, P; Ensing, K; de Zeeuw, R.A

    1997-01-01

    The benzodiazepine receptor from calf brain was solubilized with sodium deoxycholate (2 mg/ml) in the presence of 0.5 M KCl and protease inhibitors, and bound flunitrazepam with an equilibrium dissociation constant (K-d) of 2.7+/-1.2 nM and with 0.40+/-0.04 pmol binding sites per mg protein (B-max).

  18. Early-Life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota

    NARCIS (Netherlands)

    Martin, Rocio; Makino, Hiroshi; Yavuz, Aysun Cetinyurek; Ben-Amor, Kaouther; Roelofs, Mieke; Ishikawa, Eiji; Kubota, Hiroyuki; Swinkels, Sophie; Sakai, Takafumi; Oishi, Kenji; Kushiro, Akira; Knol, Jan

    2016-01-01

    Colonization of the infant gut is believed to be critically important for a healthy growth as it influences gut maturation, metabolic, immune and brain development in early life. Understanding factors that influence this process is important, since an altered colonization has been associated with

  19. Scalloped a member of the Hippo tumor suppressor pathway controls mushroom body size in Drosophila brain by non-canonical regulation of neuroblast proliferation.

    Science.gov (United States)

    Rohith, Basavanahalli Nanjundaiah; Shyamala, Baragur Venkatanarayanasetty

    2017-12-15

    Cell proliferation, growth and survival are three different basic processes which converge at determining a fundamental property -the size of an organism. Scalloped (Sd) is the first characterised transcriptional partner to Yorkie (Yki), the downstream effector of the Hippo pathway which is a highly potential and evolutionarily conserved regulator of organ size. Here we have studied the hypomorphic effect of sd on the development of Mushroom Bodies (MBs) in Drosophila brain. We show that, sd non-function results in an increase in the size of MBs. We demonstrate that, sd regulation on MB size operates through multiple routes. Sd expressed in the differentiated MB neurons, imposes non-cell autonomous repression on the proliferation of MB precursor cells, and Sd expression in the MB neuroblasts (NB) cell autonomously represses mushroom body neuroblast (MBNB) proliferation. Further Sd in Kenyon cells (KCs) imparts a cell autonomous restriction on their growth. Our findings are distinctive because, while the classical sd loss of function phenotypes in eye, wing and lymph gland are reported as loss of tissue or reduced organ size, the present study shows that, Sd inactivation in the developing MB, promotes precursor cell proliferation and results in an increase in the organ size. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The evolving neurobiology of gut feelings.

    Science.gov (United States)

    Mayer, E A; Naliboff, B; Munakata, J

    2000-01-01

    The bi-directional communication between limbic regions and the viscera play a central role in the generation and expression of emotional responses and associated emotional feelings. The response of different viscera to distinct, emotion-specific patterns of autonomic output is fed back to the brain, in particular to the cingulofrontal convergence region. Even though this process unfolds largely without conscious awareness, it plays an important role in emotional function and may influence rational decision making in the healthy individual. Alterations in this bi-directional process such as peripheral pathologies within the gut or alterations at the brain level may explain the close association between certain affective disorders and functional visceral syndromes.

  1. Flipped GUT inflation

    OpenAIRE

    Ellis, John; Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih

    2015-01-01

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model paramet...

  2. Metagenomic Surveys of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Rahul Shubhra Mandal

    2015-06-01

    Full Text Available Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational taxonomic unit (OTU levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ultimately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interaction among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe–microbe interaction networks.

  3. Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus.

    Science.gov (United States)

    Alnæs, Dag; Sneve, Markus Handal; Espeseth, Thomas; Endestad, Tor; van de Pavert, Steven Harry Pieter; Laeng, Bruno

    2014-04-01

    Attentional effort relates to the allocation of limited-capacity attentional resources to meet current task demands and involves the activation of top-down attentional systems in the brain. Pupillometry is a sensitive measure of this intensity aspect of top-down attentional control. Studies relate pupillary changes in response to cognitive processing to activity in the locus coeruleus (LC), which is the main hub of the brain's noradrenergic system and it is thought to modulate the operations of the brain's attentional systems. In the present study, participants performed a visual divided attention task known as multiple object tracking (MOT) while their pupil sizes were recorded by use of an infrared eye tracker and then were tested again with the same paradigm while brain activity was recorded using fMRI. We hypothesized that the individual pupil dilations, as an index of individual differences in mental effort, as originally proposed by Kahneman (1973), would be a better predictor of LC activity than the number of tracked objects during MOT. The current results support our hypothesis, since we observed pupil-related activity in the LC. Moreover, the changes in the pupil correlated with activity in the superior colliculus and the right thalamus, as well as cortical activity in the dorsal attention network, which previous studies have shown to be strongly activated during visual tracking of multiple targets. Follow-up pupillometric analyses of the MOT task in the same individuals also revealed that individual differences to cognitive load can be remarkably stable over a lag of several years. To our knowledge this is the first study using pupil dilations as an index of attentional effort in the MOT task and also relating these to functional changes in the brain that directly implicate the LC-NE system in the allocation of processing resources.

  4. GUT Scale Fermion Mass Ratios

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2014-01-01

    We present a series of recent works related to group theoretical factors from GUT symmetry breaking which lead to predictions for the ratios of quark and lepton Yukawa couplings at the unification scale. New predictions for the GUT scale ratios y μ /y s , y τ /y b and y t /y b in particular are shown and compared to experimental data. For this comparison it is important to include possibly large supersymmetric threshold corrections. Due to this reason the structure of the fermion masses at the GUT scale depends on TeV scale physics and makes GUT scale physics testable at the LHC. We also discuss how this new predictions might lead to predictions for mixing angles by discussing the example of the recently measured last missing leptonic mixing angle θ 13 making this new class of GUT models also testable in neutrino experiments

  5. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    , are generally recognized to be of particular importance for the healthy development of children. While dietary changes are known to affect the adult gut microbiota, there is a gap in our knowledge on how the introduction of new dietary components into the diet of infants/young children affects the gut...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential......(breast/formula). Consequently, the neonatal period and early infancy has attracted much attention. However, after this first period the gut microbial composition continues to develop until the age of 3 years, and these 1st years have been designated "a window of opportunity" for microbial modulation. The beginning and end...

  6. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    Science.gov (United States)

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  7. The reconstruction of choice value in the brain: a look into the size of consideration sets and their affective consequences.

    Science.gov (United States)

    Kim, Hye-Young; Shin, Yeonsoon; Han, Sanghoon

    2014-04-01

    It has been proposed that choice utility exhibits an inverted U-shape as a function of the number of options in the choice set. However, most researchers have so far only focused on the "physically extant" number of options in the set while disregarding the more important psychological factor, the "subjective" number of options worth considering to choose-that is, the size of the consideration set. To explore this previously ignored aspect, we examined how variations in the size of a consideration set can produce different affective consequences after making choices and investigated the underlying neural mechanism using fMRI. After rating their preferences for art posters, participants made a choice from a presented set and then reported on their level of satisfaction with their choice and the level of difficulty experienced in choosing it. Our behavioral results demonstrated that enlarged assortment set can lead to greater choice satisfaction only when increases in both consideration set size and preference contrast are involved. Moreover, choice difficulty is determined based on the size of an individual's consideration set rather than on the size of the assortment set, and it decreases linearly as a function of the level of contrast among alternatives. The neuroimaging analysis of choice-making revealed that subjective consideration set size was encoded in the striatum, the dACC, and the insula. In addition, the striatum also represented variations in choice satisfaction resulting from alterations in the size of consideration sets, whereas a common neural specificity for choice difficulty and consideration set size was shown in the dACC. These results have theoretical and practical importance in that it is one of the first studies investigating the influence of the psychological attributes of choice sets on the value-based decision-making process.

  8. Mammalian Gut Immunity

    Science.gov (United States)

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502

  9. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  10. Signals from the gut microbiota to distant organs in physiology and disease

    DEFF Research Database (Denmark)

    Schroeder, Bjoern O; Bäckhed, Gert Fredrik

    2016-01-01

    The ecosystem of the human gut consists of trillions of bacteria forming a bioreactor that is fueled by dietary macronutrients to produce bioactive compounds. These microbiota-derived metabolites signal to distant organs in the body, which enables the gut bacteria to connect to the immune...... and hormone system, to the brain (the gut-brain axis) and to host metabolism, as well as other functions of the host. This microbe-host communication is essential to maintain vital functions of the healthy host. Recently, however, the gut microbiota has been associated with a number of diseases, ranging from...... obesity and inflammatory diseases to behavioral and physiological abnormalities associated with neurodevelopmental disorders. In this Review, we will discuss microbiota-host cross-talk and intestinal microbiome signaling to extraintestinal organs. We will review mechanisms of how this communication might...

  11. Gut microbiota and metabolic syndrome.

    Science.gov (United States)

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  12. Roles for gut vagal sensory signals in determining energy availability and energy expenditure.

    Science.gov (United States)

    Schwartz, Gary J

    2018-08-15

    The gut sensory vagus transmits a wide range of meal-related mechanical, chemical and gut peptide signals from gastrointestinal and hepatic tissues to the central nervous system at the level of the caudal brainstem. Results from studies using neurophysiological, behavioral physiological and metabolic approaches that challenge the integrity of this gut-brain axis support an important role for these gut signals in the negative feedback control of energy availability by limiting food intake during a meal. These experimental approaches have now been applied to identify important and unanticipated contributions of the vagal sensory gut-brain axis to the control of two additional effectors of overall energy balance: the feedback control of endogenous energy availability through hepatic glucose production and metabolism, and the control of energy expenditure through brown adipose tissue thermogenesis. Taken together, these studies reveal the pleiotropic influences of gut vagal meal-related signals on energy balance, and encourage experimental efforts aimed at understanding how the brainstem represents, organizes and coordinates gut vagal sensory signals with these three determinants of energy homeostasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.

    Science.gov (United States)

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2017-02-01

    There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.

  14. Just a Gut Feeling: Central Nervous Effects of Peripheral Gastrointestinal Hormones.

    Science.gov (United States)

    Roth, Christian L; Doyle, Robert Patrick

    2017-01-01

    Despite greater health education, obesity remains one of the greatest health challenges currently facing the world. The prevalence of obesity among children and adolescents and the rising rates of prediabetes and diabetes are of particular concern. A deep understanding of regulatory pathways and development of new anti-obesity drugs with increased efficacy and safety are of utmost necessity. The 2 major biological players in the regulation of food intake are the gut and the brain as peptides released from the gut in response to meals convey information about the energy needs to brain centers of energy homeostasis. There is evidence that gut hormones not only pass the blood-brain barrier and bind to receptors located in different brain areas relevant for body weight regulation, but some are also expressed in the brain as part of hedonic and homeostatic pathways. Regarding obesity interventions, the only truly effective treatment for obesity is bariatric surgery, the long-term benefits of which may actually involve increased activity of gut hormones including peptide YY3-36 and glucagon-like peptide 1. This review discusses critical gut-hormones involved in the regulation of food intake and energy homeostasis and their effects on peripheral tissues versus central nervous system actions. © 2017 S. Karger AG, Basel.

  15. Draft Genome Sequence of Serratia sp. Strain DD3, Isolated from the Guts of Daphnia magna

    OpenAIRE

    Poehlein, Anja; Freese, Heike M.; Daniel, Rolf; Simeonova, Diliana D.

    2014-01-01

    We report the draft genome sequence of Serratia sp. strain DD3, a gammaproteobacterium from the family Enterobacteriaceae. It was isolated from homogenized guts of Daphnia magna. The genome size is 5,274 Mb. peerReviewed

  16. Brain regions implicated in inhibitory control and appetite regulation are activated in response to food portion size and energy density in children.

    Science.gov (United States)

    English, L K; Fearnbach, S N; Lasschuijt, M; Schlegel, A; Anderson, K; Harris, S; Wilson, S J; Fisher, J O; Savage, J S; Rolls, B J; Keller, K L

    2016-10-01

    Large portions of energy-dense foods drive energy intake but the brain mechanisms underlying this effect are not clear. Our main objective was to investigate brain function in response to food images varied by portion size (PS) and energy density (ED) in children using functional magnetic resonance imaging (fMRI). Blood-oxygen-level-dependent (BOLD) fMRI was completed in 36 children (ages 7-10 years) after a 2-h fast while viewing food images at two levels of PS (Large PS, Small PS) and two levels of ED (High ED, Low ED). Children rated perceived fullness pre- and post-fMRI, as well as liking of images on visual analog scales post-fMRI. Anthropometrics were completed 4 weeks before the fMRI. Large PS vs Small PS and High ED vs Low ED were compared with region-of-interest analyses using Brain Voyager v 2.8. Region-of-interest analyses revealed that activation in the right inferior frontal gyrus (P=0.03) was greater for Large PS vs Small PS. Activation was reduced for High ED vs Low ED in the left hypothalamus (P=0.03). Main effects were no longer significant after adjustment for pre-fMRI fullness and liking ratings (PS, P=0.92; ED, P=0.58). This is the first fMRI study to report increased activation to large portions in a brain region that is involved in inhibitory control. These findings may contribute to understanding why some children overeat when presented with large portions of palatable food.

  17. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    Science.gov (United States)

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Flipped GUT inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Theory Division, CERN, Route de Meyrin 385, 1217 Meyrin (Switzerland); Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-03-23

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, A{sub s}, and the tilt in the scalar perturbation spectrum, n{sub s}, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  19. Flipped GUT inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih, E-mail: john.ellis@cern.ch, E-mail: tomas.gonzalo.11@ucl.ac.uk, E-mail: j.harz@ucl.ac.uk, E-mail: wei-chih.huang@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-03-01

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, A{sub s}, and the tilt in the scalar perturbation spectrum, n{sub s}, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  20. Flipped GUT Inflation

    CERN Document Server

    Ellis, John; Harz, Julia; Huang, Wei-Chih

    2015-01-01

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)$\\times$U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, $A_s$, and the tilt in the scalar perturbation spectrum, $n_s$, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, $r$. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  1. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Yan Y. Lam

    2017-06-01

    Full Text Available Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut–brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  2. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    Science.gov (United States)

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  3. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    Science.gov (United States)

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  4. GUTs and supersymmetric GUTs in the very early universe

    International Nuclear Information System (INIS)

    Ellis, J.

    1982-10-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. I start with a review of the present theoretical and phenomenological status of GUTs before going on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. The first section is an update on conventional GUTs, which is followed by a reminder of some of the motivations for going supersymmetric. There then follows a simple primer on susy and a discussion of the structure and phenomenology of simple sysy GUTs. Finally we come to the cosmological issues, including problems arising from the degeneracy of susy minima, baryosynthesis and supersymmetric inflation, the possibility that gravity is an essential complication in constructing susy GUTs and discussing their cosmology, and the related question of what mass range is allowed for the gravitino. Several parts of this write-up contain new material which has emerged either during the Workshop or subsequently. They are included here for completeness and the convenience of the prospective reader. Wherever possible, these anachronisms will be flagged so as to keep straight the historical record

  5. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    The establishment of the human gut microbiota in early life has been associated with later health and disease. During the 1st months after birth, the microbial composition in the gut is known to be affected by the mode of delivery, use of antibiotics, geographical location and type of feeding...... of this window is currently debated, but it likely coincides with the complementary feeding period, marking the gradual transition from milk- based infant feeding to family diet usually occurring between 6 and 24 months. Furthermore, the 'first 1000 days,' i.e., the period from conception until age 2 years...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential...

  6. Gut dysfunction in Parkinson's disease

    Science.gov (United States)

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  7. Interference and problem size effect in multiplication fact solving: Individual differences in brain activations and arithmetic performance.

    Science.gov (United States)

    De Visscher, Alice; Vogel, Stephan E; Reishofer, Gernot; Hassler, Eva; Koschutnig, Karl; De Smedt, Bert; Grabner, Roland H

    2018-05-15

    In the development of math ability, a large variability of performance in solving simple arithmetic problems is observed and has not found a compelling explanation yet. One robust effect in simple multiplication facts is the problem size effect, indicating better performance for small problems compared to large ones. Recently, behavioral studies brought to light another effect in multiplication facts, the interference effect. That is, high interfering problems (receiving more proactive interference from previously learned problems) are more difficult to retrieve than low interfering problems (in terms of physical feature overlap, namely the digits, De Visscher and Noël, 2014). At the behavioral level, the sensitivity to the interference effect is shown to explain individual differences in the performance of solving multiplications in children as well as in adults. The aim of the present study was to investigate the individual differences in multiplication ability in relation to the neural interference effect and the neural problem size effect. To that end, we used a paradigm developed by De Visscher, Berens, et al. (2015) that contrasts the interference effect and the problem size effect in a multiplication verification task, during functional magnetic resonance imaging (fMRI) acquisition. Forty-two healthy adults, who showed high variability in an arithmetic fluency test, participated in our fMRI study. In order to control for the general reasoning level, the IQ was taken into account in the individual differences analyses. Our findings revealed a neural interference effect linked to individual differences in multiplication in the left inferior frontal gyrus, while controlling for the IQ. This interference effect in the left inferior frontal gyrus showed a negative relation with individual differences in arithmetic fluency, indicating a higher interference effect for low performers compared to high performers. This region is suggested in the literature to be

  8. Size and shape of Brain may be such as to take advantage of two Dimensions of Time

    Science.gov (United States)

    Kriske, Richard

    2014-03-01

    This author had previously Theorized that there are two non-commuting Dimensions of time. One is Clock Time and the other is Information Time (which we generally refer to as Information, like Spin Up or Spin Down). When time does not commute with another Dimension of Time, one takes the Clock Time at one point in space and the Information time is not known; that is different than if one takes the Information time at that point and the Clock time is not known--This is not explicitly about time but rather space. An example of this non-commutation is that if one knows the Spin at one point and the Time at one point of space then simultaneosly, one knows the Spin at another point of Space and the Time there (It is the same time), it is a restatement of the EPR paradox. As a matter of fact two Dimensions of Time would prove the EPR paradox. It is obvious from that argument that if one needed to take advantage of Information, then a fairly large space needs to be used, a large amount of Energy needs to be Generated and a symmetry needs to be established in Space-like the lobes of a Brain in order to detect the fact that the Tclock and Tinfo are not Commuting. This Non-Commuting deposits a large amount of Information simultaneously in that space, and synchronizes the time there.

  9. Pride diaries: sex, brain size and sociality in the African lion (Panthera leo) and cougar (Puma concolor).

    Science.gov (United States)

    Arsznov, Bradley M; Sakai, Sharleen T

    2012-01-01

    The purpose of this study was to examine if differences in social life histories correspond to intraspecific variation in total or regional brain volumes in the African lion (Panthera leo) and cougar (Puma concolor). African lions live in gregarious prides usually consisting of related adult females, their dependent offspring, and a coalition of immigrant males. Upon reaching maturity, male lions enter a nomadic and often, solitary phase in their lives, whereas females are mainly philopatric and highly social throughout their lives. In contrast, the social life history does not differ between male and female cougars; both are solitary. Three-dimensional virtual endocasts were created using computed tomography from the skulls of 14 adult African lions (8 male, 6 female) and 14 cougars (7 male, 7 female). Endocranial volume and basal skull length were highly correlated in African lions (r = 0.59, p African lions or cougars. However, relative anterior cerebrum volume comprised primarily of frontal cortex and surface area was significantly greater in female African lions than males, while relative posterior cerebrum volume and surface area was greater in males than females. These differences were specific to the neocortex and were not found in the solitary cougar, suggesting that social life history is linked to sex-specific neocortical patterns in these species. We further hypothesize that increased frontal cortical volume in female lions is related to the need for greater inhibitory control in the presence of a dominant male aggressor. Copyright © 2012 S. Karger AG, Basel.

  10. The metabolic actions of neurotensin secreted from the gut

    DEFF Research Database (Denmark)

    Ratner, Cecilia; Johnsen, Cecilie Hundahl; Holst, Birgitte

    2016-01-01

    Neurotensin (NT) is a 13 amino acid peptide hormone primarily expressed in the brain and in the gastrointestinal (GI) tract. NT in the brain is generally considered an anorexigenic neuropeptide, but the potential metabolic actions of GI tract NT have not been investigated extensively. In the GI t...... coact on some but not all target organs. In line with the recent focus on developing antiobesity agents targeting more than one signaling pathway, NT may be a candidate for such polytherapy drugs in combination with other gut hormones such as GLP-1...

  11. Combining glial cell line-derived neurotrophic factor gene delivery (AdGDNF) with L-arginine decreases contusion size but not behavioral deficits after traumatic brain injury.

    Science.gov (United States)

    Degeorge, M L; Marlowe, D; Werner, E; Soderstrom, K E; Stock, M; Mueller, A; Bohn, M C; Kozlowski, D A

    2011-07-27

    Our laboratory has previously demonstrated that viral administration of glial cell line-derived neurotrophic factor (AdGDNF), one week prior to a controlled cortical impact (CCI) over the forelimb sensorimotor cortex of the rat (FL-SMC) is neuroprotective, but does not significantly enhance recovery of sensorimotor function. One possible explanation for this discrepancy is that although protected, neurons may not have been functional due to enduring metabolic deficiencies. Additionally, metabolic events following TBI may interfere with expression of therapeutic proteins administered to the injured brain via gene therapy. The current study focused on enhancing the metabolic function of the brain by increasing cerebral blood flow (CBF) with l-arginine in conjunction with administration of AdGDNF immediately following CCI. An adenoviral vector harboring human GDNF was injected unilaterally into FL-SMC of the rat immediately following a unilateral CCI over the FL-SMC. Within 30min of the CCI and AdGDNF injections, some animals were injected with l-arginine (i.v.). Tests of forelimb function and asymmetry were administered for 4weeks post-injury. Animals were sacrificed and contusion size and GDNF protein expression measured. This study demonstrated that rats treated with AdGDNF and l-arginine post-CCI had a significantly smaller contusion than injured rats who did not receive any treatment, or injured rats treated with either AdGDNF or l-arginine alone. Nevertheless, no amelioration of behavioral deficits was seen. These findings suggest that AdGDNF alone following a CCI was not therapeutic and although combining it with l-arginine decreased contusion size, it did not enhance behavioral recovery. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Gut microbiota alterations and dietary modulation in childhood malnutrition - The role of short chain fatty acids.

    Science.gov (United States)

    Pekmez, Ceyda Tugba; Dragsted, Lars Ove; Brahe, Lena Kirchner

    2018-02-17

    The gut microbiome affects the health status of the host through different mechanisms and is associated with a wide variety of diseases. Both childhood undernutrition and obesity are linked to alterations in composition and functionality of the gut microbiome. One of the possible mechanisms underlying the interplay between microbiota and host metabolism is through appetite-regulating hormones (including leptin, ghrelin, glucagon-like peptide-1). Short chain fatty acids, the end product of bacterial fermentation of non-digestible carbohydrates, might be able to alter energy harvest and metabolism through enteroendocrine cell signaling, adipogenesis and insulin-like growth factor-1 production. Elucidating these mechanisms may lead to development of new modulation practices of the gut microbiota as a potential prevention and treatment strategy for childhood malnutrition. The present overview will briefly outline the gut microbiota development in the early life, gut microbiota alterations in childhood undernutrition and obesity, and whether this relationship is causal. Further we will discuss possible underlying mechanisms in relation to the gut-brain axis and short chain fatty acids, and the potential of probiotics, prebiotics and synbiotics for modulating the gut microbiota during childhood as a prevention and treatment strategy against undernutrition and obesity. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  15. Gut microbiota and obesity: role in aetiology and potential therapeutic target.

    Science.gov (United States)

    Moran, Carthage P; Shanahan, Fergus

    2014-08-01

    Obesity is epidemic; chronic energy surplus is clearly important in obesity development but other factors are at play. Indigenous gut microbiota are implicated in the aetiopathogenesis of obesity and obesity-related disorders. Evidence from murine models initially suggested a role for the gut microbiota in weight regulation and the microbiota has been shown to contribute to the low grade inflammation that characterises obesity. The microbiota and its metabolites mediate some of the alterations of the microbiota-gut-brain axis, the endocannabinoid system, and bile acid metabolism, found in obesity-related disorders. Modulation of the gut microbiota is an attractive proposition for prevention or treatment of obesity, particularly as traditional measures have been sub-optimal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation.

    Directory of Open Access Journals (Sweden)

    Firas Alhasson

    Full Text Available Many of the symptoms of Gulf War Illness (GWI that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4 activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.

  17. Exercise, fitness, and the gut.

    Science.gov (United States)

    Cronin, Owen; Molloy, Michael G; Shanahan, Fergus

    2016-03-01

    Exercise and gut symptomatology have long been connected. The possibility that regular exercise fosters intestinal health and function has been somewhat overlooked in the scientific literature. In this review, we summarize current knowledge and discuss a selection of recent, relevant, and innovative studies, hypotheses and reviews that elucidate a complex topic. The multiorgan benefits of regular exercise are extensive. When taken in moderation, these benefits transcend improved cardio-respiratory fitness and likely reach the gut in a metabolic, immunological, neural, and microbial manner. This is applicable in both health and disease. However, further work is required to provide safe, effective recommendations on physical activity in specific gastrointestinal conditions. Challenging methodology investigating the relationship between exercise and gut health should not deter from exploring exercise in the promotion of gastrointestinal health.

  18. Global F-theory GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.; /Bonn U.; Jurke, Benjamin; /Munich, Max Planck Inst.; Weigand, Timo; /SLAC

    2010-08-26

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.

  19. Global F-theory GUTs

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Grimm, Thomas W.; Jurke, Benjamin; Weigand, Timo

    2010-01-01

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4)xU(1) X ] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P 4 [4].

  20. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options.

    Science.gov (United States)

    Konturek, Peter C; Brzozowski, T; Konturek, S J

    2011-12-01

    Stress, which is defined as an acute threat to homeostasis, shows both short- and long-term effects on the functions of the gastrointestinal tract. Exposure to stress results in alterations of the brain-gut interactions ("brain-gut axis") ultimately leading to the development of a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases, food antigen-related adverse responses, peptic ulcer and gastroesophageal reflux disease (GERD). The major effects of stress on gut physiology include: 1) alterations in gastrointestinal motility; 2) increase in visceral perception; 3) changes in gastrointestinal secretion; 4) increase in intestinal permeability; 5) negative effects on regenerative capacity of gastrointestinal mucosa and mucosal blood flow; and 6) negative effects on intestinal microbiota. Mast cells (MC) are important effectors of brain-gut axis that translate the stress signals into the release of a wide range of neurotransmitters and proinflammatory cytokines, which may profoundly affect the gastrointestinal physiology. IBS represents the most important gastrointestinal disorder in humans, and is characterized by chronic or recurrent pain associated with altered bowel motility. The diagnostic testing for IBS patients include routine blood tests, stool tests, celiac disease serology, abdominal sonography, breath testing to rule out carbohydrate (lactose, fructose, etc.) intolerance and small intestinal bacterial overgrowth. Colonoscopy is recommended if alarming symptoms are present or to obtain colonic biopsies especially in patients with diarrhoea predominant IBS. The management of IBS is based on a multifactorial approach and includes pharmacotherapy targeted against the predominant symptom, behavioural and psychological treatment, dietary alterations, education, reassurance and effective patient-physician relationship. When evaluating for the stress

  1. The gut microbiota, obesity and insulin resistance

    Science.gov (United States)

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  2. 33 CFR 117.537 - Townsend Gut.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Townsend Gut. 117.537 Section 117... OPERATION REGULATIONS Specific Requirements Maine § 117.537 Townsend Gut. The draw of the Southport (SR27) Bridge, at mile 0.7, across Townsend Gut between Boothbay Harbor and Southport, Maine shall open on...

  3. Structure and function of the healthy pre-adolescent pediatric gut microbiome.

    Science.gov (United States)

    Hollister, Emily B; Riehle, Kevin; Luna, Ruth Ann; Weidler, Erica M; Rubio-Gonzales, Michelle; Mistretta, Toni-Ann; Raza, Sabeen; Doddapaneni, Harsha V; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Petrosino, Joseph F; Shulman, Robert J; Versalovic, James

    2015-08-26

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limited. Using 16S rRNA gene and shotgun metagenomic sequencing, we characterized the structure, function, and variation of the healthy pediatric gut microbiome in a cohort of school-aged, pre-adolescent children (ages 7-12 years). We compared the healthy pediatric gut microbiome with that of healthy adults previously recruited from the same region (Houston, TX, USA). Although healthy children and adults harbored similar numbers of taxa and functional genes, their composition and functional potential differed significantly. Children were enriched in Bifidobacterium spp., Faecalibacterium spp., and members of the Lachnospiraceae, while adults harbored greater abundances of Bacteroides spp. From a functional perspective, significant differences were detected with respect to the relative abundances of genes involved in vitamin synthesis, amino acid degradation, oxidative phosphorylation, and triggering mucosal inflammation. Children's gut communities were enriched in functions which may support ongoing development, while adult communities were enriched in functions associated with inflammation, obesity, and increased risk of adiposity. Previous studies suggest that the human gut microbiome is relatively stable and adult-like after the first 1 to 3 years of life. Our results suggest that the healthy pediatric gut microbiome harbors compositional and functional qualities that differ from those of healthy adults and that the gut microbiome may undergo a more prolonged development than previously suspected.

  4. Cholinergic signalling in gut immunity

    NARCIS (Netherlands)

    Dhawan, Shobhit; Cailotto, Cathy; Harthoorn, Lucien F.; de Jonge, Wouter J.

    2012-01-01

    The gut immune system shares many signalling molecules and receptors with the autonomic nervous system. A good example is the vagal neurotransmitter acetylcholine (ACh), for which many immune cell types express cholinergic receptors (AChR). In the last decade the vagal nerve has emerged as an

  5. Neuroimmune modulation of gut function

    Science.gov (United States)

    There is considerable interest in the mechanisms and pathways involved in the neuro-immune regulation of gut function. The number of cell types and possible interactions is staggering and there are a number of recent reviews detailing various aspects of these interactions, many of which focus on ...

  6. Xenobiotic Metabolism and Gut Microbiomes.

    Directory of Open Access Journals (Sweden)

    Anubhav Das

    Full Text Available Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs also indicate geographic as well as age specific trends.

  7. The gut-liver axis

    NARCIS (Netherlands)

    Visschers, Ruben G. J.; Luyer, Misha D.; Schaap, Frank G.; Olde Damink, Steven W. M.; Soeters, Peter B.

    2013-01-01

    The liver adaptively responds to extra-intestinal and intestinal inflammation. In recent years, the role of the autonomic nervous system, intestinal failure and gut microbiota has been investigated in the development of hepatic, intestinal and extra-intestinal disease. The autonomic nervous system

  8. Neutrino assisted GUT baryogenesis revisited

    Science.gov (United States)

    Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan

    2018-03-01

    Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.

  9. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  10. The gut microbiota in type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Trine; Allin, Kristine Højgaard; Pedersen, Oluf

    2016-01-01

    The exploration of the gut microbiota has intensified within the past decade with the introduction of cultivation-independent methods. By investigation of the gut bacterial genes, our understanding of the compositional and functional capability of the gut microbiome has increased. It is now widely...... recognized that the gut microbiota has profound effect on host metabolism and recently changes in the gut microbiota have been associated with type 2 diabetes. Animal models and human studies have linked changes in the gut microbiota to the induction of low-grade inflammation, altered immune response......, and changes in lipid and glucose metabolism. Several factors have been identified that might affect the healthy microbiota, potentially inducing a dysbiotic microbiota associated with a disease state. This increased understanding of the gut microbiota might potentially contribute to targeted intervention...

  11. Interaction between gut immunity and polysaccharides.

    Science.gov (United States)

    Huang, Xiaojun; Nie, Shaoping; Xie, Mingyong

    2017-09-22

    The human gut is colonized with a vast and diverse microbial ecosystem, and these bacteria play fundamental roles in the well being of our bodies. Gut-associated lymphoid tissues, the largest mucosal immune system, should never be overlooked for their profound effect in maintaining the host immunity. Therefore, we discussed the relationship between gut immunity and host health, primarily from two aspects: the homeostasis of gut microbiota, and the function of gut-associated lymphoid tissues. Polysaccharides, widely concerned as bioactive macromolecules in recent centuries, have been proved to benefit the intestinal health. Dietary polysaccharides can improve the ratio of probiotics, regulate the intestinal microenvironment like decreasing the gut pH, and stimulate the macrophages or lymphocytes in gut tissues to fight against diseases like cancer. Based on various experimental and clinical evidence, the impacts of dietary polysaccharides on intestinal health are summarized, in order to reveal the possible immunomodulatory mechanisms of polysaccharides.

  12. Brain scintigraphy with Tc99-pertechnetate in the evaluation of patients with cerebrovascular lesions. The diagnostic value related to age of the lesion and to the size, type and localisation revealed by CT-scan

    DEFF Research Database (Denmark)

    Olsen, T S; Christensen, J; Skriver, E B

    1983-01-01

    Brain scintigraphy with Tc99-pertechnetate (Tc99-scan) was performed 4 times in 95 consecutive stroke patients: on average 5 days, 18 days, 103 days and 194 days after the stroke. The type (infarct, hematoma), size and localisation of the lesion was evaluated by CT-scan performed 3 times in all...

  13. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    Science.gov (United States)

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  14. Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity.

    Science.gov (United States)

    Richendrfer, Holly; Creton, Robbert

    2015-07-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Gut size flexibility in rodents: what we know, and don't know, after a century of research Flexibilidad en el tamaño del tracto digestivo en roedores: qué sabemos, y qué no sabemos, después de un siglo de investigación

    Directory of Open Access Journals (Sweden)

    DANIEL E NAYA

    2008-12-01

    Full Text Available Phenotypic plasticity comprises a central concept in the understanding of how organisms interact with their environment, and thus, is a central topic in ecology and evolution. A particular case of phenotypic plasticity is phenotypic flexibility, which refers to reversible change in organism traits due to changes in internal or external environmental conditions. Flexibility of digestive features has been analyzed for more than a century in a myriad of different species and contexts. Studies in rodents on gut size flexibility have been developed mainly from two different áreas of the biological sciences, physiology and ecology. However, as for several other topics related with physiological ecology, both kinds of studies largely developed along sepárate paths. Herein, I evaluate altogether the information belonging to both áreas. The major conclusions reached are: (1 there is a clear match between digestive morphology adjustments and change in environmental conditions, and gut size flexibility could be considered a widespread physiological mechanism oceurring in laboratory and wild species, and under laboratory, semi-natural and natural conditions. (2 For laboratory species, the experimental factors that have been more investigated are diet quality, reproductive status, environmental temperature and fasting, while for wild species the more analyzed factors are diet quality and temperature. (3 For wild rodent species, no differences in small intestine length flexibility between methodological approaches ñor species feeding categories has been identified. (4 It appears that high energetic demands are mainly coped with by changes at the small intestine level, while changes in the amount of undigestible material in the diet are mainly coped with by changes in the hindgut. (5 Change in gut length may be related to a decrease in food retention time (e.g., during diet dilution, while change in gut mass appears to be related to a need of higher

  16. Gut Microbiota Contributes to the Growth of Fast-Growing Transgenic Common Carp (Cyprinus carpio L.)

    Science.gov (United States)

    Xie, Shouqi; Hu, Wei; Yu, Yuhe; Hu, Zihua

    2013-01-01

    Gut microbiota has shown tight and coordinated connection with various functions of its host such as metabolism, immunity, energy utilization, and health maintenance. To gain insight into whether gut microbes affect the metabolism of fish, we employed fast-growing transgenic common carp (Cyprinus carpio L.) to study the connections between its large body feature and gut microbes. Metagenome-based fingerprinting and high-throughput sequencing on bacterial 16S rRNA genes indicated that fish gut was dominated by Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes, which displayed significant differences between transgenic fish and wild-type controls. Analyses to study the association of gut microbes with the fish metabolism discovered three major phyla having significant relationships with the host metabolic factors. Biochemical and histological analyses indicated transgenic fish had increased carbohydrate but decreased lipid metabolisms. Additionally, transgenic fish has a significantly lower Bacteroidetes:Firmicutes ratio than that of wild-type controls, which is similar to mammals between obese and lean individuals. These findings suggest that gut microbiotas are associated with the growth of fast growing transgenic fish, and the relative abundance of Firmicutes over Bacteroidetes could be one of the factors contributing to its fast growth. Since the large body size of transgenic fish displays a proportional body growth, which is unlike obesity in human, the results together with the findings from others also suggest that the link between obesity and gut microbiota is likely more complex than a simple Bacteroidetes:Firmicutes ratio change. PMID:23741344

  17. Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L..

    Directory of Open Access Journals (Sweden)

    Xuemei Li

    Full Text Available Gut microbiota has shown tight and coordinated connection with various functions of its host such as metabolism, immunity, energy utilization, and health maintenance. To gain insight into whether gut microbes affect the metabolism of fish, we employed fast-growing transgenic common carp (Cyprinus carpio L. to study the connections between its large body feature and gut microbes. Metagenome-based fingerprinting and high-throughput sequencing on bacterial 16S rRNA genes indicated that fish gut was dominated by Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes, which displayed significant differences between transgenic fish and wild-type controls. Analyses to study the association of gut microbes with the fish metabolism discovered three major phyla having significant relationships with the host metabolic factors. Biochemical and histological analyses indicated transgenic fish had increased carbohydrate but decreased lipid metabolisms. Additionally, transgenic fish has a significantly lower Bacteroidetes:Firmicutes ratio than that of wild-type controls, which is similar to mammals between obese and lean individuals. These findings suggest that gut microbiotas are associated with the growth of fast growing transgenic fish, and the relative abundance of Firmicutes over Bacteroidetes could be one of the factors contributing to its fast growth. Since the large body size of transgenic fish displays a proportional body growth, which is unlike obesity in human, the results together with the findings from others also suggest that the link between obesity and gut microbiota is likely more complex than a simple Bacteroidetes:Firmicutes ratio change.

  18. Are You a Gut Responder? Hints on Coping with an Irritable Bowel

    Science.gov (United States)

    ... problems to contend with. These can interfere with work or school and social functions both in obvious and subtle ways – including ... a better understanding of your own gut-brain connections, ask your doctor to suggest a mental health ... Read More Personal Relationships ...

  19. Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder.

    Science.gov (United States)

    Needham, Brittany D; Tang, Weiyi; Wu, Wei-Li

    2018-05-01

    Social impairment is one of the major symptoms in multiple psychiatric disorders, including autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut microbiota in social development, but these mechanisms remain unclear. This review focuses on two strategies adopted to elucidate the complicated relationship between gut bacteria and host social behavior. In a top-down approach, researchers have attempted to correlate behavioral abnormalities with altered gut microbial profiles in rodent models of ASD, including BTBR mice, maternal immune activation (MIA), maternal valproic acid (VPA) and maternal high-fat diet (MHFD) offspring. In a bottom-up approach, researchers use germ-free (GF) animals, antibiotics, probiotics or pathogens to manipulate the intestinal environment and ascertain effects on social behavior. The combination of both approaches will hopefully pinpoint specific bacterial communities that control host social behavior. Further discussion of how brain development and circuitry is impacted by depletion of gut microbiota is also included. The converging evidence strongly suggests that gut microbes affect host social behavior through the alteration of brain neural circuits. Investigation of intestinal microbiota and host social behavior will unveil any bidirectional communication between the gut and brain and provide alternative therapeutic targets for ASD. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 474-499, 2018. © 2018 Wiley Periodicals, Inc.

  20. Gut microbes in correlation with mood: case study in a closed experimental human life support system.

    Science.gov (United States)

    Li, L; Su, Q; Xie, B; Duan, L; Zhao, W; Hu, D; Wu, R; Liu, H

    2016-08-01

    Gut microbial community, which may influence our mood, can be shaped by modulating the gut ecosystem through dietary strategies. Understanding the gut-brain correlationship in healthy people is important for maintenance of mental health and prevention of mental illnesses. A case study on the correlation between gut microbial alternation and mood swing of healthy adults was conducted in a closed human life support system during a 105-day experiment. Gut microbial community structures were analyzed using high-throughput sequencing every 2 weeks. A profile of mood states questionnaire was used to record the mood swings. Correlation between gut microbes and mood were identified with partial least squares discrimination analysis. Microbial community structures in the three healthy adults were strongly correlated with mood states. Bacterial genera Roseburia, Phascolarctobacterium, Lachnospira, and Prevotella had potential positive correlation with positive mood, while genera Faecalibacterium, Bifidobacterium, Bacteroides, Parabacteroides, and Anaerostipes were correlated with negative mood. Among which, Faecalibacterium spp. had the highest abundance, and showed a significant negative correlation with mood. Our results indicated that the composition of microbial community could play a role in emotional change in mentally physically healthy adults. © 2016 John Wiley & Sons Ltd.

  1. “I Am I and My Bacterial Circumstances”: Linking Gut Microbiome, Neurodevelopment, and Depression

    Science.gov (United States)

    Lima-Ojeda, Juan M.; Rupprecht, Rainer; Baghai, Thomas C.

    2017-01-01

    Recently, there has been renewed interest in the role played by microbiome in both human health and human disease. A correct equilibrium between the human host and their microorganisms is important for an appropriate physiological function. Extensive research has shown that microbes that inhabit the gastrointestinal tract—or gut microbiota—are involved not only in both nutritive and digestive activities but also in immunological processes. Moreover, the gut microbiome influences both central nervous system and energy homeostasis. An altered gut microbiome has been associated with the pathophysiology of different diseases, including neuropsychiatric disorders. Apparently, both environmental—diet, exposition to antibiotics, and infections—and host-genetic factors have a strong influence on gut microbiome, modulating the risk for neuropsychiatric illness. Also, early life disruption of the microbiome–gut–brain (MGB) axis has been associated with an increased risk of developing depression later in life, suggesting a link between gut microbiome, neurodevelopment, and depression. This review aims to contribute to this growing area of research by exploring the role played by the gut microbiome in neurodevelopment and in the etiology of the depressive syndrome, including nutritional, immunological, and energy homeostasis approaches. PMID:28878696

  2. Drunk bugs: Chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice.

    Science.gov (United States)

    Peterson, Veronica L; Jury, Nicholas J; Cabrera-Rubio, Raúl; Draper, Lorraine A; Crispie, Fiona; Cotter, Paul D; Dinan, Timothy G; Holmes, Andrew; Cryan, John F

    2017-04-14

    The gut microbiota includes a community of bacteria that play an integral part in host health and biological processes. Pronounced and repeated findings have linked gut microbiome to stress, anxiety, and depression. Currently, however, there remains only a limited set of studies focusing on microbiota change in substance abuse, including alcohol use disorder. To date, no studies have investigated the impact of vapour alcohol administration on the gut microbiome. For research on gut microbiota and addiction to proceed, an understanding of how route of drug administration affects gut microbiota must first be established. Animal models of alcohol abuse have proven valuable for elucidating the biological processes involved in addiction and alcohol-related diseases. This is the first study to investigate the effect of vapour route of ethanol administration on gut microbiota in mice. Adult male C57BL/6J mice were exposed to 4 weeks of chronic intermittent vapourized ethanol (CIE, N=10) or air (Control, N=9). Faecal samples were collected at the end of exposure followed by 16S sequencing and bioinformatic analysis. Robust separation between CIE and Control was seen in the microbiome, as assessed by alpha (pgut microbiota in mice. Significant increases in genus Alistipes (pgut-brain axis and align with previous research showing similar microbiota alterations in inflammatory states during alcoholic hepatitis and psychological stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour.

    Science.gov (United States)

    Fetissov, Sergueï O

    2017-01-01

    The life of all animals is dominated by alternating feelings of hunger and satiety - the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut-brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria-host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.

  4. “I Am I and My Bacterial Circumstances”: Linking Gut Microbiome, Neurodevelopment, and Depression

    Directory of Open Access Journals (Sweden)

    Juan M. Lima-Ojeda

    2017-08-01

    Full Text Available Recently, there has been renewed interest in the role played by microbiome in both human health and human disease. A correct equilibrium between the human host and their microorganisms is important for an appropriate physiological function. Extensive research has shown that microbes that inhabit the gastrointestinal tract—or gut microbiota—are involved not only in both nutritive and digestive activities but also in immunological processes. Moreover, the gut microbiome influences both central nervous system and energy homeostasis. An altered gut microbiome has been associated with the pathophysiology of different diseases, including neuropsychiatric disorders. Apparently, both environmental—diet, exposition to antibiotics, and infections—and host-genetic factors have a strong influence on gut microbiome, modulating the risk for neuropsychiatric illness. Also, early life disruption of the microbiome–gut–brain (MGB axis has been associated with an increased risk of developing depression later in life, suggesting a link between gut microbiome, neurodevelopment, and depression. This review aims to contribute to this growing area of research by exploring the role played by the gut microbiome in neurodevelopment and in the etiology of the depressive syndrome, including nutritional, immunological, and energy homeostasis approaches.

  5. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism.

    Science.gov (United States)

    Zheng, P; Zeng, B; Zhou, C; Liu, M; Fang, Z; Xu, X; Zeng, L; Chen, J; Fan, S; Du, X; Zhang, X; Yang, D; Yang, Y; Meng, H; Li, W; Melgiri, N D; Licinio, J; Wei, H; Xie, P

    2016-06-01

    Major depressive disorder (MDD) is the result of complex gene-environment interactions. According to the World Health Organization, MDD is the leading cause of disability worldwide, and it is a major contributor to the overall global burden of disease. However, the definitive environmental mechanisms underlying the pathophysiology of MDD remain elusive. The gut microbiome is an increasingly recognized environmental factor that can shape the brain through the microbiota-gut-brain axis. We show here that the absence of gut microbiota in germ-free (GF) mice resulted in decreased immobility time in the forced swimming test relative to conventionally raised healthy control mice. Moreover, from clinical sampling, the gut microbiotic compositions of MDD patients and healthy controls were significantly different with MDD patients characterized by significant changes in the relative abundance of Firmicutes, Actinobacteria and Bacteroidetes. Fecal microbiota transplantation of GF mice with 'depression microbiota' derived from MDD patients resulted in depression-like behaviors compared with colonization with 'healthy microbiota' derived from healthy control individuals. Mice harboring 'depression microbiota' primarily exhibited disturbances of microbial genes and host metabolites involved in carbohydrate and amino acid metabolism. This study demonstrates that dysbiosis of the gut microbiome may have a causal role in the development of depressive-like behaviors, in a pathway that is mediated through the host's metabolism.

  6. Gut hormones and gastric bypass

    DEFF Research Database (Denmark)

    Holst, Jens J.

    2016-01-01

    Gut hormone secretion in response to nutrient ingestion appears to depend on membrane proteins expressed by the enteroendocrine cells. These include transporters (glucose and amino acid transporters), and, in this case, hormone secretion depends on metabolic and electrophysiological events elicited...... that determines hormone responses. It follows that operations that change intestinal exposure to and absorption of nutrients, such as gastric bypass operations, also change hormone secretion. This results in exaggerated increases in the secretion of particularly the distal small intestinal hormones, GLP-1, GLP-2......, oxyntomodulin, neurotensin and peptide YY (PYY). However, some proximal hormones also show changes probably reflecting that the distribution of these hormones is not restricted to the bypassed segments of the gut. Thus, cholecystokinin responses are increased, whereas gastric inhibitory polypeptide responses...

  7. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition.

    Science.gov (United States)

    Wong, M-L; Inserra, A; Lewis, M D; Mastronardi, C A; Leong, L; Choo, J; Kentish, S; Xie, P; Morrison, M; Wesselingh, S L; Rogers, G B; Licinio, J

    2016-06-01

    The inflammasome is hypothesized to be a key mediator of the response to physiological and psychological stressors, and its dysregulation may be implicated in major depressive disorder. Inflammasome activation causes the maturation of caspase-1 and activation of interleukin (IL)-1β and IL-18, two proinflammatory cytokines involved in neuroimmunomodulation, neuroinflammation and neurodegeneration. In this study, C57BL/6 mice with genetic deficiency or pharmacological inhibition of caspase-1 were screened for anxiety- and depressive-like behaviors, and locomotion at baseline and after chronic stress. We found that genetic deficiency of caspase-1 decreased depressive- and anxiety-like behaviors, and conversely increased locomotor activity and skills. Caspase-1 deficiency also prevented the exacerbation of depressive-like behaviors following chronic stress. Furthermore, pharmacological caspase-1 antagonism with minocycline ameliorated stress-induced depressive-like behavior in wild-type mice. Interestingly, chronic stress or pharmacological inhibition of caspase-1 per se altered the fecal microbiome in a very similar manner. When stressed mice were treated with minocycline, the observed gut microbiota changes included increase in relative abundance of Akkermansia spp. and Blautia spp., which are compatible with beneficial effects of attenuated inflammation and rebalance of gut microbiota, respectively, and the increment in Lachnospiracea abundance was consistent with microbiota changes of caspase-1 deficiency. Our results suggest that the protective effect of caspase-1 inhibition involves the modulation of the relationship between stress and gut microbiota composition, and establishes the basis for a gut microbiota-inflammasome-brain axis, whereby the gut microbiota via inflammasome signaling modulate pathways that will alter brain function, and affect depressive- and anxiety-like behaviors. Our data also suggest that further elucidation of the gut microbiota-inflammasome-brain

  8. The Gut Microbiome and Mental Health: Implications for Anxiety- and Trauma-Related Disorders.

    Science.gov (United States)

    Malan-Muller, Stefanie; Valles-Colomer, Mireia; Raes, Jeroen; Lowry, Christopher A; Seedat, Soraya; Hemmings, Sian M J

    2018-02-01

    Biological psychiatry research has long focused on the brain in elucidating the neurobiological mechanisms of anxiety- and trauma-related disorders. This review challenges this assumption and suggests that the gut microbiome and its interactome also deserve attention to understand brain disorders and develop innovative treatments and diagnostics in the 21st century. The recent, in-depth characterization of the human microbiome spurred a paradigm shift in human health and disease. Animal models strongly suggest a role for the gut microbiome in anxiety- and trauma-related disorders. The microbiota-gut-brain (MGB) axis sits at the epicenter of this new approach to mental health. The microbiome plays an important role in the programming of the hypothalamic-pituitary-adrenal (HPA) axis early in life, and stress reactivity over the life span. In this review, we highlight emerging findings of microbiome research in psychiatric disorders, focusing on anxiety- and trauma-related disorders specifically, and discuss the gut microbiome as a potential therapeutic target. 16S rRNA sequencing has enabled researchers to investigate and compare microbial composition between individuals. The functional microbiome can be studied using methods involving metagenomics, metatranscriptomics, metaproteomics, and metabolomics, as discussed in the present review. Other factors that shape the gut microbiome should be considered to obtain a holistic view of the factors at play in the complex interactome linked to the MGB. In all, we underscore the importance of microbiome science, and gut microbiota in particular, as emerging critical players in mental illness and maintenance of mental health. This new frontier of biological psychiatry and postgenomic medicine should be embraced by the mental health community as it plays an ever-increasing transformative role in integrative and holistic health research in the next decade.

  9. Metagenomic Analysis of the Human Gut Microbiome

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha

    Understanding the link between the human gut microbiome and human health is one of the biggest scientific challenges in our decade. Because 90% of our cells are bacteria, and the microbial genome contains 200 times more genes than the human genome, the study of the human microbiome has...... the potential to impact many areas of our health. This PhD thesis is the first study to generate a large amount of experimental data on the DNA and RNA of the human gut microbiome. This was made possible by our development of a human gut microbiome array capable of profiling any human gut microbiome. Analysis...... of our results changes the way we link the gut microbiome with diseases. Our results indicate that inflammatory diseases will affect the ecological system of the human gut microbiome, reducing its diversity. Classification analysis of healthy and unhealthy individuals demonstrates that unhealthy...

  10. Balance of bacterial species in the gut

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Balance of bacterial species in the gut. Protective. Lactobacillus species. Bifidobacterium species. Selected E. coli. Saccharomyces boulardii. Clostridium butyricum.

  11. Role of the normal gut microbiota.

    Science.gov (United States)

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  12. Is Your Gut Conscious? Is an Extraterrestrial?

    Science.gov (United States)

    Vos Post, Jonathan

    2011-10-01

    This paper speculates on questions intending to be taken scientifically rather than metaphysically: "Can the human gut (enteric nervous system) be conscious?"; "Can your immune system think?"; "Could consciousness be coded in DNA?"; "What do we mean when asserting that an Extraterrestrial is Thinking, or is Conscious? We explore through reference to theory, experiment, and computational models by Christof Koch (Caltech), Barbara Wold (Caltech), and Stuart Kauffman (University of Calgary, Tampere University of Technology, Santa Fe Institute). We use a tentative new definition of thinking, designed to be applicable for humans, cetecea, corvids, artificial intelligences, and extraterrestrial intelligences of any substrate (i.e. Life as We Do Not Know It): "Thinking is the occurrence, transformation, and storage in a mind or brain (or simulation thereof) of information-bearing structures (representations) of one kind or another, such as thoughts, concept, percepts, ideas, impressions, notions, rules, schemas, images, phantasms, or subpersonal representations." We use the framework for Consciousness developed by Francis Crick and Christof Koch. We try to describe scientific goals, but discuss Philosophy sufficient to avoid naïve philosophical category errors (thus are careful not to conflate thought, consciousness, and language) Penrose, Hameroff, and Kauffman speculate (differently) that CNS consciousness is a macroscopic quantum phenomenon. Might intestinal, immune system, or genetic regulatory network dynamics exhibit emergent cooperative quantum effects? The speculations are in the context of Evolution by Natural Selection, presumed to operate throughout the Cosmos, and recent work in the foundations of Computational Biology and Quantum Mechanics.

  13. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder.

    Science.gov (United States)

    Coretti, Lorena; Cristiano, Claudia; Florio, Ermanno; Scala, Giovanni; Lama, Adriano; Keller, Simona; Cuomo, Mariella; Russo, Roberto; Pero, Raffaela; Paciello, Orlando; Mattace Raso, Giuseppina; Meli, Rosaria; Cocozza, Sergio; Calignano, Antonio; Chiariotti, Lorenzo; Lembo, Francesca

    2017-03-28

    Alterations of microbiota-gut-brain axis have been invoked in the pathogenesis of autism spectrum disorders (ASD). Mouse models could represent an excellent tool to understand how gut dysbiosis and related alterations may contribute to autistic phenotype. In this study we paralleled gut microbiota (GM) profiles, behavioral characteristics, intestinal integrity and immunological features of colon tissues in BTBR T + tf/J (BTBR) inbred mice, a well established animal model of ASD. Sex differences, up to date poorly investigated in animal models, were specifically addressed. Results showed that BTBR mice of both sexes presented a marked intestinal dysbiosis, alterations of behavior, gut permeability and immunological state with respect to prosocial C57BL/6j (C57) strain. Noticeably, sex-related differences were clearly detected. We identified Bacteroides, Parabacteroides, Sutterella, Dehalobacterium and Oscillospira genera as key drivers of sex-specific gut microbiota profiles associated with selected pathological traits. Taken together, our findings indicate that alteration of GM in BTBR mice shows relevant sex-associated differences and supports the use of BTBR mouse model to dissect autism associated microbiota-gut-brain axis alteration.

  14. Brain scintigraphy with Tc99-pertechnetate in the evaluation of patients with cerebrovascular lesions. The diagnostic value related to age of the lesion and to the size, type and localisation revealed by CT-scan

    DEFF Research Database (Denmark)

    Olsen, T S; Christensen, J; Skriver, E B

    1983-01-01

    Brain scintigraphy with Tc99-pertechnetate (Tc99-scan) was performed 4 times in 95 consecutive stroke patients: on average 5 days, 18 days, 103 days and 194 days after the stroke. The type (infarct, hematoma), size and localisation of the lesion was evaluated by CT-scan performed 3 times in all...... identified (90%) while infarcts localised deep in the hemisphere were identified in only 20% of the patients; (ii) the size of the lesion, i.e. large deep infarcts were seen with a much higher frequency than small deep infarcts. The detection rate of the CT-scan was practically not dependent upon the time...

  15. The intricate association between gut microbiota and development of type 1, type 2 and type 3 diabetes.

    Science.gov (United States)

    Bekkering, Pjotr; Jafri, Ismael; van Overveld, Frans J; Rijkers, Ger T

    2013-11-01

    It has been proposed that changes in the composition of gut microbiota contribute to the development of diabetes Types 1, 2 and 3 (the latter known as Alzheimer's disease). The onset of these diseases is affected by complex interactions of genetic and several environmental factors. Alterations in gut microbiota in combination with specific diets can result in increased intestinal permeability leading via a continuous state of low-grade inflammation to the development of insulin resistance. Since a change in composition of gut microbiota is also suggested to be the underlying factor for the development of obesity, it is obvious to link gut microbiota with the pathogenesis of diabetes. In addition, insulin resistance in the brain has been recently associated with Alzheimer's disease. These new paradigms in combination with data from studies with prebiotics and probiotics may lead to a novel way to control and even prevent diabetes in general.

  16. The Gut Microbiome, Obesity, and Weight Control in Women's Reproductive Health.

    Science.gov (United States)

    Greathouse, K Leigh; Faucher, Mary Ann; Hastings-Tolsma, Marie

    2017-08-01

    The microbes residing in the human gut, referred to as the microbiome, are intricately linked to energy homeostasis and subsequently obesity. Integral to the origins of obesity, the microbiome is believed to affect not only health of the human gut but also overall health. This microbiome-obesity association is mediated through the process of energy extraction, metabolism, and cross talk between the brain and the gut microbiome. Host exposures, including diet, that potentially modify genetic predisposition to obesity and affect weight management are reviewed. The higher prevalence of obesity among women and recent evidence linking obesity during pregnancy with offspring health make this topic particularly relevant. Current limitations in microbiome research to address obesity and future advances in this field are described. Applications of this science with respect to applied nursing and overall health care in general are included, with emphasis on the reproductive health of women and their offspring.

  17. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine.

    Science.gov (United States)

    Williams, Brianna B; Van Benschoten, Andrew H; Cimermancic, Peter; Donia, Mohamed S; Zimmermann, Michael; Taketani, Mao; Ishihara, Atsushi; Kashyap, Purna C; Fraser, James S; Fischbach, Michael A

    2014-10-08

    Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are largely unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrate that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Gut health in the pig

    DEFF Research Database (Denmark)

    Pluske, J. R.; Hansen, Christian Fink; Payne, H. G.

    2007-01-01

    Gastrointestinal disturbances can cause large economic losses in the pig industry. Diseases and conditions of the gastrointestinal tract (GIT) that can cause economic loss have generally been controlled by the use of dietary (and or in the water) antimicrobial compounds, such as antibiotic feed......' and caused enormous interest in alternative means to control diseases and conditions of the GIT. There are now available a wide array of products and strategies available to the pig industry that influence 'gut health'. The products in the market place are characterised predominately not only...

  19. On building superpotentials in F-GUTs

    International Nuclear Information System (INIS)

    Saidi, E. H.

    2016-01-01

    Using characters of finite group representations, we construct the fusion algebras of operators of the spectrum of F-theory grand unified theories (GUTs). These fusion relations are used in building monodromy-invariant superpotentials of the low-energy effective 4D N=1 supersymmetric GUT models

  20. [Gut microbiota: Description, role and pathophysiologic implications].

    Science.gov (United States)

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  1. Experimental models of the gut microbiome

    NARCIS (Netherlands)

    Venema, K.; Abbeele, P. van den

    2013-01-01

    The human gut contains a diverse microbiota with large potential to influence health. Given the difficulty to access the main sites of the gut, in vitro models have been developed to dynamically monitor microbial processes at the site of metabolic activity. These models range from simple batch

  2. The gut microbiome in atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Jie, Zhuye; Xia, Huihua; Zhong, Shi-Long

    2017-01-01

    The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals...... with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular......), with liver cirrhosis, and rheumatoid arthritis. Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACVD as well as other related diseases.The gut microbiota may play a role in cardiovascular diseases. Here, the authors perform...

  3. Microbiota in fermented feed and swine gut.

    Science.gov (United States)

    Wang, Cheng; Shi, Changyou; Zhang, Yu; Song, Deguang; Lu, Zeqing; Wang, Yizhen

    2018-04-01

    Development of alternatives to antibiotic growth promoters (AGP) used in swine production requires a better understanding of their impacts on the gut microbiota. Supplementing fermented feed (FF) in swine diets as a novel nutritional strategy to reduce the use of AGP and feed price, can positively affect the porcine gut microbiota, thereby improving pig productivities. Previous studies have noted the potential effects of FF on the shift in benefit of the swine microbiota in different regions of the gastrointestinal tract (GIT). The positive influences of FF on swine gut microbiota may be due to the beneficial effects of both pre- and probiotics. Necessarily, some methods should be adopted to properly ferment and evaluate the feed and avoid undesired problems. In this mini-review, we mainly discuss the microbiota in both fermented feed and swine gut and how FF influences swine gut microbiota.

  4. The gut microbiota and inflammatory noncommunicable diseases

    DEFF Research Database (Denmark)

    West, Christina E; Renz, Harald; Jenmalm, Maria C

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity...... for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti....... In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention....

  5. Enterotypes influence temporal changes in gut microbiota

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Licht, Tine Rask; Kellebjerg Poulsen, Sanne

    The human gut microbiota plays an important role for human health. The question is whether we can modulate the gut microbiota by changing diet. During a 6-month, randomised, controlled dietary intervention, the effect of consuming a diet following the New Nordic Diet recommendations (NND......) as opposed to Average Danish Diet (ADD) on the gut microbiota in humans (n=62) was investigated. Quantitative PCR analysis showed that the microbiota did not change significantly by the intervention. Nevertheless, by stratifying subjects into two enterotypes, distinguished by the Prevotella/Bacteroides ratio...... (P/B), we were able to detect significant changes in the gut microbiota composition resulting from the interventions. Subjects with a high-P/B experienced more pronounced changes in the gut microbiota composition than subjects with a low-P/B. The study is the first to indicate that enterotypes...

  6. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  7. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish.

    Science.gov (United States)

    Jin, Yuanxiang; Xia, Jizhou; Pan, Zihong; Yang, Jiajing; Wang, Wenchao; Fu, Zhengwei

    2018-04-01

    Microplastic (MP) are environmental pollutants and have the potential to cause varying degrees of aquatic toxicity. In this study, the effects on gut microbiota of adult male zebrafish exposed for 14 days to 100 and 1000 μg/L of two sizes of polystyrene MP were evaluated. Both 0.5 and 50 μm-diameter spherical polystyrene MP increased the volume of mucus in the gut at a concentration of 1000 μg/L (about 1.456 × 10 10 particles/L for 0.5 μm and 1.456 × 10 4 particles/L for 50 μm). At the phylum level, the abundance of Bacteroidetes and Proteobacteria decreased significantly and the abundance of Firmicutes increased significantly in the gut after 14-day exposure to 1000 μg/L of both sizes of polystyrene MP. In addition, high throughput sequencing of the 16S rRNA gene V3-V4 region revealed a significant change in the richness and diversity of microbiota in the gut of polystyrene MP-exposed zebrafish. A more in depth analysis, at the genus level, revealed that a total of 29 gut microbes identified by operational taxonomic unit (OTU) analysis were significantly changed in both 0.5 and 50 μm-diameter polystyrene MP-treated groups. Moreover, it was observed that 0.5 μm polystyrene MP not only increased mRNA levels of IL1α, IL1β and IFN but also their protein levels in the gut, indicating that inflammation occurred after polystyrene MP exposure. Our findings suggest that polystyrene MP could induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Stable isotope methods: The effect of gut contents on isotopic ratios of zooplankton

    Science.gov (United States)

    Hill, J. M.; McQuaid, C. D.

    2011-05-01

    In the past decade there has been an increased awareness of the potential for methodological bias resulting from multiple pre-analytical procedures in foodweb interpretations based on stable isotope techniques. In the case of small organisms, this includes the effect of gut contents on whole body signatures. Although gut contents may not reflect actual assimilation, their carbon and nitrogen values will be isotopically lighter than after the same material has been assimilated. The potential skewing of isotopic ratios in whole organism samples is especially important for aquatic environments as many studies involve trophic relationships among small zooplankton. This is particularly important in pelagic waters, where herbivorous zooplankton comprise small taxa. Hence this study investigated the effect of gut contents on the δ13C and δ15N ratios of three size classes of zooplankton (1.0-2.0, 2.0-4.0 and >4.0 mm) collected using bongo net tows in the tropical waters of the south-west Indian Ocean. Animals were collected at night, when they were likely to be feeding, sieved into size classes and separated into genera. We focused on Euphausia spp which dominated zooplankton biomass. Three treatment types were processed: bulk animals, bulk animals without guts and tail muscle from each size class at 10 bongo stations. The δ15N ratios were influenced by zooplankton size class, presumably reflecting ontogenetic changes in diet. ANOVA post hoc results and correlations in δ15N signatures among treatments suggest that gut contents may not affect overall nitrogen signatures of Euphausia spp., but that δ13C signatures may be significantly altered by their presence. Carbon interpretations however, were complicated by potential effects of variation in chitin, lipids and metabolism among tissues and the possibility of opportunistic omnivory. Consequently we advocate gut evacuation before sacrifice in euphausiids if specific tissue dissection is impractical and recommend

  9. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling.

    Science.gov (United States)

    Severance, Emily G; Yolken, Robert H; Eaton, William W

    2016-09-01

    Autoimmunity, gastrointestinal (GI) disorders and schizophrenia have been associated with one another for a long time. This paper reviews these connections and provides a context by which multiple risk factors for schizophrenia may be related. Epidemiological studies strongly link schizophrenia with autoimmune disorders including enteropathic celiac disease. Exposure to wheat gluten and bovine milk casein also contribute to non-celiac food sensitivities in susceptible individuals. Co-morbid GI inflammation accompanies humoral immunity to food antigens, occurs early during the course of schizophrenia and appears to be independent from antipsychotic-generated motility effects. This inflammation impacts endothelial barrier permeability and can precipitate translocation of gut bacteria into systemic circulation. Infection by the neurotropic gut pathogen, Toxoplasma gondii, will elicit an inflammatory GI environment. Such processes trigger innate immunity, including activation of complement C1q, which also functions at synapses in the brain. The emerging field of microbiome research lies at the center of these interactions with evidence that the abundance and diversity of resident gut microbiota contribute to digestion, inflammation, gut permeability and behavior. Dietary modifications of core bacterial compositions may explain inefficient gluten digestion and how immigrant status in certain situations is a risk factor for schizophrenia. Gut microbiome research in schizophrenia is in its infancy, but data in related fields suggest disease-associated altered phylogenetic compositions. In summary, this review surveys associative and experimental data linking autoimmunity, GI activity and schizophrenia, and proposes that understanding of disrupted biological pathways outside of the brain can lend valuable information regarding pathogeneses of complex, polygenic brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Chernobyl birds have smaller brains.

    Directory of Open Access Journals (Sweden)

    Anders Pape Møller

    2011-02-01

    Full Text Available Animals living in areas contaminated by radioactive material from Chernobyl suffer from increased oxidative stress and low levels of antioxidants. Therefore, normal development of the nervous system is jeopardized as reflected by high frequencies of developmental errors, reduced brain size and impaired cognitive abilities in humans. Alternatively, associations between psychological effects and radiation have been attributed to post-traumatic stress in humans.Here we used an extensive sample of 550 birds belonging to 48 species to test the prediction that even in the absence of post-traumatic stress, there is a negative association between relative brain size and level of background radiation. We found a negative association between brain size as reflected by external head volume and level of background radiation, independent of structural body size and body mass. The observed reduction in brain size in relation to background radiation amounted to 5% across the range of almost a factor 5,000 in radiation level. Species differed significantly in reduction in brain size with increasing background radiation, and brain size was the only morphological character that showed a negative relationship with radiation. Brain size was significantly smaller in yearlings than in older individuals.Low dose radiation can have significant effects on normal brain development as reflected by brain size and therefore potentially cognitive ability. The fact that brain size was smaller in yearlings than in older individuals implies that there was significant directional selection on brain size with individuals with larger brains experiencing a viability advantage.

  11. Kiwifruit, mucins, and the gut barrier.

    Science.gov (United States)

    Moughan, Paul J; Rutherfurd, Shane M; Balan, Prabhu

    2013-01-01

    Kiwifruit has long been regarded in China, where it originated from, for its health properties and particularly in relation to digestion and general gut health. There are a number of physical and chemical properties of the fruit, including its dietary fiber content, the presence of raphides, its high water holding capacity and actinidin content, that suggest that kiwifruit may be effective in influencing gut mucin production and thus enhancing the integrity of the gut barrier. The mucous layer, which comprises mucins and other materials, overlying the mucosal epithelium, is an important component of the gut barrier. The gut barrier plays a crucial role in separating the host from the often noxious external environment. The mucous layer, which covers the entire gastrointestinal tract (GIT), is the front line of innate host defense. There have been few direct studies of the effect of kiwifruit ingestion on mucin production in the GIT, and findings that are available using animal models are somewhat inconsistent. Taking results for digesta mucin content, number of goblet cells, and mucin gene expression, together, it would seem that green kiwifruit and possibly gold kiwifruit do influence gut mucin production, and the kiwifruit as part of a balanced diet may help to maintain the mucous layer and gut barrier. More corroborative experimental evidence is needed, and studies need to be undertaken in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Testing GUTs: where do monopoles fit

    International Nuclear Information System (INIS)

    Ellis, J.

    1982-10-01

    The report shows why the inadequacies of the standard model of elementary particles impel some theorists toward embedding the strong, weak and electromagnetic interactions in a simple GUT group, and explains why the grand unification scale and hence the GUM (Grand Unified Monopoles) mass are expected to be so large (greater than or equal to 10 14 GeV). It goes on to describe some model GUTs, notably minimal SU(5) and supersymmetric (susy) GUTs. The grand unified analogues of generalized Cabibbo mixing angles are introduced relevant to the prediction of baryon decay modes in different theories as well as to the Decay modes catalyzed by GUMs. Phenomenologies of conventional and susy GUTs are contrasted including the potential increase in the grand unification scale as well as possible different baryon decay modes in susy GUTs. The phenomenology of GUMs is discussed, principally their ability to catalyze baryon decays. Some of the astrophysical and cosmological constraints on GUMs, GUMs, which make it difficult to imagine ever seeing a GUM and may impose serious restrictions on GUT model-building via their behavior in the very early universe are introduced. Finally, the reasons why GUMs are crucial aspects and tests of GUTs are summarized

  13. Gut proteases target Yersinia invasin in vivo

    Directory of Open Access Journals (Sweden)

    Freund Sandra

    2011-04-01

    Full Text Available Abstract Background Yersinia enterocolitica is a common cause of food borne gastrointestinal disease. After oral uptake, yersiniae invade Peyer's patches of the distal ileum. This is accomplished by the binding of the Yersinia invasin to β1 integrins on the apical surface of M cells which overlie follicle associated lymphoid tissue. The gut represents a barrier that severely limits yersiniae from reaching deeper tissues such as Peyer's patches. We wondered if gut protease attack on invasion factors could contribute to the low number of yersiniae invading Peyer's patches. Findings Here we show that invasin is rapidly degraded in vivo by gut proteases in the mouse infection model. In vivo proteolytic degradation is due to proteolysis by several gut proteases such as trypsin, α-chymotrypsin, pancreatic elastase, and pepsin. Protease treated yersiniae are shown to be less invasive in a cell culture model. YadA, another surface adhesin is cleaved by similar concentrations of gut proteases but Myf was not cleaved, showing that not all surface proteins are equally susceptible to degradation by gut proteases. Conclusions We demonstrate that gut proteases target important Yersinia virulence factors such as invasin and YadA in vivo. Since invasin is completely degraded within 2-3 h after reaching the small intestine of mice, it is no longer available to mediate invasion of Peyer's patches.

  14. The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph N; Perel, James M

    2005-01-01

    exposed to oral haloperidol, olanzapine or sham for a 17-27 month period. The resulting plasma drug levels were comparable to those seen in subjects with schizophrenia treated with these medications. After the exposure, we observed an 8-11% reduction in mean fresh brain weights as well as left cerebrum...

  15. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility.

    NARCIS (Netherlands)

    Jost, C.R.; Zee, C.E.E.M. van der; Zandt, H.J.A. in t; Oerlemans, F.T.J.J.; Verheij, M.M.M.; Streijger, F.; Fransen, J.A.M.; Deursen, J.; Heerschap, A.; Cools, A.R.; Wieringa, B.

    2002-01-01

    Creatine kinases are important in maintaining cellular-energy homeostasis, and neuroprotective effects have been attributed to the administration of creatine and creatine-like compounds. Herein we examine whether ablation of the cytosolic brain-type creatine kinase (B-CK) in mice has detrimental

  16. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility

    NARCIS (Netherlands)

    Jost, C.R.; Zee, C.E.E.M. van der; Zandt, H.J.A. in t; Oerlemans, F.T.J.J.; Verheij, M.M.M.; Streijger, F.; Fransen, J.A.M.; Heerschap, A.; Cools, A.R.; Wieringa, B.

    2002-01-01

    Creatine kinases are important in maintaining cellular-energy homeostasis, and neuroprotective effects have been attributed to the administration of creatine and creatine-like compounds. Herein we examine whether ablation of the cytosolic brain-type creatine kinase (B-CK) in mice has detrimental

  17. Alterations of the Gut Microbiome in Hypertension

    Directory of Open Access Journals (Sweden)

    Qiulong Yan

    2017-08-01

    Full Text Available Introduction: Human gut microbiota is believed to be directly or indirectly involved in cardiovascular diseases and hypertension. However, the identification and functional status of the hypertension-related gut microbe(s have not yet been surveyed in a comprehensive manner.Methods: Here we characterized the gut microbiome in hypertension status by comparing fecal samples of 60 patients with primary hypertension and 60 gender-, age-, and body weight-matched healthy controls based on whole-metagenome shotgun sequencing.Results: Hypertension implicated a remarkable gut dysbiosis with significant reduction in within-sample diversity and shift in microbial composition. Metagenome-wide association study (MGWAS revealed 53,953 microbial genes that differ in distribution between the patients and healthy controls (false discovery rate, 0.05 and can be grouped into 68 clusters representing bacterial species. Opportunistic pathogenic taxa, such as, Klebsiella spp., Streptococcus spp., and Parabacteroides merdae were frequently distributed in hypertensive gut microbiome, whereas the short-chain fatty acid producer, such as, Roseburia spp. and Faecalibacterium prausnitzii, were higher in controls. The number of hypertension-associated species also showed stronger correlation to the severity of disease. Functionally, the hypertensive gut microbiome exhibited higher membrane transport, lipopolysaccharide biosynthesis and steroid degradation, while in controls the metabolism of amino acid, cofactors and vitamins was found to be higher. We further provided the microbial markers for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC of 0.78, demonstrating the potential of gut microbiota in prediction of hypertension.Conclusion: These findings represent specific alterations in microbial diversity, genes, species and functions of the hypertensive gut microbiome. Further studies on the causality relationship between

  18. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis.

    Science.gov (United States)

    Freedman, Samantha N; Shahi, Shailesh K; Mangalam, Ashutosh K

    2018-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.

  19. Does smoking tighten the gut?

    International Nuclear Information System (INIS)

    Prytz, H.; Benoni, C.; Tagesson, C.

    1989-01-01

    There is a low prevalence of smoking in ulcerative colitis. The disease often starts or relapses after stopp of smoking. Increased intestinal permeability for harmful substances has been proposed as one causal factor in ulcerative colitis. The authors therefore wanted to study the relationship between smoking and intestinal permeability in healthy subjects. In 25 smoking and 25 non-smoking healthy persons, urine recoveries of two different oral probes, 51 Cr-ethylenediaminetetraacetic acid ( 51 Cr-EDTA) and low-molecular-weight polymers of polyethylene glycol, were measured. The smokers had significantly lower 24-h urine recoveries of 51 Cr-EDTA than the non-smokers. In contrast, 6-h urine recoveries of PEG 400 were not significantly different in smokers and non-smokers. Thus, smoking appears to tighten the gut either by effects on the paracelluar junctions in the intestinal epithelium, or by decreasing the permeability in the distal small bowel and the colon. 21 refs

  20. Salmonella Typhimurium and multidirectional communication in the gut

    Directory of Open Access Journals (Sweden)

    Elena V. Gart

    2016-11-01

    Full Text Available The mammalian digestive tract is home to trillions of microbes, including bacteria, archaea, protozoa, fungi and viruses. In monogastric mammals the stomach and small intestine harbor diverse bacterial populations but are typically less populated than the colon. The gut bacterial community (microbiota hereafter varies widely among different host species and individuals within a species. It is influenced by season of the year, age of the host, stress and disease. Ideally, the host and microbiota benefit each other. The host provides nutrients to the microbiota and the microbiota assists the host with digestion and nutrient metabolism. The resident microbiota competes with pathogens for space and nutrients and, through this competition, protects the host in a phenomenon called colonization resistance. The microbiota participates in development of the host immune system, particularly regulation of autoimmunity and mucosal immune response. The microbiota also shapes gut-brain communication and host responses to stress; and, indeed, the microbiota is a newly recognized endocrine organ within mammalian hosts.Salmonella enterica serovar Typhimurium (S. Typhimurium hereafter is a food-borne pathogen which adapts to and alters the gastrointestinal (GI environment. In the GI tract, S. Typhimurium competes with the microbiota for nutrients and overcomes colonization resistance to establish infection. To do this, S. Typhimurium uses multiple defense mechanisms to resist environmental stressors, like the acidic pH of the stomach, and virulence mechanisms which allow it to invade the intestinal epithelium and disseminate throughout the host. To coordinate gene expression and disrupt signaling within the microbiota and between host and microbiota, S. Typhimurium employs its own chemical signaling and may regulate host hormone metabolism.This review will discuss the multidirectional interaction between S. Typhimurium, host and microbiota as well as mechanisms

  1. Longer guts and higher food quality increase energy intake in migratory swans.

    Science.gov (United States)

    van Gils, Jan A; Beekman, Jan H; Coehoorn, Pieter; Corporaal, Els; Dekkers, Ten; Klaassen, Marcel; van Kraaij, Rik; de Leeuw, Rinze; de Vries, Peter P

    2008-11-01

    1. Within the broad field of optimal foraging, it is increasingly acknowledged that animals often face digestive constraints rather than constraints on rates of food collection. This therefore calls for a formalization of how animals could optimize food absorption rates. 2. Here we generate predictions from a simple graphical optimal digestion model for foragers that aim to maximize their (true) metabolizable food intake over total time (i.e. including nonforaging bouts) under a digestive constraint. 3. The model predicts that such foragers should maintain a constant food retention time, even if gut length or food quality changes. For phenotypically flexible foragers, which are able to change the size of their digestive machinery, this means that an increase in gut length should go hand in hand with an increase in gross intake rate. It also means that better quality food should be digested more efficiently. 4. These latter two predictions are tested in a large avian long-distance migrant, the Bewick's swan (Cygnus columbianus bewickii), feeding on grasslands in its Dutch wintering quarters. 5. Throughout winter, free-ranging Bewick's swans, growing a longer gut and experiencing improved food quality, increased their gross intake rate (i.e. bite rate) and showed a higher digestive efficiency. These responses were in accordance with the model and suggest maintenance of a constant food retention time. 6. These changes doubled the birds' absorption rate. Had only food quality changed (and not gut length), then absorption rate would have increased by only 67%; absorption rate would have increased by only 17% had only gut length changed (and not food quality). 7. The prediction that gross intake rate should go up with gut length parallels the mechanism included in some proximate models of foraging that feeding motivation scales inversely to gut fullness. We plea for a tighter integration between ultimate and proximate foraging models.

  2. Review article: gut-directed hypnotherapy in the management of irritable bowel syndrome and inflammatory bowel disease.

    Science.gov (United States)

    Peters, S L; Muir, J G; Gibson, P R

    2015-06-01

    Gut-directed hypnotherapy is being increasingly applied to patients with irritable bowel syndrome (IBS) and to a lesser extent, inflammatory bowel disease (IBD). To review the technique, mechanisms of action and evidence for efficacy, and to identify gaps in the understanding of gut-directed hypnotherapy as a treatment for IBS and IBD. A review of published literature and a systematic review of clinical trials in its application to patients with IBS and IBD were performed. Gut-directed hypnotherapy is a clearly described technique. Its potential mechanisms of action on the brain-gut axis are multiple with evidence spanning psychological effects through to physiological gastrointestinal modifications. Six of seven randomised IBS studies reported a significant reduction (all P hypnotherapy ranged between 24% and 73%. Efficacy was maintained long-term in four of five studies. A therapeutic effect was also observed in the maintenance of clinical remission in patients with ulcerative colitis. Uncontrolled trials supported the efficacy and durability of gut-directed hypnotherapy in IBS. Gaps in understanding included to whom and when it should be applied, the paucity of adequately trained hypnotherapists, and the difficulties in designing well controlled-trials. Gut-directed hypnotherapy has durable efficacy in patients with IBS and possibly ulcerative colitis. Whether it sits in the therapeutic arsenal as a primary and/or adjunctive therapy cannot be ascertained on the current evidence base. Further research into efficacy, mechanisms of action and predictors of response is required. © 2015 John Wiley & Sons Ltd.

  3. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence?

    OpenAIRE

    Lean, M E J; Malkova, D

    2015-01-01

    The aim of this article is to review the research into the main peripheral appetite signals altered in human obesity, together with their modifications after body weight loss with diet and exercise and after bariatric surgery, which may be relevant to strategies for obesity treatment. Body weight homeostasis involves the gut?brain axis, a complex and highly coordinated system of peripheral appetite hormones and centrally mediated neuronal regulation. The list of peripheral anorexigenic and or...

  4. Effects of induced placental and fetal growth restriction, size at birth and early neonatal growth on behavioural and brain structural lateralization in sheep.

    Science.gov (United States)

    Hunter, Damien Seth; Hazel, Susan J; Kind, Karen L; Liu, Hong; Marini, Danila; Giles, Lynne C; De Blasio, Miles J; Owens, Julie A; Pitcher, Julia B; Gatford, Kathryn L

    2017-09-01

    Poor perinatal growth in humans results in asymmetrical grey matter loss in fetuses and infants and increased functional and behavioural asymmetry, but specific contributions of pre- and postnatal growth are unclear. We therefore compared strength and direction of lateralization in obstacle avoidance and maze exit preference tasks in offspring of placentally restricted (PR: 10M, 13F) and control (CON: 23M, 17F) sheep pregnancies at 18 and 40 weeks of age, and examined gross brain structure of the prefrontal cortex at 52 weeks of age (PR: 14M, 18F; CON: 23M, 25F). PR did not affect lateralization direction, but 40-week-old PR females had greater lateralization strength than CON (P = .021). Behavioural lateralization measures were not correlated with perinatal growth. PR did not alter brain morphology. In males, cross-sectional areas of the prefrontal cortex and left hemisphere correlated positively with skull width at birth, and white matter area correlated positively with neonatal growth rate of the skull (all P programming, and suggest that restricting in utero growth has relatively mild effects on gross brain structural or behavioural lateralization in sheep.

  5. The Gut Hormones in Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Suzuki

    2011-01-01

    Full Text Available Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.

  6. Hadronic EDM constraints on orbifold GUTs

    International Nuclear Information System (INIS)

    Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru

    2005-01-01

    We point out that the null results of the hadronic electric dipole moment (EDM) searches constrain orbifold grand unified theories (GUTs), where the GUT symmetry and supersymmetry (SUSY) are both broken by boundary conditions in extra dimensions and it leads to rich fermion and sfermion flavor structures. A marginal chromoelectric dipole moment (CEDM) of the up quark is induced by the misalignment between the CP violating left- and right-handed up-type squark mixings, in contrast to the conventional four-dimensional SUSY GUTs. The up quark CEDM constraint is found to be as strong as those from charged lepton flavor violation (LFV) searches. The interplay between future EDM and LFV experiments will probe the structures of the GUTs and the SUSY breaking mediation mechanism

  7. The gut microbiome in atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Jie, Zhuye; Xia, Huihua; Zhong, Shi-Long

    2017-01-01

    The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals...... with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular...... health. Although drug treatment represents a confounding factor, ACVD status, and not current drug use, is the major distinguishing feature in this cohort. We identify common themes by comparison with gut microbiome data associated with other cardiometabolic diseases (obesity and type 2 diabetes...

  8. Endurance exercise and gut microbiota: A review

    Directory of Open Access Journals (Sweden)

    Núria Mach

    2017-06-01

    Conclusion: The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.

  9. The Gut Microbiota of Marine Fish

    Science.gov (United States)

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research. PMID:29780377

  10. Multislice ct in gut related pathologies

    International Nuclear Information System (INIS)

    Nadeem, A.; Shaukat, A.; Ahmad, M.W.; Amin, Y.

    2007-01-01

    The objective of this study is to evaluate the effectiveness of Multislice CT in Gut related pathologies. 50 consecutive patients, referred from surgical and medical departments, with gut pathology suspicion were scanned in this respect on Toshiba MSCT 4 slice Aquilion. Patients were. 100 ml iodinated non ionic IV contrast was given. Preferably water was used as oral contrast and oral iodinated contrast was used only in selective cases. As a result, 33 patients showed positive response and 17 were normal; 23 were females and 10 were males. We found following pathologies Acute Appendicitis 10, Diverticulitis 02, Inflammatory Bowel Disease 03, Small Bowel Obstruction 04, Malignant Gut masses 08, Omental Implants 05, Perforation (Duodenal) 01. It is thus concluded that MDCT has a definite role in gut pathologies especially when the ultrasound is negative. (author)

  11. Gut inflammation in chronic fatigue syndrome

    OpenAIRE

    Lakhan, Shaheen E; Kirchgessner, Annette

    2010-01-01

    Abstract Chronic fatigue syndrome (CFS) is a debilitating disease characterized by unexplained disabling fatigue and a combination of accompanying symptoms the pathology of which is incompletely understood. Many CFS patients complain of gut dysfunction. In fact, patients with CFS are more likely to report a previous diagnosis of irritable bowel syndrome (IBS), a common functional disorder of the gut, and experience IBS-related symptoms. Recently, evidence for interactions between the intestin...

  12. "Sport Guts" in Japanese Girl Anime

    OpenAIRE

    Miho Tsukamoto

    2015-01-01

    "Sport Guts" in Japanese anime developed not only to strengthen mentality but also to challenge for objectives. This paper helps to understand the development of Japanese girl anime, and its philosophical concepts of Japanese amine. This paper focuses on girls' sport anime "Sport Guts,", which is the major philosophy of Japanese girl anime and centers on a girl who is enthusiastic about volleyball and makes an effort to compete in the World Series by focusing on girl anime b...

  13. Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer's Mouse Model.

    Science.gov (United States)

    Brandscheid, Carolin; Schuck, Florian; Reinhardt, Sven; Schäfer, Karl-Herbert; Pietrzik, Claus U; Grimm, Marcus; Hartmann, Tobias; Schwiertz, Andreas; Endres, Kristina

    2017-01-01

    The regulation of physiological gut functions such as peristalsis or secretion of digestive enzymes by the central nervous system via the Nervus vagus is well known. Recent investigations highlight that pathological conditions of neurological or psychiatric disorders might directly interfere with the autonomous neuronal network of the gut - the enteric nervous system, or even derive from there. By using a murine Alzheimer's disease model, we investigated a potential influence of disease-associated changes on gastrointestinal properties. 5xFAD mice at three different ages were compared to wild type littermates in regard to metabolic parameters and enzymes of the gut by fluorimetric enzyme assay and western blotting. Overexpression of human amyloid-β protein precursor (AβPP) within the gut was assessed by qPCR and IHC; fecal microbiome analysis was conducted by 16SrRNA quantitation of selected phyla and species. While general composition of fecal samples, locomotion, and food consumption of male 5xFAD animals were not changed, we observed a reduced body weight occurring at early pathological stages. Human AβPP was not only expressed within the brain of these mice but also in gut tissue. Analysis of fecal proteins revealed a reduced trypsin amount in the 5xFAD model mice as compared to the wild type. In addition, we observed changes in fecal microbiota composition along with age. We therefore suggest that the presence of the mutated transgenes (AβPP and PS1), which are per se the basis for the genetic form of Alzheimer's disease in humans, directly interferes with gut function as shown here for the disease model mice.

  14. Probiotics, Prebiotics, and Synbiotics: Gut and Beyond

    Directory of Open Access Journals (Sweden)

    Usha Vyas

    2012-01-01

    Full Text Available The human intestinal tract has been colonized by thousands of species of bacteria during the coevolution of man and microbes. Gut-borne microbes outnumber the total number of body tissue cells by a factor of ten. Recent metagenomic analysis of the human gut microbiota has revealed the presence of some 3.3 million genes, as compared to the mere 23 thousand genes present in the cells of the tissues in the entire human body. Evidence for various beneficial roles of the intestinal microbiota in human health and disease is expanding rapidly. Perturbation of the intestinal microbiota may lead to chronic diseases such as autoimmune diseases, colon cancers, gastric ulcers, cardiovascular disease, functional bowel diseases, and obesity. Restoration of the gut microbiota may be difficult to accomplish, but the use of probiotics has led to promising results in a large number of well-designed (clinical studies. Microbiomics has spurred a dramatic increase in scientific, industrial, and public interest in probiotics and prebiotics as possible agents for gut microbiota management and control. Genomics and bioinformatics tools may allow us to establish mechanistic relationships among gut microbiota, health status, and the effects of drugs in the individual. This will hopefully provide perspectives for personalized gut microbiota management.

  15. A human gut phage catalog correlates the gut phageome with type 2 diabetes.

    Science.gov (United States)

    Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli

    2018-02-01

    Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.

  16. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence?

    Science.gov (United States)

    Lean, M E J; Malkova, D

    2016-04-01

    The aim of this article is to review the research into the main peripheral appetite signals altered in human obesity, together with their modifications after body weight loss with diet and exercise and after bariatric surgery, which may be relevant to strategies for obesity treatment. Body weight homeostasis involves the gut-brain axis, a complex and highly coordinated system of peripheral appetite hormones and centrally mediated neuronal regulation. The list of peripheral anorexigenic and orexigenic physiological factors in both animals and humans is intimidating and expanding, but anorexigenic glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY) and orexigenic ghrelin from the gastrointestinal tract, pancreatic polypeptide (PP) from the pancreas and anorexigenic leptin from adiposites remain the most widely studied hormones. Homeostatic control of food intake occurs in humans, although its relative importance for eating behaviour is uncertain, compared with social and environmental influences. There are perturbations in the gut-brain axis in obese compared with lean individuals, as well as in weight-reduced obese individuals. Fasting and postprandial levels of gut hormones change when obese individuals lose weight, either with surgical or with dietary and/or exercise interventions. Diet-induced weight loss results in long-term changes in appetite gut hormones, postulated to favour increased appetite and weight regain while exercise programmes modify responses in a direction expected to enhance satiety and permit weight loss and/or maintenance. Sustained weight loss achieved by bariatric surgery may in part be mediated via favourable changes to gut hormones. Future work will be necessary to fully elucidate the role of each element of the axis, and whether modifying these signals can reduce the risk of obesity.

  17. Gut Microbiota and a Selectively Bred Taste Phenotype: A Novel Model of Microbiome-Behavior Relationships.

    Science.gov (United States)

    Lyte, Mark; Fodor, Anthony A; Chapman, Clinton D; Martin, Gary G; Perez-Chanona, Ernesto; Jobin, Christian; Dess, Nancy K

    2016-06-01

    The microbiota-gut-brain axis is increasingly implicated in obesity, anxiety, stress, and other health-related processes. Researchers have proposed that gut microbiota may influence dietary habits, and pathways through the microbiota-gut-brain axis make such a relationship feasible; however, few data bear on the hypothesis. As a first step in the development of a model system, the gut microbiome was examined in rat lines selectively outbred on a taste phenotype with biobehavioral profiles that have diverged with respect to energy regulation, anxiety, and stress. Occidental low and high-saccharin-consuming rats were assessed for body mass and chow, water, and saccharin intake; littermate controls had shared cages with rats in the experimental group but were not assessed. Cecum and colon microbial communities were profiled using Illumina 16S rRNA sequencing and multivariate analysis of microbial diversity and composition. The saccharin phenotype was confirmed (low-saccharin-consuming rats, 0.7Δ% [0.9Δ%]; high-saccharin-consuming rats, 28.1Δ% [3.6Δ%]). Regardless of saccharin exposure, gut microbiota differed between lines in terms of overall community similarity and taxa at lower phylogenetic levels. Specifically, 16 genera in three phyla distinguished the lines at a 10% false discovery rate. The study demonstrates for the first time that rodent lines created through selective pressure on taste and differing on functionally related correlates host different microbial communities. Whether the microbiota are causally related to the taste phenotype or its correlates remains to be determined. These findings encourage further inquiry on the relationship of the microbiome to taste, dietary habits, emotion, and health.

  18. Insulin sensitivity : modulation by the gut-brain axis

    NARCIS (Netherlands)

    Heijboer, Annemieke Corine

    2006-01-01

    Er zijn steeds meer aanwijzingen dat neuropeptiden in de hypothalamus en maagdarmhormonen die hun werking hebben op de hypothalamus en betrokken zijn bij de regulatie van voedselinname, ook betrokken zouden kunnen zijn bij de regulatie van insuline gevoeligheid. Daarom hebben we eerst de effecten

  19. Microbial endocrinology and the microbiota-gut-brain axis.

    Science.gov (United States)

    Lyte, Mark

    2014-01-01

    Microbial endocrinology is defined as the study of the ability of microorganisms to both produce and recognize neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. As such, microbial endocrinology represents the intersection of the fields of microbiology and neurobiology. The acquisition of neurochemical-based cell-to-cell signaling mechanisms in eukaryotic organisms is believed to have been acquired due to late horizontal gene transfer from prokaryotic microorganisms. When considered in the context of the microbiota's ability to influence host behavior, microbial endocrinology with its theoretical basis rooted in shared neuroendocrine signaling mechanisms provides for testable experiments with which to understand the role of the microbiota in host behavior and as importantly the ability of the host to influence the microbiota through neuroendocrine-based mechanisms.

  20. Neuroimmunomodulation of the young brain. Nutrition, a gut feeling

    NARCIS (Netherlands)

    de Theije, C.G.M.

    2014-01-01

    Neurodevelopmental disorders, such as autism spectrum disorder (ASD), are heterogeneous conditions, in which both genetic predisposition and environmental factors play a role. Prenatal environmental factors such as maternal immune activation, deficient nutrition, and drugs use during pregnancy

  1. Brain-gut-adipose-tissue communication pathways at a glance

    NARCIS (Netherlands)

    Yi, Chun-Xia; Tschöp, Matthias H.

    2012-01-01

    One of the 'side effects' of our modern lifestyle is a range of metabolic diseases: the incidence of obesity, type 2 diabetes and associated cardiovascular diseases has grown to pandemic proportions. This increase, which shows no sign of reversing course, has occurred despite education and new

  2. Parkinson disease: the enteric nervous system spills its guts.

    Science.gov (United States)

    Derkinderen, P; Rouaud, T; Lebouvier, T; Bruley des Varannes, S; Neunlist, M; De Giorgio, R

    2011-11-08

    Lewy pathology in Parkinson disease (PD) extends well beyond the CNS, also affecting peripheral autonomic neuronal circuits, especially the enteric nervous system (ENS). The ENS is an integrative neuronal network also referred to as "the brain in the gut" because of its similarities to the CNS. We have recently shown that the ENS can be readily analyzed using routine colonic biopsies. This led us to propose that the ENS could represent a unique window to assess the neuropathology in living patients with PD. In this perspective, we discuss current evidence which indicates that the presence of ENS pathology may by exploited to improve our understanding and management of PD and likely other neurodegenerative disorders.

  3. N-alkylamides: from plant to brain

    Directory of Open Access Journals (Sweden)

    Lieselotte Veryser

    2014-06-01

    Full Text Available Background: Plant N-alkylamides (NAAs are bio-active compounds with a broad functional spectrum. In order to reach their pharmacodynamic targets, they have to overcome several barriers of the body in the absorption phase. The permeability kinetics of spilanthol (a diene NAA and pellitorine (a triene NAA across these barriers (i.e. skin, oral/gut mucosa, bloodbrain barrier were investigated. Methods: The skin and oral mucosa permeability were investigated using human skin and pig mucosa in an ex vivo in vitro Franz diffusion cell set-up. The gut absorption characteristics were examined using the in vitro Caco-2 cell monolayer test system. The initial blood-brain barrier transport kinetics were investigated in an in vivo mice model using multiple time regression and efflux experiments. Quantification of both NAAs was conducted using HPLC-UV and bioanalytical UPLC-MS methods. Results: We demonstrated that spilanthol and pellitorine are able to penetrate the skin after topical administration. It is likely that spilanthol and pellitorine can pass the endothelial gut as they easily pass the Caco-2 cells in the monolayer model. It has been shown that spilanthol also crosses the oral mucosa as well as the blood-brain barrier. Conclusion: It was demonstrated that NAAs pass various physiological barriers i.e. the skin, oral and gut mucosa, and after having reached the systemic circulation, also the blood-brain barrier. As such, NAAs are cosmenutriceuticals which can be active in the brain

  4. Hh pathway expression in human gut tissues and in inflammatory gut diseases

    NARCIS (Netherlands)

    Nielsen, Corinne M.; Williams, Jerrell; van den Brink, Gijs R.; Lauwers, Gregory Y.; Roberts, Drucilla J.

    2004-01-01

    Sonic hedgehog (Shh) directs early gut patterning via epithelial-mesenchymal signaling and remains expressed in endoderm-derived tissues into the adult period. In human adult gut epithelium SHH/SHH expression is strongest in basal layers, which suggests that SHH may function in the maintenance of

  5. The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256-slice CT: How can we minimize the risk for deterministic effects?

    International Nuclear Information System (INIS)

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis; Papadakis, Antonios E.; Damilakis, John

    2013-01-01

    Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peak tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of

  6. Gut bacterial microbiota and obesity.

    Science.gov (United States)

    Million, M; Lagier, J-C; Yahav, D; Paul, M

    2013-04-01

    Although probiotics and antibiotics have been used for decades as growth promoters in animals, attention has only recently been drawn to the association between the gut microbiota composition, its manipulation, and obesity. Studies in mice have associated the phylum Firmicutes with obesity and the phylum Bacteroidetes with weight loss. Proposed mechanisms linking the microbiota to fat content and weight include differential effects of bacteria on the efficiency of energy extraction from the diet, and changes in host metabolism of absorbed calories. The independent effect of the microbiota on fat accumulation has been demonstrated in mice, where transplantation of microbiota from obese mice or mice fed western diets to lean or germ-free mice produced fat accumulation among recipients. The microbiota can be manipulated by prebiotics, probiotics, and antibiotics. Probiotics affect the microbiota directly by modulating its bacterial content, and indirectly through bacteriocins produced by the probiotic bacteria. Interestingly, certain probiotics are associated with weight gain both in animals and in humans. The effects are dependent on the probiotic strain, the host, and specific host characteristics, such as age and baseline nutritional status. Attention has recently been drawn to the association between antibiotic use and weight gain in children and adults. We herein review the studies describing the associations between the microbiota composition, its manipulation, and obesity. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  7. N=2 extended supersymmetric GUTs

    International Nuclear Information System (INIS)

    Fayet, P.

    1984-01-01

    We construct N = 2 extended SUSY GUTs which provide a general association between massive spin-1 gauge bosons, spin-1/2 inos and spin-0 Higgs bosons. The corresponding gauge hypermultiplets are of four different types, while leptons and quarks are associated with mirror and spin-0 partners. The anticommutators of the two supersymmetry generators provide two spin-0 symmetry generators Zsub(s) and Zsub(p), which do not commute. Their field-independent parts and do commute, however, and appear as central charges in the symmetry algebra of the spontaneously broken gauge theory. These central charges and are linear combinations of global symmetry generators with grand unification generators such as the weak hypercharge (but not the electrical charge). They survive the electroweak symmetry breaking. They do not vanish for massive gauge hypermultiplets of types II and III, which verify M 2 = 2 + 2 > 0 and M 2 > 2 + 2 > 0, respectively. The formula M 2 approx.= 2 + 2 determines the mass spectrum on the grand unification scale, up to electroweak corrections. Finally, we indicate how our mass relations can be interpreted in a 5- or 6-dimensional formalism, the central charges appearing as the extra components of the covariant momentum along the compact fifth or sixth dimensions; and how to evaluate the grand unification mass msub(x) in terms of the lengths of the latter (msub(x)approx.=(h/2π)/Lsub(5(6))c). (orig./HSI)

  8. Leaky gut and autoimmune diseases.

    Science.gov (United States)

    Fasano, Alessio

    2012-02-01

    Autoimmune diseases are characterized by tissue damage and loss of function due to an immune response that is directed against specific organs. This review is focused on the role of impaired intestinal barrier function on autoimmune pathogenesis. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiologic modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the zonulin pathway is deregulated in genetically susceptible individuals, autoimmune disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing the zonulin-dependent intestinal barrier function. Both animal models and recent clinical evidence support this new paradigm and provide the rationale for innovative approaches to prevent and treat autoimmune diseases.

  9. Immunology of Gut Mucosal Vaccines

    Science.gov (United States)

    Pasetti, Marcela F.; Simon, Jakub K.; Sztein, Marcelo B.; Levine, Myron M.

    2011-01-01

    Summary Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines. PMID:21198669

  10. Effect of valproic acid and injury on lesion size and endothelial glycocalyx shedding in a rodent model of isolated traumatic brain injury

    DEFF Research Database (Denmark)

    Jepsen, Cecilie Heerdegen; deMoya, Marc A; Perner, Anders

    2014-01-01

    were analyzed for sSDC-1, and lesion size was determined on Nissl-stained cryosections. RESULTS: sSDC-1 was significantly elevated in injured compared with uninjured animals at 3 hours (p = 0.0009) and 6 hours (p = 0.0007) after injury. This effect was significantly more pronounced in the animals...

  11. Gut as a target for cadmium toxicity.

    Science.gov (United States)

    Tinkov, Alexey A; Gritsenko, Viktor A; Skalnaya, Margarita G; Cherkasov, Sergey V; Aaseth, Jan; Skalny, Anatoly V

    2018-04-01

    The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  13. Gut microbiota and the development of obesity.

    Science.gov (United States)

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  14. Modulation of Gut Microbiota in Pathological States

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2017-02-01

    Full Text Available The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT. Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic fatty liver disease (NAFLD; obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more accurately, we need to elucidate the relationships between the gut microbiota and several human pathologies more precisely, as understanding the impact that the microbiota plays in various diseases is fundamental for the development of novel therapeutic strategies. Therefore, the aim of this review is to provide the reader with an updated overview of the importance of the gut microbiota for human health and the potential to manipulate gut microbial composition for purposes such as the treatment of antibiotic-resistant Clostridium difficile (C. difficile infections. The concept of altering the gut community by microbial intervention in an effort to improve health is currently in its infancy. However, the therapeutic implications appear to be very great. Thus, the removal of harmful organisms and the enrichment of beneficial microbes may protect our health, and such efforts will pave the way for the development of more rational treatment options in the future.

  15. Gut Microbiota in Cardiovascular Health and Disease

    Science.gov (United States)

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  16. Gut metastasis from breast carcinoma.

    Science.gov (United States)

    Al-Qahtani, Mohammed S

    2007-10-01

    Breast cancer is the second most common malignancy in women. Common sites of metastases include the liver, lung, bone, and the brain. Metastases to the gastrointestinal tract are rare with patients presenting with small-bowel perforation, intestinal obstruction, and gastrointestinal bleeding. Here we report a case of a Saudi female presenting with invasive lobular carcinoma and ileo-cecal junction metastasis.

  17. Gut metastasis from breast carcinoma

    International Nuclear Information System (INIS)

    Al-Qahtani, Mohammad S.

    2007-01-01

    Breast cancer is the second most common malignancy in women. Common sites of metastases include the liver, lung, bone and the brain. Metastases to the gastrointestinal tract are with patients presenting with small-bowel perforation, intestinal obstruction and gastrointestinal bleeding. Here we report a case of Saudi female presenting with invasive lobular carcinoma and i leo-junction metastasis. (author)

  18. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats

    Directory of Open Access Journals (Sweden)

    Mathilde Jaglin

    2018-04-01

    Full Text Available Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the tnaA gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species Escherichia coli. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional

  19. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats

    Science.gov (United States)

    Jaglin, Mathilde; Rhimi, Moez; Philippe, Catherine; Pons, Nicolas; Bruneau, Aurélia; Goustard, Bénédicte; Daugé, Valérie; Maguin, Emmanuelle; Naudon, Laurent; Rabot, Sylvie

    2018-01-01

    Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the tnaA gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species Escherichia coli. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional behaviors. As our findings

  20. Psychological differences between influence of temperament with the hemishere asymmetry of a brain on size of sensorymotor reactions of male and female cosmonauts

    Science.gov (United States)

    Prisniakova, Lyudmila; Prisniakov, Volodymyr; Volkov, D. S.

    The purpose of research was definition and comparison of relative parameters of sensorimotor reactions with a choice depending on a level of lateral asymmetry of hemispheres of a brain at representatives of various types of temperament OF male and female cosmonauts . These parameters were by the bases for verification of theoretical dependence for the latent period of reaction in conditions of weightlessness and overloads. The hypothesis about influence of functional asymmetry on parameters of psychomotor in sensory-motor reactions was laid in a basis of experiment. Techniques of definition of individual characters of the sensori-motor asymmetries were used, and G. Ajzenk's questionnaire EPQ adapted by Prisniakova L. Time of sensorimotor reaction has significant distinctions between representatives of different types of temperament with a various level interchemishere asymmetry OF male and female cosmonauts. With increase in expressiveness of the right hemisphere time of reaction tends to reduction at representatives of all types of temperament, the number of erroneous reactions as a whole increases also a level of achievement tends to reduction. Results of time of sensorimotor reaction correspond with parameter L. Prisniakova which characterizes individual - psychological features. .Earlier the received experimental data of constant time of processing of the information in memory at a period of a sensorimotor reactions of the man and new results for women were used for calculation of these time constants for overloads distinct from terrestrial. These data enable to predict dynamics of behavior of cosmonauts with differing sex in conditions of flight in view of their individual characteristics connected with the hemisphere asymmetry of a brain and with by a various degree of lateralization.

  1. Improved GUT and SUSY breaking by the same field

    International Nuclear Information System (INIS)

    Agashe, Kaustubh

    2000-01-01

    In a previous paper [hep-ph/9809421; Phys. Lett. B 444 (1998) 61], we presented a model in which the same modulus field breaks SUSY and a simple GUT gauge group, and which has dynamical origins for both SUSY breaking and GUT scales. In this model, the supergravity (SUGRA) and gauge mediated contributions to MSSM scalar and gaugino masses are comparable -- this enables a realistic spectrum to be attained since the gauge mediated contribution to the right-handed (RH) slepton (mass) 2 (at the weak scale) by itself (i.e., neglecting SUGRA contribution to sfermion and gaugino masses) is negative. But, in general, the SUGRA contribution to sfermion masses (from non-renormalizable contact Kaehler terms) leads to flavor violation. In this paper, we use the recently proposed idea of gaugino mediated SUSY breaking ( g-tilde MSB) to improve the above model. With MSSM matter and SUSY breaking fields localized on separate branes in an extra dimension of size R∼5M -1 Pl (in which gauge fields propagate), the SUGRA contribution to sfermion masses (which violates flavor) is suppressed. As in 4 dimensions, MSSM gauginos acquire non-universal masses from both SUGRA and gauge mediation - gaugino masses (in particular the SUGRA contribution to gaugino masses), in turn, generate acceptable sfermion masses through renormalization group evolution; the phenomenology is discussed briefly. We also point out that (a) in models where SUSY is broken by a GUT non-singlet field, there is, in general, a contribution to MSSM gaugino (and scalar) masses from the coupling to heavy gauge multiplet which might be comparable to the SUGRA contribution and (b) models of gauge mediation proposed earlier which also have negative RH slepton (mass) 2 can be rendered viable using the g-tilde MSB idea

  2. Development of the Young Brain

    Medline Plus

    Full Text Available ... 160; Watch on YouTube. Transcript Announcer: Parents and caregivers have always been fascinated with the development of ... size of the brain is nearly complete. But what goes on within the brain is nothing short ...

  3. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    Science.gov (United States)

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Constrained Sypersymmetric Flipped SU (5) GUT Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John; /CERN /King' s Coll. London; Mustafayev, Azar; /Minnesota U., Theor. Phys. Inst.; Olive, Keith A.; /Minnesota U., Theor. Phys. Inst. /Minnesota U. /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, Min, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tilde {tau}}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2}, m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to Min, as we illustrate for several cases with tan {beta} = 10 and 55. However, these features do not necessarily disappear at large Min, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.

  5. Constrained supersymmetric flipped SU(5) GUT phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [CERN, TH Division, PH Department, Geneva 23 (Switzerland); King' s College London, Theoretical Physics and Cosmology Group, Department of Physics, London (United Kingdom); Mustafayev, Azar [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Stanford University, Department of Physics and SLAC, Palo Alto, CA (United States)

    2011-07-15

    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M{sub in}, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tau}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2},m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M{sub in}, as we illustrate for several cases with tan {beta}=10 and 55. However, these features do not necessarily disappear at large M{sub in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)

  6. Contribution of Gut Bacteria to Liver Pathobiology

    Directory of Open Access Journals (Sweden)

    Gakuhei Son

    2010-01-01

    Full Text Available Emerging evidence suggests a strong interaction between the gut microbiota and health and disease. The interactions of the gut microbiota and the liver have only recently been investigated in detail. Receiving approximately 70% of its blood supply from the intestinal venous outflow, the liver represents the first line of defense against gut-derived antigens and is equipped with a broad array of immune cells (i.e., macrophages, lymphocytes, natural killer cells, and dendritic cells to accomplish this function. In the setting of tissue injury, whereby the liver is otherwise damaged (e.g., viral infection, toxin exposure, ischemic tissue damage, etc., these same immune cell populations and their interactions with the infiltrating gut bacteria likely contribute to and promote these pathologies. The following paper will highlight recent studies investigating the relationship between the gut microbiota, liver biology, and pathobiology. Defining these connections will likely provide new targets for therapy or prevention of a wide variety of acute and chronic liver pathologies.

  7. Gut Melatonin in Vertebrates: Chronobiology and Physiology

    Directory of Open Access Journals (Sweden)

    Dr. Saumen Kumar Maitra

    2015-07-01

    Full Text Available Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s as its synchronizer. Based on mammalian findings, physiological significance of gut derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini-review is to summarize existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  8. Introduction to the human gut microbiota.

    Science.gov (United States)

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  9. Constrained supersymmetric flipped SU(5) GUT phenomenology

    International Nuclear Information System (INIS)

    Ellis, John; Mustafayev, Azar; Olive, Keith A.

    2011-01-01

    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M in , above the GUT scale, M GUT . We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino χ and the lighter stau τ 1 is sensitive to M in , as is the relationship between m χ and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m 1/2 ,m 0 ) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M in , as we illustrate for several cases with tan β=10 and 55. However, these features do not necessarily disappear at large M in , unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)

  10. The human gut microbiota and virome: Potential therapeutic implications.

    Science.gov (United States)

    Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio

    2015-12-01

    Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children.

    Science.gov (United States)

    Wu, Guojun; Zhang, Chenhong; Wang, Jing; Zhang, Feng; Wang, Ruirui; Shen, Jian; Wang, Linghua; Pang, Xiaoyan; Zhang, Xiaojun; Zhao, Liping; Zhang, Menghui

    2016-04-05

    The gut microbiome represents an important reservoir of antibiotic resistance genes (ARGs). Effective methods are urgently needed for managing the gut resistome to fight against the antibiotic resistance threat. In this study, we show that a gut microbiota-targeted dietary intervention, which shifts the dominant fermentation of gut bacteria from protein to carbohydrate, significantly diminished the gut resistome and alleviated metabolic syndrome in obese children. Of the non-redundant metagenomic gene catalog of ~2 × 10(6) microbial genes, 399 ARGs were identified in 131 gene types and conferred resistance to 47 antibiotics. Both the richness and diversity of the gut resistome were significantly reduced after the intervention. A total of 201 of the 399 ARGs were carried in 120 co-abundance gene groups (CAGs) directly binned from the gene catalog across both pre-and post-intervention samples. The intervention significantly reduced several CAGs in Klebsiella, Enterobacter and Escherichia, which were the major hubs for multiple resistance gene types. Thus, dietary intervention may become a potentially effective method for diminishing the gut resistome.

  12. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live?

    Directory of Open Access Journals (Sweden)

    Nishat Tasnim

    2017-10-01

    Full Text Available Global comparisons reveal a decrease in gut microbiota diversity attributed to Western diets, lifestyle practices such as caesarian section, antibiotic use and formula-feeding of infants, and sanitation of the living environment. While gut microbial diversity is decreasing, the prevalence of chronic inflammatory diseases such as inflammatory bowel disease, diabetes, obesity, allergies and asthma is on the rise in Westernized societies. Since the immune system development is influenced by microbial components, early microbial colonization may be a key factor in determining disease susceptibility patterns later in life. Evidence indicates that the gut microbiota is vertically transmitted from the mother and this affects offspring immunity. However, the role of the external environment in gut microbiome and immune development is poorly understood. Studies show that growing up in microbe-rich environments, such as traditional farms, can have protective health effects on children. These health-effects may be ablated due to changes in the human lifestyle, diet, living environment and environmental biodiversity as a result of urbanization. Importantly, if early-life exposure to environmental microbes increases gut microbiota diversity by influencing patterns of gut microbial assembly, then soil biodiversity loss due to land-use changes such as urbanization could be a public health threat. Here, we summarize key questions in environmental health research and discuss some of the challenges that have hindered progress toward a better understanding of the role of the environment on gut microbiome development.

  13. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health.

    Science.gov (United States)

    Malmuthuge, Nilusha; Guan, Le Luo

    2017-07-01

    Early gut microbiota plays a vital role in the long-term health of the host. However, understanding of these microbiota is very limited in livestock species, especially in dairy calves. Neonatal calves are highly susceptible to enteric infections, one of the major causes of calf death, so approaches to improving gut health and overall calf health are needed. An increasing number of studies are exploring the microbial composition of the gut, the mucosal immune system, and early dietary interventions to improve the health of dairy calves, revealing possibilities for effectively reducing the susceptibility of calves to enteric infections while promoting growth. Still, comprehensive understanding of the effect of dietary interventions on gut microbiota-one of the key aspects of gut health-is lacking. Such knowledge may provide in-depth understanding of the mechanisms behind functional changes in response to dietary interventions. Understanding of host-microbial interactions with dietary interventions and the role of the gut microbiota during pathogenesis at the site of infection in early life is vital for designing effective tools and techniques to improve calf gut health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Of Microbes and Minds: A Narrative Review on the Second Brain Aging

    Directory of Open Access Journals (Sweden)

    Riccardo Calvani

    2018-03-01

    Full Text Available In recent years, an extensive body of literature focused on the gut–brain axis and the possible role played by the gut microbiota in modulating brain morphology and function from birth to old age. Gut microbiota has been proposed as a relevant player during the early phases of neurodevelopment, with possible long-standing effects in later life. The reduction in gut microbiota diversity has also become one of the hallmarks of aging, and disturbances in its composition are associated with several (age-related neurological conditions, including depression, Alzheimer’s disease, and Parkinson’s disease. Several pathways have been evoked for gut microbiota–brain communication, including neural connections (vagus nerve, circulating mediators derived by host-bacteria cometabolism, as well as the influence exerted by gut microbiota on host gut function, metabolism, and immune system. Although the most provoking data emerged from animal studies and despite the huge debate around the possible epiphenomenal nature of those findings, the gut microbiota–brain axis still remains a fascinating target to be exploited to attenuate some of the most burdensome consequences of aging.

  15. Sneutrino driven GUT inflation in supergravity

    International Nuclear Information System (INIS)

    Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad

    2017-01-01

    In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.

  16. Sneutrino driven GUT inflation in supergravity

    Science.gov (United States)

    Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad

    2017-06-01

    In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.

  17. Gastric emptying, glucose metabolism and gut hormones

    DEFF Research Database (Denmark)

    Vermeulen, Mechteld A R; Richir, Milan C; Garretsen, Martijn K

    2011-01-01

    To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant and carb......To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant...... and carbohydrate content. However, gastric emptying of fluids is influenced by its nutrient composition; hence, safety of preoperative carbohydrate loading should be confirmed. Because gut hormones link carbohydrate metabolism and gastric emptying, hormonal responses were studied....

  18. Bariatric surgery, gut morphology and enteroendocrine cells

    DEFF Research Database (Denmark)

    Hansen, Carl Frederik

    40 hormones. In this PhD study, gut morphology and the population of endocrine cells have been examined in three rodent animal models using stereological techniques. First, in a rodent model of type-2 diabetes (T2DM), the Zucker diabetic fatty rat (ZDF), the population of endocrine L-cells...... to contribute to the positive effects of bariatic surgery but the mechanisms remain largely unknown. The endocrine cells of the gastrointestinal tract that produce and secrete hormones are difficult to examine as they are distributed as single cells. Several types of endocrine cells together produce more than...... and the gut morphology were quantified. The number of Lcells was 4.8 million in the normal rat and the L-cells were found to double in number in the diabetic ZDF rat model. Second, the L-cell population, gut morphology and endocrine cell gene expression were examined in a rodent model of Roux-en-Y gastric...

  19. Gut microbiota and type 2 diabetes mellitus.

    Science.gov (United States)

    Muñoz-Garach, Araceli; Diaz-Perdigones, Cristina; Tinahones, Francisco J

    2016-12-01

    In recent years, many studies have related gut microbiome to development of highly prevalent diseases such as type 2 diabetes and obesity. Obesity itself is associated to changes in the composition of gut microbiome, with a trend to an overgrowth of microorganisms more efficiently obtaining energy from diet. There are several mechanisms that relate microbiota to the onset of insulin resistance and diabetes, including changes in bowel permeability, endotoxemia, interaction with bile acids, changes in the proportion of brown adipose tissue, and effects associated to use of drugs like metformin. Currently, use of pro and prebiotics and other new techniques such as gut microbiota transplant, or even antibiotic therapy, has been postulated to be useful tools to modulate the development of obesity and insulin resistance through the diet. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  20. Emerging Technologies for Gut Microbiome Research

    Science.gov (United States)

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  1. Advancing gut microbiome research using cultivation

    DEFF Research Database (Denmark)

    Sommer, Morten OA

    2015-01-01

    Culture-independent approaches have driven the field of microbiome research and illuminated intricate relationships between the gut microbiota and human health. However, definitively associating phenotypes to specific strains or elucidating physiological interactions is challenging for metagenomic...... approaches. Recently a number of new approaches to gut microbiota cultivation have emerged through the integration of high-throughput phylogenetic mapping and new simplified cultivation methods. These methodologies are described along with their potential use within microbiome research. Deployment of novel...... cultivation approaches should enable improved studies of xenobiotic tolerance and modification phenotypes and allow a drastic expansion of the gut microbiota reference genome catalogues. Furthermore, the new cultivation methods should facilitate systematic studies of the causal relationship between...

  2. Modulation of Gut Microbiota in Pathological States

    DEFF Research Database (Denmark)

    Wang, Yulan; Wang, Baohong; Wu, Junfang

    2017-01-01

    The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT). Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact...... on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic...... fatty liver disease (NAFLD); obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more...

  3. The gut microbiota and metabolic disease

    DEFF Research Database (Denmark)

    Arora, T; Bäckhed, Gert Fredrik

    2016-01-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota......, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity......-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated...

  4. Nutrition, the Gut and the Microbiome

    DEFF Research Database (Denmark)

    Kjølbæk, Louise

    , but an optimal diet to improve the success of weight loss maintenance has not reached consensus among worldwide expects. During the last decade, it has been observed that the gut microbiota composition is associated with obesity and obesity-associated diseases. However, a deeper understanding of how the host...... the gut and the microbiome in relation to obesity and obesity-associated diseases. The objective was investigated by the conduct of three studies (KIFU, PROKA, MNG). In KIFU, the effect of habitual calcium intake on faecal fat and energy excretions was investigated by an observational study. The 189...... (PUFA) intakes on the gut microbiota composition was investigated by a randomised cross-over study with two 4-week diets periods and a 4-week washout period. Faecal samples and metabolic markers were collected from 30 subjects before and after each diet period. Results showed that habitual dietary...

  5. Redefining the gut as the motor of critical illness

    OpenAIRE

    Mittal, Rohit; Coopersmith, Craig M.

    2013-01-01

    The gut is hypothesized to play a central role in the progression of sepsis and multiple organ dysfunction syndrome. Critical illness alters gut integrity by increasing epithelial apoptosis and permeability and by decreasing epithelial proliferation and mucus integrity. Additionally, toxic gut-derived lymph induces distant organ injury. Although the endogenous microflora ordinarily exist in a symbiotic relationship with the gut epithelium, severe physiologic insults alter this relationship, l...

  6. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation

    OpenAIRE

    Krajmalnik-Brown, Rosa; Ilhan, Zehra-Esra; Kang, Dae-Wook; DiBaise, John K.

    2012-01-01

    Malnutrition may manifest as either obesity or undernutrition. Accumulating evidence suggests that the gut microbiota plays an important role in the harvest, storage, and expenditure of energy obtained from the diet. The composition of the gut microbiota has been shown to differ between lean and obese humans and mice; however, the specific roles that individual gut microbes play in energy harvest remain uncertain. The gut microbiota may also influence the development of conditions characteriz...

  7. Scintigraphic measurement of regional gut transit in idiopathic constipation

    International Nuclear Information System (INIS)

    Stivland, T.; Camilleri, M.; Vassallo, M.; Proano, M.; Rath, D.; Brown, M.; Thomforde, G.; Pemberton, J.; Phillips, S.

    1991-01-01

    In this study, total gut transit and regional colonic transit in patients with idiopathic constipation were measured scintigraphically. Eight patients with severe constipation were studied, none of whom had evidence of abnormal function of the pelvic floor. 99mTc-radiolabeled Amberlite resin particles with a mixed meal were used to assess gastric emptying and small bowel transit; similar particles labeled with 111In were ingested in a coated capsule that dispersed in the ileocecal region. These were used to quantify colonic transit. Five healthy volunteers were also studied. Two patients showed delayed gastric emptying and two had slow small bowel transit. Seven of the eight patients had slow colonic transit. In five, delay affected the whole colon (pancolonic inertia); in two, transit in the ascending and transverse colon was normal, but solids moved through the left colon slowly. Mean colonic transit was also measured using radiopaque markers; this technique identified the patients with slow transit, as shown by measurements of overall colonic transit by simultaneous scintigraphy. However, estimated transit through the ascending and transverse colons was considerably shorter by the radiopaque marker technique. In conclusion, idiopathic constipation is characterized by either exaggerated reservoir functions of the ascending and transverse colons and/or impairment of propulsive function in the descending colon. Particle size may influence the result of regional colonic transit tests. Transit delays in other parts of the gut suggest that, in some patients, the condition may be a more generalized motor dysfunction

  8. Scintigraphic measurement of regional gut transit in idiopathic constipation

    Energy Technology Data Exchange (ETDEWEB)

    Stivland, T.; Camilleri, M.; Vassallo, M.; Proano, M.; Rath, D.; Brown, M.; Thomforde, G.; Pemberton, J.; Phillips, S. (Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota (USA))

    1991-07-01

    In this study, total gut transit and regional colonic transit in patients with idiopathic constipation were measured scintigraphically. Eight patients with severe constipation were studied, none of whom had evidence of abnormal function of the pelvic floor. 99mTc-radiolabeled Amberlite resin particles with a mixed meal were used to assess gastric emptying and small bowel transit; similar particles labeled with 111In were ingested in a coated capsule that dispersed in the ileocecal region. These were used to quantify colonic transit. Five healthy volunteers were also studied. Two patients showed delayed gastric emptying and two had slow small bowel transit. Seven of the eight patients had slow colonic transit. In five, delay affected the whole colon (pancolonic inertia); in two, transit in the ascending and transverse colon was normal, but solids moved through the left colon slowly. Mean colonic transit was also measured using radiopaque markers; this technique identified the patients with slow transit, as shown by measurements of overall colonic transit by simultaneous scintigraphy. However, estimated transit through the ascending and transverse colons was considerably shorter by the radiopaque marker technique. In conclusion, idiopathic constipation is characterized by either exaggerated reservoir functions of the ascending and transverse colons and/or impairment of propulsive function in the descending colon. Particle size may influence the result of regional colonic transit tests. Transit delays in other parts of the gut suggest that, in some patients, the condition may be a more generalized motor dysfunction.

  9. Gut inflammation in chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kirchgessner Annette

    2010-10-01

    Full Text Available Abstract Chronic fatigue syndrome (CFS is a debilitating disease characterized by unexplained disabling fatigue and a combination of accompanying symptoms the pathology of which is incompletely understood. Many CFS patients complain of gut dysfunction. In fact, patients with CFS are more likely to report a previous diagnosis of irritable bowel syndrome (IBS, a common functional disorder of the gut, and experience IBS-related symptoms. Recently, evidence for interactions between the intestinal microbiota, mucosal barrier function, and the immune system have been shown to play a role in the disorder's pathogenesis. Studies examining the microecology of the gastrointestinal (GI tract have identified specific microorganisms whose presence appears related to disease; in CFS, a role for altered intestinal microbiota in the pathogenesis of the disease has recently been suggested. Mucosal barrier dysfunction promoting bacterial translocation has also been observed. Finally, an altered mucosal immune system has been associated with the disease. In this article, we discuss the interplay between these factors in CFS and how they could play a significant role in GI dysfunction by modulating the activity of the enteric nervous system, the intrinsic innervation of the gut. If an altered intestinal microbiota, mucosal barrier dysfunction, and aberrant intestinal immunity contribute to the pathogenesis of CFS, therapeutic efforts to modify gut microbiota could be a means to modulate the development and/or progression of this disorder. For example, the administration of probiotics could alter the gut microbiota, improve mucosal barrier function, decrease pro-inflammatory cytokines, and have the potential to positively influence mood in patients where both emotional symptoms and inflammatory immune signals are elevated. Probiotics also have the potential to improve gut motility, which is dysfunctional in many CFS patients.

  10. The first microbial colonizers of the human gut

    NARCIS (Netherlands)

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Palacio, Susana Delgado; Montes, Silvia Arboleya; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; Vos, De Willem; Gueimonde, Miguel; Margolles, Abelardo; Sinderen, Van Douwe; Ventura, Marco

    2017-01-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially)

  11. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surgical gut suture. (a) Identification. An absorbable surgical gut suture, both plain and chromic, is an...

  12. Standard methods for research on apis mellifera gut symbionts

    Science.gov (United States)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  13. Regulation of body fat mass by the gut microbiota

    DEFF Research Database (Denmark)

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik

    2016-01-01

    New insight suggests gut microbiota as a component in energy balance. However, the underlying mechanisms by which gut microbiota can impact metabolic regulation is unclear. A recent study from our lab shows, for the first time, a link between gut microbiota and energy balance circuitries...

  14. Unification beyond GUT's: Gauge-Yukawa unification

    International Nuclear Information System (INIS)

    Kubo, J.; Mondragon, M.; Zoupanos, G.

    1996-01-01

    Gauge-Yukawa Unification (GYU) is a renormalization group invariant functional relation among gauge and Yukawa couplings which holds beyond the unification point in Grand Unified Theories (GUTs). We present here various models where GYU is obtained by requiring the principles of finiteness and reduction of couplings. We examine the consequences of these requirements for the low energy parameters, especially for the top quark mass. The predictions are such that they clearly distinguish already GYU from ordinary GUTs. It is expected that it will be possible to discriminate among the various GYUs when more accurate measurements of the top quark mass are available. (author)

  15. Cesarean section changes neonatal gut colonization

    DEFF Research Database (Denmark)

    Stokholm, Jakob; Thorsen, Jonathan; Chawes, Bo L

    2016-01-01

    BACKGROUND: Delivery by means of cesarean section has been associated with increased risk of childhood immune-mediated diseases, suggesting a role of early bacterial colonization patterns for immune maturation. OBJECTIVE: We sought to describe the influence of delivery method on gut and airway......-driven partial least squares analyses. The initial airway microbiota was unaffected by birth method. CONCLUSION: Delivery by means of cesarean section was associated with early colonization patterns of the neonatal gut but not of the airways. The differences normalized within the first year of life. We speculate...

  16. On Bimaximal Neutrino Mixing and GUT's

    CERN Document Server

    Altarelli, Guido; Meloni, Davide

    2015-04-21

    We briefly discuss the present status of models of neutrino mixing. Among the existing viable options we review the virtues of Bimaximal Mixing (that could be implemented by an $S_4$ discrete symmetry), corrected by terms arising from the charged lepton mass diagonalization. In particular in a GUT formulation the property of quark lepton "weak" complementarity can be naturally realized. We discuss in some detail two new versions of particular GUT models, one based on $SU(5)$ and one on $SO(10)$ and the associated phenomenology. We compare these approaches based on symmetry to models based on chance, like Anarchy or $U(1)_{FN}$.

  17. Gut Microbiota in Obesity and Undernutrition123

    Science.gov (United States)

    Groen, Albert K; Romijn, Johannes A; Nieuwdorp, Max

    2016-01-01

    Malnutrition is the result of an inadequate balance between energy intake and energy expenditure that ultimately leads to either obesity or undernutrition. Several factors are associated with the onset and preservation of malnutrition. One of these factors is the gut microbiota, which has been recognized as an important pathophysiologic factor in the development and sustainment of malnutrition. However, to our knowledge, the extent to which the microbiota influences malnutrition has yet to be elucidated. In this review, we summarize the mechanisms via which the gut microbiota may influence energy homeostasis in relation to malnutrition. In addition, we discuss potential therapeutic modalities to ameliorate obesity or undernutrition. PMID:28140325

  18. Gut Microbiota in Obesity and Undernutrition.

    Science.gov (United States)

    de Clercq, Nicolien C; Groen, Albert K; Romijn, Johannes A; Nieuwdorp, Max

    2016-11-01

    Malnutrition is the result of an inadequate balance between energy intake and energy expenditure that ultimately leads to either obesity or undernutrition. Several factors are associated with the onset and preservation of malnutrition. One of these factors is the gut microbiota, which has been recognized as an important pathophysiologic factor in the development and sustainment of malnutrition. However, to our knowledge, the extent to which the microbiota influences malnutrition has yet to be elucidated. In this review, we summarize the mechanisms via which the gut microbiota may influence energy homeostasis in relation to malnutrition. In addition, we discuss potential therapeutic modalities to ameliorate obesity or undernutrition. © 2016 American Society for Nutrition.

  19. Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders

    Directory of Open Access Journals (Sweden)

    Sigrid Breit

    2018-03-01

    Full Text Available The vagus nerve represents the main component of the parasympathetic nervous system, which oversees a vast array of crucial bodily functions, including control of mood, immune response, digestion, and heart rate. It establishes one of the connections between the brain and the gastrointestinal tract and sends information about the state of the inner organs to the brain via afferent fibers. In this review article, we discuss various functions of the vagus nerve which make it an attractive target in treating psychiatric and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation is a promising add-on treatment for treatment-refractory depression, posttraumatic stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve increase the vagal tone and inhibit cytokine production. Both are important mechanism of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic brain systems in the brain stem that play crucial roles in major psychiatric conditions, such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus nerve. Since, the vagal tone is correlated with capacity to regulate stress responses and can be influenced by breathing, its increase through meditation and yoga likely contribute to resilience and the mitigation of mood and anxiety symptoms.

  20. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder.

    Science.gov (United States)

    Newell, Christopher; Bomhof, Marc R; Reimer, Raylene A; Hittel, Dustin S; Rho, Jong M; Shearer, Jane

    2016-01-01

    Gastrointestinal dysfunction and gut microbial composition disturbances have been widely reported in autism spectrum disorder (ASD). This study examines whether gut microbiome disturbances are present in the BTBR(T + tf/j) (BTBR) mouse model of ASD and if the ketogenic diet, a diet previously shown to elicit therapeutic benefit in this mouse model, is capable of altering the profile. Juvenile male C57BL/6 (B6) and BTBR mice were fed a standard chow (CH, 13 % kcal fat) or ketogenic diet (KD, 75 % kcal fat) for 10-14 days. Following diets, fecal and cecal samples were collected for analysis. Main findings are as follows: (1) gut microbiota compositions of cecal and fecal samples were altered in BTBR compared to control mice, indicating that this model may be of utility in understanding gut-brain interactions in ASD; (2) KD consumption caused an anti-microbial-like effect by significantly decreasing total host bacterial abundance in cecal and fecal matter; (3) specific to BTBR animals, the KD counteracted the common ASD phenotype of a low Firmicutes to Bacteroidetes ratio in both sample types; and (4) the KD reversed elevated Akkermansia muciniphila content in the cecal and fecal matter of BTBR animals. Results indicate that consumption of a KD likely triggers reductions in total gut microbial counts and compositional remodeling in the BTBR mouse. These findings may explain, in part, the ability of a KD to mitigate some of the neurological symptoms associated with ASD in an animal model.

  1. Genes, emotions and gut microbiota: The next frontier for the gastroenterologist.

    Science.gov (United States)

    Panduro, Arturo; Rivera-Iñiguez, Ingrid; Sepulveda-Villegas, Maricruz; Roman, Sonia

    2017-05-07

    Most medical specialties including the field of gastroenterology are mainly aimed at treating diseases rather than preventing them. Genomic medicine studies the health/disease process based on the interaction of the human genes with the environment. The gastrointestinal (GI) system is an ideal model to analyze the interaction between our genes, emotions and the gut microbiota. Based on the current knowledge, this mini-review aims to provide an integrated synopsis of this interaction to achieve a better understanding of the GI disorders related to bad eating habits and stress-related disease. Since human beings are the result of an evolutionary process, many biological processes such as instincts, emotions and behavior are interconnected to guarantee survival. Nourishment is a physiological need triggered by the instinct of survival to satisfy the body's energy demands. The brain-gut axis comprises a tightly connected neural-neuroendocrine circuitry between the hunger-satiety center, the dopaminergic reward system involved in the pleasure of eating and the gut microbiota that regulates which food we eat and emotions. However, genetic variations and the consumption of high-sugar and high-fat diets have overridden this energy/pleasure neurocircuitry to the point of addiction of several foodstuffs. Consequently, a gut dysbiosis generates inflammation and a negative emotional state may lead to chronic diseases. Balancing this altered processes to regain health may involve personalized-medicine and genome-based strategies. Thus, an integrated approach based on the understanding of the gene-emotions-gut microbiota interaction is the next frontier that awaits the gastroenterologist to prevent and treat GI disorders associated with obesity and negative emotions.

  2. A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission

    NARCIS (Netherlands)

    Narasimhan, Sukanya; Coumou, Jeroen; Schuijt, Tim J.; Boder, Eric; Hovius, Joppe W.; Fikrig, Erol

    2014-01-01

    Borrelia burgdorferi transmission to the vertebrate host commences with growth of the spirochete in the tick gut and migration from the gut to the salivary glands. This complex process, involving intimate interactions of the spirochete with the gut epithelium, is pivotal to transmission. We utilized

  3. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course...... with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. clinicaltrials.gov NCT01633762....

  4. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean...... and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose...

  5. Exercise and Prebiotics Produce Stress Resistance: Converging Impacts on Stress-Protective and Butyrate-Producing Gut Bacteria.

    Science.gov (United States)

    Mika, A; Rumian, N; Loughridge, A B; Fleshner, M

    2016-01-01

    The gut microbial ecosystem can mediate the negative health impacts of stress on the host. Stressor-induced disruptions in microbial ecology (dysbiosis) can lead to maladaptive health effects, while certain probiotic organisms and their metabolites can protect against these negative impacts. Prebiotic diets and exercise are feasible and cost-effective strategies that can increase stress-protective bacteria and produce resistance against the detrimental behavioral and neurobiological impacts of stress. The goal of this review is to describe research demonstrating that both prebiotic diets and exercise produce adaptations in gut ecology and the brain that arm the organism against inescapable stress-induced learned helplessness. The results of this research support the novel hypothesis that some of the stress-protective effects of prebiotics and exercise are due to increases in stress-protective gut microbial species and their metabolites. In addition, new evidence also suggests that prebiotic diet or exercise interventions are most effective if given early in life (juvenile-adolescence) when both the gut microbial ecosystem and the brain are plastic. Based on our new understanding of the mechanistic convergence of these interventions, it is feasible to propose that in adults, both interventions delivered in combination may elevate their efficacy to promote a stress-resistant phenotype. © 2016 Elsevier Inc. All rights reserved.

  6. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Science.gov (United States)

    MacFabe, Derrick F.

    2012-01-01

    Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental

  7. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Derrick F. MacFabe

    2012-08-01

    Full Text Available Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs. Propionic acid (PPA and its related short-chain fatty acids (SCFAs are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio. SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible

  8. The gut microbiota and its correlations with the central nervous system disorders.

    Science.gov (United States)

    Catanzaro, R; Anzalone, M; Calabrese, F; Milazzo, M; Capuana, M; Italia, A; Occhipinti, S; Marotta, F

    2015-09-01

    A mutual impact of gastrointestinal tract (GIT) and central nervous system (CNS) functions has been recognized since the mid-twentieth century. It is accepted that the so-called gut-brain axis provides a two-way homeostatic communication, through immunological, hormonal and neuronal signals. A dysfunction of this axis has been associated with the pathogenesis of some diseases both within and outside the GIT, that have shown an increase in incidence over the last decades. Studies comparing germ-free animals and animals exposed to pathogenic bacterial infections, probiotics or antibiotics suggest the participation of the microbiota in this communication and a role in host defense, regulation of immunity and autoimmune disease appearance. The GIT could represent a vulnerable area through which pathogens influence all aspects of physiology and even induce CNS neuro-inflammation. All those concepts may suggest the modulation of the gut microbiota as an achievable strategy for innovative therapies in complex disorders. Moving from this background, the present review discusses the relationship between intestinal microbiota and CNS and the effects in health and disease. We particularly look at how the commensal gut microbiota influences systemic immune response in some neurological disorders, highlighting its impact on pain and cognition in multiple sclerosis, Guillain-Barrè Syndrome, neurodevelopmental and behavioral disorders and Alzheimer's disease. In this review we discuss recent studies showing that the potential microbiota-gut-brain dialogue is implicated in neurodegenerative diseases. Gaining a better understanding of the relationship between microbiota and CNS could provide an insight on the pathogenesis and therapeutic strategies of these disorders.

  9. The Effects of Weaning Methods on Gut Microbiota Composition and Horse Physiology

    Directory of Open Access Journals (Sweden)

    Núria Mach

    2017-07-01

    Full Text Available Weaning has been described as one of the most stressful events in the life of horses. Given the importance of the interaction between the gut-brain axis and gut microbiota under stress, we evaluated (i the effect of two different weaning methods on the composition of gut microbiota across time and (ii how the shifts of gut microbiota composition after weaning affect the host. A total of 34 foals were randomly subjected to a progressive (P or an abrupt (A weaning method. In the P method, mares were separated from foals at progressively increasing intervals every day, starting from five min during the fourth week prior to weaning and ending with 6 h during the last week before weaning. In the A method, mares and foals were never separated prior to weaning (0 d. Different host phenotypes and gut microbiota composition were studied across 6 age strata (days −30, 0, 3, 5, 7, and 30 after weaning by 16S rRNA gene sequencing. Results revealed that the beneficial species belonging to Prevotella, Paraprevotella, and Ruminococcus were more abundant in the A group prior to weaning compared to the P group, suggesting that the gut microbiota in the A cohort was better adapted to weaning. Streptococcus, on the other hand, showed the opposite pattern after weaning. Fungal loads, which are thought to increase the capacity for fermenting the complex polysaccharides from diet, were higher in P relative to A. Beyond the effects of weaning methods, maternal separation at weaning markedly shifted the composition of the gut microbiota in all foals, which fell into three distinct community types at 3 days post-weaning. Most genera in community type 2 (i.e., Eubacterium, Coprococcus, Clostridium XI, and Blautia spp. were negatively correlated with salivary cortisol levels, but positively correlated with telomere length and N-butyrate production. Average daily gain was also greater in the foals harboring a community type 2 microbiota. Therefore, community type 2 is

  10. The Effects of Weaning Methods on Gut Microbiota Composition and Horse Physiology.

    Science.gov (United States)

    Mach, Núria; Foury, Aline; Kittelmann, Sandra; Reigner, Fabrice; Moroldo, Marco; Ballester, Maria; Esquerré, Diane; Rivière, Julie; Sallé, Guillaume; Gérard, Philippe; Moisan, Marie-Pierre; Lansade, Léa

    2017-01-01

    Weaning has been described as one of the most stressful events in the life of horses. Given the importance of the interaction between the gut-brain axis and gut microbiota under stress, we evaluated (i) the effect of two different weaning methods on the composition of gut microbiota across time and (ii) how the shifts of gut microbiota composition after weaning affect the host. A total of 34 foals were randomly subjected to a progressive (P) or an abrupt (A) weaning method. In the P method, mares were separated from foals at progressively increasing intervals every day, starting from five min during the fourth week prior to weaning and ending with 6 h during the last week before weaning. In the A method, mares and foals were never separated prior to weaning (0 d). Different host phenotypes and gut microbiota composition were studied across 6 age strata (days -30, 0, 3, 5, 7, and 30 after weaning) by 16S rRNA gene sequencing. Results revealed that the beneficial species belonging to Prevotella, Paraprevotella , and Ruminococcus were more abundant in the A group prior to weaning compared to the P group, suggesting that the gut microbiota in the A cohort was better adapted to weaning. Streptococcus , on the other hand, showed the opposite pattern after weaning. Fungal loads, which are thought to increase the capacity for fermenting the complex polysaccharides from diet, were higher in P relative to A. Beyond the effects of weaning methods, maternal separation at weaning markedly shifted the composition of the gut microbiota in all foals, which fell into three distinct community types at 3 days post-weaning. Most genera in community type 2 (i.e., Eubacterium, Coprococcus, Clostridium XI, and Blautia spp.) were negatively correlated with salivary cortisol levels, but positively correlated with telomere length and N-butyrate production. Average daily gain was also greater in the foals harboring a community type 2 microbiota. Therefore, community type 2 is likely to

  11. Bacterial Impact on the Gut Metabolome

    DEFF Research Database (Denmark)

    Sulek, Karolina; Wilcks, Andrea; Licht, Tine Rask

    During the last decade, it has become evident that the complex ecosystem of mi-crobes inhabiting the human gut plays an important role for human health. An in-creasing number of publications have shown that the composition and activity of our intestinal microbiota affects a number of different so...

  12. The gut microbiota and host health

    NARCIS (Netherlands)

    Marchesi, Julian R.; Adams, David H.; Fava, Francesca; Hermes, Gerben D.A.; Hirschfield, Gideon M.; Hold, Georgina; Quraishi, Mohammed N.; Kinross, James; Smidt, Hauke; Tuohy, Kieran M.; Thomas, Linda V.; Zoetendal, Erwin G.; Hart, Ailsa

    2016-01-01

    Over the last 10-15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new 'omic' technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial

  13. Prebiotics and gut microbiota in chickens.

    Science.gov (United States)

    Pourabedin, Mohsen; Zhao, Xin

    2015-08-01

    Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The Changing Concept of Gut Endocrinology

    DEFF Research Database (Denmark)

    Rehfeld, Jens F

    2017-01-01

    Gastrointestinal hormones are released from enteroendocrine cells in the digestive tract. More than 30 hormone genes are expressed, which make the gut the largest endocrine organ in the body. At present, it is feasible to conceive the hormones under 5 headings: the structural homology groups most...

  15. The human gut virome: a multifaceted majority

    Directory of Open Access Journals (Sweden)

    Lesley Ann Ogilvie

    2015-09-01

    Full Text Available Here we outline our current understanding of the human gut virome, in particular the phage component of this ecosystem, highlighting progress and challenges in viral discovery in this arena. We reveal how developments in high-throughput sequencing technologies and associated data analysis methodologies are helping to illuminate this abundant ‘biological dark matter’. Current evidence suggests that the human gut virome is a highly individual but temporally stable collective, dominated by phage exhibiting a temperate lifestyle. This viral community also appears to encode a surprisingly rich functional repertoire that confers a range of attributes to their bacterial hosts, ranging from bacterial virulence and pathogenesis to maintaining host-microbiome stability and community resilience. Despite the significant advances in our understanding of the gut virome in recent years, it is clear that we remain in a period of discovery and revelation, as new methods and technologies begin to provide deeper understanding of the inherent ecological characteristics of this viral ecosystem. As our understanding increases, the nature of the multi-partite interactions occurring between host and microbiome will become clearer, helping us to more rationally define the concepts and principles that will underpin approaches to using human gut virome components for medical or biotechnological applications.

  16. Constrained Supersymmetric Flipped SU(5) GUT Phenomenology

    CERN Document Server

    Ellis, John; Olive, Keith A

    2011-01-01

    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, $M_{in}$, above the GUT scale, $M_{GUT}$. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to $M_{in}$, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic $(m_{1/2}, m_0)$ planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to $M_{in}$, as we illustrate for several cases with tan(beta)...

  17. Interplay between gut microbiota and antibiotics

    NARCIS (Netherlands)

    Jesus Bello Gonzalez, de Teresita

    2016-01-01

    The human body is colonized by a vast number of microorganisms collectively defined as the microbiota. In the gut, the microbiota has important roles in health and disease, and can serve as a host of antibiotic resistance genes. Disturbances in the ecological balance, e.g. by antibiotics, can

  18. Gut Microbiota in Obesity and Undernutrition

    NARCIS (Netherlands)

    de Clercq, Nicolien C.; Groen, Albert K.; Romijn, Johannes A.; Nieuwdorp, Max

    2016-01-01

    Malnutrition is the result of an inadequate balance between energy intake and energy expenditure that ultimately leads to either obesity or undernutrition. Several factors are associated with the onset and preservation of malnutrition. One of these factors is the gut microbiota, which has been

  19. Proton pump inhibitors affect the gut microbiome

    NARCIS (Netherlands)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Feenstra, Ettje T.; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or

  20. Community assembly of the worm gut microbiome

    Science.gov (United States)

    Gore, Jeff

    It has become increasingly clear that human health is strongly influenced by the bacteria that live within the gut, known collectively as the gut microbiome. This complex community varies tremendously between individuals, but understanding the sources that lead to this heterogeneity is challenging. To address this challenge, we are using a bottom-up approach to develop a predictive understanding of how the microbiome assembles and functions within a simple and experimentally tractable gut, the gut of the worm C. elegans. We have found that stochastic community assembly in the C. elegansintestine is sufficient to produce strong inter-worm heterogeneity in community composition. When worms are fed with two neutrally-competing fluorescently labeled bacterial strains, we observe stochastically-driven bimodality in community composition, where approximately half of the worms are dominated by each bacterial strain. A simple model incorporating stochastic colonization suggests that heterogeneity between worms is driven by the low rate at which bacteria successfully establish new intestinal colonies. We can increase this rate experimentally by feeding worms at high bacterial density; in these conditions the bimodality disappears. We have also characterized all pairwise interspecies competitions among a set of eleven bacterial species, illuminating the rules governing interspecies community assembly. These results demonstrate the potential importance of stochastic processes in bacterial community formation and suggest a role for C. elegans as a model system for ecology of host-associated communities.

  1. Gut Microbiota and Lifestyle Interventions in NAFLD

    Science.gov (United States)

    Houghton, David; Stewart, Christopher J.; Day, Christopher P.; Trenell, Michael

    2016-01-01

    The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed “dysbiosis”, has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host–microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis. PMID:27023533

  2. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Genetics and the Brain

    Science.gov (United States)

    ... Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev , 2011 Apr; 91(2): ... term potentiation and spine size enlargement. J. Neuroscience , March 18, 2009. 29(11):3395–3403 [xviii] Tapper, ...

  4. Gut microbiome and its role in cardiovascular diseases.

    Science.gov (United States)

    Ahmadmehrabi, Shadi; Tang, W H Wilson

    2017-11-01

    In recent years, an interest in intestinal microbiota-host interactions has increased due to many findings about the impact of gut bacteria on human health and disease. Dysbiosis, a change in the composition of the gut microbiota, has been associated with much pathology, including cardiovascular diseases (CVD). This article will review normal functions of the gut microbiome, its link to CVD, and potential therapeutic interventions. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention towards the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, arguably the largest, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to much pathology including chronic kidney disease, atherosclerosis, and hypertension. Although our understanding of gut microbiota-host interactions has increased recently; many questions remain about the mechanistic links between the gut microbiome and CVD. With further research, we may one day be able to add gut microbiota profiles as an assessable risk factor for CVD and target therapies towards the gut microbiota.

  5. Gut microbiota of Tenebrio molitor and their response to environmental change.

    Science.gov (United States)

    Jung, Jaejoon; Heo, Aram; Park, Yong Woo; Kim, Ye Ji; Koh, Hyelim; Park, Woojun

    2014-07-01

    A bacterial community analysis of the gut of Tenebrio molitor larvae was performed using pyrosequencing of the 16S rRNA gene. A predominance of genus Spiroplasma species in phylum Tenericutes was observed in the gut samples, but there was variation found in the community composition between T. molitor individuals. The gut bacteria community structure was not significantly affected by the presence of antibiotics or by the exposure of T. molitor larvae to a highly diverse soil bacteria community. A negative relationship was identified between bacterial diversity and ampicillin concentration; however, no negative relationship was identified with the addition of kanamycin. Ampicillin treatment resulted in a reduction in the bacterial community size, estimated using the 16S rRNA gene copy number. A detailed phylogenetic analysis indicated that the Spiroplasma-associated sequences originating from the T. molitor larvae were distinct from previously identified Spiroplasma type species, implying the presence of novel Spiroplasma species. Some Spiroplasma species are known to be insect pathogens; however, the T. molitor larvae did not experience any harmful effects arising from the presence of Spiroplasma species, indicating that Spiroplasma in the gut of T. molitor larvae do not act as a pathogen to the host. A comparison with the bacterial communities found in other insects (Apis and Solenopsis) showed that the Spiroplasma species found in this study were specific to T. molitor.

  6. Sex differences in gut microbiota in patients with major depressive disorder.

    Science.gov (United States)

    Chen, Jian-Jun; Zheng, Peng; Liu, Yi-Yun; Zhong, Xiao-Gang; Wang, Hai-Yang; Guo, Yu-Jie; Xie, Peng

    2018-01-01

    Our previous studies found that disturbances in gut microbiota might have a causative role in the onset of major depressive disorder (MDD). The aim of this study was to investigate whether there were sex differences in gut microbiota in patients with MDD. First-episode drug-naïve MDD patients and healthy controls were included. 16S rRNA gene sequences extracted from the fecal samples of the included subjects were analyzed. Principal-coordinate analysis and partial least squares-discriminant analysis were used to assess whether there were sex-specific gut microbiota. A random forest algorithm was used to identify the differential operational taxonomic units. Linear discriminant-analysis effect size was further used to identify the dominant sex-specific phylotypes responsible for the differences between MDD patients and healthy controls. In total, 57 and 74 differential operational taxonomic units responsible for separating female and male MDD patients from their healthy counterparts were identified. Compared with their healthy counterparts, increased Actinobacteria and decreased Bacteroidetes levels were found in female and male MDD patients, respectively. The most differentially abundant bacterial taxa in female and male MDD patients belonged to phyla Actinobacteria and Bacteroidia, respectively. Meanwhile, female and male MDD patients had different dominant phylotypes. These results demonstrated that there were sex differences in gut microbiota in patients with MDD. The suitability of Actinobacteria and Bacteroidia as the sex-specific biomarkers for diagnosing MDD should be further explored.

  7. A note on local GUT models in F-theory

    International Nuclear Information System (INIS)

    Chen, C.-M.; Chung, Y.-C.

    2010-01-01

    We construct non-minimal GUT local models in the F-theory configuration. The gauge group on the bulk G S is one rank higher than the GUT gauge group. The line bundles on the curves are nontrivial to break G S down to the GUT gauge groups. We demonstrate examples of SU(5) GUT from G S =SU(6) and G S =SO(10), the flipped SU(5) from G S =SO(10), and the SO(10) GUT from G S =SO(12) and G S =E 6 . We obtain complete GUT matter spectra and couplings, with minimum exotic matter contents. GUT gauge group breaking to MSSM is achievable by instanton configurations.

  8. The gut microbiota and its relationship to diet and obesity

    Science.gov (United States)

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  9. Mating promotes lactic-acid gut bacteria in a gift-giving insect

    OpenAIRE

    Smith, Chad; Mueller, Ulrich; Dietrich, Emma; Smith, C.; Srygley, R.; Dietrich, E.; Mueller, U.; Srygley, Robert

    2016-01-01

    Mating is a ubiquitous social interaction with the potential to influence the microbiome by facilitating transmission, modifying host physiology, and in species where males donate nuptial gifts to females, altering diet. We manipulated mating and nuptial gift consumption in two insects that differ in nuptial gift size, the Mormon cricket Anabrus simplex and the decorated cricket Gryllodes sigillatus, with the expectation that larger gifts are more likely to affect the gut microbiome. Surprisi...

  10. The Gut Microbiota: Ecology and Function

    Energy Technology Data Exchange (ETDEWEB)

    Willing, B.P.; Jansson, J.K.

    2010-06-01

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowel diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.

  11. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality.

    Science.gov (United States)

    Raulo, Aura; Ruokolainen, Lasse; Lane, Avery; Amato, Katherine; Knight, Rob; Leigh, Steven; Stumpf, Rebecca; White, Bryan; Nelson, Karen E; Baden, Andrea L; Tecot, Stacey R

    2018-03-01

    Vertebrate gut microbiota form a key component of immunity and a dynamic link between an individual and the ecosystem. Microbiota might play a role in social systems as well, because microbes are transmitted during social contact and can affect host behaviour. Combining methods from behavioural and molecular research, we describe the relationship between social dynamics and gut microbiota of a group-living cooperative species of primate, the red-bellied lemur (Eulemur rubriventer). Specifically, we ask whether patterns of social contact (group membership, group size, position in social network, individual sociality) are associated with patterns of gut microbial composition (diversity and similarity) between individuals and across time. Red-bellied lemurs were found to have gut microbiota with slight temporal fluctuations and strong social group-specific composition. Contrary to expectations, individual sociality was negatively associated with gut microbial diversity. However, position within the social network predicted gut microbial composition. These results emphasize the role of the social environment in determining the microbiota of adult animals. Since social transmission of gut microbiota has the potential to enhance immunity, microbiota might have played an escalating role in the evolution of sociality. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  12. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  13. Diet and gut morphology of male mallards during winter in North Dakota

    Science.gov (United States)

    Olsen, R.E.; Cox, R.R.; Afton, A.D.; Ankney, C.D.

    2011-01-01

    A free-ranging Mallard (Anas platyrhynchos) population was investigated during winter (December-January 1996-1999) below the Garrison Dam, North Dakota, USA, to relate diet to gut morphology variation in males. Four explanatory variables (fish consumption, male age, winter, and body size) were evaluated as to whether they influenced five response variables associated with gut characteristics of Mallards. Response variables were lower gastro-intestinal tract mass (LGIT), dry liver mass, dry gizzard mass, small intestine length, and ceca length. Diets of Mallards were comprised primarily of Rainbow Smelt (Osmerus mordax) and concomitantly variation in gizzard mass was small. LGIT mass of juveniles was larger than that of adults, greater for those that consumed fish, and greater during the coldest and snowiest winter. Liver mass and small intestine length of Mallards that consumed fish were greater than those that did not. Mallards may maintain lengthy intestines to increase digestive efficiency. Gut size variation was not entirely attributable to dietary composition but also influenced by body size and environmental conditions such that over-winter survival is maximized.

  14. Albumin infusion after reperfusion prevents gut ischemia-reperfusion-induced gut-associated lymphoid tissue atrophy.

    Science.gov (United States)

    Ikezawa, Fumie; Fukatsu, Kazuhiko; Moriya, Tomoyuki; Maeshima, Yoshinori; Okamoto, Koichi; Hara, Etsuko; Hiraide, Hoshio; Compher, Charlene W

    2006-01-01

    Our recent study clarified that gut ischemia-reperfusion (I/R) causes gut-associated lymphoid tissue (GALT) mass atrophy, a possible mechanism for increased morbidity of infectious complications after severe surgical insults. Because albumin administration reportedly reduces hemorrhagic shock-induced lung injury, we hypothesized that albumin treatment prevents GALT atrophy due to gut I/R. Male mice (n = 37) were randomized to albumin, normal saline, and sham groups. All groups underwent jugular vein catheter insertion. The albumin and normal saline groups underwent 75-minute occlusion of the superior mesenteric artery. During gut ischemia, all mice received normal saline infusions at 1.0 mL/h. The albumin group was given 5% bovine serum albumin in normal saline at 1.0 mL/h for 60 minutes after reperfusion, whereas the normal saline group received 0.9% sodium chloride at 1.0 mL/h. The sham group underwent laparotomy only. Mice were killed on day 1 or 7, and the entire small intestine was harvested. GALT lymphocytes were isolated and counted. Their phenotypes (alphabetaTCR, gammadeltaTCR, CD4, CD8, B220) were determined by flow cytometry. On day 1, the gut I/R groups showed significantly lower total lymphocyte and B cell numbers in Peyer's patches and the lamina propria than the sham group. However, the albumin infusion partially but significantly restored these cell numbers. On day 7, there were no significant differences in any of the parameters measured among the 3 groups. Albumin infusion after a gut ischemic insult may maintain gut immunity by preventing GALT atrophy.

  15. Development of the Young Brain

    Medline Plus

    Full Text Available ... the frontal part of the brain involved in controlling our impulses, long range planning, judgment, decision making. Announcer: Imaging has shown by the time children reach the first grade the physical size of the brain is nearly complete. But what goes on within the brain is nothing short ...

  16. Development of the Young Brain

    Medline Plus

    Full Text Available ... brain involved in controlling our impulses, long range planning, judgment, decision making. Announcer: Imaging has shown by the time children reach the first grade the physical size of the brain is nearly complete. But what goes on within the brain is nothing short ...

  17. Recruitment and establishment of the gut microbiome in arctic shorebirds.

    Science.gov (United States)

    Grond, Kirsten; Lanctot, Richard B; Jumpponen, Ari; Sandercock, Brett K

    2017-12-01

    Gut microbiota play a key role in host health. Mammals acquire gut microbiota during birth, but timing of gut microbial recruitment in birds is unknown. We evaluated whether precocial chicks from three species of arctic-breeding shorebirds acquire gut microbiota before or after hatching, and then documented the rate and compositional dynamics of accumulation of gut microbiota. Contrary to earlier reports of microbial recruitment before hatching in chickens, quantitative PCR and Illumina sequence data indicated negligible microbiota in the guts of shorebird embryos before hatching. Analyses of chick feces indicated an exponential increase in bacterial abundance of guts 0-2 days post-hatch, followed by stabilization. Gut communities were characterized by stochastic recruitment and convergence towards a community dominated by Clostridia and Gammaproteobacteria. We conclude that guts of shorebird chicks are likely void of microbiota prior to hatch, but that stable gut microbiome establishes as early as 3 days of age, probably from environmental inocula. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Characterization of the gut microbiota of Papua New Guineans using reverse transcription quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Andrew R Greenhill

    Full Text Available There has been considerable interest in composition of gut microbiota in recent years, leading to a better understanding of the role the gut microbiota plays in health and disease. Most studies have been limited in their geographical and socioeconomic diversity to high-income settings, and have been conducted using small sample sizes. To date, few analyses have been conducted in low-income settings, where a better understanding of the gut microbiome could lead to the greatest return in terms of health benefits. Here, we have used quantitative real-time polymerase chain reaction targeting dominant and sub-dominant groups of microorganisms associated with human gut microbiome in 115 people living a subsistence lifestyle in rural areas of Papua New Guinea. Quantification of Clostridium coccoides group, C. leptum subgroup, C. perfringens, Bacteroides fragilis group, Bifidobacterium, Atopobium cluster, Prevotella, Enterobacteriaceae, Enterococcus, Staphylococcus, and Lactobacillus spp. was conducted. Principle coordinates analysis (PCoA revealed two dimensions with Prevotella, clostridia, Atopobium, Enterobacteriaceae, Enterococcus and Staphylococcus grouping in one dimension, while B. fragilis, Bifidobacterium and Lactobacillus grouping in the second dimension. Highland people had higher numbers of most groups of bacteria detected, and this is likely a key factor for the differences revealed by PCoA between highland and lowland study participants. Age and sex were not major determinants in microbial population composition. The study demonstrates a gut microbial composition with some similarities to those observed in other low-income settings where traditional diets are consumed, which have previously been suggested to favor energy extraction from a carbohydrate rich diet.